TPS2121 [TI]

支持无缝切换的 2.7V 至 22V、56mΩ、4.5A 电源多路复用器;
TPS2121
型号: TPS2121
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

支持无缝切换的 2.7V 至 22V、56mΩ、4.5A 电源多路复用器

复用器
文件: 总45页 (文件大小:2765K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS2120, TPS2121  
ZHCSIQ0F AUGUST 2018 REVISED AUGUST 2020  
支持无缝切换TPS212x 2.8V 22V 主电源多路复用器  
1 特性  
3 说明  
• 宽工作电压范围2.8 V 22 V  
– 绝对最大输入电压24V  
• 低导通电阻:  
TPS212x 器件是双输入、单输出 (DISO) 电源多路复  
用器 (MUX)非常适合用于各种多电源系统。这些器  
件能够在可用输入之间自动检测、选择和无缝转换。  
TPS212062mΩ典型值)  
TPS2121: 56mΩ典型值)  
• 可调节过压监控(OVx):  
– 精< ±5%  
• 可调节优先级监控(PR1):  
– 精< ±5%  
优先级可自动分配给最高输入电压或手动分配给较低  
的电压输入以支持 ORing 和资源选择操作。优先级  
电压监控器用于选择输入源。  
理想二极管运行用于在输入源之间无缝转换。在切换  
期间需对压降进行控制以阻止反向电流的发生并以  
最小的保持电容为负载提供不间断电源。  
TPS2121 支持外部电压基(CP2)<1%  
• 输出电流限(ILM):  
在启动和切换期间需对电流进行限制以防止过流事  
同时在器件正常工作期间为其提供保护。可使用单  
个外部电阻器调节输出电流限制。  
TPS21201 A 3 A  
TPS2121: 1 A 4.5 A  
TPS212x 器件采用 WCSP 和小型 VQFN-HR 封装选  
-40°C 125°C 的温度范围内正常运行。  
• 通道状态指(ST)  
• 可调节输入建立时(SS)  
• 可调节输出软启动时(SS)  
TPS2121 快速输出切(tSW)5µs典型值)  
• 使能输入的IQ200µA典型值)  
• 禁用输入的IQ10µA典型值)  
• 手动输入源选(OVx)  
器件信息  
封装(1)  
WCSP (20)  
VQFN-HR (12)  
封装尺寸标称值)  
1.5mm x 2.0mm  
2.0mm x 2.5mm  
器件型号  
TPS2120  
TPS2121  
• 过热保(OTP)  
(1) 要了解所有可用封装请见数据表末尾的可订购产品附录。  
2 应用  
• 备用电源  
• 输入源选择  
• 多电池管理  
EPOS 和条形码扫描仪  
• 楼宇自动化和监控  
• 跟踪和远程信息处理  
典型应用  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSEA3  
 
 
 
 
TPS2120, TPS2121  
ZHCSIQ0F AUGUST 2018 REVISED AUGUST 2020  
www.ti.com.cn  
Table of Contents  
10.1 Application Information........................................... 19  
10.2 Typical Application.................................................. 19  
10.3 Automatic Switchover with Priority (XCOMP)......... 25  
10.4 Automatic Seamless Switchover with Priority  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 6  
7.1 Absolute Maximum Ratings........................................ 6  
7.2 ESD Ratings............................................................... 6  
7.3 Recommended Operating Conditions.........................6  
7.4 Thermal Information....................................................6  
7.5 Electrical Characteristics.............................................7  
7.6 Typical Characteristics................................................9  
8 Parameter Measurement Information..........................10  
9 Detailed Description......................................................11  
9.1 Overview................................................................... 11  
9.2 Functional Block Diagram......................................... 11  
9.3 Feature Description...................................................12  
9.4 TPS2120 Device Functional Modes..........................18  
9.5 TPS2121 Device Functional Modes..........................18  
10 Application and Implementation................................19  
(XREF)........................................................................ 27  
10.5 Highest Voltage Operation (VCOMP)..................... 28  
10.6 Reverse Polarity Protection with TPS212x............. 31  
10.7 Hotplugging with TPS212x......................................31  
11 Power Supply Recommendations..............................33  
12 Layout...........................................................................33  
12.1 Layout Guidelines................................................... 33  
12.2 Layout Example...................................................... 33  
13 Device and Documentation Support..........................34  
13.1 Documentation Support.......................................... 34  
13.2 接收文档更新通知................................................... 34  
13.3 支持资源..................................................................34  
13.4 Trademarks.............................................................34  
13.5 静电放电警告.......................................................... 34  
13.6 术语表..................................................................... 34  
14 Mechanical, Packaging, and Orderable  
Information.................................................................... 34  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision E (February 2020) to Revision F (August 2020)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
Changes from Revision D (September 2019) to Revision E (February 2020)  
Page  
Updated the Leakage Current in the Electrical Characteristics table in the Specifications section....................6  
Changes from Revision C (February 2019) to Revision D (September 2019)  
Page  
Updated the Reverse Polarity Protection with TPS212x section .....................................................................31  
Updated the 10.7 section ............................................................................................................................ 31  
Changes from Revision B (December 2018) to Revision C (February 2019)  
Page  
• 在部分将“可调节过压监控(OVx) 精度”更改< ±5%.........................................................................1  
Changes made in the Recommended Operating Conditions and Electrical Characteristics table in the  
Specifications section......................................................................................................................................... 6  
Changes made in the Active Current Limiting (ILM) section.............................................................................13  
Changed (typical) from 170°C to 160°C in the Thermal Protection (TSD) section............................................ 14  
Changed Equation 8 and Equation 9 ...............................................................................................................23  
Changes from Revision A (November 2018) to Revision B (December 2018)  
Page  
• 将“预告信息”更改为“量产数据”.................................................................................................................. 1  
Changes from Revision * (August 2018) to Revision A (November 2018)  
Page  
• 将“宽工作电压范围”更改为“2.7V 22V.................................................................................................. 1  
Revised the Application and Implementation section....................................................................................... 19  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS2120 TPS2121  
 
TPS2120, TPS2121  
ZHCSIQ0F AUGUST 2018 REVISED AUGUST 2020  
www.ti.com.cn  
5 Device Comparison Table  
Part Number  
TPS2120  
Package  
WCSP (20)  
On-Resistance  
62 mΩ  
Maximum Current  
Fastest Switchover  
Unique Pin  
SEL  
100 us  
5 us  
3 A  
CP2  
TPS2121  
VQFN-HR (12)  
4.5 A  
56 mΩ  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS2120 TPS2121  
 
TPS2120, TPS2121  
ZHCSIQ0F AUGUST 2018 REVISED AUGUST 2020  
www.ti.com.cn  
6 Pin Configuration and Functions  
6-1. TPS2120 (YFP) Package 20-Pin WCSP Bottom View  
6-2. TPS2121 (RUX) Package 12-Pin VQFN-HR Bottom View  
Pin Functions  
PIN  
TPS2120  
WCSP  
TPS2121  
I/O  
DESCRIPTION  
NAME  
VQFN-HR  
IN1  
IN2  
B1, B2, C1  
B3, B4, C4  
7
2
I
I
Power Input for Source 1  
Power Input for Source 2  
C2, C3, D1,  
D2, D3, D4  
1, 8  
OUT  
I
Power Output  
ST  
E1  
E2  
E3  
E4  
9
O
O
Status output indicating which channel is selected. Connect to GND if not required.  
Output Current Limiting for both channels.  
ILIM  
SS  
10  
11  
12  
6
O
Adjusts Input Setting Delay Time and Output Soft Start Time  
Device Ground  
GND  
Enables Priority Operation. Connect to IN1 to set switchover voltage. Connect to  
GND if not required.  
PR1  
OV1  
OV2  
SEL  
A1  
A2  
A3  
A4  
I
I
I
I
5
4
Active Low Enable Supervisor for IN1 Overvoltage Protection. Connect to GND if  
not required.  
Active Low Enable Supervisor for IN2 Overvoltage Protection. Connect to GND if  
not required.  
Active low Enable for IN1. Allows GPIO to override priority operation and manually  
select IN2. TPS2120 only.  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS2120 TPS2121  
 
TPS2120, TPS2121  
ZHCSIQ0F AUGUST 2018 REVISED AUGUST 2020  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
TPS2120  
WCSP  
TPS2121  
VQFN-HR  
3
I/O  
DESCRIPTION  
NAME  
Enables Comparator Operation and is compared to PR1 to set switchover voltage.  
Connect to GND if not required. TPS2121 only.  
CP2  
I
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS2120 TPS2121  
TPS2120, TPS2121  
ZHCSIQ0F AUGUST 2018 REVISED AUGUST 2020  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
Pins  
MIN  
MAX  
UNIT  
VIN1 , VIN2  
VOUT  
,
IN1, IN2,  
OUT  
Maximum Power Pin Voltage  
-0.3  
24  
6
V
VOV1  
VOV2  
,
Maximum Overvoltage Pin Voltage  
OV1, OV2  
-0.3  
V
VPRI , VSEL Maximum Control Pin Voltage  
PRI, SEL  
ST  
-0.3  
-0.3  
6
6
V
V
VST  
Maximum Control Pin Voltage  
Maximum Output Current  
Maximum Junction Temperature  
Storage temperature  
IOUT  
OUT  
Internally Limited  
Internally Limited  
TJ, MAX  
TSTG  
-65  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
7.2 ESD Ratings  
Pins  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS-001, (1)  
All  
±2000  
VESD  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101, (2)  
All  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
Pins  
IN1, IN2  
OUT  
MIN  
2.8  
0
MAX  
22  
UNIT  
V
VIN1 , VIN2 Input Voltage Range(1)  
VOUT  
Output Voltage Range  
Overvoltage Pin Voltage  
22  
V
VOV1  
VOV2  
,
OV1, OV2  
0
5.5  
V
VPRI , VSEL Control Pin Voltage  
PRI, SEL  
ST  
0
0
5.5  
5.5  
20  
V
V
VST  
Control Pin Voltage  
RST  
Status Pin Pull Up Resistance  
Current Limit Resistance  
SS Pin Output Voltage  
ST  
6
kΩ  
kΩ  
V
RILM  
ILM  
18  
100  
4
VSS  
SS  
IIN1 , IIN2  
IIN1 , IIN2  
TJ  
TPS2120 Continuous Input Current  
TPS2121 Continuous Input Current  
Junction temperature  
IN1, IN2  
IN1, IN2  
-
3
A
4.5  
125  
A
-40  
°C  
(1) See Power Supply Recommendations Section for more Details  
7.4 Thermal Information  
TPS2120  
YFP (WCSP)  
20 PINS  
TPS2121  
RNW (PKG FAM)  
11 PINS  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
72.5  
72.2  
°C/W  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS2120 TPS2121  
 
 
 
 
 
 
 
 
 
 
TPS2120, TPS2121  
ZHCSIQ0F AUGUST 2018 REVISED AUGUST 2020  
www.ti.com.cn  
7.4 Thermal Information (continued)  
TPS2120  
TPS2121  
THERMAL METRIC(1)  
YFP (WCSP)  
20 PINS  
0.5  
RNW (PKG FAM)  
UNIT  
11 PINS  
38.5  
15.4  
0.9  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
16.4  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ΨJT  
16.6  
15.5  
N/A  
ΨJB  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TJ  
MIN  
TYP  
MAX UNIT  
INPUT SOURCE (IN1, IN2)  
Quiescent Current  
IQ, INx  
OUT = Open  
-40°C to 125°C  
300  
15  
400  
µA  
(INx Powering OUT) (1)  
25°C  
0
25  
25  
1
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
V
Standby Current  
ISBY, INx  
VOUT = VINx  
(INx not powering OUT)(1)  
-40°C to 125°C  
25°C  
-1  
-5  
-40°C to 85°C  
-40°C to 125°C  
25°C  
5
|VINx - VOUT| 5V  
-80  
-1  
80  
1
Leakage Current  
ILK, INx  
(INx to OUT)  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 125°C  
-40°C to 125°C  
-35  
-500  
2.5  
2.4  
35  
500  
2.8  
2.7  
|VINx - VOUT| 22V  
VINx Rising  
VINx Falling  
2.65  
2.55  
VUV, INx Undervoltage Lockout  
V
OUTPUT SWITCHOVER (OUT)  
VOUT < VINx  
CP2 or SEL < VREF  
tSW  
Switchover Time  
-40°C to 125°C  
-40°C to 125°C  
100  
5
µs  
µs  
VOUT < VINx  
CP2 VREF  
Fast Switchover Time  
(TPS2121 only)  
tFSW  
-40°C to 125°C  
-40°C to 125°C  
0
280  
3.5  
600  
4.5  
mV  
%
V
IN1 VIN2  
Input Voltage Comparator  
VCOMP  
(VIN2 referenced to VIN1  
)
VIN1 > VIN2, Falling Hysteresis  
2.5  
ON-RESISTANCE (INx to OUT)  
25°C  
62  
75  
90  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
IOUT = -200 mA  
VPRI > VREF  
-40°C to 85°C  
-40°C to 105°C  
-40°C to 125°C  
25°C  
ON-State Resistance (TPS2120)  
ON-State Resistance (TPS2121)  
100  
120  
70  
V
INx 5.0 V  
RON  
56  
IOUT = -200 mA  
VPRI > VREF  
-40°C to 85°C  
-40°C to 105°C  
-40°C to 125°C  
85  
90  
V
INx 5.0 V  
100  
CURRENT LIMIT (ILM)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS2120 TPS2121  
 
 
TPS2120, TPS2121  
ZHCSIQ0F AUGUST 2018 REVISED AUGUST 2020  
www.ti.com.cn  
MAX UNIT  
7.5 Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TJ  
MIN  
3
TYP  
3.5  
2.5  
1.5  
2.5  
5.2  
4.5  
3.5  
2.5  
1.5  
2.5  
250  
-40°C to 125°C  
-40°C to 125°C  
-40°C to 125°C  
-40°C to 125°C  
-40°C to 125°C  
-40°C to 125°C  
-40°C to 125°C  
-40°C to 125°C  
-40°C to 125°C  
-40°C to 125°C  
-40°C to 125°C  
4
3
A
A
A
A
A
A
A
A
A
A
µs  
RILM = 31.6kΩ  
2
RILM = 46.4kΩ  
RILM = 85kΩ  
Output Current Limit (TPS2120)  
1
2
1.5  
4.6  
4
3.5  
5.8  
5
RILM < 1kΩ  
RILM = 18.7kΩ  
RILM = 22.1kΩ  
RILM = 29.8kΩ  
RILM = 44.2kΩ  
RILM = 80kΩ  
(2)  
ILM  
3
4
Output Current Limit (TPS2121)  
Current Limit Response Time  
2
3
1
2
1.5  
3.5  
RILM < 1kΩ  
(3)  
tLM  
Output Steady State  
CONTROL PINS (PRI, SEL, OV1, OV2)  
VPR1, VCP2, VOV1, VOV2 Rising  
VPR1, VCP2, VOV1, VOV2 Falling  
-40°C to 125°C  
-40°C to 125°C  
1.01  
0.99  
1.06  
1.04  
1.1  
V
V
VREF, x Internal Voltage Reference  
1.09  
Comparator Offset Voltage  
(TPS2121 only)  
VPR1 > VREF  
VCP2 > VREF  
VOFST  
-40°C to 125°C  
-40°C to 125°C  
5
20  
40  
mV  
µA  
VPR1, VCP2, VOV1, VOV2 = 0 V to 5.5  
V
ILK, x  
Pin Leakage Current  
-0.1  
0.1  
STATUS INDICATION PIN (ST)  
ILK, ST  
tST  
Pin Leakage  
Status Delay  
VST = 0 V to 5.5 V  
L to H  
-40°C to 125°C  
-40°C to 125°C  
-0.1  
0.1  
µA  
µs  
1
FAST REVERSE CURRENT BLOCKING (RCB)  
Fast Reverse Current Detection  
Threshold  
IRCB  
VOUT > VINx  
VOUT > VINx  
-40°C to 125°C  
-40°C to 125°C  
-40°C to 125°C  
0.2  
0
1
25  
10  
2
A
VRCB  
tRCB  
RCB Release Voltage  
50  
mV  
µs  
Fast Reverse Current Blocking  
Response Time  
THERMAL SHUTDOWN (TSD)  
TSD Thermal Shutdown  
Shutdown  
Recovery  
Rising  
Falling  
160  
150  
°C  
°C  
(1) When PR1 < VREF, CP2 < VREF, and |VIN1-VIN2| < 1V, Quiescent current can be drawn from both IN1 and IN2 with combined current  
not to exceed IQ,INx  
.
(2) The current limit can be measured by forcing a voltage differential from VIN to VOUT. This value must be at least 200mV greater than  
the voltage drop across the device at the current limit threshold (ILM x RON(MAX)). For example, the TPS2121 would need a minimum  
voltage drop of (1.5A x 100mΩ+ 200mV) = 350mV from VIN to VOUT for a current limit setting of 1.5A (typical).  
(3) For more information on device behavior during short circuit conditions, see Section 9.3.3.  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS2120 TPS2121  
 
 
 
TPS2120, TPS2121  
ZHCSIQ0F AUGUST 2018 REVISED AUGUST 2020  
www.ti.com.cn  
7.6 Typical Characteristics  
320  
312  
304  
296  
288  
280  
272  
264  
256  
248  
240  
260  
240  
220  
200  
180  
160  
-40èC  
25èC  
85èC  
125èC  
-40èC  
25èC  
85èC  
125èC  
2
4
6
8
10  
Input Voltage (V)  
12  
14  
16  
18  
20  
22  
2
4
6
8
10  
Input Voltage (V)  
12  
14  
16  
18  
20  
22  
D001  
D002  
ILM = 5.2A  
7-1. Quiescent Current vs Input Voltage  
ILM = 1.5A  
7-2. Quiescent Current vs Input Voltage  
16  
15  
14  
13  
12  
11  
10  
9
18  
16  
14  
12  
10  
8
-40èC  
-40èC  
8
25èC  
85èC  
125èC  
25èC  
85èC  
125èC  
7
6
6
2
4
6
8
10  
Input Voltage (V)  
12  
14  
16  
18  
20  
22  
2
4
6
8
10  
Input Voltage (V)  
12  
14  
16  
18  
20  
22  
D003  
D004  
ILM = 5.2A  
7-3. Standby Current vs Input Voltage  
ILM = 1.5A  
7-4. Standby Current vs Input Voltage  
104  
96  
88  
80  
72  
64  
56  
48  
40  
18  
15  
12  
9
-40èC  
5V  
12V  
20V  
25èC  
85èC  
125èC  
6
3
0
2
4
6
8
10  
12  
14  
Input Voltage (V)  
16  
18  
20  
22  
1
2
3 4 567 10 20 30 50 70100 200  
CSS Capacitor (nF)  
500 1000  
D005  
D006  
IOUT = -200 mA  
VIN1 > UVLO  
VIN2 = 0V  
7-5. TPS2121 On-Resistance vs Input Voltage  
7-6. Output Slew Rate vs CSS Capacitor  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS2120 TPS2121  
 
TPS2120, TPS2121  
ZHCSIQ0F AUGUST 2018 REVISED AUGUST 2020  
www.ti.com.cn  
7.6 Typical Characteristics (continued)  
VIN1 = 12 V  
VIN2 = 0 V  
VIN1 = 12 V  
VIN2 = 0 V  
VOUT = GND  
RILM = 71.5kΩ  
7-7. TPS2121 Hot Short on OUT while IN1 is Enabled  
7-8. TPS2120 IN1 is Enabled with a Short on OUT  
8 Parameter Measurement Information  
8-1. Timing Parameter Diagram  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS2120 TPS2121  
 
TPS2120, TPS2121  
ZHCSIQ0F AUGUST 2018 REVISED AUGUST 2020  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The TPS212x devices are Dual-Input, Single-Output (DISO) Power Multiplexer (MUX) that are well suited for a  
variety of systems having multiple power sources. The devices will automatically detect, select, and seamlessly  
transition between available inputs. Priority can be automatically given to the highest input voltage or manually  
assigned to a lower voltage input to support both ORing and Source Selection operations. A priority voltage  
supervisor is used to select an input source.  
An Ideal Diode operation is used to seamlessly transition between input sources. During switchover, the voltage  
drop is controlled to block reverse current before it happens and provide uninterrupted power to the load with  
minimal hold-up capacitance. Active current limiting is used during startup and switchover to protect against  
overcurrent, and also protects the device during normal operation. The output current limit can be adjusted with  
a single external resistor.  
9.2 Functional Block Diagram  
The below figures show the block diagrams for the TPS2120 and TPS2121. The TPS2120 has the SEL pin,  
while the TPS2121 has the CP2 pin and supports fast switchover.  
BFET1  
HFET1  
IN1  
Temp  
SNS  
PR1  
+
ST  
œ
VREF  
GND  
Control Logic  
+ Gate Drivers  
SS  
SEL  
OV1  
+
œ
VREF  
+
OUT  
ILM  
œ
VREF  
OV2  
IN2  
+
Current  
Limit  
œ
Temp  
SNS  
VREF  
BFET2  
HFET2  
9-1. TPS2120 Functional Block Diagram  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS2120 TPS2121  
 
 
 
TPS2120, TPS2121  
ZHCSIQ0F AUGUST 2018 REVISED AUGUST 2020  
www.ti.com.cn  
BFET1  
HFET1  
IN1  
Temp  
SNS  
PR1  
+
ST  
œ
VREF  
+
GND  
Control Logic  
+ Gate Drivers  
VOFST  
œ
SS  
CP2  
OV1  
+
œ
VREF  
+
OUT  
ILM  
œ
VREF  
OV2  
IN2  
+
Current  
Limit  
œ
Temp  
SNS  
VREF  
BFET2  
HFET2  
9-2. TPS2121 Functional Block Diagram  
9.3 Feature Description  
This section describes the different features of the TPS212x power mux device.  
9.3.1 Input Settling Time and Output Soft Start Control (SS)  
The TPS212x will automatically select the first source to become valid (INx >UV and INx <OV). The external  
capacitor (CSS) will then be used as a timer to wait for the input to finish setting (tSETx). When the settling timer  
has expired, CSS will continue to charge and set the output slew rate (SRON) for a soft start. After the total turn  
on time (tONx), soft start will not be used again for INx until it ceases to be valid (INx <UV or INx >OV).  
When the second source becomes valid (INy >UV and INy <OV), the external capacitor (Css) will be used again  
for a second settling time (tSETy). After tSETy, the TPS212x will decide whether to continue sourcing the first  
source, or switchover to the second source. If the second source is selected at the end of tSETy, then CSS will  
be reused to set the output slew rate (SRON) for a second soft start. After the total turn on time (tONy), soft start  
will not be used again for INy until it ceases to be valid (INy <UV or INy >OV).  
9-3. Settling and Soft Start Timing  
If INy becomes valid before the end of tONx, tSETy will be delayed and start after tONx has ended.  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS2120 TPS2121  
 
TPS2120, TPS2121  
ZHCSIQ0F AUGUST 2018 REVISED AUGUST 2020  
www.ti.com.cn  
If INy is not selected during tSETy, a second soft start will not take place, skipping tONy, and CSS will be retired  
until one of the inputs ceases to be valid.  
9.3.1.1 Slew Rate vs. CSS Capacitor  
9-1 shows the estimated slew rate across CSS capacitance and VIN.  
9-1. Slew Rate vs. CSS Capacitor  
CSS CAPACITOR  
VIN = 5 V  
VIN = 12 V  
VIN = 20 V  
UNITS  
V/s  
100 nF  
780  
800  
92  
880  
1 uF  
88  
92  
V/s  
10 uF  
8.8  
9.6  
10.4  
V/s  
9.3.2 Active Current Limiting (ILM)  
The load current is monitored at all times. When the load current exceed the current limit trip point ILM  
programmed by RILM resistor, the device regulates the current within tILM. The following equations can be used  
to find the RILM value for a desired current limit, where RILM is in kΩand between 18 kΩto 100 kΩ.  
69.1  
ILM  
=
0.861  
RILM  
TPS2120:  
(1)  
65.2  
ILM  
=
0.861  
RILM  
TPS2121:  
(2)  
During current regulation, the output voltage will drop resulting in increased device power dissipation. If the  
device junction temperature (TJ) reaches the thermal shutdown threshold (TSD) the internal FETs are turned off.  
After cooling down, the device will automatically restart.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS2120 TPS2121  
 
 
 
TPS2120, TPS2121  
ZHCSIQ0F AUGUST 2018 REVISED AUGUST 2020  
www.ti.com.cn  
9-4. Current Limiting Behavior  
9.3.3 Short-Circuit Protection  
During a transient short circuit event, the current through the device increases very rapidly. As the current-limit  
amplifier cannot respond quickly to this event due to its limited bandwidth, the device incorporates a fast-trip  
overcurrent protection (OCP) comparator, with a threshold IOCP. This comparator shuts down the pass device  
within 1 µs, when the current through internal FET IOUT exceeds IOCP (IOUT> IOCP). The trip threshold is set to  
about 2.4x of the programmed current limit IOCP = 2.4 × ILM. The OCP circuit holds the internal FET off for about  
25 ms, after which the device turns back on. If the short is still present then the current-limit loop will regulate the  
output current to ILM and behave in a manner similar to a power up into a short.  
9.3.4 Thermal Protection (TSD  
)
The TPS212x devices have built-in absolute thermal shutdown and relative thermal shutdown to ensure  
maximum reliability of the power mux. The absolute thermal shutdown is designed to disable the power FETs, if  
the junction temperature exceeds 160°C (typical). The device auto recovers about 25 ms after TJ < [T (TSD) –  
10°C]. The relative thermal shutdown protects the device by turning off when the temperature of the power FETs  
increases sharply such that the FET temperature rises about 60°C above the rest of the die. The device auto  
recovers about 25 ms after the FETs cools down by 20°C. The relative thermal shutdown is critical for protecting  
the device against faults such as a power up into a short which causes the FET temperature to increase sharply.  
9.3.5 Overvoltage Protection (OVx)  
Output Overvoltage Protection is available for both IN1 and IN2 in case either applied voltage is greater than the  
maximum supported load voltage. The VREF comparator on the OVx pins allow for the Overvoltage Protection  
threshold to be adjusted independently for each input. When overvoltage is engaged, the corresponding channel  
will turn off immediately. Fast switchover to the other input is supported if it is a valid voltage.  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS2120 TPS2121  
 
TPS2120, TPS2121  
ZHCSIQ0F AUGUST 2018 REVISED AUGUST 2020  
www.ti.com.cn  
VSUPPLY  
R1  
OVx  
R2  
9-5. OVP Resistor Configuration  
9.3.6 Fast Reverse Current Blocking (RCB)  
Each channel has the always on reverse current blocking. If the output is forced above the selected input by  
VIRCB, the channel will switch off to stop the reverse current IRCB within tRCB. As the output falls to within VRCB of  
VIN, the selected channel will quickly turn back on to avoid unnecessary voltage drops during fast switchover  
(tSW).  
9-6. Reverse Current Blocking Behavior  
9.3.7 Output Voltage Dip and Fast Switchover Control (TPS2121 only)  
After input settling and soft start time, the TPS2121 utilizes a fast switchover to minimize output voltage drop.  
Where VSW is the output voltage when the switchover is triggered and tSW is the time until the output voltage  
stops dipping. The amount of voltage dip during the switchover time is a function of output load current (IOUT)  
and load capacitance (COUT). The minimum output voltage during switchover can be found using the following  
equations:  
VOUT,MIN = VSW -VDIP  
(3)  
Where:  
IOUT  
VDIP = t SW  
ì
«
÷
÷
COUT  
(4)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS2120 TPS2121  
TPS2120, TPS2121  
ZHCSIQ0F AUGUST 2018 REVISED AUGUST 2020  
www.ti.com.cn  
9-7. Minimum Output Voltage During Fast Switchover  
If switching from a lower to a higher voltage, the selected channel will not detect reverse voltage and shall turn  
on immediately using the current monitor to limit the output current to a safe level. If the output current reaches  
the current limit during fast switchover, this will increase the total time until the output reaches steady state.  
VIN2  
Input  
VIN1  
Voltages  
0 V  
H
PRI  
VREF  
L
VIN2  
VOUT  
tSW  
VIN1  
VSW  
VOUT,MIN  
SROUT  
Current Limited  
IOUT  
0
IIN2  
Time  
VOUT,MIN = VSW - (tSWxSROUT) where SROUT = IOUT/COUT  
VOUT,MIN = 3.5 V - (5µs x 30mV/µs) = 3.35 V  
VOUT,MIN = 3.5 V - (5µs x 1A/10µF) = 3 V  
VOUT,MIN = 3.5 V - (5µs x 1A/100µF) = 3.45 V  
9-8. Fast Switchover from Lower to Higher Voltage  
If an input is selected while the output voltage is still a higher voltage, that channel will continue to block reverse  
current by waiting to fast turn on until the output drops below the VRCB threshold.  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS2120 TPS2121  
TPS2120, TPS2121  
ZHCSIQ0F AUGUST 2018 REVISED AUGUST 2020  
www.ti.com.cn  
VIN2  
VIN1  
Input  
Voltages  
0 V  
1
OV2  
0
VIN2  
tSW  
VOUT  
SROUT  
VRCB  
VIN1  
VOUT,MIN  
No Spikes  
IOUT  
0
IIN1  
Time  
VOUT,MIN = VIN1 + VRCB - (tSW x SROUT) where SROUT = IOUT/COUT  
VOUT,MIN = 4.25 V + 50 mV - (5µs x 30mV/µs) = 4.15 V  
VOUT,MIN = 4.25 V + 50 mV - (5µs x 1A/10µF) = 3.8 V  
VOUT,MIN = 4.25 V + 50 mV (5µs x 1A/100µF) = 4.25 V  
9-9. Fast Switchover from Higher to Lower Voltage  
9.3.8 Input Voltage Comparator (VCOMP)  
If both PR1 and CP2 are < VREF, the device will use an internal comparator between the two inputs to  
determine the priority source. VCOMP is configured to ensure IN2 will take priority if the input voltages are equal.  
If IN2 falls below the VCOMP Hysteresis, then IN1 will have priority.  
9-10. VCOMP Priority Source Selection  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS2120 TPS2121  
TPS2120, TPS2121  
ZHCSIQ0F AUGUST 2018 REVISED AUGUST 2020  
www.ti.com.cn  
9.4 TPS2120 Device Functional Modes  
9-2 shows the TPS2120 functional behavior.  
9-2. TPS2120 Output Source Selection Table  
MODE OF  
OPERATION  
DEVICE INPUTS  
DEVICE OUTPUTS  
IN1 UV OR  
OV1 VREF OR  
SEL VREF  
IN2 UV OR  
OV2 VREF  
VCOMP  
OUT  
ST  
MODE  
PR1 VREF  
0
0
0
0
1
1
0
0
0
1
0
1
0
0
IN2 < IN1  
IN1  
IN2  
IN1  
IN1  
IN2  
Hi-Z  
H
L
VCOMP  
VCOMP  
IN2 IN1  
1
X
X
X
X
H
H
L
VREF  
X
X
X
Invalid Input  
SEL / Invalid Input  
Invalid Inputs  
H
A summary of the operation of the TPS2120 device can be found below:  
If only one input voltage is valid (above UV and below OV) then that input will power the output.  
If both inputs are not valid, then the output is Hi-Z.  
ST is pulled high when the output is Hi-Z or IN1. It is pulled low when IN2 is powering the output.  
If both inputs are valid and PR1 is pulled high (higher than VREF, 1.06-V typical), then IN1 is used.  
If both inputs are valid and PR1 is pulled low, then the highest voltage input is used.  
9.5 TPS2121 Device Functional Modes  
9-3 shows the TPS2121 functional behavior.  
9-3. TPS2121 Output Source Selection Table  
MODE OF  
OPERATION  
DEVICE INPUTS  
DEVICE OUTPUTS  
IN1 UV OR  
OV1 VREF  
IN2 UV OR  
OV2 VREF  
CP2 ≥  
VREF  
PR1 ≥  
VREF  
VCOMP  
XCOMP  
OUT  
ST  
MODE  
0
X
0
X
0
X
0
1
1
X
0
X
0
X
0
1
0
1
0
0
0
1
1
1
X
X
X
0
0
1
0
1
1
X
X
X
IN2 < IN1  
X
IN1  
IN2  
IN1  
IN2  
IN1  
IN2  
IN1  
IN2  
Hi-Z  
H
L
VCOMP  
VCOMP  
X
IN2 IN1  
X
X
X
X
X
X
X
X
H
L
VREF  
X
VREF  
PR1 > CP2  
H
L
XCOMP / XREF  
XCOMP / XREF  
Invalid Input  
Invalid Input  
Invalid Inputs  
PR1 CP2  
X
X
X
H
L
H
A summary of the operation of the TPS2121 device can be found below:  
If only one input voltage is valid (above UV and below OV) then that input will power the output.  
If both inputs are not valid, then the output is Hi-Z.  
ST is pulled high when the output is Hi-Z or IN1. It is pulled low when IN2 is powering the output.  
If CP2 is pulled low, then the TPS2121 ignores this pin.  
When CP2 is pulled high, this enables fast switchover and is compared to PR1. If PR1 > CP2 then IN1 is  
used, and if PR1 < CP2 then IN2 is used.  
If both inputs are valid, CP2 is low, and PR1 is pulled high, (higher than VREF, 1.06-V typical), then IN1 is  
used.  
If both inputs are valid, CP2 is low, and PR1 is pulled low, then the highest voltage input is used.  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS2120 TPS2121  
 
 
 
 
TPS2120, TPS2121  
ZHCSIQ0F AUGUST 2018 REVISED AUGUST 2020  
www.ti.com.cn  
10 Application and Implementation  
备注  
以下应用部分的信息不属TI 组件规范TI 不担保其准确性和完整性。客户应负责确定 TI 组件是否适  
用于其应用。客户应验证并测试其设计以确保系统功能。  
10.1 Application Information  
The TPS212x device is a highly configurable power mux that can be designed to meet various application  
requirements. When designing the TPS212x for a power mux configuration, 3 key factors should be considered:  
VOUT voltage dip  
Manual and Automatic Switchover  
Switchover Time  
The TPS212x device can be configured in various modes to meet these considerations and provides a general  
table that describes each mode of operation. This application section will highlight 3 common modes of  
operation that address these factors.  
10.2 Typical Application  
10-1 summarizes the applications highlighted in the following sections.  
10-1. TPS212x Application Summary Table  
MODE  
DEVICE(S)  
DESCRIPTION  
SECTION  
An external controller (such as an MCU) can be used  
to manually select between the two input sources.  
Manual Switchover  
TPS2120 / TPS2121  
11.2.1  
Automatic Switchover with  
Priority (XCOMP)  
Prioritizes Supply 1 when present, and quickly  
switches to Supply 2 when Supply 1 drops.  
TPS2121  
TPS2121  
11.3  
11.4  
11.5  
Prioritizes Supply 1 when present, and quickly  
switches to Supply 2 when Supply 1 drops. An external  
supply is used to increase the accuracy of the  
comparator for switchover.  
Automatic Switchover with  
Priority (XREF)  
Highest Voltage Operation  
(VCOMP)  
The device automatically selects the highest voltage  
supply to power the output.  
TPS2120 / TPS2121  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS2120 TPS2121  
 
 
 
 
 
TPS2120, TPS2121  
ZHCSIQ0F AUGUST 2018 REVISED AUGUST 2020  
www.ti.com.cn  
10.2.1 Manual Switchover Schematic  
10-1 and 10-2 show the application schematic for manual switchover on the TPS2120 and TPS2121.  
10-1. TPS2120 Manual Switchover  
10-2. TPS2121 Manual Switchover  
10.2.2 Design Requirements  
In certain power architectures, an external MCU or controller monitors the downstream load. If the controller  
needs to select between multiple supplies, the controller can manually switch between inputs through a single  
GPIO. In this configuration, an external signal will switch between two input supplies, a 5-V supply (IN1) and a  
3.3-V supply (IN2). 10-2 summarizes the design parameters for this example.  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS2120 TPS2121  
 
 
TPS2120, TPS2121  
ZHCSIQ0F AUGUST 2018 REVISED AUGUST 2020  
www.ti.com.cn  
10-2. Manual Switchover Design Requirements  
DESIGN PARAMETER  
SPECIFICATION  
DETAILS  
5 V  
IN1 Voltage  
IN2 Voltage  
VIN1  
VIN1  
3.3 V  
Load Current  
IOUT  
500 mA  
100 µF  
100 mA  
2 A  
Load Capacitance  
Maximum Inrush Current  
Current Limit  
CL  
IINRUSH  
Switchover Time  
tSW  
Manual Switchover  
VMCU  
TPS2121: 5 µs  
TPS2120: 100 µs  
Mode of Operation  
TPS2120: VREF  
TPS2121: XREF  
External MCU Signal  
Overvoltage Protection  
3.3 V  
VOV1  
VOV2  
OV1 : 6.1 V  
OV2: 4 V  
10.2.3 Detailed Design Description  
The TPS212x devices can be configured to manually switch between IN1 and IN2 through an external GPIO. In  
this example, an external MCU signal is selecting between main power and auxiliary power to power a  
downstream load. By manually toggling the TPS212x, the device will switch between both sources, even if one  
supply is higher than the other supply. Ultimately, the main factor that will determine the switchover time between  
IN1 (5 V) and IN2 (3.3 V) is the output load.  
Manual switchover can be enabled by configuring the TPS212x for internal voltage reference control scheme  
(VREF). In the VREF scheme, if the voltage on PR1 is higher than the internal VREF voltage, 1.06 V (typical),  
the device will select IN1 as the output. If the voltage on PR1 drops below VREF, then the device will switch to  
IN2, as long as IN2 is presenting a valid input voltage. IN1 is commonly connected to PR1 with an external  
resistor divider. OV1 and OV2 can be configured to provide overvoltage protection. The ST pin can be pulled  
high with a resistor to provide feedback on the status of the system. If the status pin is high, IN1 is the output. If  
the pin is low, IN2 is the output. If this feature is not required, the ST pin can be connected to GND.  
On the TPS2120, by connecting an external signal to the select pin (SEL), the device can override the PR1/  
VREF comparison. If the voltage on SEL is higher than VREF at approximately (1.06 V), then the device will  
select IN2, as shown on 9-2. If the voltage on SEL drops below VREF, then the device will switch to IN1 as  
long as PR1 >= VREF. Otherwise, the highest voltage input will be chosen between IN1 and IN2. In this  
example, since the IN1 is higher than IN2, at 5 V, it will be selected.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS2120 TPS2121  
 
TPS2120, TPS2121  
ZHCSIQ0F AUGUST 2018 REVISED AUGUST 2020  
www.ti.com.cn  
10-3 shows the application schematic for this design example on the TPS2120.  
10-3. TPS2120 Manual Switchover  
On the TPS2121, fast switchover can be enabled to minimize the voltage drop on VOUT. The internal  
comparator will detect and seamlessly switch between IN1 and IN2 as long as a reverse voltage condition does  
not exist on that channel. To enable fast switchover on the TPS2121, CP2 needs to be higher than VREF, 1.06-V  
(typical). By using the external voltage reference control scheme (XREF), the voltages on PR1 and CP2 pins are  
compared to determine whether IN1 or IN2 is powering the output. If the voltage on PR1 is higher than CP2,  
then IN1 is powering the output. If the voltage on PR1 is lower than CP2, then IN2 is powering the output.  
Manual switchover on the TPS2121 is configured by connecting PR1 to IN1 with a resistor divider, and  
connecting CP2 to the external 3.3-V MCU signal. If the voltage on CP2 is higher than the voltage on PR1, then  
IN2 will power the output. However, if CP2 is toggled low, then IN1 will power the output, assuming IN1 has a  
valid input voltage.  
The diagram below shows the application schematic for this design example on the TPS2121.  
10-4. TPS2121 Manual Switchover  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS2120 TPS2121  
 
TPS2120, TPS2121  
ZHCSIQ0F AUGUST 2018 REVISED AUGUST 2020  
www.ti.com.cn  
10.2.4 Design Procedure  
10.2.4.1 Selecting PR1 and CP2 Resistors  
The TPS2120 does not contain a CP2 pin. Instead, a select pin (SEL), enables override of the PR1 / VREF  
comparison. Once the voltage on SEL is greater than VREF, the device will select IN2 as the output. For manual  
switchover, an external signal can be connected to the SEL pin. For this example, the external MCU signal is a  
3.3-V enable.  
The TPS2121 can be configured for manual switchover in a similar manner as the TPS2120. Instead of a SEL  
pin, the 3.3-V external MCU signal can be connected to CP2. As long as the voltage on CP2 is higher than PR1,  
the device will select IN2 as the output. When the voltage on CP2 drops below PR1, the device will switch back  
to IN1. Therefore, the resistor divider on PR1 is configured the same as above, with the 5 kΩand 10.2 kΩ.  
For additional precautions, the voltage on PR1 can also be configured. If the voltage on IN1 were to drop, the  
device can automatically switchover to IN2. In this example, if voltage on IN1 drops below IN2 (3.3 V) then the  
device will switch to IN2. Therefore, the resistor divider on PR1 should be configured such that the voltage on  
PR1 will drop below VREF, when IN1 dips below 3.3 V. The bottom resistor is chosen to be 5 kΩ due to it's  
commonality and minimal current leakage. If a smaller leakage is desired, a larger resistor can be used. With this  
configuration, the top resistor was selected to be 10.2 kΩ. With this resistor configuration, the device will switch  
to IN2 when the voltage on IN1 dips to 3.22 V. Refer to 9-2 for additional information regarding the switchover  
configuration.  
See Equation 5 for the VPR1 Calculation  
5 kW  
5 kW + 10.2 kW  
VPR1 = VIN1  
ì
5 kW  
5 kW + 10.2 kW  
1.06 V = V ì  
= 3.22 V  
IN1  
(5)  
10.2.4.2 Selecting OVx Resistors  
Independent output overvoltage protection is available for both IN1 and IN2. The VREF comparator on the OV1  
and OV2 pins allows for the overvoltage protection thresholds to be adjusted independently, allowing for different  
overvoltage thresholds on each channel. When overvoltage is engaged, the corresponding channel will turn off  
immediately if the pin reaches VREF, 1.06 V (typical). On this design, the overvoltage thresholds are triggered at  
roughly 1-V higher than the nominal input voltages. On IN1, the overvoltage resistor divider was programmed to  
be 6.08 V, where as the divider on IN2 was programmed to be 3.96 V. The OV resistor calculations are shown in  
Equation 6 and Equation 7.  
5 kW  
5 kW + 23.7 kW  
1.06 V = V ì  
= 6.08 V  
= 3.96 V  
IN1  
«
÷
(6)  
(7)  
5 kW  
1.06 V = V  
ì
IN2  
÷
5 kW + 13.7 kW  
«
10.2.4.3 Selecting Soft-Start Capacitor and Current Limit Resistors  
Equation 1 can be used to determine the RLIM values for this application. In this example, the DC load current is  
1 A. Setting the current limit to 2 A will limit potential inrush current events and protect downstream loads. See  
Equation 8 for the TPS2120 ILM Calculation:  
69.1  
ILM  
=
= 2.06A  
590.861  
(8)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS2120 TPS2121  
 
 
 
 
 
TPS2120, TPS2121  
ZHCSIQ0F AUGUST 2018 REVISED AUGUST 2020  
www.ti.com.cn  
See Equation 9 for the TPS2121 ILM Calculation:  
65.2  
ILM  
=
= 1.95A  
590.861  
(9)  
To calculate the slew rate needed to limit the inrush current to 100 mA, the Slew Rate Calculation can be used in  
Equation 10:  
IINRUSH  
SRON  
=
CL  
(10)  
(11)  
100 mA  
SRON  
=
= 1000 V / S  
100 mF  
Using this equation, the slew rate must be limited to 1000V/S or below to keep the inrush current below 100 mA.  
According to 9-1, at 5 V a CSS capacitance of 100 nF will provide a slew rate of 780V/S (typical), which is  
below the calculated threshold of 1000V/S. Therefore, a 100 nF capacitor will limit the inrush below 100 mA in a  
typical application.  
10.2.5 Application Curves  
10-5. TPS2120 Switchover from IN1 to IN2  
10-6. TPS2120 Switchover from IN2 to IN1  
10-7. TPS2121 Switchover from IN1 to IN2  
10-8. TPS2121 Switchover from IN2 to IN1  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS2120 TPS2121  
 
 
TPS2120, TPS2121  
ZHCSIQ0F AUGUST 2018 REVISED AUGUST 2020  
www.ti.com.cn  
10.3 Automatic Switchover with Priority (XCOMP)  
In certain applications, the system needs to provide uninterrupted sources of power. If one of the input power  
supplies were to fail, the system needs to automatically switchover to a backup power source without interrupting  
normal operation. In this example, two scenarios will be demonstrated. The first example will prioritize a 12-V  
main supply, and switchover to a 5-V auxiliary supply whenever the 12 V is not present. The second example will  
showcase power redundancy with two 12-V supplies. If one 12-V supply were to fail, the device will seamlessly  
switchover to the backup supply.  
10.3.1 Application Schematic  
10-9 shows the application schematic for automatic switchover on the TPS2121 between a 12-V and 5-V  
supply.  
IN1  
(12V)  
System Load  
(2A, 200µF)  
IN1  
PRI  
OUT  
18.2kO  
5kO  
63.4kO  
5kO  
ST  
OV1  
TPS2121  
IN2  
(5V)  
IN2  
10.2kO  
5kO  
SS  
1µF  
CP2  
23.7kO  
5kO  
ILM  
OV2  
21.5kO  
GND  
10-9. Automatic Switchover Between 12 V and 5 V  
10.3.2 Design Requirements  
10-3. Automatic Switchover Design Requirements  
DESIGN PARAMETER  
IN1 Voltage  
SPECIFICATION  
DETAILS  
12 V  
VIN1  
IN2 Voltage  
VIN1  
5 V  
Load Current  
IOUT  
2 A  
Load Capacitance  
Maximum Inrush Current  
Switchover Time  
Mode of Operation  
CL  
IINRUSH  
200 µF  
100 mA  
tSW  
TPS2120: 5 µs  
TPS2121: XCOMP  
Automatic Switchover  
10.3.3 Detailed Design Description  
The first example demonstrates automatic switchover from main power (IN1) to standby power (IN2). This  
architecture is commonly found on applications that require a secondary/auxiliary input to conserve power while  
keeping downstream loads on. When switching between main and auxiliary power, the voltage drop on the  
output should also be minimal to prevent the downstream load from resetting or entering a lockout condition.  
In this first example, the system is prioritizing the 12-V main supply on IN1. When the 12-V supply drops below  
7.6 V, the device will automatically switch to the 5-V auxiliary supply on IN2. When the 12-V supply returns, it will  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS2120 TPS2121  
 
 
TPS2120, TPS2121  
ZHCSIQ0F AUGUST 2018 REVISED AUGUST 2020  
www.ti.com.cn  
become the output supply again. Furthermore, the voltage drop on the output should be minimal, providing the  
output with uninterrupted redundant power.  
To minimize the voltage dip on the output, the TPS2121 will be used in fast switchover mode. By configuring the  
device in external comparator control scheme (XCOMP), the voltages on PR1 and CP2 are compared to  
determine whether IN1 or IN2 is powering the output. However, unlike the XREF mode, described above in the  
manual switchover configuration, XCOMP does not connect an external GPIO signal to the CP2 pin. Instead,  
PR1 and CP2 are connected to IN1 and IN2 respectively, allowing a direct voltage comparison between the two  
input channels. PR1 and CP2 are connected to IN1 and IN2 with a resistor divider. If the voltage on CP2 is  
higher than the voltage on PR1, then IN2 will power the output. If the voltage on PR1 is higher than the voltage  
on CP2, then IN1 will power the output.  
10.3.4 Design Procedure  
10.3.4.1 Selecting PR1 and CP2 Resistors  
In this example, the device will switch from IN1 to IN2 when the voltage on IN1 drops below 7.6 V. Therefore, the  
voltage on PR1 needs to remain higher than the voltage on CP2 until this condition exists.  
Since this example was tested on the TPS2121EVM, the resistor divider configured the voltage on CP2 to be  
1.644 V.  
See Equation 12 for the VCP2 Calculation  
5 kW  
5 kW + 10.2 kW  
VCP2 = 5 V ì  
= 1.64 V  
(12)  
Since the voltage on CP2 is higher than VREF, fast switchover mode is enabled.  
Next, to calculate the necessary resistor divider on PR1, the voltage on PR1 needs to drop below 1.64 V when  
IN1 reaches 7.6 V. On the EVM, the PR1 resistors were configured as followed:  
See Equation 13 for the VPR1 Caculation  
5 kW  
5 kW + 18.2 kW  
VPR1 = 12 V ì  
= 2.59 V  
5 kW  
5 kW + 18.2 kW  
1.64 V = VSW ì  
= 7.6 V  
(13)  
10.3.5 Application Curves  
10-11. Automatic Switchover from IN2 to IN1  
10-10. Automatic Switchover from IN1 to IN2  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS2120 TPS2121  
 
 
TPS2120, TPS2121  
ZHCSIQ0F AUGUST 2018 REVISED AUGUST 2020  
www.ti.com.cn  
10.4 Automatic Seamless Switchover with Priority (XREF)  
In this second automatic switchover example, the application design will showcase power redundancy with two  
12-V supplies. If one 12-V supply were to fail, the device will seamlessly switchover to the backup supply.  
10.4.1 Application Schematic  
10-12 shows the application schematic for automatic switchover with redundant supplies on the TPS2121.  
IN1  
(12V)  
System Load  
(2.5A, 320µF)  
IN1  
PRI  
OUT  
12kO  
1MO  
Hyst  
ST  
XREF  
3V  
57.6kO  
5kO  
CP2  
OV1  
TPS2121  
IN2  
(12V)  
IN2  
57.6kO  
5kO  
SS  
OV2  
1µF  
ILM  
21.5kO  
GND  
10-12. Automatic Switchover Between Two 12-V Supplies  
10.4.2 Design Requirements  
10-4. Automatic Switchover Design Requirements  
DESIGN PARAMETER  
Input Voltage Range  
Output Voltage Range  
Load Current  
SPECIFICATION  
DETAILS  
12.1 V ± 3%  
12 V ± 5%  
2.5 A  
VIN1, VIN2  
VOUT  
IOUT  
Load Capacitance  
Switchover Time  
CL  
tSW  
320 µF  
TPS2120: 5 µs  
TPS2121: XREF  
Mode of Operation  
Automatic Switchover  
10.4.3 Detailed Design Description  
In the second example, the system seamlessly switches between two 12-V supplies, providing uninterrupted  
power to a downstream load. Priority is given to IN1, the main 12-V power rail, and switches over to IN2, the  
backup 12-V power rail, whenever IN1 dips. When the main power rail returns, the device will switch back to the  
main supply. Redundant power is critical in systems that require uninterrupted sources of power. If the output  
voltage were to dip on these systems, this could cause the downstream load to reset to enter an undervoltage  
lockout condition. Therefore, the TPS2121 will be used in fast switchover mode to minimize the output voltage  
dip.  
Similar to the automatic switchover example shown above, the TPS2121 can be configured in XCOMP mode.  
However, to minimize the voltage switchover error for a more seamless switchover, an external precision  
regulator can be connected to CP2 in XREF mode. In this configuration, a REF3325 provides an external  
reference voltage on 2.5 V ± 0.15% (2.50375V). If the voltage on PR1 is higher than this external reference,  
priority will be given to IN1. If the voltage on PR1 drops below 2.50375V, then the device will switchover to IN2.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS2120 TPS2121  
 
 
TPS2120, TPS2121  
ZHCSIQ0F AUGUST 2018 REVISED AUGUST 2020  
www.ti.com.cn  
The design specifications detail the input voltage range for 12.1 ± 3%. Therefore, the resistor divider on PR1 is  
configured such that the voltage on the pin dips below 2.50375V before IN1 crosses 11.73 V (12.1 V 3%).  
Once this occurs, the design will start fast switchover to IN2 within 5 us.  
For additional information regarding this configuration, including full design procedures, schematics, and layout,  
please refer to TIDA-01638: Seamless Switchover for Backup Power Reference Design.  
10.4.4 Application Curves  
10-14. Fast Switchover Demonstration  
10-13. Seamless Switchover Between Two 12-V  
Supplies  
10.5 Highest Voltage Operation (VCOMP)  
10.5.1 Application Schematic  
10-15 shows the application schematic for highest voltage operation on the TPS2121. The same  
configuration can be completed on the TPS2120, with the SEL pin connected to GND instead of the CP2 pin.  
IN1  
(5V)  
System Load  
(0.5A, 100µF)  
IN1  
OUT  
23.7kO  
OV1  
PR1  
5k  
ST  
TPS2121  
IN2  
(5V)  
IN2  
23.7kO  
5kO  
SS  
0.01uF  
OV2  
CP2  
ILM  
51.1kO  
GND  
10-15. Highest Voltage Operation  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS2120 TPS2121  
 
 
TPS2120, TPS2121  
ZHCSIQ0F AUGUST 2018 REVISED AUGUST 2020  
www.ti.com.cn  
10.5.2 Design Requirements  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS2120 TPS2121  
TPS2120, TPS2121  
ZHCSIQ0F AUGUST 2018 REVISED AUGUST 2020  
www.ti.com.cn  
10-5. Highest Voltage Design Requirements  
DESIGN PARAMETER  
Input Voltage  
SPECIFICATION  
DETAILS  
5 V  
VIN1, VIN2  
Output Voltage  
VOUT  
5 V  
Load Current  
IOUT  
0.5 A  
Load Capacitance  
Switchover Time  
Mode of Operation  
CL  
tSW  
100 µF  
TPS2121: 100 µs  
Automatic Switchover  
TPS2121: VCOMP  
10.5.3 Detailed Design Description  
In this mode of operation, the device will use an internal comparator between the two inputs to determine the  
priority source. If both PR1 and CP2 are below VREF, priority is given to the highest input voltage. If both of the  
inputs voltages are equal, VCOMP and hysteresis ensures that IN2 takes priority. If IN2 falls below the VCOMP  
hysteresis, then IN1 will have priority. If IN2 gets reapplied, it will take priority when it falls within VCOMP of IN1.  
In this example, the TPS2120 is configured with two 5-V inputs. When IN2 is applied to the system, it takes  
priority over IN1. Once it gets removed, priority returns to IN1.  
10.5.4 Detailed Design Procedure  
See 9-2 to summarize the priority between IN1 and IN2. Once IN2 reaches within VCOMP of IN1, the  
TPS2120 will switchover to IN2. Since IN1 is 5 V, once IN2 reaches 4.7 V (5 V 300 mV), typically, the device  
will switch over to IN2. On the falling transition, once IN2 drops below VCOMP of IN1, the added hysteresis will  
prevent the device from switching back to IN1. Once IN2 drops below VCOMP and the hysteresis (3.5% typical) ,  
the device will switch. Therefore, the device will switch back to IN1 once IN1 reaches (5 V 300 mV 175  
mV), 4.525 V.  
10.5.5 Application Curves  
10-16. Switchover from IN1 to IN2  
10-17. Timing from IN1 to IN2  
Copyright © 2023 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS2120 TPS2121  
TPS2120, TPS2121  
ZHCSIQ0F AUGUST 2018 REVISED AUGUST 2020  
www.ti.com.cn  
10-18. Switchover from IN2 to IN1  
10.6 Reverse Polarity Protection with TPS212x  
For applications that require reverse polarity protection, the TPS212x can be configured to protect against mis-  
wiring input power supplies and block reverse current that could potentially damage the system. By connecting a  
diode on the GND pin of the TPS212x, this prevents reverse current from flowing back into the device when VIN  
is below system ground.  
Since the TPS212x has an absolute maximum rating of 24 V when referenced to device ground, the GND diode  
should be rated to standoff voltages up to the maximum reverse voltage. Furthermore, since the control pin  
voltages (PR1, OV1, OV2, etc.) are in reference to system GND, the voltage thresholds will need to be  
recalculated based on the voltage drop across the diode. To reduce the voltage drop, a resistor in parallel with  
the diode can also be used.  
IN1  
OUT  
Supply 1  
System Load  
ESD Diode  
ESD Diode  
PR1  
OV1  
SEL  
ST  
µC  
IN2  
SS  
Supply 2  
CSS  
ESD Diode  
Device GND  
System GND  
OV2  
ILM  
GND  
Diode  
RILM  
Device GND  
System GND  
10-19. TPS212x Reverse Polarity Configuration  
10.7 Hotplugging with TPS212x  
Some applications require power muxing between hotplugged inputs, such as USB applications or systems with  
secondary supplies coming from a long cable. During a hot plug event, the inherent inductance in the cable and  
input traces can cause a voltage spike on the input pin (V = LCABLE * dI / dT). This can cause a voltage spike on  
the input of the TPS212x that could potentially exceed the absolute maximum rating.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS2120 TPS2121  
 
 
TPS2120, TPS2121  
ZHCSIQ0F AUGUST 2018 REVISED AUGUST 2020  
www.ti.com.cn  
+
VIN1  
-
IN1  
OUT  
Supply 1  
System Load  
PR1  
+
VIN2  
-
Supply 2  
IN2  
SS  
CP2  
ILM  
GND  
10-20. TPS212x Hotplug Configuration  
10-21 shows a hotplug event where a 12-V supply is connected to the TPS212x through a 15ft cable. Without  
an external TVS, the input voltage spikes to over 30 V. To protect against this voltage transient, a clamping  
device such as a TVS (Transient Voltage Suppression) diode can be used. As shown in 10-22 , by using the  
TVS1800, the same voltage spike was clamped to 19.3 V.  
10-21. TPS2121 Hotplug Event without TVS  
10-22. TPS2121 Hotplug Event with TVS1800  
Copyright © 2023 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPS2120 TPS2121  
 
TPS2120, TPS2121  
ZHCSIQ0F AUGUST 2018 REVISED AUGUST 2020  
www.ti.com.cn  
11 Power Supply Recommendations  
IN1, IN2, and OUT traces should all be wide enough to accomodate the amount of current passing through the  
device. Bypass capacitors on these pins should be placed as close to the device as possible. Low ESR ceramic  
capacitors with X5R or X7R dielectric are recommended.  
To avoid output voltage drop, the capacitance on OUT can be increased. If the power supply cannot handle the  
inrush current transients due to the output capacitance, a higher input capacitance can be used. In the case  
where there are long cables or wires connected to the input of the device, there may be ringing on the supply,  
especially during the fast switchover of the TPS2121. To help nullify the inductance of the cables and prevent  
ringing, a large capacitance can be used near the input of the device.  
12 Layout  
12.1 Layout Guidelines  
Use short wide traces for input and output planes. For high current applications place vias under input and  
output pins to avoid current density and thermal resistance bottlenecks.  
12.2 Layout Example  
The example layout for the TPS2121 shows where to place vias for better thermal dissipation. This can improve  
the junction-to-ambient thermal resistance (RθJA).  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPS2120 TPS2121  
 
 
 
 
TPS2120, TPS2121  
ZHCSIQ0F AUGUST 2018 REVISED AUGUST 2020  
www.ti.com.cn  
13 Device and Documentation Support  
13.1 Documentation Support  
13.1.1 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to order now.  
13-1. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
ORDER NOW  
TPS2120  
TPS2121  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
13.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
13.3 支持资源  
TI E2E中文支持论坛是工程师的重要参考资料可直接从专家处获得快速、经过验证的解答和设计帮助。搜索  
现有解答或提出自己的问题获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 使用条款。  
13.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
13.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
13.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TPS2120 TPS2121  
 
 
 
 
 
 
 
 
TPS2120, TPS2121  
ZHCSIQ0F AUGUST 2018 REVISED AUGUST 2020  
www.ti.com.cn  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TPS2120 TPS2121  
TPS2120, TPS2121  
ZHCSIQ0F AUGUST 2018 REVISED AUGUST 2020  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
YFP0020-C01  
DSBGA - 0.5 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
3
20X ( 0.23)  
1
4
2
A
(0.4) TYP  
B
C
SYMM  
D
E
SYMM  
LAND PATTERN EXAMPLE  
SCALE:25X  
0.05 MAX  
0.05 MIN  
METAL UNDER  
SOLDER MASK  
( 0.23)  
METAL  
(
0.23)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4226007/A 06/2020  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TPS2120 TPS2121  
TPS2120, TPS2121  
ZHCSIQ0F AUGUST 2018 REVISED AUGUST 2020  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
YFP0020-C01  
DSBGA - 0.5 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
(R0.05) TYP  
20X ( 0.25)  
3
1
2
4
A
B
(0.4) TYP  
METAL  
TYP  
SYMM  
C
D
E
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4226007/A 06/2020  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TPS2120 TPS2121  
TPS2120, TPS2121  
ZHCSIQ0F AUGUST 2018 REVISED AUGUST 2020  
www.ti.com.cn  
PACKAGE OUTLINE  
VQFN-HR - 1 mm max height  
RUX0012A  
PLASTIC QUAD FLAT-NO LEAD  
A
2.1  
1.9  
B
2.6  
2.4  
PIN 1 INDEX AREA  
1 MAX  
C
SEATING PLANE  
0.05  
0.00  
0.08  
C
SYMM  
(0.1) TYP  
0.95  
0.75  
4X  
3
6
0.45  
0.25  
4X  
2X 0.7  
2
1
0.1  
C A B  
7
8
SYMM  
0.05  
C
0.5  
0.3  
8X  
12  
9
0.25  
0.15  
6X 0.5  
8X  
2X 1.5  
0.1  
C A B  
0.05  
C
4224010/A 11/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TPS2120 TPS2121  
TPS2120, TPS2121  
ZHCSIQ0F AUGUST 2018 REVISED AUGUST 2020  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLAT-NO LEAD  
RUX0012A  
6X 0.5  
8X (0.2)  
2X (0.8)  
8X (0.6)  
9
12  
VIA TYP  
8
1
SYMM  
2X  
(0.7)  
(2.3)  
2
7
4X (0.4)  
6
3
4X (1.05)  
(R0.05) TYP  
SYMM  
1.35  
LAND PATTERN EXAMPLE  
SCALE: 25X  
0.05 MAX  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
EXPOSED METAL  
NON- SOLDER MASK  
DEFINED  
4224010/A 11/2017  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271) .  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TPS2120 TPS2121  
TPS2120, TPS2121  
ZHCSIQ0F AUGUST 2018 REVISED AUGUST 2020  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
VQFN-HR - 1 mm max height  
RUX0012A  
PLASTIC QUAD FLAT-NO LEAD  
6X 0.5  
8X (0.2)  
8X (0.6)  
9
12  
1
8
SYMM  
2X  
(2.3)  
(0.7)  
7
2
4X (0.4)  
6
3
4X (1.05)  
(R0.05) TYP  
SYMM  
1.35  
SOLDER PASTE EXAMPLE  
BASED ON 0.1mm THICK STENCIL  
EXPOSED PAD  
100% PRINTED COVERAGE BY AREA  
SCALE: 25X  
4224010/A 11/2017  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TPS2120 TPS2121  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS2120YFPR  
TPS2120YFPT  
TPS2121RUXR  
TPS2121RUXT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
YFP  
YFP  
RUX  
RUX  
20  
20  
12  
12  
3000 RoHS & Green SAC396 | SNAGCU  
250 RoHS & Green SAC396 | SNAGCU  
3000 RoHS & Green  
250 RoHS & Green  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
20  
20  
VQFN-HR  
VQFN-HR  
NIPDAU  
NIPDAU  
2121  
2121  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Dec-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS2120YFPR  
TPS2120YFPR  
TPS2120YFPT  
TPS2120YFPT  
TPS2121RUXR  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YFP  
YFP  
YFP  
YFP  
RUX  
20  
20  
20  
20  
12  
3000  
3000  
250  
180.0  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
1.66  
1.66  
1.66  
1.66  
2.25  
2.06  
2.06  
2.06  
2.06  
2.8  
0.56  
0.56  
0.56  
0.56  
1.1  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q1  
Q1  
Q1  
Q1  
Q1  
250  
VQFN-  
HR  
3000  
TPS2121RUXT  
VQFN-  
HR  
RUX  
12  
250  
180.0  
8.4  
2.25  
2.8  
1.1  
4.0  
8.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Dec-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS2120YFPR  
TPS2120YFPR  
TPS2120YFPT  
TPS2120YFPT  
TPS2121RUXR  
TPS2121RUXT  
DSBGA  
DSBGA  
YFP  
YFP  
YFP  
YFP  
RUX  
RUX  
20  
20  
20  
20  
12  
12  
3000  
3000  
250  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
DSBGA  
DSBGA  
250  
VQFN-HR  
VQFN-HR  
3000  
250  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS2121RUXR

支持无缝切换的 2.7V 至 22V、56mΩ、4.5A 电源多路复用器 | RUX | 12 | -40 to 125
TI

TPS2121RUXT

支持无缝切换的 2.7V 至 22V、56mΩ、4.5A 电源多路复用器 | RUX | 12 | -40 to 125
TI

TPS2124

支持无缝切换的 2.8V 至 22V 优先级电源多路复用器
TI

TPS2124YFPR

支持无缝切换的 2.8V 至 22V 优先级电源多路复用器 | YFP | 20 | -40 to 125
TI

TPS2140

ADJUSTABLE LDO AND SWITCH WITH DUAL CURRENT LIMIT FOR USB HIGH-POWER PERIPHERAL POWER MANAGEMENT
TI

TPS2140IPWP

ADJUSTABLE LDO AND SWITCH WITH DUAL CURRENT LIMIT FOR USB HIGH-POWER PERIPHERAL POWER MANAGEMENT
TI

TPS2140IPWPG4

0.9 V-3.3V ADJUSTABLE POSITIVE LDO REGULATOR, 0.5V DROPOUT, PDSO14, GREEN, PLASTIC, HTSSOP-14
TI

TPS2140IPWPR

ADJUSTABLE LDO AND SWITCH WITH DUAL CURRENT LIMIT FOR USB
TI

TPS2140IPWPRG4

Adjustable LDO Plus 3.3V Switch with Dual Current Limit for High Power USB Peripherals 14-HTSSOP -40 to 85
TI

TPS2141

ADJUSTABLE LDO AND SWITCH WITH DUAL CURRENT LIMIT FOR USB HIGH-POWER PERIPHERAL POWER MANAGEMENT
TI

TPS2141IPWP

ADJUSTABLE LDO AND SWITCH WITH DUAL CURRENT LIMIT FOR USB HIGH-POWER PERIPHERAL POWER MANAGEMENT
TI

TPS2141IPWPR

ADJUSTABLE LDO AND SWITCH WITH DUAL CURRENT LIMIT FOR USB
TI