TMUX7219M [TI]

具有 1.8V 逻辑扩展温度的 44V、低 Ron、2:1、1 通道闩锁效应抑制精密多路复用器;
TMUX7219M
型号: TMUX7219M
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 1.8V 逻辑扩展温度的 44V、低 Ron、2:1、1 通道闩锁效应抑制精密多路复用器

复用器
文件: 总36页 (文件大小:1822K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMUX7219M  
ZHCSP65 MAY 2022  
TMUX7219M 1.8V 逻辑电平和闩锁效应抑制特性44V 扩展工作温度范围  
2:1 (SPDT) 精密开关  
1 特性  
3 说明  
• 双电源电压范围±4.5V ±22V  
• 单电源电压范围4.5V 44V  
-55°C +125°C 工作温度  
• 低导通电阻2.1Ω  
• 低电荷注入-10pC  
• 高电流支持330mA最大值)  
闩锁效应抑制  
TMUX7219M 是一款具有闩锁效应抑制特性的互补金  
属氧化物半导体 (CMOS) 用单通道 2:1  
(SPDT) 配置。此器件在单电源4.5 V 44 V、双  
电源±4.5 V ±22 V或非对称电源例如 VDD  
=
12 V VSS = 5 V 电时均能正常运行。  
TMUX7219M 可在源极 (Sx) 和漏极 (D) 引脚上支持从  
VSS VDD 范围的双向模拟和数字信号。  
1.8V 逻辑电平  
可以通过控制 EN 引脚来启用或禁用 TMUX7219M。  
当禁用时两个信号路径开关都被关闭。当启用时,  
SEL 引脚可用于打开信号路径 1S1 D或信号路  
2S2 D。所有逻辑控制输入均支持 1.8V 到  
VDD 的逻辑电平因此当器件在有效电源电压范围内  
运行时可确保 TTL CMOS 逻辑兼容性。失效防护  
逻辑电路允许先在控制引脚上施加电压然后在电源引  
脚上施加电压从而保护器件免受潜在的损害。  
逻辑引脚具有集成的上拉和下拉电阻器  
失效防护逻辑  
轨到轨运行  
双向信号路径  
• 先断后合开关  
2 应用  
航空电子设备飞行控制单元  
飞行器驾驶舱显示屏  
独立航空电子设备精密飞行控制  
互连和配电盒  
TMUX72xx 系列具有闩锁效应抑制特性可防止器件  
内寄生结构之间通常由过压事件引起的大电流不良事  
件。闩锁状态通常会一直持续到电源轨关闭为止并可  
能导致器件故障。抗闩锁特性使得 TMUX72xx 系列开  
关和多路复用器能够在恶劣的环境中使用。此外,  
TMUX7219M 的额定工作温度可低至 –55°C非常适  
合用于环境恶劣的工业和航空应用。  
航天和国防  
VSS  
VDD  
S1  
S2  
D
器件信息(1)  
封装尺寸标称值)  
器件型号  
封装  
TMUX7219M  
VSSOP (8)  
3.00mm × 3.00mm  
Decoder  
(1) 如需了解所有可用封装请参阅数据表末尾的封装选项附录。  
EN SEL  
功能方框图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SCDS455  
 
 
 
TMUX7219M  
ZHCSP65 MAY 2022  
www.ti.com.cn  
Table of Contents  
7.9 Charge Injection........................................................23  
7.10 Off Isolation.............................................................23  
7.11 Crosstalk................................................................. 24  
7.12 Bandwidth............................................................... 24  
7.13 THD + Noise........................................................... 25  
7.14 Power Supply Rejection Ratio (PSRR)...................25  
8 Detailed Description......................................................26  
8.1 Overview...................................................................26  
8.2 Functional Block Diagram.........................................26  
8.3 Feature Description...................................................26  
8.4 Device Functional Modes..........................................28  
8.5 Truth Tables.............................................................. 28  
9 Application and Implementation..................................29  
9.1 Application Information............................................. 29  
9.2 Typical Applications.................................................. 29  
10 Power Supply Recommendations..............................30  
11 Layout...........................................................................31  
11.1 Layout Guidelines................................................... 31  
11.2 Layout Example...................................................... 31  
12 Device and Documentation Support..........................32  
12.1 Documentation Support.......................................... 32  
12.2 Receiving Notification of Documentation Updates..32  
12.3 支持资源..................................................................32  
12.4 Trademarks.............................................................32  
12.5 静电放电警告.......................................................... 32  
12.6 术语表..................................................................... 32  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Thermal Information....................................................4  
6.4 Recommended Operating Conditions.........................5  
6.5 Source or Drain Continuous Current...........................5  
6.6 ±15 V Dual Supply: Electrical Characteristics ............6  
6.7 ±15 V Dual Supply: Switching Characteristics ...........7  
6.8 ±20 V Dual Supply: Electrical Characteristics.............8  
6.9 ±20 V Dual Supply: Switching Characteristics............9  
6.10 44 V Single Supply: Electrical Characteristics ....... 10  
6.11 44 V Single Supply: Switching Characteristics .......11  
6.12 12 V Single Supply: Electrical Characteristics ....... 12  
6.13 12 V Single Supply: Switching Characteristics ...... 13  
6.14 Typical Characteristics............................................14  
7 Parameter Measurement Information..........................19  
7.1 On-Resistance.......................................................... 19  
7.2 Off-Leakage Current................................................. 19  
7.3 On-Leakage Current................................................. 20  
7.4 Transition Time......................................................... 20  
7.5 tON(EN) and tOFF(EN) .................................................. 21  
7.6 Break-Before-Make...................................................21  
7.7 tON (VDD) Time............................................................22  
7.8 Propagation Delay.................................................... 22  
Information.................................................................... 32  
4 Revision History  
DATE  
REVISION  
NOTES  
May 2022  
*
Initial Release  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TMUX7219M  
 
TMUX7219M  
ZHCSP65 MAY 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
D
S1  
1
2
3
4
8
7
6
5
S2  
VSS  
SEL  
EN  
GND  
VDD  
Not to scale  
5-1. DGK Package  
8-Pin VSSOP  
(Top View)  
5-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION(2)  
NAME  
D
NO.  
1
I/O  
I/O  
P
Drain pin. Can be an input or output.  
Source pin 1. Can be an input or output.  
Ground (0 V) reference  
S1  
2
GND  
3
Positive power supply. This pin is the most positive power-supply potential. For reliable operation,  
connect a decoupling capacitor ranging from 0.1 µF to 10 µF between VDD and GND.  
VDD  
4
P
Active high logic enable, has internal pull-up resistor. When this pin is low, all switches are turned off.  
When this pin is high, the SEL logic input determine which switch is turned on.  
EN  
5
6
I
I
SEL  
Logic control input, has internal pull-down resistor. Controls the switch connection as shown in 8.5.  
Negative power supply. This pin is the most negative power-supply potential. In single-supply  
applications, this pin can be connected to ground. For reliable operation, connect a decoupling  
capacitor ranging from 0.1 µF to 10 µF between VSS and GND.  
VSS  
S2  
7
8
P
I/O  
Source pin 2. Can be an input or output.  
(1) I = input, O = output, I/O = input and output, P = power.  
(2) Refer to 8.4 for what to do with unused pins.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TMUX7219M  
 
 
 
TMUX7219M  
ZHCSP65 MAY 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1) (2)  
MIN  
MAX  
UNIT  
V
48  
VDD VSS  
VDD  
Supply voltage  
48  
V
0.5  
48  
VSS  
0.5  
V
VSEL or VEN  
ISEL or IEN  
VS or VD  
IIK  
Logic control input pin voltage (SEL, EN)(3)  
Logic control input pin current (SEL, EN)(3)  
Source or drain voltage (Sx, D)(3)  
Diode clamp current(3)  
48  
V
0.5  
30  
VDD+0.5  
30  
mA  
V
30  
VSS0.5  
30  
mA  
mA  
°C  
°C  
°C  
IS or ID (CONT)  
TA  
Source or drain continuous current (Sx, D)  
Ambient temperature  
IDC + 10 %(4)  
150  
55  
65  
Tstg  
Storage temperature  
150  
TJ  
Junction temperature  
150  
Total power dissipation(5)  
Ptot  
460  
mW  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute maximum ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
briefly operating outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not  
sustain damage, but it may not be fully functional. Operating the device in this manner may affect device reliability, functionality,  
performance, and shorten the device lifetime.  
(2) All voltages are with respect to ground, unless otherwise specified.  
(3) Pins are diode-clamped to the power-supply rails. Over voltage signals must be voltage and current limited to maximum ratings.  
(4) Refer to Source or Drain Continuous Current table for IDC specifications.  
(5) For DGK package: Ptot derates linearily above TA = 70°C by 6.7mW/°C.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS-001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
JS-002, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Thermal Information  
TMUX7219M  
THERMAL METRIC(1)  
DGK (VSSOP)  
8 PINS  
152.1  
48.4  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
73.2  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
4.1  
ΨJT  
71.8  
ΨJB  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TMUX7219M  
 
 
 
 
 
 
 
 
 
 
 
 
TMUX7219M  
ZHCSP65 MAY 2022  
www.ti.com.cn  
6.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
4.5  
VSS  
0
NOM  
MAX  
44  
UNIT  
V
(1)  
Power supply voltage differential  
VDD VSS  
VDD  
Positive power supply voltage  
44  
V
VS or VD  
VSEL or VEN  
IS or ID (CONT)  
TA  
Signal path input/output voltage (source or drain pin) (Sx, D)  
Address or enable pin voltage  
VDD  
44  
V
V
(2)  
Source or drain continuous current (Sx, D)  
Ambient temperature  
IDC  
mA  
°C  
125  
55  
(1) VDD and VSS can be any value as long as 4.5 V (VDD VSS) 44 V, and the minimum VDD is met.  
(2) Refer to Source or Drain Continuous Current table for IDC specifications.  
6.5 Source or Drain Continuous Current  
at supply voltage of VDD ± 10%, VSS ± 10 % (unless otherwise noted)  
CONTINUOUS CURRENT PER CHANNEL (IDC  
PACKAGE TEST CONDITIONS  
+44 V Single Supply(1)  
)
TA = 25°C  
TA = 85°C  
210  
TA = 125°C  
UNIT  
330  
120  
mA  
mA  
mA  
mA  
mA  
±15 V Dual Supply  
+12 V Single Supply  
±5 V Dual Supply  
+5 V Single Supply  
330  
240  
240  
180  
210  
160  
160  
120  
120  
100  
100  
80  
DGK (VSSOP)  
(1) Specified for nominal supply voltage only.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TMUX7219M  
 
 
 
 
 
TMUX7219M  
ZHCSP65 MAY 2022  
www.ti.com.cn  
6.6 ±15 V Dual Supply: Electrical Characteristics  
VDD = +15 V ± 10%, VSS = 15 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +15 V, VSS = 15 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
25°C  
2.1  
2.9  
3.8  
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
VS = 10 V to +10 V  
ID = 10 mA  
Refer to On-Resistance  
RON  
On-resistance  
40°C to +85°C  
55°C to +125°C  
25°C  
4.5  
0.05  
0.5  
0.25  
0.3  
VS = 10 V to +10 V  
ID = 10 mA  
Refer to On-Resistance  
On-resistance mismatch between  
channels  
40°C to +85°C  
55°C to +125°C  
25°C  
ΔRON  
0.35  
0.6  
VS = 10 V to +10 V  
IS = 10 mA  
Refer to On-Resistance  
0.7  
RON FLAT  
On-resistance flatness  
40°C to +85°C  
55°C to +125°C  
0.85  
VS = 0 V, IS = 10 mA  
Refer to On-Resistance  
RON DRIFT On-resistance drift  
0.01  
0.05  
55°C to +125°C  
/°C  
25°C  
0.15  
1.6  
nA  
nA  
VDD = 16.5 V, VSS = 16.5 V  
Switch state is off  
VS = +10 V / 10 V  
0.15  
1.6  
40°C to +85°C  
IS(OFF)  
Source off leakage current(1)  
VD = 10 V / + 10 V  
Refer to Off-Leakage Current  
15  
nA  
55°C to +125°C  
15  
25°C  
0.05  
0.04  
1
3
nA  
nA  
VDD = 16.5 V, VSS = 16.5 V  
Switch state is off  
VS = +10 V / 10 V  
VD = 10 V / + 10 V  
Refer to Off-Leakage Current  
1  
3  
40°C to +85°C  
ID(OFF)  
Drain off leakage current(1)  
26  
nA  
55°C to +125°C  
26  
25°C  
1
1.8  
18  
nA  
nA  
nA  
1  
1.8  
18  
VDD = 16.5 V, VSS = 16.5 V  
Switch state is on  
VS = VD = ±10 V  
IS(ON)  
ID(ON)  
Channel on leakage current(2)  
40°C to +85°C  
55°C to +125°C  
Refer to On-Leakage Current  
LOGIC INPUTS (SEL / EN pins)  
VIH  
VIL  
IIH  
Logic voltage high  
1.3  
0
44  
0.8  
2
V
55°C to +125°C  
55°C to +125°C  
55°C to +125°C  
55°C to +125°C  
55°C to +125°C  
Logic voltage low  
V
Input leakage current  
Input leakage current  
Logic input capacitance  
0.005  
µA  
µA  
pF  
IIL  
1 0.005  
CIN  
3
POWER SUPPLY  
25°C  
30  
3
40  
48  
62  
10  
15  
25  
µA  
µA  
µA  
µA  
µA  
µA  
VDD = 16.5 V, VSS = 16.5 V  
Logic inputs = 0 V, 5 V, or VDD  
IDD  
VDD supply current  
40°C to +85°C  
55°C to +125°C  
25°C  
VDD = 16.5 V, VSS = 16.5 V  
Logic inputs = 0 V, 5 V, or VDD  
ISS  
VSS supply current  
40°C to +85°C  
55°C to +125°C  
(1) When VS is positive, VD is negative, or when VS is negative, VD is positive.  
(2) When VS is at a voltage potential, VD is floating, or when VD is at a voltage potential, VS is floating.  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TMUX7219M  
 
 
 
TMUX7219M  
ZHCSP65 MAY 2022  
www.ti.com.cn  
6.7 ±15 V Dual Supply: Switching Characteristics  
VDD = +15 V ± 10%, VSS = 15 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +15 V, VSS = 15 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
120  
100  
100  
50  
175  
190  
210  
170  
185  
200  
180  
195  
210  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ms  
ms  
VS = 10 V  
RL = 300 Ω, CL = 35 pF  
Refer to Transition Time  
tTRAN  
Transition time from control input  
40°C to +85°C  
55°C to +125°C  
25°C  
VS = 10 V  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off Time  
tON  
Turn-on time from enable  
Turn-off time from enable  
Break-before-make time delay  
40°C to +85°C  
55°C to +125°C  
25°C  
(EN)  
VS = 10 V  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off Time  
tOFF  
40°C to +85°C  
55°C to +125°C  
25°C  
(EN)  
VS = 10 V,  
RL = 300 Ω, CL = 35 pF  
Refer to Break-Before-Make  
1
1
tBBM  
40°C to +85°C  
55°C to +125°C  
25°C  
0.19  
0.2  
VDD rise time = 100ns  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on (VDD) Time  
Device turn on time  
(VDD to output)  
TON (VDD)  
40°C to +85°C  
55°C to +125°C  
0.22  
RL = 50 Ω, CL = 5 pF  
Refer to Propagation Delay  
tPD  
Propagation delay  
Charge injection  
25°C  
25°C  
700  
ps  
VD = 0 V, CL = 1 nF  
Refer to Charge Injection  
QINJ  
pC  
10  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 100 kHz  
Refer to Off Isolation  
OISO  
Off-isolation  
Off-isolation  
Crosstalk  
25°C  
25°C  
25°C  
25°C  
dB  
dB  
dB  
dB  
75  
55  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 1 MHz  
Refer to Off Isolation  
OISO  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 100 kHz  
Refer to Crosstalk  
XTALK  
117  
106  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 1MHz  
Refer to Crosstalk  
XTALK  
Crosstalk  
RL = 50 Ω, CL = 5 pF  
VS = 0 V  
Refer to Bandwidth  
BW  
IL  
25°C  
25°C  
40  
MHz  
dB  
3dB Bandwidth  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 1 MHz  
Insertion loss  
0.18  
VPP = 0.62 V on VDD and VSS  
RL = 50 Ω, CL = 5 pF,  
f = 1 MHz  
ACPSRR AC Power Supply Rejection Ratio  
25°C  
25°C  
dB  
%
64  
Refer to ACPSRR  
VPP = 15 V, VBIAS = 0 V  
RL = 10 kΩ, CL = 5 pF,  
f = 20 Hz to 20 kHz  
THD+N  
Total Harmonic Distortion + Noise  
0.0005  
Refer to THD + Noise  
CS(OFF)  
CD(OFF)  
CS(ON)  
Source off capacitance  
Drain off capacitance  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
25°C  
25°C  
33  
48  
pF  
pF  
,
On capacitance  
VS = 0 V, f = 1 MHz  
25°C  
148  
pF  
CD(ON)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TMUX7219M  
 
TMUX7219M  
ZHCSP65 MAY 2022  
www.ti.com.cn  
6.8 ±20 V Dual Supply: Electrical Characteristics  
VDD = +20 V ± 10%, VSS = 20 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +20 V, VSS = 20 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
25°C  
1.9  
2.7  
3.5  
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
VS = 15 V to +15 V  
ID = 10 mA  
Refer to On-Resistance  
RON  
On-resistance  
40°C to +85°C  
55°C to +125°C  
25°C  
4.2  
0.04  
0.3  
0.22  
0.28  
0.3  
VS = 15 V to +15 V  
ID = 10 mA  
Refer to On-Resistance  
On-resistance mismatch between  
channels  
40°C to +85°C  
55°C to +125°C  
25°C  
ΔRON  
0.75  
0.9  
VS = 15 V to +15 V  
IS = 10 mA  
Refer to On-Resistance  
RON FLAT  
On-resistance flatness  
40°C to +85°C  
55°C to +125°C  
1.2  
VS = 0 V, IS = 10 mA  
Refer to On-Resistance  
RON DRIFT On-resistance drift  
0.009  
0.05  
55°C to +125°C  
/°C  
25°C  
1.5  
4
nA  
nA  
VDD = 22 V, VSS = 22 V  
Switch state is off  
VS = +15 V / 15 V  
1.5  
4  
40°C to +85°C  
IS(OFF)  
Source off leakage current(1)  
VD = 15 V / + 15 V  
Refer to Off-Leakage Current  
24  
nA  
55°C to +125°C  
24  
25°C  
0.1  
0.1  
2
8
nA  
nA  
VDD = 22 V, VSS = 22 V  
Switch state is off  
VS = +15 V / 15 V  
VD = 15 V / + 15 V  
Refer to Off-Leakage Current  
2  
8  
40°C to +85°C  
ID(OFF)  
Drain off leakage current(1)  
44  
nA  
55°C to +125°C  
44  
25°C  
2
5
nA  
nA  
nA  
2  
5  
VDD = 22 V, VSS = 22 V  
Switch state is on  
VS = VD = ±15 V  
IS(ON)  
ID(ON)  
Channel on leakage current(2)  
40°C to +85°C  
55°C to +125°C  
Refer to On-Leakage Current  
29  
29  
LOGIC INPUTS (SEL / EN pins)  
VIH  
VIL  
IIH  
Logic voltage high  
1.3  
0
44  
0.8  
2
V
55°C to +125°C  
55°C to +125°C  
55°C to +125°C  
55°C to +125°C  
55°C to +125°C  
Logic voltage low  
V
Input leakage current  
Input leakage current  
Logic input capacitance  
0.005  
µA  
µA  
pF  
IIL  
1 0.005  
CIN  
3
POWER SUPPLY  
25°C  
34  
4
44  
50  
65  
9
µA  
µA  
µA  
µA  
µA  
µA  
VDD = 22 V, VSS = 22 V  
Logic inputs = 0 V, 5 V, or VDD  
IDD  
VDD supply current  
40°C to +85°C  
55°C to +125°C  
25°C  
VDD = 22 V, VSS = 22 V  
Logic inputs = 0 V, 5 V, or VDD  
12  
25  
ISS  
VSS supply current  
40°C to +85°C  
55°C to +125°C  
(1) When VS is positive, VD is negative, or when VS is negative, VD is positive.  
(2) When VS is at a voltage potential, VD is floating, or when VD is at a voltage potential, VS is floating.  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TMUX7219M  
 
 
 
TMUX7219M  
ZHCSP65 MAY 2022  
www.ti.com.cn  
6.9 ±20 V Dual Supply: Switching Characteristics  
VDD = +20 V ± 10%, VSS = 20 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +20 V, VSS = 20 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
110  
110  
90  
175  
190  
205  
170  
185  
200  
180  
190  
200  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ms  
ms  
VS = 10 V  
RL = 300 Ω, CL = 35 pF  
Refer to Transition Time  
tTRAN  
Transition time from control input  
40°C to +85°C  
55°C to +125°C  
25°C  
VS = 10 V  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off Time  
tON  
Turn-on time from enable  
Turn-off time from enable  
Break-before-make time delay  
40°C to +85°C  
55°C to +125°C  
25°C  
(EN)  
VS = 10 V  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off Time  
tOFF  
40°C to +85°C  
55°C to +125°C  
25°C  
(EN)  
55  
VS = 10 V,  
RL = 300 Ω, CL = 35 pF  
Refer to Break-Before-Make  
1
1
tBBM  
40°C to +85°C  
55°C to +125°C  
25°C  
0.18  
0.2  
VDD rise time = 100ns  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on (VDD) Time  
Device turn on time  
(VDD to output)  
TON (VDD)  
40°C to +85°C  
55°C to +125°C  
0.22  
RL = 50 Ω, CL = 5 pF  
Refer to Propagation Delay  
tPD  
Propagation delay  
Charge injection  
25°C  
25°C  
715  
ps  
VD = 0 V, CL = 1 nF  
Refer to Charge Injection  
QINJ  
pC  
15  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 100 kHz  
Refer to Off Isolation  
OISO  
Off-isolation  
Off-isolation  
Crosstalk  
25°C  
25°C  
25°C  
25°C  
dB  
dB  
dB  
dB  
75  
55  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 1 MHz  
Refer to Off Isolation  
OISO  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 100 kHz  
Refer to Crosstalk  
XTALK  
117  
106  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 1MHz  
Refer to Crosstalk  
XTALK  
Crosstalk  
RL = 50 Ω, CL = 5 pF  
VS = 0 V,  
Refer to Bandwidth  
BW  
IL  
25°C  
25°C  
38  
MHz  
dB  
3dB Bandwidth  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 1 MHz  
Insertion loss  
0.16  
VPP = 0.62 V on VDD and VSS  
RL = 50 Ω, CL = 5 pF,  
f = 1 MHz  
ACPSRR AC Power Supply Rejection Ratio  
25°C  
25°C  
dB  
%
63  
Refer to ACPSRR  
VPP = 20 V, VBIAS = 0 V  
RL = 10 kΩ, CL = 5 pF,  
f = 20 Hz to 20 kHz  
THD+N  
Total Harmonic Distortion + Noise  
0.0005  
Refer to THD + Noise  
CS(OFF)  
CD(OFF)  
Source off capacitance  
Drain off capacitance  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
25°C  
25°C  
32  
45  
pF  
pF  
CS(ON),  
CD(ON)  
On capacitance  
VS = 0 V, f = 1 MHz  
25°C  
146  
pF  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TMUX7219M  
 
TMUX7219M  
ZHCSP65 MAY 2022  
www.ti.com.cn  
MAX UNIT  
6.10 44 V Single Supply: Electrical Characteristics  
VDD = +44 V, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +44 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
ANALOG SWITCH  
25°C  
2.2  
2.8  
3.6  
4.2  
0.2  
0.3  
0.35  
1
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
VS = 0 V to 40 V  
ID = 10 mA  
Refer to On-Resistance  
RON  
On-resistance  
40°C to +85°C  
55°C to +125°C  
25°C  
0.1  
0.2  
VS = 0 V to 40 V  
ID = 10 mA  
Refer to On-Resistance  
On-resistance mismatch between  
channels  
40°C to +85°C  
55°C to +125°C  
25°C  
ΔRON  
VS = 0 V to 40 V  
ID = 10 mA  
Refer to On-Resistance  
1.3  
1.5  
RON FLAT  
On-resistance flatness  
40°C to +85°C  
55°C to +125°C  
VS = 22 V, IS = 10 mA  
Refer to On-Resistance  
RON DRIFT On-resistance drift  
0.008  
0.05  
55°C to +125°C  
/°C  
VDD = 44 V, VSS = 0 V  
Switch state is off  
VS = 40 V / 1 V  
25°C  
5
nA  
nA  
5  
10  
40°C to +85°C  
10  
IS(OFF)  
Source off leakage current(1)  
VD = 1 V / 40 V  
Refer to Off-Leakage Current  
35  
nA  
55°C to +125°C  
35  
VDD = 44 V, VSS = 0 V  
Switch state is off  
VS = 40 V / 1 V  
VD = 1 V / 40 V  
Refer to Off-Leakage Current  
25°C  
0.05  
0.05  
8
nA  
nA  
8  
12  
40°C to +85°C  
12  
ID(OFF)  
Drain off leakage current(1)  
70  
nA  
55°C to +125°C  
70  
25°C  
8
10  
45  
nA  
nA  
nA  
8  
10  
45  
VDD = 44 V, VSS = 0 V  
Switch state is on  
VS = VD = 40 V or 1 V  
Refer to On-Leakage Current  
IS(ON)  
ID(ON)  
Channel on leakage current(2)  
40°C to +85°C  
55°C to +125°C  
LOGIC INPUTS (SEL / EN pins)  
VIH  
VIL  
IIH  
Logic voltage high  
1.3  
0
44  
0.8  
2
V
55°C to +125°C  
55°C to +125°C  
55°C to +125°C  
55°C to +125°C  
55°C to +125°C  
Logic voltage low  
V
Input leakage current  
Input leakage current  
Logic input capacitance  
0.005  
µA  
µA  
pF  
IIL  
1 0.005  
CIN  
3
POWER SUPPLY  
25°C  
17  
50  
60  
75  
µA  
µA  
µA  
VDD = 44 V, VSS = 0 V  
Logic inputs = 0 V, 5 V, or VDD  
IDD  
VDD supply current  
40°C to +85°C  
55°C to +125°C  
(1) When VS is 40 V, VD is 1 V, or when VS is 1 V, VD is 40 V.  
(2) When VS is at a voltage potential, VD is floating, or when VD is at a voltage potential, VS is floating.  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TMUX7219M  
 
 
 
TMUX7219M  
ZHCSP65 MAY 2022  
www.ti.com.cn  
6.11 44 V Single Supply: Switching Characteristics  
VDD = +44 V, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +44 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
120  
120  
120  
45  
175  
190  
205  
168  
185  
195  
180  
200  
205  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ms  
ms  
VS = 18 V  
RL = 300 Ω, CL = 35 pF  
Refer to Transition Time  
tTRAN  
Transition time from control input  
40°C to +85°C  
55°C to +125°C  
25°C  
VS = 18 V  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off Time  
tON  
Turn-on time from enable  
Turn-off time from enable  
Break-before-make time delay  
40°C to +85°C  
55°C to +125°C  
25°C  
(EN)  
VS = 18 V  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off Time  
tOFF  
40°C to +85°C  
55°C to +125°C  
25°C  
(EN)  
VS = 18 V,  
RL = 300 Ω, CL = 35 pF  
Refer to Break-Before-Make  
1
1
tBBM  
40°C to +85°C  
55°C to +125°C  
25°C  
0.15  
0.17  
0.19  
VDD rise time = 1µs  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on (VDD) Time  
Device turn on time  
(VDD to output)  
TON (VDD)  
40°C to +85°C  
55°C to +125°C  
RL = 50 Ω, CL = 5 pF  
Refer to Propagation Delay  
tPD  
Propagation delay  
Charge injection  
25°C  
25°C  
930  
ps  
VD = 22 V, CL = 1 nF  
Refer to Charge Injection  
QINJ  
pC  
16  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 100 kHz  
Refer to Off Isolation  
OISO  
Off-isolation  
Off-isolation  
Crosstalk  
25°C  
25°C  
25°C  
25°C  
dB  
dB  
dB  
dB  
75  
55  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 1 MHz  
Refer to Off Isolation  
OISO  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 100 kHz  
Refer to Crosstalk  
XTALK  
117  
106  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 1MHz  
Refer to Crosstalk  
XTALK  
Crosstalk  
RL = 50 Ω, CL = 5 pF  
VS = 6 V  
Refer to Bandwidth  
BW  
IL  
25°C  
25°C  
37  
MHz  
dB  
3dB Bandwidth  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 1 MHz  
Insertion loss  
0.18  
VPP = 0.62 V on VDD and VSS  
RL = 50 Ω, CL = 5 pF,  
f = 1 MHz  
ACPSRR AC Power Supply Rejection Ratio  
25°C  
25°C  
dB  
%
60  
Refer to ACPSRR  
VPP = 22 V, VBIAS = 22 V  
RL = 10 kΩ, CL = 5 pF,  
f = 20 Hz to 20 kHz  
THD+N  
Total Harmonic Distortion + Noise  
0.0004  
Refer to THD + Noise  
CS(OFF)  
CD(OFF)  
CS(ON)  
Source off capacitance  
Drain off capacitance  
VS = 6 V, f = 1 MHz  
VS = 6 V, f = 1 MHz  
25°C  
25°C  
34  
48  
pF  
pF  
,
On capacitance  
VS = 6 V, f = 1 MHz  
25°C  
146  
pF  
CD(ON)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TMUX7219M  
 
TMUX7219M  
ZHCSP65 MAY 2022  
www.ti.com.cn  
MAX UNIT  
6.12 12 V Single Supply: Electrical Characteristics  
VDD = +12 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +12 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
ANALOG SWITCH  
25°C  
4.6  
6
7.5  
8.4  
0.2  
0.32  
0.35  
2
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
VS = 0 V to 10 V  
ID = 10 mA  
Refer to On-Resistance  
RON  
On-resistance  
40°C to +85°C  
55°C to +125°C  
25°C  
0.08  
1.2  
VS = 0 V to 10 V  
ID = 10 mA  
Refer to On-Resistance  
On-resistance mismatch between  
channels  
40°C to +85°C  
55°C to +125°C  
25°C  
ΔRON  
VS = 0 V to 10 V  
IS = 10 mA  
Refer to On-Resistance  
2.2  
2.4  
RON FLAT  
On-resistance flatness  
40°C to +85°C  
55°C to +125°C  
VS = 6 V, IS = 10 mA  
Refer to On-Resistance  
RON DRIFT On-resistance drift  
0.017  
0.05  
55°C to +125°C  
/°C  
VDD = 13.2 V, VSS = 0 V  
Switch state is off  
VS = 10 V / 1 V  
25°C  
0.5  
2
nA  
nA  
0.5  
2  
40°C to +85°C  
IS(OFF)  
Source off leakage current(1)  
VD = 1 V / 10 V  
Refer to Off-Leakage Current  
12  
nA  
55°C to +125°C  
12  
VDD = 13.2 V, VSS = 0 V  
Switch state is off  
VS = 10 V / 1 V  
VD = 1 V / 10 V  
Refer to Off-Leakage Current  
25°C  
0.05  
0.05  
0.5  
3
nA  
nA  
0.5  
3  
40°C to +85°C  
ID(OFF)  
Drain off leakage current(1)  
23  
nA  
55°C to +125°C  
23  
25°C  
1.5  
3
nA  
nA  
nA  
1.5  
3  
VDD = 13.2 V, VSS = 0 V  
Switch state is on  
VS = VD = 10 V or 1 V  
Refer to On-Leakage Current  
IS(ON)  
ID(ON)  
Channel on leakage current(2)  
40°C to +85°C  
55°C to +125°C  
15  
15  
LOGIC INPUTS (SEL / EN pins)  
VIH  
VIL  
IIH  
Logic voltage high  
1.3  
0
44  
0.8  
2
V
55°C to +125°C  
55°C to +125°C  
55°C to +125°C  
55°C to +125°C  
55°C to +125°C  
Logic voltage low  
V
Input leakage current  
Input leakage current  
Logic input capacitance  
0.005  
µA  
µA  
pF  
IIL  
1 0.005  
CIN  
3
POWER SUPPLY  
25°C  
10  
35  
45  
55  
µA  
µA  
µA  
VDD = 13.2 V, VSS = 0 V  
Logic inputs = 0 V, 5 V, or VDD  
IDD  
VDD supply current  
40°C to +85°C  
55°C to +125°C  
(1) When VS is 10 V, VD is 1 V, or when VS is 1 V, VD is 10 V.  
(2) When VS is at a voltage potential, VD is floating, or when VD is at a voltage potential, VS is floating.  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TMUX7219M  
 
 
 
TMUX7219M  
ZHCSP65 MAY 2022  
www.ti.com.cn  
6.13 12 V Single Supply: Switching Characteristics  
VDD = +12 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +12 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
180  
120  
130  
40  
185  
215  
235  
180  
210  
230  
210  
235  
250  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ms  
ms  
VS = 8 V  
RL = 300 Ω, CL = 35 pF  
Refer to Transition Time  
tTRAN  
Transition time from control input  
40°C to +85°C  
55°C to +125°C  
25°C  
VS = 8 V  
tON  
Turn-on time from enable  
Turn-off time from enable  
Break-before-make time delay  
40°C to +85°C  
55°C to +125°C  
25°C  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off Time  
(EN)  
VS = 8 V  
tOFF  
40°C to +85°C  
55°C to +125°C  
25°C  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off Time  
(EN)  
VS = 8 V,  
RL = 300 Ω, CL = 35 pF  
Refer to Break-Before-Make  
1
1
tBBM  
40°C to +85°C  
55°C to +125°C  
25°C  
0.19  
0.2  
VDD rise time = 100ns  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on (VDD) Time  
Device turn on time  
(VDD to output)  
TON (VDD)  
40°C to +85°C  
55°C to +125°C  
0.22  
RL = 50 Ω, CL = 5 pF  
Refer to Propagation Delay  
tPD  
Propagation delay  
Charge injection  
25°C  
25°C  
740  
ps  
VD = 6 V, CL = 1 nF  
Refer to Charge Injection  
QINJ  
pC  
6  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 100 kHz  
Refer to Off Isolation  
OISO  
Off-isolation  
Off-isolation  
Crosstalk  
25°C  
25°C  
25°C  
25°C  
dB  
dB  
dB  
dB  
75  
55  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 1 MHz  
Refer to Off Isolation  
OISO  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 100 kHz  
Refer to Crosstalk  
XTALK  
117  
106  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 1MHz  
Refer to Crosstalk  
XTALK  
Crosstalk  
RL = 50 Ω, CL = 5 pF  
VS = 6 V  
Refer to Bandwidth  
BW  
IL  
25°C  
25°C  
42  
MHz  
dB  
3dB Bandwidth  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 1 MHz  
Insertion loss  
0.3  
VPP = 0.62 V on VDD and VSS  
RL = 50 Ω, CL = 5 pF,  
f = 1 MHz  
ACPSRR AC Power Supply Rejection Ratio  
25°C  
25°C  
dB  
%
65  
Refer to ACPSRR  
VPP = 6 V, VBIAS = 6 V  
RL = 10 kΩ, CL = 5 pF,  
f = 20 Hz to 20 kHz  
THD+N  
Total Harmonic Distortion + Noise  
0.0009  
Refer to THD + Noise  
CS(OFF)  
CD(OFF)  
CS(ON)  
Source off capacitance  
Drain off capacitance  
VS = 6 V, f = 1 MHz  
VS = 6 V, f = 1 MHz  
25°C  
25°C  
38  
56  
pF  
pF  
,
On capacitance  
VS = 6 V, f = 1 MHz  
25°C  
150  
pF  
CD(ON)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TMUX7219M  
 
TMUX7219M  
ZHCSP65 MAY 2022  
www.ti.com.cn  
6.14 Typical Characteristics  
at TA = 25°C  
6-1. On-Resistance vs Source or Drain Voltage Dual  
6-2. On-Resistance vs Source or Drain Voltage Dual  
Supply  
Supply  
6-3. On-Resistance vs Source or Drain Voltage Single  
6-4. On-Resistance vs Source or Drain Voltage Single  
Supply  
Supply  
6
6
TA = 125C  
TA = 85C  
TA = 125C  
TA = 85C  
5
5
TA = 25C  
TA = 25C  
TA = 55C  
TA = 55C  
4
4
3
2
1
0
3
2
1
0
-15 -12  
-9  
-6  
-3  
0
3
6
9
12  
15  
-20  
-15  
-10  
-5  
0
5
10  
15  
20  
VS or VD - Source or Drain Voltage (V)  
VS or VD - Source or Drain Voltage (V)  
VDD = 15 V, VSS = -15 V  
VDD = 20 V, VSS = -20 V  
6-5. On-Resistance vs Temperature  
6-6. On-Resistance vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TMUX7219M  
 
TMUX7219M  
ZHCSP65 MAY 2022  
www.ti.com.cn  
6.14 Typical Characteristics (continued)  
at TA = 25°C  
10  
6
5
4
3
2
1
0
TA = 125C  
TA = 125C  
TA = 85C  
TA = 25C  
TA = 55C  
9
8
7
6
5
4
3
2
1
TA = 85C  
TA = 25C  
TA = 55C  
0
2
4
6
8
10  
12  
0
4
8
12  
16  
20  
24  
28  
32  
36  
VS or VD - Source or Drain Voltage (V)  
VS or VD - Source or Drain Voltage (V)  
VDD = 12 V, VSS = 0 V  
VDD = 36 V, VSS = 0 V  
6-7. On-Resistance vs Temperature  
6-8. On-Resistance vs Temperature  
25  
20  
15  
10  
5
ID(OFF) VS/VD = 10 V/10 V  
ID(OFF) VS/VD = 10 V/10 V  
I
ON 10 V  
ION 10 V  
IS(OFF) VS/VD = 10 V/10 V  
IS(OFF) VS/VD = 10 V/10 V  
0
-5  
-10  
-15  
-20  
-25  
-55 -40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (C)  
D011  
VDD = 15 V, VSS = -15 V  
VDD = 20 V, VSS = -20 V  
6-10. Leakage Current vs Temperature  
6-9. Leakage Current vs Temperature  
40  
30  
ID(OFF) VS/VD = 1 V/30 V  
ID(OFF) VS/VD = 30 V/1 V  
I(ON) 1 V  
I(ON) 30 V  
20  
IS(OFF) VS/VD = 1 V/30 V  
IS(OFF) VS/VD = 30 V/1 V  
10  
0
-10  
-20  
-30  
-40  
-55 -40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (C)  
D013  
VDD = 36 V, VSS = 0 V  
6-11. Leakage Current vs Temperature  
VDD = 12 V, VSS = 0 V  
6-12. Leakage Current vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TMUX7219M  
TMUX7219M  
ZHCSP65 MAY 2022  
www.ti.com.cn  
6.14 Typical Characteristics (continued)  
at TA = 25°C  
100  
80  
60  
40  
20  
0
VDD = 20 V, VSS = -20 V  
VDD = 15 V, VSS = œ15 V  
VDD = 5 V, VSS = œ5 V  
-20  
-40  
-60  
-20  
-15  
-10  
-5  
0
5
Source Voltage (V)  
10  
15  
20  
D016  
6-13. Supply Current vs Logic Voltage  
6-14. Charge Injection vs Source Voltage Dual Supply  
6-15. Charge Injection vs Drain Voltage Dual Supply  
6-16. Charge Injection vs Source Voltage Single Supply  
140  
Transition Falling  
Transition Rising  
135  
130  
125  
120  
115  
110  
105  
100  
95  
90  
85  
80  
-55 -40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature(C)  
D020  
VDD = 15 V, VSS = -15 V  
6-18. TTRANSITION vs Temperature  
6-17. Charge Injection vs Drian Voltage Single Supply  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TMUX7219M  
TMUX7219M  
ZHCSP65 MAY 2022  
www.ti.com.cn  
6.14 Typical Characteristics (continued)  
at TA = 25°C  
140  
140  
135  
130  
125  
120  
115  
110  
105  
100  
95  
Transiton_Falling  
Transiton_Rising  
T(OFF)  
T(ON)  
135  
130  
125  
120  
115  
110  
105  
100  
95  
90  
85  
80  
90  
-55 -40 -25 -10  
5
20 35 50 65 80 95 110 125  
-55  
-30  
-5  
20  
45  
70  
95  
120  
Temperature(C)  
Temperature (C)  
VDD = 44 V, VSS = 0 V  
VDD = 15 V, VSS = -15 V  
6-20. TON and TOFF vs Temperature  
6-19. TTRANSITION vs Temperature  
160  
155  
150  
145  
140  
135  
130  
125  
120  
115  
110  
105  
100  
95  
T(OFF)  
T(ON)  
90  
85  
80  
-55 -40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (C)  
VDD = 44 V, VSS = 0 V  
6-21. TON and TOFF vs Temperature  
6-22. Off-Isolation vs Frequency  
Switch ON (EN = 1)  
Switch OFF (EN = 0)  
6-23. Crosstalk vs Frequency  
6-24. Crosstalk vs Frequency  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TMUX7219M  
TMUX7219M  
ZHCSP65 MAY 2022  
www.ti.com.cn  
6.14 Typical Characteristics (continued)  
at TA = 25°C  
6-25. THD+N vs Frequency (Dual Supply)  
6-26. THD+N vs Frequency (Single Supply)  
VDD = 15 V, VSS = -15 V  
VDD = +15 V, VSS = -15 V  
6-27. On Response vs Frequency  
6-28. ACPSRR vs Frequency  
VDD = +15 V, VSS = -15 V  
VDD = 12 V, VSS = 0 V  
6-29. Capacitance vs Source Voltage or Drain Voltage  
6-30. Capacitance vs Source Voltage or Drain Voltage  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TMUX7219M  
TMUX7219M  
ZHCSP65 MAY 2022  
www.ti.com.cn  
7 Parameter Measurement Information  
7.1 On-Resistance  
The on-resistance of a device is the ohmic resistance between the source (Sx) and drain (D) pins of the device.  
The on-resistance varies with input voltage and supply voltage. The symbol RON is used to denote on-  
resistance. 7-1 shows the measurement setup used to measure RON. Voltage (V) and current (ISD) are  
measured using the following setup, where RON is computed as RON = V / ISD  
:
V
ISD  
Sx  
Dx  
VS  
RON  
7-1. On-Resistance  
7.2 Off-Leakage Current  
There are two types of leakage currents associated with a switch during the off state:  
1. Source off-leakage current.  
2. Drain off-leakage current.  
Source leakage current is defined as the leakage current flowing into or out of the source pin when the switch is  
off. This current is denoted by the symbol IS(OFF)  
Drain leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is off.  
This current is denoted by the symbol ID(OFF)  
7-2 shows the setup used to measure both off-leakage currents.  
.
.
VDD  
VSS  
VDD  
VSS  
Is (OFF)  
ID (OFF)  
S1  
S2  
S1  
S2  
A
D
D
A
VS  
VS  
VD  
VD  
GND  
GND  
IS(OFF)  
ID(OFF)  
7-2. Off-Leakage Measurement Setup  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TMUX7219M  
 
 
 
 
 
TMUX7219M  
ZHCSP65 MAY 2022  
www.ti.com.cn  
7.3 On-Leakage Current  
Source on-leakage current is defined as the leakage current flowing into or out of the source pin when the switch  
is on. This current is denoted by the symbol IS(ON)  
.
Drain on-leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is  
on. This current is denoted by the symbol ID(ON)  
.
Either the source pin or drain pin is left floating during the measurement. 7-3 shows the circuit used for  
measuring the on-leakage current, denoted by IS(ON) or ID(ON)  
.
VDD  
VSS  
VDD  
VSS  
Is (ON)  
ID (ON)  
S1  
S2  
S1  
S2  
N.C.  
A
D
D
A
N.C.  
VS  
VS  
VS  
GND  
GND  
IS(ON)  
ID(ON)  
7-3. On-Leakage Measurement Setup  
7.4 Transition Time  
Transition time is defined as the time taken by the output of the device to rise or fall 90% after the address signal  
has risen or fallen past the logic threshold. The 90% transition measurement is utilized to provide the timing of  
the device. System level timing can then account for the time constant added from the load resistance and load  
capacitance. 7-4 shows the setup used to measure transition time, denoted by the symbol tTRANSITION  
.
VDD  
VSS  
0.1 µF  
0.1 µF  
VS  
3 V  
0 V  
VDD  
VSS  
VSEL  
tr < 20 ns  
tf < 20 ns  
50%  
50%  
S1  
S2  
D
Output  
CL  
tTRANSITION  
tTRANSITION  
90%  
RL  
SEL  
Output  
10%  
GND  
VSEL  
0 V  
7-4. Transition-Time Measurement Setup  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TMUX7219M  
 
 
 
 
TMUX7219M  
ZHCSP65 MAY 2022  
www.ti.com.cn  
7.5 tON(EN) and tOFF(EN)  
Turn-on time is defined as the time taken by the output of the device to rise to 90% after the enable has risen  
past the logic threshold. The 90% measurement is utilized to provide the timing of the device. System level  
timing can then account for the time constant added from the load resistance and load capacitance. 7-5  
shows the setup used to measure turn-on time, denoted by the symbol tON(EN)  
.
Turn-off time is defined as the time taken by the output of the device to fall to 10% after the enable has fallen  
past the logic threshold. The 10% measurement is utilized to provide the timing of the device. System level  
timing can then account for the time constant added from the load resistance and load capacitance. 7-5  
shows the setup used to measure turn-off time, denoted by the symbol tOFF(EN)  
.
VDD  
VSS  
0.1 µF  
0.1 µF  
3 V  
VDD  
VSS  
VEN  
tr < 20 ns  
tf < 20 ns  
50%  
50%  
S1  
S2  
VS  
0 V  
D
Output  
CL  
tON  
tOFF  
90%  
RL  
EN  
Output  
10%  
GND  
VEN  
0 V  
7-5. Turn-On and Turn-Off Time Measurement Setup  
7.6 Break-Before-Make  
Break-before-make delay is a safety feature that prevents two inputs from connecting when the device is  
switching. The output first breaks from the on-state switch before making the connection with the next on-state  
switch. The time delay between the break and the make is known as break-before-make delay. 7-6 shows the  
setup used to measure break-before-make delay, denoted by the symbol tOPEN(BBM)  
.
VDD  
VSS  
0.1 µF  
0.1 µF  
3 V  
VDD  
VSS  
VSEL  
tr < 20 ns  
tf < 20 ns  
S1  
S2  
VS  
0 V  
D
Output  
CL  
RL  
80%  
SEL  
Output  
0 V  
tBBM  
1
tBBM 2  
VSEL  
GND  
tOPEN (BBM) = min ( tBBM 1, tBBM 2)  
7-6. Break-Before-Make Delay Measurement Setup  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TMUX7219M  
 
 
 
 
TMUX7219M  
ZHCSP65 MAY 2022  
www.ti.com.cn  
7.7 tON (VDD) Time  
The tON (VDD) time is defined as the time taken by the output of the device to rise to 90% after the supply has  
risen past the supply threshold. The 90% measurement is used to provide the timing of the device turning on in  
the system. 7-7 shows the setup used to measure turn on time, denoted by the symbol tON (VDD)  
.
VSS  
0.1 µF  
0.1 µF  
VDD  
Supply  
Ramp  
VDD  
VDD  
VSS  
tr = 10 µs  
4.5 V  
VS  
S2  
S1  
0 V  
D
Output  
CL  
tON  
90%  
RL  
EN  
Output  
3 V  
SEL  
GND  
0 V  
7-7. tON (VDD) Time Measurement Setup  
7.8 Propagation Delay  
Propagation delay is defined as the time taken by the output of the device to rise or fall 50% after the input signal  
has risen or fallen past the 50% threshold. 7-8 shows the setup used to measure propagation delay, denoted  
by the symbol tPD  
.
VDD  
VSS  
0.1 µF  
0.1 µF  
250 mV  
Input  
VDD  
S1  
S2  
VSS  
50%  
50%  
tr < 40 ps  
(VS)  
tf < 40 ps  
50 Ω  
VS  
0 V  
D
Output  
CL  
tPD  
1
tPD 2  
RL  
Output  
0 V  
50%  
50%  
GND  
tProp Delay = max ( tPD 1, tPD 2)  
7-8. Propagation Delay Measurement Setup  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TMUX7219M  
 
 
 
 
TMUX7219M  
ZHCSP65 MAY 2022  
www.ti.com.cn  
7.9 Charge Injection  
The TMUX7219M has a transmission-gate topology. Any mismatch in capacitance between the NMOS and  
PMOS transistors results in a charge injected into the drain or source during the falling or rising edge of the gate  
signal. The amount of charge injected into the source or drain of the device is known as charge injection, and is  
denoted by the symbol QC. 7-9 shows the setup used to measure charge injection from source (Sx) to drain  
(D).  
VDD  
VSS  
0.1 µF  
0.1 µF  
3 V  
VEN  
VDD  
VSS  
tr < 20 ns  
tf < 20 ns  
Output  
S1  
S2  
D
0 V  
VD  
CL  
N.C.  
Output  
VD  
EN  
VOUT  
QINJ = CL ×  
VOUT  
VEN  
GND  
7-9. Charge-Injection Measurement Setup  
7.10 Off Isolation  
Off isolation is defined as the ratio of the signal at the drain pin (D) of the device when a signal is applied to the  
source pin (Sx) of an off-channel. 7-10 shows the setup used to measure, and the equation used to calculate  
off isolation.  
VDD  
VSS  
0.1 µF  
0.1 µF  
Network Analyzer  
VDD  
VSS  
VS  
S1  
D
50  
VOUT  
VSIG  
50  
S2  
50  
GND  
7-10. Off Isolation Measurement Setup  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TMUX7219M  
 
 
 
 
TMUX7219M  
ZHCSP65 MAY 2022  
www.ti.com.cn  
7.11 Crosstalk  
Crosstalk is defined as the ratio of the signal at the drain pin (D) of a different channel, when a signal is applied  
at the source pin (Sx) of an on-channel. 7-11 shows the setup used to measure, and the equation used to  
calculate crosstalk.  
VDD  
VSS  
0.1 µF  
0.1 µF  
Network Analyzer  
VDD  
VSS  
VS  
S1  
S2  
D
50  
VOUT  
50  
50  
VSIG  
GND  
7-11. Crosstalk Measurement Setup  
7.12 Bandwidth  
Bandwidth is defined as the range of frequencies that are attenuated by less than 3 dB when the input is applied  
to the source pin (Sx) of an on-channel, and the output is measured at the drain pin (D) of the device. 7-12  
shows the setup used to measure bandwidth.  
VDD  
VSS  
0.1 µF  
0.1 µF  
Network Analyzer  
VDD  
VSS  
VS  
S1  
D
50  
VOUT  
VSIG  
50  
S2  
50  
GND  
7-12. Bandwidth Measurement Setup  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TMUX7219M  
 
 
 
 
TMUX7219M  
ZHCSP65 MAY 2022  
www.ti.com.cn  
7.13 THD + Noise  
The total harmonic distortion (THD) of a signal is a measurement of the harmonic distortion, and is defined as  
the ratio of the sum of the powers of all harmonic components to the power of the fundamental frequency at the  
mux output.  
The on-resistance of the device varies with the amplitude of the input signal and results in distortion when the  
drain pin is connected to a low-impedance load. Total harmonic distortion plus noise is denoted as THD + N.  
VDD  
VSS  
0.1 µF  
0.1 µF  
VDD  
VSS  
Audio Precision  
S1  
D
40  
VOUT  
VS  
RL  
Other  
Sx pins  
50  
GND  
7-13. THD + N Measurement Setup  
7.14 Power Supply Rejection Ratio (PSRR)  
PSRR measures the ability of a device to prevent noise and spurious signals that appear on the supply voltage  
pin from coupling to the output of the switch. The DC voltage on the device supply is modulated by a sine wave  
of 620 mVPP. The ratio of the amplitude of signal on the output to the amplitude of the modulated signal is the  
ACPSRR. A high ratio represents a high degree of tolerance to supply rail variation.  
This helps stabilize the supply and immediately filter as much of the supply noise as possible.  
VDD  
Network Analyzer  
VSS  
DC Bias  
Injector  
With and Without  
Capacitor  
50  
0.1 µF  
0.1 µF  
VDD  
S1  
VSS  
620 mVPP  
VIN  
VBIAS  
50 Ω  
S2  
50 Ω  
VOUT  
D
CL  
RL  
GND  
7-14. ACPSRR Measurement Setup  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TMUX7219M  
 
 
 
 
TMUX7219M  
ZHCSP65 MAY 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TMUX7219M is a 2:1, 1-channel switch. Each input is turned on or turned off based on the state of the  
select line and enable pin.  
8.2 Functional Block Diagram  
The following figure shows the functional block diagram of the TMUX7219M.  
VSS  
VDD  
S1  
S2  
D
Decoder  
EN SEL  
8.3 Feature Description  
8.3.1 Bidirectional Operation  
The TMUX7219M conducts equally well from source (Sx) to drain (D) or from drain (D) to source (Sx). Each  
channel has very similar characteristics in both directions and supports both analog and digital signals.  
8.3.2 Rail-to-Rail Operation  
The valid signal path input and output voltage for TMUX7219M ranges from VSS to VDD  
.
8.3.3 1.8 V Logic Compatible Inputs  
The TMUX7219M has 1.8 V logic compatible control for all logic control inputs. 1.8 V logic level inputs allows the  
device to interface with processors that have lower logic I/O rails and eliminates the need for an external  
translator, which saves both space and BOM cost. For more information on 1.8 V logic implementations refer to  
Simplifying Design with 1.8 V logic Muxes and Switches.  
8.3.4 Integrated Pull-Up and Pull-Down Resistor on Logic Pins  
The TMUX7219M has internal weak pull-up and pull-down resistors to GND to ensure the logic pins are not left  
floating. The value of this pull-down resistor is approximately 4 MΩ, but is clamped to about 1 µA at higher  
voltages. The EN pin integrates a pull-up resistor to VDD and the SEL pin integrates a pull-down resistor. This  
feature integrates up to two external components and reduces system size and cost.  
8.3.5 Fail-Safe Logic  
The TMUX7219M supports Fail-Safe Logic on the control input pins (EN and SEL) allowing for operation up to  
44 V above ground, regardless of the state of the supply pins. This feature allows voltages on the control pins to  
be applied before the supply pin, protecting the device from potential damage. Fail-Safe Logic minimizes system  
complexity by removing the need for power supply sequencing on the logic control pins. For example, the Fail-  
Safe Logic feature allows the logic input pins of the TMUX7219M to be ramped to +44 V while VDD and VSS = 0  
V. The logic control inputs are protected against positive faults of up to +44 V in powered-off condition, but do not  
offer protection against negative overvoltage conditions.  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TMUX7219M  
 
 
 
 
 
 
 
 
 
TMUX7219M  
ZHCSP65 MAY 2022  
www.ti.com.cn  
8.3.6 Latch-Up Immune  
Latch-up is a condition where a low impedance path is created between a supply pin and ground. This condition  
is caused by a trigger (current injection or overvoltage), but once activated, the low impedance path remains  
even after the trigger is no longer present. This low impedance path may cause system upset or catastrophic  
damage due to excessive current levels. The latch-up condition typically requires a power cycle to eliminate the  
low impedance path.  
The TMUX72xx family of devices are constructed on Silicon on Insulator (SOI) based process where an oxide  
layer is added between the PMOS and NMOS transistor of each CMOS switch to prevent parasitic structures  
from forming. The oxide layer is also known as an insulating trench and prevents triggering of latch up events  
due to overvoltage or current injections. The latch-up immunity feature allows the TMUX72xx family of switches  
and multiplexers to be used in harsh environments. For more information on latch-up immunity refer to Using  
Latch Up Immune Multiplexers to Help Improve System Reliability.  
8.3.7 Ultra-Low Charge Injection  
8-1 shows how the TMUX7219M has a transmission gate topology. Any mismatch in the stray capacitance  
associated with the NMOS and PMOS causes an output level change whenever the switch is opened or closed.  
OFF ON  
CGDN  
CGSN  
D
S
CGSP  
CGDP  
OFF ON  
8-1. Transmission Gate Topology  
The TMUX7219M contains specialized architecture to reduce charge injection on the source (Sx). To further  
reduce charge injection in a sensitive application, a compensation capacitor (Cp) can be added on the drain (D).  
This will ensure that excess charge from the switch transition will be pushed into the compensation capacitor on  
the drain (D) instead of the source (Sx). As a general rule, Cp should be 20× larger than the equivalent load  
capacitance on the source (Sx). 8-2 shows charge injection variation with source voltage with different  
compensation capacitors on the drain side.  
8-2. Charge Injection Compensation  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TMUX7219M  
 
 
 
TMUX7219M  
ZHCSP65 MAY 2022  
www.ti.com.cn  
8.4 Device Functional Modes  
When the EN pin of the TMUX7219M is pulled high, one of the switches is closed based on the state of the SEL  
pin. When the EN pin is pulled low, both of the switches are in an open state regardless of the state of the SEL  
pin. The control pins can be as high as 44 V.  
The TMUX7219M can operate without any external components except for the supply decoupling capacitors.  
The EN pin has an internal pull-up resistor of 4 MΩ, and SEL pin has internal pull-down resistor of 4 MΩ. If  
unused, EN pin must be tied to VDD and SEL pin must be tied to GND to ensure the device does not consume  
additional current as highlighted in Implications of Slow or Floating CMOS Inputs. Unused signal path inputs (S1,  
S2, or D) should be connected to GND.  
8.5 Truth Tables  
8-1 show the truth tables for the TMUX7219M.  
8-1. TMUX7219M Truth Table  
EN SEL  
Selected Source Connected To Drain (D) Pin  
0
1
1
X(1)  
All sources are off (HI-Z)  
0
S1  
S2  
1
(1) X denotes do not care.  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TMUX7219M  
 
 
 
 
 
TMUX7219M  
ZHCSP65 MAY 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
TMUX7219M is part of the precision switches and multiplexers family of devices. TMUX7219M offers low RON,  
low on and off leakage currents, and ultra-low charge injection performance. These properties make  
TMUX7219M ideal for implementing high precision industrial systems requiring selection of one of two inputs or  
outputs.  
9.2 Typical Applications  
9.2.1 Data Acquisition Calibration  
One application of the TMUX7219M is in Data Acquisition systems (DAQ). To account for system loss and  
ensure the lowest possible noise floor, a calibration path is needed. To minimize board space and automate this  
procedure, many applications utilize a 2:1 (SPDT) switch. 9-1 shows the TMUX7219M configured for  
switching a calibration path on a precision measurement module.  
VDD  
VSS  
0.1 µF  
0.1 µF  
Inputs  
Module  
Voltage Input  
S1  
S2  
D
+
Calibra on Path  
To µC  
SEL  
OPA228  
-
Precision  
ADC  
Precision  
DAC  
9-1. Calibration Path Switching for Data Acquisition  
9.2.1.1 Design Requirements  
For the design example, use the parameters listed in 9-1.  
9-1. Design Parameters  
PARAMETERS  
Supply (VDD  
Supply (VSS  
VALUES  
15 V  
)
)
-15 V  
MUX I/O signal range  
Control logic thresholds  
EN  
-15 V to 15 V (Rail-to-Rail)  
1.8 V compatiable (up to 44V)  
EN pulled high to enable the switch  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TMUX7219M  
 
 
 
 
 
TMUX7219M  
ZHCSP65 MAY 2022  
www.ti.com.cn  
9.2.1.2 Detailed Design Procedure  
The TMUX7219M can be operated without any external components except for the supply decoupling  
capacitors. All inputs passing through the switch must fall within the recommended operating conditions,  
including signal range and continuous current. For this design, with a dual supply of ±15 V, the signal range can  
range from -15 V to +15 V. Industrial applications such as factory automation and control and test and  
measurement benefit from using a 2:1 switch, because it allows additional flexibility in the design. A single 2:1  
switch has numerous applications such as switching between an analog signal path and a calibration path, and  
allowing a single channel to be configured as either an analog input or analog output.  
10 Power Supply Recommendations  
The TMUX7219M operates across a wide supply range of ±4.5 V to ±22 V (4.5 V to 44 V in single-supply mode).  
The device also performs well with asymmetrical supplies such as VDD = 12 V and VSS = 5 V.  
Power-supply bypassing improves noise margin and prevents switching noise propagation from the supply rails  
to other components. Good power-supply decoupling is important to achieve optimum performance. For  
improved supply noise immunity, use a supply decoupling capacitor ranging from 0.1 μF to 10 μF at both the  
VDD and VSS pins to ground. Place the bypass capacitors as close to the power supply pins of the device as  
possible using low-impedance connections. TI recommends using multi-layer ceramic chip capacitors (MLCCs)  
that offer low equivalent series resistance (ESR) and inductance (ESL) characteristics for power-supply  
decoupling purposes. For very sensitive systems, or for systems in harsh noise environments, avoiding the use  
of vias for connecting the capacitors to the device pins may offer superior noise immunity. The use of multiple  
vias in parallel lowers the overall inductance and is beneficial for connections to ground and power planes.  
Always ensure the ground (GND) connection is established before supplies are ramped.  
Copyright © 2023 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TMUX7219M  
 
TMUX7219M  
ZHCSP65 MAY 2022  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
When a PCB trace turns a corner at a 90° angle, a reflection can occur. A reflection occurs primarily because of  
the change of width of the trace. At the apex of the turn, the trace width increases to 1.414 times the width. This  
increase upsets the transmission-line characteristics, especially the distributed capacitance and selfinductance  
of the trace which results in the reflection. Not all PCB traces can be straight and therefore some traces must  
turn corners. 11-1 shows progressively better techniques of rounding corners. Only the last example (BEST)  
maintains constant trace width and minimizes reflections.  
WORST  
BETTER  
BEST  
2W  
1W min.  
W
11-1. Trace Example  
Route high-speed signals using a minimum of vias and corners which reduces signal reflections and impedance  
changes. When a via must be used, increase the clearance size around it to minimize its capacitance. Each via  
introduces discontinuities in the signals transmission line and increases the chance of picking up interference  
from the other layers of the board. Be careful when designing test points, through-hole pins are not  
recommended at high frequencies.  
Figure 11-2 illustrates an example of a PCB layout with the TMUX7219M. Some key considerations are:  
For reliable operation, connect a decoupling capacitor ranging from 0.1 µF to 10 µF between VDD/VSS and  
GND. TI recommends placing the lowest value capacitor as close to the pin as possible. Make sure that the  
capacitor voltage rating is sufficient for the supply voltage.  
Keep the input lines as short as possible.  
Use a solid ground plane to help reduce electromagnetic interference (EMI) noise pickup.  
Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if  
possible, and only make perpendicular crossings when necessary.  
Using multiple vias in parallel will lower the overall inductance and is beneficial for connection to ground  
planes.  
11.2 Layout Example  
S2  
VSS  
SEL  
EN  
D
TMUX7219M  
S1  
GND  
VDD  
Wide (low inductance)  
trace for power  
C
C
Wide (low inductance)  
trace for power  
Via to ground plane  
11-2. TMUX7219MDGK Layout Example  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TMUX7219M  
 
 
 
 
TMUX7219M  
ZHCSP65 MAY 2022  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, Improve Stability Issues with Low CON Multiplexers application brief  
Texas Instruments, Improving Signal Measurement Accuracy in Automated Test Equipment application brief  
Texas Instruments, Multiplexers and Signal Switches Glossary application report  
Texas Instruments, QFN/SON PCB Attachment application report  
Texas Instruments, Quad Flatpack No-Lead Logic Packages application report  
Texas Instruments, Simplifying Design with 1.8 V logic Muxes and Switches application brief  
Texas Instruments, System-Level Protection for High-Voltage Analog Multiplexers application report  
12.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TMUX7219M  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Jun-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMUX7219MDGKR  
ACTIVE  
VSSOP  
DGK  
8
2500 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
-55 to 125  
X219  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TMUX7219MDGKR

具有 1.8V 逻辑扩展温度的 44V、低 Ron、2:1、1 通道闩锁效应抑制精密多路复用器 | DGK | 8 | -55 to 125
TI

TMUX7219RQXR

具有 1.8V 逻辑的 44V、抗锁存、2:1 (SPDT) 精密开关 | RQX | 8 | -40 to 125
TI

TMUX721X

TMUX721x 44 V, Low-RON, 1:1 (SPST), 4-Channel Precision Switches with Latch-Up Immunity and 1.8-V Logic
TI

TMUX7221

具有 1.8V 逻辑电平和闩锁效应抑制的 44V、1:1 (SPST) 2 通道精密开关(高电平有效)
TI

TMUX7222

具有 1.8V 逻辑电平和闩锁效应抑制的 44V、1:1 (SPST) 2 通道精密开关(低电平有效)
TI

TMUX7234

具有 1.8V 逻辑的 44V、闩锁效应抑制、2:1 四通道精密多路复用器
TI

TMUX7234PWR

具有 1.8V 逻辑的 44V、闩锁效应抑制、2:1 四通道精密多路复用器 | PW | 20 | -40 to 125
TI

TMUX7234RRQR

具有 1.8V 逻辑的 44V、闩锁效应抑制、2:1 四通道精密多路复用器 | RRQ | 20 | -40 to 125
TI

TMUX7236

具有闩锁效应抑制和 1.8V 逻辑电平的 44V、低导通电阻、2:1 (SPDT)、双通道精密开关
TI

TMUX7236RUMR

具有闩锁效应抑制和 1.8V 逻辑电平的 44V、低导通电阻、2:1 (SPDT)、双通道精密开关 | RUM | 16 | -40 to 125
TI

TMUX7308F

TMUX730xF ±60-V Fault-Protected, 8:1 and Dual 4:1 Multiplexers with Latch-Up Immunity and 1.8-V Logic
TI

TMUX7308FPWR

具有 1.8V 逻辑电平的 ±60V 故障保护、8:1 单通道多路复用器 | PW | 16 | -40 to 125
TI