TPL1401 [TI]

具有缓冲刷的 256 抽头高精度数字电位器;
TPL1401
型号: TPL1401
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有缓冲刷的 256 抽头高精度数字电位器

电位器
文件: 总42页 (文件大小:4171K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPL1401  
ZHCSLY4 APRIL 2020  
具有缓冲电刷TPL1401 256 抽头高精度数字电位器  
1 特性  
3 说明  
• 适用于分压器应用256 抽头数字电位器  
1 LSB INL DNL  
• 宽工作范围  
TPL1401 是一款具有缓冲电刷的数字电位器。与标准  
数字电位器不同该器件具有集成缓冲电刷可帮助分  
压器应用实现较高负载调节。  
– 电源1.8V 5.5V  
TPL1401 集成了非易失性存储器 (NVM)可以让工厂  
校准和修整变得更加轻松另外还提供用于器件通信的  
简单 I2C 字接口。该器件支持 I2C 准模式  
(100kbps) 快速模式 (400kbps) 快速+ 式  
(1Mbps)。  
– 温度范围40°C +125°C  
• 用于改善负载调节的缓冲刷  
• 用于精密电流吸收器应用的反馈引脚  
• 电刷锁定功能可防止对数字电位器意外写入  
I2C 接口  
TPL1401 在内部基准或电源基准下运行1.8V 至  
5.5V 的满量程输出。该器件还具备电刷锁定特性具  
有用于电流吸收器应用的反馈 (FB) 引脚以及 2 字节  
的用户可编程 NVM 空间。TPL1401 具有上电复位  
(POR) 电路可确保所有寄存器以默认设置或使用  
NVM 的用户编程设置启动。数字电位器输出在高阻抗  
模式下通电默认);可以使用 NVM 将此设置编程为  
10k-GND。  
– 标准、快速和快速+ 模式  
1.62V VIH (VDD = 5.5V)  
• 用户可编程的非易失性存储器  
(NVM/EEPROM)  
– 保存和撤销所有寄存器设置  
• 内部基准  
• 功耗极低1.8V 0.2 mA  
• 灵活启动高阻抗10K-GND  
• 微型封装8 WSON (2mm × 2mm)  
TPL1401 是一款小巧型构建块器件功能丰富简单  
易用可集成到许多应用中。  
2 应用  
出口和紧急照明  
条形码扫描仪  
条形码读取器  
智能扬声器  
可视门铃  
TPL1401 的工作温度范围40°C +125°C。  
器件信息(1)  
封装尺寸标称值)  
器件型号  
TPL1401  
封装  
WSON (8)  
2.00mm × 2.00mm  
无线真空吸尘器  
割草机器人  
激光测距仪  
(1) 如需了解所有可用封装请参阅数据表末尾的封装选项附录。  
功能方框图  
TPL1401 实现可编程电流限制  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNAS806  
 
 
 
TPL1401  
ZHCSLY4 APRIL 2020  
www.ti.com.cn  
Table of Contents  
7.2 Functional Block Diagram.........................................17  
7.3 Feature Description...................................................18  
7.4 Device Functional Modes..........................................21  
7.5 Programming............................................................ 22  
7.6 Register Map.............................................................26  
8 Application and Implementation..................................30  
8.1 Application Information............................................. 30  
8.2 Typical Application.................................................... 30  
9 Power Supply Recommendations................................32  
10 Layout...........................................................................32  
10.1 Layout Guidelines................................................... 32  
10.2 Layout Example...................................................... 32  
11 Device and Documentation Support..........................33  
11.1 Documentation Support.......................................... 33  
11.2 接收文档更新通知................................................... 33  
11.3 支持资源..................................................................33  
11.4 Trademarks............................................................. 33  
11.5 静电放电警告...........................................................33  
11.6 术语表..................................................................... 33  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings ....................................... 4  
6.2 ESD Ratings .............................................................. 4  
6.3 Recommended Operating Conditions ........................4  
6.4 Thermal Information ...................................................4  
6.5 Electrical Characteristics ............................................5  
6.6 Timing Requirements: I2C Standard Mode ................ 7  
6.7 Timing Requirements: I2C Fast Mode ........................7  
6.8 Timing Requirements: I2C Fast Mode Plus ................7  
6.9 Typical Characteristics: VDD = 1.8 V (Reference  
= VDD) or VDD = 2 V (Internal Reference)......................8  
6.10 Typical Characteristics: VDD = 5.5 V (Reference  
= VDD) or VDD = 5 V (Internal Reference)....................10  
6.11 Typical Characteristics............................................ 12  
7 Detailed Description......................................................17  
7.1 Overview...................................................................17  
Information.................................................................... 33  
4 Revision History  
DATE  
REVISION  
NOTES  
September 2020  
*
Initial release.  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPL1401  
 
TPL1401  
ZHCSLY4 APRIL 2020  
www.ti.com.cn  
5 Pin Configuration and Functions  
A0  
SCL  
SDA  
CAP  
1
2
3
4
8
7
6
5
OUT  
FB  
VDD  
AGND  
Not to scale  
5-1. DSG Package, 8-Pin WSON, Top View  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
A0  
NO.  
1
Input  
Four-state address input  
AGND  
5
Ground  
Ground reference point for all circuitry on the device  
External capacitor for the internal LDO. Connect a capacitor (around 1.5 µF) between CAP and  
AGND.  
CAP  
4
Input  
FB  
7
8
Input  
Voltage feedback pin  
OUT  
Output  
Analog output voltage from digipot buffer  
Serial interface clock. This pin must be connected to the supply voltage with an external pullup  
resistor.  
SCL  
SDA  
2
3
Input  
Data are clocked into or out of the input register. This pin is a bidirectional, and must be connected to  
the supply voltage with an external pullup resistor.  
Input/output  
Power or  
VDD  
6
reference Analog supply voltage: 1.8 V to 5.5 V  
input  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPL1401  
 
 
TPL1401  
ZHCSLY4 APRIL 2020  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
0.3  
0.3  
10  
40  
65  
MAX  
6
UNIT  
V
VDD  
Supply voltage / reference, VDD to AGND  
Digital input(s) to AGND  
CAP to AGND  
VDD + 0.3  
1.65  
V
V
VFB to AGND  
VDD + 0.3  
VDD + 0.3  
10  
V
VOUT to AGND  
V
Current into any pin  
Junction temperature  
Storage temperature  
mA  
°C  
°C  
TJ  
150  
Tstg  
150  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
±2000  
Charged device model (CDM), per JEDEC specification JESD22-C101,  
pins 1, 4, 5, 8(2)  
Electrostatic  
discharge  
±750  
±500  
V(ESD)  
V
Charged device model (CDM), per JEDEC specification JESD22-C101,  
pins 2, 3, 6, 7(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.71  
1.62  
NOM  
MAX UNIT  
VDD  
VIH  
VIL  
TA  
Positive supply voltage to ground (AGND  
)
5.5  
V
V
V
Digital input high voltage, 1.7 V < VDD 5.5 V  
Digital input low voltage  
0.4  
Ambient temperature  
125 °C  
40  
6.4 Thermal Information  
TPL1401  
THERMAL METRIC(1)  
DSG (WSON)  
UNIT  
8 PINS  
49  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
50  
24.1  
1.1  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ΨJT  
24.1  
8.7  
ΨJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPL1401  
 
 
 
 
 
 
 
 
 
TPL1401  
ZHCSLY4 APRIL 2020  
www.ti.com.cn  
6.5 Electrical Characteristics  
all minimum/maximum specifications at TA = 40°C to +125°C and typical specifications at TA = 25°C, 1.8 V VDD 5.5 V,  
reference tied to VDD, gain = 1x, digipot output pin (OUT) loaded with resistive load (RL = 5 kΩto AGND) and capacitive load  
(CL = 200 pF to AGND), and digital inputs at VDD or AGND (unless otherwise noted)  
PARAMETER  
STATIC PERFORMANCE  
Resolution  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
8
1  
1  
Bits  
LSB  
LSB  
INL Relative accuracy(1)  
DNL Differential nonlinearity(1)  
1
1
Code 0d into digipot  
6
6
12  
15  
Zero code error  
mV  
Internal VREF, gain = 4x, VDD = 5.5 V  
Zero code error temperature  
coefficient  
±10  
0.25  
µV/°C  
%FSR  
VREF tied to VDD, measured between end-point codes  
2d and 254d, output unloaded  
Offset error  
0.5  
0.5  
0.5  
0.5  
Offset error temperature  
coefficient  
VREF tied to VDD, measured between end-point codes  
2d and 254d, output unloaded  
±0.0003  
0.25  
%FSR/°C  
%FSR  
VREF tied to VDD, measured between end-point codes  
2d and 254d, output unloaded  
Gain error  
Gain error temperature  
coefficient  
VREF tied to VDD, measured between end-point codes  
2d and 254d, output unloaded  
±0.0008  
0.5  
%FSR/°C  
1.8 V VDD < 2.7 V, code 511d into digipot,  
no headroom  
1
1  
Full scale error  
%FSR  
2.7 V VDD 5.5 V, code 511d into digipot,  
no headroom  
0.25  
0.5  
0.5  
Full scale error temperature  
coefficient  
±0.0008  
%FSR/°C  
OUTPUT CHARACTERISTICS  
Output voltage  
Reference tied to VDD  
0
5.5  
1
V
RL = Infinite, phase margin = 30°  
RL = 5 kΩ, phase margin = 30°  
CL  
Capacitive load(2)  
Load regulation  
nF  
2
Digipot at midscale, 10 mA IOUT 10 mA,  
VDD = 5.5 V  
0.4  
10  
25  
50  
mV/mA  
VDD = 1.8 V, full-scale output shorted to AGND or  
zero-scale output shorted to VDD  
VDD = 2.7 V, full-scale output shorted to AGND or  
zero-scale output shorted to VDD  
Short circuit current  
mA  
VDD = 5.5 V, full-scale output shorted to AGND or  
zero-scale output shorted to VDD  
To VDD (digipot output unloaded, internal reference =  
1.21 V), VDD 1.21 gain + 0.2 V  
0.2  
0.8  
V
To VDD (digipot output unloaded)  
Output voltage headroom(1)  
To VDD (ILOAD = 10 mA at VDD = 5.5 V, ILOAD = 3 mA at  
VDD = 2.7 V, ILOAD = 1 mA at VDD = 1.8 V), digipot code  
= full scale  
%FSR  
10  
Digipot output enabled and digipot code = midscale  
Digipot output enabled and digipot code = 2d  
Digipot output enabled and digipot code = 254d  
Digipot output enabled  
0.25  
0.25  
0.26  
200  
VOUT dc output impedance  
VFB dc output impedance(3)  
Ω
ZO  
160  
240  
5
kΩ  
VOUT + VFB dc output  
leakage(2)  
At start up, measured when digipot output is disabled  
and held at VDD / 2 for VDD = 5.5 V  
nA  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPL1401  
 
TPL1401  
ZHCSLY4 APRIL 2020  
www.ti.com.cn  
all minimum/maximum specifications at TA = 40°C to +125°C and typical specifications at TA = 25°C, 1.8 V VDD 5.5 V,  
reference tied to VDD, gain = 1x, digipot output pin (OUT) loaded with resistive load (RL = 5 kΩto AGND) and capacitive load  
(CL = 200 pF to AGND), and digital inputs at VDD or AGND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Power supply rejection ratio  
(dc)  
Internal VREF, gain = 2x, digipot at midscale;  
VDD = 5 V ±10%  
0.25  
mV/V  
DYNAMIC PERFORMANCE  
1/4 to 3/4 scale and 3/4 to 1/4 scale settling to  
10%FSR, VDD = 5.5 V  
8
tsett Output voltage settling time  
µs  
1/4 to 3/4 scale and 3/4 to 1/4 scale settling to  
10%FSR, VDD = 5.5 V, internal VREF, gain = 4x  
12  
1
Slew rate  
VDD = 5.5 V  
V/µs  
mV  
At start up (buffer output disabled), RL = 5 k,  
CL = 200 pF  
75  
Power on glitch magnitude  
200  
250  
34  
At start up (buffer output disabled), RL = 100 kΩ  
Buffer output disabled to enabled (digipot registers at  
zero scale, RL = 100 kΩ  
Output enable glitch  
magnitude  
mV  
0.1 Hz to 10 Hz, digipot at midscale, VDD = 5.5 V  
Output noise voltage (peak to  
peak)  
Vn  
µVPP  
Internal VREF, gain = 4x, 0.1 Hz to 10 Hz, digipot at  
midscale, VDD = 5.5 V  
70  
Measured at 1 kHz, digipot at midscale, VDD = 5.5 V  
0.2  
0.7  
Output noise density  
µV/Hz  
Internal VREF, gain = 4x, measured at 1 kHz, digipot at  
midscale, VDD = 5.5 V  
Internal VREF, gain = 4x, 200-mV 50 or 60 Hz sine  
wave superimposed on power supply voltage, digipot  
at midscale  
Power supply rejection ratio  
(ac)(3)  
dB  
71  
±1 LSB change around mid code (including  
feedthrough)  
Code change glitch impulse  
10  
15  
nV-s  
mV  
Code change glitch impulse  
magnitude  
±1 LSB change around mid code (including  
feedthrough)  
VOLTAGE REFERENCE  
Initial accuracy  
TA = 25°C  
1.212  
V
Reference output temperature  
coefficient(2)  
50 ppm/°C  
EEPROM  
20000  
1000  
50  
40°C TA 85°C  
TA > 85°C  
Endurance  
Cycles  
Years  
Data retention(2)  
TA = 25°C  
EEPROM programming write  
cycle time(2)  
10  
20  
ms  
DIGITAL INPUTS  
Digipot output static at midscale, fast mode plus, SCL  
toggling  
Digital feedthrough  
20  
10  
nV-s  
pF  
Pin capacitance  
POWER  
Per pin  
Load capacitor - CAP pin(2)  
0.5  
15  
µF  
mA  
µA  
Normal mode, digipot at full scale, digital pins static  
Digipot power-down, internal reference power down  
0.5  
80  
0.8  
IDD  
Current flowing into VDD  
(1) Measured with digipot output unloaded. For external reference between end-point codes 2d and 254d. For internal reference VDD ≥  
1.21 x gain + 0.2 V, between end-point codes 2d and 254d.  
(2) Specified by design and characterization, not production tested.  
(3) Specified with 200-mV headroom with respect to reference value when internal reference is used.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPL1401  
 
 
 
TPL1401  
ZHCSLY4 APRIL 2020  
www.ti.com.cn  
6.6 Timing Requirements: I2C Standard Mode  
all input signals are timed from VIL to 70% of VDD, 1.8 V VDD 5.5 V, 40°C TA +125°C, and  
1.8 V Vpull-up VDD (unless otherwise specified)  
MIN  
NOM  
MAX  
UNIT  
MHz  
µs  
fSCLK  
tBUF  
SCL frequency  
0.1  
Bus free time between stop and start conditions  
Hold time after repeated start  
Repeated start setup time  
Stop condition setup time  
Data hold time  
4.7  
4
tHDSTA  
tSUSTA  
tSUSTO  
tHDDAT  
tSUDAT  
tLOW  
tHIGH  
tF  
µs  
4.7  
4
µs  
µs  
0
ns  
Data setup time  
250  
4700  
4000  
ns  
SCL clock low period  
ns  
SCL clock high period  
Clock and data fall time  
Clock and data rise time  
ns  
300  
ns  
tR  
1000  
ns  
6.7 Timing Requirements: I2C Fast Mode  
all input signals are timed from VIL to 70% of VDD, 1.8 V VDD 5.5 V, 40°C TA +125°C, and  
1.8 V Vpull-up VDD (unless otherwise specified)  
MIN  
NOM  
MAX  
UNIT  
MHz  
µs  
fSCLK  
tBUF  
SCL frequency  
0.4  
Bus free time between stop and start conditions  
Hold time after repeated start  
Repeated start setup time  
Stop condition setup time  
Data hold time  
1.3  
0.6  
tHDSTA  
tSUSTA  
tSUSTO  
tHDDAT  
tSUDAT  
tLOW  
tHIGH  
tF  
µs  
0.6  
µs  
0.6  
µs  
0
ns  
Data setup time  
100  
1300  
600  
ns  
SCL clock low period  
ns  
SCL clock high period  
Clock and data fall time  
Clock and data rise time  
ns  
300  
300  
ns  
tR  
ns  
6.8 Timing Requirements: I2C Fast Mode Plus  
all input signals are timed from VIL to 70% of VDD, 1.8 V VDD 5.5 V, 40°C TA +125°C, and  
1.8 V Vpull-up VDD (unless otherwise specified)  
MIN  
NOM  
MAX  
UNIT  
MHz  
µs  
fSCLK  
tBUF  
SCL frequency  
1
Bus free time between stop and start conditions  
Hold time after repeated start  
Repeated start setup time  
Stop condition setup time  
Data hold time  
0.5  
0.26  
0.26  
0.26  
0
tHDSTA  
tSUSTA  
tSUSTO  
tHDDAT  
tSUDAT  
tLOW  
tHIGH  
tF  
µs  
µs  
µs  
ns  
Data setup time  
50  
ns  
SCL clock low period  
0.5  
µs  
SCL clock high period  
Clock and data fall time  
Clock and data rise time  
0.26  
µs  
120  
120  
ns  
tR  
ns  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPL1401  
 
 
 
TPL1401  
ZHCSLY4 APRIL 2020  
www.ti.com.cn  
6.9 Typical Characteristics: VDD = 1.8 V (Reference = VDD) or VDD = 2 V (Internal Reference)  
at TA = 25°C and digipot outputs unloaded (unless otherwise noted)  
6-1. Integral Linearity Error vs Digital Input Code  
6-2. Differential Linearity Error vs Digital Input Code  
6-3. Total Unadjusted Error vs Digital Input Code  
6-4. Integral Linearity Error vs Temperature  
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
TUE max, reference = VDD, gain = 1x  
TUE min, reference = VDD, gain = 1x  
TUE max, internal reference, gain = 1.5x  
-0.6  
-0.8  
TUE min, internal reference, gain = 1.5x  
-1  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
6-6. Total Unadjusted Error vs Temperature  
6-5. Differential Linearity Error vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPL1401  
 
TPL1401  
ZHCSLY4 APRIL 2020  
www.ti.com.cn  
6.9 Typical Characteristics: VDD = 1.8 V (Reference = VDD) or VDD = 2 V (Internal Reference)  
(continued)  
at TA = 25°C and digipot outputs unloaded (unless otherwise noted)  
8
7
6
5
4
3
2
1
0
0.5  
0.3  
0.1  
-0.1  
-0.3  
-0.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
Reference = VDD  
6-7. Zero Code Error vs Temperature  
Reference = VDD  
6-8. Offset Error vs Temperature  
0.5  
0.5  
0.4  
0.3  
0.2  
0.1  
0
Reference = VDD, gain = 1x  
Internal reference, gain = 1.5x  
0.3  
0.1  
-0.1  
-0.3  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Reference = VDD, gain = 1x  
Internal reference, gain = 1.5x  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
6-9. Gain Error vs Temperature  
6-10. Full-Scale Error vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPL1401  
TPL1401  
ZHCSLY4 APRIL 2020  
www.ti.com.cn  
6.10 Typical Characteristics: VDD = 5.5 V (Reference = VDD) or VDD = 5 V (Internal Reference)  
at TA = 25°C and digipot outputs unloaded (unless otherwise noted)  
6-11. Integral Linearity Error vs Digital Input Code  
6-12. Differential Linearity Error vs Digital Input Code  
6-13. Total Unadjusted Error vs Digital Input Code  
6-14. Integral Linearity Error vs Temperature  
0.5  
TUE max, reference = VDD, gain = 1x  
TUE min, reference = VDD, gain = 1x  
TUE max, internal reference, gain = 4x  
0.4  
0.3  
TUE min, internal reference, gain = 4x  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
6-16. Total Unadjusted Error vs Temperature  
6-15. Differential Linearity Error vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPL1401  
 
TPL1401  
ZHCSLY4 APRIL 2020  
www.ti.com.cn  
6.10 Typical Characteristics: VDD = 5.5 V (Reference = VDD) or VDD = 5 V (Internal Reference)  
(continued)  
at TA = 25°C and digipot outputs unloaded (unless otherwise noted)  
2
1.5  
1
0.5  
0.3  
0.5  
0
0.1  
-0.1  
-0.3  
-0.5  
-0.5  
-1  
-1.5  
-2  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
Reference = VDD  
6-17. Zero Code Error vs Temperature  
Reference = VDD  
6-18. Offset Error vs Temperature  
0.5  
0.5  
Reference = VDD, gain = 1x  
Internal reference, gain = 4x  
Reference = VDD, gain 1x  
Internal reference, gain 4x  
0.3  
0.3  
0.1  
0.1  
-0.1  
-0.3  
-0.5  
-0.1  
-0.3  
-0.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
6-19. Gain Error vs Temperature  
6-20. Full-Scale Error vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPL1401  
TPL1401  
ZHCSLY4 APRIL 2020  
www.ti.com.cn  
6.11 Typical Characteristics  
at TA = 25°C and digipot outputs unloaded (unless otherwise noted)  
Reference = VDD  
Reference = VDD  
6-22. Differential Linearity Error  
6-21. Integral Linearity Error  
vs Supply Voltage  
vs Supply Voltage  
Reference = VDD  
Reference = VDD  
6-23. Total Unadjusted Error  
6-24. Zero-Code Error  
vs Supply Voltage  
vs Supply Voltage  
Reference = VDD  
Reference = VDD  
6-26. Gain Error vs Supply Voltage  
6-25. Offset Error vs Supply Voltage  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPL1401  
 
TPL1401  
ZHCSLY4 APRIL 2020  
www.ti.com.cn  
6.11 Typical Characteristics (continued)  
at TA = 25°C and digipot outputs unloaded (unless otherwise noted)  
VDD = 1.8 V  
6-28. Supply Current vs Digital Input Code  
Reference = VDD  
6-27. Full-Scale Error vs Supply Voltage  
0.4  
0.35  
0.3  
IDD, VDD = 1.8 V  
IDD, VDD = 3.3 V  
IDD, VDD = 5.5 V  
0.25  
0.2  
0.15  
0.1  
0.05  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
VDD = 5.5 V  
Reference = VDD, digipot at midscale  
6-29. Supply Current vs Digital Input Code  
6-30. Supply Current vs Temperature  
0.4  
IDD, VDD = 3.3 V  
IDD, VDD = 5.5 V  
0.35  
0.3  
0.25  
0.2  
0.15  
0.1  
0.05  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Digipot at midscale  
Internal reference (gain = 4x), digipot at midscale  
6-32. Supply Current vs Supply Voltage  
6-31. Supply Current vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPL1401  
TPL1401  
ZHCSLY4 APRIL 2020  
www.ti.com.cn  
6.11 Typical Characteristics (continued)  
at TA = 25°C and digipot outputs unloaded (unless otherwise noted)  
0.1  
0.0875  
0.075  
6
5
4
0.0625  
0.05  
3
2
0.0375  
1
0.025  
0
IDD, VDD = 1.8 V  
IDD, VDD = 3.3 V  
IDD, VDD = 5.5 V  
0.0125  
0
-1  
-2  
Reference = VDD = 1.8 V  
Reference = VDD = 5.5 V  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
-20  
-15  
-10  
-5  
0
5
Load Current (mA)  
10  
15  
20  
Reference = VDD, digipot powered down  
6-33. Power-Down Current vs Temperature  
6-34. Source and Sink Capability  
Reference = VDD = 5.5 V, digipot code transition from  
Reference = VDD = 5.5 V, digipot code transition from  
midscale to midscale + 1 LSB, digipot load = 5kΩ|| 200pF  
midscale to midscale 1 LSB, digipot load = 5kΩ|| 200pF  
6-35. Glitch Impulse, Rising Edge,  
6-36. Glitch Impulse, Falling Edge,  
1-LSB Step  
1-LSB Step  
Reference = VDD = 5.5 V, digipot load = 5kΩ|| 200pF  
6-37. Full-Scale Settling Time, Rising Edge  
Reference = VDD = 5.5 V, digipot load = 5kΩ|| 200pF  
6-38. Full-Scale Settling Time, Falling Edge  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPL1401  
TPL1401  
ZHCSLY4 APRIL 2020  
www.ti.com.cn  
6.11 Typical Characteristics (continued)  
at TA = 25°C and digipot outputs unloaded (unless otherwise noted)  
VDD (1 V / div)  
VOUT unloaded (500 mV / div)  
VOUT 10K-GND (15 mV / div)  
VDD (1 V / div)  
VOUT unloaded (500 mV / div)  
VOUT 10K-GND (15 mV / div)  
0
5
10  
15  
20  
25  
Time (ms)  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
Time (ms)  
30  
35  
40  
45  
50  
Reference = VDD = 5.5 V  
6-39. Power-on Glitch  
Reference = VDD = 5.5 V  
6-40. Power-off Glitch  
-40  
VOUT (6 mV / div)  
SCL (4 V / div)  
-50  
-60  
-70  
-80  
-90  
-100  
10  
20 30 50 70100 200  
500 1000 2000 5000 10000  
0
1
2
3
4
5
Frequency (Hz)  
Time (ms)  
Internal reference (gain = 4x), VDD = 5.25 V + 0.25 VPP  
,
Reference = VDD = 5.5 V, fast mode plus, digipot at midscale,  
digipot at midscale, digipot load = 5kΩ|| 200pF  
digipot load = 5kΩ|| 200pF  
6-42. Output AC PSRR vs Frequency  
6-41. Clock Feedthrough  
Reference = VDD = 5.5 V  
Internal reference (gain = 4x), VDD = 5.5 V  
6-43. Output Noise Spectral Density  
6-44. Output Noise Spectral Density  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPL1401  
TPL1401  
ZHCSLY4 APRIL 2020  
www.ti.com.cn  
6.11 Typical Characteristics (continued)  
at TA = 25°C and digipot outputs unloaded (unless otherwise noted)  
Reference = VDD = 5.5 V, digipot at midscale  
Internal reference (gain = 4x), VDD = 5.5 V, digipot at midscale  
6-45. Digipot Output Noise: 0.1 Hz to 10 Hz  
6-46. Digipot Output Noise: 0.1 Hz to 10 Hz  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPL1401  
TPL1401  
ZHCSLY4 APRIL 2020  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPL1401 is a digital potentiometer with buffered wiper. The buffered wiper helps achieve a higher load  
regulation as compared to standard digital potentiometers used in voltage-divider applications. This digipot  
contains nonvolatile memory (NVM) and an I2C interface. This makes the TPL1401 easy to use for factory  
trimming and calibration device in analog set-point applications. The TPL1401 operates with either the internal  
reference or the power supply as the reference, and provides a full-scale output of 1.8 V to 5.5 V.  
The TPL1401 communicates through an I2C interface. This device supports I2C standard mode (100 kbps), fast  
mode (400 kbps), and fast mode plus (1 Mbps). This device also includes a wiper lock feature, an FB pin for  
current sink application, and 2 bytes of user-programmable NVM space.  
The TPL1401 has a power-on-reset (POR) circuit that makes sure all the registers start with default or user-  
programmed settings using NVM. The digipot output powers on in high-impedance mode (default); this setting  
can be programmed to 10k-GND using NVM.  
7.2 Functional Block Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPL1401  
 
 
 
TPL1401  
ZHCSLY4 APRIL 2020  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Digital Potentiometer (Digipot) Architecture  
The TPL1401 consists of string architecture with an output buffer amplifier. 7.2 shows the digipot architecture  
within the block diagram. This digipot architecture operates from a 1.8-V to 5.5-V power supply. This device  
consume only 0.2 mA of current when using a 1.8-V power supply. The digipot output gets loaded from the NVM  
at power up. Write the required code so that the load circuit starts with a predictable operating point at power up.  
7.3.1.1 Reference Selection and Digipot Transfer Function  
The device writes the input data to the DPOT_POSITION register in straight-binary format. After a power-on or a  
reset event, the device sets all digipot registers to the values set in the NVM.  
7.3.1.1.1 Power Supply as Reference  
By default, the TPL1401 operates with the power-supply pin (VDD) as a reference. 方程式 1 shows the digipot  
transfer function when the power-supply pin is used as a reference.  
(1)  
where:  
DPOT_POS is the decimal equivalent of the binary code that is loaded to the digipot register.  
DPOT_POS ranges from 0 to 255.  
VDD is used as the digipot reference voltage.  
7.3.1.1.2 Internal Reference  
The TPL1401 also contains an internal reference that is disabled by default. Enable the internal reference by  
writing 1 to REF_EN (address D1h). The internal reference generates a fixed 1.21-V voltage (typical). Using the  
OUT_SPAN (address D1h) bits, a gain of 1.5x, 2x, 3x, 4x can be achieved for the digipot output voltage (VOUT  
)
方程2 shows digipot transfer function when the internal reference is used.  
(2)  
where:  
DPOT_POS is the decimal equivalent of the binary code that is loaded to the digipot register  
DPOT_POS ranges from 0 to 255.  
VREF is the internal reference voltage = 1.21 V.  
GAIN = 1.5x, 2x, 3x, 4x based on OUT_SPAN (address D1h) bits.  
7.3.2 Digipot Update  
The digipot output pin (OUT) is updated at the end of I2C digipot write frame.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPL1401  
 
 
 
TPL1401  
ZHCSLY4 APRIL 2020  
www.ti.com.cn  
7.3.3 Nonvolatile Memory (EEPROM or NVM)  
The TPL1401 contains nonvolatile memory (NVM) bits. These NVM bits are user programmable and erasable,  
and retain the set values in the absence of a power supply. All the register bits, as shown in 7-1, can be  
stored in the device NVM by setting NVM_PROG = 1 (address D3h). The NVM_BUSY bit (address D0h) is set to  
1 by the device when an NVM write or reload operation is ongoing. During this time, the device blocks all write  
operations to the device. The NVM_BUSY bit is set to 0 after the write or reload operation is complete; at this  
point, all write operations to the device are allowed. The default value for all the registers in the TPL1401 is  
loaded from NVM as soon as a POR event is issued. Do not perform a read operation from the digipot register  
while NVM_BUSY = 1.  
The TPL1401 also implements NVM_RELOAD bit (address D3h). Set this bit to 1 for the device to start an NVM  
reload operation. After the operation is complete, the device autoresets this bit to 0. During the NVM_RELOAD  
operation, the NVM_BUSY bit is set to 1.  
7-1. NVM Programmable Registers  
REGISTER ADDRESS  
REGISTER NAME  
BIT ADDRESS  
BIT NAME  
DEVICE_LOCK  
13  
4:3  
2
DPOT_PDN  
D1h  
GENERAL_CONFIG  
REF_EN  
1:0  
11:2  
11:4  
11:4  
OUT_SPAN  
10h  
25h  
26h  
DPOT_POSITION  
USER_BYTE1  
USER_BYTE2  
DPOT_POS  
USER_BYTE1 (8 most significant bits)  
USER_BYTE2 (8 most significant bits)  
7.3.3.1 NVM Cyclic Redundancy Check  
The TPL1401 implements a cyclic redundancy check (CRC) feature to make sure that the data stored in the  
device NVM are uncorrupted. There are two types of CRC alarm bits implemented in TPL1401:  
NVM_CRC_ALARM_USER (address D0h) This bit indicates the status of the user-programmable NVM  
bits.  
NVM_CRC_ALARM_INTERNAL (address D0h) This bit indicates the status of the internal NVM bits.  
The CRC feature is implemented by storing a 10-bit CRC (CRC-10-ATM) along with the NVM data each time  
NVM program operation (write or reload) is performed and during the device start up. The device reads the NVM  
data and validates the data with the stored CRC. The CRC alarm bits report any errors after the data are read  
from the device NVM.  
7.3.3.1.1 NVM_CRC_ALARM_USER Bit  
A logic 1 on NVM_CRC_ALARM_USER bit indicates that the user-programmable NVM data is corrupt. During  
this condition, all registers in the digipot are initialized with factory reset values, and any digipot registers can be  
written to or read from. To reset the alarm bits to 0, issue a Software Reset command, or cycle power to the  
digipot. A power cycle reloads the user-programmable NVM bits. After the reset, write the desired data to the  
registers and assert the NVM_PROG bit in the PROTECT register to program the NVM.  
7.3.3.1.2 NVM_CRC_ALARM_INTERNAL Bit  
A logic 1 on NVM_CRC_ALARM_INTERNAL bit indicates that the internal NVM data is corrupt. During this  
condition, all registers in the digipot are initialized with factory reset values, and any digipot registers can be  
written to or read from. To reset the alarm bits to 0, issue a Software Reset command, or cycle power to the  
digipot. The NVM_PROG bit in the PROTECT register (address D3h) is blocked when the  
NVM_CRC_ALARM_INTERNAL bit is set. The device reset or power cycle does not reset the CRC error if there  
is a permanent NVM failure.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPL1401  
 
TPL1401  
ZHCSLY4 APRIL 2020  
www.ti.com.cn  
7.3.4 Power-On Reset (POR)  
The TPL1401 includes a power-on reset (POR) function that controls the output voltage at power up. After the  
VDD supply has been established, a POR event is issued. The POR causes all registers to initialize to default  
values, and communication with the device is valid only after a 30-ms POR delay. The default value for all the  
registers in the TPL1401 is loaded from NVM as soon as the POR event is issued.  
When the device powers up, a POR circuit sets the device to the default mode. The POR circuit requires specific  
VDD levels, as indicated in 7-1, in order to make sure that the internal capacitors discharge and reset the  
device on power up. To make sure that a POR occurs, VDD must be less than 0.7 V for at least 1 ms. When VDD  
drops to less than 1.65 V, but remains greater than 0.7 V (shown as the undefined region), the device may or  
may not reset under all specified temperature and power-supply conditions. In this case, initiate a POR. When  
VDD remains greater than 1.65 V, a POR does not occur.  
VDD (V)  
5.5 V  
Specified supply  
voltage range  
No power-on reset  
1.71 V  
1.65 V  
Undefined  
0.7 V  
Power-on reset  
0 V  
7-1. Threshold Levels for VDD POR Circuit  
7.3.5 Software Reset  
To initiate a device software reset event, write reserved code 1010 to the SW_RESET bits (address D3h). A  
software reset initiates a POR event.  
7.3.6 Device Lock Feature  
The TPL1401 implements a device lock feature that prevents an accidental or unintended write to the digipot  
registers. The device locks all the registers when the DEVICE_LOCK bit (address D1h) is set to 1. To bypass the  
DEVICE_LOCK setting, write 0101 to the DEVICE_UNLOCK_CODE bits (address D3h).  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPL1401  
 
 
TPL1401  
ZHCSLY4 APRIL 2020  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Power Down Mode  
The TPL1401 output amplifier and internal reference can be independently powered down through the  
DPOT_PDN bits (address D1h).  
At power up, the digipot output and the internal reference are disabled by default.  
In power-down mode, the digipot output (OUT pin) is in a high-impedance state.  
To change this state to 10k-AGND (at power up), use the DPOT_PDN bits (address D1h).  
The digipot power-up state can be programmed to any state (power-down or normal mode) using the NVM. 表  
7-2 shows the digipot power-down bits.  
7-2. Digipot Power-Down Bits  
REGISTER ADDRESS AND NAME  
DPOT_PDN[1]  
DPOT_PDN[0]  
DESCRIPTION  
0
0
0
1
Power up  
Power down to 10 kΩ  
D1h, GENERAL_CONFIG  
Power down to high impedance (HiZ)  
(default)  
1
1
0
1
Power down to 10 kΩ  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPL1401  
 
 
TPL1401  
ZHCSLY4 APRIL 2020  
www.ti.com.cn  
7.5 Programming  
The TPL1401 devices have a 2-wire serial interface (SCL and SDA), and one address pin (A0), as shown in 节  
5. The I2C bus consists of a data line (SDA) and a clock line (SCL) with pullup structures. When the bus is idle,  
both SDA and SCL lines are pulled high. All the I2C-compatible devices connect to the I2C bus through the open  
drain I/O pins, SDA and SCL.  
The I2C specification states that the device that controls communication is called a master, and the devices that  
are controlled by the master are called slaves. The master device generates the SCL signal. The master device  
also generates special timing conditions (start condition, repeated start condition, and stop condition) on the bus  
to indicate the start or stop of a data transfer. Device addressing is completed by the master. The master device  
on an I2C bus is typically a microcontroller or digital signal processor (DSP). The TPL1401 operates as a slave  
device on the I2C bus. A slave device acknowledges master commands, and upon master control, receives or  
transmits data.  
Typically, the TPL1401 operates as a slave receiver. A master device writes to the TPL1401, a slave receiver.  
However, if a master device requires the TPL1401 internal register data, the TPL1401 operate as a slave  
transmitter. In this case, the master device reads from the TPL1401. According to I2C terminology, read and  
write refer to the master device.  
The TPL1401 is a slave and supports the following data transfer modes:  
Standard mode (100 kbps)  
Fast mode (400 kbps)  
Fast mode plus (1.0 Mbps)  
The data transfer protocol for standard and fast modes is exactly the same; therefore, both modes are referred  
to as F/S-mode in this document. The fast mode plus protocol is supported in terms of data transfer speed, but  
not output current. The low-level output current would be 3 mA; similar to the case of standard and fast modes.  
The TPL1401 supports 7-bit addressing. The 10-bit addressing mode is not supported. The device supports the  
general call reset function. Sending the following sequence initiates a software reset within the device: start or  
repeated start, 0x00, 0x06, stop. The reset is asserted within the device on the rising edge of the ACK bit,  
following the second byte.  
Other than specific timing signals, the I2C interface works with serial bytes. At the end of each byte, a ninth clock  
cycle generates and detects an acknowledge signal. Acknowledge is when the SDA line is pulled low during the  
high period of the ninth clock cycle. A not-acknowledge is when the SDA line is left high during the high period of  
the ninth clock cycle as shown in 7-2.  
Data output  
by transmitter  
Not acknowledge  
Data output  
by receiver  
Acknowledge  
2
9
1
8
SCL from  
master  
S
Clock pulse for  
acknowledgement  
Start  
condition  
7-2. Acknowledge and Not Acknowledge on the I2C Bus  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPL1401  
 
 
TPL1401  
ZHCSLY4 APRIL 2020  
www.ti.com.cn  
7.5.1 F/S Mode Protocol  
The following steps explain a complete transaction in F/S mode.  
1. The master initiates data transfer by generating a start condition. The start condition is when a high-to-low  
transition occurs on the SDA line while SCL is high, as shown in 7-3. All I2C-compatible devices  
recognize a start condition.  
2. The master then generates the SCL pulses, and transmits the 7-bit address and the read/write direction bit  
(R/W) on the SDA line. During all transmissions, the master makes sure that data are valid. A valid data  
condition requires the SDA line to be stable during the entire high period of the clock pulse, as shown in 图  
7-4. All devices recognize the address sent by the master and compare the address to the respective  
internal fixed address. Only the slave device with a matching address generates an acknowledge by pulling  
the SDA line low during the entire high period of the ninth SCL cycle, as shown in 7-2. When the master  
detects this acknowledge, the communication link with a slave has been established.  
3. The master generates further SCL cycles to transmit (R/W bit 0) or receive (R/W bit 1) data to the slave. In  
either case, the receiver must acknowledge the data sent by the transmitter. The acknowledge signal can be  
generated by the master or by the slave, depending on which is the receiver. The 9-bit valid data sequences  
consists of 8-data bits and 1 acknowledge-bit, and can continue as long as necessary.  
4. To signal the end of the data transfer, the master generates a stop condition by pulling the SDA line from  
low-to-high while the SCL line is high (see 7-4). This action releases the bus and stops the  
communication link with the addressed slave. All I2C-compatible devices recognize the stop condition. Upon  
receipt of a stop condition, the bus is released, and all slave devices then wait for a start condition followed  
by a matching address.  
SDA  
SDA  
SCL  
SCL  
S
P
Start  
condition  
Stop  
condition  
Change of data  
allowed  
Data line stable  
Data valid  
7-3. Start and Stop Conditions  
7-4. Bit Transfer on the I2C Bus  
7.5.2 I2C Update Sequence  
For a single update, the TPL1401 requires a start condition, a valid I2C address byte, a command byte, and two  
data bytes, as listed in 7-3.  
7-3. Update Sequence  
MSB  
....  
LSB  
ACK  
MSB  
...  
LSB  
ACK  
MSB  
...  
LSB  
ACK  
MSB  
...  
LSB  
ACK  
Address (A) byte  
Command byte  
Data byte - MSDB 节  
Data byte - LSDB 节  
7.5.3  
7.5.4  
8.2.3  
8.2.3  
DB [31:24]  
DB [23:16]  
DB [15:8]  
DB [7:0]  
After each byte is received, the TPL1401 acknowledges the byte by pulling the SDA line low during the high  
period of a single clock pulse, as shown in 7-5. These four bytes and acknowledge cycles make up the 36  
clock cycles required for a single update to occur. A valid I2C address byte selects the TPL1401 device.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPL1401  
 
 
TPL1401  
ZHCSLY4 APRIL 2020  
www.ti.com.cn  
Recognize  
START or  
REPEATED  
START  
Recognize  
STOP or  
REPEATED  
START  
Generate ACKNOWLEDGE  
signal  
condition  
condition  
P
SDA  
MSB  
Sr  
Acknowledgement  
signal from Slave  
Address  
R/W  
1
SCL  
S
1
7
8
9
2 - 8  
9
Sr  
or  
P
or  
Sr  
ACK  
ACK  
START or  
REPEATED  
START  
REPEATED  
START or  
STOP  
Clock line held low while  
interrupts are serviced  
condition  
condition  
7-5. I2C Bus Protocol  
The command byte sets the operating mode of the selected TPL1401. For a data update to occur when the  
operating mode is selected by this byte, the TPL1401 must receive two data bytes: the most significant data byte  
(MSDB) and least significant data byte (LSDB). The TPL1401 performs an update on the falling edge of the  
acknowledge signal that follows the LSDB.  
When using fast mode (clock = 400 kHz), the maximum digipot update rate is limited to 10 kSPS. Using the fast  
mode plus (clock = 1 MHz), the maximum digipot update rate is limited to 25 kSPS. When a stop condition is  
received, the TPL1401 releases the I2C bus and awaits a new start condition.  
7.5.3 Address Byte  
The address byte, as shown in 7-4, is the first byte received from the master device following the start  
condition. The first four bits (MSBs) of the address are factory preset to 1001. The next three bits of the address  
are controlled by the A0 pin. The A0 pin input can be connected to VDD, AGND, SCL, or SDA. The A0 pin is  
sampled during the first byte of each data frame to determine the address. The device latches the value of the  
address pin, and consequently responds to that particular address according to 7-5.  
The TPL1401 supports broadcast addressing, which is used for synchronously updating or powering down  
multiple TPL1401 devices. When the broadcast address is used, the TPL1401 responds regardless of the  
address pin state. Broadcast is supported only in write mode.  
7-4. Address Byte  
COMMENT  
MSB  
LSB  
AD6  
1
AD5  
0
AD4  
0
AD3  
AD2  
AD1  
AD0  
R/ W  
See 7-5  
General address  
1
0
0 or 1  
0
(slave address column)  
Broadcast address  
1
0
0
1
1 1  
7-5. Address Format  
SLAVE ADDRESS  
A0 PIN  
AGND  
VDD  
000  
001  
010  
011  
SDA  
SCL  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPL1401  
 
 
 
 
TPL1401  
ZHCSLY4 APRIL 2020  
www.ti.com.cn  
7.5.4 Command Byte  
7-6 lists the command byte.  
7-6. Command Byte (Register Names)  
ADDRESS  
REGISTER NAME  
D0h  
STATUS  
D1h  
GENERAL_CONFIG  
PROTECT  
D3h  
21h  
DPOT_POSITION  
USER_BYTE1  
USER_BYTE2  
25h  
26h  
7.5.5 I2C Read Sequence  
To read any register, the following command sequence must be used, as shown in 7-7:  
1. Send a start or repeated start command with a slave address and the R/W bit set to 0 for writing. The device  
acknowledges this event.  
2. Send a command byte for the register to be read. The device acknowledges this event again.  
3. Send a repeated start with the slave address and the R/W bit set to 1 for reading. The device acknowledges  
this event.  
4. The device writes the MSDB byte of the addressed register. The master must acknowledge this byte.  
5. Finally, the device writes out the LSDB of the register.  
An alternative reading method allows for reading back the value of the last register written. The sequence is a  
start or repeated start with the slave address and the R/ W bit set to 1, and the two bytes of the last register are  
read out.  
The broadcast address cannot be used for reading.  
7-7. Read Sequence  
R/ W  
(0)  
R/ W  
(1)  
S
MSB  
ACK MSB  
LSB ACK Sr MSB  
ACK MSB  
LSB  
ACK  
MSB  
LSB  
ACK  
ADDRESS  
BYTE  
7.5.3  
COMMAND  
BYTE  
7.5.4  
ADDRESS  
BYTE  
7.5.3  
Sr  
MSDB  
From Slave  
LSDB  
From Master  
Slave  
From Master  
Slave  
From Master  
Slave  
Master  
From Slave  
Master  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPL1401  
 
 
 
TPL1401  
ZHCSLY4 APRIL 2020  
www.ti.com.cn  
7.6 Register Map  
7-8. Register Map  
MOST SIGNIFICANT DATA BYTE (MSDB)  
LEAST SIGNIFICANT DATA BYTE (LSDB)  
ADDRESS  
BIT15  
BIT14  
BIT13  
BIT12  
BIT11  
BIT10  
BIT9  
BIT8  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
NVM_CRC_ NVM_CRC_  
D0h  
D1h  
D3h  
ALARM_  
USER  
ALARM_  
INTERNAL  
NVM_BUSY  
X(1)  
X
DEVICE_ID  
VERSION_ID  
OUT_SPAN  
DEVICE_  
LOCK  
RESERVED  
RESERVED  
DEVICE_  
DPOT_PDN  
REF_EN  
NVM_  
RELOAD  
NVM_  
PROG  
DEVICE_UNLOCK_CODE  
X
CONFIG_  
RESET  
RESERVED  
SW_RESET  
21h  
25h  
26h  
X
X
X
DPOT_POS[7:0]  
X
X
X
USER_BYTE1[7:0]  
USER_BYTE2[7:0]  
(1) X = Don't care.  
7-9. Register Names  
ADDRESS  
D0h  
REGISTER NAME  
SECTION  
STATUS  
GENERAL_CONFIG  
PROTECT  
7.6.1  
7.6.2  
7.6.3  
7.6.4  
7.6.5  
7.6.6  
D1h  
D3h  
21h  
DPOT_POSITION  
USER_BYTE1  
USER_BYTE2  
25h  
26h  
7-10. Access Type Codes  
Access Type  
Code  
Description  
X
X
Don't care  
Read Type  
R
R
W
Read  
Write  
Write Type  
W
Reset or Default Value  
-n  
Value after reset or the default value  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPL1401  
 
 
TPL1401  
ZHCSLY4 APRIL 2020  
www.ti.com.cn  
7.6.1 STATUS Register (address = D0h) (reset = 000Ch or 0014h)  
7-11. STATUS Register  
15  
14  
13  
12  
X
11  
10  
9
8
7
6
5
4
3
2
1
0
NVM_CRC_  
ALARM_  
USER  
NVM_CRC_  
ALARM_  
INTERNAL  
NVM_  
BUSY  
X
DEVICE_ID  
VERSION_ID  
R-0h  
R-0h  
R-0h  
R-0h  
X-00h  
R-14h  
R-0h  
7-12. STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
NVM_CRC_ALARM_USER  
NVM_CRC_ALARM_INTERNAL  
NVM_BUSY  
R
0
0 : No CRC error in user NVM bits  
1: CRC error in user NVM bits  
14  
13  
R
R
0
0
0 : No CRC error in internal NVM  
1: CRC error in internal NVM bits  
0 : NVM write or load completed, Write to digipot registers  
allowed  
1 : NVM write or load in progress, Write to digipot registers  
not allowed  
12  
X
R
X
R
R
0
Don't care  
11 - 6  
5 - 2  
1 - 0  
X
00h  
14h  
Don't care  
DEVICE_ID  
VERSION_ID  
14h  
Version ID as per the silicon version  
7.6.2 GENERAL_CONFIG Register (address = D1h) (reset = 01F0h)  
7-5. GENERAL_CONFIG Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
DEVICE_  
LOCK  
RESERVED  
R-0Fh  
DPOT_PDN REF_EN OUT_SPAN  
R-0h  
W-0h  
R/ W-2h R/ W-0h R/ W-0h  
7-13. GENERAL_CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15 - 14 RESERVED  
R
00  
Always write 00b  
0 : Device not locked  
13  
DEVICE_LOCK  
W
0
1: Device locked, the device locks all the registers. This bit can be  
reset (unlock device) by writing 0101 to the  
DEVICE_UNLOCK_CODE bits (address D3h)  
12 - 5  
4 - 3  
RESERVED  
DPOT_PDN  
R
0Fh  
10  
Always write 0Fh  
R/ W  
00: Power up  
01: Power down to 10K  
10: Power down to high impedance (default)  
11: Power down to 10K  
2
REF_EN  
R/ W  
R/ W  
0
0: Internal reference disabled, VDD is digipot reference voltage,  
digipot output range from 0 V to VDD  
.
1: Internal reference enabled, digipot reference = 1.21 V  
1 - 0  
OUT_SPAN  
00  
Only applicable when internal reference is enabled.  
00: Reference to VOUT gain 1.5x  
01: Reference to VOUT gain 2x  
10: Reference to VOUT gain 3x  
11: Reference to VOUT gain 4x  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPL1401  
 
 
TPL1401  
ZHCSLY4 APRIL 2020  
www.ti.com.cn  
7.6.3 PROTECT Register (address = D3h) (reset = 0008h)  
7-6. PROTECT Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DEVICE_UNLOCK_CODE  
X
X
DEVICE_  
CONFIG_  
RESET  
RESERVED  
NVM_  
RELOAD PROG  
NVM_  
SW_RESET  
W-0h  
W-0h  
R-0h  
W-0h W-0h  
W-8h  
7-14. PROTECT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0000  
0h  
Description  
15 - 12 DEVICE_UNLOCK_CODE  
W
Write 0101 to unlock the device to bypass DEVICE_LOCK bit.  
Don't care  
11 - 10  
9
X
X
DEVICE_CONFIG_RESET  
W
0
0: Device configuration reset not initiated  
1: Device configuration reset initiated. All registers loaded with  
factory reset values.  
8 - 6  
5
RESERVED  
R
000  
0
Always write 000b  
NVM_RELOAD  
W
0: NVM reload not initiated  
1: NVM reload initiated, applicable digipot registers loaded with  
corresponding NVM. NVM_BUSY bit set to 1 while this operation  
is in progress. This bit is self-resetting.  
4
NVM_PROG  
SW_RESET  
W
W
0
0: NVM write not initiated  
1: NVM write initiated, NVM corresponding to applicable digipot  
registers loaded with existing register settings. NVM_BUSY bit  
set to 1 while this operation is in progress. This bit is self-  
resetting.  
3 - 0  
1000  
1000: Software reset not initiated  
1010: Software reset initiated, digipot registers loaded with  
corresponding NVMs, all other registers loaded with default  
settings.  
7.6.4 DPOT_POSITION Register (address = 21h) (reset = 0000h)  
7-15. DPOT_POSITION Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
X
X
DPOT_POS[7:0] MSB Left aligned  
X-0h  
R/W-000h  
X-0h  
7-16. DPOT_DATA Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-12  
11-2  
X
X
0h  
Don't care  
DPOT_POS[7:0]  
R/W  
000h  
Writing to the DPOT_POSITION register forces the digipot to  
update the active register data to the DPOT_POS.  
Data are in straight binary format and use the following format:  
{ DPOT_POS[7:0], X, X }  
X = Dont care bits  
1-0  
X
X
0h  
Don't care  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPL1401  
 
 
TPL1401  
ZHCSLY4 APRIL 2020  
www.ti.com.cn  
7.6.5 USER_BYTE1 Register (address = 25h) (reset = 0000h)  
7-17. USER_BYTE1 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
X
X
USER_BYTE1[7:0] MSB Left aligned  
X-0h  
R/W-000h  
X-0h  
7-18. USER_BYTE1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-12  
11-2  
X
X
0h  
Don't care  
R/W  
000h  
USE_BYTE1[7:0] MSB Left  
8-bit user-programmable data.  
aligned  
Data are in straight binary format and use the following format:  
{ USER_BYTE1[7:0], X, X }  
X = Dont care bits  
1-0  
X
X
0h  
Don't care  
7.6.6 USER_BYTE2 Register (address = 26h) (reset = 0000h)  
7-19. USER_BYTE2 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
X
X
USER_BYTE2[7:0] MSB Left aligned  
X-0h  
R/W-000h  
X-0h  
7-20. USER_BYTE2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-12  
11-2  
X
X
0h  
Don't care  
R/W  
000h  
USER_BYTE2[7:0] MSB Left  
8-bit user-programmable data.  
aligned  
Data are in straight binary format and follows the format below:  
{ USER_BYTE2[7:0], X, X }  
X = Dont care bits  
1-0  
X
X
0h  
Don't care  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPL1401  
 
 
TPL1401  
ZHCSLY4 APRIL 2020  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分的信息不属TI 组件规范TI 不担保其准确性和完整性。客户应负责确定 TI 组件是否适  
用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The TPL1401 is a buffered, force-sense-output, single-channel, digipot that includes an internal reference and  
NVM, and is available in a tiny 2 mm × 2 mm package. This device interfaces to a processor using I2C. There  
are 4 I2C addresses possible by configuring the A0 pin as shown in 7-5. The NVM allows processor-less  
operation of this device after programming at factory. The force-sense output can work with a transitor to create  
a programmable current sink that can bias LEDs. These digipots are designed for general-purpose applications  
in a wide range of end equipment. Some of the most common applications for these devices are programmable  
current limits, adjustable power supplies, and offset and gain trimming in precision circuits.  
8.2 Typical Application  
Many analog and power devices, such as LED drivers, power amplifiers, high-side switches, e-fuses, and DC-  
DC converters, provide an analog input for an adjustable output current limit. Some of these devices recommend  
a resistor from this pin to ground for static settings. The TPL1401 is a very compact way to address the  
adjustable current limit requirements of such devices enabling scalability and configurability of these power  
devices. The integrated EEPROM makes sure the setting is retained even after power cycling, allowing the  
current limit to work without a processor. This section explains the design details of a programmable current limit  
application with an example LED driver, the TPS92692. 8-1 shows the simplified circuit diagram of this  
application.  
8-1. Programmable Current Limit  
8.2.1 Design Requirements  
LED driver: TPS92692  
LED driver current limit: 100 mA  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPL1401  
 
 
 
 
TPL1401  
ZHCSLY4 APRIL 2020  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
The TPS92692 data sheet provides the equation for the voltage required to set a given LED current limit. Use a  
sense resistor of 1-Ω for the TPS92692.The voltage at the IADJ pin, VIADJ, must be 1.4 V for an LED current of  
100 mA. The range for VIADJ is 2.5 V. Enable the internal reference with 2x gain to set the digipot output range to  
2.42 V that will fairly be in the range of current adjustment for the LED driver. Calculate the code needed to set  
the digipot output to 1.4 V using the following equation:  
(3)  
The hex value for 148 is 0x94. Shift this value by 4 bits before writing to the DPOT_POSITION register, resulting  
in 0x940.  
The pseudocode for the programmable current limit application is as follows:  
//SYNTAX: WRITE <REGISTER NAME (Hex code)>, <MSB DATA>, <LSB DATA>  
//Power-up the device, enable internal reference with 2x output span  
WRITE GENERAL_CONFIG(0xD1), 0x11, 0xE5  
//Write digipot code (12-bit aligned)  
WRITE DPOT_POSITION(0x21), 0x09, 0x40  
//Write settings to the NVM  
WRITE PROTECT(0xD3), 0x00, 0x10  
8.2.3 Application Curves  
8-2. Digipot Code vs LED Current  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPL1401  
 
TPL1401  
ZHCSLY4 APRIL 2020  
www.ti.com.cn  
9 Power Supply Recommendations  
The TPL1401 does not require specific supply sequencing. The device requires a single power supply, VDD. Use  
a 0.1-µF decoupling capacitor for the VDD pin. Use a bypass capacitor with a value greater than 1.5-µF for the  
CAP pin.  
10 Layout  
10.1 Layout Guidelines  
The TPL1401 pin configuration separates the analog, digital, and power pins for an optimized layout. For signal  
integrity, separate the digital and analog traces, and place decoupling capacitors close to the device pins.  
10.2 Layout Example  
10-1 shows an example layout drawing with decoupling capacitors and pullup resistors.  
10-1. Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPL1401  
 
 
 
 
 
TPL1401  
ZHCSLY4 APRIL 2020  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
For related documentation see the following:  
Texas, Instruments TPL1401EVM user's guide  
11.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPL1401  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPL1401DSGR  
TPL1401DSGT  
ACTIVE  
ACTIVE  
WSON  
WSON  
DSG  
DSG  
8
8
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
14_1  
14_1  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Sep-2021  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Oct-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPL1401DSGR  
TPL1401DSGT  
WSON  
WSON  
DSG  
DSG  
8
8
3000  
250  
180.0  
180.0  
8.4  
8.4  
2.3  
2.3  
2.3  
2.3  
1.15  
1.15  
4.0  
4.0  
8.0  
8.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Oct-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPL1401DSGR  
TPL1401DSGT  
WSON  
WSON  
DSG  
DSG  
8
8
3000  
250  
210.0  
210.0  
185.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DSG 8  
2 x 2, 0.5 mm pitch  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224783/A  
www.ti.com  
PACKAGE OUTLINE  
DSG0008A  
WSON - 0.8 mm max height  
SCALE 5.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
B
A
0.32  
0.18  
PIN 1 INDEX AREA  
2.1  
1.9  
0.4  
0.2  
ALTERNATIVE TERMINAL SHAPE  
TYPICAL  
0.8  
0.7  
C
SEATING PLANE  
0.05  
0.00  
SIDE WALL  
0.08 C  
METAL THICKNESS  
DIM A  
OPTION 1  
0.1  
OPTION 2  
0.2  
EXPOSED  
THERMAL PAD  
(DIM A) TYP  
0.9 0.1  
5
4
6X 0.5  
2X  
1.5  
9
1.6 0.1  
8
1
0.32  
0.18  
PIN 1 ID  
(45 X 0.25)  
8X  
0.4  
0.2  
8X  
0.1  
C A B  
C
0.05  
4218900/E 08/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.9)  
(
0.2) VIA  
8X (0.5)  
TYP  
1
8
8X (0.25)  
(0.55)  
SYMM  
9
(1.6)  
6X (0.5)  
5
4
SYMM  
(1.9)  
(R0.05) TYP  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218900/E 08/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
8X (0.5)  
METAL  
8
SYMM  
1
8X (0.25)  
(0.45)  
SYMM  
9
(0.7)  
6X (0.5)  
5
4
(R0.05) TYP  
(0.9)  
(1.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 9:  
87% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4218900/E 08/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPL1401DSGR

具有缓冲刷的 256 抽头高精度数字电位器 | DSG | 8 | -40 to 125
TI

TPL1401DSGT

具有缓冲刷的 256 抽头高精度数字电位器 | DSG | 8 | -40 to 125
TI

TPL1453527-242J-235

General Purpose Inductor, 2350uH, 5%, 1 Element, SMD, ROHS COMPLIANT
TDK

TPL157K006C0200R

Tantalum Capacitor, Polarized, Tantalum (dry/solid), 6V, 10% +Tol, 10% -Tol, 150uF, Through Hole Mount, RADIAL LEADED
KYOCERA AVX

TPL157M006C0200R

Tantalum Capacitor, Polarized, Tantalum (dry/solid), 6V, 20% +Tol, 20% -Tol, 150uF, Through Hole Mount, RADIAL LEADED
KYOCERA AVX

TPL180F

RF/Microwave Termination, 0MHz Min, 18000MHz Max, 50ohm, ROHS COMPLIANT PACKAGE
APITECH

TPL180M

RF/Microwave Termination, 0MHz Min, 18000MHz Max, 50ohm, ROHS COMPLIANT PACKAGE
APITECH

TPL227K010C0150R

Tantalum Capacitor, Polarized, Tantalum (dry/solid), 10V, 10% +Tol, 10% -Tol, 220uF, Through Hole Mount, RADIAL LEADED
KYOCERA AVX

TPL2412S

2W Isolated Single Output DC/DC Converters
TOPPOWER

TPL2424S

2W Isolated Single Output DC/DC Converters
TOPPOWER

TPL476M010C0300R

Tantalum Capacitor, Polarized, Tantalum (dry/solid), 10V, 20% +Tol, 20% -Tol, 47uF, Through Hole Mount, RADIAL LEADED
KYOCERA AVX

TPL5000

TPL5000 Nano Power Programmable Timer with Watchdog Functionality
TI