TPD3S014 [TI]

适用于 USB 主机端口的限流开关和 D+/D- ESD 保护器件;
TPD3S014
型号: TPD3S014
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于 USB 主机端口的限流开关和 D+/D- ESD 保护器件

开关
文件: 总31页 (文件大小:2402K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPD3S014, TPD3S044  
ZHCSD89A OCTOBER 2014REVISED JANUARY 2015  
TPD3S0x4 针对 USB 主机端口的限流开关和 D+/D– ESD 保护  
1 特性  
3 说明  
1
连续额定电流为 0.5A 1.5A  
TPD3S0x4 集成器件配有一个限流负载开关和一个基  
于双通道瞬态电压抑制器 (TVS) 的静电放电 (ESD) 保  
护二极管阵列,适用于 USB 接口。  
恒定电流限制固定为 0.85A 和  
2.15A(典型值)  
快速过流响应 – 2μs  
集成输出放电  
TPD3S0x4 器件适用于可能出现大电容负载和短路的  
应用(如 USB 接口);TPD3S0x4 可提供短路保护和  
过流保护。 当输出负载超过电流限制阈值  
反向电流阻断  
短路保护功能  
时,TPD3S0x4 通过在恒定电流模式下运行即可将输  
出电流限制到安全水平。 快速过载响应特性有助于减  
5V 主电源的负担,当输出短路时可以快速调节电  
源。 电流限制开关的上升和下降此时受到控制,力求  
尽量减小器件开关过程中的浪涌电流。  
过热保护,支持自动重启  
内置软启动  
环境温度范围:-40°C 85°C  
产品遵从规范  
UL 认证元件(UL 2367,固态过流保护器标准)  
TPD3S014 TPD3S044 的连续电流分别为 0.5A 和  
1.5ATVS 二极管阵列的额定 ESD 冲击消散值高于  
IEC 61000-4-2 国际标准中规定的最高水平。 此器件  
高度集成,并且采用易于布线的 DBV 封装,可对便携  
式计算机、高清数字 TV 和机顶盒等应用中的 USB 接  
口提供强力的电路保护。  
CB 文件号 E169910 IEC 60950-1,信息技  
术设备  
IEC 61000-4-2 4 级静电放电 (ESD) 保护(外部引  
脚)  
±12kV 接触放电 (IEC 61000-4-2)  
±15kV 空气间隙放电 (IEC 61000-4-2)  
器件信息(1)  
2 应用  
器件型号  
TPD3S0x4  
封装  
封装尺寸(标称值)  
USB 端口/集线器  
DBV (6)  
2.90mm x 2.80mm  
便携式计算机,台式机  
高清数字电视  
机顶盒  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
4 简化电路原理图  
From Processor  
5V Source  
TPD3S0x4  
EN  
IN  
OUT  
0.1 µF  
150 µF  
USB3.0 Port  
GND  
D1  
D2  
VBUS  
D-
USB Transceiver  
D+
TX+  
TX-  
TPD4E05U06  
RX+  
RX-  
GND  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SLVSCP4  
 
 
 
 
 
TPD3S014, TPD3S044  
ZHCSD89A OCTOBER 2014REVISED JANUARY 2015  
www.ti.com.cn  
目录  
9.1 Overview ................................................................. 12  
9.2 Functional Block Diagram ....................................... 12  
9.3 Feature Description................................................. 12  
9.4 Device Functional Modes........................................ 16  
10 Application and Implementation........................ 17  
10.1 Application Information.......................................... 17  
10.2 Typical Application ............................................... 17  
11 Power Supply Recommendations ..................... 21  
12 Layout................................................................... 21  
12.1 Layout Guidelines ................................................. 21  
12.2 Layout Examples................................................... 21  
13 器件和文档支持 ..................................................... 23  
13.1 相关链接................................................................ 23  
13.2 ....................................................................... 23  
13.3 静电放电警告......................................................... 23  
13.4 术语表 ................................................................... 23  
14 机械封装和可订购信息 .......................................... 23  
1
2
3
4
5
6
7
8
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
简化电路原理图........................................................ 1  
修订历史记录 ........................................................... 2  
Device Comparison ............................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
8.1 Absolute Maximum Ratings ...................................... 4  
8.2 ESD Ratings ............................................................ 4  
8.3 Recommended Operating Conditions....................... 4  
8.4 Thermal Information.................................................. 5  
8.5 Electrical Characteristics: TJ = TA = 25°C................. 5  
8.6 Electrical Characteristics: –40°C TJ 125°C......... 6  
8.7 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 12  
9
5 修订历史记录  
Changes from Original (October 2014) to Revision A  
Page  
已将文档更新为完整版。 ....................................................................................................................................................... 1  
2
Copyright © 2014–2015, Texas Instruments Incorporated  
 
TPD3S014, TPD3S044  
www.ti.com.cn  
ZHCSD89A OCTOBER 2014REVISED JANUARY 2015  
6 Device Comparison  
MAXIMUM OPERATING  
OUTPUT  
DISCHARGE  
PACKAGED DEVICE AND MARKING  
SOT23-6 (DBV)  
PART NUMBER  
ENABLE  
CURRENT  
TPD3S014  
TPD3S044  
0.5 A  
Y
Y
High  
High  
SII  
1.5 A  
SIJ  
7 Pin Configuration and Functions  
DBV PACKAGE  
SOT23 6-PIN  
(2.9 mm × 2.8 mm × 1.45 mm)  
6
5
4
1
2
3
D2  
D1  
EN  
GND  
IN  
OUT  
Pin Functions  
PIN  
DESCRIPTION  
NAME  
D1  
NO.  
5
USB data+ or USB data–  
D2  
6
EN  
1
Enable input, logic high turns on power switch  
Ground  
GND  
2
Input voltage and power-switch drain; Connect a 0.1 µF or greater ceramic capacitor from IN to GND close to the  
IC  
IN  
3
4
OUT  
Power-switch output, connect to load  
Copyright © 2014–2015, Texas Instruments Incorporated  
3
 
TPD3S014, TPD3S044  
ZHCSD89A OCTOBER 2014REVISED JANUARY 2015  
www.ti.com.cn  
8 Specifications  
8.1 Absolute Maximum Ratings  
over operating free-air temperature (unless otherwise noted)(1)(2)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–6  
MAX  
UNIT  
VIN  
6
6
6
6
6
6
VOUT  
Input voltage(3)  
EN  
D1  
D2  
V
Voltage range from VIN to VOUT  
Junction temperature, TJ  
V
Internally limited  
Storage temperature range, Tstg  
–65  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Voltages are with respect to GND unless otherwise noted.  
(3) See the Input and Output Capacitance section.  
8.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
All pins  
All pins  
±2000  
Charged device model (CDM), per JEDEC specification  
JESD22-C101(2)  
±500  
Electrostatic  
discharge  
V(ESD)  
V
IEC 61000-4-2 Contact Discharge(3)  
IEC 61000-4-2 Air-Gap Discharge(3)  
VOUT, Dx pins  
VOUT, Dx pins  
±12000  
±15000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as ±2000  
V may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±500 V  
may actually have higher performance.  
(3) VOUT was tested on a PCB with input and output bypassing capacitors of 0.1 µF and 120 µF, respectively.  
8.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
0
NOM  
MAX  
5.5  
UNIT  
V
VIN  
VEN  
VIH  
VIL  
Input voltage  
Input voltage, EN  
5.5  
V
High-level Input voltage, EN  
Low-level Input voltage, EN  
Input de-coupling capacitance, IN to GND  
Continuous output current (TPD3S014)  
Continuous output current (TPD3S044)  
Operating junction temperature  
2
V
0.7  
V
CIN  
0.1  
µF  
0.5  
1.5  
(1)  
IOUT  
TJ  
A
–40  
125  
°C  
(1) Package and current ratings may require an ambient temperature derating of 85°C  
4
Copyright © 2014–2015, Texas Instruments Incorporated  
 
 
TPD3S014, TPD3S044  
www.ti.com.cn  
ZHCSD89A OCTOBER 2014REVISED JANUARY 2015  
8.4 Thermal Information  
TPD3S0x4  
THERMAL METRIC(1)(2)  
DBV  
6 PINS  
185.8  
124.7  
32.0  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
RθJC(top)  
RθJB  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
See the Power Dissipation and Junction Temperature section  
23.7  
°C/W  
ψJB  
31.5  
RθJC(bot)  
N/A  
RθJA(Custom)  
120.3  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
(2) See Device Comparison Table.  
8.5 Electrical Characteristics: TJ = TA = 25°C  
Unless otherwise noted: VIN = 5 V, VEN = VIN, IOUT = 0 A. See Device Comparison for the rated current of each part number.  
Parametrics over a wider operational range are shown in the second Electrical Characteristics: –40°C TJ 125°C table.  
PARAMETER  
POWER SWITCH  
TEST CONDITIONS(1)  
MIN  
TYP  
MAX  
UNIT  
TPD3S014  
97  
96  
74  
74  
110  
130  
91  
TPD3S014: –40°C (TJ, TA) 85°C  
TPD3S044  
RDS(on)  
Input – Output resistance  
mΩ  
TPD3S044: –40°C (TJ, TA) 85°C  
106  
CURRENT LIMIT  
TPD3S014  
TPD3S044  
0.67  
1.70  
0.85  
2.15  
1.01  
2.50  
(2)  
IOS  
Current limit, see Figure 27  
A
SUPPLY CURRENT  
IOUT = 0A  
0.02  
66  
1
2
ISD  
Supply current, switch disabled  
µA  
µA  
–40°C (TJ, TA) 85°C, VIN = 5.5 V, IOUT = 0 A  
IOUT = 0A  
74  
85  
1
ISE  
Supply current, switch enabled  
Reverse leakage current  
–40°C (TJ, TA) 85°C, VIN = 5.5 V, IOUT = 0 A  
VOUT = 5 V, VIN = 0 V, Measure IVOUT  
0.2  
IREV  
µA  
–40°C (TJ, TA) 85°C, VOUT = 5 V, VIN = 0 V,  
measure IVOUT  
5
OUTPUT DISCHARGE  
RPD  
Output pull-down resistance(3)  
VIN = VOUT = 5 V, disabled  
400  
456  
600  
Ω
ESD PROTECTION  
Differential capacitance between  
the D1, D2 lines  
ΔCIO  
ƒ = 1 MHz, VIO = 2.5 V  
0.02  
1.4  
pF  
pF  
CIO  
(D1, D2 to GND)  
ƒ = 1 MHz, VIO = 2.5 V  
Dx to GND  
Dynamic on-resistance D1, D2  
IEC clamps(4)  
RDYN  
0.2  
Ω
GND to Dx  
(1) Pulsed testing techniques maintain junction temperature approximately equal to ambient temperature  
(2) See Current Limit for explanation of this parameter.  
(3) These Parameters are provided for reference only, and do not constitute a part of TI’s published device specifications for purposes of  
TI’s product warranty.  
(4) RDYN was extracted using the least squares first of the TLP characteristics between I = 20A and I = 30A.  
Copyright © 2014–2015, Texas Instruments Incorporated  
5
 
 
TPD3S014, TPD3S044  
ZHCSD89A OCTOBER 2014REVISED JANUARY 2015  
www.ti.com.cn  
8.6 Electrical Characteristics: –40°C TJ 125°C  
Unless otherwise noted: 4.5 V VIN 5.5 V, VEN = VIN, IOUT = 0 A, typical values are at 5 V and 25°C. See the Device  
Comparison for the rated current of each part number.  
PARAMETER  
POWER SWITCH  
TEST CONDITIONS(1)  
MIN  
TYP  
MAX  
UNIT  
TPD3S014  
TPD3S044  
97  
74  
154  
121  
RDS(on)  
Input – output resistance  
mΩ  
ENABLE INPUT (EN)  
Threshold  
Input rising  
VEN = 0 V  
1
1.45  
0.13  
0
2
V
V
Hysteresis  
Leakage current  
–1  
1
1
µA  
VIN = 5 V, CL = 1 µF, RL = 100 Ω, EN ↑  
See Figure 26  
tON  
Turn on time  
1.6  
2.1  
2.2  
ms  
ms  
VIN = 5 V, CL = 1 µF, RL = 100 Ω, EN ↓  
See Figure 26  
tOFF  
Turn off time  
1.7  
2.7  
tR  
tF  
Rise time, output  
Fall time, output  
CL = 1 µF, RL = 100 Ω, VIN = 5 V, See Figure 25  
CL = 1 µF, RL = 100 Ω, VIN = 5 V, See Figure 25  
0.4  
0.64  
0.4  
0.9  
0.8  
ms  
ms  
0.25  
CURRENT LIMIT  
TPD3S014  
TPD3S044  
0.65  
1.60  
0.85  
2.15  
1.05  
2.70  
(2)  
IOS  
Current limit, see Figure 27  
A
VIN = 5 V (see Figure 27)  
One Half full load RSHORT = 50 mΩ Measure  
from application to when current falls below  
120% of final value  
tIOS  
Short-circuit response time(3)  
2
µs  
SUPPLY CURRENT  
ISD  
Supply current, switch disabled  
IOUT = 0 A  
0.02  
66  
10  
94  
20  
µA  
µA  
µA  
ISE  
Supply current, switch enabled  
Reverse leakage current  
IOUT = 0 A  
IREV  
VOUT = 5.5 V, VIN = 0 V, Measure IVOUT  
0.2  
UNDERVOLTAGE LOCKOUT  
VUVLO  
Rising threshold  
Hysteresis  
VIN  
3.5  
3.77  
0.14  
4
V
V
VIN  
OUTPUT DISCHARGE  
VIN = 4 V, VOUT = 5 V, Disabled  
VIN = 5 V, VOUT = 5 V, Disabled  
350  
300  
545  
456  
1200  
800  
RPD  
Output pull-down resistance  
Ω
THERMAL SHUTDOWN  
In current limit  
135  
155  
TSHDN  
Rising threshold (TJ)  
Hysteresis(3)  
ESD PROTECTION  
°C  
°C  
Not in current limit  
20  
II  
Input leakage current (D1, D2)  
VI = 3.3 V  
IO = 8 mA  
IBR = 1 mA  
0.02  
1
µA  
V
Diode forward voltage (D1, D2);  
Lower clamp diode  
VD  
VBR  
0.95  
Breakdown voltage (D1, D2)  
6
V
(1) Pulsed testing techniques maintain junction temperature approximately equal to ambient temperature  
(2) See Current Limit section for explanation of this parameter.  
(3) These parameters are provided for reference only, and do not constitute part of TI’s published device specifications for purposes of TI’s  
product warranty.  
6
Copyright © 2014–2015, Texas Instruments Incorporated  
TPD3S014, TPD3S044  
www.ti.com.cn  
ZHCSD89A OCTOBER 2014REVISED JANUARY 2015  
8.7 Typical Characteristics  
IOUT  
VIN  
VOUT  
IN  
OUT  
0.1µF1  
RLOAD  
150µF  
Enable  
Signal  
EN  
D1  
D2  
GND  
(1) During the short applied tests, 300µF is used because of the use of an external supply.  
Figure 1. Test Circuit for System Operation in Typical Characteristics  
7.5  
1.5  
1.4  
1.3  
1.2  
1.1  
1
7.5  
1.5  
1.4  
1.3  
1.2  
1.1  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
IN  
IN  
OUT  
EN  
7
6.5  
6
7
6.5  
6
5.5  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
0
OUT  
EN  
IOUT  
IOUT  
5.5  
5
4.5  
4
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
3.5  
3
2.5  
2
1.5  
1
0.5  
0
-6  
-4  
-2  
0
2
4 6  
Time (ms)  
8
10 12 14 16  
D001  
-6  
-4  
-2  
0
2
4
6
8
10 12 14 16  
Time (ms)  
D001  
Figure 2. TPD3S014 Turn ON Into 10  
Figure 3. TPD3S014 Enable into Short  
7.5  
7
6.5  
6
5.5  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
56  
7.5  
7
6.5  
6
5.5  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
1.2  
IN  
OUT  
IOUT  
IN  
OUT  
EN  
IOUT  
52  
48  
44  
40  
36  
32  
28  
24  
20  
16  
12  
8
1.12  
1.04  
0.96  
0.88  
0.8  
0.72  
0.64  
0.56  
0.48  
0.4  
0.32  
0.24  
0.16  
0.08  
0
CIN = 300 PF, COUT = 150 PF  
4
0
-4  
0
0
-10  
-5  
0
5
10  
15  
20  
25  
30  
35  
-4  
-2  
0
2
4
6
8
10 12 14 16 18  
Time (ms)  
Time (µs)  
D001  
D001  
Figure 4. TPD3S014 Pulsed Output Short  
Figure 5. TPD3S014 Short Applied  
Copyright © 2014–2015, Texas Instruments Incorporated  
7
 
TPD3S014, TPD3S044  
ZHCSD89A OCTOBER 2014REVISED JANUARY 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
7.5  
7
6.5  
6
2.25  
2.1  
1.95  
1.8  
7.5  
7
6.5  
6
3.75  
3.5  
3.25  
3
IN  
OUT  
EN  
IN  
OUT  
EN  
IOUT  
IOUT  
5.5  
5
4.5  
4
1.65  
1.5  
1.35  
1.2  
5.5  
5
4.5  
4
2.75  
2.5  
2.25  
2
3.5  
3
2.5  
2
1.05  
0.9  
0.75  
0.6  
3.5  
3
2.5  
2
1.75  
1.5  
1.25  
1
1.5  
1
0.5  
0.45  
0.3  
0.15  
1.5  
1
0.5  
0.75  
0.5  
0.25  
0
0
0
0
-8  
-6  
-4  
-2  
0
2
4
6
8
10 12 14  
-8  
-6  
-4  
-2  
0
2
4
6
8
10 12 14  
Time (ms)  
Time (ms)  
D001  
D001  
Figure 6. TPD3S044 Turn ON Into 3.3Ω  
Figure 7. TPD3S044 Enable Into Short  
7
6.5  
6
5.5  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
0
70  
7.5  
7
6.5  
6
5.5  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
3.75  
IN  
OUT  
IOUT  
IN  
OUT  
EN  
IOUT  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
3.5  
3.25  
3
2.75  
2.5  
2.25  
2
1.75  
1.5  
1.25  
1
0.75  
0.5  
0.25  
0
CIN = 300 PF, COUT = 150 PF  
0
-5  
-10  
-0.5  
-1  
0
-40 -30 -20 -10  
0
10 20 30 40 50 60 70  
Time (ms)  
-5  
0
5
10  
15  
Time (µs)  
20  
25  
30  
35  
40  
D001  
D001  
Figure 8. TPD3S044 Pulsed Output Short  
Figure 9. TPD3S044 Short Applied  
7
6
14  
12  
10  
8
-40°C  
VIN = 5V  
25°C  
85°C  
125°C  
5
4
3
6
2
4
1
2
0
0
-1  
-40  
-2  
-20  
0
20  
40  
60  
80  
100 120 140  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Junction Temperature (qC)  
D007  
Output Voltage (V)  
D001  
Figure 10. Reverse Leakage Current (IREV) vs Temperature  
Figure 11. Output Discharge Current vs Output Voltage  
8
Copyright © 2014–2015, Texas Instruments Incorporated  
TPD3S014, TPD3S044  
www.ti.com.cn  
ZHCSD89A OCTOBER 2014REVISED JANUARY 2015  
Typical Characteristics (continued)  
2.4  
0.465  
0.45  
TPD3S014  
TPD3S044  
TPD3S014  
TPD3S044  
COUT = 1 PF, RLOAD = 100 :  
VIN = 5V  
2.2  
2
1.8  
1.6  
1.4  
1.2  
1
0.435  
0.42  
0.405  
0.39  
0.375  
0.36  
0.8  
0.345  
0.6  
0.33  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Junction Temprature (qC)  
Junction Temprature (qC)  
D001  
D001  
Figure 12. Short Circuit Current (IOS) vs Temperature  
Figure 13. Output Fall Time (tF) vs Temperature  
0.8  
2.8  
2.4  
2
TPD3S014  
TPD3S044  
COUT = 1 PF, RLOAD = 100 :  
0.775  
0.75  
0.725  
0.7  
All Unit Types  
1.6  
1.2  
0.8  
0.4  
0
0.675  
0.65  
0.625  
0.6  
0.575  
0.55  
0.525  
0.5  
-0.4  
0.475  
0.45  
-0.8  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Junction Temprature (°C)  
Junction Temprature (qC)  
D001  
D001  
Figure 14. Output Rise Time (tR) vs Temperature  
Figure 15. Disabled Supply Current (ISD) vs Temperature  
3
2.8  
2.6  
2.4  
2.2  
2
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
4
-40 (°C)  
25 (°C)  
85 (°C)  
125 (°C)  
-40 (qC)  
All Unit Types  
All Unit Types, VIN = 0 V  
3.5  
3
25 (qC)  
85 (qC)  
125 (qC)  
2.5  
2
1.5  
1
0.5  
0
-0.2  
-0.5  
4
4.2  
4.4  
4.6  
4.8  
5
5.2  
5.4  
5.6  
4
4.2  
4.4  
4.6  
4.8  
5
5.2  
5.4  
5.6  
Input Voltage (V)  
Output Voltage (V)  
D001  
D001  
Figure 16. Disabled Supply Current (ISD) vs Input Voltage  
Figure 17. Reverse Leakage Current (IREV) vs Output Voltage  
Copyright © 2014–2015, Texas Instruments Incorporated  
9
TPD3S014, TPD3S044  
ZHCSD89A OCTOBER 2014REVISED JANUARY 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
72  
85  
80  
75  
70  
65  
60  
55  
50  
45  
-40 (°C)  
25 (°C)  
85 (°C)  
125 (°C)  
All Unit Types, VIN = 5.5 V  
70  
All Unit Types  
68  
66  
64  
62  
60  
58  
56  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
4
4.2  
4.4  
4.6  
4.8  
5
5.2  
5.4  
5.6  
Junction Temprature (qC)  
Input Voltage (V)  
D001  
D001  
Figure 18. Enabled Supply Current (ISE) vs Temperature  
Figure 19. Enabled Supply Current (ISE) vs Input Voltage  
35  
35  
32.5  
32.5  
30  
27.5  
25  
30  
27.5  
25  
22.5  
20  
22.5  
20  
17.5  
15  
17.5  
15  
12.5  
10  
12.5  
10  
7.5  
5
7.5  
5
2.5  
0
2.5  
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
0.8 1.6 2.4 3.2  
4
4.8 5.6 6.4 7.2  
8
Voltage (V)  
Voltage (V)  
D001  
D001  
Figure 20. TPD3S044 D1/D2 Positive TLP Curve  
Figure 21. TPD3S044 D1/D2 Negative TLP Curve  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1
0.8  
0.6  
0.4  
0.2  
0
D1/D2 Pins  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-10  
-2 -1  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
-25  
0
25  
50  
75 100 125 150 175 200 225  
Time (ns)  
Voltage (V)  
D001  
D001  
Figure 22. D1/D2 I-V Curve  
Figure 23. D1/D2 IEC61000-4-2 +8-kV Contact  
10  
Copyright © 2014–2015, Texas Instruments Incorporated  
TPD3S014, TPD3S044  
www.ti.com.cn  
ZHCSD89A OCTOBER 2014REVISED JANUARY 2015  
Typical Characteristics (continued)  
20  
D1/D2 Pins  
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Time (ns)  
D001  
Figure 24. D1/D2 IEC61000-4-2 –8-kV Contact  
Copyright © 2014–2015, Texas Instruments Incorporated  
11  
TPD3S014, TPD3S044  
ZHCSD89A OCTOBER 2014REVISED JANUARY 2015  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The TPD3S0x4 are highly integrated devices that feature a current limited load switch and a two channel  
Transient Voltage Suppressor (TVS) based Electrostatic Discharge (ESD) protection diode array for USB  
interfaces. The TPD3S014 and TPD3S044 provide 0.5 A and 1.5 A, respectively, of continuous load current in  
5-V circuits. These parts use N-channel MOSFETs for low resistance, maintaining voltage regulation to the load.  
It is designed for applications where short circuits or heavy capacitive loads will be encountered. Device features  
include enable, reverse blocking when disabled, output discharge pull-down, over-current protection, and over-  
temperature protection. Finally, with two channels of TVS ESD protection diodes integrated, TPD3S0x4s provide  
system level ESD protection to all the pins of the USB port.  
9.2 Functional Block Diagram  
Back Gate  
Control  
IN  
Current Limit  
OUT  
UVLO  
Thermal  
Sense  
Control Logic  
+
Charge Pump  
EN  
GND  
D1  
D2  
9.3 Feature Description  
9.3.1 Undervoltage Lockout (UVLO)  
The UVLO circuit disables the power switch until the input voltage reaches the UVLO turn-on threshold. Built-in  
hysteresis prevents unwanted on/off cycling due to input voltage drop from large current surges.  
9.3.2 Enable  
The logic enable input (EN) controls the power switch, bias for the charge pump, driver, and other circuits. The  
supply current is reduced to less than 1 µA when the TPD3S0x4s are disabled. The enable input is compatible  
with both TTL and CMOS logic levels.  
The turn on and turn off times (tON, tOFF) are composed of a delay and a rise or fall time (tR, tF). The delay times  
are internally controlled. The rise time is controlled by both the TPD3S0x4s and the external loading (especially  
capacitance). TPD3S0x4s fall time is controlled by the loading (R and C), and the output discharge (RPD). An  
output load consisting of only a resistor will experience a fall time set by the TPD3S0x4s. An output load with  
parallel R and C elements will experience a fall time determined by the (R × C) time constant if it is longer than  
the TPD3S0x4’s tF. Please see Figure 25 and Figure 26 for a pictural description of tR, tF, tON, and tOFF. The  
enable should not be left open; it may be tied to VIN.  
12  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
TPD3S014, TPD3S044  
www.ti.com.cn  
ZHCSD89A OCTOBER 2014REVISED JANUARY 2015  
Feature Description (continued)  
90%  
10%  
VEN  
tR  
tF  
50%  
tON  
50%  
VOUT  
tOFF  
90%  
VOUT  
10%  
Figure 25. Power-On and Power-Off Timing  
9.3.3 Internal Charge Pump  
Figure 26. Enable Timing, Active-High Enable  
The device incorporates an internal charge pump and gate drive circuitry necessary to drive the N-channel  
MOSFET. The charge pump supplies power to the gate driver circuit and provides the necessary voltage to pull  
the gate of the MOSFET above the source. The driver incorporates circuitry that controls the rise and fall times of  
the output voltage to limit large current and voltage surges on the input supply, and provides built-in soft-start  
functionality. The MOSFET power switch will block current from OUT to IN when turned off by the UVLO or  
disabled.  
9.3.4 Current Limit  
The TPD3S0x4s respond to overloads by limiting output current to the static current-limit (IOS) levels shown in  
the Electrical Characteristics: TJ = TA = 25°C table. When an overload condition is present, the device maintains  
a constant output current, with the output voltage determined by (IOS × RLOAD). Two possible overload conditions  
can occur.  
The first overload condition occurs when either:  
1. The input voltage is first applied, enable is true, and a short circuit is present (load which draws IOUT > IOS) or  
2. The input voltage is present and the TPD3S0x4s are enabled into a short circuit.  
The output voltage is held near zero potential with respect to ground and the TPD3S0x4s ramp the output  
current to IOS. The TPD3S0x4s will limit the current to IOS until the overload condition is removed or the device  
begins to thermal cycle. The device subsequently cycles current off and on as the thermal protection engages.  
The second condition is when an overload occurs while the device is enabled and fully turned on. The device  
responds to the overload condition within tIOS (Figure 27 and Figure 28) when the specified overload (per  
Electrical Characteristics table) is applied. The response speed and shape will vary with the overload level, input  
circuit, and rate of application. The current-limit response will vary between simply settling to IOS, or turnoff and  
controlled return to IOS. Similar to the previous case, the TPD3S0x4s will limit the current to IOS until the overload  
condition is removed or the device begins to thermal cycle.  
IOUT  
VIN  
120% x IOS  
Decreasing  
Load  
Slope = -RDS(ON)  
Resistance  
IOS  
0 A  
tIOS  
0 V  
0 A  
IOUT  
IOS  
Figure 27. Output Short Circuit Parameters  
Figure 28. Output Characteristic Showing Current  
Limit  
Copyright © 2014–2015, Texas Instruments Incorporated  
13  
 
TPD3S014, TPD3S044  
ZHCSD89A OCTOBER 2014REVISED JANUARY 2015  
www.ti.com.cn  
Feature Description (continued)  
The TPD3S0x4s thermal cycle if an overload condition is present long enough to activate thermal limiting in any  
of the above cases. This is due to the relatively large power dissipation [(VIN – VOUT) × IOS] driving the junction  
temperature up. The devices turn off when the junction temperature exceeds 135°C (min) while in current limit.  
The devices remains off until the junction temperature cools 20°C and then restarts.  
There are two kinds of current limit profiles typically available in TI switch products similar to the TPD3S0x4s.  
Many older designs have an output I vs V characteristic similar to the plot labeled "Current Limit with Peaking" in  
Figure 29. This type of limiting can be characterized by two parameters, the current limit corner (IOC), and the  
short circuit current (IOS). IOC is often specified as a maximum value. The TPD3S0x4 parts do not present  
noticeable peaking in the current limit, corresponding to the characteristic labeled "Flat Current Limit" in  
Figure 29. This is why the IOC parameter is not present in the Electrical Characteristics tables.  
Current Limit  
with Peaking  
Flat Current  
Limit  
VIN  
VIN  
Decreasing  
Load  
Decreasing  
Load  
Slope = -RDS(ON)  
Slope = -RDS(ON)  
Resistance  
Resistance  
0 V  
0 V  
0 A  
0 A  
IOUT  
IOUT  
IOS IOC  
IOS  
Figure 29. Current Limit Profiles  
9.3.5 Output Discharge  
A 470-(typical) output discharge resistance will dissipate stored charge and leakage current on OUT when the  
TPD3S0x4s are in UVLO or disabled. The pull-down circuit will lose bias gradually as VIN decreases, causing a  
rise in the discharge resistance as VIN falls towards 0 V.  
9.3.6 Input and Output Capacitance  
Input and output capacitance improves the performance of the device; the actual capacitance should be  
optimized for the particular application. For all applications, a 0.1 µF or greater ceramic bypass capacitor  
between IN and GND is recommended as close to the device as possible for local noise decoupling.  
All protection circuits such as the TPD3S0x4s will have the potential for input voltage overshoots and output  
voltage undershoots.  
Input voltage overshoots can be caused by either of two effects. The first cause is an abrupt application of input  
voltage in conjunction with input power bus inductance and input capacitance when the IN terminal is high  
impedance (before turn on). Theoretically, the peak voltage is 2 times the applied. The second cause is due to  
the abrupt reduction of output short circuit current when the TPD3S0x4s turn off and energy stored in the input  
inductance drives the input voltage high. Input voltage droops may also occur with large load steps and as the  
TPD3S0x4s outputs are shorted. Applications with large input inductance (for example, connecting the evaluation  
board to the bench power-supply through long cables) may require large input capacitance reduce the voltage  
overshoot from exceeding the absolute maximum voltage of the device. The fast current-limit speed of the  
TPD3S0x4s to hard output short circuits isolates the input bus from faults. However, ceramic input capacitance in  
the range of 1 to 22 µF adjacent to the TPD3S0x4s inputs aids in both speeding the response time and limiting  
the transient seen on the input power bus. Momentary input transients to 6.5 V are permitted.  
14  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
 
TPD3S014, TPD3S044  
www.ti.com.cn  
ZHCSD89A OCTOBER 2014REVISED JANUARY 2015  
Feature Description (continued)  
Output voltage undershoot is caused by the inductance of the output power bus just after a short has occurred  
and the TPD3S0x4s have abruptly reduced OUT current. Energy stored in the inductance will drive the OUT  
voltage down and potentially negative as it discharges. Applications with large output inductance (such as from a  
cable) benefit from use of a high-value output capacitor to control the voltage undershoot. When implementing  
USB standard applications, a 120 µF minimum output capacitance is required. Typically a 150-µF electrolytic  
capacitor is used, which is sufficient to control voltage undershoots. However, if the application does not require  
120 µF of capacitance, and there is potential to drive the output negative, a minimum of 10-µF ceramic  
capacitance on the output is recommended. The voltage undershoot should be controlled to less than 1.5 V for  
10 µs.  
9.3.7 Power Dissipation and Junction Temperature  
It is good design practice to estimate power dissipation and maximum expected junction temperature of the  
TPD3S0x4s. The system designer can control choices of the devices proximity to other power dissipating  
devices and printed circuit board (PCB) design based on these calculations. These have a direct influence on  
maximum junction temperature. Other factors, such as airflow and maximum ambient temperature, are often  
determined by system considerations. It is important to remember that these calculations do not include the  
effects of adjacent heat sources, and enhanced or restricted air flow. Addition of extra PCB copper area around  
these devices is recommended to reduce the thermal impedance and maintain the junction temperature as low  
as practical. In particular, connect the GND pin to a large ground plane for the best thermal dissipation. The  
following PCB layout example Figure 30 was used to determine the RθJA Custom thermal impedances noted in  
the Thermal Information table. It is based on the use of the JEDEC high-k circuit board construction with 4, 1 oz.  
copper weight layers (2 signal and 2 plane).  
GND  
D+  
EN  
GND  
IN  
D2  
D1  
D-  
OUT  
VBUS  
OUT: W: 10.424mm, H:4.536mm, A: 47.28mm2  
IN: W: 4.26mm  
H: 5.82mm  
GND: W: 6.57mm, H: 7.53mm, A: 49.47mm2  
& 6 x 0.879mm diameter vias  
A: 24.79mm2  
& 4 x 0.879mm  
diameter vias  
GND: W: 4.44mm, H: 4.00mm, A: 17.76mm2  
& 2 x 0.533mm diameter vias  
Figure 30. PCB Layout Example  
The following procedure requires iteration because power loss is due to the internal MOSFET I2 × RDS(ON), and  
RDS(ON) is a function of the junction temperature. As an initial estimate, use the RDS(ON) at 125°C from the Typical  
Characteristics, and the preferred package thermal resistance for the preferred board construction from the  
Thermal Information table.  
TJ = TA + [(IOUT2 x RDS(ON)) × RθJA  
]
where  
IOUT = rated OUT pin current (A)  
RDS(ON) = Power switch on-resistance at an assumed TJ (Ω)  
TA = Maximum ambient temperature (°C)  
TJ = Maximum junction temperature (°C)  
RθJA = Thermal resistance (°C/W)  
(1)  
15  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
TPD3S014, TPD3S044  
ZHCSD89A OCTOBER 2014REVISED JANUARY 2015  
www.ti.com.cn  
Feature Description (continued)  
If the calculated TJ is substantially different from the original assumption, estimate a new value of RDS(ON) using  
the typical characteristic plot and recalculate.  
If the resulting TJ is not less than 125°C, try a PCB construction with a lower RθJA. Please find the junction  
temperature derating curve based on the TI standard reliability duration in Figure 31.  
130  
TI Standard  
125  
120  
115  
110  
105  
100  
95  
90  
85  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
IOUT (ADC  
)
D001  
Figure 31. Junction Temperature Derating Curve  
9.4 Device Functional Modes  
9.4.1 Operation with VIN < 4 V (Minimum VIN)  
These devices operate with input voltages above 4V. The maximum UVLO voltage on IN is 4V and the devices  
will operate at input voltages above 4 V. Any voltage below 4 V may not work with these devices. The minimum  
UVLO is 3.5 V, so some devices may work between 3.5 V and 4 V. At input voltages below the actual UVLO  
voltage, these devices will not operate.  
9.4.2 Operation With EN Control  
The enable rising edge threshold voltage is 1.45 V typical and 2 V maximum. With EN held below that voltage  
the device is disabled and the load switch will be open. The IC quiescent current is reduced in this state. When  
the EN pin is above its rising edge threshold and the input voltage on the IN pin is above its UVLO threshold, the  
device becomes active. The load switch is closed, and the current limit feature is enabled. The output voltage on  
OUT will ramp up with the soft start value TON in order to prevent large inrush current surges on VBUS due to a  
heavy capacitive load. When EN voltage is lowered below is falling edge threshold, the device output voltage will  
also ramp down with soft turn off value TOFF to prevent large inductive voltages being presented to the system in  
the case a large load current is following through the device.  
9.4.3 Operation of Level 4 IEC61000-4-2 ESD Protection  
Regardless of which functional mode the devices are in, TPD3S0x4 will provide Level 4 IEC61000-4-2 ESD  
Protection on the pins of the USB connector.  
16  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
TPD3S014, TPD3S044  
www.ti.com.cn  
ZHCSD89A OCTOBER 2014REVISED JANUARY 2015  
10 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
TPD3S0x4 are devices that feature a current limited load switch and a two channel Transient Voltage  
Suppressor (TVS) based Electrostatic Discharge (ESD) protection diode array. They are typically used to provide  
a complete protection solution for USB host ports. USB host ports are required by the USB specification to  
provide a current limit on the VBUS path in order to protect the system from over-current conditions on the port  
that could lead to system damage and user injury. Additionally, USB ports typically require system level IEC ESD  
protection due to direct end-user interaction. The following design procedure can be used to determine how to  
properly implement TPD3S0x4s in your systems to provide a complete, one-chip solution for your USB ports.  
10.2 Typical Application  
10.2.1 USB2.0 Application  
From Processor  
5V Source  
TPD3S014  
EN  
OUT  
IN  
0.1 µF  
150 µF  
USB Port  
VBUS  
D-  
GND  
D2  
D1  
USB Transceiver  
D+  
GND  
Figure 32. USB2.0 Application Schematic  
10.2.1.1 Design Requirements  
For this design example, use the following as the system parameters.  
DESIGN PARAMETER  
VALUE  
USB Port Type  
Standard Downstream Port  
0 V to 5.25 V  
Signal Voltage Range on VBUS  
Current Range on VBUS  
0 mA to 500 mA  
330 mV  
Maximum Voltage Droop Allowed on  
Adjacent USB Port  
Maximum Data Rate  
480 Mbps  
Copyright © 2014–2015, Texas Instruments Incorporated  
17  
 
TPD3S014, TPD3S044  
ZHCSD89A OCTOBER 2014REVISED JANUARY 2015  
www.ti.com.cn  
10.2.1.2 Detailed Design Procedure  
To properly implement your USB port with TPD3S0x4s, the first step is to determine what type of USB port you  
are implementing in your system, whether it be a Standard Downstream Port (SDP), Charging Downstream Port  
(CDP), or Dedicated Charging Port (DCP); this will inform you what your maximum continuous operating current  
will be on VBUS. In our example, we are implementing an SDP port, so the maximum continuous current allowed  
to be pulled by a device is 500mA. Therefore, we need to choose a current limit switch that is 5.25V tolerant, can  
handle 500mA continuous DC current, and has a current limit point is above 500 mA so it will not current limit  
during normal operation. TPD3S014 is therefore the best choice for this application, as it has these features, and  
in fact was specifically designed for this application.  
The next decision point is choosing your input and output capacitors for your current limit switch. A minimum of  
0.1 µF is always recommended on the IN pin. For the OUT pin on VBUS, USB standard requires a minimum of  
120 µF; typically a 150 µF capacitor is used. The purpose of the capacitance requirement on the VBUS line in  
the USB specification is to prevent the adjacent USB port's VBUS voltage from dropping more than 330 mV  
during a hot-plug or fault occurrence on the VBUS pin of one USB port. Hot-plugs and fault conditions on one  
USB port should not disturb the normal operation of an adjacent USB port; therefore, it is possible to use an  
output capacitance lower than 120 µF if your system is able to keep voltage droops on adjacent USB ports less  
than or equal to 330 mV. For example, if the DC/DC powering VBUS has a fast transient response, 120 µF may  
not be required.  
If your USB port is powered from a shared system 5V rail, a system designer may desire to use large than 0.1  
µF for the input capacitor on the IN pin. This is largely dependent on your PCB layout and parasitics, as well as  
your maximum tolerated voltage droop on the shared rail during transients. For more information on choosing  
input and output capacitors, please see Input and Output Capacitance in the Detailed Description section.  
The EN pin controls the on and off state of the device, and typically is connected to the system processor for  
power sequencing. However, the EN pin can also be shorted to the IN pin to always have the TPD3S014 on  
when 5V power supply on; this also saves a GPIO pin on your processor.  
For a USB port with High-Speed 480Mbps operation, low capacitance TVS ESD protection diodes are required to  
protect the D+ and D- lines in the event of system level ESD event. TPD3S014 has 2-channels of low  
capacitance TVS ESD protection diodes integrated. When placed near the USB connector, TPD3S014 offers  
little or no signal distortion during normal operation. TPD3S014 also ensures that the core system circuitry is  
protected in the event of an ESD strike. PCB Layout is critical when implementing TVS ESD protection diodes in  
your system; please read the Layout section for proper guidelines on routing your USB lines with TPD3S014.  
18  
Copyright © 2014–2015, Texas Instruments Incorporated  
TPD3S014, TPD3S044  
www.ti.com.cn  
ZHCSD89A OCTOBER 2014REVISED JANUARY 2015  
10.2.1.3 Application Curves  
Figure 33. Eye-Diagram Without EVM  
Figure 34. Eye-Diagram With EVM, Without TPD3S0x4  
Figure 35. Eye-Diagram of TPD3S0x4 on EVM  
Copyright © 2014–2015, Texas Instruments Incorporated  
19  
 
TPD3S014, TPD3S044  
ZHCSD89A OCTOBER 2014REVISED JANUARY 2015  
www.ti.com.cn  
10.2.2 USB3.0 Application  
From Processor  
5V Source  
TPD3S0x4  
EN  
IN  
OUT  
0.1 µF  
150 µF  
USB3.0 Port  
GND  
D1  
D2  
VBUS  
D-
USB Transceiver  
D+
TX+  
TX-  
TPD4E05U06  
RX+  
RX-  
GND  
Figure 36. USB3.0 Application Schematic  
10.2.2.1 Design Requirements  
For this design example, use the following as the system parameters.  
DESIGN PARAMETER  
VALUE  
USB Port Type  
Standard Downstream Port  
0 V to 5.25 V  
Signal Voltage Range on VBUS  
Current Range on VBUS  
0 mA to 900 mA  
330 mV  
Maximum Voltage Droop Allowed on  
Adjacent USB Port  
Maximum Data Rate D+, D- Lines  
480 Mbps  
5 Gbps  
Maximum Data Rate TX+/-, RX+/- Lines  
10.2.2.2 Detailed Design Procedure  
The implementation of the USB3.0 port with TPD3S0x4s is identical to the USB2.0 port, except that in this use  
case we must use TPD3S044 because USB3.0 SDP has a maximum VBUS current 900 mA. TPD3S014 current  
limit level is too low for USB3.0 operation. In addition to using TPD3S044, USB3.0 has four more Super-Speed  
Lines for transferring data 5 Gbps, and these lines also typically require Level 4 IEC61000-4-2 ESD Protection.  
With a data rate of 5 Gbps, ultra-low capacitance TVS ESD protection diodes are required to protect the TX+/–  
and RX+/– lines in the event of system level ESD event. TPD4E05U06 provides 4-channels of ultra-low  
capacitance TVS ESD protection diodes for USB3.0 Super-Speed lines, and can be coupled with TPD3S044 to  
provide a two-chip total protection solution for the USB3.0 Host Port. Please refer to the Layout section of the  
datasheet for guidelines on the PCB Layout of this two-chip solution.  
The rest of the design procedure is identical to the USB2.0 Application section, so please refer to it for the rest of  
the design procedure.  
10.2.2.3 Application Curves  
See Application Curves for TPD3S0x4 Eye-Diagram performance. Please refer to the TPD4E05U06 datasheet  
on ti.com to see its specifications and Eye-Diagram performance.  
20  
Copyright © 2014–2015, Texas Instruments Incorporated  
TPD3S014, TPD3S044  
www.ti.com.cn  
ZHCSD89A OCTOBER 2014REVISED JANUARY 2015  
11 Power Supply Recommendations  
These devices are designed to operate from a 5 V input voltage supply. This input should be well regulated. If  
the input supply is located more than a few inches away from the TPD3S0x4, additional bulk capacitance may be  
required in addition to the recommended minimum 0.1 µF bypass capacitor on the IN pin to keep the input rail  
stable during fault events.  
12 Layout  
12.1 Layout Guidelines  
The optimum placement is as close to the connector as possible.  
EMI during an ESD event can couple from the trace being struck to other nearby unprotected traces,  
resulting in early system failures.  
The PCB designer needs to minimize the possibility of EMI coupling by keeping any unprotected traces  
away from the protected traces which are between the TVS and the connector.  
Route the protected traces as straight as possible.  
Eliminate any sharp corners on the protected traces between the TVS and the connector by using rounded  
corners with the largest radii possible.  
Electric fields tend to build up on corners, increasing EMI coupling.  
12.2 Layout Examples  
GND  
D+  
D-  
EN  
GND  
IN  
D2  
D1  
OUT  
Top Layer GND Plane  
VBUS  
Via  
Figure 37. USB2.0 Type A TPD3S0x4 Board Layout  
Copyright © 2014–2015, Texas Instruments Incorporated  
21  
TPD3S014, TPD3S044  
ZHCSD89A OCTOBER 2014REVISED JANUARY 2015  
www.ti.com.cn  
Layout Examples (continued)  
GND  
SSRX-  
SSRX+  
GND  
TPD4E05U06  
D2-  
D+  
D-  
D2+  
GND GND  
D1-  
GND  
D1+  
SSTX-  
VBUS  
SSTX+  
D1 OUT  
D2  
GND  
TPD3S044  
EN GND  
IN  
Top Layer GND Plane  
Via  
Figure 38. USB3.0 Type A TPD3S044 Board Layout  
22  
版权 © 2014–2015, Texas Instruments Incorporated  
TPD3S014, TPD3S044  
www.ti.com.cn  
ZHCSD89A OCTOBER 2014REVISED JANUARY 2015  
13 器件和文档支持  
13.1 相关链接  
以下表格列出了快速访问链接。 范围包括技术文档、支持与社区资源、工具和软件,并且可以快速访问样片或购买  
链接。  
1. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
请单击此处  
TPD3S014  
TPD3S044  
TPD4E05U06  
13.2 商标  
13.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
13.4 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
14 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2014–2015, Texas Instruments Incorporated  
23  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPD3S014DBVR  
TPD3S044DBVR  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
DBV  
DBV  
6
6
3000 RoHS & Green  
3000 RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
SII  
SN  
SIJ  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Apr-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPD3S014DBVR  
TPD3S044DBVR  
SOT-23  
SOT-23  
DBV  
DBV  
6
6
3000  
3000  
178.0  
178.0  
9.0  
9.0  
3.23  
3.23  
3.17  
3.17  
1.37  
1.37  
4.0  
4.0  
8.0  
8.0  
Q3  
Q3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Apr-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPD3S014DBVR  
TPD3S044DBVR  
SOT-23  
SOT-23  
DBV  
DBV  
6
6
3000  
3000  
180.0  
180.0  
180.0  
180.0  
18.0  
18.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0006A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
B
1.45 MAX  
A
PIN 1  
INDEX AREA  
1
2
6
5
2X 0.95  
1.9  
3.05  
2.75  
4
3
0.50  
6X  
0.25  
C A B  
0.15  
0.00  
0.2  
(1.1)  
TYP  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
TYP  
0
0.6  
0.3  
TYP  
SEATING PLANE  
4214840/C 06/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.  
4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.  
5. Refernce JEDEC MO-178.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214840/C 06/2021  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214840/C 06/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TPD3S014-Q1

适用于汽车 USB 主机端口的限流开关和 D+/D- ESD 保护器件

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPD3S014DBVR

适用于 USB 主机端口的限流开关和 D+/D- ESD 保护器件 | DBV | 6 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPD3S014TDBVRQ1

适用于汽车 USB 主机端口的限流开关和 D+/D- ESD 保护器件 | DBV | 6 | -40 to 105

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPD3S044

适用于 USB 主机的限流开关和 D+/D- ESD 保护器件

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPD3S044DBVR

适用于 USB 主机的限流开关和 D+/D- ESD 保护器件 | DBV | 6 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPD3S713-Q1

汽车类 USB 0.05A 至 0.6A 可调节电流限制和 VBUS/D+/D- VBATT 短路保护

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPD3S713A-Q1

汽车类 USB 0.05A 至 0.6A 可调节电流限制和 VBUS/D+/D- VBATT 短路保护

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPD3S713AQRVCRQ1

汽车类 USB 0.05A 至 0.6A 可调节电流限制和 VBUS/D+/D- VBATT 短路保护 | RVC | 20 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPD3S713QRVCRQ1

Automotive USB 0.05-A to 0.6-A adjustable current limit and VBUS/D+/D- short-to-VBATT protection | RVC | 20 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPD3S714-Q1

汽车类 USB 0.55A 固定电流限制和 VBUS/D+/D- VBATT 短路保护

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPD3S714QDBQRQ1

Automotive USB 0.55-A fixed current limit and  VBUS/D+/D- short-to-VBATT protection | DBQ | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPD3S716-Q1

汽车类 USB 0.5A 至 2.4A 可调节电流限制和 VBUS/D+/D- VBATT 短路保护

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI