TM16LR64JFN [TI]

SYNCHRONOUS DYNAMIC RAM MODULES; 同步动态RAM模块
TM16LR64JFN
型号: TM16LR64JFN
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

SYNCHRONOUS DYNAMIC RAM MODULES
同步动态RAM模块

文件: 总17页 (文件大小:292K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢅ ꢋ ꢂ ꢌ ꢍ ꢅꢆ ꢎꢌ ꢏ ꢀ  
ꢒ ꢐ ꢅ ꢌ ꢍ ꢅꢆ ꢎꢌ ꢏ ꢀ  
SMMS710 − MAY 1998  
D
Organization:  
− TM8LR64JFN . . . 8388608 × 64 Bits  
− TM16LR64JFN . . . 16777216 × 64 Bits  
D
High-Speed, Low-Noise, Low-Voltage TTL  
(LVTTL) Interface  
D
Read Latencies 2 and 3 Supported  
D
D
Designed for 100-MHz 4-Clock Systems  
D
Supports Burst-Interleave and  
Burst-Interrupt Operations  
JEDEC 168-Pin Dual-In-Line Memory  
Module (DIMM) Without Buffer for Use With  
Socket  
D
D
D
D
D
D
Burst Length Programmable to 1, 2, 4,  
and 8  
D
TM8LR64JFN — Uses Eight 64M-Bit  
Synchronous Dynamic RAMs (SDRAMs)  
(8M × 8-Bit) in Plastic Thin Small-Outline  
Packages (TSOPs)  
Four Banks for On-Chip Interleaving  
(Gapless Access)  
Ambient Temperature Range  
0°C to 70°C  
Electroless Gold-Finished Contacts  
D
D
D
TM16LR64JFN — Uses Sixteen 64M-Bit  
SDRAMs (8M × 8-Bit) in Plastic TSOPs  
Performance Ranges:  
Pipeline Architecture  
Serial Presence-Detect (SPD) Using  
EEPROM  
Single 3.3-V Power Supply  
( 10% Tolerance)  
D
Byte-Read/Write Capability  
SYNCHRONOUS  
CLOCK CYCLE  
TIME  
ACCESS TIME  
CLOCK TO  
OUTPUT  
REFRESH  
INTERVAL  
t
t
t
t
t
REF  
CK3  
CK2  
AC3  
AC2  
’xLR64JFN-8  
8 ns  
8 ns  
10 ns  
10 ns  
6 ns  
6 ns  
6 ns  
64 ms  
64 ms  
’xLR64JFN-8A  
7.5 ns  
description  
The TM8LR64JFN is a 64M-byte, 168-pin dual-in-line memory module (DIMM). The DIMM is composed of eight  
TMS664814DGE 8388608 x 8-bit SDRAMs, each in a 400-mil, 54-pin plastic thin small-outline package  
(TSOP) mounted on a substrate with decoupling capacitors. See the TMS664814 data sheet (literature number  
SMOS695).  
The TM16LR64JFN is a 128M-byte, 168-pin DIMM. The DIMM is composed of sixteen TMS664814DGE  
8388608 x 8-bit SDRAMs, each in a 400-mil, 54-pin plastic TSOP mounted on a substrate with decoupling  
capacitors.  
operation  
The TM8LR64JFN operates as eight TMS664814DGE devices that are connected as shown in the  
TM8LR64JFN functional block diagram. The TM16LR64JFN operates as 16 TMS664814DGE devices  
connected as shown in the TM16LR64JFN functional block diagram.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
ꢪꢧ ꢨ ꢞ ꢮꢟ ꢩꢬ ꢤ ꢨ ꢧ ꢡꢠ ꢪꢧ ꢭ ꢧ ꢯꢡ ꢩꢣꢧ ꢟꢥꢰ ꢔ ꢬꢤ ꢢꢤ ꢦꢥ ꢧꢢ ꢞꢨ ꢥꢞ ꢦ ꢪꢤ ꢥꢤ ꢤꢟ ꢪ ꢡꢥ ꢬꢧꢢ  
Copyright 1998, Texas Instruments Incorporated  
ꢦ ꢬꢤ ꢟ ꢮꢧ ꢡꢢ ꢪꢞ ꢨ ꢦ ꢡꢟ ꢥꢞ ꢟꢫꢧ ꢥ ꢬꢧ ꢨ ꢧ ꢩꢢ ꢡꢪ ꢫꢦꢥ ꢨ ꢲ ꢞꢥꢬ ꢡꢫꢥ ꢟꢡꢥ ꢞꢦꢧ ꢰ  
1
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆ ꢇꢈ ꢉ ꢂ ꢊ ꢂ ꢂ ꢅ ꢋ ꢂ ꢌꢍ ꢅ ꢆ ꢎꢌꢏ ꢀ  
ꢀ ꢁ ꢐꢅ ꢃ ꢄꢅ ꢆ ꢇꢈ ꢉ ꢐꢅ ꢑ ꢑ ꢑ ꢒ ꢐ ꢅ ꢌꢍ ꢅ ꢆ ꢎꢌꢏ ꢀ  
ꢓ ꢍꢉꢔ ꢕ ꢄ ꢖꢉꢖꢗ ꢓ ꢘꢍ ꢉꢙ ꢁꢏ ꢔ ꢄꢙ ꢁ ꢁꢖ ꢘꢗ ꢃ ꢚꢓ  
SMMS710 − MAY 1998  
DUAL-IN-LINE MEMORY MODULE  
(TOP VIEW)  
TM8LR64JFN TM16LR64JFN  
(SIDE VIEW) (SIDE VIEW)  
PIN NOMENCLATURE  
A[0:11]  
A[0:8]  
Row-Address Inputs  
Column-Address Inputs  
Bank-Select Zero  
Bank-Select One  
Column-Address Strobe  
Check Bit In/Check Bit Out  
Clock Enable  
A13/BA0  
A12/BA1  
CAS  
CB[0:7]  
CKE[0:1]  
CK[0:3]  
DQ[0:63]  
DQMB[0:7]  
1
System Clock  
10  
11  
Data-In/Data-Out  
Data-In/Data-Out  
Mask Enable  
NC  
No Connect  
RAS  
S[0:3]  
SA[0:2]  
Row-Address Strobe  
Chip-Select  
Serial Presence Detect (SPD)  
Device Address Input  
SPD Clock  
SPD Address/Data  
3.3-V Supply  
Ground  
SCL  
SDA  
V
DD  
V
SS  
WE  
WP  
Write Enable  
Write Protect  
40  
41  
84  
2
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢋ ꢂ ꢌ ꢍ ꢅꢆ ꢎꢌ ꢏ ꢀ  
ꢁꢐ  
ꢐ ꢅ ꢌ ꢍ ꢅꢆ ꢎꢌ ꢏ ꢀ  
ꢗꢃ  
SMMS710 − MAY 1998  
Pin Assignments  
PIN  
PIN  
NAME  
PIN  
NAME  
PIN  
NAME  
NO.  
1
NAME  
NO.  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
NO.  
85  
NO.  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
V
SS  
V
SS  
V
SS  
V
SS  
2
DQ0  
DQ1  
DQ2  
DQ3  
NC  
S2  
86  
DQ32  
DQ33  
DQ34  
DQ35  
CKE0  
S3  
3
87  
4
DQMB2  
DQMB3  
NC  
88  
DQMB6  
DQMB7  
NC  
5
89  
6
V
DD  
90  
V
DD  
7
DQ4  
DQ5  
DQ6  
DQ7  
DQ8  
V
DD  
91  
DQ36  
DQ37  
DQ38  
DQ39  
DQ40  
V
DD  
8
NC  
NC  
92  
NC  
NC  
9
93  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
CB2  
CB3  
94  
CB6  
CB7  
95  
V
SS  
V
SS  
96  
V
SS  
V
SS  
DQ9  
DQ10  
DQ11  
DQ12  
DQ13  
DQ16  
DQ17  
DQ18  
DQ19  
97  
DQ41  
DQ42  
DQ43  
DQ44  
DQ45  
DQ48  
DQ49  
DQ50  
DQ51  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
V
DD  
V
DD  
V
DD  
DQ20  
NC  
V
DD  
DQ52  
NC  
DQ14  
DQ15  
CB0  
DQ46  
DQ47  
CB4  
NC  
NC  
CKE1  
NC  
CB1  
V
SS  
CB5  
V
SS  
V
SS  
DQ21  
DQ22  
DQ23  
V
SS  
DQ53  
DQ54  
DQ55  
NC  
NC  
NC  
NC  
V
DD  
V
SS  
V
DD  
V
SS  
WE  
DQ24  
DQ25  
DQ26  
DQ27  
CAS  
DQ56  
DQ57  
DQ58  
DQ59  
DQMB0  
DQMB1  
S0  
DQMB4  
DQMB5  
S1  
NC  
V
DD  
RAS  
V
DD  
V
SS  
DQ28  
DQ29  
DQ30  
DQ31  
V
SS  
DQ60  
DQ61  
DQ62  
DQ63  
A0  
A2  
A1  
A3  
A4  
A5  
A6  
V
SS  
A7  
V
SS  
A8  
CK2  
NC  
A9  
CK3  
NC  
A10  
A12/BA1  
A13/BA0  
A11  
WP  
SA0  
SA1  
SA2  
V
V
SDA  
SCL  
V
DD  
DD  
CK1  
NC  
DD  
CK0  
V
DD  
V
DD  
3
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆ ꢇꢈ ꢉ ꢂ ꢊ ꢂ ꢂ ꢅ ꢋ ꢂ ꢌꢍ ꢅ ꢆ ꢎꢌꢏ ꢀ  
ꢀ ꢁ ꢐꢅ ꢃ ꢄꢅ ꢆ ꢇꢈ ꢉ ꢐꢅ ꢑ ꢑ ꢑ ꢒ ꢐ ꢅ ꢌꢍ ꢅ ꢆ ꢎꢌꢏ ꢀ  
ꢓ ꢍꢉꢔ ꢕ ꢄ ꢖꢉꢖꢗ ꢓ ꢘꢍ ꢉꢙ ꢁꢏ ꢔ ꢄꢙ ꢁ ꢁꢖ ꢘꢗ ꢃ ꢚꢓ  
SMMS710 − MAY 1998  
dual-in-line memory module and components  
The dual-in-line memory module and components include:  
D
D
D
PC substrate: 1,27 0,1 mm (0.05 inch) nominal thickness; 0.005 inch/inch maximum warpage  
Bypass capacitors: Multilayer ceramic  
Contact area: Nickel plate and electroless gold-finished contacts over copper  
functional block diagram for the TM8LR64JFN  
S0  
R
R
C
C
CK: U0, U4  
CK: U1, U5  
CS  
CS  
CK0  
R
R
C
C
U0  
U4  
DQMB0  
DQ[0:7]  
DQM  
DQMB4  
DQM  
CK: U2, U6  
CK: U3, U7  
R
R
CK2  
8
8
DQ[0:7]  
DQ[32:39]  
DQ[0:7]  
R
R
C
C
CK1  
CK3  
C
C
CS  
CS  
U1  
U5  
DQMB1  
DQM  
DQMB5  
DQM  
R
R
8
8
DQ[8:15]  
DQ[0:7]  
DQ[40:47]  
DQ[0:7]  
R = 10  
R
= 10 Ω  
C
C = 10 pF  
S2  
CS  
CS  
V
DD  
U[0:7]  
U2  
U6  
DQMB2  
DQM  
DQMB6  
DQM  
One 0.1 µF and  
One 0.01 µF  
R
R
8
8
DQ[16:23]  
DQ[0:7]  
DQ[48:55]  
DQ[0:7]  
V
SS  
U[0:7]  
CS  
CS  
SPD EEPROM  
U3  
U7  
SCL  
WP  
DQMB3  
DQM  
DQMB7  
DQM  
SDA  
R
R
8
8
DQ[24:31]  
DQ[0:7]  
DQ[56:63]  
DQ[0:7]  
A0  
A1  
A2  
SA0 SA1 SA2  
47 kΩ  
RAS  
CAS  
WE  
RAS: SDRAM U[0:7]  
CAS: SDRAM U[0:7]  
WE: SDRAM U[0:7]  
CKE: SDRAM U[0:7]  
A[0:13]: SDRAM U[0:7]  
CKE0  
A[0:13]  
LEGEND:  
CS  
SPD  
=
=
Chip select  
Serial Presence Detect  
Additional 3.3 pF capacity is used to balance loads among clocks.  
4
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢋ ꢂ ꢌ ꢍ ꢅꢆ ꢎꢌ ꢏ ꢀ  
ꢁꢐ  
ꢐ ꢅ ꢌ ꢍ ꢅꢆ ꢎꢌ ꢏ ꢀ  
ꢗꢃ  
ꢚꢓ  
SMMS710 − MAY 1998  
functional block diagram for the TM16LR64JFN  
S1  
S0  
V
U[0:7]  
DD  
One 0.1 µF and  
One 0.01 µF  
CS  
CS  
CS  
CS  
V
U[0:7]  
SS  
U0  
UB0  
U4  
DQM  
UB4  
DQM  
R = 10 Ω  
= 10 Ω  
DQMB0  
DQ[0:7]  
DQM  
DQM  
DQMB4  
R
C
R
R
8
8
DQ[0:7]  
DQ[0:7]  
DQ[32:39]  
DQ[0:7]  
DQ[0:7]  
V
DD  
CS  
CS  
CS  
CS  
10 kΩ  
CKE1  
CKE0  
CKE: UB[0:7]  
CKE: U[0:7]  
U1  
UB1  
U5  
UB5  
DQMB1  
DQM  
DQM  
DQMB5  
DQM  
DQM  
R
R
8
8
RAS  
CAS  
RAS: U[0:7], UB[0:7]  
CAS: U[0:7], UB[0:7]  
DQ[8:15]  
DQ[0:7]  
DQ[0:7]  
DQ[40:47]  
DQ[0:7]  
DQ[0:7]  
WE  
WE: U[0:7], UB[0:7]  
A[0:13]  
A[0:13]: U[0:7], UB[0:7]  
R
C
S3  
S2  
CK: U0, U4  
CK: U1, U5  
R
R
R
CK0  
C
C
C
CS  
CS  
CS  
CS  
CK: UB0, UB4  
CK: UB1, UB5  
CK1  
U2  
DQM  
UB2  
DQM  
U6  
DQM  
UB6  
DQM  
R
R
C
CK: U2, U6  
CK: U3, U7  
DQMB2  
DQMB6  
CK2  
R
R
C
8
8
DQ[16:23]  
DQ[0:7]  
DQ[0:7]  
DQ[48:55]  
DQ[0:7]  
DQ[0:7]  
R
R
C
CK: UB2, UB6  
CK: UB3, UB7  
CK3  
C
CS  
CS  
CS  
CS  
U3  
U7  
UB3  
UB7  
SPD EEPROM  
DQMB3  
DQM  
DQMB7  
DQM  
DQM  
DQM  
SDA  
SCL  
WP  
R
R
8
8
DQ[24:31]  
DQ[0:7]  
DQ[56:63]  
DQ[0:7]  
DQ[0:7]  
DQ[0:7]  
A0  
A1  
A2  
SA0 SA1 SA2  
47 kΩ  
Additional 3.3 pF capacity is used to balance loads among clocks.  
5
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆ ꢇꢈ ꢉ ꢂ ꢊ ꢂ ꢂ ꢅ ꢋ ꢂ ꢌꢍ ꢅ ꢆ ꢎꢌꢏ ꢀ  
ꢀ ꢁ ꢐꢅ ꢃ ꢄꢅ ꢆ ꢇꢈ ꢉ ꢐꢅ ꢑ ꢑ ꢑ ꢒ ꢐ ꢅ ꢌꢍ ꢅ ꢆ ꢎꢌꢏ ꢀ  
ꢓ ꢍꢉꢔ ꢕ ꢄ ꢖꢉꢖꢗ ꢓ ꢘꢍ ꢉꢙ ꢁꢏ ꢔ ꢄꢙ ꢁ ꢁꢖ ꢘꢗ ꢃ ꢚꢓ  
SMMS710 − MAY 1998  
absolute maximum ratings over ambient temperature range (unless otherwise noted)  
Supply voltage range, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.6 V  
DD  
Voltage range on any pin (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 0.5 V to 4.6 V  
Short-circuit output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
Power dissipation: TM8LR64JFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 W  
TM16LR64JFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 W  
Ambient temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
stg  
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 55°C to 150°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltage values are with respect to V  
.
SS  
recommended operating conditions  
MIN NOM  
MAX  
UNIT  
V
V
V
V
V
V
Supply voltage  
3
3.3  
0
3.6  
DD  
Supply voltage  
V
SS  
High-level input voltage  
High-level input voltage for SPD device  
Low-level input voltage  
Ambient temperature  
2
2
V
DD  
+ 0.3  
V
IH  
5.5  
0.8  
70  
V
IH-SPD  
IL  
−0.3  
0
V
T
A
°C  
capacitance over recommended ranges of supply voltage and ambient temperature,  
f = 1 MHz (see Note 2)  
’xLR64JFN  
PARAMETER  
UNIT  
MIN  
2.5  
MAX  
C
C
C
C
C
C
C
C
Input capacitance, CK input  
4
5
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
i(CK)  
Input capacitance, address and control inputs: A0A13, RAS, CAS, WE  
Input capacitance, CKE input  
2.5  
i(AC)  
5
i(CKE)  
o
Output capacitance  
4
2.5  
2.5  
6.5  
5
Input capacitance, DQMBx input  
i(DQMBx)  
i(Sx)  
Input capacitance, Sx input  
5
SDA input/output capacitance  
9
i/o(SDA)  
i(SPD)  
Input capacitance, SA0, SA1, SA2, SCL inputs  
7
Specifications in this table represent a single SDRAM device.  
NOTE 2: = 3.3 V 0.3 V. Bias on pins under test is 0 V.  
V
DD  
6
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢋ ꢂ ꢌ ꢍ ꢅꢆ ꢎꢌ ꢏ ꢀ  
ꢁꢐ  
ꢐ ꢅ ꢌ ꢍ ꢅꢆ ꢎꢌ ꢏ ꢀ  
ꢗꢃ  
ꢚꢓ  
SMMS710 − MAY 1998  
electrical characteristics over recommended ranges of supply voltage and ambient temperature  
(unless otherwise noted) (see Note 3)  
’xLR64JFN-8 ’xLR64JFN-8A  
PARAMETER  
TEST CONDITIONS  
= − 2 mA  
UNIT  
MIN  
MAX  
MIN  
MAX  
V
V
High-level output voltage  
Low-level output voltage  
I
I
2.4  
2.4  
V
V
OH  
OH  
= 2 mA  
0.4  
"10  
"10  
115  
0.4  
"10  
"10  
95  
OL  
OL  
0 V V V  
DD  
+ 0.3 V,  
I
I
I
Input current (leakage)  
Output current (leakage)  
µA  
µA  
All other pins = 0 V to V  
DD  
I
O
0 V V V  
DD  
+ 0.3 V, Output disabled  
CAS latency = 2  
O
Burst length = 1,  
t
I
t MIN,  
RC RC  
I
Operating current  
mA  
CC1  
/I = 0 mA  
OH OL  
125  
1
95  
1
CAS latency = 3  
(See Notes 4, 5, and 6)  
I
I
CKE V MAX, t  
= 15 ns (see Note 7)  
CC2P  
IL CK  
Precharge standby current in  
power-down mode  
mA  
mA  
CKE and CK V MAX, t  
(see Note 8)  
= ∞  
IL  
CK  
1
1
CC2PS  
I
I
CKE V MIN, t  
IH CK  
= 15 ns (see Note 7)  
= 15 ns  
40  
5
40  
5
CC2N  
Active standby current in  
non-power-down mode  
t
= (see Note 8)  
CC2NS  
CK  
CKE V MAX, t  
IL CK  
I
I
I
5
5
5
5
CC3P  
CC3PS  
CC3N  
(see Notes 4 and 7)  
Active standby current in  
power-down mode  
mA  
mA  
CKE and CK V MAX, t  
(see Notes 4 and 8)  
= ∞  
IL  
CK  
CKE V MIN,  
IH  
50  
50  
t
= 15 ns (see Notes 4 and 7)  
CK  
Precharge standby current in  
non-power-down mode  
CKE V MIN,  
IH  
I
I
CK V MAX, t  
= ∞  
10  
10  
CC3NS  
IL CK  
(see Notes 4 and 8)  
Page burst,  
CAS latency = 2  
CAS latency = 3  
165  
225  
120  
165  
I /I = 0 mA  
OH OL  
All banks activated,  
= one cycle  
Burst current  
mA  
CC4  
n
CCD  
(see Notes 9 and 10)  
CAS latency = 2  
CAS latency = 3  
150  
150  
1
150  
150  
1
t
t  
MIN  
RC RC  
I
I
Auto-refresh current  
Self-refresh current  
mA  
mA  
CC5  
(see Notes 5 and 8)  
CKE V MAX  
IL  
CC6  
Specifications in this table represent a single SDRAM device.  
NOTES: 3. All specifications apply to the device after power-up initialization. All control and address inputs must be stable and valid.  
4. Only one bank is activated.  
5.  
t t MIN  
RC RC  
6. Control and address inputs change state twice during t  
.
RC  
7. Control and address inputs change state once every 30 ns.  
8. Control and address inputs do not change state (stable).  
9. Control and address inputs change state once every cycle.  
10. Continuous burst access, n  
= 1 cycle  
CCD  
7
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆ ꢇꢈ ꢉ ꢂ ꢊ ꢂ ꢂ ꢅ ꢋ ꢂ ꢌꢍ ꢅ ꢆ ꢎꢌꢏ ꢀ  
ꢀ ꢁ ꢐꢅ ꢃ ꢄꢅ ꢆ ꢇꢈ ꢉ ꢐꢅ ꢑ ꢑ ꢑ ꢒ ꢐ ꢅ ꢌꢍ ꢅ ꢆ ꢎꢌꢏ ꢀ  
ꢓ ꢍꢉꢔ ꢕ ꢄ ꢖꢉꢖꢗ ꢓ ꢘꢍ ꢉꢙ ꢁꢏ ꢔ ꢄꢙ ꢁ ꢁꢖ ꢘꢗ ꢃ ꢚꢓ  
SMMS710 − MAY 1998  
†‡  
ac timing requirements  
’xLR64JFN-8  
’xLR64JFN-8A  
UNIT  
MIN  
10  
8
MAX  
MIN  
15  
8
MAX  
t
t
t
t
t
t
t
t
t
t
Cycle time, CK  
CAS latency = 2  
CAS latency = 3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CK2  
CK3  
CH  
CL  
Cycle time, CK  
Pulse duration, CK high  
Pulse duraction, CK low  
3
3
3
3
Access time, CK high to data out (see Note 11)  
Access time, CK high to data out (see Note 11)  
Hold time, CK high to data out with 50-pF load  
CAS latency = 2  
CAS latency = 3  
6
6
7.5  
6
AC2  
AC3  
OH  
LZ  
3
1
3
1
Delay time, CK high to DQ in low-impedance state (see Note 12)  
Delay time, CK high to DQ in high-impedance state (see Note 13)  
Setup time, address, control, and data input  
8
8
HZ  
2
2
IS  
t
t
t
Hold time, address, control, and data input  
Power down/self-refresh exit time  
1
8
1
8
ns  
ns  
ns  
IH  
CESP  
RAS  
Delay time, ACTV command to DEAC or DCAB command  
48 100000  
48 100000  
Delay time, ACTV, MRS, REFR, or SLFR to ACTV, MRS, REFR, or SLFR  
command  
t
t
t
68  
68  
ns  
ns  
ns  
RC  
Delay time, ACTV command to READ, READ-P, WRT, or WRT-P command  
(see Note 14)  
20  
20  
20  
20  
RCD  
RP  
Delay time, DEAC or DCAB command to ACTV, MRS, REFR, or SLFR  
command  
Delay time, ACTV command in one bank to ACTV command in the other  
bank  
t
t
t
16  
16  
16  
16  
ns  
ns  
ns  
RRD  
RSA  
APR  
Delay time, MRS command to ACTV, MRS, REFR, or SLFR command  
Final data out of READ-P operation to ACTV, MRS, SLFR, or REFR  
command  
t
−(CL−1)  
t
t
− (CL−1) t  
* CK RP * CK  
RP  
t
t
Final data in of WRT-P operation to ACTV, MRS, SLFR, or REFR command  
Transition time  
t
+ 1 t  
CK  
t
+ 1 t  
CK  
ns  
APW  
RP  
1
RP  
1
5
5
ms  
T
t
Refresh interval  
64  
64  
ms  
REF  
n
n
n
n
n
n
Delay time, READ or WRT command to an interrupting command  
Delay time, CS low or high to input enabled or inhibited  
Delay time, CKE high or low to CLK enabled or disabled  
Delay time, final data in of WRT operation to READ, READ-P, WRT, or WRT-P  
Delay time, ENBL or MASK command to enabled or masked data in  
Delay time, ENBL or MASK command to enabled or masked data out  
1
0
1
1
0
2
1
0
1
1
0
2
cycles  
cycles  
cycles  
cycles  
cycles  
cycles  
CCD  
CDD  
CLE  
CWL  
DID  
0
1
0
1
0
2
0
2
DOD  
Delay time, DEAC or DCAB command to DQ in  
CAS latency = 2  
n
2
2
cycles  
HZP2  
high-impedance state  
All references are made to the rising transition of CK unless otherwise noted.  
Specifications in this table represent a single SDRAM device.  
NOTES: 11. t  
is referenced from the rising transition of CK that precedes the data-out cycle. For example, the first data out t  
is referenced  
AC  
AC  
from the rising transition of CK that is read latency (one cycle after the READ command). Access time is measured at output  
reference level 1.4 V.  
12.  
13.  
t
is measured from the rising transition of CK that is read latency (one cycle after the READ command).  
(max) defines the time at which the outputs are no longer driven and is not referenced to output voltage levels.  
LZ  
t
HZ  
14. For read or write operations with automatic deactivate, t  
must be set to satisfy minimum t .  
RAS  
RCD  
8
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢋ ꢂ ꢌ ꢍ ꢅꢆ ꢎꢌ ꢏ ꢀ  
ꢁꢐ  
ꢐ ꢅ ꢌ ꢍ ꢅꢆ ꢎꢌ ꢏ ꢀ  
ꢗꢃ  
ꢚꢓ  
SMMS710 − MAY 1998  
†‡  
ac timing requirements (continued)  
’xLR64JFN-8  
’xLR64JFN-8A  
UNIT  
MIN  
MAX  
MIN  
MAX  
Delay time, DEAC or DCAB command to DQ in high-impedance  
state  
n
CAS latency = 3  
3
0
3
0
cycles  
HZP3  
n
n
Delay time, WRT command to first data in  
0
1
0
1
cycles  
cycles  
WCD  
Delay time, final data in of WRT operation to DEAC or DCAB command  
WR  
All references are made to the rising transition of CK unless otherwise noted.  
Specifications in this table represent a single SDRAM device.  
9
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆ ꢇꢈ ꢉ ꢂ ꢊ ꢂ ꢂ ꢅ ꢋ ꢂ ꢌꢍ ꢅ ꢆ ꢎꢌꢏ ꢀ  
ꢀ ꢁ ꢐꢅ ꢃ ꢄꢅ ꢆ ꢇꢈ ꢉ ꢐꢅ ꢑ ꢑ ꢑ ꢒ ꢐ ꢅ ꢌꢍ ꢅ ꢆ ꢎꢌꢏ ꢀ  
ꢓ ꢍꢉꢔ ꢕ ꢄ ꢖꢉꢖꢗ ꢓ ꢘꢍ ꢉꢙ ꢁꢏ ꢔ ꢄꢙ ꢁ ꢁꢖ ꢘꢗ ꢃ ꢚꢓ  
SMMS710 − MAY 1998  
serial presence detect  
The serial presence detect (SPD) is contained in a 256-byte serial EEPROM located on the module. The SPD  
nonvolatile EEPROM contains various data such as module configuration, SDRAM organization, and timing  
parameters (see Table 1 and Table 2). Only the first 128 bytes are programmed by Texas Instruments, while  
the remaining 128 bytes are available for customer use. Programming is done through an IIC bus using the clock  
(SCL) and data (SDA) signals. All Texas Instruments modules comply with the current JEDEC SPD Standard.  
See the Texas Instruments Serial Presence Detect Technical Reference (literature number SMMU001) for  
further details.  
SPD contents of each TMxLR64JFN device are listed in the following tables:  
Table 1TM8LR64JFN  
Table 2TM16LR64JFN  
10  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢋ ꢂ ꢌ ꢍ ꢅꢆ ꢎꢌ ꢏ ꢀ  
ꢁꢐ  
ꢐ ꢅ ꢌ ꢍ ꢅꢆ ꢎꢌ ꢏ ꢀ  
ꢗꢃ  
ꢚꢓ  
SMMS710 − MAY 1998  
serial presence detect (continued)  
Table 1. Serial Presence-Detect Data for the TM8LR64JFN  
TM8LR64JFN-8  
TM8LR64JFN-8A  
ITEM DATA  
BYTE  
NO.  
DESCRIPTION OF FUNCTION  
ITEM  
DATA  
Defines number of bytes written into serial memory during module  
manufacturing  
0
128 bytes  
80h  
128 bytes  
80h  
1
2
Total number of bytes of SPD memory device  
Fundamental memory type (FPM, EDO, SDRAM, . . .)  
Number of row addresses on this assembly  
Number of column addresses on this assembly  
Number of module rows on this assembly  
Data width of this assembly  
256 bytes  
SDRAM  
12  
08h  
04h  
0Ch  
09h  
01h  
40h  
00h  
01h  
80h  
60h  
256 bytes  
SDRAM  
12  
08h  
04h  
0Ch  
09h  
01h  
40h  
00h  
01h  
80h  
60h  
3
4
9
9
5
1 bank  
64 bits  
1 bank  
64 bits  
6
7
Data width continuation  
8
Voltage interface standard of this assembly  
SDRAM cycle time at maximum supported CAS latency (CL), CL = X  
SDRAM access from clock at CL = X  
LVTTL  
LVTTL  
9
t
t
= 8 ns  
= 6 ns  
t
t
= 8 ns  
= 6 ns  
CK  
CK  
10  
AC  
AC  
DIMM configuration type (non-parity, parity, error correcting code  
[ECC])  
11  
12  
Non-Parity  
00h  
80h  
Non-Parity  
00h  
80h  
15.6 µs/  
self-refresh  
15.6 µs/  
self-refresh  
Refresh rate/type  
13  
14  
15  
16  
17  
18  
19  
20  
SDRAM width, primary DRAM  
Error-checking SDRAM data width  
Minimum clock delay, back-to-back random column addresses  
Burst lengths supported  
x8  
N/A  
08h  
00h  
01h  
0Fh  
04h  
06h  
01h  
01h  
x8  
N/A  
08h  
00h  
01h  
0Fh  
04h  
06h  
01h  
01h  
1 CK cycle  
1, 2, 4, 8  
4 banks  
2, 3  
1 CK cycle  
1, 2, 4, 8  
4 banks  
2, 3  
Number of banks on each SDRAM device  
CAS latencies supported  
CS latency  
0
0
Write latency  
0
0
Non-buffered/  
Non-registered  
Non-buffered/  
Non-registered  
21  
SDRAM module attributes  
00h  
00h  
V tolerance =  
DD  
(+10%),  
V tolerance =  
DD  
(+10%),  
Burst read/write,  
precharge all,  
Burst read/write,  
precharge all,  
22  
SDRAM device attributes: general  
0Eh  
0Eh  
auto precharge  
auto precharge  
23  
24  
25  
26  
27  
Minimum clock cycle time at CL = X − 1  
Maximum data-access time from clock at CL = X − 1  
Minimum clock cycle time at CL = X − 2  
Maximum data-access time from clock at CL = X − 2  
Minimum row-precharge time  
t
= 10 ns  
= 6 ns  
A0h  
60h  
00h  
00h  
14h  
t
= 15 ns  
= 7.5 ns  
N/A  
F0h  
75h  
00h  
00h  
14h  
CK  
CK  
t
t
AC  
AC  
N/A  
N/A  
N/A  
t
= 20 ns  
t
= 20 ns  
RP  
RP  
11  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆ ꢇꢈ ꢉ ꢂ ꢊ ꢂ ꢂ ꢅ ꢋ ꢂ ꢌꢍ ꢅ ꢆ ꢎꢌꢏ ꢀ  
ꢀ ꢁ ꢐꢅ ꢃ ꢄꢅ ꢆ ꢇꢈ ꢉ ꢐꢅ ꢑ ꢑ ꢑ ꢒ ꢐ ꢅ ꢌꢍ ꢅ ꢆ ꢎꢌꢏ ꢀ  
ꢓ ꢍꢉꢔ ꢕ ꢄ ꢖꢉꢖꢗ ꢓ ꢘꢍ ꢉꢙ ꢁꢏ ꢔ ꢄꢙ ꢁ ꢁꢖ ꢘꢗ ꢃ ꢚꢓ  
SMMS710 − MAY 1998  
serial presence detect (continued)  
Table 1. Serial Presence-Detect Data for the TM8LR64JFN (Continued)  
TM8LR64JFN-8  
TM8LR64JFN-8A  
ITEM DATA  
BYTE  
NO.  
DESCRIPTION OF FUNCTION  
ITEM  
DATA  
10h  
14h  
30h  
10h  
20h  
10h  
20h  
10h  
28  
29  
Minimum row-active to row-active delay  
Minimum RAS-to-CAS delay  
t
t
= 16 ns  
t
t
= 16 ns  
10h  
14h  
30h  
10h  
20h  
10h  
20h  
10h  
RRD  
RRD  
= 20 ns  
= 48 ns  
= 20 ns  
= 48 ns  
RCD  
RCD  
30  
Minimum RAS pulse width  
t
t
RAS  
RAS  
31  
Density of each bank on module  
Command and address signal input setup time  
Command and address signal input hold time  
Data signal input setup time  
64M Bytes  
64M Bytes  
32  
t
= 2 ns  
= 1 ns  
= 2 ns  
= 1 ns  
t
= 2 ns  
= 1 ns  
= 2 ns  
= 1 ns  
IS  
IS  
33  
t
t
IH  
IH  
34  
t
t
IS  
IS  
35  
Data signal input setup time  
t
t
IH  
IH  
3661  
62  
Superset features (may be used in the future)  
SPD revision  
Rev. 1.2  
95  
12h  
5Fh  
Rev. 1.2  
196  
12h  
C4h  
63  
Checksum for byte 062  
9700...  
00h  
9700...  
00h  
6471  
Manufacturer’s JEDEC ID code per JEP106E  
97h  
97h  
72  
73  
Manufacturing location  
TBD  
TBD  
Manufacturer’s part number  
Manufacturer’s part number  
Manufacturer’s part number  
Manufacturer’s part number  
Manufacturer’s part number  
Manufacturer’s part number  
Manufacturer’s part number  
Manufacturer’s part number  
Manufacturer’s part number  
Manufacturer’s part number  
Manufacturer’s part number  
Manufacturer’s part number  
Manufacturer’s part number  
Manufacturer’s part number  
Manufacturer’s part number  
T
M
54h  
4Dh  
38h  
4Ch  
52h  
36h  
34h  
4Ah  
46h  
4Eh  
2Dh  
38h  
20h  
20h  
T
M
54h  
4Dh  
38h  
4Ch  
52h  
36h  
34h  
4Ah  
46h  
4Eh  
2Dh  
38h  
41h  
20h  
74  
75  
8
8
76  
L
L
77  
R
R
78  
6
6
79  
4
4
80  
J
J
81  
F
F
82  
N
N
83  
84  
8
8
85  
SPACE  
SPACE  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
A
8690  
7390  
91  
SPACE  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Die revision code  
PCB revision code  
92  
9394  
9598  
Manufacturing date  
Assembly serial number  
99125 Manufacturer-specific data  
126  
Clock frequency  
SDRAM component and clock interconnection details  
100 MHz  
199  
64h  
C7h  
100 MHz  
199  
64h  
C7h  
127  
128−166 System-integrator-specific data  
167−255 Open  
TBD  
TBD  
TBD indicates values are determined at manufacturing time and are module-dependent.  
These TBD values are determined and programmed by the customer (optional).  
12  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢋ ꢂ ꢌ ꢍ ꢅꢆ ꢎꢌ ꢏ ꢀ  
ꢐ ꢅ ꢌ ꢍ ꢅꢆ ꢎꢌ ꢏ ꢀ  
ꢗꢃ  
ꢚꢓ  
SMMS710 − MAY 1998  
serial presence detect (continued)  
Table 2. Serial Presence-Detect Data for the TM16LR64JFN  
TM16LR64JFN-8  
TM16LR64JFN-8A  
BYTE  
NO.  
DESCRIPTION OF FUNCTION  
ITEM  
DATA  
ITEM  
DATA  
Defines number of bytes written into serial memory during module  
manufacturing  
0
128 bytes  
80h  
128 bytes  
80h  
1
2
Total number of bytes of SPD memory device  
Fundamental memory type (FPM, EDO, SDRAM, . . .)  
Number of row addresses on this assembly  
Number of column addresses on this assembly  
Number of module rows on this assembly  
256 bytes  
SDRAM  
12  
08h  
04h  
0Ch  
09h  
02h  
40h  
00h  
01h  
80h  
60h  
00h  
256 bytes  
SDRAM  
12  
08h  
04h  
0Ch  
09h  
02h  
40h  
00h  
01h  
80h  
60h  
00h  
3
4
9
9
5
2 banks  
64 bits  
2 banks  
64 bits  
6
Data width of this assembly  
7
Data width continuation  
8
Voltage interface standard of this assembly  
SDRAM cycle time at maximum supported CAS latency (CL), CL = X  
SDRAM access from clock at CL = X  
LVTTL  
LVTTL  
9
t
t
= 8 ns  
= 6 ns  
t
= 8 ns  
= 6 ns  
CK  
CK  
10  
11  
t
AC  
AC  
DIMM configuration type (non-parity, parity, error correcting code [ECC])  
Non-Parity  
Non-Parity  
15.6 µs/  
self-refresh  
15.6 µs/  
self-refresh  
12  
Refresh rate/type  
80h  
80h  
13  
14  
15  
16  
17  
18  
19  
20  
SDRAM width, primary DRAM  
Error-checking SDRAM data width  
Minimum clock delay, back-to-back random column addresses  
Burst lengths supported  
x8  
N/A  
08h  
00h  
01h  
0Fh  
04h  
06h  
01h  
01h  
x8  
N/A  
08h  
00h  
01h  
0Fh  
04h  
06h  
01h  
01h  
1 CK cycle  
1, 2, 4, 8  
4 banks  
2, 3  
1 CK cycle  
1, 2, 4, 8  
4 banks  
2, 3  
Number of banks on each SDRAM device  
CAS latencies supported  
CS latency  
0
0
Write latency  
0
0
Non-buffered/  
Non-registered  
Non-buffered/  
Non-registered  
21  
SDRAM module attributes  
00h  
00h  
V tolerance =  
DD  
(+10%).  
V tolerance =  
DD  
(+10%).  
Burst read/write,  
precharge all,  
Burst read/write,  
precharge all,  
22  
SDRAM device attributes: general  
0Eh  
0Eh  
auto precharge  
auto precharge  
23  
24  
25  
26  
27  
28  
29  
30  
Minimum clock cycle time at CL = X − 1  
Maximum data-access time from clock at CL = X − 1  
Minimum clock cycle time at CL = X − 2  
Maximum data-access time from clock at CL = X − 2  
Minimum row-precharge time  
t
= 10 ns  
= 6 ns  
A0h  
60h  
00h  
00h  
14h  
10h  
14h  
30h  
t
= 15 ns  
= 7.5 ns  
N/A  
F0h  
75h  
00h  
00h  
14h  
10h  
14h  
32h  
CK  
CK  
t
t
AC  
AC  
N/A  
N/A  
N/A  
t
= 20 ns  
t
= 20 ns  
RP  
RP  
Minimum row-active to row-active delay  
Minimum RAS-to-CAS delay  
t
t
= 16 ns  
= 20 ns  
= 48 ns  
t
= 16 ns  
= 20 ns  
= 48 ns  
RRD  
RRD  
t
RCD  
RCD  
Minimum RAS pulse width  
t
t
RAS  
RAS  
13  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆ ꢇꢈ ꢉ ꢂ ꢊ ꢂ ꢂ ꢅ ꢋ ꢂ ꢌꢍ ꢅ ꢆ ꢎꢌꢏ ꢀ  
ꢀ ꢁ ꢐꢅ ꢃ ꢄꢅ ꢆ ꢇꢈ ꢉ ꢐꢅ ꢑ ꢑ ꢑ ꢒ ꢐ ꢅ ꢌꢍ ꢅ ꢆ ꢎꢌꢏ ꢀ  
ꢓ ꢍꢉꢔ ꢕ ꢄ ꢖꢉꢖꢗ ꢓ ꢘꢍ ꢉꢙ ꢁꢏ ꢔ ꢄꢙ ꢁ ꢁꢖ ꢘꢗ ꢃ ꢚꢓ  
SMMS710 − MAY 1998  
serial presence detect (continued)  
Table 2. Serial Presence-Detect Data for the TM16LR64JFN (Continued)  
TM16LR64JFN-8  
TM16LR64JFN-8A  
BYTE  
NO.  
DESCRIPTION OF FUNCTION  
ITEM  
DATA  
10h  
20h  
10h  
20h  
10h  
ITEM  
DATA  
31  
32  
Density of each bank on module  
Command and address signal input setup time  
Command and address signal input hold time  
Data signal input setup time  
64M Bytes  
64M Bytes  
10h  
20h  
10h  
20h  
10h  
t
= 2 ns  
= 1 ns  
= 2 ns  
= 1 ns  
t
IS  
= 2 ns  
= 1 ns  
= 2 ns  
= 1 ns  
IS  
33  
t
t
IH  
IH  
34  
t
t
IS  
IS  
35  
Data signal input hold time  
t
t
IH  
IH  
36−61  
62  
Superset features (may be used in the future)  
SPD revision  
Rev. 1.2  
96  
12h  
60h  
Rev. 1.2  
197  
12h  
C5h  
63  
Checksum for byte 062  
9700...  
00h  
9700...  
00h  
6471  
Manufacturer’s JEDEC ID code per JEP106E  
97h  
97h  
72  
73  
Manufacturing location  
TBD  
TBD  
Manufacturer’s part number  
Manufacturer’s part number  
Manufacturer’s part number  
Manufacturer’s part number  
Manufacturer’s part number  
Manufacturer’s part number  
Manufacturer’s part number  
Manufacturer’s part number  
Manufacturer’s part number  
Manufacturer’s part number  
Manufacturer’s part number  
Manufacturer’s part number  
Manufacturer’s part number  
Manufacturer’s part number  
Manufacturer’s part number  
Manufacturer’s part number  
T
54h  
4Dh  
31h  
36h  
4Ch  
52h  
36h  
34h  
4Ah  
46h  
4Eh  
2Dh  
38h  
20h  
20h  
T
M
54h  
4Dh  
31h  
36h  
4Ch  
52h  
36h  
34h  
4Ah  
46h  
4Eh  
2Dh  
38h  
41h  
20h  
74  
M
75  
1
6
1
76  
6
77  
L
L
78  
R
R
79  
6
6
80  
4
4
81  
J
J
82  
F
F
83  
N
N
84  
85  
8
8
86  
SPACE  
SPACE  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
A
8790  
7390  
91  
SPACE  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Die revision code  
PCB revision code  
92  
9394  
9598  
Manufacturing date  
Assembly serial number  
99125 Manufacturer-specific data  
126  
Clock frequency  
SDRAM component and clock interconnection details  
100 MHz  
247  
64h  
F7h  
100 MHz  
247  
64h  
F7h  
127  
128−166 System-integrator-specific data  
TBD  
TBD  
167−255 Open  
TBD indicates values are determined at manufacturing time and are module-dependent.  
These TBD values are determined and programmed by the customer (optional).  
14  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢋ ꢂ ꢌ ꢍ ꢅꢆ ꢎꢌ ꢏ ꢀ  
ꢁꢐ  
ꢐ ꢅ ꢌ ꢍ ꢅꢆ ꢎꢌ ꢏ ꢀ  
ꢗꢃ  
ꢚꢓ  
SMMS710 − MAY 1998  
device symbolization (TM8LR64JFN)  
TM8LR64JFN  
Unbuffered Key Position  
3.3-V Voltage Key Position  
YY = Year Code  
MM = Month Code  
T = Assembly Site Code  
-SS = Speed Code  
NOTE A: Location of symbolization may vary.  
15  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆ ꢇꢈ ꢉ ꢂ ꢊ ꢂ ꢂ ꢅ ꢋ ꢂ ꢌꢍ ꢅ ꢆ ꢎꢌꢏ ꢀ  
ꢀ ꢁ ꢐꢅ ꢃ ꢄꢅ ꢆ ꢇꢈ ꢉ ꢐꢅ ꢑ ꢑ ꢑ ꢒ ꢐ ꢅ ꢌꢍ ꢅ ꢆ ꢎꢌꢏ ꢀ  
ꢓ ꢍꢉꢔ ꢕ ꢄ ꢖꢉꢖꢗ ꢓ ꢘꢍ ꢉꢙ ꢁꢏ ꢔ ꢄꢙ ꢁ ꢁꢖ ꢘꢗ ꢃ ꢚꢓ  
SMMS710 − MAY 1998  
MECHANICAL DATA  
BVC (R-PDIM-N168)  
DUAL-IN-LINE MEMORY MODULE  
5.255 (133,48)  
5.245 (133,22)  
(Note D)  
0.054 (1,37)  
Notch 0.157 (4,00) x 0.122 (3,10) Deep  
2 Places  
Notch 0.079 (2,00) x 0.122 (3,10) Deep  
2 Places  
0.046 (1,17)  
0.050 (1,27)  
0.125 (3,18)  
0.039 (1,00) TYP  
0.125 (3,18)  
0.014 (0,35) MAX  
0.118 (3,00) TYP  
0.118 (3,00) DIA  
2 Places  
0.700 (17,78) TYP  
1.550 (39,37)  
1.450 (36,83)  
0.106 (2,70) MAX  
0.157 (4,00) MAX  
(For Double-Sided DIMM Only)  
4088193/A 05/98  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MO-161  
D. Dimension includes depanelization variations; applies between notch and tab edge.  
E. Outline may vary above notches to allow router/panelization irregularities.  
16  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Amplifiers  
Data Converters  
DSP  
Clocks and Timers  
Interface  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/audio  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
Logic  
Military  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Optical Networking  
Security  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2008, Texas Instruments Incorporated  

相关型号:

TM16LR64JFN-8

16MX64 SYNCHRONOUS DRAM MODULE, 6ns, DMA168, DIMM-168
TI

TM16PN0011

Rack and Panel Connector, 16 Contact(s), Male, Plug
ITT

TM16PN0071

Rack and Panel Connector, 16 Contact(s), Male, Plug
ITT

TM16PN1181

Rack and Panel Connector, 16 Contact(s), Male, Plug
ITT

TM16PN1201

Rack and Panel Connector, 16 Contact(s), Male, Plug
ITT

TM16PN1351

Rack and Panel Connector, 16 Contact(s), Male, Plug
ITT

TM16PN1361

Rack and Panel Connector, 16 Contact(s), Male, Plug
ITT

TM16PN1371

Rack and Panel Connector, 16 Contact(s), Male, Plug
ITT

TM16PN1381

Rack and Panel Connector, 16 Contact(s), Male, Plug
ITT

TM16PN1501

Rack and Panel Connector, 16 Contact(s), Male, Plug
ITT

TM16PN1801

Rack and Panel Connector, 16 Contact(s), Male, Plug
ITT

TM16PN2011

Rack and Panel Connector, 16 Contact(s), Male, Plug
ITT