TMAG5328A1DQDBVR [TI]

电阻器可调节的低功耗霍尔效应开关 | DBV | 6 | -40 to 125;
TMAG5328A1DQDBVR
型号: TMAG5328A1DQDBVR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

电阻器可调节的低功耗霍尔效应开关 | DBV | 6 | -40 to 125

开关 电阻器
文件: 总29页 (文件大小:1448K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMAG5328  
ZHCSLQ8A DECEMBER 2021 REVISED JUNE 2022  
TMAG5328 电阻器和电压可调节的低功耗霍尔效应开关  
1 特性  
3 说明  
• 电源电压范1.65V 5.5V  
BOP 2mT 15mT 之间调节  
TMAG5328 器件是一款高精度、低功耗、电阻器可调  
的低压霍尔效应开关传感器。  
– 使2k15k电阻器  
160mV 1200mV 电压源  
• 全极霍尔开关  
• 推挽输出  
• 低功耗  
外部电阻器设置器件工作的 BOP 值。根据一个简单的  
公式很容易计算出设置正确的 BOP 值所需的阻值。  
迟滞值是固定的BRP 值被定义BOP 迟滞值。  
TMAG5328 具有这一可调阈值功能可快速轻松地进  
行原型设计让设计快速上市实现跨不同平台重用,  
并支持发生意外变化时在最后一刻进行简单修改。  
20Hz 采样率1.4µA3.3 V )  
• 业界通用的封装和引脚  
SOT-23 封装  
当施加的磁通密度超过 BOP 阈值时器件会输出低电  
压。输出会保持低电平直到磁通密度低BRP随后  
输出将驱动高电压。通过集成内部振荡器该器件可对  
磁场进行采样并以 20Hz 的速率更新输出以便实现  
超低的电流消耗。TMAG5328 具有全极磁响应。  
• –40°C 125°C 工作温度范围  
2 应用  
• 电池关键型位置感应  
• 电表篡改检测  
此器件可在 1.65V 5.5V VCC 范围内工作并采  
用标SOT-23-6 封装。  
• 手机、笔记本电脑或平板电脑保护壳感应  
• 电子锁、烟雾探测器、电器  
• 医疗设备、物联网系统  
• 阀门或螺线管位置检测  
• 非接触式诊断或激活  
器件信息  
封装(1)  
封装尺寸标称值)  
器件型号  
TMAG5328  
SOT-23 (6)  
2.92mm × 1.30mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
VCC  
Low-Power  
Oscillator  
LDO  
VCC  
OUT  
Device  
control  
ADJ  
Thresholds  
Output  
control  
Amp  
Z
+
GND  
GND  
典型电路原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLYS044  
 
 
 
 
TMAG5328  
ZHCSLQ8A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
Table of Contents  
7.3 Feature Description...................................................10  
7.4 Device Functional Modes..........................................13  
8 Application and Implementation..................................14  
8.1 Application Information............................................. 14  
8.2 Typical Applications.................................................. 19  
9 Power Supply Recommendations................................21  
10 Layout...........................................................................21  
10.1 Layout Guidelines................................................... 21  
10.2 Layout Examples.................................................... 21  
11 Device and Documentation Support..........................22  
11.1 接收文档更新通知................................................... 22  
11.2 支持资源..................................................................22  
11.3 Trademarks............................................................. 22  
11.4 Electrostatic Discharge Caution..............................22  
11.5 术语表..................................................................... 22  
12 机械、封装和可订购信息...............................................22  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................5  
6.6 Magnetic Characteristics.............................................6  
6.7 Typical Characteristics................................................7  
7 Detailed Description........................................................9  
7.1 Overview.....................................................................9  
7.2 Functional Block Diagram...........................................9  
4 Revision History  
Changes from Revision * (December 2021) to Revision A (June 2022)  
Page  
• 将数据表状态从预告信更改为量产数.........................................................................................................1  
• 添加FA FD 器件版本..................................................................................................................................1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TMAG5328  
 
TMAG5328  
ZHCSLQ8A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
TEST1  
GND  
ADJ  
1
2
3
6
5
4
OUT  
TEST2  
VCC  
Not to scale  
5-1. DBV Package 6-Pin SOT-23 Top View  
5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
GND  
OUT  
SOT-23  
2
6
Ground reference  
O
Omnipolar output that responds to north and south magnetic poles  
1.65-V to 5.5-V power supply. TI recommends connecting this pin  
to a ceramic capacitor to ground with a value of at least 0.1 µF  
VCC  
ADJ  
4
3
This pin is used to set the thresholds up. Can either be connected  
to a resistor or voltage source.  
I
TEST1  
TEST2  
1
5
TI recommends to leave this pin floating  
TI recommends connecting this pin to GND  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TMAG5328  
 
TMAG5328  
ZHCSLQ8A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
0.3  
-5  
MAX  
UNIT  
Power Supply Voltage  
Pin Voltage  
VCC  
5.5  
V
OUT, TEST1  
TEST2  
VCC + 0.3  
0.3  
5.5  
5
V
ADJ  
Pin current  
OUT, TEST1  
mA  
T
Magnetic Flux Density,BMAX  
Junction temperature, TJ  
Storage temperature, Tstg  
Unlimited  
Junction temperature, TJ  
150  
150  
°C  
°C  
65  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS-001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per ANSI/ESDA/  
JEDEC JS-002, all pins(2)  
± 500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
5.5  
VCC  
0
UNIT  
VCC  
Power supply voltage  
Pin Voltage. OUT, TEST1  
Pin Voltage. TEST2  
Pin Voltage, ADJ  
1.65  
0
V
VIO  
0
V
0
5
Io  
Pin current. OUT, TEST1  
Ambient temperature  
5
mA  
°C  
5  
40  
TA  
125  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TMAG5328  
 
 
 
 
 
 
 
 
TMAG5328  
ZHCSLQ8A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.4 Thermal Information  
TMAG5328  
THERMAL METRIC(1)  
SOT-23 (DBV)  
6 PINS  
167.6  
84.1  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
52.2  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
32  
ΨJT  
51.9  
ΨJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ADJ pin  
ADJ_ICC  
ADJ_C  
Current output source  
80  
µA  
pF  
Maximum external capacitance  
50  
PUSH-PULL OUTPUT DRIVER  
Vcc –  
0.35  
Vcc –  
VOH  
High-level output voltage  
V
V
IOUT = 0.5 mA  
0.1  
VOL  
Low-level output voltage  
IOUT = 0.5 mA  
0.1  
0.3  
TMAG5328A1D  
fs  
ts  
Frequency of magnetic sampling  
Period of magnetic sampling  
20  
50  
Hz  
ms  
VCC = 3.3 V  
TA = 25°C  
1.4  
1.6  
2.3  
µA  
ICC(AVG)  
Average current consumption  
VCC = 1.65 V to 5.5 V  
ALL VERSIONS  
ICC(PK)  
Peak current consumption  
Sleep current consumption  
Power-on time  
1.8  
300  
125  
3
mA  
nA  
µs  
ICC(SLP)  
600  
tON  
Power-on state without external magnetic  
field  
POS  
VCC > VCCMIN  
High  
65  
tACTIVE  
Active time period  
µs  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TMAG5328  
 
 
 
TMAG5328  
ZHCSLQ8A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.6 Magnetic Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TMAG5328A1D  
BOP(Range A)  
Adjustable Operate Point  
Adjustable Release Point  
Voltage range  
±2  
±1  
±15  
±14  
mT  
mT  
mV  
BRP(Range A)  
VADJ (Range A)  
160  
1200  
Resistor range  
RADJ (Range A)  
2
15 kOhm  
mT/  
kOhm  
BOP(RADJ  
)
BOP/R  
±1  
0.85  
2 mT BOPSET < 6 mT  
6 mT BOPSET 15 mT  
2 mT BOPSET < 6 mT  
6 mT BOPSET 15 mT  
0.85  
1.75  
1  
BOP Accuracy  
BOPSET ± BOP(MAX/MIN))/BOPSET  
BOP_ACC(RADJ  
)
1.75  
1
mT  
BRP Accuracy  
BRPSET ± BRP(MAX/MIN)  
BRP_ACC(RADJ  
BHYSA(RADJ  
)
-2.1  
2.1  
1.6  
)
Magnetic hysteresis  
|BOP - BRP  
|
0.25  
1
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TMAG5328  
 
TMAG5328  
ZHCSLQ8A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.7 Typical Characteristics  
4
4
3
BOPS  
BOPN  
BRPS  
BRPN  
BOPS  
BOPN  
BRPS  
BRPN  
3
2
2
1
1
0
0
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
1.65  
2.65  
3.65  
4.65  
5.5  
-40  
-15  
10  
35  
60  
85  
110  
135 150  
Supply Voltage (V)  
Temperature (C)  
TA = 25°C  
VCC = 3.3 V  
6-2. 2-mT Magnetic Threshold vs Supply  
6-1. 2-mT Magnetic Threshold vs Temperature  
12  
12  
BOPS  
BOPN  
BRPS  
BRPN  
BOPS  
BOPN  
BRPS  
BRPN  
8
4
8
4
0
0
-4  
-8  
-12  
-4  
-8  
-12  
1.65  
2.65  
3.65  
4.65  
5.5  
-40  
-15  
10  
35  
60  
85  
110  
135 150  
Supply Voltage (V)  
Temperature (C)  
TA = 25°C  
VCC = 3.3 V  
6-4. 7.5-mT Magnetic Threshold vs Supply  
6-3. 7.5-mT Magnetic Threshold vs Temperature  
25  
25  
BOPS  
BOPN  
BRPS  
BRPN  
BOPS  
BOPN  
BRPS  
BRPN  
20  
15  
10  
5
20  
15  
10  
5
0
0
-5  
-5  
-10  
-15  
-20  
-25  
-10  
-15  
-20  
-25  
1.65  
2.65  
3.65  
4.65  
5.5  
-40  
-15  
10  
35  
60  
85  
110  
135 150  
Supply Voltage (V)  
Temperature (C)  
TA = 25°C  
VCC = 3.3 V  
6-6. 15-mT Magnetic Threshold vs Supply  
6-5. 15-mT Magnetic Threshold vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TMAG5328  
 
TMAG5328  
ZHCSLQ8A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
2
1.75  
1.5  
1.65 V  
3.3 V  
5.5 V  
1.25  
1
0.75  
0.5  
0.25  
0
-40  
-15  
10  
35  
60  
85  
110  
135 150  
Temperature (C)  
Sampling Rate = 20 Hz  
6-7. Average ICC vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TMAG5328  
TMAG5328  
ZHCSLQ8A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TMAG5328 device is a magnetic sensor with a digital output that indicates when the magnetic flux density  
threshold has been crossed. The device integrates a Hall effect element, analog signal conditioning, and a low-  
frequency oscillator that enables ultra-low average power consumption.  
While most of the Hall effect sensor have fixed threshold, the TMAG5328 offers an extra pin that allows the user  
to set up a specific threshold of operation. This pin can either be connected to a resistor or a voltage source.  
While the value can be set at production, it is also possible to allow dynamic change of either the resistor value  
or the voltage value to dynamically change the threshold value.  
Operating from a 1.65-V to 5.5-V supply, the device periodically measures magnetic flux density, updates the  
output, and enters into a low-power sleep state.  
7.2 Functional Block Diagram  
VCC  
Low-Power  
Oscillator  
LDO  
VCC  
OUT  
Device  
control  
ADJ  
Thresholds  
Output  
control  
Amp  
Z
+
GND  
GND  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TMAG5328  
 
 
 
TMAG5328  
ZHCSLQ8A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Magnetic Flux Direction  
Magnetic flux that travels from the bottom to the top of the package is considered positive in this data sheet. This  
condition exists when a south magnetic pole is near the top of the package. Magnetic flux that travels from the  
top to the bottom of the package results in negative millitesla values.  
positive B  
negative B  
N
S
S
N
PCB  
PCB  
7-1. Flux Direction Polarity  
7.3.2 Magnetic Response  
The TMAG5328A1D has omnipolar functionality, so the device responds to both positive and negative magnetic  
flux densities, as shown in 7-2.  
OUT  
BHYS  
BHYS  
VCC  
0V  
0 mT  
B
BOP BRP  
BRP BOP  
north  
south  
7-2. Omnipolar Functionality  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TMAG5328  
 
 
TMAG5328  
ZHCSLQ8A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
7.3.3 Output Type  
. The TMAG5328A1D also has a push-pull CMOS output.  
VCC  
Output  
Output  
Control  
7-3. Push-Pull Output (Simplified)  
7.3.4 Sampling Rate  
When the TMAG5328 device powers up, the device measures the first magnetic sample and sets the output  
within the tON time. The output is latched, and the device enters an ultra-low-power sleep state. After each tActive  
time has passed, the device measures a new sample and updates the output if necessary. If the magnetic field  
does not change between periods, the output also does not change.  
While in active mode, the part will go through different steps. The content of the OTP (One-Time-Programmable  
Memory) is loaded first, and this steps takes about 35 µs and consumes around 350 µA. For the next 5 µs, the  
current source will be started and settled. The part now consumes around 650 µA in this step. Finally, the part  
conducts the Hall sensor conversion for about 25 µs and consumes the peak current of around 2 mA.  
Supply (V)  
VCC  
VCC(min)  
0V  
t (s)  
tACTIVE  
tACTIVE  
tON  
ICC(mA)  
ICC(PK)  
ICC(SLP)  
t (s)  
t (s)  
Output (V)  
High  
2nd sample  
Invalid  
1st sample  
Low  
7-4. Timing Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TMAG5328  
TMAG5328  
ZHCSLQ8A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
7.3.5 Adjustable Threshold  
While most Hall Effect switch sensors have fixed magnetic characteristics, the TMAG5328 offers a wide range of  
adjustable thresholds. The user can use the "ADJ" pin to set the value of BOP threshold. This pin can be used in  
two different ways. A resistor or a voltage source can be applied on "ADJ". In both scenarios, the resistor or  
voltage value will define the position of the BOP. While the BOP can be adjusted, the hysteresis has a fixed value.  
BRP is therefore defined as BOP-Hysteresis.  
An 80-µA current is generated on pin "ADJ" when the part goes into active mode. The device then reads the  
"ADJ" pin and defines the value of BOP. The TMAG5328 supports adjusting the BOP dynamically. If the "ADJ" pin  
value is adjusted while the sensor is in sleep mode, the BOP will update at the next active period of the device.  
Consequently, the maximum time it could take for the BOP to update is equal to the period of magnetic sampling,  
ts.  
7.3.5.1 Adjustable Resistor  
One way to setup the BOP is to connect a resistor to the "ADJ" pin. The device generates a fixed current that is  
injected in the external resistor. This will generate a voltage that represents the BOP value. The relationship  
between BOP and resistance is defined as BOP(mT) = RADJ(k). Please note that the generated current on the  
"ADJ" pin is only present when the device is in active mode and it is turned OFF when in sleep mode. As a  
result, the voltage on the "ADJ" pin is only present when the device is in active mode, which is a small duration  
compared to the time the device is in sleep mode.  
The device BOP must be set to any value between 2 mT and 15 mT. This means RADJ must be set between 2 kΩ  
and 15 k. Operating above and beyond those limits is not recommended and could result in either getting the  
wrong threshold set or locking up the device into a specific state without the possibility of exiting.  
7-5 shows the relationship between BOP and RADJ  
.
BOP  
15mT  
8.5mT  
2mT  
RADJ  
Short pin  
8.5kOhm  
15kOhm  
2kOhm  
Open pin  
7-5. BOP vs RADJ  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TMAG5328  
 
TMAG5328  
ZHCSLQ8A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
7.3.5.2 Adjustable Voltage  
One other way to setup the BOP is to apply a voltage to the "ADJ" pin. This voltage is directly proportional to the  
BOP value. The relationship between BOP and voltage is defined as BOP(mT)= VADJ(mV) × 0.0125. To apply a  
voltage on the "ADJ" pin, the voltage source must be able to settle within 4 us after being exposed to a 80 uA  
current on the ADJ pin.  
The device BOP must be set to any value between 2 mT and 15 mT. This means VADJ must be set between 160  
mV and 1200 mV. Operating above and beyond those limits is not recommended and could result in either  
getting the wrong threshold set or locking up the device into a specific state without the possibility of exiting.  
7-6 shows the relationship between BOP and VADJ  
.
BOP  
15mT  
8.5mT  
2mT  
VADJ  
Short pin  
680mV  
1200mV  
160mV  
Open pin  
7-6. BOP vs RADJ  
7.3.6 Hall Element Location  
7-7 shows the sensing element location inside the device.  
6
5
4
Sensor location:  
X1: 1.468 mm  
X2: 1.458  
Y1  
Y2  
X2  
X1  
Y1: 0.9925 mm  
Y2: 0.6335 mm  
Z1: 0.665 mm  
Z2: 0.475 mm  
1
2
3
Z1  
Z2  
7-7. Hall Element Location  
7.4 Device Functional Modes  
The TMAG5328 device has one mode of operation that applies when the Recommended Operating Conditions  
are met.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TMAG5328  
 
 
 
TMAG5328  
ZHCSLQ8A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The TMAG5328 device is typically used to detect the proximity of a magnet. The magnet is often attached to a  
movable component in the system.  
8.1.1 Output Type Tradeoffs  
The push-pull output allows for the lowest system power consumption, because there is no current leakage path  
when the output drives high or low. The open-drain output involves a leakage path when the output drives low,  
through the external pullup resistor.  
The open-drain outputs of multiple devices can be tied together to form a logical AND. In this setup, if any sensor  
drives low, the voltage on the shared node becomes low. This can allow a single GPIO to measure an array of  
sensors.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TMAG5328  
 
 
TMAG5328  
ZHCSLQ8A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
8.1.2 Valid TMAG5328 Configurations  
The TMAG5328 BOP is set by connecting a resistor or a voltage source to the ADJpin. 8-1 shows how to  
use resistor R1 to set the BOP. 8-2 shows hows to use a DAC as a voltage source for setting the BOP. Using  
the DAC allows the user to dynamically change the BOP with software. To use a DAC, the output of the DAC  
must settle within 4 µs after the 80-µA current source of the ADJpin is turned ON.  
V+  
V+  
C2  
C1  
VCC  
VCC  
GND  
GND  
ADJ  
TMAG5328  
GND  
Microcontroller  
GPIO  
OUT  
TEST1  
TEST2  
R1  
GND  
GND  
GND  
8-1. Setting BOP of One TMAG5328 Device Using a Resistor  
V+  
V+  
C1  
VDD  
VCC  
C3  
GND  
R1  
GND  
SCL  
SCL  
R2  
CAP  
DAC43701  
Microcontroller  
SDA  
SDA  
GPI  
V+  
GPIO1  
C2  
R3  
GND  
FB  
VCC  
TMAG5328  
GND  
GND  
OUT  
GND  
AGND  
ADJ  
OUT  
GND  
TEST1  
TEST2  
GND  
GND  
8-2. Setting BOP of One TMAG5328 Device Using a DAC  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TMAG5328  
 
 
TMAG5328  
ZHCSLQ8A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
As a DAC alternative, 8-3 shows how a voltage divider may be used as a voltage source. In 8-3, an  
operational amplifier is placed between the voltage divider and the ADJpin so that the voltage fed to the  
ADJpin is not impacted by the internal current source of the TMAG5328 when the current source is turned  
ON. To use an op amp, the output of the op amp must settle within 4 µs after the 80-µA current source of the  
ADJpin is turned ON.  
V+  
V+  
V+  
C1  
VCC  
VCC  
C3  
C2  
V+  
GND  
GND  
GND  
R1  
ADJ  
TLV9001  
+
TMAG5328  
GND  
Microcontroller  
GPIO  
OUT  
TEST1  
TEST2  
GND  
R2  
GND  
GND  
GND  
GND  
8-3. Setting BOP of One TMAG5328 Device Using a Voltage Divider  
A potentiometer or rheostat may be integrated into a voltage divider, and the user can adjust this potentiometer  
to dynamically update the BOP. 8-4 shows how to use a potentiometer in a voltage divider to set the BOP of  
the TMAG5328. The maximum output voltage, which determines the maximum BOP, is set based on the values  
of resistors R1 and R3. The minimum output voltage, which determines the minimum BOP, is set based on the  
values of the maximum potentiometer resistance, R1s resistance, and R3s resistance. The user should  
select a minimum output voltage greater than 0.16 V and a maximum output voltage less than 1.2 V.  
V+  
V+  
V+  
C1  
VCC  
VCC  
C3  
C2  
V+  
GND  
R1  
R2  
ADJ  
TLV9001  
+
TMAG5328  
GND  
Microcontroller  
GPIO  
OUT  
TEST1  
TEST2  
GND  
R3  
GND  
GND  
GND  
GND  
8-4. Setting BOP of One TMAG5328 Device Using a Voltage Divider and Potentiometer  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TMAG5328  
 
 
TMAG5328  
ZHCSLQ8A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
8-5 shows how the TMAG5328s internal current source can drive a apotentiometer or rheostat instead of a  
voltage divider. In this implementation, resistor R2 should be at least 2 kto ensure that the ADJresistance  
is always above its minimum 2 k. The sum of the maximum potentiometer resistance and the resistance of R1  
must also be less than 15 k.  
V+  
V+  
VCC  
VCC  
C2  
C1  
GND  
GND  
ADJ  
TMAG5328  
GND  
Microcontroller  
GPIO  
OUT  
R1  
TEST1  
TEST2  
GND  
GND  
R2  
GND  
8-5. Setting BOP of One TMAG5328 Device Using a Potentiometer and the TMAG5328s Internal  
Current Source  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TMAG5328  
 
TMAG5328  
ZHCSLQ8A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
Multiple TMAG5328 devices may be used in the same system. When setting the BOP using a resistor, TI  
recommends that each TMAG5328 has its own ADJresistor, even if multiple TMAG5328 devices have the  
same ADJresistor value. 8-6 shows an example implementation that has three TMAG5328 devices. If  
each device is set to the same BOP, then the resistances of R1, R2, and R3 are equal.  
V+  
VCC  
C5  
V+  
GPIO1  
GPIO2  
GPIO3  
C1  
GND  
GND  
VCC  
TMAG5328  
GND  
R1  
Microcontroller  
ADJ  
OUT  
GND  
TEST1  
TEST2  
GND  
GND  
V+  
C2  
GND  
GND  
VCC  
TMAG5328  
GND  
R2  
ADJ  
OUT  
GND  
TEST1  
TEST2  
GND  
V+  
C3  
GND  
VCC  
TMAG5328  
GND  
R3  
ADJ  
OUT  
GND  
TEST1  
TEST2  
GND  
8-6. Setting BOP of Three TMAG5328 Devices Using Three Resistors  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TMAG5328  
 
TMAG5328  
ZHCSLQ8A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
When setting the BOP using a DAC, one DAC can be used to set the ADJpin voltage of multiple devices  
only if the DACs output could sink the current from all of the TMAG5328 devices. 8-7 shows an example of  
a DAC driving the ADJpin of three TMAG5328 devices. A DAC can only work reliably in this specific  
scenario if the DACs output can settle within 4 µs after being exposed to the three ADJcurrent sources.  
Each current source is 80 µA, therefore the DAC can only reliably work if the DAC's output can settle within 4 µs  
after being exposed to 80 x 3 = 240 µA of current.  
V+  
V+  
C1  
VDD  
VCC  
C5  
GND  
R1  
GND  
SCL  
SCL  
R2  
CAP  
DAC43701  
Microcontroller  
SDA  
SDA  
GPI  
V+  
GPIO1  
C2  
R3  
GND  
FB  
VCC  
TMAG5328  
GND  
GND  
OUT  
GND  
AGND  
ADJ  
OUT  
GND  
TEST1  
TEST2  
GND  
GND  
V+  
C3  
GND  
VCC  
TMAG5328  
GND  
ADJ  
OUT  
TEST1  
TEST2  
GND  
V+  
C4  
GND  
VCC  
TMAG5328  
GND  
ADJ  
OUT  
TEST1  
TEST2  
GND  
8-7. Setting BOP of Three TMAG5328 Devices Using a DAC  
8.2 Typical Applications  
The TMAG5328 can be used in a large variety of industrial applications. For almost all these applications, the  
sensor is fixed and the magnet is attached to a movable component in the system.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TMAG5328  
 
 
TMAG5328  
ZHCSLQ8A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
8.2.1 Refrigerator Door Open/Close Detection  
This application section describes how to use the same device for two identical applications with different  
mechanical characteristic.  
2°  
2°  
Refrigerator door 1  
D1  
D2  
Refrigerator door 2  
F1  
F2  
8-8. Refrigerator 1 and Refrigerator 2 Principal Diagram  
8.2.1.1 Design Requirements  
For this design example, use the parameters listed in 8-1.  
8-1. Design Parameters for Fridge 1  
DESIGN PARAMETER  
EXAMPLE VALUE  
TMAG5328A1D  
5 V  
Hall effect device  
VCC  
Magnet  
10 mm cubic N35  
7.025 mm  
500 mm  
D1  
F1  
Door opening angle  
Calculated threshold needed (BOP  
RADJ  
2°  
)
7.87 mT  
7.87 kΩ  
8-2. Design Parameters for Fridge 2  
DESIGN PARAMETER  
EXAMPLE VALUE  
Hall effect device  
TMAG5328A1D  
5 V  
VCC  
Magnet  
10 mm cubic N35  
16.08 mm  
500 mm  
D2  
F2  
Door opening angle  
Calculated threshold needed (BOP  
RADJ  
2°  
)
3.49 mT  
3.48 kΩ  
8.2.1.2 Detailed Design Procedure  
For both applications, the Hall sensor is used to detect if the refrigerator door is open or closed. Both refrigerator  
doors are different from each other and therefore have different mechanical design. This means the Hall sensor  
and the magnet are positioned differently from each other. In other terms, if the user wants to detect a specific  
distance for both refrigerator doors, they must use either a different magnet or a different sensor. For the  
purpose of this application, there is no flexibility in the choice of magnet. The electronic board will also be reused  
across platforms and therefore will use the same sensor.  
The TMAG5328 is a resistor adjustable Hall effect switch that allows the user to set up whatever threshold is  
needed between 2 mT and 15 mT.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TMAG5328  
 
TMAG5328  
ZHCSLQ8A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
For this application, the refrigerator door manufacturer can use the same printed circuit board (PCB) with the  
same semiconductor content and only has to change the resistor value depending on which refrigerator version  
is manufactured.  
For both refrigerator doors, the opening angle is the same. Now refrigerator door 1 is a thinner model than  
refrigerator door 2. This means the PCB is located further away for refrigerator door 2 and therefore the  
sensitivity required to detect the position of the door will be impacted.  
Knowing the door dimensions, the door opening angle required, and the distance from the magnet to the PCB, it  
is possible to use a simulation tool that will calculate the magnet strength at the desired position. For refrigerator  
door 1, the sensitivity calculated is 7.87 mT at a distance of 7.025 mm. For Refrigerator 2, the sensitivity is 3.49  
mT at a distance of 16.08 mm. Based on those values, a resistor value can be selected from the E48 series. A  
resistor of 7.87 kcan be used for refrigerator door 1 and resistor of 3.48 kcan be used for refrigerator door 2.  
9 Power Supply Recommendations  
The TMAG5328 device is powered from 1.65-V to 5.5-V DC power supplies. A decoupling capacitor close to the  
device must be used to provide local energy with minimal inductance. TI recommends using a ceramic capacitor  
with a value of at least 0.1 µF.  
10 Layout  
10.1 Layout Guidelines  
Magnetic fields pass through most non-ferromagnetic materials with no significant disturbance. Embedding Hall  
effect sensors within plastic or aluminum enclosures and sensing magnets on the outside is common practice.  
Magnetic fields also easily pass through most printed circuit boards, which makes placing the magnet on the  
opposite side possible.  
10.2 Layout Examples  
TEST1  
GND  
ADJ  
OUT  
TEST2  
VCC  
GND  
GND  
VCC  
SOT-23  
10-1. Layout Examples  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TMAG5328  
 
 
 
 
TMAG5328  
ZHCSLQ8A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更恕不另行通知,  
且不会对此文档进行修订。如需获取此数据表的浏览器版本请查阅左侧的导航栏。  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TMAG5328  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Aug-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMAG5328A1DQDBVR  
ACTIVE  
SOT-23  
DBV  
6
3000 RoHS & Green  
SN  
Level-1-260C-UNLIM  
-40 to 125  
PA1  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TMAG5328A1DQDBVR SOT-23  
DBV  
6
3000  
178.0  
9.0  
3.3  
3.2  
1.4  
4.0  
8.0  
Q3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOT-23 DBV  
SPQ  
Length (mm) Width (mm) Height (mm)  
190.0 190.0 30.0  
TMAG5328A1DQDBVR  
6
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0006A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
B
1.45 MAX  
A
PIN 1  
INDEX AREA  
1
2
6
5
2X 0.95  
1.9  
3.05  
2.75  
4
3
0.50  
6X  
0.25  
C A B  
0.15  
0.00  
0.2  
(1.1)  
TYP  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
TYP  
0
0.6  
0.3  
TYP  
SEATING PLANE  
4214840/C 06/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.  
4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.  
5. Refernce JEDEC MO-178.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214840/C 06/2021  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214840/C 06/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TMAG6180-Q1

Automotive high-precision analog AMR angle sensor with 360° angle range
TI

TMAG6181-Q1

Automotive high-precision analog AMR angle sensor with integrated turns counter
TI

TMAR47M2AD16V

Aluminum Electrolytic Capacitor, Polarized, Aluminum, 100V, 20% +Tol, 20% -Tol, 0.47uF
VISHAY

TMAS100K50NPO-XX-TR30

Axial Ceramic Monolithic Capacitor
TAITRON

TMB

TMB SERIES SYNCHRONOUS TIMING MODULES
EUROQUARTZ

TMB-1.2

EM Brake
ETC

TMB-1.2H

EM Brake (with hub)
ETC

TMB-1.2HI

EM Brake (with inverted hub)
ETC

TMB-10

EM Brake
ETC

TMB-10H

EM Brake (with hub)
ETC

TMB-10HI

EM Brake (with inverted hub)
ETC

TMB-2.5

EM Brake
ETC