TPS22811LRPWR [TI]

具有快速过压保护和电流监控功能的 2.7V 至 16V、10A、6mΩ 负载开关 | RPW | 10 | -40 to 125;
TPS22811LRPWR
型号: TPS22811LRPWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有快速过压保护和电流监控功能的 2.7V 至 16V、10A、6mΩ 负载开关 | RPW | 10 | -40 to 125

开关 监控
文件: 总40页 (文件大小:3569K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS22811  
ZHCSQA4A APRIL 2022 REVISED JULY 2022  
TPS22811x 具有可调节过压保护和电流监控功能2.7V 16V10A6mΩ 负  
载开关  
1 特性  
3 说明  
• 宽工作输入电压范围2.7V 16V  
TPS22811x 是一款采用小型封装的高度集成配电解决  
方案。该器件允许使用数量尽可能少的外部组件来控制  
和监控电源轨。  
– 绝对最大值20V  
• 具有低导通电阻的集FETRON = 6mΩ典型  
)  
• 可调节的输出压摆率控(dVdt)  
• 具有可调节欠压锁定阈(UVLO) 的高电平有效使  
能输入  
• 具有可调节欠压锁定阈(UVLO) 的低电平有效使  
能输入  
• 快速过压保护  
可以使用单个外部电容器来调节输出压摆率和浪涌电  
流。通过在输入超过可调过压阈值时切断输出可以保  
护负载免受输入过压情况的影响。该器件集成了快速跳  
变响应可提供保护防止在稳态期间输出侧出现严重  
故障。  
此类器件可提供输出负载电流的准确模拟检测以及数字  
电源正常状态指示从而帮助进行系统监控和诊断。  
– 可调节过压锁(OVLO)响应时间1.2μs  
典型值)  
• 模拟负载电流监测器输(IMON)  
器件采用 2mm × 2mm 10 引脚 HotRodQFN 封装,  
旨在改善热性能并减小系统尺寸。  
– • IOUT > 3A 时精度±9%  
• 在稳态条件下通过快速跳变响应实现短路保护  
– 响应时间640ns典型值)  
– 固定阈值  
此类器件的额定工作结温范围40°C +125°C。  
器件信息  
封装(1)  
封装尺寸标称值)  
器件型号  
TPS22811  
RPWVQFN-HR、  
10)  
• 过热保护  
2.00mm × 2.00mm  
• 具有可调节阈(PGTH) 的电源正常状(PG) 指  
• 快速输出放电  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
• 小尺寸QFN 2mm × 2mm0.45mm 间距  
VOUT  
VIN = 2.7 to 16 V  
IN  
OUT  
2 应用  
COUT  
光学模块  
EN  
EN/UVLO  
PGTH  
VLOGIC  
服务器/PC 主板/附加卡  
企业路由器/数据中心交换机  
PC  
TPS22811x  
EN/OVLO  
PG  
IMON  
dVdt  
GND  
UHDTV  
CDVDT  
RIMON  
简化版原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSGU5  
 
 
 
 
TPS22811  
ZHCSQA4A APRIL 2022 REVISED JULY 2022  
www.ti.com.cn  
Table of Contents  
8 Application and Implementation..................................23  
8.1 Application Information............................................. 23  
8.2 Typical Application.................................................... 25  
9 Power Supply Recommendations................................30  
9.1 Transient Protection..................................................30  
9.2 Output Short-Circuit Measurements......................... 31  
10 Layout...........................................................................32  
10.1 Layout Guidelines................................................... 32  
10.2 Layout Example...................................................... 33  
11 Device and Documentation Support..........................34  
11.1 Documentation Support.......................................... 34  
11.2 接收文档更新通知................................................... 34  
11.3 支持资源..................................................................34  
11.4 Trademarks............................................................. 34  
11.5 Electrostatic Discharge Caution..............................34  
11.6 术语表..................................................................... 34  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................6  
6.6 Timing Requirements..................................................7  
6.7 Switching Characteristics............................................8  
6.8 Typical Characteristics................................................9  
7 Detailed Description......................................................14  
7.1 Overview...................................................................14  
7.2 Functional Block Diagram.........................................15  
7.3 Feature Description...................................................16  
7.4 Device Functional Modes..........................................22  
Information.................................................................... 35  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (April 2022) to Revision A (July 2022)  
Page  
• 将状态从“预告信息”更改为“量产数据”....................................................................................................... 1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS22811  
 
TPS22811  
ZHCSQA4A APRIL 2022 REVISED JULY 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
IN  
OUT  
1
EN/UVLO  
10  
DNC  
IMON  
9
EN/OVLO  
2
5
6
PG  
GND  
8
3
DVDT  
PGTH  
7
4
5-1. TPS22811x RPW Package 10-Pin QFN Top View  
5-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
Active high enable for the device. A resistor divider on this pin from input supply to GND can  
be used to adjust the Undervoltage Lockout threshold. Do not leave floating. Refer to  
Undervoltage Lockout (UVLO and UVP) for details.  
Analog  
Input  
EN/UVLO  
1
A resistor divider on this pin from supply to GND can be used to adjust the overvoltage lockout  
threshold. This pin can also be used as an active low enable for the device. Do not leave  
floating. Refer to Overvoltage Lockout (OVLO) for more details.  
Analog  
Input  
EN/OVLO  
2
Power-good indication. This pin is an open-drain signal which is asserted high when the  
internal power path is fully turned ON and PGTH input exceeds a certain threshold. Refer to  
Power-Good Indication (PG) for more details.  
Digital  
Output  
PG  
3
4
Analog  
Input  
PGTH  
Power-good threshold. Refer to Power-Good Indication (PG) for more details.  
IN  
5
6
Power Power input  
Power Power output  
OUT  
A capacitor from this pin to GND sets the output turn on slew rate. Leave this pin floating for  
the fastest turn on slew rate. Refer to Slew Rate (dVdt) and Inrush Current Control for more  
details.  
Analog  
Output  
DVDT  
GND  
7
8
Ground This pin is the ground reference for all internal circuits and must be connected to system GND.  
Analog load current monitor output. An external resistor from this pin to GND sets the gain for  
the current monitor. This pin also provides a secondary function of setting the current limit  
Analog  
IMON  
DNC  
9
during start-up. Connect to GND if neither of these features are used. Do not leave floating.  
Output  
Refer to Analog Load Current Monitor and Active Current Limiting During Start-Up for more  
details.  
10  
X
Do not connect anything to this pin.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS22811  
 
TPS22811  
ZHCSQA4A APRIL 2022 REVISED JULY 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
Parameter  
Pin  
MIN  
0.3  
0.3  
0.8  
0.3  
0.3  
MAX  
20  
UNIT  
VIN  
IN  
V
Maximum input voltage range, 40TJ 125℃  
Maximum output voltage range, 40TJ 125℃  
Minimum output voltage pulse (< 1 µs)  
Maximum Enable pin voltage range  
VOUT  
OUT  
OUT  
VIN + 0.3  
VOUT,PLS  
VEN/UVLO  
VOV  
EN/UVLO  
EN/OVLO  
dVdt  
6.5  
6.5  
V
V
V
V
V
Maximum EN/OVLO pin voltage range  
Maximum dVdT pin voltage range  
VdVdT  
VPG  
Internally limited  
0.3  
Maximum PG pin voltage range  
PG  
6.5  
6.5  
VPGTH  
Maximum PGTH pin voltage range  
PGTH  
0.3  
Internally limited  
VIMON  
Maximum IMON pin voltage range  
IMON  
V
IMAX  
TJ  
TLEAD  
Tstg  
Maximum continuous switch current  
Junction temperature  
IN to OUT  
10  
A
Internally limited  
°C  
°C  
°C  
Maximum lead temperature  
Storage temperature  
300  
150  
65  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC  
JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per ANSI/ESDA/JEDEC  
JS-002(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
Parameter  
Pin  
MIN  
MAX  
16  
UNIT  
V
VIN  
Input voltage range  
IN  
2.7  
VOUT  
VEN/UVLO  
VOV  
Output voltage range  
OUT  
VIN  
5(1)  
1.5  
V
EN/UVLO pin voltage range  
EN/OVLO pin voltage range  
dVdT pin capacitor voltage rating  
PGTH pin voltage range  
EN/UVLO  
EN/OVLO  
dVdt  
V
0.5  
V
VdVdT  
VPGTH  
VPG  
VIN + 5 V  
V
PGTH  
5
5
V
PG pin voltage range  
PG  
V
IMAX  
IN to OUT  
10  
A
Continuous switch current, TJ 125℃  
Junction temperature  
TJ  
125  
°C  
40  
(1) For supply voltages below 5 V, it is okay to pull up the EN pin to IN directly. For supply voltages greater than 5 V , TI recommends  
to use a resistor divider with minimum pullup resistor value of 350 k.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS22811  
 
 
 
 
 
 
 
 
TPS22811  
ZHCSQA4A APRIL 2022 REVISED JULY 2022  
www.ti.com.cn  
6.4 Thermal Information  
TPS25981xx  
THERMAL METRIC (1)  
RPW (QFN)  
10 PINS  
49.7(2)  
71.8(3)  
15.7  
UNIT  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJA  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
Junction-to-top characterization parameter  
2.1(2)  
1.3(3)  
23 (2)  
Junction-to-board characterization parameter  
ΨJB  
14.5 (3)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) Based on simulations conducted with the device mounted on a custom 4-layer PCB (2s2p) with 8 thermal vias under device.  
(3) Based on simulations conducted with the device mounted on a JEDEC 4-layer PCB (2s2p) with no thermal vias under device.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS22811  
 
 
 
 
TPS22811  
ZHCSQA4A APRIL 2022 REVISED JULY 2022  
www.ti.com.cn  
6.5 Electrical Characteristics  
(Test conditions unless otherwise noted) 40°C TJ 125°C, VIN = 12 V, OUT = Open, VEN/UVLO = 2 V, VOVLO = 0 V,  
RIMON = 600 Ω, dVdT = Open, PGTH = Open, PG = Open. All voltages referenced to GND.  
Test  
Parameter  
Description  
MIN  
TYP  
MAX  
UNITS  
INPUT SUPPLY (IN)  
IQ(ON)  
IQ(OFF)  
ISD  
IN supply quiescent current  
381  
68  
470  
90  
µA  
µA  
µA  
V
IN supply OFF state current (VSD(F) < VEN < VUVLO(F)  
)
IN supply shutdown current (VEN < VSD(F)  
)
3
25  
VUVP(R)  
VUVP(F)  
IN supply UVP rising threshold  
2.44  
2.35  
2.53  
2.42  
2.64  
2.55  
IN supply UVP falling threshold  
V
OUTPUT LOAD CURRENT MONITOR (IMON)  
Analog load current monitor gain (IMON : IOUT), IOUT = 1.5 A,  
IOUT < ILIM  
82.9  
87  
95.3  
95.3  
95.3  
95.3  
95.3  
107.6  
104.5  
103.1  
102.6  
102.4  
µA/A  
µA/A  
µA/A  
µA/A  
µA/A  
Analog load current monitor gain (IMON : IOUT), IOUT = 3 A,  
IOUT < ILIM  
Analog load current monitor gain (IMON : IOUT), IOUT = 4.5 A,  
IOUT < ILIM  
GIMON  
87.6  
87.7  
87.8  
Analog load current monitor gain (IMON : IOUT), IOUT = 8 A,  
IOUT < ILIM  
Analog load current monitor gain (IMON : IOUT), IOUT = 10 A,  
IOUT < ILIM  
SHORT-CIRCUIT PROTECTION (OUT)  
IFT Fixed fast-trip current threshold  
ON RESISTANCE (IN - OUT)  
2.7 VIN 4 V, IOUT = 3 A, TJ = 25℃  
39.5  
A
6.07  
5.81  
mΩ  
mΩ  
mΩ  
RON  
4 < VIN 16 V, IOUT = 3 A, TJ = 25℃  
8.4  
2.7 VIN 16 V, IOUT = 3 A, -40TJ 125℃  
ENABLE/UNDERVOLTAGE LOCKOUT (EN/UVLO)  
VUVLO(R)  
VUVLO(F)  
VSD(F)  
EN/UVLO rising threshold  
1.176  
1.073  
0.45  
1.20  
1.09  
0.75  
1.224  
1.116  
V
V
EN/UVLO falling threshold  
EN/UVLO falling threshold for lowest shutdown current  
EN/UVLO pin leakage current  
V
IENLKG  
0.1  
µA  
0.1  
OVERVOLTAGE LOCKOUT (EN/OVLO)  
VOV(R)  
VOV(F)  
IOVLKG  
OVLO rising threshold  
1.176  
1.074  
0.1  
1.20  
1.09  
1.224  
1.116  
0.1  
V
V
OVLO falling threshold  
OVLO pin leakage current (0.5 V < VOVLO < 1.5 V)  
µA  
POWER GOOD INDICATION (PG)  
PG pin voltage while de-asserted. VIN < VUVP(F), VEN  
<
<
0.66  
0.80  
0.90  
V
V
VSD(F), Weak pullup (IPG = 26 μA)  
VPGD  
PG pin voltage while de-asserted. VIN < VUVP(F), VEN  
0.78  
0
VSD(F), Strong pullup (IPG = 242 μA)  
PG pin voltage while de-asserted, VIN > VUVP(R)  
PG pin leakage current, PG asserted  
0.60  
3
V
IPGLKG  
µA  
POWER GOOD THRESHOLD (PGTH)  
VPGTH(R)  
VPGTH(F)  
IPGTHLKG  
PGTH rising threshold  
PGTH falling threshold  
PGTH leakage current  
1.178  
1.071  
1  
1.20  
1.09  
1.224  
1.116  
1
V
V
µA  
OVERTEMPERATURE PROTECTION (OTP)  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS22811  
 
TPS22811  
ZHCSQA4A APRIL 2022 REVISED JULY 2022  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
(Test conditions unless otherwise noted) 40°C TJ 125°C, VIN = 12 V, OUT = Open, VEN/UVLO = 2 V, VOVLO = 0 V,  
RIMON = 600 Ω, dVdT = Open, PGTH = Open, PG = Open. All voltages referenced to GND.  
Test  
Parameter  
Description  
MIN  
TYP  
MAX  
UNITS  
TSD  
154  
10  
°C  
°C  
Thermal Shutdown rising threshold, TJ↑  
Thermal Shutdown hysteresis, TJ↓  
TSDHYS  
DVDT  
IdVdt  
dVdt pin internal charging current  
1.4  
3.45  
488  
5.7  
µA  
QUICK OUTPUT DISCHARGE (OUT)  
RQOD  
Quick Output Discharge Resistance, VEN < VUVLO(F)  
455  
530  
6.6 Timing Requirements  
PARAMETER  
TEST CONDITIONS  
MIN TYP MAX  
UNIT  
µs  
tOVLO  
tFT  
tPGA  
tPGD  
Overvoltage lock-out response time  
1.2  
640  
14  
VOVLO > VOV(R) to VOUT  
IOUT > IFT to IOUT  
Fixed fast-trip response time  
PG assertion de-glitch time  
PG de-assertion de-glitch time  
ns  
µs  
14  
µs  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS22811  
 
TPS22811  
ZHCSQA4A APRIL 2022 REVISED JULY 2022  
www.ti.com.cn  
6.7 Switching Characteristics  
The output rising slew rate is internally controlled and constant across the entire operating voltage range to ensure the turn  
on timing is not affected by the load conditions. The rising slew rate can be adjusted by adding capacitance from the dVdt pin  
to ground. As CdVdt is increased it slows the rising slew rate (SR). See Slew Rate and Inrush Current Control (dVdt) section  
for more details. The Turn-Off Delay and Fall Time, however, are dependent on the RC time constant of the load capacitance  
(COUT) and Load Resistance (RL). The Switching Characteristics are only valid for the power-up sequence where the supply  
is available in steady-state condition and the load voltage is completely discharged before the device is enabled. Typical  
values are taken at TJ = 25°C unless specifically noted otherwise. RL = 100 , COUT = 1 µF.  
CdVdt  
3300 pF  
=
PARAMETER  
VIN  
CdVdt = Open CdVdt = 1800 pF  
UNITS  
2.7 V  
5 V  
8.19 0.78  
1.30  
1.42  
1.68  
0.46  
0.60  
0.93  
1.66  
2.82  
5.74  
2.11  
3.42  
6.67  
24.90  
21.10  
18.80  
SRON  
tD,ON  
tR  
Output rising slew rate  
11.28  
19.71  
0.14  
0.14  
0.14  
0.26  
0.36  
0.49  
0.40  
0.50  
0.63  
24.90  
21.10  
18.80  
0.84  
0.98  
0.70  
0.96  
1.57  
2.77  
4.78  
9.84  
3.47  
5.74  
11.41  
24.90  
21.10  
18.80  
V/ms  
12 V  
2.7 V  
5 V  
Turn-on delay  
Rise time  
ms  
ms  
ms  
µs  
12 V  
2.7 V  
5 V  
12 V  
2.7 V  
5 V  
tON  
Turn-on time  
Turn-off delay  
12 V  
2.7 V  
5 V  
tD,OFF  
12 V  
VEN/UVLO  
EN/UVLO  
VUVLO(R)  
VUVLO(F)  
0
tON  
SRON  
tD,OFF  
90%  
VIN  
OUT  
10%  
0V  
tR  
tF  
tD,ON  
Time  
6-1. TPS22811x Switching Times  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS22811  
 
TPS22811  
ZHCSQA4A APRIL 2022 REVISED JULY 2022  
www.ti.com.cn  
6.8 Typical Characteristics  
6.1  
6.05  
6
8
7.5  
7
IOUT(A)  
1.5  
VIN(V)  
2.7  
3
4.5  
6
3.3  
4
5
12  
16  
5.95  
5.9  
6.5  
6
5.85  
5.8  
5.5  
5
5.75  
5.7  
4.5  
-40  
2
4
6
8
10  
VIN (V)  
12  
14  
16  
-20  
0
20  
40  
60  
80  
100 120 140  
TA (C)  
6-2. ON-Resistance vs Supply Voltage (TA = 25°C)  
6-3. ON-Resistance vs Temperature (IOUT = 3 A)  
77.5  
410  
400  
390  
380  
VIN(V)  
2.7  
75  
72.5  
70  
5
12  
16  
VIN(V)  
2.7  
67.5  
65  
370  
360  
350  
340  
330  
320  
310  
5
12  
16  
62.5  
60  
57.5  
55  
52.5  
-40  
-20  
0
20  
40  
TA(C)  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
TA (C)  
60  
80  
100 120 140  
6-5. IN OFF State (UVLO) Current vs Temperature  
2.54  
6-4. IN Quiescent Current vs Temperature  
3.9  
3.6  
3.3  
3
2.52  
2.5  
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
VIN(V)  
2.7  
2.48  
2.46  
2.44  
2.42  
2.4  
Rising  
Falling  
5
12  
16  
-40  
-20  
0
20  
40  
TA (C)  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
TA(C)  
60  
80  
100 120 140  
6-7. IN Undervoltage Threshold vs Temperature  
6-6. IN Shutdown Current vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS22811  
 
TPS22811  
ZHCSQA4A APRIL 2022 REVISED JULY 2022  
www.ti.com.cn  
6.8 Typical Characteristics (continued)  
1.20195  
1.2019  
1.20185  
1.2018  
1.20175  
1.2017  
1.20165  
1.2016  
1.20155  
1.2015  
1.20145  
1.2014  
1.20135  
1.2013  
1.20195  
1.2019  
1.20185  
1.2018  
1.20175  
1.2017  
1.20165  
1.2016  
1.20155  
1.2015  
1.20145  
1.2014  
1.20135  
1.2013  
VIN(V)  
2.7  
VIN(V)  
2.7  
5
5
12  
16  
12  
16  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
TA (C)  
TA (C)  
6-8. EN/UVLO Rising Threshold vs Temperature  
0.8  
6-9. EN/UVLO Falling Threshold vs Temperature  
1.20205  
VIN(V)  
2.7  
1.202  
1.20195  
1.2019  
1.20185  
1.2018  
1.20175  
1.2017  
1.20165  
1.2016  
1.20155  
1.2015  
1.20145  
1.2014  
0.78  
0.76  
0.74  
0.72  
0.7  
5
12  
16  
0.68  
0.66  
0.64  
0.62  
0.6  
VIN(V)  
2.7  
5
12  
16  
0.58  
-40  
-20  
0
20  
40  
TA (C)  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
TA (C)  
6-11. EN/OVLO Rising Threshold vs Temperature  
44  
6-10. EN/UVLO Shutdown Falling Threshold vs Temperature  
1.09525  
1.0952  
1.09515  
1.0951  
1.09505  
1.095  
1.09495  
1.0949  
1.09485  
1.0948  
1.09475  
1.0947  
1.09465  
1.0946  
1.09455  
1.0945  
VIN(V)  
2.7  
5
12  
16  
41  
38  
35  
32  
VIN(V)  
2.7  
5
12  
16  
-40  
-20  
0
20  
40  
TA (C)  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
TA(C)  
6-12. EN/OVLO Falling Threshold vs Temperature  
6-13. Fixed Fast-Trip Threshold vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS22811  
TPS22811  
ZHCSQA4A APRIL 2022 REVISED JULY 2022  
www.ti.com.cn  
6.8 Typical Characteristics (continued)  
18  
15  
12  
9
3.8  
3.75  
3.7  
3.65  
3.6  
VIN(V)  
2.7  
5
Min  
Typ  
Max  
12  
16  
6
3.55  
3.5  
3
3.45  
3.4  
3.35  
3.3  
0
-3  
-6  
-9  
3.25  
3.2  
3.15  
3.1  
-12  
-15  
-18  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
1
2
3
4
5
6
7
8
9
10  
11  
TA (C)  
IOUT (A)  
6-15. DVDT Charging Current vs Temperature  
6-14. Analog Current Monitor Gain Accuracy  
1.2006  
0.84  
VIN(V)  
2.7  
IPG(A)  
1.20055  
1.2005  
1.20045  
1.2004  
1.20035  
1.2003  
1.20025  
1.2002  
1.20015  
1.2001  
0.81  
0.78  
0.75  
0.72  
0.69  
0.66  
0.63  
0.6  
26  
5
12  
16  
242  
0.57  
0.54  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
TA (C)  
TA (C)  
6-17. PGTH Rising Threshold vs Temperature  
0.08  
6-16. PG Pin Voltage vs Temperature (VIN = 0 V)  
1.09505  
VIN(V)  
1.095  
1.09495  
1.0949  
2.7  
5
12  
16  
0.06  
0.04  
0.02  
0
1.09485  
1.0948  
1.09475  
1.0947  
1.09465  
1.0946  
VIN(V)  
2.7  
1.09455  
1.0945  
5
12  
23  
-0.02  
1.09445  
-0.04  
-40  
-20  
0
20  
40  
TA (C)  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
TA (C)  
60  
80  
100 120 140  
6-18. PGTH Falling Threshold vs Temperature  
6-19. PGTH Pin Leakage Current vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS22811  
TPS22811  
ZHCSQA4A APRIL 2022 REVISED JULY 2022  
www.ti.com.cn  
6.8 Typical Characteristics (continued)  
502  
500  
498  
496  
494  
492  
490  
488  
486  
484  
482  
10000  
5000  
2000  
1000  
500  
200  
100  
50  
20  
10  
5
VIN(V)  
2.7  
2
1
0.5  
5
12  
16  
0.2  
0.1  
0
20  
40  
60  
80  
PD (W)  
100  
120  
140  
-40  
-20  
0
20  
40  
TA (C)  
60  
80  
100 120 140  
6-21. Time to Thermal Shutdown During Inrush State  
6-20. Quick Output Discharge Resistance vs Temperature  
VIN = 12 V, COUT = 10 μF, CdVdt = Open, VEN/UVLO stepped up  
to 3.3 V  
6-23. Start-Up with Enable  
6-22. Time to Thermal Shutdown During Steady-State  
VEN/UVLO = 3.3 V, COUT = 10 μF, CdVdt = Open, VIN ramped  
VIN = 12 V, COUT = 220 μF, CdVdt = 3300 pF, VEN/UVLO  
up to 12 V  
stepped up to 1.4 V  
6-24. Start- Up with Supply  
6-25. Inrush Current with Capacitive Load  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS22811  
TPS22811  
ZHCSQA4A APRIL 2022 REVISED JULY 2022  
www.ti.com.cn  
6.8 Typical Characteristics (continued)  
VIN Overvoltage threshold set to 13.6 V using resistor ladder  
connected on OVLO pin, VIN ramped up from 12 V to 16 V  
VIN = 12 V, COUT = 220 μF, ROUT = 5 Ω, CdVdt = 3300 pF,  
VEN/UVLO stepped up to 1.4 V  
6-27. Overvoltage Lockout Response  
6-26. Inrush Current with Resistive and Capacitive Load  
VIN = 12 V, COUT = Open, OUT short circuit to GND, RIMON  
=
VIN = 12 V, OUT stepped from open short circuit to GND  
649 Ω, VEN/UVLO stepped from 0 V to 3.3 V  
6-28. Output Short Circuit During Steady-State (Zoomed In)  
6-29. Power Up into Short-Circuit  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS22811  
TPS22811  
ZHCSQA4A APRIL 2022 REVISED JULY 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
TPS22811x is an integrated load switch with protection and monitoring. The device starts its operation by  
monitoring the IN bus. When the input supply voltage (VIN) exceeds the undervoltage protection threshold  
(VUVP), the device samples the EN/UVLO pin. A high level (> VUVLO) on this pin enables the internal power path  
to start conducting and allow current to flow from IN to OUT. When EN/UVLO is held low (< VUVLO), the internal  
power path is turned off.  
After a successful start-up sequence, the device now actively monitors its load current and input voltage, and  
controls the internal FET to ensure that the fast-trip current threshold is not exceeded and overvoltage spikes are  
cut-off after they cross the user adjustable overvoltage lockout threshold (VOVLO). This feature keeps the system  
safe from harmful levels of voltage and current.  
The device also has a built-in thermal sensor based shutdown mechanism to protect itself in case the device  
temperature (TJ) exceeds the recommended operating conditions.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS22811  
 
 
TPS22811  
ZHCSQA4A APRIL 2022 REVISED JULY 2022  
www.ti.com.cn  
7.2 Functional Block Diagram  
FFT  
TPS22811x  
229 mV  
Temp Sense and  
Overtemperature  
protection  
TSD  
5
6
7
OUT  
IN  
INRUSH_DONE  
HFET  
DVDT  
CP  
3.4 A  
2.8 V  
+
UVPb  
UVLOb  
2.53 V9  
95.3 A/A  
-
2.42 V;  
GHI  
-
2
1
EN/OVLO  
EN/UVLO  
OVLOb  
UVLOb  
1.20 V9  
1.09 V;  
+
+
HFET Control  
IMON  
9
1.20 V9  
1.09 V;  
INRUSH_DONE  
-
SWEN  
-
SD  
+
0.75 V;  
SD  
R
S
/Q  
Q
UVPb  
10  
DNC  
PG_int  
TSD  
FLT  
PG_int  
8
GND  
R
Q
S
/Q  
GHI FFT  
1.2 V9  
1.09 V;  
3
4
PG  
PGTH  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS22811  
 
TPS22811  
ZHCSQA4A APRIL 2022 REVISED JULY 2022  
www.ti.com.cn  
7.3 Feature Description  
The TPS22811x eFuse is a compact, feature rich power management device that provides detection, protection  
and indication in the event of system faults.  
7.3.1 Undervoltage Lockout (UVLO and UVP)  
The TPS22811x implements undervoltage protection on IN in case the applied voltage becomes too low for the  
system or device to properly operate. The undervoltage protection has a default lockout threshold of VUVP which  
is fixed internally. Also, the UVLO comparator on the EN/UVLO pin allows the undervoltage protection threshold  
to be externally adjusted to a user defined value. 7-1 and 方程1 show how a resistor divider can be used to  
set the UVLO set point for a given voltage supply.  
Power  
Supply  
IN  
R1  
EN/UVLO  
R2  
GND  
7-1. Adjustable Undervoltage Protection  
V
× R + R  
1 2  
UVLO  
V
=
(1)  
IN UV  
R
2
7.3.2 Overvoltage Lockout (OVLO)  
The TPS22811x allows the user to implement overvoltage lockout to protect the load from input overvoltage  
conditions. The OVLO comparator on the EN/OVLO pin allows the overvoltage protection threshold to be  
adjusted to a user defined value. After the voltage at the EN/OVLO pin crosses the OVLO rising threshold  
VOV(R), the device turns off the power to the output. Thereafter, the devices wait for the voltage at the EN/OVLO  
pin to fall below the OVLO falling threshold VOV(F) before the output power is turned ON again. The rising and  
falling thresholds are slightly different to provide hysterisis. 7-2 and 方程式 2 show how a resistor divider can  
be used to set the OVLO set point for a given voltage supply.  
Power  
Supply  
IN  
R1  
EN/OVLO  
R2  
GND  
7-2. Adjustable Overvoltage Protection  
V
× R + R  
1 2  
OV  
V
=
(2)  
IN OV  
R
2
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS22811  
 
 
 
 
 
 
 
TPS22811  
ZHCSQA4A APRIL 2022 REVISED JULY 2022  
www.ti.com.cn  
Input Overvoltage Event  
Input Overvoltage Removed  
IN  
0
VOV(R)  
VOV(F)  
EN/OVLO  
tOVLO  
0
OUT  
dVdt Limited Start-up  
tPGA  
0
VPG  
0
tPGD  
PG  
Time  
7-3. TPS22811x Overvoltage Lockout and Recovery  
While recovering from a OVLO event, the TPS22811x starts up with inrush control (dVdt).  
7.3.3 Inrush Current, Overcurrent, and Short-Circuit Protection  
TPS22811x incorporates three levels of protection against overcurrent:  
1. Adjustable slew rate (dVdt) for inrush current control  
2. Fixed threshold (IFT) for fast-trip response to quickly protect against hard output short circuits during steady-  
state  
3. Adjustable current limit (ILIM) for protection against overcurrent or short circuit during start-up  
7.3.3.1 Slew Rate (dVdt) and Inrush Current Control  
During hot-plug events or while trying to charge a large output capacitance at start-up, there can be a large  
inrush current. If the inrush current is not managed properly, it can damage the input connectors and cause the  
system power supply to droop leading to unexpected restarts elsewhere in the system. The inrush current during  
turn on is directly proportional to the load capacitance and rising slew rate. 方程3 can be used to find the slew  
rate (SR) required to limit the inrush current (IINRUSH) for a given load capacitance (COUT):  
I
mA  
V
ms  
INRUSH  
SR  
=
(3)  
C
µF  
OUT  
A capacitor can be connected to the dVdt pin to control the rising slew rate and lower the inrush current during  
turn on. Use 方程4 to calculate the required CdVdt capacitance to produce a given slew rate.  
3300  
C
pF =  
(4)  
dVdt  
V
SR  
ms  
The fastest output slew rate is achieved by leaving the dVdt pin open.  
备注  
For CdVdt > 10 nF, TI recommends to add a 100-Ωresistor in series with the capacitor on the dVdt pin.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS22811  
 
 
 
TPS22811  
ZHCSQA4A APRIL 2022 REVISED JULY 2022  
www.ti.com.cn  
7.3.3.2 Short-Circuit Protection  
During an output short-circuit event, the current through the device increases very rapidly. When a severe  
overcurrent condition is detected, the TPS22811x triggers a fast-trip response to cut off the power path. The  
device employs a fixed fast-trip threshold (IFT) to protect fast protection against hard short circuits during steady-  
state. After the current exceeds IFT, the FET is turned off completely within tFT. Thereafter, the device remains off  
till the device is power cycled or re-enabled using EN/UVLO pin.  
Transient overcurrent  
during steady state  
Device latched-off  
Device enabled  
Device re-enabled  
Load step  
VUVLO(R)  
EN/UVLO  
VSD(F)  
0
IN  
0
tFT  
IFT  
Fast-trip  
IOUT  
IINRUSH  
0
VIN  
OUT  
0
tPGA  
tPGA  
tPGD  
VPG  
0
PG  
Time  
7-4. TPS22811x Short-Circuit Response  
7.3.3.3 Active Current Limiting During Start-Up  
The TPS22811x devices respond to output overcurrent conditions during start-up by actively limiting the current.  
If the load current exceeds the set overcurrent threshold (ILIM) set by the IMON pin resistor (RIMON), but stays  
lower than the fast-trip threshold (IFT), the current limit loop starts regulating the FET to actively limit the current  
to the set overcurrent threshold (ILIM). 程式 5 can be used to calculate the RIMON value for a desired  
overcurrent threshold.  
6595  
R
Ω =  
(5)  
IMON  
I
A
LIM  
备注  
1. Leaving the IMON pin open sets the current limit to nearly zero and results in the part entering  
current limit with the slightest amount of loading at the output.  
2. The current limit circuit employs a foldback mechanism. The current limit threshold in the foldback  
region (0 V < VOUT < VFB) is lower than the target current limit threshold (ILIM).  
3. Connecting the IMON pin to GND disables the active current limit protection during start-up.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS22811  
 
 
TPS22811  
ZHCSQA4A APRIL 2022 REVISED JULY 2022  
www.ti.com.cn  
During active current limit, the output voltage drops, resulting in increased device power dissipation across the  
FET. If the device internal temperature (TJ) exceeds the thermal shutdown threshold (TSD), the FET is turned  
off. After the part shuts down due to TSD fault, it stays latched off. For more details on device response to  
overtemperature, see Overtemperature Protection (OTP).  
7.3.4 Analog Load Current Monitor  
The TPS22811x allows the system to accurately monitor the output load current by providing an analog current  
sense output on the IMON pin which is proportional to the current through the FET. The user can sense the  
voltage (VIMON) across the RIMON to get a measure of the output load current.  
V
µV  
IMON  
µA/A × R  
I
A =  
(6)  
LOAD  
G
IMON  
IMON  
The waveform below shows the IMON signal response to a load step at the output.  
VIN = 12 V, RIMON = 649 Ω, IOUT varied dynamically between 8 A and 14 A  
7-5. Analog Load Current Monitor Response  
7.3.5 Overtemperature Protection (OTP)  
The device monitors the internal die temperature (TJ) at all times and shuts down the part as soon as the  
temperature exceeds a safe operating level (TSD) thereby protecting the device from damage. The device does  
turn back on until the junction cools down sufficiently, that is the die temperature falls below (TSD TSDHYS).  
When the TPS22811x detects thermal overload, it shuts down and remains latched-off until the device is power  
cycled or re-enabled.  
7-1. Thermal Shutdown  
Enter TSD  
Exit TSD  
TJ < TSD TSDHYS  
VIN cycled to 0 V and then above VUVP(R) or EN/UVLO toggled below VSD(F)  
TJ TSD  
7.3.6 Fault Response  
The following table summarizes the device response to various fault conditions.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS22811  
 
 
TPS22811  
ZHCSQA4A APRIL 2022 REVISED JULY 2022  
www.ti.com.cn  
7-2. Fault Summary  
Event  
Overtemperature  
Protection Response  
Fault Latched Internally  
Shutdown  
Y
N
N
Y
Undervoltage (UVP or UVLO)  
Input overvoltage  
Shutdown  
Shutdown  
Fast-trip  
Output short circuit to GND  
Faults which are latched internally can be cleared either by power cycling the part (pulling VIN to 0 V) or by  
pulling the EN/UVLO pin voltage below VSD  
.
During a latched fault, pulling the EN/UVLO just below the UVLO threshold has no impact on the device.  
7.3.7 Power-Good Indication (PG)  
The TPS22811x provides an active high digital output (PG) which serves as a power-good indication signal and  
is asserted high depending on the voltage at the PGTH pin along with the device state information. The PG is an  
open-drain pin and must be pulled up to an external supply.  
After power up, PG is pulled low initially. The device initiates a inrush sequence in which the HFET is turned on  
in a controlled manner. When the HFET gate voltage reaches the full overdrive indicating that the inrush  
sequence is complete and the voltage at PGTH is above VPGTH(R), the PG is asserted after a de-glitch time  
(tPGA).  
PG is de-asserted if at any time during normal operation, the voltage at PGTH falls below VPGTH(F), or the device  
detects a fault (except overcurrent). The PG de-assertion de-glitch time is tPGD  
.
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS22811  
 
TPS22811  
ZHCSQA4A APRIL 2022 REVISED JULY 2022  
www.ti.com.cn  
Device Enabled  
VUVLO(R)  
0
EN/UVLO  
IN  
Slew rate (dVdt) controlled  
startup/Inrush current limiting  
0
VIN  
OUT  
0
VPGTH(R)  
VPGTH(F)  
PGTH  
0
VPG  
PG  
tPGA  
0
VIN  
dVdt  
0
VOUT + 2.8 V  
VHGate  
0
ILIM  
IINRUSH  
IOUT  
0
Time  
7-6. TPS22811xx PG Timing Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS22811  
TPS22811  
ZHCSQA4A APRIL 2022 REVISED JULY 2022  
www.ti.com.cn  
7-3. TPS22811x PG Indication Summary  
Event  
Protection Response  
PG Pin  
PG Delay  
Undervoltage (UVP or UVLO)  
Shutdown  
L
L (If PGTH pin voltage <  
VPGTH(F)  
Overvoltage (OVLO)  
Steady-state  
Shutdown  
NA  
tPGD  
)
H (If PGTH pin voltage >  
VPGTH(R)  
L (If PGTH pin voltage <  
VPGTH(F)  
)
tPGA  
tPGD  
)
H (If PGTH pin voltage >  
VPGTH(R)  
L (If PGTH pin voltage <  
VPGTH(F)  
)
tPGA  
tPGD  
Output short circuit to GND  
Overtemperature  
Fast-trip followed by current limit  
Shutdown  
)
L (If PGTH pin voltage <  
VPGTH(F)  
tPGD  
)
When there is no supply to the device, the PG pin is expected to stay low. However, there is no active pulldown  
in this condition to drive this pin all the way down to 0 V. If the PG pin is pulled up to an independent supply  
which is present even if the device is unpowered, there can be a small voltage seen on this pin depending on the  
pin sink current, which is a function of the pullup supply voltage and resistor. Minimize the sink current to keep  
this pin voltage low enough not to be detected as a logic HIGH by associated external circuits in this condition.  
7.3.8 Quick Output Discharge (QOD)  
The TPS22811x has an integrated output discharge function which can be helpful in quickly removing residual  
charge left on the large output capacitors and avoids bus floating at some undefined voltage. The internal QOD  
pulldown FET on the OUT pin is activated when the EN/UVLO is held low (VEN < VUVLO(F)). The output discharge  
function can result in excess power dissipation inside the device leading to increase in junction temperature. The  
output discharge is disabled if the junction temperature (TJ) crosses the thermal shutdown threshold (TSD) to  
avoid long term degradation of the part.  
7.4 Device Functional Modes  
The device has one mode of operation that applies when operated within the Recommended Operating  
Conditions.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS22811  
 
TPS22811  
ZHCSQA4A APRIL 2022 REVISED JULY 2022  
www.ti.com.cn  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
The TPS22811x is a 2.7-V to 16-V, 10-A load switch that is typically used for power rail protection applications.  
The device operates from 2.7 V to 16 V with adjustable overvoltage and undervoltage protection. The device  
provides ability to control inrush current. The device can be used in a variety of systems such as server  
motherboard/add-on cards/NIC, optical modules, enterprise switches/routers, Industrial PC, UHDTV. The design  
procedure explained in the subsequent sections can be used to select the supporting component values based  
on the application requirement. Additionally, a spreadsheet design tool, TPS22811xx Design Calculator, is  
available in the web product folder.  
8.1.1 Single Device, Self-Controlled  
VOUT  
IN  
OUT  
VIN = 2.7 to 16 V  
COUT  
PGTH  
VLOGIC  
EN/UVLO  
TPS22811x  
EN/OVLO  
PG  
dVdt  
GND  
IMON  
8-1. Single Device, Self-Controlled  
Other variations:  
In a Host MCU controlled system, EN/UVLO or OVLO can also be driven from the host GPIO to control the  
device.  
IMON pin can be connected to the MCU ADC input for current monitoring purpose.  
8.1.2 Parallel Operation  
Applications which need higher steady current can use two TPS22811x devices connected in parallel as shown  
in 8-2 below. In this configuration, the first device turns on initially to provide the inrush current limiting. The  
second device is held in an OFF state by driving its EN/UVLO pin low using the PG signal of the first device.  
After the inrush sequence is complete, the first device asserts its PG pin high and turns on the second device.  
The second device asserts its PG signal to indicate when it has turned on fully, thereby indicating to the system  
that the parallel combination is ready to deliver the full steady-state current.  
After in steady-state, both devices share current nearly equally. There can be a slight skew in the currents  
depending on the part-to-part variation in the RON as well as the PCB trace resistance mismatch.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS22811  
 
 
TPS22811  
ZHCSQA4A APRIL 2022 REVISED JULY 2022  
www.ti.com.cn  
IN  
OUT  
VLOGIC  
PGTH  
EN/UVLO  
TPS22811x  
EN/OVLO  
PG  
dVdt  
IMON  
GND  
VOUT  
VIN = 2.7 to 16 V  
COUT  
IN  
OUT  
To ADC  
IMON  
PGTH  
EN/UVLO  
TPS22811x  
EN/OVLO  
PG  
To downstream enable  
dVdt  
GND  
8-2. Two Devices Connected in Parallel for Higher Steady-State Current Capability  
The waveforms below illustrate the behavior of the parallel configuration during start-up as well as during steady-  
state.  
8-3. Parallel Devices Sequencing During Start-Up  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS22811  
 
TPS22811  
ZHCSQA4A APRIL 2022 REVISED JULY 2022  
www.ti.com.cn  
8-4. Parallel Devices Load Current During Steady-State  
8.2 Typical Application  
The TPS22811 device can be used in an industrial PC for input power protection of PCIe card. Industrial PCs  
provide flexible PCIe expansion slots with different combination of PCIe x16, PCIe x4 and PCI. PCIe x16 slot  
draws maximum current of up to 5.5 A from on board a 12-V rail. Load switch devices like TPS22811 can  
support the power requirements of these PCIe expansion slots and can be used for switching 12-V supply to  
PCIe card. During plugging or unplugging the PCIe card power pin of PCIe slot can short to ground that can  
cause the 12-V rail to droop or even damage the power tree due to very high current draw. The TPS22811  
device can quickly respond to fault events like short circuit and isolate supply from load side thus preventing  
supply from drooping. The controlled rise time for the device greatly reduces inrush current caused by large bulk  
load capacitances, thereby reducing or eliminating power-supply droop.  
The TPS22811 device can also be used for switching the 12-V bulk power rail of DDR5 DIMM. The PG pin of  
TPS22811 device can be used to enable downstream DC-DC converters after the 12-V rail is fully up.  
VOUT  
VIN = 12 V  
IN  
OUT  
Load Switch  
EN  
VCC  
PCIe  
Card  
Plug / Unplug  
GND  
8-5. Power Path Protection Block Diagram of a Typical PCIe Slot  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS22811  
 
TPS22811  
ZHCSQA4A APRIL 2022 REVISED JULY 2022  
www.ti.com.cn  
VOUT  
VIN = 12 V  
IN  
OUT  
R4  
R1  
COUT  
47 k  
470 k  
470 F  
1 F  
D2*  
EN/UVLO  
PGTH  
TPS22811  
3.3 V  
R5  
R2  
5.6 kꢁ  
11 kꢁ  
CIN  
D1*  
47 kꢁ  
1 F  
EN/OVLO  
PG  
dVdt  
IMON  
GND  
R3  
RIMON  
953 ꢁ  
CdVdt  
3300 pF  
47 kꢁ  
* Optional circuit components needed for transient protection depending on input and output inductance. Please  
refer to Transient Protection section for details.  
8-6. PCIe Expansion Slot Protection  
8.2.1 Design Requirements  
8-1. Design Parameters  
PARAMETER  
VALUE  
Input supply voltage (VIN)  
Undervoltage threshold (VIN(UV)  
12 V  
)
10.8 V  
13.2 V  
Overvoltage threshold (VIN(OV)  
)
Output power-good threshold (VPG  
Maximum continuous current  
)
11.4 V  
5.5 A  
Analog load current monitor voltage range (VIMONmax  
)
0.5 V  
Output capacitance (COUT  
Output rise time (tR)  
)
470 μF  
12 ms  
8.2.2 Detailed Design Procedure  
8.2.2.1 Setting Undervoltage and Overvoltage Thresholds  
The supply undervoltage and overvoltage thresholds are set using the resistors R1, R2 and R3. Use 方程7  
and 方程8 to calculate these values:  
V
×
R + R + R  
1 2 3  
UVLO R  
V
=
(7)  
IN UV  
R
+ R  
2
3
V
×
R + R + R  
1 2 3  
OV R  
V
=
(8)  
IN OV  
R
3
Where VUVLO(R) is the UVLO rising threshold and VOV(R) is the OVLO rising threshold. Because R1, R2 and R3  
leak the current from input supply VIN, these resistors must be selected based on the acceptable leakage current  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS22811  
 
 
TPS22811  
ZHCSQA4A APRIL 2022 REVISED JULY 2022  
www.ti.com.cn  
from input power supply VIN. The current drawn by R1, R2 and R3 from the power supply is IR123 = VIN / (R1 +  
R2 + R3). However, leakage currents due to external active components connected to the resistor string can add  
error to these calculations. So, the resistor string current, IR123 must be chosen to be 20 times greater than the  
leakage current expected on the EN/UVLO and OVLO pins.  
From the device electrical specifications, both the EN/UVLO and OVLO leakage currents are 0.1 μA  
(maximum), VOV(R) = 1.2 V and VUVLO(R) = 1.2 V. From design requirements, VIN(OV) = 13.2 V and VIN(UV) = 10.8  
V. To solve the equation, first choose the value of R1 = 470 kΩ and use the above equations to solve for R2 =  
10.7 kΩand R3 = 48 kΩ.  
Using the closest standard 1% resistor values, we get R1 = 470 kΩ, R2 = 11 kΩ, and R3 = 47 kΩ.  
8.2.2.2 Setting Output Voltage Rise Time (tR)  
For a successful design, the junction temperature of device must be kept below the absolute maximum rating  
during both dynamic (start-up) and steady-state conditions. Dynamic power stresses often are an order of  
magnitude greater than the static stresses, so it is important to determine the right start-up time and inrush  
current limit required with system capacitance to avoid thermal shutdown during start-up.  
The slew rate (SR) needed to achieve the desired output rise time can be calculated as:  
V
t
V
V
ms  
IN  
12 V  
12 ms  
V
ms  
SR  
=
=
= 1  
(9)  
ms  
R
The CdVdt needed to achieve this slew rate can be calculated as:  
3300  
3300  
C
pF =  
=
= 3300 pF  
(10)  
dVdt  
V
V
SR  
1
ms  
ms  
Choose the nearest standard capacitor value as 3300 pF.  
For this slew rate, the inrush current can be calculated as:  
V
ms  
V
I
mA = C  
µF × SR  
= 470 µF × 1  
= 470 mA  
ms  
(11)  
(12)  
INRUSH  
OUT  
The average power dissipation inside the part during inrush can be calculated as:  
PD  
= 0.5 × V  
V
× I  
mA = 0.5 × 12 V × 470 mA = 2.82 W  
INRUSH  
IN  
INRUSH  
For the given power dissipation, the thermal shutdown time of the device must be greater than the ramp-up time  
tR to avoid start-up failure. 8-7 shows the thermal shutdown limit, for 2.82 W of power, the shutdown time is  
more than 10 s which is very large as compared to tR = 12 ms. Therefore, it is safe to use 12 ms as the start-up  
time for this application.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS22811  
TPS22811  
ZHCSQA4A APRIL 2022 REVISED JULY 2022  
www.ti.com.cn  
20000  
10000  
1000  
100  
10  
1
0.1  
0
20  
40  
60  
80  
100  
120  
140  
Power Dissipation (W)  
8-7. Thermal Shutdown Plot During Inrush  
8.2.2.3 Setting Power-Good Assertion Threshold  
The power-good assertion threshold can be set using the resistors R4 and R5 connected to the PGTH pin whose  
values can be calculated as:  
V
× R + R  
4 5  
PGTH R  
V
=
(13)  
PG  
R
5
Because R4 and R5 leak the current from the output rail VOUT, these resistors must be selected to minimize the  
leakage current. The current drawn by R4 and R5 from the power supply is IR45 = VOUT / (R4 + R5). However,  
leakage currents due to external active components connected to the resistor string can add error to these  
calculations. So, the resistor string current, IR123 must be chosen to be 20 times greater than the PGTH  
leakage current expected. From the device electrical specifications, PGTH leakage current is 1 μA (maximum),  
VPGTH(R) = 1.2 V and from design requirements, VPG = 11.4 V. To solve the equation, first choose the value of  
R4 = 47 kΩand calculate R5 = 5.52 kΩ. Choose nearest 1% standard resistor value as R5 = 5.6 kΩ.  
8.2.2.4 Setting Analog Current Monitor Voltage (IMON) Range  
The analog current monitor voltage range can be set using the RIMON resistor whose value can be calculated  
as:  
6
V
µV  
IMON  
µA/A × I  
0.5 × 10  
R
Ω =  
=
= 957 Ω  
(14)  
IMON  
95 × 5.5  
G
A
OUTmax  
IMON  
Choose nearest 1% standard resistor value as 953 Ω.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS22811  
 
TPS22811  
ZHCSQA4A APRIL 2022 REVISED JULY 2022  
www.ti.com.cn  
8.2.3 Application Curves  
8-8. Power Up  
8-9. Overvoltage Response  
8-10. Output Short-Circuit During Steady-State  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS22811  
TPS22811  
ZHCSQA4A APRIL 2022 REVISED JULY 2022  
www.ti.com.cn  
9 Power Supply Recommendations  
The TPS22811x devices are designed for a supply voltage range of 2.7 V VIN 16 V. TI recommends an  
input ceramic bypass capacitor higher than 0.1 μF if the input supply is located more than a few inches from the  
device. The power supply must be rated higher than the set current limit to avoid voltage droops during  
overcurrent and short-circuit conditions.  
9.1 Transient Protection  
In the case of a short-circuit or device turn off during steady-state when the device interrupts current flow, the  
input inductance generates a positive voltage spike on the input, and the output inductance generates a negative  
voltage spike on the output. The peak amplitude of voltage spikes (transients) is dependent on the value of  
inductance in series to the input or output of the device. Such transients can exceed the absolute maximum  
ratings of the device if steps are not taken to address the issue. Typical methods for addressing transients  
include:  
Minimize lead length and inductance into and out of the device.  
Use a large PCB GND plane.  
Connect a Schottky diode from the OUT pin ground to absorb negative spikes.  
Connect a low ESR capacitor larger than 1 μF at the OUT pin very close to the device.  
Use a low-value ceramic capacitor CIN = 1 μF to absorb the energy and dampen the transients. The  
capacitor voltage rating must be at least twice the input supply voltage to be able to withstand the positive  
voltage excursion during inductive ringing.  
Use 方程15 to estimate the approximate value of input capacitance:  
L
IN  
V
= V + I ×  
LOAD  
(15)  
SPIKE Absolute  
IN  
C
IN  
where  
VIN is the nominal supply voltage.  
ILOAD is the load current.  
LIN equals the effective inductance seen looking into the source.  
CIN is the capacitance present at the input.  
Some applications can require the addition of a Transient Voltage Suppressor (TVS) to prevent transients  
from exceeding the absolute maximum ratings of the device. In some cases, even if the maximum amplitude  
of the transients is below the absolute maximum rating of the device, a TVS can help to absorb the excessive  
energy dump and prevent it from creating very fast transient voltages on the input supply pin of the IC, which  
can couple to the internal control circuits and cause unexpected behavior.  
9-1 shows the circuit implementation with optional protection components.  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS22811  
 
 
 
TPS22811  
ZHCSQA4A APRIL 2022 REVISED JULY 2022  
www.ti.com.cn  
VIN = 2.7 to 16 V  
VOUT  
IN  
OUT  
R1  
COUT  
CLOAD  
D2  
EN/UVLO  
PGTH  
TPS22811  
R2  
CIN  
D1  
EN/OVLO  
dVdt  
PG  
GND  
IMON  
R3  
RIMON  
CDVDT  
9-1. Circuit Implementation with Optional Protection Components  
9.2 Output Short-Circuit Measurements  
Obtaining repeatable and similar short-circuit testing results is difficult. The following contribute to variation in  
results:  
Source bypassing  
Input leads  
Circuit layout  
Component selection  
Output shorting method  
Relative location of the short  
Instrumentation  
The actual short exhibits a certain degree of randomness because it microscopically bounces and arcs. Ensure  
that configuration and methods are used to obtain realistic results. Do not expect to see waveforms exactly like  
those in this data sheet because every setup is different.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS22811  
 
 
TPS22811  
ZHCSQA4A APRIL 2022 REVISED JULY 2022  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
For all applications, TI recommends a ceramic decoupling capacitor of 0.1 μF or greater between the IN  
terminal and GND terminal.  
The optimal placement of the decoupling capacitor is closest to the IN and GND terminals of the device. Care  
must be taken to minimize the loop area formed by the bypass-capacitor connection, the IN terminal, and the  
GND terminal of the IC.  
High current-carrying power-path connections must be as short as possible and must be sized to carry at  
least twice the full-load current.  
The GND terminal must be tied to the PCB ground plane at the terminal of the IC with the shortest possible  
trace. The PCB ground must be a copper plane or island on the board. TI recommends to have a separate  
ground plane island for the eFuse. This plane does not carry any high currents and serves as a quiet ground  
reference for all the critical analog signals of the eFuse. The device ground plane must be connected to the  
system power ground plane using a star connection.  
The IN and OUT pins are used for heat dissipation. Connect to as much copper area on top and bottom PCB  
layers using as possible with thermal vias. The vias under the device also help to minimize the voltage  
gradient across the IN and OUT pads and distribute current uniformly through the device, which is essential  
to achieve the best on-resistance and current sense accuracy.  
Locate the following support components close to their connection pins:  
RIMON  
CdVdT  
Resistors for the EN/UVLO, EN/OVLO pins  
Connect the other end of the component to the GND pin of the device with shortest trace length. The trace  
routing for the RIMON and CdVdt components to the device must be as short as possible to reduce parasitic  
effects on the current monitor and soft start timing. These traces must not have any coupling to switching  
signals on the board.  
Protection devices such as TVS, snubbers, capacitors, or diodes must be placed physically close to the  
device they are intended to protect. These protection devices must be routed with short traces to reduce  
inductance. For example, TI recommends a protection Schottky diode to address negative transients due to  
switching of inductive loads. TI also recommends to add a ceramic decoupling capacitor of 1 μF or greater  
between OUT and GND. These components must be physically close to the OUT pins. Care must be taken to  
minimize the loop area formed by the Schottky diode/bypass-capacitor connection, the OUT pin and the GND  
terminal of the IC.  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPS22811  
 
 
TPS22811  
ZHCSQA4A APRIL 2022 REVISED JULY 2022  
www.ti.com.cn  
10.2 Layout Example  
Inner GND layer  
Top Power layer  
Bottom Power layer  
6
OUT  
IN  
OUT  
5
IN  
10-1. Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPS22811  
 
TPS22811  
ZHCSQA4A APRIL 2022 REVISED JULY 2022  
www.ti.com.cn  
11 Device and Documentation Support  
TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device,  
generate code, and develop solutions are listed below.  
11.1 Documentation Support  
11.1.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, TPS22811EVM eFuse Evaluation Board  
Texas Instruments, TPS22811x Design Calculator  
11.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
HotRodand TI E2Eare trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TPS22811  
 
 
 
 
 
 
 
TPS22811  
ZHCSQA4A APRIL 2022 REVISED JULY 2022  
www.ti.com.cn  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TPS22811  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-Oct-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS22811LRPWR  
ACTIVE  
VQFN-HR  
RPW  
10  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
2KZH  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
RPW0010A  
2.1  
1.9  
A
B
2.1  
1.9  
PIN 1 IDENTIFICATION  
(0.1) TYP  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 1.45  
PKG  
4X  
SQ (0.15) TYP  
4X 0.475  
4
2X 0.25  
6
5
7
0.35  
4X  
4X 0.475  
0.25  
0.1  
C A B  
C
0.05  
2.1  
1.9  
2X  
2X 0.45  
PKG  
4X  
0.3  
0.2  
0.1  
0.05  
C A B  
C
1
10  
0.3  
0.2  
PIN 1 ID  
(OPTIONAL)  
4X  
0.5  
0.3  
0.35  
0.25  
8X  
2X  
0.1  
C A B  
C
0.1  
C A B  
0.05  
0.05  
C
4225183/A 08/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
RPW0010A  
(1.8)  
(1.45)  
4X (0.475)  
2X (0.25)  
1
10  
4X (0.25)  
4X  
(0.225)  
PKG  
2X  
2X  
(1.75)  
(2.4)  
4X (0.3)  
4X (0.475)  
7
4
4X  
(0.65)  
(R0.05) TYP  
6
5
2X (0.3)  
4X (0.25)  
PKG  
8X (0.6)  
LAND PATTERN EXAMPLE  
SCALE: 30X  
SOLDER MASK  
OPENING  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
DEFINED  
NON- SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4225183/A 08/2019  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
4. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
RPW0010A  
(1.8)  
(1.425)  
4X (0.4625)  
2X (0.25)  
METAL TYP  
1
10  
4X (0.25)  
4X  
(0.63)  
PKG  
2X  
(1.75)  
4X (0.225)  
4X (0.275)  
4X  
4X (0.4625)  
(1.06)  
7
4
4X  
(0.65)  
(R0.05)  
TYP  
6
5
4X (0.28)  
4X (0.225)  
PKG  
8X (0.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.100 mm THICK STENCIL  
PADS 1, 4,7 & 10: 93%; PADS 5 & 6: 82%  
SCALE: 30X  
4225183/A 08/2019  
NOTES: (continued)  
5.  
Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS22860

0.73Ω、5V 超低泄漏负载开关
TI

TPS22860DBVR

0.73Ω、5V 超低泄漏负载开关 | DBV | 6 | -40 to 85
TI

TPS22901

ULTRA SMALL, LOW INPUT VOLTAGE, LOW rON, LOAD SWITCHES
TI

TPS22901YFPR

ULTRA SMALL, LOW INPUT VOLTAGE, LOW rON, LOAD SWITCHES
TI

TPS22902

ULTRA SMALL, LOW INPUT VOLTAGE, LOW rON, LOAD SWITCHES
TI

TPS22902B

ULTRA SMALL, LOW INPUT VOLTAGE, LOW rON, LOAD SWITCHES
TI

TPS22902BYFPR

ULTRA SMALL, LOW INPUT VOLTAGE, LOW rON, LOAD SWITCHES
TI

TPS22902YFPR

ULTRA SMALL, LOW INPUT VOLTAGE, LOW rON, LOAD SWITCHES
TI

TPS22903

ULTRA-SMALL LOW-INPUT-VOLTAGE LOW rON LOAD SWITCH
TI

TPS22903YFPR

ULTRA-SMALL LOW-INPUT-VOLTAGE LOW rON LOAD SWITCH
TI

TPS22903_10

ULTRA-SMALL LOW-INPUT-VOLTAGE LOW rON LOAD SWITCH
TI

TPS22904

ULTRA-SMALL LOW-INPUT-VOLTAGE LOW rON LOAD SWITCH
TI