TPA4861 [TI]

1-W AUDIO POWER AMPLIFIER; 1瓦音频功率放大器
TPA4861
型号: TPA4861
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

1-W AUDIO POWER AMPLIFIER
1瓦音频功率放大器

放大器 功率放大器
文件: 总24页 (文件大小:415K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPA4861  
1-W AUDIO POWER AMPLIFIER  
SLOS163B – SEPTEMBER 1996 – REVISED MARCH 2000  
D PACKAGE  
(TOP VIEW)  
1-W BTL Output (5 V, 0.11 % THD+N)  
3.3-V and 5-V Operation  
No Output Coupling Capacitors Required  
SHUTDOWN  
BYPASS  
IN+  
V 2  
O
GND  
1
2
3
4
8
7
6
5
Shutdown Control (I  
= 0.6 µA)  
DD  
V
DD  
Uncompensated Gains of 2 to 20 (BTL  
Mode)  
IN–  
V 1  
O
Surface-Mount Packaging  
Thermal and Short-Circuit Protection  
High Supply Ripple Rejection Ratio  
(56 dB at 1 kHz)  
LM4861 Drop-In Compatible  
description  
The TPA4861 is a bridge-tied load (BTL) audio power amplifier capable of delivering 1 W of continuous average  
power into an 8-load at 0.2% THD+N from a 5-V power supply in voiceband frequencies (f < 5 kHz). A BTL  
configuration eliminates the need for external coupling capacitors on the output in most applications. Gain is  
externally configured by means of two resistors and does not require compensation for settings of 2 to 20.  
Features of the amplifier are a shutdown function for power-sensitive applications as well as internal thermal  
and short-circuit protection. The TPA4861 works seamlessly with TI’s TPA4860 in stereo applications. The  
amplifier is available in an 8-pin SOIC surface-mount package that reduces board space and facilitates  
automated assembly.  
V
DD  
6
V
DD  
R
F
V
DD  
/2  
C
S
Audio  
Input  
R
I
IN–  
IN+  
4
3
V
O
1
5
+
C
I
1 W  
C
B
V
O
2
8
7
+
BYPASS  
2
1
SHUTDOWN  
Bias  
Control  
GND  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 2000, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA4861  
1-W AUDIO POWER AMPLIFIER  
SLOS163B – SEPTEMBER 1996 – REVISED MARCH 2000  
AVAILABLE OPTIONS  
PACKAGED DEVICE  
T
A
SMALL OUTLINE  
(D)  
40°C to 85°C  
TPA4861D  
The D package is available tape and reeled. To order a tape and  
reeled part, add the suffix R to the part number (e.g., TPA4861DR).  
Terminal Functions  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
NO.  
BYPASS is the tap to the voltage divider for internal mid-supply bias. This terminal should be connected  
to a 0.1 µF – 1.0 µF capacitor when used as an audio power amplifier.  
BYPASS  
2
I
GND  
7
4
3
1
5
8
6
GND is the ground connection.  
IN–  
I
I
IN– is the inverting input. IN– is typically used as the audio input terminal.  
IN+ is the noninverting input. IN+ is typically tied to the BYPASS terminal.  
IN+  
SHUTDOWN  
I
SHUTDOWN places the entire device in shutdown mode when held high (I  
0.6 µA).  
DD  
V
V
V
1
2
O
O
V
V
V
1 is the positive BTL output.  
2 is the negative BTL output.  
O
O
O
O
is the supply voltage terminal.  
DD  
DD  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V  
DD  
Input voltage, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to V +0.3 V  
I
DD  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . Internally Limited (see Dissipation Rating Table)  
Operating free-air temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
Operating junction temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 150°C  
A
J
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C  
stg  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
DISSIPATION RATING TABLE  
PACKAGE  
T
A
25°C  
DERATING FACTOR  
T
A
= 70°C  
T = 85°C  
A
D
725 mW  
5.8 mW/°C  
464 mW  
377 mW  
recommended operating conditions  
MIN  
2.7  
MAX  
5.5  
2.7  
4.5  
85  
UNIT  
V
Supply voltage, V  
DD  
V
V
= 3 V  
= 5 V  
1.25  
1.25  
40  
V
DD  
Common-mode input voltage, V  
IC  
V
DD  
Operating free-air temperature, T  
°C  
A
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA4861  
1-W AUDIO POWER AMPLIFIER  
SLOS163B – SEPTEMBER 1996 – REVISED MARCH 2000  
electrical characteristics at specified free-air temperature, V  
= 3.3 V (unless otherwise noted)  
DD  
TPA4861  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
V
Output offset voltage  
See Note 1  
20  
mV  
dB  
OO  
PSRR  
Power supply rejection ratio (V  
Supply current  
/V  
OO  
)
V
DD  
= 3.2 V to 3.4 V  
75  
2.5  
0.6  
DD  
I
I
mA  
µA  
DD  
Supply current, shutdown  
DD(SD)  
NOTE 1: At 3 V < V  
< 5 V the dc output voltage is approximately V /2.  
DD  
DD  
operating characteristics, V  
= 3.3 V, T = 25°C, R = 8 Ω  
A L  
DD  
TPA4861  
TYP  
400  
500  
20  
PARAMETER  
TEST CONDITIONS  
THD = 0.2%, f = 1 kHz,  
UNIT  
MIN  
MAX  
A
= –2 V/V  
A = –2 V/V  
V
mW  
mW  
kHz  
MHz  
dB  
V
P
Output power, see Note 2  
O
THD = 2%,  
Gain = –10 V/V,  
Open Loop  
f = 1 kHz,  
f = 1 kHz,  
B
B
Maximum output power bandwidth  
Unity-gain bandwidth  
THD = 2%  
OM  
1.5  
1
BTL  
SE  
C
C
= 0.1 µF  
= 0.1 µF  
56  
B
B
Supply ripple rejection ratio  
f = 1 kHz,  
30  
dB  
V
n
Noise output voltage, see Note 3  
Gain = –2 V/V  
20  
µV  
NOTES: 2. Output power is measured at the output terminals of the device.  
3. Noise voltage is measured in a bandwidth of 20 Hz to 20 kHz.  
electrical characteristics at specified free-air temperature range, V  
noted)  
= 5 V (unless otherwise  
DD  
TPA4861  
UNIT  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
V
Output offset voltage  
See Note 1  
= 4.9 V to 5.1 V  
20  
mV  
dB  
OO  
PSRR  
Power supply rejection ratio (V  
Supply current  
/V  
OO  
)
V
70  
3.5  
0.6  
DD  
DD  
I
I
mA  
µA  
DD  
Supply current, shutdown  
DD(SD)  
NOTE 1: At 3 V < V  
< 5 V the dc output voltage is approximately V /2.  
DD  
DD  
operating characteristic, V  
= 5 V, T = 25°C, R = 8 Ω  
A L  
DD  
TPA4861  
TYP  
1000  
1100  
20  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
THD = 0.2%, f = 1 kHz,  
THD = 2%, f = 1 kHz,  
A
= –2 V/V  
= –2 V/V  
mW  
mW  
kHz  
MHz  
dB  
V
P
Output power, see Note 2  
O
A
V
B
B
Maximum output power bandwidth  
Unity-gain bandwidth  
Gain = –10 V/V,  
Open Loop  
f = 1 kHz,  
THD = 2%  
OM  
1.5  
1
BTL  
SE  
C
C
= 0.1 µF  
= 0.1 µF  
56  
B
B
Supply ripple rejection ratio  
f = 1 kHz,  
30  
dB  
V
n
Noise output voltage, see Note 3  
Gain = –2 V/V  
20  
µV  
NOTES: 2. Output power is measured at the output terminals of the device.  
3. Noise voltage is measured in a bandwidth of 20 Hz to 20 kHz.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA4861  
1-W AUDIO POWER AMPLIFIER  
SLOS163B – SEPTEMBER 1996 – REVISED MARCH 2000  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
1,2  
V
OO  
Output offset voltage  
Distribution  
I
Supply current distribution  
vs Free-air temperature  
3,4  
DD  
5,6,7,8,9,  
10,11,15,  
16,17,18  
vs Frequency  
THD+N  
Total harmonic distortion plus noise  
12,13,14,  
19,20,21  
vs Output power  
I
Supply current  
vs Supply voltage  
vs Frequency  
22  
23,24  
25  
DD  
V
Output noise voltage  
Maximum package power dissipation  
Power dissipation  
n
vs Free-air temperature  
vs Output power  
vs Free-air temperature  
vs Load resistance  
vs Supply voltage  
vs Frequency  
26,27  
28  
Maximum power output  
29  
Output power  
30  
Open-loop gain  
31  
k
Supply ripple rejection ratio  
vs Frequency  
32,33  
SVR  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA4861  
1-W AUDIO POWER AMPLIFIER  
SLOS163B – SEPTEMBER 1996 – REVISED MARCH 2000  
TYPICAL CHARACTERISTICS  
DISTRIBUTION OF TPA4861  
OUTPUT OFFSET VOLTAGE  
DISTRIBUTION OF TPA4861  
OUTPUT OFFSET VOLTAGE  
25  
20  
15  
10  
5
30  
25  
V
DD  
= 5 V  
V
DD  
= 3.3 V  
20  
15  
10  
5
0
0
–4 –3 –2 –1  
0
1
2
3
4
5
6
–4 –3 –2 –1  
0
1
2
3
4
5
6
V
OO  
– Output Offset Voltage – mV  
V
OO  
– Output Offset Voltage – mV  
Figure 1  
Figure 2  
SUPPLY CURRENT DISTRIBUTION  
vs  
SUPPLY CURRENT DISTRIBUTION  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
3.5  
3
5
V
DD  
= 5 V  
V
DD  
= 3.3 V  
4.5  
4
2.5  
2
3.5  
3
Typical  
Typical  
2.5  
2
1.5  
1
0.5  
0
1.5  
1
0.5  
–40  
25  
85  
–40  
25  
85  
T
A
– Free-Air Temperature – °C  
T
A
– Free-Air Temperature – °C  
Figure 3  
Figure 4  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA4861  
1-W AUDIO POWER AMPLIFIER  
SLOS163B – SEPTEMBER 1996 – REVISED MARCH 2000  
TYPICAL CHARACTERISTICS  
TOTAL HARMONIC DISTORTION PLUS NOISE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs  
vs  
FREQUENCY  
FREQUENCY  
10  
10  
V
P
= 5 V  
= 1 W  
= –10 V/V  
= 8 Ω  
DD  
O
V
P
= 5 V  
DD  
O
= 1 W  
= –2 V/V  
= 8 Ω  
A
V
A
V
R
L
R
L
1
1
C
= 0.1 µF  
B
C
= 0.1 µF  
B
C
= 1 µF  
B
0.1  
0.1  
C
= 1 µF  
B
0.01  
0.01  
20  
100  
1 k  
10 k 20 k  
20  
100  
1 k  
10 k 20 k  
f – Frequency – Hz  
f – Frequency – Hz  
Figure 5  
Figure 6  
TOTAL HARMONIC DISTORTION PLUS NOISE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs  
vs  
FREQUENCY  
FREQUENCY  
10  
10  
V
P
= 5 V  
= 1 W  
= –20 V/V  
= 8 Ω  
V
P
= 5 V  
DD  
O
DD  
O
= 0.5 W  
= –2 V/V  
= 8 Ω  
A
A
V
V
C
= 0.1 µF  
B
R
R
L
L
1
1
C
= 1 µF  
B
C
= 0.1 µF  
B
0.1  
0.1  
C
= 1 µF  
B
0.01  
0.01  
20  
100  
1 k  
10 k 20 k  
20  
100  
1 k  
10 k 20 k  
f – Frequency – Hz  
f – Frequency – Hz  
Figure 7  
Figure 8  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA4861  
1-W AUDIO POWER AMPLIFIER  
SLOS163B – SEPTEMBER 1996 – REVISED MARCH 2000  
TYPICAL CHARACTERISTICS  
TOTAL HARMONIC DISTORTION PLUS NOISE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs  
vs  
FREQUENCY  
FREQUENCY  
10  
10  
V
P
= 5 V  
V
P
= 5 V  
DD  
O
DD  
O
= 0.5 W  
= –10 V/V  
= 8 Ω  
= 0.5 W  
= –20 V/V  
= 8 Ω  
A
A
V
V
R
R
C
= 0.1 µF  
L
L
B
C
= 0.1 µF  
B
1
1
C
= 1 µF  
B
0.1  
0.1  
C
= 1 µF  
B
0.01  
0.01  
20  
100  
1 k  
10 k 20 k  
20  
100  
1 k  
10 k 20 k  
f – Frequency – Hz  
f – Frequency – Hz  
Figure 9  
Figure 10  
TOTAL HARMONIC DISTORTION PLUS NOISE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs  
vs  
FREQUENCY  
OUTPUT POWER  
10  
10  
V
= 5 V  
= –10 V/V  
DD  
V
A
V
R
= 5 V  
= –2 V/V  
= 8 Ω  
DD  
A
V
Single Ended  
L
f = 20 Hz  
1
R
L
O
= 8 Ω  
= 250 mW  
1
P
C
= 0.1 µF  
B
C
= 1 µF  
B
R
P
= 32 Ω  
= 60 mW  
L
O
0.1  
0.1  
0.01  
0.01  
20  
100  
1 k  
10 k 20 k  
0.02  
0.1  
– Output Power – W  
1
2
f – Frequency – Hz  
P
O
Figure 11  
Figure 12  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA4861  
1-W AUDIO POWER AMPLIFIER  
SLOS163B – SEPTEMBER 1996 – REVISED MARCH 2000  
TYPICAL CHARACTERISTICS  
TOTAL HARMONIC DISTORTION PLUS NOISE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs  
vs  
OUTPUT POWER  
OUTPUT POWER  
10  
10  
V
= 5 V  
= –2 V/V  
= 8 Ω  
V
= 5 V  
= –2 V/V  
= 8 Ω  
DD  
DD  
A
A
V
V
R
R
L
L
f = 1 kHz  
f = 20 kHz  
C
= 0.1 µF  
B
1
1
C
= 1 µF  
B
C
= 0.1 µF  
= 1 µF  
B
0.1  
0.1  
C
B
0.01  
0.01  
0.02  
0.1  
1
2
0.02  
0.1  
– Output Power – W  
1
2
P
O
– Output Power – W  
P
O
Figure 13  
Figure 14  
TOTAL HARMONIC DISTORTION PLUS NOISE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs  
vs  
FREQUENCY  
FREQUENCY  
10  
10  
V
P
= 3.3 V  
= 350 mW  
= 8 Ω  
V
P
= 3.3 V  
= 350 mW  
= 8 Ω  
DD  
O
L
DD  
O
L
R
A
R
A
= –2 V/V  
= –10 V/V  
V
V
1
1
C
= 0.1 µF  
C
= 0.1 µF  
B
B
0.1  
0.1  
C
= 1 µF  
C
= 1 µF  
B
B
0.01  
0.01  
20  
100  
1 k  
10 k 20 k  
20  
100  
1 k  
10 k 20 k  
f – Frequency – Hz  
f – Frequency – Hz  
Figure 15  
Figure 16  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA4861  
1-W AUDIO POWER AMPLIFIER  
SLOS163B – SEPTEMBER 1996 – REVISED MARCH 2000  
TYPICAL CHARACTERISTICS  
TOTAL HARMONIC DISTORTION PLUS NOISE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs  
vs  
FREQUENCY  
FREQUENCY  
10  
10  
V
P
R
= 3.3 V  
= 350 mW  
= 8 Ω  
DD  
O
L
V
= 3.3 V  
= –10 V/V  
DD  
A
V
Single Ended  
A
V
= –20 V/V  
C
= 0.1 µF  
B
1
1
R
= 8 Ω  
= 250 mW  
L
P
O
C
= 1 µF  
B
0.1  
R
= 32 Ω  
= 60 mW  
L
0.1  
P
O
0.01  
0.01  
20  
100  
1 k  
10 k 20 k  
20  
100  
1 k  
10 k 20 k  
f – Frequency – Hz  
f – Frequency – Hz  
Figure 17  
Figure 18  
TOTAL HARMONIC DISTORTION PLUS NOISE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs  
vs  
OUTPUT POWER  
OUTPUT POWER  
10  
10  
V
= 3.3 V  
= –2 V/V  
= 8 Ω  
DD  
V
A
V
= 3.3 V  
= –2 V/V  
R = 8 Ω  
L
DD  
A
V
R
L
f = 20 Hz  
f = 1 kHz  
1
1
C
= 0.1 µF  
B
C
C
= 0.1 µF  
B
= 1 µF  
0.1  
B
0.1  
C
= 1.0 µF  
B
0.01  
0.01  
0.02  
0.1  
1
2
0.02  
0.1  
1
2
P
O
– Output Power – W  
P
O
– Output Power – W  
Figure 19  
Figure 20  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA4861  
1-W AUDIO POWER AMPLIFIER  
SLOS163B – SEPTEMBER 1996 – REVISED MARCH 2000  
TYPICAL CHARACTERISTICS  
TOTAL HARMONIC DISTORTION PLUS NOISE  
SUPPLY CURRENT  
vs  
SUPPLY VOLTAGE  
vs  
OUTPUT POWER  
10  
5
4
3
2
1
0
T
A
= 0°C  
T = –40°C  
A
C
= 0.1 µF  
B
C
= 1 µF  
1
B
T = 25°C  
A
T
A
= 85°C  
0.1  
V
= 3.3 V  
= –2 V/V  
= 8 Ω  
DD  
A
V
R
L
f = 20 kHz  
0.01  
20 m  
0.1  
– Output Power – W  
1
2
2.5  
3
3.5  
4
4.5  
5
5.5  
P
O
V
DD  
– Supply Voltage – V  
Figure 21  
Figure 22  
OUTPUT NOISE VOLTAGE  
OUTPUT NOISE VOLTAGE  
vs  
vs  
FREQUENCY  
FREQUENCY  
3
2
1
1
3
10  
2
10  
1
10  
1
10  
10  
10  
V
DD  
= 5 V  
V
DD  
= 3.3 V  
V 1 +V 2  
0
0
V 1 +V 2  
V 2  
0
V 2  
0
0
0
V 1  
0
V 1  
0
20  
100  
1 k  
10 k 20 k  
20  
100  
1 k  
10 k 20 k  
f – Frequency – Hz  
f – Frequency – Hz  
Figure 23  
Figure 24  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA4861  
1-W AUDIO POWER AMPLIFIER  
SLOS163B – SEPTEMBER 1996 – REVISED MARCH 2000  
TYPICAL CHARACTERISTICS  
MAXIMUM PACKAGE POWER DISSIPATION  
POWER DISSIPATION  
vs  
vs  
FREE-AIR TEMPERATURE  
OUTPUT POWER  
0.8  
0.6  
1
0.75  
0.5  
V
DD  
= 5 V  
R
= 8 Ω  
L
0.4  
0.2  
0
R
= 16 Ω  
L
0.25  
0
–50  
–25  
0
25  
50  
75  
100  
0
0.25  
0.5  
0.75  
1
1.25  
T
A
– Free-Air Temperature – °C  
P
O
– Output Power – W  
Figure 25  
Figure 26  
MAXIMUM OUTPUT POWER  
vs  
FREE-AIR TEMPERATURE  
POWER DISSIPATION  
vs  
OUTPUT POWER  
160  
140  
120  
100  
0.5  
0.4  
V
DD  
= 3.3 V  
R
= 16 Ω  
L
R
= 8 Ω  
L
0.3  
0.2  
80  
60  
40  
R
= 16 Ω  
L
R
= 8 Ω  
L
0.1  
0
20  
0
0
0.25  
0.5  
0.75  
1
1.25  
1.5  
0
0.1  
P
0.2  
0.3  
0.4  
0.5  
– Output Power – W  
P
O
– Maximum Output Power – W  
O
Figure 27  
Figure 28  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA4861  
1-W AUDIO POWER AMPLIFIER  
SLOS163B – SEPTEMBER 1996 – REVISED MARCH 2000  
TYPICAL CHARACTERISTICS  
OUTPUT POWER  
vs  
LOAD RESISTANCE  
OUTPUT POWER  
vs  
SUPPLY VOLTAGE  
1.4  
1.2  
1
2
A
= –2 V/V  
V
A
= –2 V/V  
V
f = 1 kHz  
= 0.1 µF  
f = 1 kHz  
= 0.1 µF  
1.75  
C
B
C
B
THD+N 1%  
THD+N 1%  
1.5  
1.25  
1
R
= 4 Ω  
L
0.8  
0.6  
R
= 8 Ω  
L
V
DD  
= 5 V  
0.75  
0.4  
0.2  
0
0.5  
0.25  
0
R
= 16 Ω  
L
V
= 3.3 V  
DD  
4
8
12 16 20 24 28 32 36 40 44 48  
2.5  
3
3.5  
4
4.5  
5
5.5  
Load Resistance – Ω  
Supply Voltage – V  
Figure 29  
Figure 30  
OPEN-LOOP GAIN  
vs  
SUPPLY RIPPLE REJECTION RATIO  
vs  
FREQUENCY  
FREQUENCY  
100  
45°  
0°  
0
V
R
C
= 5 V  
= 8 Ω  
= 0.1 µF  
DD  
L
B
V
= 5 V  
DD  
R = 8 Ω  
L
–10  
–20  
–30  
–40  
–50  
80  
Bridge-Tied Load  
60  
40  
–45°  
–90°  
Phase  
C
= 0.1 µF  
= 1 µF  
B
–60  
–70  
–80  
Gain  
20  
0
–135°  
–180°  
–225°  
C
B
–90  
–20  
–100  
10  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
100  
1 k  
10 k 20 k  
f – Frequency – Hz  
f – Frequency – Hz  
Figure 31  
Figure 32  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA4861  
1-W AUDIO POWER AMPLIFIER  
SLOS163B – SEPTEMBER 1996 – REVISED MARCH 2000  
TYPICAL CHARACTERISTICS  
SUPPLY RIPPLE REJECTION RATIO  
vs  
FREQUENCY  
0
V
R
= 5 V  
DD  
= 8 Ω  
–10  
–20  
–30  
–40  
–50  
L
Single Ended  
C
= 0.1 µF  
B
C
= 1 µF  
B
–60  
–70  
–80  
–90  
–100  
100  
1 k  
10 k 20 k  
f – Frequency – Hz  
Figure 33  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA4861  
1-W AUDIO POWER AMPLIFIER  
SLOS163B – SEPTEMBER 1996 – REVISED MARCH 2000  
APPLICATION INFORMATION  
bridged-tied load versus single-ended mode  
Figure 34 shows a linear audio power amplifier (APA) in a bridge-tied load (BTL) configuration. A BTL amplifier  
actually consists of two linear amplifiers driving both ends of the load. There are several potential benefits to  
this differential drive configuration, but initially, let us consider power to the load. The differential drive to the  
speaker means that as one side is slewing up the other side is slewing down and vice versa. This, in effect,  
doubles the voltage swing on the load as compared to a ground-referenced load. Plugging twice the voltage  
into the power equation, where voltage is squared, yields 4 times the output power from the same supply rail  
and load impedance (see equation 1).  
V
O(PP)  
V
(rms)  
2
2
2
V
(rms)  
(1)  
Power  
R
L
V
DD  
V
O(PP)  
2x V  
R
O(PP)  
L
V
DD  
–V  
O(PP)  
Figure 34. Bridge-Tied Load Configuration  
In a typical computer sound channel operating at 5 V, bridging raises the power into an 8-speaker from a  
singled-ended (SE) limit of 250 mW to 1 W. In sound power that is a 6-dB improvement, which is loudness that  
can be heard. In addition to increased power, frequency response is a concern; consider the single-supply SE  
configuration shown in Figure 35. A coupling capacitor is required to block the dc offset voltage from reaching  
the load. These capacitors can be quite large (approximately 40 µF to 1000 µF) so they tend to be expensive,  
occupy valuable PCB area, and have the additional drawback of limiting low-frequency performance of the  
system. This frequency limiting effect is due to the high pass filter network created with the speaker impedance  
and the coupling capacitance and is calculated with equation 2.  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA4861  
1-W AUDIO POWER AMPLIFIER  
SLOS163B – SEPTEMBER 1996 – REVISED MARCH 2000  
APPLICATION INFORMATION  
bridged-tied load versus single-ended mode (continued)  
1
(2)  
f
(corner)  
2 R C  
L
C
For example, a 68-µF capacitor with an 8-speaker would attenuate low frequencies below 293 Hz. The BTL  
configuration cancels the dc offsets, which eliminates the need for the blocking capacitors. Low-frequency  
performance is then limited only by the input network and speaker response. Cost and PCB space are also  
minimized by eliminating the bulky coupling capacitor.  
V
DD  
V
O(PP)  
C
C
V
O(PP)  
R
L
Figure 35. Single-Ended Configuration  
Increasing power to the load does carry a penalty of increased internal power dissipation. The increased  
dissipation is understandable considering that the BTL configuration produces 4 times the output power of the  
SE configuration. Internal dissipation versus output power is discussed further in the thermal considerations  
section.  
BTL amplifier efficiency  
Linear amplifiers are notoriously inefficient. The primary cause of these inefficiencies is voltage drop across the  
output stage transistors. There are two components of the internal voltage drop. One is the headroom or dc  
voltage drop that varies inversely to output power. The second component is due to the sinewave nature of the  
output. The total voltage drop can be calculated by subtracting the RMS value of the output voltage from V  
.
DD  
The internal voltage drop multiplied by the RMS value of the supply current, I rms, determines the internal  
DD  
power dissipation of the amplifier.  
An easy-to-use equation to calculate efficiency starts out as being equal to the ratio of power from the power  
supply to the power delivered to the load. To accurately calculate the RMS values of power in the load and in  
the amplifier, the current and voltage waveform shapes must first be understood (see Figure 36).  
I
V
O
DD  
I
DD(RMS)  
V
(LRMS)  
Figure 36. Voltage and Current Waveforms for BTL Amplifiers  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA4861  
1-W AUDIO POWER AMPLIFIER  
SLOS163B – SEPTEMBER 1996 – REVISED MARCH 2000  
APPLICATION INFORMATION  
BTL amplifier efficiency (continued)  
Although the voltages and currents for SE and BTL are sinusoidal in the load, currents from the supply are very  
different between SE and BTL configurations. In an SE application, the current waveform is a half-wave rectified  
shape, whereas in BTL it is a full-wave rectified waveform. This means RMS conversion factors are different.  
Keep in mind that for most of the waveform, both the push and pull transistor are not on at the same time, which  
supports the fact that each amplifier in the BTL device only draws current from the supply for half the waveform.  
The following equations are the basis for calculating amplifier efficiency.  
P
L
Efficiency  
Where:  
(3)  
P
SUP  
V
P
V rms  
L
2
2
2
V
V rms  
L
p
P
L
R
2R  
L
L
V
2V  
DD  
P
P
V
I
rms  
SUP  
DD DD  
R
L
2V  
P
I
rms  
DD  
R
L
1 2  
P R  
L
L
2
V
P
Efficiency of a BTL Configuration  
(4)  
2V  
2V  
DD  
DD  
Table 1 employs equation 4 to calculate efficiencies for four different output power levels. Note that the efficiency  
of the amplifier is quite low for lower power levels and rises sharply as power to the load is increased, resulting  
in a nearly flat internal power dissipation over the normal operating range. Note that the internal dissipation at  
full output power is less than in the half power range. Calculating the efficiency for a specific system is the key  
to proper power supply design. For a stereo 1-W audio system with 8-loads and a 5-V supply, the maximum  
draw on the power supply is almost 3.25 W.  
Table 1. Efficiency Vs Output Power in 5-V 8-BTL Systems  
Peak-to-Peak  
Voltage  
(V)  
Internal  
Dissipation  
(W)  
Output Power  
(W)  
Efficiency  
(%)  
0.25  
0.50  
1.00  
1.25  
31.4  
44.4  
62.8  
70.2  
2.00  
2.83  
4.00  
0.55  
0.62  
0.59  
0.53  
4.47  
High peak voltages cause the THD to increase.  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA4861  
1-W AUDIO POWER AMPLIFIER  
SLOS163B – SEPTEMBER 1996 – REVISED MARCH 2000  
APPLICATION INFORMATION  
BTL amplifier efficiency (continued)  
A final point to remember about linear amplifiers, whether they are SE or BTL configured, is how to manipulate  
the terms in the efficiency equation to utmost advantage when possible. Note that in equation 4, V is in the  
DD  
denominator. This indicates that as V  
goes down, efficiency goes up.  
DD  
For example, if the 5-V supply is replaced with a 10-V supply (TPA4861 has a maximum recommended V  
DD  
of 5.5 V) in the calculations of Table 1 then efficiency at 1 W would fall to 31% and internal power dissipation  
would rise to 2.18 W from 0.59 W at 5 V. Then for a stereo 1-W system from a 10-V supply, the maximum draw  
would be almost 6.5 W. Choose the correct supply voltage and speaker impedance for the application.  
selection of components  
Figure 37 is a schematic diagram of a typical notebook computer application circuit.  
50 kΩ  
50 kΩ  
V
6
5
DD  
V
DD  
= 5 V  
C
R
F
F
C
S
V
/2  
DD  
Audio  
Input  
R
I
IN–  
IN+  
4
3
V
1
O
O
+
C
I
46 kΩ  
1 W  
Internal  
Speaker  
C
B
46 kΩ  
V
2
8
7
BYPASS  
2
+
SHUTDOWN (see Note A)  
Bias  
1
Control  
NOTE A: SHUTDOWN must be held low for normal operation and asserted high for shutdown mode.  
Figure 37. TPA4861 Typical Notebook Computer Application Circuit  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA4861  
1-W AUDIO POWER AMPLIFIER  
SLOS163B – SEPTEMBER 1996 – REVISED MARCH 2000  
APPLICATION INFORMATION  
gain setting resistors, R and R  
F
I
The gain for the TPA4861 is set by resistors R and R according to equation 5.  
F
I
R
F
Gain  
2
(5)  
R
I
BTL mode operation brings about the factor of 2 in the gain equation due to the inverting amplifier mirroring the  
voltage swing across the load. Given that the TPA4861 is a MOS amplifier, the input impedance is very high;  
consequently input leakage currents are not generally a concern, although noise in the circuit increases as the  
value of R increases. In addition, a certain range of R values are required for proper startup operation of the  
F
F
amplifier. Taken together it is recommended that the effective impedance seen by the inverting node of the  
amplifier be set between 5 kand 20 k. The effective impedance is calculated in equation 6.  
R R  
F I  
Effective Impedance  
(6)  
R
R
F
I
As an example consider an input resistance of 10 kand a feedback resistor of 50 k. The gain of the amplifier  
would be –10 V/V and the effective impedance at the inverting terminal would be 8.3 k, which is well within  
the recommended range.  
Forhighperformanceapplicationsmetalfilmresistorsarerecommendedbecausetheytendtohavelowernoise  
levels than carbon resistors. For values of R above 50 kthe amplifier tends to become unstable due to a pole  
F
formed from R and the inherent input capacitance of the MOS input structure. For this reason, a small  
F
compensation capacitor of approximately 5 pF should be placed in parallel with R . This, in effect, creates a low  
F
pass filter network with the cutoff frequency defined in equation 7.  
1
2 R C  
f
(7)  
co(lowpass)  
F
F
For example if R is 100 kand Cf is 5 pF then f is 318 kHz, which is well outside of the audio range.  
F
co  
input capacitor, C  
I
In the typical application, an input capacitor, C , is required to allow the amplifier to bias the input signal to the  
I
proper dc level for optimum operation. In this case, C and R form a high-pass filter with the corner frequency  
I
I
determined in equation 8.  
1
f
(8)  
co(highpass)  
2 R C  
I
I
The value of C is important to consider, as it directly affects the bass (low frequency) performance of the circuit.  
I
Consider the example where R is 10 kand the specification calls for a flat bass response down to 40 Hz.  
I
Equation 8 is reconfigured as equation 9.  
1
C
(9)  
I
2 R f  
co  
I
In this example, C is 0.40 µF, so one would likely choose a value in the range of 0.47 µF to 1 µF. A further  
I
consideration for this capacitor is the leakage path from the input source through the input network (R , C ) and  
I
I
thefeedbackresistor(R )totheload. Thisleakagecurrentcreatesadcoffsetvoltageattheinputtotheamplifier  
F
that reduces useful headroom, especially in high gain applications. For this reason a low-leakage tantalum or  
ceramic capacitor is the best choice. When polarized capacitors are used, the positive side of the capacitor  
should face the amplifier input in most applications as the dc level there is held at V /2, which is likely higher  
DD  
than the source dc level. Please note that it is important to confirm the capacitor polarity in the application.  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA4861  
1-W AUDIO POWER AMPLIFIER  
SLOS163B – SEPTEMBER 1996 – REVISED MARCH 2000  
APPLICATION INFORMATION  
power supply decoupling, C  
S
The TPA4861 is a high-performance CMOS audio amplifier that requires adequate power supply decoupling  
to ensure that the output total harmonic distortion (THD) is as low as possible. Power supply decoupling also  
prevents oscillations for long lead lengths between the amplifier and the speaker. The optimum decoupling is  
achieved by using two capacitors of different types that target different types of noise on the power supply leads.  
For higher frequency transients, spikes, or digital hash on the line, a good low equivalent-series-resistance  
(ESR) ceramic capacitor, typically 0.1 µF placed as close as possible to the device V  
filtering lower-frequency noise signals, a larger aluminum electrolytic capacitor of 10 µF or greater placed near  
lead, works best. For  
DD  
the power amplifier is recommended.  
midrail bypass capacitor, C  
B
The midrail bypass capacitor, C , serves several important functions. During start-up or recovery from  
B
shutdown mode, C determines the rate at which the amplifier starts up. This helps to push the start-up pop  
B
noise into the subaudible range (so slow it can not be heard). The second function is to reduce noise produced  
by the power supply caused by coupling into the output drive signal. This noise is from the midrail generation  
circuit internal to the amplifier. The capacitor is fed from a 25-ksource inside the amplifier. To keep the start-up  
pop as low as possible, the relationship shown in equation 10 should be maintained.  
1
1
(10)  
C
25 kΩ  
C R  
I
B
I
As an example, consider a circuit where C is 0.1 µF, C is 0.22 µF and R is 10 k. Inserting these values into  
B
I
I
the equation 9 we get:  
400 454  
which satisfies the rule. Bypass capacitor, C , values of 0.1 µF to 1 µF ceramic or tantalum low-ESR capacitors  
B
are recommended for the best THD and noise performance.  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA4861  
1-W AUDIO POWER AMPLIFIER  
SLOS163B – SEPTEMBER 1996 – REVISED MARCH 2000  
APPLICATION INFORMATION  
single-ended operation  
Figure 38 is a schematic diagram of the recommended SE configuration. In SE mode configurations, the load  
should be driven from the primary amplifier output (V 1, terminal 5).  
O
V
6
5
DD  
V
DD  
R
F
V
DD  
/2  
C
S
Audio  
Input  
R
I
C
C
IN–  
IN+  
4
3
V
O
1
+
250-mW  
External  
Speaker  
C
I
C
B
R
= 50 Ω  
SE  
V
O
2
8
+
BYPASS  
2
C
= 0.1 µF  
SE  
Figure 38. Singled-Ended Mode  
Gain is set by the R and R resistors and is shown in equation 11. Since the inverting amplifier is not used to  
F
I
mirror the voltage swing on the load, the factor of 2 is not included.  
R
F
Gain  
(11)  
R
I
The phase margin of the inverting amplifier into an open circuit is not adequate to ensure stability, so a  
termination load should be connected to V 2. This consists of a 50-resistor in series with a 0.1-µF capacitor  
O
to ground. It is important to avoid oscillation of the inverting output to minimize noise and power dissipation.  
The output coupling capacitor required in single-supply SE mode also places additional constraints on the  
selection of other components in the amplifier circuit. The rules described earlier still hold with the addition of  
the following relationship:  
1
1
1
(12)  
R C  
C
25 kΩ  
C R  
I
L C  
B
I
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA4861  
1-W AUDIO POWER AMPLIFIER  
SLOS163B – SEPTEMBER 1996 – REVISED MARCH 2000  
APPLICATION INFORMATION  
output coupling capacitor, C  
C
In the typical single-supply SE configuration, an output coupling capacitor (C ) is required to block the dc bias  
C
at the output of the amplifier thus preventing dc currents in the load. As with the input coupling capacitor, the  
output coupling capacitor and impedance of the load form a high-pass filter governed by equation 13.  
1
2 R C  
f
(13)  
out high  
L
C
The main disadvantage, from a performance standpoint, is that the load impedances are typically small, which  
drives the low-frequency corner higher. Large values of C are required to pass low frequencies into the load.  
C
Consider the example where a C of 68 µF is chosen and loads vary from 8 , 32 , and 47 k. Table 2  
C
summarizes the frequency response characteristics of each configuration.  
Table 2. Common Load Impedances vs Low Frequency Output Characteristics in SE Mode  
R
C
Lowest Frequency  
293 Hz  
L
C
8 Ω  
68 µF  
68 µF  
68 µF  
32 Ω  
73 Hz  
47,000 Ω  
0.05 Hz  
As Table 2 indicates, most of the bass response is attenuated into 8-loads, while headphone response is  
adequate and drive into line level inputs (a home stereo for example) is very good.  
shutdown mode  
The TPA4861 employs a shutdown mode of operation designed to reduce supply current, I  
, to the absolute  
DD(q)  
minimum level during periods of nonuse for battery-power conservation. For example, during device sleep  
modes or when other audio-drive currents are used (i.e., headphone mode), the speaker drive is not required.  
The SHUTDOWN input terminal should be held low during normal operation when the amplifier is in use. Pulling  
SHUTDOWN high causes the outputs to mute and the amplifier to enter a low-current state,  
I
= 0.6 µA. SHUTDOWN should never be left unconnected because amplifier operation would be  
DD(SD)  
unpredictable.  
using low-ESR capacitors  
Low-ESR capacitors are recommended throughout this applications section. A real capacitor can be modeled  
simply as a resistor in series with an ideal capacitor. The voltage drop across this resistor minimizes the  
beneficial effects of the capacitor in the circuit. The lower the equivalent value of this resistance the more the  
real capacitor behaves like an ideal capacitor.  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA4861  
1-W AUDIO POWER AMPLIFIER  
SLOS163B – SEPTEMBER 1996 – REVISED MARCH 2000  
APPLICATION INFORMATION  
thermal considerations  
A prime consideration when designing an audio amplifier circuit is internal power dissipation in the device. The  
curve in Figure 39 provides an easy way to determine what output power can be expected out of the TPA4861  
for a given system ambient temperature in designs using 5-V supplies. This curve assumes no forced airflow  
or additional heat sinking.  
160  
V
DD  
= 5 V  
140  
120  
100  
R
= 16 Ω  
L
80  
60  
40  
R
= 8 Ω  
L
20  
0
0
0.25  
0.5  
0.75  
1
1.25  
1.5  
P
O
– Maximum Output Power – W  
Figure 39. Free-Air Temperature vs Maximum Continuous Output Power  
5-V versus 3.3-V operation  
The TPA4861 was designed for operation over a supply range of 2.7 V to 5.5 V. This data sheet provides full  
specifications for 5-V and 3.3-V operation, as these are considered to be the two most common standard  
voltages. There are no special considerations for 3.3-V versus 5-V operation as far as supply bypassing, gain  
setting, or stability. Supply current is slightly reduced from 3.5 mA (typical) to 2.5 mA (typical). The most  
important consideration is that of output power. Each amplifier in TPA4861 can produce a maximum voltage  
swing of V  
– 1 V. This means, for 3.3-V operation, clipping starts to occur when V  
= 4 V while operating at 5 V. The reduced voltage swing subsequently reduces maximum output  
= 2.3 V as opposed  
DD  
O(PP)  
to when V  
O(PP)  
power into an 8-load to less than 0.33 W before distortion begins to become significant.  
Operation at 3.3-V supplies, as can be shown from the efficiency formula in equation 4, consumes  
approximately two-thirds of the supply power for a given output-power level than operation from 5-V supplies.  
When the application demands less than 500 mW, 3.3-V operation should be strongly considered, especially  
in battery-powered applications.  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA4861  
1-W AUDIO POWER AMPLIFIER  
SLOS163B – SEPTEMBER 1996 – REVISED MARCH 2000  
MECHANICAL DATA  
D (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0.050 (1,27)  
0.020 (0,51)  
0.014 (0,35)  
0.010 (0,25)  
M
14  
8
0.008 (0,20) NOM  
0.244 (6,20)  
0.228 (5,80)  
0.157 (4,00)  
0.150 (3,81)  
Gage Plane  
0.010 (0,25)  
1
7
0°8°  
0.044 (1,12)  
A
0.016 (0,40)  
Seating Plane  
0.004 (0,10)  
0.010 (0,25)  
0.004 (0,10)  
0.069 (1,75) MAX  
PINS **  
8
14  
16  
DIM  
0.197  
(5,00)  
0.344  
(8,75)  
0.394  
(10,00)  
A MAX  
0.189  
(4,80)  
0.337  
(8,55)  
0.386  
(9,80)  
A MIN  
4040047/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).  
D. Falls within JEDEC MS-012  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
Customers are responsible for their applications using TI components.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 2000, Texas Instruments Incorporated  

相关型号:

TPA4861D

1-W AUDIO POWER AMPLIFIER
TI

TPA4861DG4

1-W MONO AUDIO POWER AMPLIFIER
TI

TPA4861DR

1-W MONO AUDIO POWER AMPLIFIER
TI

TPA4861DRG4

1-W MONO AUDIO POWER AMPLIFIER
TI

TPA4861Y

1.1W, 1 CHANNEL, AUDIO AMPLIFIER, UUC8
TI

TPA4861_07

1-W MONO AUDIO POWER AMPLIFIER
TI

TPA48V

1W 3KVDC Isolated Single and Dual Output DC/DC Converters
TOPPOWER

TPA5050

STEREO DIGITAL AUDIO LIP-SYNC DELAY WITH I2C CONTROL
TI

TPA5050RSAR

STEREO DIGITAL AUDIO LIP-SYNC DELAY WITH I2C CONTROL
TI

TPA5050RSARG4

STEREO DIGITAL AUDIO LIP-SYNC DELAY WITH I2C CONTROL
TI

TPA5050RSAT

STEREO DIGITAL AUDIO LIP-SYNC DELAY WITH I2C CONTROL
TI

TPA5050RSATG4

STEREO DIGITAL AUDIO LIP-SYNC DELAY WITH I2C CONTROL
TI