TPIC2010RDFDRG4 [TI]

具有 2 通道直流/直流的串行接口 9 通道控制电机驱动器 | DFD | 56 | -20 to 75;
TPIC2010RDFDRG4
型号: TPIC2010RDFDRG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 2 通道直流/直流的串行接口 9 通道控制电机驱动器 | DFD | 56 | -20 to 75

电动机控制 电机 驱动 光电二极管 驱动器
文件: 总68页 (文件大小:1173K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPIC2010  
ZHCSEF8 DECEMBER 2015  
TPIC2010 具有双通道 DC-DC 转换器、由串行接口控制的 9 通道电机驱动  
1 特性  
2 应用  
1
串行外设接口  
蓝光碟播放器  
DVD 播放器  
CD 播放器  
光盘驱动器  
最大读写频率 35MHz  
3.3V 数字 I/O  
执行器和电机驱动器  
具有 H 桥输出的脉冲宽度调制 (PWM) 控制  
3 说明  
具有 12 位数模转换器 (DAC) 控制的聚焦/跟踪/  
倾斜执行器驱动器  
TPIC2010 是一款适用于薄型或超薄 ODD 的超低噪声  
电机驱动器集成电路 (IC)。该驱动器 IC 9 条通道且  
由串行接口控制,非常适用于驱动主轴电机、滑动电机  
(适用的步进电机)、负载电机以及针对准直透镜的聚  
/跟踪/倾斜执行器和步进电机。该驱动器 IC 具有 1  
个双通道同步 DC-DC 转换器。  
具有电流模式、10 DAC 控制的滑动电机驱  
动器  
具有 12 DAC 控制的负载驱动器  
具有 8 PWM 控制的步进电机驱动器  
无需位置传感器即可检测准直透镜和滑动结束位  
器件信息(1)  
主轴电机驱动器  
器件型号  
封装  
封装尺寸(标称值)  
无传感器反电动势 (BEMF) 位置反馈  
12 位主轴 DAC  
带散热片薄型小外  
形尺寸封装  
(HTSSOP) (56)  
TPIC2010DFD  
14.00mm x 6.10mm  
独立的感应位置感测和启动  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
通过自动控制制动实现急停:主动制动和短制动  
最大持续电流为 0.7A,不存在散热问题  
LS 模式:25% 速度  
简化框图  
MCOM  
TPIC2010  
片上温度计(15°C 172.5°C)  
U
V
5 V  
SPM  
5 V  
开关  
Driver  
3.3 V  
W
两个可由软件控制的开关电路  
SLED1+  
SLED1-  
SLED2+  
SLED2-  
5 V  
SPI  
发光二极管 (LED):具有 0.1A 过流保护 (OCP)  
LED 驱动器开关  
SLED1  
5 V  
CSW:具有 0.1A OCP 的低 RDS(ON) 电流开关  
SLED2  
1PX V  
output  
TLT+  
TLT-  
DC-DC 转换器  
REG1PX  
FB1PX  
5 V  
TLT  
DCDC  
V1PX  
V1Px:可通过引脚选择的转换电压  
1.0V/1.2V/1.5V0.9A 输出能力,1.85A 过流保  
FCS+  
FCS-  
5 V  
10 mF  
FCS  
TRK+  
3.3 V  
output  
5 V  
REG3P3  
V3P3:固定 3.3V DC-DC 转换器;0.5A 输出能  
力,1.15A 过流保护  
TRK-  
TRK  
DCDC  
V3P3  
FB3P3  
LOAD+  
LOAD-  
STP1+  
STP1-  
STP2+  
STP2-  
5 V  
LOAD  
10 mF  
2.5MHz 开关频率  
5 V  
STP1  
通过断续稳压模式在低电流下提高效率  
保护  
LED  
LEDO  
Output  
5 V  
LED/CSW、开关、DCDC 转换器、SPM 和执  
行器上均配有独立的热保护电路  
STP2  
两个警报级别:热保护中的预检测检测  
ACTTEMP:监视由过去累积的 DAC 值计算得  
出的执行器温度  
欠压锁定 (UVLO) 和过压保护 (OVP)  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLIS170  
 
 
 
TPIC2010  
ZHCSEF8 DECEMBER 2015  
www.ti.com.cn  
目录  
7.16 Electrical Characteristics – LED Switch Part ........ 11  
7.17 Electrical Characteristics – Thermometer Part ..... 12  
7.18 Electrical Characteristics – Actuator Protection.... 12  
7.19 Serial Port I/F Write Timing Requirements ........... 12  
7.20 Serial Port I/F Read Timing Requirements........... 13  
7.21 Typical Characteristics.......................................... 14  
Detailed Description ............................................ 15  
8.1 Overview ................................................................. 15  
8.2 Functional Block Diagram ....................................... 16  
8.3 Feature Description................................................. 17  
8.4 Device Functional Modes........................................ 23  
8.5 Programming........................................................... 28  
8.6 Register Maps......................................................... 30  
Application and Implementation ........................ 48  
9.1 Application Information............................................ 48  
9.2 Typical Application .................................................. 59  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明(续............................................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information.................................................. 6  
8
9
7.5 Electrical Characteristics – Serial Port Voltage  
Levels......................................................................... 7  
7.6 Electrical Characteristics – Common Part ................ 8  
7.7 Electrical Characteristics – Charge Pump ................ 8  
7.8 Electrical Characteristics – V1pXV DC-DC  
Converter ................................................................... 9  
10 Power Supply Recommendations ..................... 61  
11 Layout................................................................... 61  
11.1 Layout Guidelines ................................................. 61  
11.2 Layout Example .................................................... 61  
12 器件和文档支持 ..................................................... 62  
12.1 器件支持 ............................................................... 62  
12.2 社区资源................................................................ 62  
12.3 ....................................................................... 62  
12.4 静电放电警告......................................................... 62  
12.5 Glossary................................................................ 62  
13 机械、封装和可订购信息....................................... 62  
7.9 Electrical Characteristics – 3.3-V DC-DC Converter 9  
7.10 Electrical Characteristics – Spindle Motor Driver  
Part........................................................................... 10  
7.11 Electrical Characteristics – Sled Motor Driver  
Part........................................................................... 10  
7.12 Electrical Characteristics –  
Focus/Tilt/Tracking/Driver Part................................. 10  
7.13 Electrical Characteristics – Load Driver Part ........ 11  
7.14 Electrical Characteristics – Stepping Motor Driver  
Part........................................................................... 11  
7.15 Electrical Characteristics – Current Switch Part ... 11  
4 修订历史记录  
日期  
修订版本  
注释  
2015 12 月  
*
最初发布。  
2
版权 © 2015, Texas Instruments Incorporated  
 
TPIC2010  
www.ti.com.cn  
ZHCSEF8 DECEMBER 2015  
5 说明(续)  
DC-DC 转换器的断续稳压模式能够以较低功耗显著提升效率。主轴电机驱动器利用 BEMF 反馈来进行启动、控制  
和低噪声操作,无需外部传感器。此外,TPIC2010 还具有诸多保护特性,包括主轴输出电流限制、热关断、滑动  
和准直透镜结束检测、执行器保护以及电源复位电路。TPIC2010 还内置有温度计,以便于测量 IC 温度。  
6 Pin Configuration and Functions  
DFD Package  
56-Pin HTSSOP  
Top View  
1
LOAD+  
LOAD–  
STP1+  
STP1–  
P5V_ 2 56  
SLED255  
2
3
SLED2+  
SLED153  
SLED1+ 52  
54  
4
5
STP2+  
STP2–  
6
PGND_ 2 51  
ISENSE 50  
7
CP3  
8
CP2  
ICOM2  
W
49  
48  
9
CP1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
SSZ  
P5V_ SPM2 47  
SCLK  
U
46  
45  
44  
SIMO  
ICOM1  
SOMI  
V
SIOV  
P5V_ SPM1 43  
42  
XRESET  
XFG  
M-COM  
PGND_ 1 41  
TRK– 40  
XMUTE  
SW R_ SEQ1  
SW R_ SEQ2  
V1PXSEL  
CV3P3  
A5V  
TRK+  
39  
FCS– 38  
FCS+  
37  
36  
35  
TLT–  
TLT+  
AGND  
GPOUT  
FB1PX  
P5V_ SW  
REG1PX  
PGND_ SW  
P5V_ 1 34  
LEDO 33  
CSW I 32  
CSW O 31  
FB3P3 30  
REG3P3 29  
Copyright © 2015, Texas Instruments Incorporated  
3
TPIC2010  
ZHCSEF8 DECEMBER 2015  
www.ti.com.cn  
Pin Functions  
PIN  
I/O(1)  
DESCRIPTION  
NAME  
NO.  
A5V  
22  
23  
9
PS  
PS  
MISC  
MISC  
MISC  
PS  
O
Power supply terminal for internal logic 5 V  
Ground terminal for internal logic  
AGND  
CP1  
Capacitance connection for charge pump  
Capacitance connection for charge pump  
Capacitance connection for charge pump  
Power supply terminal for 5-V OEIC power switch  
Power switch output for 5-V OEIC in OPU  
Capacitance terminal for internal 3.3-V core  
Feedback input terminal for 1PX converter  
Feedback input terminal for 3.3-V DC-DC converter  
Focus negative output terminal  
CP2  
8
CP3  
7
CSWI  
32  
31  
21  
25  
30  
38  
37  
24  
45  
49  
50  
33  
2
CSWO  
CV3P3  
FB1PX  
FB3P3  
FCS–  
MISC  
I
I
O
FCS+  
O
Focus positive output terminal  
GPOUT  
ICOM1  
ICOM2  
ISENS  
O
General-purpose output (test monitor)  
Current sense resister terminal for spindle driver  
Current sense resister terminal for spindle driver  
Current sense input terminal for spindle drivers  
LED output terminal  
MISC  
MISC  
I
LEDO  
O
LOAD–  
LOAD+  
M-COM  
P5V_1  
O
Load negative output terminal  
1
O
Load positive output terminal  
42  
34  
56  
43  
47  
26  
41  
51  
28  
27  
29  
11  
12  
14  
53  
52  
55  
54  
13  
10  
4
I
Motor center tap connection  
PS  
PS  
PS  
PS  
PS  
PS  
PS  
PS  
O
Power supply terminal for TI/F/T drivers  
Power supply terminal for SLED channel drivers  
Power supply terminal for spindle driver  
Power supply input for spindle driver  
Power supply terminal for DCDC converters  
GND terminal for Ti/F/T channel drivers  
GND terminal for SLED channel drivers  
GND terminal for DCDC converters  
P5V_2  
P5V_SPM1  
P5V_SPM2  
P5V_SW  
PGND_1  
PGND_2  
PGND_SW  
REG1PX  
REG3P3  
SCLK  
REG1PX DCDC converter switching output(GPOUT1(2)  
)
O
REG3P3 DCDC converter switching output terminal (GPOUT2)  
SIO serial clock input terminal  
I
SIMO  
I
SIO slave input master output terminal  
Power supply terminal for serial port 3.3-V typical  
Sled1 negative output terminal  
SIOV  
PS  
O
SLED1–  
SLED1+  
SLED2–  
SLED2+  
SOMI  
O
Sled1 positive output terminal  
O
Sled2 negative output terminal  
O
Sled2 positive output terminal  
O
SIO slave output master input terminal  
SIO slave select low active input terminal  
STP1 negative output terminal for collimator  
STP1 positive output terminal for collimator  
STP2 negative output terminal for collimator  
STP2 positive output terminal for collimator  
Internal DC/DC converter startup sequence setting  
Internal DC/DC converter startup sequence setting  
SSZ  
I
STP1–  
STP1+  
STP2–  
STP2+  
SWR_SEQ1  
SWR_SEQ2  
O
3
O
6
O
5
O
18  
19  
I
I
(1) I: Input; O: Output; PS: Power; MISC: Miscellaneous  
(2) To use as a GPOUT output pin, disable both DC-DC converters' output.  
4
Copyright © 2015, Texas Instruments Incorporated  
TPIC2010  
www.ti.com.cn  
ZHCSEF8 DECEMBER 2015  
Pin Functions (continued)  
PIN  
I/O(1)  
DESCRIPTION  
NAME  
TLT–  
NO.  
36  
35  
40  
39  
46  
44  
20  
48  
16  
17  
15  
O
O
O
O
O
O
I
Tilt negative output terminal  
Tilt positive output terminal  
TLT+  
TRK–  
TRK+  
U
Tracking negative output terminal  
Tracking positive output terminal  
U phase output terminal for spindle motor  
V phase output terminal for spindle motor  
V1Px output voltage setting  
V
V1PXSEL  
W
O
O
I
W phase output terminal for spindle motor  
Motor speed signal output, internally pulled up to SIOV  
XMUTE input terminal to reset the driver IC (optional)  
Power-on reset output Internally pulled up to SIOV  
XFG  
XMUTE  
XRESET  
O
7 Specifications  
7.1 Absolute Maximum Ratings  
(1)(2)  
see  
MIN  
MAX  
UNIT  
V
5-V supply voltage A5V, P5V  
Spindle output peak voltage(3)  
Input/output voltage  
6
7
V
–0.3  
VCC + 0.3 V  
1.0  
V
Spindle output current  
A
Spindle output peak current (PW 2 ms, Duty 30%)  
Sled output peak current  
2.5  
A
0.8  
A
Focus/tilt/tracking driver output peak current  
Load driver output peak current  
Power dissipation(4)  
1.5  
A
0.8  
A
1344  
75  
mW  
°C  
°C  
Operating temperature  
–20  
–50  
Tstg  
Storage temperature  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to the GND.  
(3) The output voltage generated with regeneration current at the time of output is off states.  
(4) A lower RθJC is attainable if the exposed pad is connected to a large copper ground plane.RθJC and RθJA are values for 56-pin TSSOP  
without a exposed heat slug (HSL) on bottom. Actual thermal resistance would be better than the above values.  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2015, Texas Instruments Incorporated  
5
TPIC2010  
ZHCSEF8 DECEMBER 2015  
www.ti.com.cn  
7.3 Recommended Operating Conditions  
MIN  
4.5  
NOM  
5.0  
MAX  
UNIT  
V
A5V  
Operating supply voltage (apply for A5V)  
Driver 5V supply voltage (apply for P5V)  
CSWI input voltage (apply for P5V)  
SIOV voltage  
5.5  
A5V + 0.2  
A5V + 0.2  
3.6  
P5V  
A5V – 0.2  
A5V – 0.2  
3.0  
A5V  
A5V  
3.3  
V
CSWIV  
VSIOV  
VSIFH  
VSIFL  
V
V
SIMO, SSZ, SCLK pin “H” level input voltage range  
SIMO, SSZ, SCLK pin “L” level input voltage range  
2.2  
SIOV + 0.2  
0.8  
V
–0.2  
V
XMUTE, SWR_SEQ1, SWR_SEQ2, V1pXSEL  
pin “H” level input voltage  
VIHB  
VILB  
2.2  
A5V + 0.1  
0.8  
V
V
XMUTE, SWR_SEQ1, SWR_SEQ2, V1pXSEL  
pin “L” level input voltage range  
–0.1  
ISPMOA  
ISPMO  
ISLDOA  
ILd1Px  
ILd3P3  
IACTOA  
ICSWOA  
ISTPOA  
Fck  
Spindle output average current (U, V, W total)  
Spindle output current  
700  
700  
400  
900  
500  
400  
200  
200  
35  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
MHz  
°C  
Sled output average current  
1pXV switching regulator load current  
3p3V switching regulator load current  
Focus / tracking / tilt / loading output average current  
CSWO output average current  
STP output average current  
SCLK frequency  
30  
33.8688  
25  
TO  
Operating temperature range  
–20  
75  
7.4 Thermal Information  
TPIC2010  
THERMAL METRIC(1)  
DFD (HTSSOP)  
UNIT  
56 PINS  
16.9  
0.8  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
5.2  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.0  
ψJB  
5.2  
RθJC(bot)  
0.9  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6
Copyright © 2015, Texas Instruments Incorporated  
TPIC2010  
www.ti.com.cn  
ZHCSEF8 DECEMBER 2015  
7.5 Electrical Characteristics – Serial Port Voltage Levels  
over recommended operating free-air temperature range (A5V 4.5 to 5.5 V, P5V_1, P5V_2, P5V_STP, P5V_SPM1,  
P5V_SPM2 = A5V, VREF = 1.65 V, TA –20°C to 75°C; unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SOMI  
High-level output voltage, VOH  
Low-level output voltage, VOL  
High-level input voltage, VIH  
Low level input voltage, VIL  
IOH = 1 mA  
80%  
SPIOV  
V
SOMI  
SIMO  
SIMO  
IOL = 1 mA  
20%  
SPIOV  
V
V
70%  
SPIOV  
20%  
SPIOV  
V
SIMO  
SIMO  
Input rise/fall time  
Output rise/fall time(1)  
10% 90% PIOV  
3.5  
ns  
ns  
Cload = 30 pF,10% 90%  
SPIOV  
10  
SCLK  
SSZ  
Internal pulldown resistance  
Internal pullup resistance  
200  
200  
kΩ  
kΩ  
(1) Specified by design  
Copyright © 2015, Texas Instruments Incorporated  
7
TPIC2010  
ZHCSEF8 DECEMBER 2015  
www.ti.com.cn  
7.6 Electrical Characteristics – Common Part  
over recommended operating free-air temperature range (A5V 4.5 to 5.5 V, P5V_1, P5V_2, P5V_STP, P5V_SPM1,  
P5V_SPM2 = A5V, VREF = 1.65 V, TA –20°C to 75°C; unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SWR_SEQ1 = SWR_SEQ2 =  
V1PxSEL = A5V  
ISTBY  
Stand by Supply current  
1
mA  
VCV3  
CV3P3 Output voltage  
Iload = 25 mA  
3.135  
100  
3.3  
200  
200  
200  
200  
33  
3.465  
300  
300  
300  
300  
49.5  
0.3  
V
RXM  
XMUTE pulldown resistor  
SWR_SEQ1 pulldown resistor  
SWR_SEQ2 pulldown resistor  
V1PxSEL pulldown resistor  
XRESET pullup resistor  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
V
RSW1  
RSW2  
RSELS1  
RXRST  
VXRST  
TPOR  
RXFG  
100  
100  
100  
16.5  
XRESET low level output voltage SIOV = 3.3 V, IOL = –100 µA  
Power-On Reset delay  
15  
20  
25  
ms  
Ω
XFG output resistor  
100  
200  
300  
SIOV = 3.3 V, XSLEEP = 1,  
XFG high level output voltage  
VXFGH  
2.7  
V
IOH = 100 µA  
SIOV = 3.3 V, XSLEEP = 1,  
XFG low level output voltage  
VXFGL  
RGPO  
0.3  
V
IOL = –100 µA  
GPOUT output resistor  
100  
2.7  
200  
300  
Ω
SIOV = 3.3 V, XSLEEP = 1,  
VGPOH  
VGPOL  
GPOUT high level output voltage  
GPOUT low level output voltage  
GPOUT_ENA = 1, GPOUT_HL =  
1, IOH = 100 µA  
V
V
SIOV = 3.3 V, XSLEEP = 1,  
GPOUT_ENA = 1,GPOUT_HL =  
0, IOH = 100 µA  
0.3  
tTSD  
Thermal protect on temperature  
Thermal protect hys temperature  
A5V Reset on voltage  
Design ensured value  
130  
5
145  
15  
165  
25  
ºC  
ºC  
V
hytTSD  
Vonvcc  
3.6  
3.8  
2.6  
2.68  
35  
3.7  
3.9  
2.7  
2.8  
85  
3.8  
4
Voffvcc  
A5V Reset off voltage  
V
VonCV3  
VoffCV3  
HysCV3  
VovpspmOn  
VovpspmOff  
VovpSpmHys  
CV3P3 reset on voltage  
2.8  
2.88  
135  
6.4  
6.2  
340  
V
CV3P3 reset off voltage  
V
CV3P3 reset voltage Hys  
OVP detection voltage (Spindle)(1)  
OVP release voltage (Spindle)(1)  
OVP voltage Hys (Spindle)(1)  
mV  
V
6
6.2  
6
5.8  
140  
V
240  
mV  
OVP detection voltage  
(except Spindle)(1)  
VovpOn  
VovpOff  
VovpHys  
6.3  
6.1  
6.5  
6.3  
6.7  
6.5  
V
V
OVP release voltage  
(except Spindle)(1)  
OVP voltage Hys  
(except Spindle)(1)  
140  
240  
340  
mV  
(1) Those are value as protection functions only, and stress beyond those listed under Recommended Operating Conditions may cause  
permanent damage to the device.  
7.7 Electrical Characteristics – Charge Pump  
over recommended operating free-air temperature range (A5V 4.5 to 5.5 V, P5V_1, P5V_2, P5V_STP, P5V_SPM1,  
P5V_SPM2 = A5V, VREF = 1.65 V, TA –20°C to 75°C; unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
XSLEEP=1  
MIN  
TYP  
MAX  
UNIT  
FCHGP  
VCHGP  
Frequency  
132.6  
156  
179.4  
kHz  
Ccp1 = Ccp3 = 0.1 µF  
Io = –1 mA  
Output Voltage  
7.76  
9.7  
11.64  
V
8
Copyright © 2015, Texas Instruments Incorporated  
TPIC2010  
www.ti.com.cn  
ZHCSEF8 DECEMBER 2015  
7.8 Electrical Characteristics – V1pXV DC-DC Converter  
over recommended operating free-air temperature range (A5V 4.5 to 5.5 V, P5V_1, P5V_2, P5V_STP, P5V_SPM1,  
P5V_SPM2 = A5V, VREF = 1.65 V, TA –20°C to 75°C; unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
FB1PXV = 0 V REG1PXV + 100  
mA, +300 mA  
Rds1pxH  
Rds1pxL  
VO1p0  
High-side FET RDSON  
0.42  
0.62  
Ω
FB1PXV = 1.2 V REG1PXV –100  
mA , –300 mA  
Low-side FET RDSON  
Output voltage (1p0V)  
Output voltage (1p2V)  
Output voltage (1p5V)  
Soft start time  
0.2  
1
0.4  
1.05  
Ω
V
[V1PxSEL,SWR_SEQ1,SWR_SE  
Q2] = 011  
0.95  
1.14  
[V1PxSEL,SWR_SEQ1,SWR_SE  
Q2] = 000  
VO1p2  
1.2  
1.5  
0.82  
1.26  
V
[V1PxSEL,SWR_SEQ1,SWR_SE  
Q2] = 100  
VO1p5  
1.425  
0.656  
1.575  
0.984  
V
[SWR_SEQ1,SWR_SEQ2] = 00  
From A5V reset off to target 90%  
Tdly1px  
ms  
RdsO1px  
Fsw1px  
Output pulldown transistor Rdson At Reset On (TSD, A5V_Reset)  
Switching frequency  
616  
2.125  
75%  
85%  
5%  
880  
2.5  
1144  
2.875  
85%  
Ω
MHz  
Vrston1px  
Vrstoff1px  
VrstHys  
Reset on voltage threshold level  
80%  
90%  
10%  
Reset off voltage threshold level  
95%  
Reset off voltage threshold Hys  
15%  
P5V_SW = 5 V + 200 mVpp,  
PSRR1px  
PSRR ratio  
Io = 200 mA,  
26  
dB  
F 100 kHz  
Iovc1px  
Overcurrent protective level(1)  
1.3  
1.85  
1
2.4  
A
Mask time of overcurrent  
protection(1)  
TMskovc1px  
0.72  
1.32  
ms  
(1) Those are value as protection functions only, and stress beyond those listed under Recommended Operating Conditions may cause  
permanent damage to the device.  
7.9 Electrical Characteristics – 3.3-V DC-DC Converter  
over recommended operating free-air temperature range (A5V 4.5 to 5.5 V, P5V_1, P5V_2, P5V_STP, P5V_SPM1,  
P5V_SPM2 = A5V, VREF = 1.65 V, TA –20°C to 75°C; unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
FB3P3V = 0 V REG3P3V + 100  
mA + 300 mA  
Rds3p3H  
High-side FET RDSON  
0.45  
0.65  
Ω
FB3P3V = 3.3 V REG3P3V –100  
mA – 300 mA  
Rds3p3L  
VO3p3  
Low-side FET RDSON  
Output voltage  
0.42  
3.3  
0.62  
3.4  
Ω
V
3.2  
[SWR_SEQ1,SWR_SEQ2] = 00  
From A5V reset off to target 90%  
Tdly3p3  
Soft start time  
0.656  
0.82  
0.984  
ms  
Rds3p3  
Output pull down transistor Rdson At reset on (TSD, A5V_Reset)  
Switching frequency  
616  
2.125  
75%  
85%  
5%  
880  
2.5  
1144  
2.875  
85%  
Ω
Fsw3p3  
MHz  
Vrston3p3  
Vrstoff3p3  
Vrst3p3Hys  
Reset on voltage threshold level  
Reset off voltage threshold level  
Reset off voltage threshold Hys  
80%  
90%  
10%  
95%  
15%  
P5V_SW = 5 V + 200 mVpp,  
PSRR3p3  
PSRR ratio  
Io = 200 mA,  
26  
dB  
F 100 kHz  
Iovc3p3  
Overcurrent protective level(1)  
0.65  
0.72  
1.15  
1
1.65  
1.32  
A
Mask time of overcurrent  
protection(1)  
Tmskovc3p3  
ms  
(1) Data are value as protection functions only, and stress beyond those listed under “Recommended Operating Condition” may cause  
permanent damage to the device.  
Copyright © 2015, Texas Instruments Incorporated  
9
TPIC2010  
ZHCSEF8 DECEMBER 2015  
www.ti.com.cn  
7.10 Electrical Characteristics – Spindle Motor Driver Part  
over recommended operating free-air temperature range (A5V 4.5 to 5.5 V, P5V_1, P5V_2, P5V_STP, P5V_SPM1,  
P5V_SPM2 = A5V, VREF = 1.65 V, TA –20°C to 75°C; unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Total output resistance  
High side + low side  
RttlSPM  
IOUT = 0.1 A  
0.25  
0.5  
Ω
VIsns  
ISENSE detected voltage  
Resolution  
ISENSE voltage  
181  
196  
12  
211  
mV  
bit  
V
ResSPM  
VSPM(REG8h) = 400h  
VSPM(REG8h) = C00h  
Forward  
2.6  
–1.55  
+12h  
–92h  
–40h  
3
3.4  
–0.95  
+92h  
–12h  
40h  
VoutSPM  
Spindle voltage  
–1.25  
+52h  
–52h  
0h  
V
WidDZSPM  
Spindle dead band  
Reverse  
WidDZSPMLS  
Spindle dead band (LS mode)  
7.11 Electrical Characteristics – Sled Motor Driver Part  
over recommended operating free-air temperature range (A5V 4.5 to 5.5 V, P5V_1, P5V_2, P5V_STP, P5V_SPM1,  
P5V_SPM2 = A5V, VREF = 1.65 V, TA –20°C to 75°C; unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Ω
Total output resistance  
High side + low side  
RttlSLD  
ResSLD  
IO = 0.1 A  
0.7  
1.1  
Resolution  
10  
+51h  
–51h  
bit  
Forward  
Reverse  
+4h  
+90h  
–4h  
WidDZSLD  
GnSLD  
Input dead band  
–90h  
A5V = 5 V, 5 V = 5 V  
RL = 10 Ω, 2.2 mH  
VSLED = 7FFh  
Sled current gain  
380  
26  
440  
46  
500  
66  
mA  
mV  
ENDDET_SLCT = 0,  
SLEDENDTH<1:0> = 00, SLED  
Enable  
END_DET BEMF threshold  
voltage  
VthEdetSLD  
7.12 Electrical Characteristics – Focus/Tilt/Tracking/Driver Part  
over recommended operating free-air temperature range (A5V 4.5 to 5.5 V, P5V_1, P5V_2, P5V_STP, P5V_SPM1,  
P5V_SPM2 = A5V, VREF = 1.65 V, TA –20°C to 75°C; unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Total output resistance  
High side + low side  
RttlAct  
IO = 0.1 A  
0.7  
1.1  
Ω
ResACT  
Resolution  
12  
0
bit  
VOfstACT  
Each channel output offset voltage DAC_code = 000h  
–30  
–50  
30  
50  
mV  
Output offset voltage Focus and  
VOfstDACT  
GnDAct  
DIFF_TLT = 1  
Tilt  
0
mV  
db  
Difference gain Focus and Tilt  
DIFF_TLT = 1  
–1  
2.6  
0
3
1
3.4  
DAC_code = 400h  
DAC_code = C00h  
GnAct  
Voltage gain  
V
–3.4  
–3  
–2.6  
10  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2010  
www.ti.com.cn  
ZHCSEF8 DECEMBER 2015  
7.13 Electrical Characteristics – Load Driver Part  
over recommended operating free-air temperature range (A5V 4.5 to 5.5 V, P5V_1, P5V_2, P5V_STP, P5V_SPM1,  
P5V_SPM2 = A5V, VREF = 1.65 V, TA –20°C to 75°C; unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Ω
Total output resistance  
High side + low side  
RttlLOD  
ResLOD  
IO = 0.1 A  
0.7  
1.1  
Resolution  
12  
3
bit  
VLOAD = 400h  
VLOAD = C00h  
Forward  
2.6  
–3.4  
2h  
3.4  
–2.6  
40h  
–3h  
0.96  
375  
0.96  
GnLOD  
Voltage gain  
V
–3  
20h  
–21h  
0.8  
250  
0.8  
WidDZLOD  
Dead band  
Reverse  
–41h  
0.64  
125  
TocpLOD  
IocpLOD  
Output 100% limit time  
LOAD_05CH = 0  
LOAD_05CH = 1  
s
mA  
s
Overcurrent protective level  
DlyocpLOD  
Overcurrent protection delay time LOAD_05CH = 1  
0.64  
7.14 Electrical Characteristics – Stepping Motor Driver Part  
over recommended operating free-air temperature range (A5V 4.5 to 5.5 V, P5V_1, P5V_2, P5V_STP, P5V_SPM1,  
P5V_SPM2 = A5V, VREF = 1.65 V, TA –20°C to 75°C; unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Total output resistance  
High Side + Low Side  
RttlSTP  
IO = 0.1 A  
1.0  
1.5  
Ω
ResSTP  
Resolution  
8
850  
1
bit  
mA  
us  
IocpSTP  
Overcurrent protection level(1)  
OCP Monitor delay time(1)  
OCP hold time(1)  
595  
0.7  
1105  
1.3  
DlyocpSTP  
ThlocpSTP  
18.2  
26  
33.8  
ms  
ENDDET_SLCT = 1,  
STPDENDTH<1:0> = 00, STP  
Enable  
VthEdetSTP  
END_DET threshold level  
19  
39  
59  
mV  
(1) The data are value as protection functions only, and stress beyond those listed under Recommended Operating Conditions may cause  
permanent damage to the device.  
7.15 Electrical Characteristics – Current Switch Part  
over recommended operating free-air temperature range (A5V 4.5 to 5.5 V, P5V_1, P5V_2, P5V_STP, P5V_SPM1,  
P5V_SPM2 = A5V, VREF = 1.65 V, TA –20°C to 75°C; unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
IO = 0.1 A  
MIN  
TYP  
200  
1.1  
MAX  
500  
1.43  
2.0  
UNIT  
mΩ  
A
RdsCSW  
IlmtCSW  
ThlCSW  
Rds(on)  
Current limit threshold level  
Protection hold time  
0.77  
1.47  
1.6  
ms  
7.16 Electrical Characteristics – LED Switch Part  
over recommended operating free-air temperature range (A5V 4.5 to 5.5 V, P5V_1, P5V_2, P5V_STP, P5V_SPM1,  
P5V_SPM2 = A5V, VREF = 1.65 V, TA –20°C to 75°C; unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
IO = 10 mA  
MIN  
TYP  
4.4  
0.1  
0.4  
MAX  
10  
UNIT  
Ω
RdsLED  
IlmtLED  
ThlLED  
Rds(on)  
Current limit threshold level  
Protection hold time  
0.07  
0.37  
0.13  
0.66  
A
ms  
Copyright © 2015, Texas Instruments Incorporated  
11  
TPIC2010  
ZHCSEF8 DECEMBER 2015  
www.ti.com.cn  
7.17 Electrical Characteristics – Thermometer Part  
over recommended operating free-air temperature range (A5V 4.5 to 5.5 V, P5V_1, P5V_2, P5V_STP, P5V_SPM1,  
P5V_SPM2 = A5V, VREF = 1.65 V, TA –20°C to 75°C; unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
6
MAX  
UNIT  
ResTEMP  
TEMPrng  
FTEMP  
Resolution  
bit  
CHIPTEMP[5:0] = 00  
CHIPTEMP[5:0] = 3Fh  
8
155  
8
15  
22  
175  
12  
Temperature range  
Update cycle  
°C  
165  
10  
kHz  
7.18 Electrical Characteristics – Actuator Protection  
over recommended operating free-air temperature range (A5V 4.5 to 5.5 V, P5V_1, P5V_2, P5V_STP, P5V_SPM1,  
P5V_SPM2 = A5V, VREF = 1.65 V, TA –20°C to 75°C; unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TintACTTEMP  
Update cycle  
21  
26  
31  
ms  
7.19 Serial Port I/F Write Timing Requirements  
MIN  
NOM  
MAX  
35  
UNIT  
MHz  
ns  
Fck  
tckl  
SCLK clock frequency  
SCLK low time  
PIOV = 3.3 V  
11  
11  
7
tckh  
tsens  
tsenh  
tsl  
SCLK high time  
ns  
SSZ setup time  
ns  
SSZ hold time  
7
ns  
SSZ disable high time  
SIMO setup time (Write)  
SIMO hold time (Write)  
11  
7
ns  
tds  
ns  
tdh  
7
ns  
12  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2010  
www.ti.com.cn  
ZHCSEF8 DECEMBER 2015  
7.20 Serial Port I/F Read Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
MHz  
ns  
Fck  
tckl  
SCLK clock frequency  
SCLK low time  
PIOV = 3.3 V  
35  
11  
11  
7
tckh  
tsens  
tsenh  
tsl  
SCLK high time  
ns  
SSZ setup time  
ns  
SSZ hold time  
7
ns  
SSZ disable high time  
SIMO setup time (Write)  
SIMO hold time (Write)  
SOMI delay time (Read)  
SOMI hold time (Read)  
11  
7
ns  
tds  
ns  
tdh  
7
ns  
trdly  
tsendl  
CLOAD = 10 pF, PIOV = 3.3 V  
CLOAD = 10 pF, PIOV = 3.3 V  
2
9
9
ns  
2
ns  
CLOAD = 10 pF, PIOV = 3.3 V  
From SSZ rise to SOMI HIZ  
trls  
SOMI release time (Read)  
0
9
ns  
Tsl  
SSZ  
Fck  
Tsens  
Tsenh  
SCLK  
SIMO  
Tckl  
Tckh  
Tds  
Tdh  
SOMI  
Hi-Z  
Figure 1. Serial Port Write Timing  
Tsl  
SSZ  
Tsenh  
Fck  
Tsens  
SCLK  
Trls  
Tdh  
Tds  
Tckh Tckl  
SIMO  
R
SOMI  
Hi-Z  
Trdly  
Tsendl  
Figure 2. Serial Port Read Timings  
Copyright © 2015, Texas Instruments Incorporated  
13  
TPIC2010  
ZHCSEF8 DECEMBER 2015  
www.ti.com.cn  
Tsl  
SSZ  
Tsenh  
Fck  
Tsens  
SCLK  
Tdh  
Tds  
Tckh Tckl  
SIMO  
SOMI  
R
Trls  
Hi-Z  
Trdly  
Tsendl  
Figure 3. Serial Port Read Timings (ADVANCE_RD Mode)  
7.21 Typical Characteristics  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
STP1-  
STP2-  
STP1+  
STP2+  
-3000  
-2000  
-1000  
0
1000  
2000  
3000  
D001  
-3000  
-2000  
-1000  
0
1000  
2000  
3000  
D002  
DAC Code  
DAC Code  
Figure 4. DAC Code vs Duty Cycle for STP1 Outputs  
Figure 5. DAC Code vs Duty Cycle for STP2 Outputs  
14  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2010  
www.ti.com.cn  
ZHCSEF8 DECEMBER 2015  
8 Detailed Description  
8.1 Overview  
TPIC2010 is low noise type motor driver IC suitable for 5V optical disk drives. The 9-channel driver IC controlled  
by SPI is optimum for driving a spindle motor, a sled motor (stepping motor applicable), a load motor, and Focus  
/ Tracking / Tilt actuators and stepping motor for collimator lens. This IC requires an external current sense  
resistance to measure SPM current. The spindle motor driver part uses integrated sensorless logic to attain low-  
noise operation during startup and runtime. By using BEMF feedback, external sensors, such as a Hall device,  
are not needed to carry out self-starting by the starting circuit or perform position detection. By using the efficient  
PWM drivers, low-power operation can be achieved by controlling the PWM outputs. Dead zone less control is  
possible for a Focus / Tracking / Tilt actuator driver. In addition, the spindle part output current limiting circuit, the  
thermal shut down circuit, the sled end detection circuit, collimator lens end detection circuits offer protection for  
all actuators and motors.  
Copyright © 2015, Texas Instruments Incorporated  
15  
TPIC2010  
ZHCSEF8 DECEMBER 2015  
www.ti.com.cn  
8.2 Functional Block Diagram  
P5V  
P5V  
A5V  
P5V  
1u  
0.1u  
0.1u  
ICOM1  
ICOM2  
Charge  
pum p  
10V(P5Vx2)  
XSLEEP  
0.22  
SPM  
Current lim it  
ISENSE  
XFG  
XFG  
M_ COM  
SPM Logic  
DAC PW M  
BEMF  
detector  
SPM _ ENA  
SPM _ LSM ODE  
On chip  
therm om eter  
U
SIOV  
pre- power  
driver FET  
V
SSZ  
SCLK  
SIMO  
SOMI  
SSZ  
W
SCLK  
SIMO  
SOMI  
SLED1+  
SLED1-  
DAC  
PW M  
pre- power  
driver FET  
SIOV  
3.3V  
SLD_ ENA  
SLD_ ENA  
F/B  
SLED END  
detection  
Digital core  
ENDDET_ ENA  
ENDDET_ SLCT  
GPOUT  
XMUTE  
GPOUT  
SLED2+  
SLED2-  
DAC  
PW M  
pre- power  
driver FET  
F/B  
XMUTE  
TLT+  
TLT-  
DAC  
PW M  
pre- power  
driver FET  
A5V  
CV3P3V  
TLT_ ENA  
FCS_ ENA  
F/B  
int 3.3V  
Regulator  
0.1u  
FCS+  
FCS-  
SIOV  
DAC  
PW M  
pre- power  
driver FET  
Power  
m onitor  
XRESET  
F/B  
XRESET  
TRK+  
TRK-  
A5V  
pre- power  
driver FET  
SW R_ SEQ1  
SW R_ SEQ2  
GND  
A5V  
F/B  
DAC  
PW M  
LOAD+  
TRK_ ENA  
pre- power  
driver FET  
LOAD_ ENA  
LOAD-  
GND  
A5V  
F/B  
10000pF  
V1PXSEL  
P5V  
STP1+  
GND  
DAC  
PW M  
A5V  
pre- power  
driver FET  
P5V_ SW  
REG1PX  
STP_ ENA  
DC-DC  
V1PX  
STP1-  
STP2+  
10u  
DAC  
PW M  
pre- power  
driver FET  
1.xV  
FB1PX  
A5V  
DC-DC  
V3P3  
10u  
STP2-  
STEP END  
detection  
REG3P3  
FB3P3  
ENDDET_ ENA  
ENDDET_ SLCT  
CSW  
3.3V  
CSW _ ON  
10u  
LED  
LED_ ON  
TPIC2010  
CSW O CSW I  
LEDO  
P5V  
CSWO  
0.1u  
LEDO  
16  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2010  
www.ti.com.cn  
ZHCSEF8 DECEMBER 2015  
8.3 Feature Description  
8.3.1 Protection Functions  
TPIC2010 has five protection features: undervoltage lockout, overvoltage protection (OVP), over  
currentprotection (OCP), thermal protection (TSD), and actuator temperature protection (ACTTIMER) in order to  
protect target equipment. A protect behavior differ by generated events.  
8.3.1.1 Undervoltage Lockout (UVLO)  
Power Faults are reported in the UVLOMon register. Each UVLOMon bit will be initialized to zero upon a cold  
power up. After a fault is detected the appropriate fault bit will be latched high. Writing to the RST_ERRFLG  
(REG77) will clear all UVLOMon bits. The power device faults and actions are summarized in Table 1.  
Table 1. Power Fault Monitor  
LATCHED  
REGISTER  
FAULT TYPE  
XRESET  
CRITERIA  
SPM  
ACTUATOR  
DC-DC  
Hi-Z  
Feedback pin to  
GND  
A5V under voltage  
UVLO_A5V  
Yes  
<3.7 V  
Hi-Z  
Hi-Z  
internal 3.3V under  
voltage  
UVLO_INT3P3  
UVLO_SWR3P3  
UVLO_SWR1PX  
Yes  
Yes  
Yes  
<2.7 V  
<80%  
<80%  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
3.3V DC-DC output  
under voltage  
1.xV DC-DC output  
under-voltage  
>6.2 V  
>6.5 V  
Brake  
Hi-Z  
P5V over-voltage  
OVP_P5V  
Hi-Z  
Hi-Z  
8.3.1.2 Overvoltage Protection (OVP)  
Over voltage protect function is aimed to protect the unit from the supplying hi-voltage.  
When the supply voltage exceeds 6.5 V, all driver and DC-DC converter output goes Hi-Z. When the supply  
voltage falls below typical 6.2 V, (6.0 V for SPM) all output start to operate again. The OVP and POR (XRESET)  
function is not interlocking. However, DC-DC converter output falls by Hi-Z operations, output voltage falls to  
80% then XRESET signal goes low.  
Moreover, when power supply exceeds 6.2 V, especially SPM enter short brake mode. This operation is offered  
supposing a voltage rising by motor BEMF of the high velocity revolution.  
This function is for insurance, so it can not assure that the device is safety in the condition. Because the absolute  
maximum ratings range of the supply voltage is 6 V. When this function works, the feed back terminals are not  
shorted to GND.  
Figure 6 shows the behavior of OVP.  
Copyright © 2015, Texas Instruments Incorporated  
17  
 
TPIC2010  
ZHCSEF8 DECEMBER 2015  
www.ti.com.cn  
5 Vsupply  
6.5 V  
6.3 V  
6.2 V  
6.0 V  
SPM  
Short Brake  
Hi-Z  
Actuator  
DCDC  
LED/CSW  
Hi-Z  
Figure 6. Overvoltage Protection  
8.3.1.3 Overcurrent Protection (OCP)  
The OCP function serve to protect the device from break down by large current. The OCP is provided for five  
circuit blocks, and each threshold are in Table 2.  
Table 2. OCP Threshold  
BLOCK  
DETECTION CURRENT  
1850 mA  
MONITOR TIME  
1 ms  
HI-Z HOLD TIME  
POR  
DC-DC conv V1PX  
V3P3  
1150 mA  
1 ms  
POR  
LOAD driver 1 ch  
0.5 ch  
100%  
800 ms  
800 ms  
1 µs  
Forever  
Forever  
25 ms  
260 mA  
STEP driver  
LED driver  
CSW driver  
850 mA  
100 mA  
20 µs  
0.4 ms  
1000 mA  
20 µs  
1.6 ms  
When the large current is detected on each block, device put the output FET to Hi-Z.  
The amounts of currents and time have specified the detection threshold for every circuit block.  
When OCP occurs, it returns automatically after expiring set Hi-Z period. However, it restricts, the POR is  
performed at OCP for DC-DC converter. It keeps XRESET=L and does not return forever. It’s necessary power  
ON/OFF actuation in order to make it release.  
OCPERR (REG7F) and OCP flag (REG7B) are set at OCP detection.  
18  
Copyright © 2015, Texas Instruments Incorporated  
 
TPIC2010  
www.ti.com.cn  
ZHCSEF8 DECEMBER 2015  
detect 1 ms  
DC-DCconv Load- I  
1.8 A(V1.x) /1.1 A(V3 p3)  
0 mA  
Hi-Z  
output 3.3 V  
output 1.x V  
XRESET  
No release  
(until 5-Vsupply recycle)  
Figure 7. OCP DC-DC Converter  
detect 800 ms  
260 mA  
LOAD load - I  
0 mA  
Hi-Z  
LOAD + voltage  
LOAD – voltage  
XRESET  
Figure 8. OCP Load 1-Channel  
LOADload-I  
0 mA  
Hi-Z  
LOAD + voltage  
100%  
800 ms  
LOAD – voltage  
XRESET  
Figure 9. OCP Load 0.5-Channel  
Copyright © 2015, Texas Instruments Incorporated  
19  
TPIC2010  
ZHCSEF8 DECEMBER 2015  
www.ti.com.cn  
Detect 1 µs  
850 mA  
0 mA  
STEP load-I  
Hi-Z  
Hi-Z  
STEP + voltage  
STEP – voltage  
25 ms  
XRESET  
STP1 and STP2 channel has current trip function. The output of STEP channel will be changed Hi-Z if current exceed  
current limit threshold (850-mA typ). When the trip period 25ms is expired, trip state is automatically released.  
Figure 10. OCP Step  
LED_ ON (REG71)  
Detect 20 µs  
LED load-I  
100 mA  
0 mA  
Hi-Z  
Hi-Z  
Hi-Z  
LED voltage  
0.4 ms  
XRESET  
Figure 11. OCP LED Driver  
CSW _ ON (REG71)  
Detect 20 µs  
1000 mA  
CSW load-I  
0 mA  
Hi-Z  
CSW voltage  
1.6 ms  
XRESET  
Figure 12. OCP Current Switch  
20  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2010  
www.ti.com.cn  
ZHCSEF8 DECEMBER 2015  
8.3.1.4 Thermal Protection (TSD)  
The thermal protection (TSD) is a protect function which intercepts an output and suspends an operation when  
the IC temperature exceed a maximum permissible on a safety. TSD makes an output Hi-Z when the  
temperature rises up and a threshold value is exceeded. There’re two levels for threshold “Alert” and “Trip”.  
Alarm is given by status register “TSD_FAULT_” on “Alert” level with 135°C. It continues rising up temperature,  
the register “TSD_” is set at 150°C and the driver output changes HI-Z. If temperature falls and is reached  
135°C, it will output again. TPIC2010 has total 12 temperature sensors in each circuit block. Particular sensor is  
assigned to appropriate status flag in List 10 OCP threshold.  
Table 3. Thermal Sensor Assignment  
CIRCUIT  
U
ALERT (°C)  
130  
TRIP (°C)  
145  
RELEASE (°C)  
ALERT FLAG  
TSD_FAULT_SPM  
TSD_FAULT_SPM  
TSD_FAULT_SPM  
TSD_FAULT_ACT  
TSD_FAULT_ACT  
TSD_FAULT_ACT  
TSD_FAULT_ACT  
TSD_FAULT_ACT  
TSD_FAULT_ACT  
TSD_FAULT_ACT  
TSD_FAULT_LEDCSW  
TSD_FAULT_SWR  
TRIP FLAG  
TSD_SPM  
TSD_SPM  
TSD_SPM  
TSD_ACT  
TSD_ACT  
TSD_ACT  
TSD_ACT  
TSD_ACT  
TSD_ACT  
TSD_ACT  
TSD_ LEDCSW  
TSD_SWR  
130  
130  
130  
130  
130  
130  
130  
130  
130  
130  
130  
130  
V
130  
145  
W
130  
145  
TLT  
130  
145  
FCS  
130  
145  
TRC  
130  
145  
SLED1  
SLED2  
STP  
130  
145  
130  
145  
130  
145  
LOAD  
LED/CSW  
2ch DCDC  
130  
145  
130  
145  
130  
145  
8.3.1.5 Actuator Temperature Protection (ACTTIMER)  
TPIC2010 has Actuator protect function named ACTTIMER. This function enables to avoid from being broken by  
setting actuator channel output to HIZ when actuator coil current exceeds the specific value. Up to now, be used  
a simple actuator protect function such like exceeding max current with continuous time. However these types  
were not accurate. This new protection enables to calculate heat accumulation and judge correctly. When this  
function operates, load channel output will be Hi-Z, too. And spindle channel will be forced “Auto short brake”  
and disc motor will stop.  
It’s able to know the protection has occurred by checking Fault register ACTTIMER_FAULT (REG7F) and  
ACT_TIMER_PROT (REG78). ACTTIMER_FAULT has a character of advance notice, is set before detecting  
ACT_TIMER_PROT. Once an ACT_TIMER_PROT is set, even if temperature falls, it will not release protection  
automatically. It’s necessary to clear the flag by setting RST_ERR_FLAG (REG77) or setting 0 to ACTTEMPTH  
(REG72). ACTTIMER function is able to disable by setting H to ACTPROT_OFF (REG72) or setting 0 to  
ACTTEMPTH (REG72).  
In order to acquire the optimal value for ACTTEMPTH, you should set device into the condition of the detection  
level, and reading the value of ACTTEMP. Because of the present value can be read from ACTTEMP (REG78).  
(1)  
(1) The ACTTEMP data is updated on Register in ACTPROT_OFF = 0 and ACTTEMPTH > 0.  
Copyright © 2015, Texas Instruments Incorporated  
21  
TPIC2010  
ZHCSEF8 DECEMBER 2015  
www.ti.com.cn  
RST_ ERR_ FLAG  
ACTTIMER_ FAULT  
ACT_ TIMER_ PROT  
ACTTEMPTH  
ACTTEMPTH-1  
ACTTEMPcount  
Hi-Z  
Hi-Z  
FCS+ , TRK+ , TLT+  
FCS-, TRK-, TLT-  
Load+  
Hi-Z  
Hi-Z  
Load-  
Motor rpm  
0
auto short brake  
XFG  
disable 300m s  
Figure 13. Actuator Temperature Protections  
22  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2010  
www.ti.com.cn  
ZHCSEF8 DECEMBER 2015  
8.4 Device Functional Modes  
8.4.1 Power-On Reset (POR)  
8.4.1.1 Power-Up Sequences  
The power up sequence is described in Table 4.  
In TPIC2010, the normal sequence is to wait for 5-V supply to come up to 3.9 V. After 5 V establish, the internal  
3.3 V will stabilize. Now the voltage monitors start to work and begin to look for the DC-DC V1Px and V3P3.  
Start up sequence for internal DC-DC converter is selected by external pin, SWR_SEQ1 and SWR_SEQ2. All  
DC-DC converters stabilize the power up sequence finishes and the part starts to function. Once the part finishes  
all of its power up tasks, it takes XRESET high to indicate that the part is no longer in reset and ready to  
communicate to the outside world. All the DC-DC converter have soft-start features to avoid rush current and  
voltage over shoot. Each soft-start sequence takes about 0.8 ms.  
Table 4. DC-DC Start-Up Sequence and Output  
SEQUENCE  
V1PXSEL  
SWR_SEQ2  
SWR_SEQ1  
REG1PX(V)  
REG3P3(V)  
REG1PX  
REG3P3  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1.2  
1.2  
1.2  
1.0  
1.5  
1.5  
1.5  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
Same  
2nd  
1st  
1st  
2nd  
Same  
Same  
2nd  
1st  
1st  
2nd  
Disable(1)  
(1) This setting is able to use REG1PX, REG3P3 pin as GPOUT pin.  
A5V supply  
5.0 V  
3.9 V  
V3P3 output  
V1PX output  
90%of V3P3  
90%of V1PX  
Time  
XRESET  
800 µs  
20 ms  
Figure 14. Simultaneously Start Up (SWR_SEQ[1:0] = 00)  
Copyright © 2015, Texas Instruments Incorporated  
23  
 
TPIC2010  
ZHCSEF8 DECEMBER 2015  
www.ti.com.cn  
A5V supply  
5.0 V  
3.9 V  
90%of V3P3  
90%of V1PX  
V3P3 output  
V1PX output  
Time  
XRESET  
800 µs  
800 µs  
20 ms  
Figure 15. V1Px Start First (SWR_SEQ[1:0] = 10)  
A5V supply  
5.0 V  
3.9 V  
V3P3 output  
V1PX output  
90%of V3P3  
90%of V1PX  
Time  
XRESET  
800 µs  
800 µs  
20 ms  
Figure 16. V3P3 Start First (SWR_SEQ[1:0] = 01)  
8.4.1.2 XRESET  
TPIC2010 is preparing XRESET pin in order to notify an own status to DSP. TPIC2010 set XRESET to L when  
the event which has a serious effect on DSP occurs such like the power failure, the over temperature and the  
drop of DC-DC converter output. If all the exception is removed, it will tell that XRESET pin would be set to H  
and it would be in the ready state. The POR (power on reset) condition is shown in Figure 17. All the behavior of  
XRESET is shown in Figure 21.  
24  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2010  
www.ti.com.cn  
ZHCSEF8 DECEMBER 2015  
A5V  
P5V  
SIOV  
< 6.5 V  
> 3.9 V  
> 2.8 V  
> 90%  
> 90%  
DC-DC  
V1PX  
Delay  
Tim er  
Int 3.3-V  
Regulator  
> 2.2 V  
DC-DC  
V3P3  
XRESET  
Therm al  
Protection  
V1PXSEL  
SW R_ SEQ1,2  
Figure 17. POR Block Diagram  
A5Vsupply  
5.0 V  
3.9 V  
3.7 V  
V3P3 output  
V1PXoutput  
90% ofV3P3  
90% ofV1Px  
20 ms  
XRESET  
Figure 18. 5-V Supply Voltage Drop  
A5V supply  
5.0 V  
V3P3 output  
V1PX output  
90%of V3P3  
80%of V3P3  
V1PX  
Time  
20 ms  
XRESET  
Figure 19. 3.3-V Output Voltage Drops (SWR_SEQ = 00, 11)  
Copyright © 2015, Texas Instruments Incorporated  
25  
TPIC2010  
ZHCSEF8 DECEMBER 2015  
www.ti.com.cn  
A5V supply  
5.0 V  
V3P3 output  
V1PX output  
V3P3  
90%of V1PX  
80%of V1PX  
Time  
XRESET  
20 ms  
Figure 20. 1.x V Output Voltage Drops (SWR_SEQ = 00, 11)  
26  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2010  
www.ti.com.cn  
ZHCSEF8 DECEMBER 2015  
XRESET: High  
Register Reset  
RST_REGS_WO3 = 1  
(Write Data)  
Register Valid Data  
Keep XSLEEP,  
LED_ON, CSW_ON  
XMUTE = L (Note 1)  
or RST_ REGS = 1  
or SIF_ TIMEOUTERR_ MON = 1  
20 ms  
A5V< 3.7 V  
or CV3P3 < 2.7 V  
or SIOV< 2.0 V  
A5V> 3.9 V  
A5V > 3.9 V  
and CV3P3 > 2.8 V  
and SIOV> 2.2 V  
or DC-DCconv output < 80% (DC-DCenable)  
or P5V> 6.5 V(*3)  
and CV3P3 > 2.8 V  
and SIOV> 2.2 V  
and DC-DCconv Disable (Note 2)  
or TSD > 150 degree (only TSD_ SWR = 1)  
or OCP_ SW R = 1 (> 1.85 A /> 1.15 A [V1PX /V3P3])  
and DC-DCconv output > 90%  
and P5V < 6.3 V(Note 3)  
XRESET: Low  
TSD < 135 Degrees  
Power on Reset  
OCP_SWR = 1  
Hold XRESET  
(1) The period of XMUTE = L cannot be communicated with device.  
(2) DC-DC converter disable is V1PXSEL = H, SWR_SEQ1 = H, SWR_SEQ2 = H  
(3) When exceed 6.5 V, DC-DC converter output changed Hi-Z and output falling < 80%. Consequently force RESET  
event. (Released > 90%)  
Figure 21. XRESET Behavior  
Copyright © 2015, Texas Instruments Incorporated  
27  
TPIC2010  
ZHCSEF8 DECEMBER 2015  
www.ti.com.cn  
8.5 Programming  
8.5.1 Function and Operation  
8.5.1.1 Serial Port Functional Description  
The serial communication of TPIC2010 is based on a SPI communications protocol. TPIC2010 is put on the  
slave side. All 16-bit transmission data is effective in SSZ = L period.  
The bit stream sent through SIMO from a master (DSP) is latched to an internal shift register by the rising edge  
of SCLK. All the data is transmitted in a total of 16-bit format of a command and data. A format has two types of  
data, 8 bits and 12 bits length. In order to access specific registers, an address and R/W flag are specified as a  
command part. In addition, 12 bit data do not have R/W flag in the packet because DAC register(= 12-bit data  
form) are Write only. A transfer packet, command and data, is transmitted sequentially from MSB to LSB. A  
packet is distinguished in MSB 2 bits of command. In the case of 11, it handles a packet for control register  
access, and the other processed as a packet for a DAC data setting.  
There are the following four kinds of serial-data communication packets.  
1. Write 12 bits DAC data (MSB two bit 11)  
2. Write 8 bits control register (MSB two bit = 11)  
3. Read 8 bits control register (MSB two bit = 11)  
4. Write 12 bits Focus DAC dataRead 8 bits status register at the same time (MSB two bit 11)  
8.5.1.2 Write Operation  
For write operation, DSP transmits 16 bit (command + address + data) data a bit every in an order from MSB.  
Only the 16-bit data which means 16 SCLK sent from the master during SSZ = L becomes effective. If more than  
17 or less than 15 SCLK pulses are received during the time that SSZ is low, the whole packet will be ignored.  
For all valid write operations, the data of the shift register is latched into its designated internal register at rising  
edge of 16th SCLK. All internal register bits, except indicated otherwise, are reset to their default states upon  
power-on-reset.  
SSZ  
SCLK  
C3  
C2  
C1  
C0 D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SIMO  
SOMI  
Hi-Z  
Figure 22. Write 12 Bits DAC Data  
SSZ  
SCLK  
SIMO  
SOMI  
A4  
A3  
A2  
A1  
A0  
W
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
A6  
A5  
Hi-Z  
Figure 23. Write 8 Bits Control Register  
28  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2010  
www.ti.com.cn  
ZHCSEF8 DECEMBER 2015  
Programming (continued)  
8.5.1.3 Read Operation  
DSP sends 8-bit header through SIMO, in order to perform Read operation. TPIC2010 will start to drive the  
SOMI line upon the eighth falling edge of SCLK and shift out eight data bits. The master DSP inputs 8bits data  
from SOMI after the ninth rising edge of SCLK. There’s optional read mode that SOMI data is advanced a half  
clock cycle of SCLK. This mode becomes effective by setting “ADVANCE_RD” (REG74) = H.  
SSZ  
SCLK  
SIMO  
SOMI  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Hi-Z  
Figure 24. Read 8 Bits Control Register  
8.5.1.4 Write and Read Operation  
Optionally, the master DSP can read Status register during writing 12 bits DAC (Focus DAC) packet. It’s enabled  
by setting bit “RDSTAT_ON_VFCS” (REG74) = H.  
SSZ  
SCLK  
SIMO  
C3  
C2  
C1  
C0  
D11  
D10  
D9  
D8  
D7  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
SOMI  
Hi-Z  
Figure 25. Write 12 Bits Focus DAC Data + Read 8 Bits Status Data  
Copyright © 2015, Texas Instruments Incorporated  
29  
TPIC2010  
ZHCSEF8 DECEMBER 2015  
www.ti.com.cn  
8.6 Register Maps  
All registers are in WRITE-protect mode after XRESET release. “WRITE_ENA” bit (REG76) = H is required  
before writing data in register.  
8.6.1 Register State Transition  
Version Data  
(REG7E)  
Device Power On  
Initial Value  
XMUTE = L  
orA5V< 3.7 V  
orCV3P3 < 2.7 V  
orSIOV< 2.0 V  
A5V< 2.0 V  
orCV3P3 < 2.0 V  
or RST_ ERR_ FLAG = 1  
XMUTE = H  
(@XRESET= H)  
or DC-DCconverter < 80%  
orP5V> 6.5 V(*1)  
or RST_ REGS = 1  
W RITE_ ENABLE = 0  
or XSLEEP= 0  
or RST_ REGS_ W O3 = 1  
(keep LED, CSW, and XSLEEP *2)  
or SIF_ TIMEOUT_ ERR = 1  
RST_ REGS_ WO3= 1 (*2)  
LED,CSW and XSLEEP  
A5V< 3.7 V  
orCV3P3 < 2.7 V  
orSIOV< 2.0 V  
(REG70[0], REG71[4,3])  
or DC-DC converter < 80%  
orP5V> 6.5 V(*1)  
or XMUTE = L  
or SIF_ TIMEOUT_ ERR = 1  
or RST_ REGS = 1  
VDAC Reg data  
(REG01-09)  
Control Reg data  
(REG70,71,72,73,74,  
76,77,7C,7F[7,6,0]  
6D, 6E)  
Error latched Reg data  
(REG78,79,7A,7B,7F[5:1])  
Initial (000)  
Vxxx Write  
RST_ INDAC = 1  
or XXX_ ENA= 0  
(error occur)  
set Value  
Set / State Value  
(*1) When exceed 6.5 V, DCDC converter output  
chaged Hi–Z and output falling < 80%.  
Consequently force RESET event. (Released > 90%)  
(*2) All register except CSW, LED and XSLEEP is initialized.  
(1) When exceed 6.5 V, DC-DC converter output changed Hi-Z and output falling <80%.  
(2) All register except CSW, LED, and XSLEEP is initialized.  
Figure 26. Register State Transition Chart  
30  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2010  
www.ti.com.cn  
ZHCSEF8 DECEMBER 2015  
8.6.2 DAC Register (12-Bit Write Only)  
Two difference forms are prepared in 12-bit DAC register, and the forms can be selected by setting VDAC_MAPSW (REG74h).  
Table 5. DAC Register (VDAC_MAPSW = 0)  
REG  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
NAME  
N/A  
F
11  
10  
9
8
7
6
5
4
3
2
1
0
W
W
W
W
W
W
W
W
W
W
W
W
N/A  
N/A  
N/A  
VTLT  
VFCS  
VTRK  
VSLD1  
VSLD2  
VSTP1  
VSTP2  
VSPM  
VLOAD  
N/A  
VTLT[11]  
VFCS[11]  
VTRK[11]  
VTLT[10]  
VFCS[10]  
VTRK[10]  
VTLT[9]  
VFCS[9]  
VTRK[9]  
VTLT[8]  
VFCS[8]  
VTRK[8]  
VSLD1[8]  
VSLD2[8]  
VSTP1[8]  
VSTP2[8]  
VSPM[8]  
VLOAD[8]  
VTLT[7]  
VFCS[7]  
VTRK[7]  
VSLD1[7]  
VSLD2[7]  
VSTP1[7]  
VSTP2[7]  
VSPM[7]  
VLOAD[7]  
VTLT[6]  
VFCS[6]  
VTRK[6]  
VSLD1[6]  
VSLD2[6]  
VSTP1[6]  
VSTP2[6]  
VSPM[6]  
VLOAD[6]  
VTLT[5]  
VFCS[5]  
VTRK[5]  
VSLD1[5]  
VSLD2[5]  
VSTP1[5]  
VSTP2[5]  
VSPM[5]  
VLOAD[5]  
VTLT[4]  
VFCS[4]  
VTRK[4]  
VSLD1[4]  
VSLD2[4]  
VTLT[3]  
VFCS[3]  
VTRK[3]  
VSLD1[3]  
VSLD2[3]  
VTLT[2]  
VFCS[2]  
VTRK[2]  
VTLT[1]  
VFCS[1]  
VTRK[1]  
VTLT[0]  
VFCS[0]  
VTRK[0]  
VSLD1[11] VSLD1[10] VSLD1[9]  
VSLD2[11] VSLD2[10] VSLD2[9]  
VSTP1[11] VSTP1[10] VSTP1[9]  
VSTP2[11] VSTP2[10] VSTP2[9]  
VSLD1[2] VSLD1[1](1) VSLD1[0](1)  
VSLD2[2] VSLD2[1](1) VSLD2[0](1)  
VSTP1[4] VSTP1[3](1) VSTP1[2](1) VSTP1[1](1) VSTP1[0](1)  
VSTP2[4] VSTP2[3](1) VSTP2[2](1) VSTP2[1](1) VSTP2[0](1)  
VSPM[11]  
VSPM[10]  
VSPM[9]  
VSPM[4]  
VSPM[3]  
VSPM[2]  
VSPM[1]  
VSPM[0]  
VLOAD[11] VLOAD[10] VLOAD[9]  
VLOAD[4]  
VLOAD[3]  
VLOAD[2]  
VLOAD[1]  
VLOAD[0]  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
(1) TPIC2010 process as 0 even if set as 1.  
Copyright © 2015, Texas Instruments Incorporated  
31  
TPIC2010  
ZHCSEF8 DECEMBER 2015  
www.ti.com.cn  
Table 6. DAC Register (VDAC_MAPSW = 1)  
REG  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
NAME  
N/A  
F
11  
10  
9
8
7
6
5
4
3
2
1
0
W
W
W
W
W
W
W
W
W
W
W
W
N/A  
N/A  
N/A  
VTLT  
VFCS  
VTRK  
VSLD1  
VSLD2  
VSTP1  
VSTP2  
VSPM  
VLOAD  
N/A  
VTRK[11]  
VFCS[11]  
VTLT[11]  
VTRK[10]  
VFCS[10]  
VTLT[10]  
VTRK[9]  
VFCS[9]  
VTLT[9]  
VTRK[8]  
VFCS[8]  
VTLT[8]  
VTRK[7]  
VFCS[7]  
VTLT[7]  
VTRK[6]  
VFCS[6]  
VTLT[6]  
VTRK[5]  
VFCS[5]  
VTLT[5]  
VTRK[4]  
VFCS[4]  
VTLT[4]  
VTRK[3]  
VFCS[3]  
VTLT[3]  
VTRK[2]  
VFCS[2]  
VTLT[2]  
VTRK[1]  
VFCS[1]  
VTLT[1]  
VTRK[0]  
VFCS[0]  
VTLT[0]  
VSLD1[11] VSLD1[10] VSLD1[9]  
VSLD2[11] VSLD2[10] VSLD2[9]  
VSLD1[8]  
VSLD2[8]  
VSPM[8]  
VSLD1[7]  
VSLD2[7]  
VSPM[7]  
VSLD1[6]  
VSLD2[6]  
VSPM[6]  
VSLD1[5]  
VSLD2[5]  
VSPM[5]  
VSLD1[4]  
VSLD2[4]  
VSPM[4]  
VSLD1[3]  
VSLD2[3]  
VSPM[3]  
VSLD1[2] VSLD1[1](1) VSLD1[0](1)  
VSLD2[2] VSLD2[1](1) VSLD2[0](1)  
VSPM[11]  
VSPM[10]  
VSPM[9]  
VSPM[2]  
VSPM[1]  
VSPM[0]  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
VLOAD[11] VLOAD[10] VLOAD[9]  
VSTP1[11] VSTP1[10] VSTP1[9]  
VSTP2[11] VSTP2[10] VSTP2[9]  
VLOAD[8]  
VSTP1[8]  
VSTP2[8]  
VLOAD[7]  
VSTP1[7]  
VSTP2[7]  
VLOAD[6]  
VSTP1[6]  
VSTP2[6]  
VLOAD[5]  
VSTP1[5]  
VSTP2[5]  
VLOAD[4]  
VSTP1[4]  
VSTP2[4]  
N/A  
(1) TPIC2010 process as 0 even if set 1.  
32  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2010  
www.ti.com.cn  
ZHCSEF8 DECEMBER 2015  
8.6.3 Control Register (8-Bit Read/Write)  
Table 7. Control Register(1)  
REG  
70h  
71h  
72h  
73h  
74h  
75h  
76h  
77h  
78h  
79h  
7Ah  
7Bh  
7Ch  
7Dh  
7Eh  
7Fh  
60h  
61h  
62h  
63h  
64h  
65h  
66h  
6Ch  
6Dh  
6Eh  
6Fh  
NAME  
DriverEna  
FuncEna  
ACTCfg  
Parm0  
F
7
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
W
TLT_ENA  
FCS_ENA  
TRK_ENA  
SPM_ENA  
LED_ON  
SLD_ENA  
CSW_ON  
STP_ENA  
LOAD_ENA  
XSLEEP  
SPM_LSMODE  
LOAD_O5CH_HIGH  
ENDDET_ENA  
LOADPROT_OFF  
ENDDET_SLCT  
ACTPROT_OFF  
SLDEND_HZTIME  
RDSTAT_ON_VFCS  
TEMPMON_ENA  
ACTTEMPTH  
STPEND_HZTIME  
ADVANCE_RD  
TI reserved  
STPENDTH  
SIF_TIMEOUT_TH  
SLDENDTH  
SIFCfg  
DIFF_TLT  
LOAD05_CH  
VSLD2_POL  
VSTP2_POL  
SOMI_HIZ  
VDAC_MAPSW  
Protect  
TI reserved  
TI reserved  
WriteEna  
ClrReg  
WRITE_ENABLE  
RST_INDAC  
REG6X_WR  
RST_REGS  
RST_ERR_FLAG  
RST_REGS_WO3  
TI reserved  
ActTemp  
UVLOMon  
ThPMon  
OCPMon  
TempMon  
Protect  
R
TI reserved  
ACT_TIMER_PROT  
ACTTEMP  
UVLO_SWR3P3  
TSD_SPM  
R
TI reserved  
TSD_FAULT_SPM  
TI reserved  
UVLO_A5V  
TSD_FAULT_LEDCSW  
OCP_SWR  
UVLO_INT3P3  
TSD_SWR  
UVLO_SWR1PX  
TSD_ACT  
OVP_P5V  
TSD_ LEDCSW  
OCP_CSW  
R
TSD_FAULT_SWR  
TI reserved  
TSD_FAULT_ACT  
R
OCP_STP  
OCP_LOAD  
OCP_LED  
R
CHIPTEMP_STATUS  
CHIPTEMP  
R
TI reserved  
Version  
Status  
R
Version  
R
ACTTIMER_FAULT  
ENDDET  
SIF_TIMEOUTERR  
PWRERR  
TSDERR  
OCPERR  
TSDFAULT  
Mask_Plus  
FG  
Protect  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
TI reserved  
TI reserved  
TI reserved  
Protect  
Protect  
SpinAdj  
Protect  
TI reserved  
TI reserved  
TI reserved  
TI reserved  
TI reserved  
Protect  
Protect  
EdetCfg  
DCCfg  
TI reserved  
STP_WIND_HIZ  
STP_WIND_H  
SWR1_MD_BURST  
GPOUT_HL  
SWR2_MD_BURST  
GPOUT_ENA  
SWR1_VOUTUP  
TI reserved  
SWR1_BST_HEFF  
TI reserved  
UtilCfg  
SWROCP_SELCLK  
SIF_TIMEOUTERR_M PWRERR_MON  
TI reserved  
OCPERR_MON  
SWR1_GPIO_CNTL  
TSDFAULT_MON  
SWR2_GPIO_CNTL  
TI reserved  
MonitorSet  
ACTTIMER_FLT_MON  
ENDDET_MON  
TSDERR_MON  
ON  
(1) VTRK and VLOAD is exclusive, using same DAC block  
Copyright © 2015, Texas Instruments Incorporated  
33  
TPIC2010  
ZHCSEF8 DECEMBER 2015  
www.ti.com.cn  
8.6.4 Detailed Description of Register  
8.6.4.1 REG01 12-Bit DAC for Tilt  
Figure 27. Tilt (REG01) 12-Bit DAC for Tilt (VDAC_MAPSW = 0)  
15  
14  
13  
12  
11  
10  
9
8
VTLT  
w-0  
3
w-0  
2
w-0  
1
w-0  
0
7
6
5
4
VTLT  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8. Tilt (REG01) Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
11-0  
VTLT  
w-0  
Digital input code for Tilt.  
2’s complement format 0x800(-2048) to 0x7ff(+2047)  
Output is changed by “differential Tilt mode (REG74[7])”  
TLT_OUT = VTLT × (6.0 / 2048) (DIFF_TLT = 0)  
TLT_OUT = (VFCS-VTLT) × (6.0 / 2048) (DIFF_TLT = 1)  
TLT_OUT should be changed after writing VFCS.  
In DIFF_TLT mode (DIFF_TLT = 1), TLT_OUT should be changed  
after writing VFCS.  
8.6.4.2 REG02 12-Bit DAC for Focus  
Figure 28. Focus (REG02) 12-Bit DAC for Focus (VDAC_MAPSW = 0)  
15  
14  
13  
12  
11  
10  
9
8
VFCS  
w-0  
3
w-0  
2
w-0  
1
w-0  
0
7
6
5
4
VFCS  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 9. Focus (REG02) Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
11-0  
VFCS  
w-0  
Digital input code for Focus  
2’s complement format 0x800(-2048) to 0x7ff(+2047)  
Output is changed by “differential Tilt mode (REG74[7])”  
FCS_OUT = VFCS × (6.0 / 2048) (DIFF_TLT = 0)  
FCS_OUT = (VFCS – VTLT) × (6.0 / 2048) (DIFF_TLT = 1)  
34  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2010  
www.ti.com.cn  
ZHCSEF8 DECEMBER 2015  
8.6.4.3 REG03 12-Bit DAC for Tracking  
Figure 29. Tracking (REG03) 12-Bit DAC for Tracking (VDAC_MAPSW = 0)  
15  
14  
13  
12  
11  
10  
9
8
VTRK  
w-0  
3
w-0  
2
w-0  
1
w-0  
0
7
6
5
4
VTRK  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 10. Tracking (REG03) Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
11-0  
VTRK  
w-0  
Digital input code for Tracking.  
2’s complement format 0x800(-2048) to 0x7ff(+2047)  
TRK_OUT = VTRK × (6.0 / 2048)  
8.6.4.4 REG04 12-Bit DAC for Sled1  
Figure 30. Sled1 (REG04) 10bit DAC for Sled1 (VDAC_MAPSW = 0)  
15  
14  
13  
12  
11  
10  
9
8
VSLD1  
w-0  
3
w-0  
2
w-0  
1
w-0  
0
7
6
5
4
VSLD1  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 11. Sled1 (REG04) Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
11-2  
VSLD1  
w-0  
Digital input code for Sled1.  
2’s complement format 0x800(-2048) to 0x7ff(+2047)  
Two bits on LSB, VSLD1[1:0], will be handled with zero.  
SLD1_OUT = VSLD1 × (440mA/2048)  
8.6.4.5 REG05 12-Bit DAC for Sled2  
Figure 31. Sled2 (REG05) 10bit DAC for Sled2 (VDAC_MAPSW = 0)  
15  
14  
13  
12  
11  
10  
9
8
VSLD2  
w-0  
3
w-0  
2
w-0  
1
w-0  
0
7
6
5
4
VSLD2  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 12. Sled2 (REG05) Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
11-2  
VSLD2  
w-0  
Digital input code for Sled2.  
2’s complement format 0x800(-2048) to 0x7ff(+2047)  
Two bits on LSB, VSLD2[1:0], will be handled with zero.  
SLD2_OUT = VSLD2 × (440mA/2048)  
Copyright © 2015, Texas Instruments Incorporated  
35  
TPIC2010  
ZHCSEF8 DECEMBER 2015  
www.ti.com.cn  
8.6.4.6 REG06 12-Bit DAC for Stepping1  
Figure 32. Stepping1 (REG06) 8bit DAC for Stepping1 (VDAC_MAPSW = 0)  
15  
14  
13  
12  
11  
10  
9
8
VSTP1  
w-0  
3
w-0  
2
w-0  
1
w-0  
0
7
6
5
4
VSTP1  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 13. Stepping1 (REG06) Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
11-4  
VSTP1  
w-0  
Digital input code for Stepping1.  
2’s complement format 0x800(-2048) to 0x7ff(+2047)  
Four bits on LSB, VSTP1[3:0], will be handled with zero.  
VSTP1_OUT = VSTP1 × (5.0/2048) @P5V=5.0V  
8.6.4.7 REG07 12-Bit DAC for Stepping2  
Figure 33. Stepping2 (REG07) 8bit DAC for Stepping2 (VDAC_MAPSW = 0)  
15  
14  
13  
12  
11  
10  
9
8
VSTP2  
w-0  
3
w-0  
2
w-0  
1
w-0  
0
7
6
5
4
VSTP2  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 14. Stepping2 (REG07) Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
11-4  
VSTP2  
w-0  
Digital input code for Stepping1.  
2’s complement format 0x800(-2048) to 0x7ff(+2047)  
Four bits on LSB, VSTP2[3:0], will be handled with zero.  
VSTP2_OUT = VSTP2 × (5.0/2048) @P5V=5.0V  
8.6.4.8 REG08 12-Bit DAC for Spindle  
Figure 34. Spindle (REG08) 12-Bit DAC for Spindle (VDAC_MAPSW = 0)  
15  
14  
13  
12  
11  
10  
9
8
VSPM  
w-0  
3
w-0  
2
w-0  
1
w-0  
0
7
6
5
4
VSPM  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 15. Spindle (REG08) Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
11-0  
VSPM  
w-0  
Digital input code for Spindle.  
2’s complement format 0x800(-2048) to 0x7ff(+2047)  
SPM_OUT = VSPM × (6.0 / 2048)  
36  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2010  
www.ti.com.cn  
ZHCSEF8 DECEMBER 2015  
8.6.4.9 REG09 12-Bit DAC for Load  
Figure 35. Load (REG09) 12-Bit DAC for Load (VDAC_MAPSW = 0)  
15  
14  
13  
12  
11  
10  
9
8
VLOAD  
w-0  
3
w-0  
2
w-0  
1
w-0  
0
7
6
5
4
VLOAD  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 16. Load (REG09) Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
11-0  
VLOAD  
w-0  
Digital input code for Load.  
2’s complement format 0x800(-2048) to 0x7ff(+2047)  
LOAD_OUT = VLOAD × (6.0 / 2048)  
8.6.4.10 REG63 8-Bit Control Register for SpinAdj  
Figure 36. SpinAdj (REG63)  
7
6
5
4
3
2
1
0
TI reserved  
Mask_Plus  
rw-0  
TI reserved  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 17. SpinAdj (REG63) Field Descriptions  
Bit  
7-2  
1
Field  
Type  
r-0  
Default  
Description  
TI reserved  
Mask_Plus  
r-0  
0
Mask Plus bit enables fly back robustness by optimizing masking time.  
0: Default masking time  
1: Extended masking time for large inductance motor  
0
TI reserved  
r-0  
Copyright © 2015, Texas Instruments Incorporated  
37  
TPIC2010  
ZHCSEF8 DECEMBER 2015  
www.ti.com.cn  
8.6.4.11 REG6C 8-Bit Control Register for EDetCfg  
Figure 37. EDetCfg (REG6C)  
7
6
5
4
3
2
1
0
TI reserved  
STP_WIND_HI STP_WIND_H  
Z
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 18. EDetCfg (REG6C) Field Descriptions  
Bit  
7-2  
1
Field  
Type  
r-0  
Default  
Description  
TI reserved  
STP_WIND_HIZ  
r-0  
0
0: normal end detection  
1: when detecting BEMF, set STP1 and STP2 FET HIZ to reduce  
mutual noise.  
0
STP_WIND_H  
r-0  
0
0: normal end detection  
1: when detecting BEMF, set driving phase to Hi ( Detecting phase  
put Hi-Z ) to reduce mutual noise.  
8.6.4.12 REG6D 8-Bit Control Register for DCCfg  
Figure 38. DCCfg (REG6D)  
7
6
5
4
3
2
1
0
SWR1_MD_BU SWR2_MD_BU  
SWR1_VOUTUP  
TI reserved  
SWR1_BST_H  
EFF  
TI reserved  
RST  
RST  
rw-0  
rw-0  
rw-0 rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 19. DCCfg (REG6D) Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
SWR1_MD_BURST  
rw-0  
0
0: V1Px normal regulation  
1: V1Px discontinuous mode  
6
SWR2_MD_BURST  
SWR1_VOUTUP  
rw-0  
rw-0  
0
0
0: V3P3 normal regulation  
1: V3P3 discontinuous mode  
5-4  
V1Px DC-DC converter voltage up  
For 1.2 V or 1.5 V:  
00: 0%  
01: 2%  
10: 3.6%  
11: 5.5%  
For 1.0 V:  
00: 0%  
01: 1.3%  
10: 2.4%  
11: 3.3%  
3
2
TI reserved  
rw-0  
rw-0  
SWR1_BST_HEFF  
0
1: V1Px High efficiency mode on discontinuous mode  
This bit will be enabled in SWR1_MD_BURST=1  
1-0  
TI reserved  
rw-0  
38  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2010  
www.ti.com.cn  
ZHCSEF8 DECEMBER 2015  
8.6.4.13 REG6E 8-Bit Control Register for UtilCfg  
Figure 39. UtilCfg (REG6E)  
7
6
5
4
3
2
1
0
GPOUT_HL  
GPOUT_ENA  
SWROCP_SELCLK  
TI reserved  
SWR1_GPIO_ SWR2_GPIO_  
CNTL  
CNTL  
rw-0  
rw-0  
rw-0 rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 20. UtilCfg (REG6E) Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
GPOUT_HL  
rw-0  
0
GPOUT (general-purpose output) pin output selection  
0: low output  
1: high output  
valid only REG6F = 00h  
6
GPOUT_ENA  
rw-0  
rw-0  
0
0
Enable monitor signal output to GPOUT pin  
0: No signal output, Hi-Z  
1: output signal selected in REG6F with CMOS output  
Output is Logical OR when selected two more signals  
5-4  
SWROCP_SELCLK  
Over current protection monitoring frequency  
5 counts by  
00: 5 kHz (= exceed 1 ms)  
01: 20 kHz  
10: 50 kHz  
11: 500 kHz  
3-2  
1
TI reserved  
rw-0  
rw-0  
SWR1_GPIO_CNTL  
0
0
Set REG1PX pin as GPIO1 pin.  
0: REG1PX pin as 1.xV DC-DC converter output  
1: Open drain control for GPOUT1 pin (at V1Px DC-DC disable)  
0
SWR2_GPIO_CNTL  
rw-0  
Set REG3P3 pin as GPIO2 pin.  
0: REG3P3 pin as 3.3V DC-DC converter output  
1: Open drain control for GPOUT1 pin (at V1Px DC-DC disable)  
Open drain control for GPOUT2 pin (at V3P3 DC-DC disable)  
8.6.4.14 REG6F 8-Bit Control Register for MonitorSet  
Figure 40. MonitorSet (REG6F)  
7
6
5
4
3
2
1
0
ACTTIMER_FL ENDDET_MON SIF_TIMEOUT PWRERR_MO TSDERR_MON OCPERR_MO TSDFAULT_M  
TI reserved  
T_MON  
ERR_MON  
N
N
ON  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 21. MonitorSet (REG6F) Field Descriptions  
Bit  
7
Field  
Type  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
Default  
Description  
ACTTIMER_FLT_MON  
ENDDET_MON  
SIF_TIMEOUTERR_MON  
PWRERR_MON  
TSDERR_MON  
OCPERR_MON  
TSDFAULT_MON  
0
0
0
0
0
0
0
1: ACTTIMER fault output to GPOUT pin  
1: ENDDET monitor output to GPOUT pin  
6
5
1: SIF timeout monitor output to GPOUT pin  
1: PWRERR monitor output to GPOUT pin  
1: TSDERR fault output to GPOUT pin  
1: OCPERR fault output to GPOUT pin  
1: TSDFAULT fault output to GPOUT pin  
4
3
2
1
Copyright © 2015, Texas Instruments Incorporated  
39  
TPIC2010  
ZHCSEF8 DECEMBER 2015  
www.ti.com.cn  
8.6.4.15 REG70 8bit Control Register for DriverEna  
Figure 41. REG70 8bit Control Register  
7
6
5
4
3
2
1
0
TLT_ENA  
rw-0  
FCS_ENA  
rw-0  
TRK_ENA  
rw-0  
SPM_ENA  
rw-0  
SLD_ENA  
rw-0  
STP_ENA  
rw-0  
LOAD_ENA  
rw-0  
XSLEEP  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 22. DriverEna (REG70) Field Descriptions  
Bit  
7
Field  
Type  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
Default  
Description  
TLT_ENA  
FCS_ENA  
TRK_ENA  
SPM_ENA  
SLD_ENA  
STP_ENA  
LOAD_ENA  
1 : Tilt enable (with XSLEEP=1)  
1: Focus enable (with XSLEEP=1)  
1: Track enable (with XSLEEP=1)  
1: Spindle enable (with XSLEEP=1)  
1: Sled enable (with XSLEEP=1)  
1: Step enable (with XSLEEP=1)  
1 : LOAD enable (with XSLEEP=1)  
6
5
4
3
2
1
Track (bit5:TRK_ENA) will be disabled at LOAD_ENA=1 because of  
sharing the DAC PWM module. Load priority is higher than TRK_ENA.  
0
XSLEEP  
rw-0  
1: Operation mode  
0: Power save mode  
Charge pump enable bit.  
All driver enable bit (Bit[7:1]) change disabled and output change to  
Hi-Z (regardless of setting xxx_ENA bit is 1 when setting XSLEEP to  
0. Therefore set 1 to XSLEEP before setting each enable bits.  
40  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2010  
www.ti.com.cn  
ZHCSEF8 DECEMBER 2015  
8.6.4.16 REG71 8-Bit Control Register for FuncEna  
Figure 42. REG71 8-Bit Control Register for FuncEna (REG71)  
7
6
5
4
3
2
1
0
SPM_LSMODE ENDDET_ENA ENDDET_SLC  
T
LED_ON  
CSW_ON  
TEMPMON_EN  
A
TI reserved  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 23. FuncEna (REG71) Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
SPM_LSMODE  
rw-0  
0 : Spindle Normal rotation mode  
1 : Light Scribe mode (slow rotation mode)  
6
5
ENDDET_ENA  
ENDDET_SLCT  
rw-0  
rw-0  
1 : use sled/step End detection enable ( with STP_ENA=1 or  
SLD_ENA=1)  
0 : Sled End detection monitor  
1 : Step End detection monitor  
4
3
LED_ON  
rw-0  
rw-0  
rw-0  
rw-0  
1 : LEDO enable ( with XSLEEP=1)  
1 : CSWO enable ( with XSLEEP=1)  
1: enable chip temperature monitoring ( with XSLEEP=1)  
Reserved  
CSW_ON  
2
TEMPMON_ENA  
TI reserved  
1-0  
8.6.4.17 REG72 8-Bit Control Register for ACTCfg  
Figure 43. ACTCfg (REG72)  
7
6
5
4
3
2
1
0
LOAD_O5CH_ LOADPROT_O ACTPROT_OF  
ACTTEMPTH  
HIGH  
FF  
F
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 24. ACTCfg (REG72) Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
LOAD_05CH_HIGH  
rw-0  
0
LOAD output polarity at 0.5CH ( REG74h[6]=1 )  
0: LOADP=Low  
1: LOADP=High  
6
5
LOADPROT_OFF  
ACTPROT_OFF  
rw-0  
rw-0  
0
0
1: Load Over Current Protection OFF  
0 : Actuator protection ON  
1 : Actuator Fault monitor disable (No protection for ACT channel)  
4-0  
ACTTEMPTH  
rw-0  
0
Actuator thermal protection (=ACT Timer) threshold level  
ACT Timer Protection enable except ACTTEMPTH[4:0] = 0x00  
ACTTEMPTH = 0x00 equal to ACTPROT_OFF = 1  
By writing value 0x00, ACTTIMER_PROT flag is cleared.  
Copyright © 2015, Texas Instruments Incorporated  
41  
TPIC2010  
ZHCSEF8 DECEMBER 2015  
www.ti.com.cn  
8.6.4.18 REG73 8-Bit Control Register for Parm0  
Figure 44. Parm0 (REG73)  
7
6
5
4
3
2
1
0
SIF_TIMEOUT_TH  
SLEDEND_HZ  
TIME  
SLDENDTH  
STPEND_HZTI  
ME  
STPENDTH  
rw-0 rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 25. Parm0 (REG73) Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7-6  
SIF_TIMEOUT_TH  
rw-0  
0
Watch dog timer for Serial communication  
0: disable 1: 1 ms 2: 100 µs 3: 10 µs  
Set SIF_TIMEOUTERR (REG7F) if communication is suspended for  
this time period. XRESET processing will be performed if a  
SIF_TIMEOUTERR occurs.  
5
SLEDEND_HZTIME  
SLDENDTH  
rw-0  
rw-0  
rw-0  
rw-0  
0
0
0
0
Time window for sled end detection.  
0: 400 µs 1: 200 µs  
Caution) Need to recycle ENDDET_ENA = 0 1 after writing this bit.  
4-3  
2
Sled end detection sensibility setting. Detection threshold for motor  
BEMF  
00: 46 mV 01: 86 mV 10: 0 mV 11: 22 mV  
STPEND_HZTIME  
STPENDTH  
Step High-Z detection period in End detection  
0: 400 µs 1: 200 µs  
Caution) Need to recycle ENDDET_ENA = 0 1 after writing this bit.  
1-0  
Step end detection sensibility setting  
00: 39 mV 01: 60 mV 10: 0 mV 11: 19 mV  
42  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2010  
www.ti.com.cn  
ZHCSEF8 DECEMBER 2015  
8.6.4.19 REG74 8-Bit Control Register for SIFCfg  
Figure 45. SIFCfg (REG74)  
7
6
5
4
3
2
1
0
DIFF_TLT  
LOAD_05CH  
RDSTAT_ON_  
VFCS  
VSLD2_POL  
VSTP2_POL  
ADVANCE_RD  
SOMI_HIZ  
VDAC_MAPSW  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 26. SIFCfg (REG74) Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
DIFF_TLT  
rw-0  
0
1 : Differential Tilt mode enable (with TLT_ENA=FCS_ENA=1)  
Differential Tilt mode (DIFF_TLT=1), DAC value setting as follows  
FCS_OUT=(VFCS+VTLT) × 6/2048  
TLT_OUT=(VFCS-VTLT) × 6/2048  
In DIFF_TLT mode (DIFF_TLT=1), TLT_OUT should be changed after  
writing VFCS.  
6
5
LOAD_05CH  
rw-0  
rw-0  
0
0
The setting of Load motor driving type. Load output changes as follow  
0: 1ch mode (LOAD output is controlled by DAC code, VLOAD)  
Use for Slot-in model or 1ch tray model.  
1: 0.5Ch mode (LOAD is only controlled by LOAD_05CH_HIGH)  
Use for Tray model  
RDSTAT_ON_VFCS  
Set Read status data (REG7F) at VFCS write command (REG02)  
1: enable Write and Read mode  
(Write 12bits Focus DAC data + Read 8bits status data)  
4
3
2
VSLD2_POL  
VSTP2_POL  
ADVANCE_RD  
rw-0  
rw-0  
rw-0  
0
0
0
change direction of SLED rotation  
change direction of STEP rotation  
Advanced serial read timing  
1: Read back timing changes half clock advance.  
1
0
SOMI_HIZ  
rw-0  
rw-0  
0
0
0: SOMI line High-Z at bus idling time.  
1: SOMI line Pull Down at bus idling time.  
VDAC_MAPSW  
1: change channel assignments of DAC register (REG01~09)  
8.6.4.20 REG76 8-Bit Control Register for WriteEna  
Figure 46. WriteEna (REG76)  
7
6
5
4
3
2
1
0
WRITE_ENABL  
E
TI reserved  
REG6X_WR  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 27. WriteEna (REG76) Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
WRITE_ENABLE  
rw-0  
0
0: Register Write disable except REG76  
1: Write enable for registers REG01~0B, REG70~7F  
6-1  
0
TI reserved  
rw-0  
rw-0  
REG6X_WR  
0
0: Register REG63 write disable  
1: Register REG63 write enable  
Copyright © 2015, Texas Instruments Incorporated  
43  
TPIC2010  
ZHCSEF8 DECEMBER 2015  
www.ti.com.cn  
8.6.4.21 REG77 8-Bit Control Register for ClrReg  
Figure 47. ClrReg (REG77)  
7
6
5
4
3
2
1
0
RST_INDAC  
RST_REGS  
RST_ERR_FLA RST_REGS_W  
TI reserved  
G
O3  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 28. ClrReg (REG77) Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
RST_INDAC  
w-0  
0
1 : Reset all 12bit input DAC register (REG01~0B)  
*Self clear bit  
6
5
4
RST_REGS  
w-0  
w-0  
w-0  
0
0
0
1 : Reset all 8bit R/W Registers (REG70h~77h, 60h-6Fh)  
*Self clear bit  
RST_ERR_FLAG  
RST_REGS_WO3  
1 : Reset Fault Flag Latch (REG7F[5:1], REG79~REG7B)  
*Self clear bit  
1 : Reset all 8bit R/W Registers w/o XSLEEP, CSW_ON, LED_ON  
(REG70h~76h, REG60h~66h)  
*Self clear bit  
3-0  
TI reserved  
w-0  
8.6.4.22 REG78 8-Bit Control Register for ActTemp  
Figure 48. ActTemp (REG78)  
7
6
5
4
3
2
1
0
TI reserved  
ACT_TIMER_P  
ROT  
ACTTEMP  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 29. ActTemp (REG78) Field Descriptions  
Bit  
7-6  
5
Field  
Type  
r-0  
Default  
Description  
TI reserved  
ACT_TIMER_PROT  
r-0  
0
ACT timer protection flag  
1: ACT Timer Protection has detected and latched.  
(ACTTEMP > ACTTEMPTH)  
This bit holds data after temperature change to low since this is a  
latch bit. Also driver output keep Hi-Z until setting RST_ERR_FLAG or  
ACTTEMPTH = 0.  
4-0  
ACTTEMP  
r-0  
0
An integrated value of ACT_TIMER counters at present.  
44  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2010  
www.ti.com.cn  
ZHCSEF8 DECEMBER 2015  
8.6.4.23 REG79 8-Bit Control Register for UVLOMon  
Figure 49. UVLOMon (REG79)  
7
6
5
4
3
2
1
0
TI reserved  
UVLO_A5V  
UVLO_INT3P3 UVLO_SWR3P UVLO_SWR1P  
OVP_P5V  
3
X
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 30. UVLOMon (REG79) Field Descriptions  
Bit  
7-5  
4
Field  
Type  
r-0  
Default  
Description  
TI reserved  
UVLO_A5V  
UVLO_INT3P3  
UVLO_SWR3P3  
UVLO_SWR1PX  
OVP_P5V  
r-0  
0
0
0
0
0
UVLO flag for detection Low A5V supply(1)  
UVLO flag for detection Low internal 3.3V regulator(1)  
3
r-0  
(1)  
2
r-0  
UVLO flag for detection Low DC-DC 3.3V  
(1)  
1
r-0  
UVLO flag for detection Low DC-DC 1.xV  
(1)  
0
r-0  
Over voltage protection flag for P5Vsply  
(1) Latched first reset event only. Cleared by “RST_ERR_FLG” (REG77)  
8.6.4.24 REG7A 8-Bit Control Register for ThPMon  
Figure 50. ThPMon (REG7A)  
7
6
5
4
3
2
1
0
TSD_FAULT_S TSD_FAULT_S TSD_FAULT_A TSD_FAULT_L  
TSD_SWR  
TSD_SPM  
TSD_ACT  
TSD_  
WR  
PM  
CT  
EDCSW  
LEDCSW  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 31. ThPMon (REG7A) Field Descriptions  
Bit  
7
Field  
Type  
r-0  
Default  
Description  
TSD_FAULT_SWR  
TSD_FAULT_SPM  
TSD_FAULT_ACT  
0
0
0
Pre alert of thermal protection for DC-DC converter block*.  
Pre alert of thermal protection of Spindle block*  
6
r-0  
5
r-0  
Pre alert of thermal protection of Focus /Track /Tilt Sled1 /Sled2  
/Step1 /Step2 /Load *  
4
3
TSD_FAULT_LEDCSW  
TSD_SWR  
r-0  
r-0  
0
0
Pre alert of thermal protection of CSW/LED *  
Thermal protection flag for DC-DC converter block *  
DC-DC converter output Hi-Z until temperature falls on release level  
1: detect (latch)  
2
1
TSD_SPM  
TSD_ACT  
r-0  
r-0  
0
0
Thermal protection flag for Spindle *  
SPM output Hi-Z until temperature falls on release level  
1: detect (latch)  
Thermal protection flag for Focus /Track /Tilt Sled1 /Sled2 /Step1  
/Step2 /Load *  
Actuator output Hi-Z until temperature falls on release level  
1: detect (latch)  
0
TSD_ LEDCSW  
r-0  
0
Thermal protection flag for CSW/LED *  
LED/CSW output Hi-Z until temperature falls on release level  
1: detect (latch)  
Copyright © 2015, Texas Instruments Incorporated  
45  
TPIC2010  
ZHCSEF8 DECEMBER 2015  
www.ti.com.cn  
8.6.4.25 REG7B 8-Bit Control Register for OCPMon  
Figure 51. OCPMon (REG7B)  
7
6
TI reserved  
r-0  
5
4
OCP_SWR  
r-0  
3
OCP_STP  
r-0  
2
OCP_LOAD  
r-0  
1
OCP_LED  
r-0  
0
OCP_CSW  
r-0  
r-0  
r-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 32. OCPMon (REG7B) Field Descriptions  
Bit  
7-5  
4
Field  
Type  
r-0  
Default  
Description  
TI reserved  
OCP_SWR  
OCP_STP  
OCP_LOAD  
OCP_LED  
OCP_CSW  
(1)  
r-0  
0
0
0
0
0
Over current protection flag bit for DC-DC converter block.  
(1)  
3
r-0  
Over current protection flag bit for step block.  
(1)  
2
r-0  
Over current protection flag bit for Load block.  
(1)  
1
r-0  
Over current protection flag bit for LED block.  
(1)  
0
r-0  
Over current protection flag bit for CSW block.  
(1) Cleared by “RST_ERR_FLAG” bit (REG77)  
8.6.4.26 REG7C 8-Bit Control Register for TempMon  
Figure 52. TempMon (REG7C)  
7
6
5
4
3
2
1
0
TI reserved  
CHIPTEMP_ST  
ATUS  
CHIPTEMP  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 33. TempMon (REG7C) Field Descriptions  
Bit  
7
Field  
Type  
r-0  
Default  
Description  
TI reserved  
6
CHIPTEMP_STATUS  
r-0  
0
0
1: New data CHIPTEMP[5:0] is updated  
It will be cleared after reading.  
5-0  
CHIPTEMP  
r-0  
Chip temperature monitor (2.5deg/LSB)  
15(0) to 172.5(63) degrees.  
For monitoring, TEMPMON_ENA=1 and XSLEEP=1 is required  
8.6.4.27 REG7E 8-Bit Control Register for Version (REG7E)  
Figure 53. Version (REG7E)  
7
6
5
4
3
2
1
0
Version  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 34. Version (REG7E) Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7-0  
Version  
r-0  
Version[7:4] = revision number of TPIC2010  
Version[3:0]=option  
46  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2010  
www.ti.com.cn  
ZHCSEF8 DECEMBER 2015  
8.6.4.28 REG7F 8-Bit Control Register for Status (REG7F)  
Figure 54. Status (REG7F)  
7
6
5
4
3
2
1
0
ACTTIMER_FA  
ULT  
ENDDET  
SIF_TIMEOUT  
ERR  
PWRERR  
TSDERR  
OCPERR  
TSDFAULT  
FG  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 35. Status (REG7F) Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
ACTTIMER_FAULT  
r-0  
0
Status flag of ACTTIMER protection  
1: Pre alert of ACTTIMER protection. It is close to the threshold level.  
You can get current ACTTIMER value in REG78.  
Both of this bit and ACT_TIMER_PROT (REG78) will be set when  
over the threshold.  
6
5
4
3
2
1
0
ENDDET  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
0
0
0
0
0
0
0
status flag of END detection  
1: end position detected (not latch bit)  
SIF_TIMEOUTERR  
PWRERR  
TSDERR  
error flag of serial I/F watch dog timer  
1: SIF communication was interrupted, expired watch dog timer  
error flag of Power  
1 : Voltage problem occurred, details in REG79  
error flag of any over thermal protections  
1: Dispatched thermal protection, details in REG7A  
OCPERR  
TSDFAULT  
FG  
error flag of any over current protection  
1: Dispatched OCP, details in REG7Bh  
warning of TSD of any thermal protection  
1 : Detect pre thermal protection details in REG7A  
FG signal. Spindle rotation pulse for speed monitor  
Copyright © 2015, Texas Instruments Incorporated  
47  
TPIC2010  
ZHCSEF8 DECEMBER 2015  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
NOTE  
Operate every driver channel after 5 V power supplied and stable.  
To calculate spindle motor driver over current limit (ILimit), use the following equation.  
ILimit = Internal REF voltage / RCS = 196 mV / 0.22 Ω ≈ 890 mA  
Appropriate capacity of decoupling capacitor is required enough value of over 10 μF  
due to reduce influence of PWM switching noise. And the A5V pin needs to connect a  
filter of 1 μF. It is effective to put bypass capacitor (about 0.1 µF) near power pin  
(P5V_1, P5V_2, P5V_SW, P5V_SPM1, P5V_SPM2) for PWM switching noise  
reduction on power and GND line.  
Much current flow to driver circuits, to consider as below matters.  
Pattern-layout and line-impedance. And noise influence from supply line.  
9.1 Application Information  
9.1.1 DAC Type  
TPIC2010 has nine channels of Actuator. Each channel is assigned to the most suitable DAC engine with a  
different type respectively. ACT(F/T/Ti) has 12-bit DAC. Upper 8 (MSB sign bit) are converted at a time in 5MHz  
and LSB 4 bits are output in sequence with 1.25-MHz PWM. SPIN, SLED and Load DAC has same DAC types  
and sampling rate with 312kHz. All channel (except SLED and STP) have x6 gain. The DAC for STP is 8-bits  
resolution output with 40 kHz PWM, no Feed Back. The Gain for STP is 5x relative to P5V voltage. Table 36  
shows configuration of each actuator.  
Table 36. List 5 DAC Type  
FCS/TRK/TLT  
12bit  
SLED  
10bit  
SPIN  
12bit  
LOAD  
12bit  
STP  
Resolution  
Type  
8bit  
8-bit over sampling  
8-bit over sampling  
8-bit over sampling  
8-bit over sampling  
1 bit Direct Duty  
PWM  
Sampling  
1.25M / 10bit  
312K / 12bit  
1.25M / 10bit  
312K / 12bit  
312K  
312K  
40 kHz  
PWM freq  
Out range  
Feed back  
312 kHz  
±6 V  
78 kHz  
±440 mA  
156 kHz  
±6 V  
312 kHz  
±6 V  
40 kHz  
±(P5V*1)  
Voltage feedback  
Current feedback  
Power supply  
compensation  
Voltage feedback  
shared with TRK  
Direct PWM no  
feedback  
9.1.2 Example Sampling Rate of 12-Bit DAC for FCS/TRK/TLT  
The input data is separated in the upper 8 bits and the lower 4 bits. Upper 8 bits (MSB sign 1 bit) will be put into  
8-bit current DAC in every 5 MHz. The lower 4 bits will be put into one bit current DAC in sequence from upper to  
lower bit. This one bit DAC output with PWM in 1.25 MHz. At any PWM duty, 100%, 75%, 50%, 25%, or 0%, will  
be summed in 8-bit current DAC in every 1.25 MHz. Thus it takes 3.2 µs for all lower 4 bits summing to PWM  
output. As a result, 12-bit data is sampled in every PWM cycle. Example of sampling rate for FCS/TRK/TLT is  
Figure 55.  
48  
Copyright © 2015, Texas Instruments Incorporated  
 
TPIC2010  
www.ti.com.cn  
ZHCSEF8 DECEMBER 2015  
White DAC  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
5 MHz  
1.25 MHz  
625 kHz  
312 kHz  
10 bit  
10 bit  
10 bit  
10 bit  
11 bit  
11 bit  
12 bit  
LSB 4-bit width  
PWM duty  
12-bit DAC (8-bit DAC + 4-bit PWM DAC) output  
One PWM cycle (312 kHz = 3.2 µs)  
Figure 55. Example of 12-Bit DAC Conversion Time (FCS/TRK/TLT)  
9.1.3 Digital Input Coding  
The output voltage (current) is commanded via programming to the DAC. All of the DAC input format is 12bit in  
two’s complement though some DAC has a low resolution. When 12 bits data is input 8 bits DAC, TPIC2010  
recognizes four subordinate position bits (LSB) as 0. To arrange for 12bit DAC format, DSP should shift 8bit or  
10 bit data to an appropriate bit position. The full scale is +/-1.0 V and driver gain is set 6. The output voltage  
(Vout) is given by the following equation:  
6 .0  
V o u t = D A C c o d e ì  
2 0 4 8  
(1)  
V d a c = 1 .0 ì b it[1 0 ] ì 0 .51 + b it[9 ] ì 0 .5 2 + b it[8 ] ì 0 .5 3 + ... + b it[0 ] ì 0 .51 1  
(
)
V d a c = (œ 1 .0 ) ì b it[1 0 ] ì 0 .5 1 + b it[9 ] ì 0 .5 2 + b it[8 ] ì 0 .5 3 + .. . + b it[0 ] ì 0 .51 1 + 0 .51 2  
(
)
V o u t = V d a c ì 6 .0 ( V )  
S T P V o u t = V d a c ì (P 5 V ) ( V )  
S L E D Io u t = V d a c ì 0 .4 4 ( A )  
where  
bit[11:0] is the digital input value, range 000000000000b to 111111111111b.  
(2)  
Table 37. DAC Format  
LSB  
MSB DIGITAL INPUT (BIN)  
1000_0000_0000  
1000_0000_0001  
1111_1111_1111  
0000_0000_0000  
0000_0000_0001  
0111_1111_1110  
HEX  
DEC  
–2048  
–2047  
–1  
VDAC  
–0.9995  
–0.9995  
–0.0005  
0
ANALOG OUTPUT  
0x800  
0x801  
0xFFF  
0x000  
0x001  
0x7FE  
–5.997  
–5.997  
–0.003  
0.000  
0
+1  
+0.0005  
+0.9990  
+0.003  
+5.994  
+2046  
Copyright © 2015, Texas Instruments Incorporated  
49  
TPIC2010  
ZHCSEF8 DECEMBER 2015  
www.ti.com.cn  
Table 37. DAC Format (continued)  
LSB  
MSB DIGITAL INPUT (BIN)  
0111_1111_1111  
HEX  
DEC  
VDAC  
ANALOG OUTPUT  
0x7FF  
+2047  
+0.9995  
+5.997  
Analog output(V)  
VDAC  
+ 6.0  
+ 5.0  
+ 1.000  
*
800h  
7FFh  
DAC code  
000  
-5.0  
-6.0  
*
-1.000  
*follow ing P5Vinput voltage  
Figure 56. Output Voltage vs DAC Code  
9.1.4 Example Timing of Target Control System  
TPIC2010 is designed for that meets the requirements updating control data in 400 kHz. The example of control  
system parameter is Table 38. It takes 0.51 µs for transmit a 16-bit data packet to TPIC2010 with 35-MHz SCLK.  
Therefore, DSP can be sent four packets a 400-kHz interval. If SCLK is lower than 28.8 MHz, the system  
designer must reduce the packet quantity under three. For example, Focus/Truck command is updating in every  
2.5 µs (400 kHz), and it is able to send another two kind of packet in this same slot. Figure 57 shows the  
example of the control timing when TPIC2010 is used.  
Table 38. Example Timing of Target Control System  
UPDATE CYCLE  
SIGNAL  
BIT  
(kHz)  
400  
400  
100  
100  
100  
100  
Focus  
Track  
Tilt  
12  
12  
12  
10  
10  
12  
12  
8
Sled1  
Sled2  
Spindle  
Load  
Step1  
Step2  
40  
8
40  
50  
Copyright © 2015, Texas Instruments Incorporated  
 
TPIC2010  
www.ti.com.cn  
ZHCSEF8 DECEMBER 2015  
312 kHz /3.2 µs (PW M 1 cycle)  
Track  
Focus  
Tilt  
R
R
R
R
R
Sled1  
Sled2  
SPM  
Load  
Step1  
Step2  
400 kHz /2.5 µs  
Control  
register  
100 kHz /10 µs (1 control cycle)  
PW M cycle  
DAC command  
R DAC command w/status read  
Control register command  
0.51 µs (SCLK: 35 MHz) for data transmit  
Figure 57. Example DAC Control  
9.1.5 Spindle Motor Driver Part  
When VSPM is set a positive DAC code then it’ll be into acceleration mode. “IS” mode operates then the start-up  
circuit offers the special start-up pattern sequence to the driver in start-up, and then switch to spin-up mode by  
detecting the rotor position by BEMF signal from the spindle motor coil.  
The spin-down and brake function also be controlled by DAC value VSPM. When it’s set the brake command to  
VSPM, driver goes into active-brake mode, then switch to short-brake mode in slow revolution speed, and then  
stop automatically. The FG signal is composed from EXOR of three-phase signal, and is output from XFG pin  
shown below.  
Copyright © 2015, Texas Instruments Incorporated  
51  
TPIC2010  
ZHCSEF8 DECEMBER 2015  
www.ti.com.cn  
Figure 58. Spindle Operating Sequence  
It is recommended to use down-edge of FG signal for monitoring FG frequency. The FG terminal needs to be  
pull up to the appropriate supply voltage by external resistor.  
Short Brake mode is asserted after 300ms of FG signal stays L-level in deceleration.  
The FG Output is set to H-level in Sleep Mode in order to reduce sleep mode current.  
This value is the nominal number of using motor with 16-poles.  
First of all, power supply voltage of A5V/P5V must be supplied before any signals input.  
Internal circuit starts after 800 µs(TYP) since XMUTE changed to “H”. Recommended marginal delay value is  
1ms for being ready.  
9.1.5.1 Spindle PWM Control  
The output PWM duty of Spindle is controlled by DAC code (VSPM). The gain in acceleration setting is always  
six times. However, the maximum output is restricted to P5V voltage. A dead band which output = 0 exists in the  
width of plus or minus 0x52 focusing on zero.  
52  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2010  
www.ti.com.cn  
ZHCSEF8 DECEMBER 2015  
PW M output duty  
100%  
output (V)  
SPM_LSMODE = 0  
P5V  
25%  
dead band  
duty= 0%  
slow down  
speed up  
0%  
800h  
FAEh  
000  
52h  
7FFh  
VSPM[11:0]  
Figure 59. Spindle PWM Control  
9.1.5.2 Auto Short Brake Function  
TPIC2010 provides auto short brake function which is selecting brake mode automatically by motor speed. Auto  
Short Brake is the intelligent brake function that includes two modes: short brake and active brake. When VSPM  
value is controlled more than equivalent 75% duty brake, deceleration is done by short brake under the rotation  
speed is over 3000 rpm. After deceleration, driver goes into Active-brake mode automatically by internal logic  
circuit under rotation speed is lower 2000 rpm. This function enables low power consumption and silent during  
braking.  
Table 39. Brake Mode  
ROTATION SPEED (RPM)  
VSPM[11:0]  
0 TO 2000  
2-phase short brake  
Active brake  
3000  
0x000 - 0xFAE  
0xFAE - 0xA00  
0xA00 - 0x800  
2-phase short brake  
Active brake  
Active brake  
3-phase short brake  
Copyright © 2015, Texas Instruments Incorporated  
53  
TPIC2010  
ZHCSEF8 DECEMBER 2015  
www.ti.com.cn  
rpm  
brake  
speed up  
4000  
3-phase  
short  
3000  
2000  
1000  
0
active  
2-phase  
short  
active  
800h  
A00h  
FAEh  
000  
VSPM[11:0]  
This value is the nominal number of using motor with 16-poles motor.  
Figure 60. Brake Mode Selections  
9.1.5.3 Spindle Low Speed Mode  
LS mode is the low rotation mode which made the maximum 25% duty. When using SPM_LSMODE = 1, brake  
mode is always short brake. Figure 61 shows the output duty of LS mode.  
(V)  
output  
PWM output duty  
100%  
SPM_LSMODE = 1  
6.0 V  
5.0 V  
25%  
duty = 0%  
speed up  
0%  
800h  
000  
7FFh  
VSPM[11:0]  
Figure 61. Spindle PWM Control (Low Speed Mode)  
9.1.5.4 Spindle Driver Current Limiting Circuit  
The current limit circuit monitors the RCS voltage at ICOM pin, and limits the output current by reducing PWM  
duty, when detecting overcurrent conditions.  
9.1.6 Sled Driver Part  
The Sled driver outputs the PWM pulse set as DAC code (VSLDx) with current feed back. The maximum output  
is restricted to 440 mA at 0x7FF and 0x800. A dead band which output = 0 exists in the width of plus or minus  
0x33 focusing on zero.  
54  
Copyright © 2015, Texas Instruments Incorporated  
 
TPIC2010  
www.ti.com.cn  
ZHCSEF8 DECEMBER 2015  
Figure 62. Sled Output Current  
Both outputs of SLED1/2 are “H” when input code is in dead band.  
9.1.6.1 End Detect Function  
This device has the function of end position detection for Sled and Collimator lens. This function aim to eliminate  
the position switch at PUH inner and collimator lens end position. This function is enabled by ENDDET_ENA = 1  
with setting object actuator (ENDDET_SLCT = 0: for Sled ENDDET_SLCT = 1: for Step). When this function is  
enabled, internal logic will detect the sled out zero-cross point and at that time, internal BEMF detect circuit  
measures the BEMF level of stepping motor. There’re four threshold levels. If BEMF is lower than selected  
threshold, device recognizes motor at stop and ENDDET bit to 1. ENDDET bit will be cleared at the BEMF  
voltage exceed threshold again.  
ENDDET_ ENA= 1, ENDDET_ SEL= 0  
1
ENDDET  
I SLEDx  
Sled m otor  
BEMF  
dead end  
Figure 63. Timing of Sled End Detection  
For the purpose of getting correct stepping motor BEMF, we recommend to choose more than 110Hz  
(440pps) control frequency. However this control frequency depends on the stepping motor characteristic.  
BEMF detection level is selectable 22, 46, 86 mV.  
Copyright © 2015, Texas Instruments Incorporated  
55  
TPIC2010  
ZHCSEF8 DECEMBER 2015  
www.ti.com.cn  
Figure 64. Timing of Step End Detection  
Recommended control speed is around 1200 pps for getting correct BEMF level. It depends on the stepping  
motor characteristic. Please evaluate on your condition adequately.  
BEMF detection level is selectable 19, 39, 60 mV.  
9.1.7 Load Driver Part  
Load driver outputs the voltage with voltage feed back corresponding to the input DAC value. This channel has  
power voltage compensation thus it is suit for Slot-in type load control. This channel becomes active exclusively  
to other actuator channels. Load driver is shared with the TRK driver.  
Figure 65. Load Output Duty  
Output voltage is controlled by PWM  
Both LOAD+ and LOAD- are connected to PGND through the internal clamp diode respectively.  
56  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2010  
www.ti.com.cn  
ZHCSEF8 DECEMBER 2015  
9.1.8 Focus/Track/Tilt Driver Part  
9.1.8.1 Input vs Output Duty  
PW M output duty  
100%  
P5V  
reverse  
forw ard  
ACT+ < ACT-  
ACT+ > ACT-  
0%  
800h  
000  
7FFh  
ACT(FCS/TRK/TLT)[11:0]  
Figure 66. FCS/TRK/TLT Output Duty  
9.1.8.2 Differential Tilt Mode  
TPIC2010 support differential Tilt mode which output the value calculated from Focus and Tilt. Focus and Tilt can  
be set in differential mode by DIFF_TLT (REG74) = 1. Because Focus and Tilt are updated at the same time, the  
update interval of Tilt can be thinned out. Output data changes at after writing VFCS data. Therefore it’s  
necessary to write VFCS data when set VTLT. In differential mode, the output value is calculated as follows.  
FCS_OUT = (VFCS + VTLT) × 6  
TLT_OUT = (VFCS – VTLT) × 6  
(3)  
(4)  
9.1.9 2-Channel Synchronous DC-DC Converter  
TPIC2010 has two channels synchronous step-down DC-DC converters. Two converters operate with a 120-  
degree turn-on phase shift of the PMOS (high side) transistors. It prevents the high side switches of both  
regulators to be turned on simultaneously, and therefore smooth the input current. This feature reduces the surge  
current drawn from the supply.  
Switching frequency is 2.5 MHz. Because the ripple current in the coil can reduce, the smaller inductor value can  
be selected. And the inductor with lowest DC resistance can be selected for highest efficiency. And the  
regulators have fast transient response.  
9.1.9.1 V1Px DC-DC Converter  
The V1Px is a DC-DC converter producing an output 1.0, 1.2, 1.5 V. It only requires an external inductor and  
bypass capacitor(s). The gate drivers and compensations are all internal to the chip. The required input supply is  
5 V for P5V_SW. It has a soft start approximately about 0.8ms to limit the in-rush current when the regulator  
comes alive. The soft-start circuit uses the internal clock to profile its ramp.  
It is able to up 2%, 3.8% and 5.5% of the output voltage by setting SWR1_VOUTUP[2] (REG6D) for 1.2 V, 1.5 V.  
For 1.0 V, up to 1.3%, 2.4% and 3.3%.  
Copyright © 2015, Texas Instruments Incorporated  
57  
TPIC2010  
ZHCSEF8 DECEMBER 2015  
www.ti.com.cn  
9.1.9.2 V3P3 DC-DC Converter  
V3P3 is a DC-DC converter producing an output of 3.3 V. It only requires an external inductor and bypass  
capacitor(s). The gate drivers and compensations are all internal to the chip. The required input supply is 5 V. It  
has a 0.8ms soft start to limit the in-rush current when the regulator comes alive. The soft-start circuit uses the  
internal clock to profile its ramp.  
9.1.9.3 Setup When Not Using DC-DC Converter  
When not using DC-DC converter, it recommends that each terminal makes the following connection.  
Table 40. Not Using DC-DC Converter  
PIN NAME  
SWR_SEQ1  
SWR_SEQ2  
V1PXSEL  
FB1PX  
PIN NO.  
18  
CONNECTION  
5V (H)  
5V (H)  
5V (H)  
OPEN  
5V  
19  
20  
25  
P5V_SW  
REG1PX  
PGND_SW  
REG3P3  
26  
27  
OPEN  
GND  
28  
29  
OPEN  
OPEN  
FB3P3  
30  
9.1.9.4 Discontinuous Regulation Mode  
The regulation mode called discontinuous regulation mode improves the conversion efficiency at a low current  
loading by changing regulation timing. Discontinuous mode is able to set 1 to SWx_MD_BURST (REG6D) bit.  
Figure 67 shows the discontinuous regulation action. The current consumption has been reduced by shortening  
the energizing time of driving FET. On the other hand, DC voltage ripple grows.  
CLK2.5 MHz  
• • • •  
SWR1_MD_BURST  
Discontinuous Mode  
FB1PX  
• • • •  
• • • •  
REG1PX  
REG1PX  
Output Hi-Z term  
• • • •  
REG1PX  
Output Hi-Z  
Figure 67. Discontinuous Regulation Mode  
9.1.10 Monitor Signal on GPOUT  
The device can output a specific signal to the GPOUT pin. To output a signal, choose a signal from REG6F by  
enabling first, then enable GPOUT_ENA. When two or more signals are set for GPOUT, the output is a logical  
sum  
58  
Copyright © 2015, Texas Instruments Incorporated  
 
TPIC2010  
www.ti.com.cn  
ZHCSEF8 DECEMBER 2015  
9.2 Typical Application  
P5V  
TPIC2010  
P5V_2  
1
2
3
4
5
6
7
8
9
LOAD+  
LOAD-  
STP1+  
STP1-  
STP2+  
STP2-  
CP3  
56  
55  
SLED2-  
SLED2+ 54  
SLED1- 53  
SLED1+  
PGND_2  
52  
51  
ISENSE 50  
ICOM2 49  
0.22 Ω  
0.1 µF  
CP2  
W
W
P5V_SPM2  
U
CP1  
48  
47  
46  
0.1 µF  
SSZ  
10 SSZ  
U
V
SCLK  
SIMO  
11 SCLK  
12 SIMO  
ICOM1 45  
SOMI  
3.3V  
XRESET  
V
13 SOMI  
44  
14 SIOV  
P5V_SPM1 43  
M-COM 42  
PGND_1 41  
TRK- 40  
MCOM  
15 XRESET  
16 XFG  
XFG  
XMUTE  
17 XMUTE  
18 SWR_SEQ1  
19 SWR_SEQ2  
TRK+ 39  
FCS- 38  
V1PXSEL  
CV3P3  
20  
21  
FCS+ 37  
TLT- 36  
0.1 µF  
22 A5V  
TLT+ 35  
1 µF  
23 AGND  
P5V_1 34  
LEDO 33  
CSWI 32  
CSWO 31  
FB3P3 30  
LEDO  
XFG  
GPOUT  
24  
GPOUT  
25 FB1PX  
26 P5V_SW  
27 REG1PX  
28 PGND_SW  
XMUTE  
10 µF  
1.x V  
output  
3.3 V  
output  
REG3P3  
29  
10 µF  
10 µF  
Figure 68. Typical Application Circuit  
9.2.1 Design Requirements  
To begin the design process, determine the following:  
1. Motor configuration: The user can use all motor channels or some of them.  
2. Power up devices with a 5-V supply.  
9.2.2 Detailed Design Procedure  
After power up on 5-V supply, the following values may be written to the following registers to enable motors.  
1. Set WRITE_ENABLE = 1 on REG76 via SPI.  
2. Set XSLEEP = 1 at REG70  
3. Enable motor channel by ENA_XXX bits on REG70  
4. Change the DAC settings for each motor in REG01-0B. Then, output channels will start driving load.  
Copyright © 2015, Texas Instruments Incorporated  
59  
TPIC2010  
ZHCSEF8 DECEMBER 2015  
www.ti.com.cn  
Typical Application (continued)  
Table 41. Recommended External Components  
PIN  
A5V  
TO  
AGND  
FUNCTION  
Noise decoupling  
VALUE (RATE)  
1.0 (10%16V)  
10.0 (10%16V)  
10.0 (10%16V)  
10.0 (10%16V)  
10.0 (10%16V)  
1.0 (10%16V)  
1.5 (20% 1.2A)  
10.0 (10%10V)  
0.1 (10%10V)  
0.22 (1% 1W)  
10000(10% 16V)  
10000(10% 16V)  
1.5 (20% 1.2A)  
10.0 (10% 10V)  
0.1 (10% 25V)  
0.1 (10% 25V)  
UNIT  
μF  
μF  
μF  
μF  
μF  
μF  
µH  
μF  
μF  
Ω
P5V1  
PGND  
Noise decoupling  
P5V2  
PGND  
Noise decoupling  
P5V_SW  
P5V_SPM  
SIOV  
PGND_SW  
PGND  
Noise decoupling  
Noise decoupling  
AGND  
Noise decoupling  
REG1PX  
FB1PX  
CV3P3  
ISENSE  
LOAD+  
LOAD-  
REG3P3  
FB3P3  
CP1  
FB1PX  
PGND_SW  
AGND  
Inductor (ESR = 0.1 Ω) for DC-DC converter  
Capacitor (ESR = 0.025 Ω)  
Noise decoupling for internal 3.3V  
Spindle current sense resistor  
Prevent surge current  
PGND  
PGND  
pF  
pF  
µH  
μF  
μF  
μF  
PGND  
Prevent surge current  
FB3P3  
PGND_SW  
CP2  
Inductor (ESR = 0.1 Ω)  
Capacitor (ESR = 0.025 Ω)  
Charge pump capacitor  
CP3  
P5V  
Charge pump capacitor (P5V only, prohibit  
other power supply)  
Table 42. Specific for DC-DC Converter Components  
COMPONENTS  
RECOMMENDED VALUE  
1.5 (µH)  
RECOMMENDED SUPPLIER  
TAIYO YUDEN  
PART NUMBER  
Inductor  
BRL2518T1R5M  
Capacitor  
10 (µF)  
MURATA  
GRM21BB31A106KE18L  
Table 43. Restriction of Selection Parts  
PIN  
CSWO  
VALUE  
GROUNDS  
Less than 4.7 µF  
Since voltage will not rise within monitoring time if a big capacitance is connected on  
CSWO, the protected operation operates and repeat On / Off .  
9.2.3 Application Curves  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
TLT1-  
LOAD-  
40  
20  
0
TLT1+  
LOAD+  
-3000  
-2000  
-1000  
0
1000  
2000  
3000  
D003  
-3000  
-2000  
-1000  
0
1000  
2000  
3000  
D004  
DAC Code  
DAC Code  
Figure 69. DAC Code vs Duty Cycle for TLT Outputs  
Figure 70. DAC Code vs Duty Cycle for LOAD Outputs  
60  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2010  
www.ti.com.cn  
ZHCSEF8 DECEMBER 2015  
10 Power Supply Recommendations  
All driver channels should be operated after the required power is supplied and stable.  
The appropriate capacity of the decoupling capacitor requires a value over 10 μF to reduce the influence of PWM  
switching noise. The P5V1, P5V2,P5V_SW, and P5V_SPM pins must connect to 10-μF decoupling capacitors.  
Current flow to the driver circuits takes both pattern-layout, line-impedance, and noise influence from the supply  
line into consideration.  
11 Layout  
11.1 Layout Guidelines  
1. CV3P3V requires an external capacitor. Because this is a reference voltage for device, locate the capacitor  
as close to device as possible. Keep away from noise sources.  
2. TI recommends SCLK ground shielding.  
3. Place the inductors for the DC-DC converters as close to the chip as possible, and keep the feedback lines  
to the FB3P3 and FB1PX pins as short as possible.  
11.2 Layout Example  
To MPU  
To MPU  
GPOUT  
To MPU  
XFG  
XMUTE  
SSZ  
GND Shield  
SCLK  
To MPU  
GND Shield  
SIMO  
SOMI  
SIOV  
To MPU  
To MPU  
To 3.3-V supply  
1.x V output  
Figure 71. Layout Recommendation  
版权 © 2015, Texas Instruments Incorporated  
61  
TPIC2010  
ZHCSEF8 DECEMBER 2015  
www.ti.com.cn  
12 器件和文档支持  
12.1 器件支持  
12.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
12.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.3 商标  
E2E is a trademark of Texas Instruments.  
蓝光碟 is a trademark of Blu-ray Disc Association.  
All other trademarks are the property of their respective owners.  
12.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
62  
版权 © 2015, Texas Instruments Incorporated  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2016, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPIC2010RDFDRG4  
ACTIVE  
HTSSOP  
DFD  
56  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-20 to 75  
2010  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TPIC2030

TPIC2030 具有单通道降压稳压器、由串行 I/F 控制的 7 通道电机驱动器
TI

TPIC2030DBTRG4

TPIC2030 具有单通道降压稳压器、由串行 I/F 控制的 7 通道电机驱动器 | DBT | 44 | -20 to 75
TI

TPIC2040

TPIC2040 用于 ODD 驱动、由串行接口控制的 7 通道电机驱动器
TI

TPIC2040DBTRG4

TPIC2040 用于 ODD 驱动、由串行接口控制的 7 通道电机驱动器 | DBT | 38 | -20 to 75
TI

TPIC2050

TPIC2050 具有 3 波束激光二极管驱动器、由串行接口控制的 9 通道电机驱动器
TI

TPIC2050RDFDRG4

TPIC2050 具有 3 波束激光二极管驱动器、由串行接口控制的 9 通道电机驱动器 | DFD | 56 | -20 to 75
TI

TPIC2060A

TPIC2060A 用于 ODD 的串行 I/F 控制的 9 通道电机驱动器
TI

TPIC2060ADFDRG4

TPIC2060A 用于 ODD 的串行 I/F 控制的 9 通道电机驱动器 | DFD | 56 | -20 to 75
TI

TPIC2101

DC BRUSH MOTOR CONTROLLER
TI

TPIC2101D

DC BRUSH MOTOR CONTROLLER
TI

TPIC2101DG4

Single Phase Low-Side Pre-FET Driver 14-SOIC -40 to 125
TI

TPIC2101DR

Single Phase Low-Side Pre-FET Driver 14-SOIC
TI