TLV803EA42RDBZR [TI]

TLV803E, TLV809E, TLV810E Low Power 250-nA IQ and Small Size Supply Voltage Supervisors;
TLV803EA42RDBZR
型号: TLV803EA42RDBZR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TLV803E, TLV809E, TLV810E Low Power 250-nA IQ and Small Size Supply Voltage Supervisors

文件: 总48页 (文件大小:2571K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLV803E, TLV809E, TLV810E  
SLVSES2G – AUGUST 2018 – REVISED OCTOBER 2020  
TLV803E, TLV809E, TLV810E Low Power 250-nA IQ and Small Size Supply Voltage  
Supervisors  
1 Features  
3 Description  
Ensured RESET/RESET for VDD = 0.7 V to 6 V  
Fixed time delay: 40 µs, 10 ms, 50 ms, 100 ms,  
200 ms, 400 ms  
Supply current (IDD): 250 nA (typical)  
– 1 µA (maximum for VDD = 3.3 V)  
Output topology:  
The TLV803E, TLV809E, and TLV810E are enhanced  
alternatives to the TLV803, TLV853, TLV809, LM809,  
TPS3809 and TLV810. TLV80xE and TLV81xE offer  
low quiescent current I Q, higher accuracy, wider  
temperature range, and lower power-on-reset (VPOR  
)
for increased system reliability.  
The TLV80xE and TLV81xE family are low IQ (250 nA  
typical, 1 µA max), voltage supervisory circuits (reset  
IC) that monitor VDD voltage level. These devices  
initiate a reset signal whenever supply voltage VDD  
drops below the factory programmed falling threshold  
voltage, VIT–. The reset output remains low for a fixed  
reset time delay tD after the VDD voltage rises above  
the rising voltage threshold (VIT+) which is equivalent  
to the falling threshold voltage (VIT-) plus hysteresis  
(VHYS).  
– TLV809E: push-pull, active-low  
– TLV803E: open-drain, active-low  
– TLV810E: push-pull, active-high  
Under voltage detection:  
– High accuracy: ±0.5% (typical)  
– (VIT–): 1.7 V, 1.8 V, 1.9 V, 2.25V, 2.4 V, 2.64 V,  
2.93 V, 3.08ꢀV, 3.3V, 4.2V, 4.38 V, 4.55V, 4.63 V  
Package:  
– SOT23-3 (DBZ) (with pin 1 = GND)  
– SOT23-3 (DBZ) (with pin 1 = RESET/RESET)  
– SOT23-3 (DBZ) (with pin 3 = GND)  
– SC-70 (DCK)  
These devices have integrated glitch immunity to  
ignore fast transients on the VDD pin. The low IQ and  
high accuracy (±0.5% typical) makes these voltage  
supervisors ideal for use in low-power and portable  
applications. The TLV80xE and TLV81xE devices are  
specified to have the defined output logic state for  
supply voltages down to VPOR = 0.7 V. The TLV80xE  
and TLV81xE devices are available in industry  
standard 3-pin SOT23 (DBZ) and SC70 (DCK)  
packages and very compact X2SON (DPW) package.  
– X2SON-5 (DPW)  
Temperature range: ꢀ–40°C to +125°C  
Pin-to-pin compatible with MAX803/809/810,  
APX803/809/810  
2 Applications  
Electricity meters  
Factory Automation  
Portable, battery-powered equipment  
Set-top boxes and TVs  
Building automation  
Device Information (1)  
PART NUMBER  
PACKAGE  
SOT-23 (3)  
SC-70 (3)  
BODY SIZE (NOM)  
2.90 mm × 1.30 mm  
2.00 mm × 1.25 mm  
0.8 mm x 0.8 mm  
TLV803E, TLV809E,  
TLV810E  
Notebook/desktop computers, servers  
X2SON (5)  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
*Rpull-up  
VDD  
FPGA, ASIC, DSP  
LDO  
TLV803E  
IN  
OUT  
RESET  
RESET  
VDD  
GND  
GND  
*Pull-up resistor not required for TLV809E, TLV810E  
Typical Application  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
TLV803E, TLV809E, TLV810E  
SLVSES2G – AUGUST 2018 – REVISED OCTOBER 2020  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Device Comparison.........................................................3  
6 Pin Configuration and Functions...................................3  
Pin Functions.................................................................... 4  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings ....................................... 5  
7.2 ESD Ratings .............................................................. 5  
7.3 Recommended Operating Conditions ........................5  
7.4 Thermal Information ...................................................6  
7.5 Electrical Characteristics ............................................7  
7.6 Timing Requirements .................................................8  
7.7 Timing Diagram...........................................................9  
7.8 Typical Characteristics..............................................10  
8 Detailed Description......................................................15  
8.1 Overview...................................................................15  
8.2 Functional Block Diagram.........................................15  
8.3 Feature Description...................................................15  
8.4 Device Functional Modes..........................................18  
9 Application and Implementation..................................19  
9.1 Application Information............................................. 19  
9.2 Typical Application - Voltage Rail Monitoring............19  
9.3 Typical Application - Overvoltage Monitoring............21  
10 Power Supply Recommendations..............................22  
11 Layout...........................................................................23  
11.1 Layout Guidelines................................................... 23  
11.2 Layout Example...................................................... 23  
12 Device and Documentation Support..........................25  
12.1 Device Support....................................................... 25  
12.2 Documentation Support.......................................... 26  
12.3 Receiving Notification of Documentation Updates..26  
12.4 Support Resources................................................. 26  
12.5 Trademarks.............................................................26  
12.6 Electrostatic Discharge Caution..............................26  
12.7 Glossary..................................................................26  
13 Mechanical, Packaging, and Orderable  
Information.................................................................... 26  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision F (June 2020) to Revision G (October 2020)  
Page  
Updated the numbering format for tables, figures and cross-references throughout the document...................1  
Added additional threshold voltages (VIT-) and new package information .........................................................1  
Updated Device Naming Nomenclature figure to include (DBZ) V pinout option .............................................. 3  
Added new (DBZ) package option (Pin 3 = GND, V pinout) and updated Pin Functions Table..........................3  
Added Reset time delay variant F specification .................................................................................................8  
Added layout example for (DBZ) V pinout package..........................................................................................23  
Modified Device Naming Convention table to include additional threshold voltages (VIT-), reset time delay  
options and pinout indicator options................................................................................................................. 25  
Changes from Revision E (April 2020) to Revision F (June 2020)  
Page  
Changed DPW package from Advanced Information to Production Data.......................................................... 1  
Changed DPW package Information ................................................................................................................. 3  
Changes from Revision D (February 2020) to Revision E (April 2020)  
Page  
Added X2SON (DPW) package option ..............................................................................................................3  
Changes from Revision C (November 2019) to Revision D (February 2020)  
Page  
Added device nomenclature figure .................................................................................................................... 3  
Added timing diagram for TLV810E ...................................................................................................................9  
Added Figure 6, Figure 23, Figure 24 ..............................................................................................................10  
Added typical application for TLV810E ............................................................................................................21  
Changes from Revision B (July 2019) to Revision C (November 2019)  
Page  
Changed device status from Advance Information to Production Data.............................................................. 1  
Copyright © 2020 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TLV803E TLV809E TLV810E  
 
TLV803E, TLV809E, TLV810E  
SLVSES2G – AUGUST 2018 – REVISED OCTOBER 2020  
www.ti.com  
5 Device Comparison  
Figure 5-1 shows the device naming nomenclature to compare the difference device variants. See Table 12-1 for  
a more detailed explanation.  
TLV XXXX X XX X XXX  
Output Type  
Delay Op on  
A: 200 ms  
B: 40 µs  
C: 10 ms  
D: 50 ms  
Threshold Voltage  
17: 1.7 V  
...  
46: 4.63 V  
Pinout Indicator  
R: Pin 1 = RESET, Pin 2 = GND  
V: Pin 1 = RESET, Pin 3 = GND  
Package  
803E: Open-Drain Ac ve-Low  
809E: Push-Pull Ac ve-Low  
810E: Push-Pull Ac ve-High  
DBZ: SOT23  
DCK: SC70  
DPW: X2SON  
E: 100 ms  
F: 400 ms  
Figure 5-1. Device Naming Nomenclature  
6 Pin Configuration and Functions  
GND  
1
GND  
1
2
VDD  
VDD  
3
3
RESET  
2
RESET  
RESET  
(TLV810E)  
Figure 6-2. DCK Package  
3-Pin SC-70  
Figure 6-1. DBZ Package  
(Pin 1 = GND)  
Top View  
3-Pin SOT-23  
Top View  
RESET  
1
2
RESET  
VDD  
1
2
VDD  
GND  
3
3
GND  
Figure 6-3. DBZ Package  
(Pin 1 = RESET, R pinout)  
3-Pin SOT-23  
Figure 6-4. DBZ Package  
(Pin 3 = GND, V pinout)  
3-Pin SOT-23  
Top View  
Top View  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TLV803E TLV809E TLV810E  
 
 
 
TLV803E, TLV809E, TLV810E  
SLVSES2G – AUGUST 2018 – REVISED OCTOBER 2020  
www.ti.com  
RESET  
VDD  
GND  
4
1
RESET  
(TLV810E)  
PAD  
MR  
2
3
Top View  
Figure 6-5. DPW Package  
4-Pin X2SON  
Top View  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
DBZ  
(V PINOUT)  
DBZ  
(R PINOUT)  
NAME  
DCK, DBZ  
DPW  
GND  
1
3
2
3
Ground  
Active-low output reset signal: This pin is driven  
low logic when VDD voltage falls below the negative  
voltage threshold (VIT–). RESET remains low  
(asserted) for the delay time period (tD) after VDD  
voltage rise above VIT+.  
RESET  
2
1
1
1
O
Active-High output reset signal (TLV810E only):  
This pin is driven high logic when VDD voltage falls  
below the negative voltage threshold (VIT–). RESET  
remains high (asserted) for the delay time period (tD)  
after VDD voltage rise above VIT+.  
RESET  
VDD  
2
3
1
2
1
3
1
4
O
I
Input supply voltage. TLV803E, TLV809E,  
TLV810E monitor VDD voltage.  
Active-low manual reset input. Pull this pin to a  
logic low (VMR_L) to assert a reset signal in the output  
pin. After the MR pin is left floating or pulled to VMR_H  
the output goes to the nominal state after the reset  
delay time (tD) expires. MR can be left floating when  
not in use.  
MR  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
2
I
No Connection. Thermal pad helps with thermal  
dissipation. Recommended connection to GND.  
PAD  
PAD  
Copyright © 2020 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TLV803E TLV809E TLV810E  
 
TLV803E, TLV809E, TLV810E  
SLVSES2G – AUGUST 2018 – REVISED OCTOBER 2020  
www.ti.com  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range, unless otherwise noted(1)  
MIN  
MAX  
UNIT  
V
VDD pin  
–0.3  
6.5  
Voltage  
RESET (TLV809E), RESET (TLV810E)  
RESET (TLV803E)  
–0.3 VDD + 0.3 (2)  
V
–0.3  
–0.3  
-20  
6.5  
VDD + 0.3(2)  
20  
V
Voltage  
Current  
MR  
V
Output sink and source current  
Operating ambient, TA  
Storage, Tstg  
mA  
–40  
–65  
125  
Temperature(3)  
°C  
150  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions (above the Recommended Operating  
Conditions) for extended periods may affect device reliability.  
(2) The absolute maximum rating is (VDD + 0.3) V or 6.5 V, whichever is smaller.  
(3) As a result of the low dissipated power in this device, the junction temperature is assumed to be equal to the ambient temperature.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC  
JS-001(1)  
± 2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification  
JESD22-C101(2)  
± 500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.7  
0
NOM  
MAX  
6
UNIT  
V
VDD  
Input supply voltage  
VRESET, VRESET  
RESET pin and RESET pin voltage  
RESET pin and RESET pin current  
Junction temperature (free air temperature)  
Manual reset pin voltage  
6
V
IRESET, IRESET  
0
±5  
mA  
°C  
V
TJ  
–40  
0
125  
VDD  
VMR  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TLV803E TLV809E TLV810E  
 
 
 
 
 
 
 
 
 
TLV803E, TLV809E, TLV810E  
www.ti.com  
UNIT  
SLVSES2G – AUGUST 2018 – REVISED OCTOBER 2020  
7.4 Thermal Information  
TLV803E, TLV809E, TLV810E  
THERMAL METRIC(1)  
DPW (X2SON)  
5 PINS  
457.1  
DCK (SC70-3)  
3 PINS  
300.5  
DBZ (SOT23-3)  
3 PINS  
254.8  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
201.6  
178.2  
150.5  
320.4  
166.5  
140.1  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
22.8  
70  
48.1  
ψJB  
318.8  
165.2  
139.1  
RθJC(bot)  
N/A  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2020 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TLV803E TLV809E TLV810E  
 
 
TLV803E, TLV809E, TLV810E  
SLVSES2G – AUGUST 2018 – REVISED OCTOBER 2020  
www.ti.com  
7.5 Electrical Characteristics  
over operating range (TA = –40to 125), 1.7 V ≤ VDD ≤ 6 V, Rpull-up = 10 kΩ to 6 V, 10 pF load at RESET pin, unless  
otherwise noted. Typical values are at 25, VDD = 3.3V and VIT– = 2.93 V.  
PARAMETER  
COMMON PARAMETERS  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VDD  
VIT–  
VHYS  
Input supply voltage  
1.7  
–2  
6
2
V
%
Input threshold voltage accuracy  
Hysteresis voltage  
TA= –40to 125℃  
0.5  
1.2  
Hysteresis from VIT–  
VDD = 3.3 V; VDD > VIT+  
VDD = 6 V  
0.9  
1.5  
1
%
(1)  
0.25  
0.4  
µA  
µA  
IDD  
Supply current into VDD pin  
1.2  
Manual reset pin internal pull-up  
resistance  
RMR  
100  
kΩ  
X2SON (DPW) package only  
VMR_L  
VMR_H  
Manual reset pin logic low input  
Manual reset pin logic high input  
0.4  
V
V
0.8VDD  
TLV809E (Push-Pull Active-Low)  
VPOR  
Power on reset voltage (2)  
VOL ≤ 300 mV, IOUT(Sink) = 15 µA  
700  
300  
300  
mV  
mV  
mV  
V
VDD = 1.7 V, VDD < VIT–, IOUT(Sink) = 500 µA  
VDD = 3.3 V, VDD < VIT–, IOUT(Sink) = 2 mA  
VDD = 6 V, VDD > VIT+, IOUT(Source) = 4 mA  
VDD = 3.3 V, VDD > VIT+, IOUT(Source) = 2 mA  
Low level output voltage  
VOL  
0.8VDD  
0.8VDD  
High level output voltage  
VOH  
V
TLV803E (Open-Drain Active-Low)  
VPOR  
Power on reset voltage (2)  
VOL ≤ 300 mV, IOUT(Sink) = 15 µA  
700  
300  
300  
350  
mV  
mV  
mV  
nA  
VDD = 1.7 V, VDD < VIT–, IOUT(Sink) = 500 µA  
VDD = 3.3 V, VDD < VIT–, IOUT(Sink) = 2 mA  
VDD = VPULLUP = 6 V, VDD > VIT+  
Low level output voltage  
VOL  
Ilkg(OD)  
Open drain output leakage current  
100  
TLV810E (Push-Pull Active-High)  
VDD = 3.3 V, VDD < VIT–, IOUT(Source) = 2 mA  
VDD = 1.7 V, VDD < VIT–, IOUT(Source) = 500 µA  
VOH ≥ 720 mV, IOUT(Source) = 15 µA  
0.8VDD  
0.8VDD  
V
High level output voltage  
VOH  
V
VPOR  
VOL  
Power on Reset Voltage  
Low level output voltage  
900  
300  
300  
mV  
mV  
mV  
VDD = 6 V, VDD > VIT+, IOUT(Sink) = 2 mA  
VDD = 3.3 V, VDD > VIT+, IOUT(Sink) = 500 µA  
(1) VIT+ = VIT– + VHYS  
(2) Minimum VDD voltage for a controlled output state. Below VPOR, the output cannot be determined.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TLV803E TLV809E TLV810E  
 
 
 
TLV803E, TLV809E, TLV810E  
SLVSES2G – AUGUST 2018 – REVISED OCTOBER 2020  
www.ti.com  
7.6 Timing Requirements  
over operating range (TA = –40to 125), 1.7 V ≤ VDD ≤ 6 V, Rpull-up = 10 kΩ to 6 V (Open Drain only), 10 pF load at  
RESET pin, Overdrive = 10%, unless otherwise noted. Typical values are at 25, VDD = 3.3 V and VIT– = 2.93 V.  
PARAMETER  
Glitch immunity  
Propagation delay from VDD falling below V VDD = (VIT+ + 30%) to (VIT–  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
tGI  
5 % Overdrive(1)  
10  
µs  
tPD_HL  
30  
50  
µs  
IT– to RESET  
10%)  
Reset time delay variant A (2)  
130  
200  
270  
ms  
Reset time delay variant B (2); R  
UP = 100 kΩ, CL = 100 pF, 30%  
Overdrive (3)  
45  
90  
µs  
Reset time delay variant B (2)  
Reset time delay variant C (2)  
40  
10  
80  
µs  
tD  
Release time or reset timeout period  
6.5  
33  
13.5  
ms  
Reset time delay variant D (2)  
Reset time delay variant F (4)  
50  
400  
67  
ms  
ms  
ns  
260  
540  
MR pin pulse duration to initiate RESET,  
RESET  
(5)  
tMR_PW  
500  
Propagation delay from MR low to RESET,  
RESET  
VDD = 4.5 V, VMR : VMR_H to V  
(5)  
tMR_RES  
700  
ns  
MR_L  
Delay from release MR to deasert RESET,  
RESET  
VDD = 4.5 V, VMR : VMR_L to V  
(5)  
tMR_tD  
tD_MIN  
tD_TYP  
tD_MAX  
ms  
MR_H  
(1) Overdrive = [(VDD/ VIT–) - 1] × 100%. Refer to section on VDD glitch immunity  
(2) Refer to Device nomenclature table. VDD: (VIT--10%) to (VIT+ + 10%)  
(3) Specified by design  
(4) Product Preview  
(5) X2SON Package only  
Copyright © 2020 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TLV803E TLV809E TLV810E  
 
 
 
 
 
 
TLV803E, TLV809E, TLV810E  
SLVSES2G – AUGUST 2018 – REVISED OCTOBER 2020  
www.ti.com  
7.7 Timing Diagram  
VIT+  
VIT-  
VHYS  
VDD(MIN)  
VPOR  
VDD  
tPD_HL  
tPD_HL  
tD  
RESET  
Undefined output VDD < VPOR  
Diagram not to scale  
Figure 7-1. TLV803E, TLV809E Timing Diagram  
VIT+  
VIT-  
VHYS  
VDD(MIN)  
VPOR  
VDD  
tPD_HL  
tPD_HL  
tD  
tD  
RESET  
Undefined output VDD < VPOR  
Diagram not to scale  
Figure 7-2. TLV810E Timing Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TLV803E TLV809E TLV810E  
 
TLV803E, TLV809E, TLV810E  
SLVSES2G – AUGUST 2018 – REVISED OCTOBER 2020  
www.ti.com  
7.8 Typical Characteristics  
Typical characteristics show the typical performance of the TLV803E, TLV809E, and TLV810E devices. Test conditions are  
TA = 25°C, VDD = 3.3 V, VIT- = 2.93 V, Rpull-up = 10 kΩ to 6 V, CLoad = 50 pF, unless otherwise noted.  
0.45  
0.4  
0.5  
0.45  
0.4  
25°C  
-40°C  
125°C  
25°C  
-40°C  
125°C  
0.35  
0.3  
0.35  
0.3  
0.25  
0.2  
0.25  
0.2  
0.15  
0.1  
0.15  
0.1  
1.5  
2
2.5  
3
3.5 4  
VDD (V)  
4.5  
5
5.5  
6
1.5  
2
2.5  
3
3.5 4  
VDD (V)  
4.5  
5
5.5  
6
IDD_  
IDD_  
Figure 7-3. Supply Current Versus Supply Voltage for  
TLV803EA29  
Figure 7-4. Supply Current Versus Supply Voltage for  
TLV809EA29  
0.45  
0.32  
25°C  
-40°C  
125°C  
TLV803EA29  
0.31  
0.4  
0.35  
0.3  
0.3  
0.29  
0.28  
0.27  
0.26  
0.25  
0.24  
0.23  
0.22  
0.21  
0.2  
0.25  
0.2  
0.15  
0.1  
0.05  
0
1.5  
2
2.5  
3
3.5 4  
VDD (V)  
4.5  
5
5.5  
6
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
IDDv  
IDD_  
Figure 7-5. Supply Current Versus Supply Voltage for  
TLV810EA29  
Figure 7-6. Supply Current Verses Temperature for  
TLV803EA29, VDD = 3.3 V  
0.32  
30  
TLV809EA29  
TLV803EA29  
0.31  
27  
24  
21  
18  
15  
12  
9
0.3  
0.29  
0.28  
0.27  
0.26  
0.25  
0.24  
0.23  
0.22  
0.21  
0.2  
6
3
0
-40  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
IDD_  
ILKG  
Figure 7-7. Supply Current Verses Temperature for  
TLV809EA29, VDD = 3.3 V  
Figure 7-8. Leakage Current Verses Temperature for  
TLV803EA29  
Copyright © 2020 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TLV803E TLV809E TLV810E  
 
TLV803E, TLV809E, TLV810E  
SLVSES2G – AUGUST 2018 – REVISED OCTOBER 2020  
www.ti.com  
7.8 Typical Characteristics (continued)  
Typical characteristics show the typical performance of the TLV803E, TLV809E, and TLV810E devices. Test conditions are  
TA = 25°C, VDD = 3.3 V, VIT- = 2.93 V, Rpull-up = 10 kΩ to 6 V, CLoad = 50 pF, unless otherwise noted.  
1
0.92  
0.84  
0.76  
0.68  
0.6  
1.3  
1.2  
1.1  
1
TLV803EA29  
TLV809EA29  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.52  
0.44  
0.36  
0.28  
0.2  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
VIT-  
VIT-  
Figure 7-9. Voltage Threshold Accuracy Verses Temperature for  
TLV803EA29  
Figure 7-10. Voltage Threshold Accuracy Verses Temperature  
for TLV809EA29  
0.8  
0.55  
-40°C  
-20°C  
-40°C  
-20°C  
0.5  
0.72  
85°C  
105°C  
125°C  
85°C  
105°C  
125°C  
0.45  
0.4  
0.64  
0.56  
0.48  
0.4  
0.35  
0.3  
0.25  
0.2  
0.32  
0.24  
0.16  
0.08  
0
0.15  
0.1  
0.05  
0
0
0.002  
0.004  
0.006  
0.008  
0.01  
0
0.002  
0.004  
0.006  
0.008  
0.01  
IRESET (A)  
IRESET (A)  
VOLx  
VOLx  
Figure 7-11. Low Voltage Output Versus Output Current for  
TLV803EA29, VDD = 1.7 V  
Figure 7-12. Low Voltage Output Versus Output Current for  
TLV809EA29, VDD = 1.7 V  
25  
TLV803EA29  
24.5  
25  
TLV809EA29  
24.5  
24  
23.5  
23  
24  
23.5  
23  
22.5  
22  
22.5  
22  
21.5  
21  
21.5  
21  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
Temperature (èC)  
VOLx  
VOLx  
Figure 7-13. Low Voltage Output Verses Temperature for  
TLV803EA29, VDD = 1.7 V  
Figure 7-14. Low Voltage Output Verses Temperature for  
TLV809EA29, VDD = 1.7 V  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TLV803E TLV809E TLV810E  
TLV803E, TLV809E, TLV810E  
SLVSES2G – AUGUST 2018 – REVISED OCTOBER 2020  
www.ti.com  
7.8 Typical Characteristics (continued)  
Typical characteristics show the typical performance of the TLV803E, TLV809E, and TLV810E devices. Test conditions are  
TA = 25°C, VDD = 3.3 V, VIT- = 2.93 V, Rpull-up = 10 kΩ to 6 V, CLoad = 50 pF, unless otherwise noted.  
6
5.9  
5.8  
5.7  
5.6  
5.5  
5.4  
5.3  
5.2  
5.1  
5
3.12  
3.115  
3.11  
-40°C  
-20°C  
25°C  
85°C  
105°C  
125°C  
TLV809EA29  
3.105  
3.1  
3.095  
3.09  
3.085  
3.08  
3.075  
3.07  
3.065  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
0
0.002  
0.004  
0.006  
0.008  
0.01  
Temperature (èC)  
VOHx  
IRESET (A)  
VOHx  
Figure 7-16. High Voltage Output Verses Temperature for  
TLV809EA29, VDD = 3.3 V  
Figure 7-15. High Voltage Output Versus Output Current for  
TLV809EA29, VDD = 6 V  
6
0.12  
TLV803EA29  
25°C  
5.5  
5
4.5  
4
0.1  
0.08  
0.06  
0.04  
0.02  
0
3.5  
3
2.5  
2
1.5  
1
0.5  
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
VDD (V)  
1
0
0.5  
1
1.5  
2
2.5  
3
VDD (V)  
3.5  
4
4.5  
5
5.5  
6
Vpor  
VCC_  
Figure 7-17. Reset Voltage Output Versus Voltage Input for  
TLV803EA29, Vpull-up = VDD, Rpull-up = 10 kΩ  
Figure 7-18. Reset Voltage Output Versus Voltage Input for  
TLV803EA29, Rpull-up = 10 kΩ  
173  
2
TLV803EA29  
VDD  
RESET  
172  
171  
170  
169  
168  
167  
1.6  
1.2  
0.8  
0.4  
0
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
0
6
12  
18  
24  
30  
Time (µs)  
Rese  
VRES  
Figure 7-20. Reset Delay Time Verses Temperature for  
TLV803EA29  
Figure 7-19. Transient Power-on-Reset Voltage for TLV809EA30,  
IRESET = 15 µA  
Copyright © 2020 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TLV803E TLV809E TLV810E  
TLV803E, TLV809E, TLV810E  
SLVSES2G – AUGUST 2018 – REVISED OCTOBER 2020  
www.ti.com  
7.8 Typical Characteristics (continued)  
Typical characteristics show the typical performance of the TLV803E, TLV809E, and TLV810E devices. Test conditions are  
TA = 25°C, VDD = 3.3 V, VIT- = 2.93 V, Rpull-up = 10 kΩ to 6 V, CLoad = 50 pF, unless otherwise noted.  
16.25  
171.5  
TLV803EB29  
TLV809EA29  
16.2  
16.15  
16.1  
171  
170.5  
170  
16.05  
16  
169.5  
169  
15.95  
15.9  
168.5  
168  
15.85  
15.8  
167.5  
167  
15.75  
15.7  
166.5  
15.65  
15.6  
166  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
tD__  
Rese  
Figure 7-21. Reset Delay Time Verses Temperature for  
TLV809EA29  
Figure 7-22. Reset Delay Time Verses Temperature for  
TLV803EB29  
9
25  
TLV803EC29  
TLV803EA29  
24.75  
8.8  
8.6  
8.4  
8.2  
8
24.5  
24.25  
24  
23.75  
23.5  
23.25  
23  
22.75  
22.5  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
tPHL  
Rese  
Figure 7-24. High-to-Low Propagation Delay Verses  
Temperature for TLV803EA29  
Figure 7-23. Reset Delay Time Verses Temperature for  
TLV803EC29  
26  
13  
TLV809EA29  
25°C  
-40°C  
125°C  
12  
11  
10  
9
25.5  
25  
24.5  
24  
8
7
23.5  
23  
6
5
22.5  
22  
4
3
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
5
10  
15  
20  
25 30  
Overdrive (%)  
35  
40  
45  
50  
tPHL  
tGI_  
Figure 7-25. High-to-Low Propagation Delay Verses  
Temperature for TLV809EA29  
Figure 7-26. Glitch Immunity Versus Overdrive for TLV803EA29  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TLV803E TLV809E TLV810E  
TLV803E, TLV809E, TLV810E  
SLVSES2G – AUGUST 2018 – REVISED OCTOBER 2020  
www.ti.com  
7.8 Typical Characteristics (continued)  
Typical characteristics show the typical performance of the TLV803E, TLV809E, and TLV810E devices. Test conditions are  
TA = 25°C, VDD = 3.3 V, VIT- = 2.93 V, Rpull-up = 10 kΩ to 6 V, CLoad = 50 pF, unless otherwise noted.  
13  
25°C  
-40°C  
125°C  
12  
11  
10  
9
8
7
6
5
4
3
5
10  
15  
20  
25 30  
Overdrive (%)  
35  
40  
45  
50  
tGI_  
Figure 7-27. Glitch Immunity Versus Overdrive for TLV809EA29  
Copyright © 2020 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TLV803E TLV809E TLV810E  
TLV803E, TLV809E, TLV810E  
SLVSES2G – AUGUST 2018 – REVISED OCTOBER 2020  
www.ti.com  
8 Detailed Description  
8.1 Overview  
The TLV803E, TLV809E, TLV810E is a family of easy to implement low power, small size voltage supervisors  
(Reset ICs) with fixed threshold voltage and fixed reset delay. The TLV803E has open-drain active-low output  
topology which requires an external pull-up resistor, TLV809E has push-pull active-low output topology and  
TLV810E has push-pull active-high output topology. This family of devices features include integrated resistor  
divider threshold with hysteresis and a glitch immunity filter.  
These devices are available in SOT-23 (3) and SC70 (3) industry standard package and pinout as well as a very  
small X2SON (5) package.  
8.2 Functional Block Diagram  
VDD  
RMR  
MR  
Push-pull TLV809E,  
TLV810E variants  
DPW package only  
VDD  
+
VDD  
RESET  
LOGIC  
TIMER  
(TLV803E, TLV809E)  
RESET (TLV810E)  
RESET  
œ
Reference  
Voltage  
GND  
GND  
8.3 Feature Description  
8.3.1 Input Voltage (VDD)  
VDD pin is monitored by the internal comparator with integrated reference to indicate when VDD falls below the  
fixed threshold voltage. VDD also functions as the supply for the following:  
Internal bandgap (reference voltage)  
Internal regulator  
State machine  
Buffers  
Other control logic blocks  
Good design practice involves placing a 0.1-µF to 1-µF bypass capacitor at VDD input for noisy applications and  
to ensure enough charge is available for the device to power up correctly. The reset output is undefined when  
VDD is below VPOR  
.
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TLV803E TLV809E TLV810E  
 
 
 
 
TLV803E, TLV809E, TLV810E  
SLVSES2G – AUGUST 2018 – REVISED OCTOBER 2020  
www.ti.com  
8.3.2 VDD Hysteresis  
The internal comparator has built-in hysteresis to avoid erroneous output reset release. If the voltage at the VDD  
pin falls below the falling voltage threshold VIT–, the output reset is asserted. When the voltage at the VDD pin  
rises above the rising voltage threshold (V IT+) equivalent to V IT– plus hysteresis (V HYS), the output reset is  
deasserted after tD reset time delay.  
8.3.3 VDD Glitch Immunity  
These devices are immune to quick voltage transient or excursion on VDD. Sensitivity to transients depends on  
both pulse duration (tGI) found in Section 7.6 and transient overdrive. Overdrive is defined by how much VDD  
exceeds the specified threshold. Threshold overdrive is calculated as a percent of the threshold in question, as  
shown in Equation 1.  
Overdrive = | (VDD / VIT– – 1) × 100% |  
(1)  
where  
VIT– is the threshold voltage  
VDD is the input voltage crossing VIT–  
VDD  
VIT+  
VIT-  
Overdrive  
Pulse  
Duration  
Figure 8-1. Overdrive Versus Pulse Duration  
TLV803E, TLV809E, and TLV810E devices have built-in glitch immunity (tGI) of 10 µs typical as shown in Section  
7.6. Figure 8-2 shows that VDD must fall below VIT- for tGI, otherwise the faling transistion is ignored. When VDD  
falls below VIT- for tGI, RESET transitions low to indicate a fault condition after the propagation delay high-to-low  
(t PDHL). When VDD rises above V IT+, RESET only deasserts to logic high indicating there is no more fault  
condition only if VDD remains above VIT+ for longer than the reset delay (tD).  
VDD remains above VIT+ for only 199 ms  
VDD  
VIT+  
VIT-  
VDD drops below VIT- so  
RESET transitions low after  
Propagation Delay (tPDHL  
)
RESET  
VDD transition to above VIT+ ignored when less than  
Reset Delay (tD) so RESET remains unchanged  
Figure 8-2. Glitch Immunity when VDD Rises Above VIT+ for Less than RESET Delay (TLV803EA29)  
Copyright © 2020 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TLV803E TLV809E TLV810E  
 
 
 
TLV803E, TLV809E, TLV810E  
SLVSES2G – AUGUST 2018 – REVISED OCTOBER 2020  
www.ti.com  
8.3.4 Manual Reset ( MR) Input for X2SON (DPW) Package Only  
The manual reset (MR) input allows a processor GPIO or other logic circuits to initiate a reset. A logic low on MR  
with pulse duration longer than tMR_RES will cause reset output to assert. After MR returns to a logic high  
(VMR_H) and VDD is above VIT+, reset is deasserted after the user programmed reset time delay (tD) expires.  
If MR is not controlled externally, then MR can be left disconnected. MR is internally connected to VDD through a  
pull-up resistor RMR shown in Section 8.2. If the logic signal controlling MR is less than VDD, then additional  
current flows from VDD into MR internally. For minimum current consumption, drive MR to either VDD or GND.  
VMR should not be higher than VDD voltage.  
VIT+  
VHYS  
VIT-  
VIT+  
VHYS  
VIT-  
VDD  
tP_HL  
tD  
tMR_tD  
RESET  
(2)  
tMR_RES  
VMR_H  
VMR_L  
MR  
(1)  
tMR_PW  
Time  
(1) MR pulse width too small to assert RESET  
(2) MR voltage not low enough to assert RESET  
Figure 8-3. Timing Diagram MR and RESET for X2SON (DPW) Package  
8.3.5 Output Logic  
8.3.5.1 RESET Output, Active-Low  
RESET remains high (deasserted) as long as VDD is above the negative threshold (VIT–). If VDD falls below the  
negative threshold (VIT–), then reset is asserted and RESET transistions to logic low (VOL).  
When VDD rises above VIT+, the delay circuit holds RESET active and logic low for the specified reset delay  
period (tD). When the reset delay has elapsed, the RESET pin transistions to high voltage (VOH).  
The open-drain version requires an external pull-up resistor to hold the RESET pin high because the internal  
MOSFET turns off causing RESET output to pull-up to the pull-up voltage. Connect the pull-up resistor to the  
desired interface voltage logic. RESET can be pulled up to any voltage up to maximum voltage independent of  
the VDD voltage. To ensure proper voltage levels, take care when choosing the pull-up resistor values. The pull-  
up resistor value is determined by VOL, the output capacitive loading, and the output leakage current (Ilkg(OD)).  
The push-pull variant does not require an external pull-up resistor.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TLV803E TLV809E TLV810E  
TLV803E, TLV809E, TLV810E  
SLVSES2G – AUGUST 2018 – REVISED OCTOBER 2020  
www.ti.com  
8.3.5.2 RESET Output, Active-High  
RESET remains logic low (deasserted) as long as VDD is above the positive threshold (VIT+). If VDD falls below  
the negative threshold (VIT–), then reset is asserted and RESET transistions to logic high (VOH).  
When VDD rises above VIT+, the delay circuit holds RESET active and logic high for the specified reset delay  
period (tD). When the reset delay has elapsed the RESET pin transistions to low voltage (VOL).  
8.4 Device Functional Modes  
Table 8-1 summarizes the various functional modes of the device.  
Table 8-1. Truth Table  
VDD  
VDD < VPOR  
VPOR < VDD < VIT–  
VDD ≥ VIT–  
MR (X2SON package only)  
RESET (Active-High)  
RESET(Active-Low)  
N/A  
N/A  
L
Undefined  
Undefined  
(1)  
H
H
L
L
L
VDD ≥ VIT–  
H
H
(1) When VDD falls below VDD(MIN), output reset is held asserted until VDD falls below VPOR  
.
8.4.1 Normal Operation (VDD > VDD(min)  
)
When VDD voltage is greater than VDD(min), the reset signal is determined by the voltage on the VDD pin with  
respect to the trip point (VIT–) and the MR pin voltage (X2SON package only).  
8.4.2 VDD Between VPOR and VDD(min)  
When the voltage on VDD is less than the VDD(min) voltage and greater than the power-on-reset voltage (VPOR),  
the reset signal is asserted.  
8.4.3 Below Power-On-Reset (VDD < VPOR  
)
When the voltage on VDD is lower than VPOR, the device does not have enough bias voltage to internally pull the  
asserted output low or high and reset voltage level is undefined.  
Copyright © 2020 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TLV803E TLV809E TLV810E  
 
 
 
TLV803E, TLV809E, TLV810E  
SLVSES2G – AUGUST 2018 – REVISED OCTOBER 2020  
www.ti.com  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TI’s customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
The TLV803E, TLV809E, and TLV810E devices are used for voltage monitoring. These devices have only three  
pins: VDD, GND, and RESET (or RESET for TLV810E). There are at the most two external components: a  
capacitor on the VDD pin and a pull-up resistor on the RESET/RESET to VDD or another pull-up voltage for the  
open-drain variants. The design involves choosing the device with the desired voltage threshold and output  
topology and adding these components, if needed, as explained in the following sections.  
9.2 Typical Application - Voltage Rail Monitoring  
A typical application for TLV803E, TLV809E, and TLV810E devices is voltage rail monitoring. This rail can be the  
input power supply or the output of an LDO or DC/DC converter. Figure 9-1 shows the TLV803EA29 monitoring  
the supply rail for a DSP, FPGA, or ASIC. This rail is at 3.3 V and generated by an LDO with an input power  
supply of 5 V. The supervisor is needed to make sure that the supply to the MCU/ASIC/FPGA/DSP is above a  
certain voltage threshold. If the supply voltage drops below a certain threshold, supervisor generates a reset  
output to indicate to the MCU that the supply is going down so that the MCU can take actions to save register  
data before supply enters brown-out conditions.  
LDO  
3.3 V  
5 V  
IN  
OUT  
10 kΩ  
VDD  
FPGA, ASIC,  
DSP  
VDD  
RESET  
RESET  
GND  
TLV803E  
GND  
Figure 9-1. The Output of LDO Powering the MCU is Monitored by the TLV803EA29  
9.2.1 Design Requirements  
This design monitors a 3.3-V rail and flags an undervoltage fault at the RESET output when supply rail falls  
approximately 12% below the nominal rail voltage. The TLV803E device has an open-drain output topology so  
an external pull-up resistor is required and is calculated to ensure that VOL does not exceed max limit given the  
IRESET/RESET spec of ±5 mA is not violated at the expected supply voltage. Section 7.5 table provides 500 µA  
Isink for 1.7 V VDD, which is the closest voltage to this design example. Using 500 µA of Isink and 300 mV max  
VOL, gives us 5.36kΩ for the external pull-up resistor. Any value greater than 5.36kΩ would ensure that VOL will  
not exceed 300 mV max specification. If you are using the TLV809E device variant, no pull-up resistor is  
required because TLV809E has push-pull output topology.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TLV803E TLV809E TLV810E  
 
 
 
 
TLV803E, TLV809E, TLV810E  
SLVSES2G – AUGUST 2018 – REVISED OCTOBER 2020  
www.ti.com  
9.2.2 Detailed Design Procedure  
Select the TLV803EA29DBZR to satisfy the voltage threshold requirement for 3.3-V rail monitoring. As  
mentioned in Table 12-1, the TLV803EA29DBZR triggers an undervoltage fault at the RESET output when VDD  
falls below VIT- which is 2.93 V for this device variant. Place a pull-up resistor on RESET to VDD to satisfy the  
output logic requirement while not violating the IRESET recommended limit.  
9.2.3 Application Curves  
Figure 9-2 and Figure 9-3 show the TLV803EA29 functionality. In Figure 9-2, the VDD supply voltage drops from  
30% above VIT- = 3.8 V to 10% below VIT- = 2.6 V with a 0.1-µF capacitor on VDD. The RESET output is  
connected to VDD through the pull-up resistor so when the VDD supply voltage drops. The RESET output  
discharges down to the VDD supply voltage through the pull-up resistor and RESET pin capacitance. Once the  
high-to-low propagation delay tPD_HL expires, the internal MOSFET turns on and asserts RESET to logic low.  
Note that tPD_HL varies with VDD specifically on how much VDD drops and how quickly in addition to the VDD  
and RESET pin capacitances. In Figure 9-3, VDD rises from 2 V to 4 V and the RESET output deasserts to logic  
high after the reset delay time (tD) expires.  
VDD  
VDD  
Propagation Delay from VDD falling below VIT- to Reset  
(tPD_HL) = 25 µs  
Reset Delay (tD) = 200 ms  
RESET  
RESET  
Figure 9-3. RESET Delay when Returning from  
Fault after VDD Rises Above VIT+ (TLV803EA29)  
Figure 9-2. Propagation Delay when Fault Occurs  
after VDD Falls Below VIT- (TLV803EA29 No Load)  
(1) (2)  
1. Typical tPD_HL= 30 µs for VDD falling from (VIT+ + 30%) to (VIT- - 10%).  
2. VDD does not fall all the way to 0 V so RESET momentarily discharges to VDD until tPD_HL expires.  
Copyright © 2020 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TLV803E TLV809E TLV810E  
 
TLV803E, TLV809E, TLV810E  
SLVSES2G – AUGUST 2018 – REVISED OCTOBER 2020  
www.ti.com  
9.3 Typical Application - Overvoltage Monitoring  
A typical use case for the push-pull active-high device variant TLV810E is overvoltage monitoring. The TLV810E  
can monitor a power supply, a MCU power rail, or a battery during charging for example. The VDD pin monitors  
the voltage rail and once VDD rises above VIT+, the RESET output deactivates to logic low after the reset delay  
time tD. If VDD falls below VIT-, the RESET output activates to logic high after the propagation delay (tPD_HL). The  
voiltage thresholds and the reset delay time depends on the device variant. See Section 5 for device variant  
naming nomenclature.  
3 V  
VDD  
Battery Charger  
VDD  
RESET  
ENABLE  
GND  
TLV810EA29  
GND  
Figure 9-4. TLV810E Overvoltage Monitor Circuit for Battery Charger  
9.3.1 Design Requirements  
In this application design, the TLV810E device is monitoring a 3 V battery connected to a battery charger. The  
battery charger turns on when the battery voltage is below 2.93 V and turns off once the battery charges to 2.96  
V and remains above 2.96 V for at least 200 ms. The design must be low power and not consume more than  
500 nA typical.  
9.3.2 Detailed Design Procedure  
Select the TLV810EA29 to accomplish this design. The TLV810EA29 is a push-pull active-high device with a VIT-  
= 2.9 V and VIT+ = 2.9 + 1.2% = 2.93 V. Because the device is a push-pull output and the device threshold meets  
the design requirements, no external resistors are needed. The TLV810EA29 device variant comes with 200 ms  
reset delay time meaning VDD must be above VIT+ for at least 200 ms for the RESET output to transistion to  
logic low to turn off the battery charger. This device meets the low power requirement because the TLV810E only  
consumes 250 nA typical.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TLV803E TLV809E TLV810E  
 
TLV803E, TLV809E, TLV810E  
SLVSES2G – AUGUST 2018 – REVISED OCTOBER 2020  
www.ti.com  
10 Power Supply Recommendations  
These devices are designed to operate from an input supply range of 1.7 V to 6 V. An input supply capacitor is  
recommended between the VDD pin and GND pin. If the voltage supply that provides power to VDD is  
susceptible to any large voltage transient that can exceed VDD maximum, the user must take additional  
precautions.  
Copyright © 2020 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TLV803E TLV809E TLV810E  
 
TLV803E, TLV809E, TLV810E  
SLVSES2G – AUGUST 2018 – REVISED OCTOBER 2020  
www.ti.com  
11 Layout  
11.1 Layout Guidelines  
Make sure that the connection to the VDD pin is low impedance. Good analog design practice recommends  
placing a minimum 0.1-µF ceramic capacitor as close to the VDD pin as possible. A pull-up resistor is required  
for the open-drain output. Place the pull-up resistor on the RESET pin as close to the pin as possible.  
11.2 Layout Example  
1
2
GND  
3
VDD  
(TLV803E, TLV809E)  
(TLV810E)  
RESET  
RESET  
RESET  
RESET  
Figure 11-1. TLV803E, TLV809E, and TLV810E SOT23 (DBZ) Layout Example  
Pinout Option V  
(TLV803E, TLV809E)  
(TLV810E)  
RESET  
RESET  
RESET  
RESET  
1
2
3
GND  
Rpull-up  
VDD  
CIN  
Pull-up resistor required for Open-Drain output  
Figure 11-2. TLV803E, TLV809E, and TLV810E SOT23 (DBZ) V pinout Layout Example  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TLV803E TLV809E TLV810E  
 
 
 
TLV803E, TLV809E, TLV810E  
SLVSES2G – AUGUST 2018 – REVISED OCTOBER 2020  
www.ti.com  
Rpull-up  
RESET  
1
4
VDD  
PAD  
CIN  
GND  
2
MR  
3
Pull-up resistor required for Open-Drain output  
Connection between PAD and GND is optional  
Figure 11-3. TLV803E, TLV809E, and TLV810E X2SON (DPW) Layout Example  
Copyright © 2020 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TLV803E TLV809E TLV810E  
TLV803E, TLV809E, TLV810E  
SLVSES2G – AUGUST 2018 – REVISED OCTOBER 2020  
www.ti.com  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 Device Nomenclature  
Table 12-1 shows how to decode the function of the device based on its part number. For example:  
TLV803EA29DBZR is open-drain, active-low, 200 ms reset delay, 2.93 V threshold voltage, Pin 1 = GND,  
SOT23-3 pin package, and large reel option.  
Table 12-1 shows all the possible variants of the TLV80xE and TLV81xE. Refer to the orderable device  
information table for the options available to order. Contact Texas Instruments for the details and availability of  
devices not in the orderable device information table.  
Table 12-1. Device Naming Convention  
DESCRIPTION  
NOMENCLATURE  
VALUE  
Part Number  
TLV803E  
Open-Drain, Active-Low  
TLV809E  
Push-Pull, Active-Low  
TLV810E  
A
Push-Pull, Active-High  
Reset Time Delay Option  
Threshold Voltage Option  
200 ms  
B
40 µs  
C
10 ms  
D
50 ms  
F
400 ms  
17  
18  
19  
22  
24  
26  
29  
30  
33  
42  
43  
45  
46  
R
1.7 V  
1.8 V  
1.9 V  
2.25 V  
2.4 V  
2.64 V  
2.93 V  
3.08 V  
3.3 V  
4.2 V  
4.38 V  
4.55 V  
4.63 V  
Pinout Indicator  
Package Option  
Pin 1 = RESET, Pin 2 = GND, Pin 3 = VDD  
V
Pin 1 = RESET, Pin 2 = VDD, Pin 3 = GND  
DBZ  
DCK  
DPW  
R
SOT23-3 pin  
SC70-3 pin  
X2SON-5 pin  
Large reel  
Reel  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TLV803E TLV809E TLV810E  
 
 
 
 
TLV803E, TLV809E, TLV810E  
SLVSES2G – AUGUST 2018 – REVISED OCTOBER 2020  
www.ti.com  
12.2 Documentation Support  
12.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, TLV803EA29EVM User Guide  
Texas Instruments, Voltage Supervisors (Reset ICs): Frequenctly Asked Questions (FAQs)  
12.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
12.4 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.7 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2020 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TLV803E TLV809E TLV810E  
 
 
 
 
 
 
 
TLV803E, TLV809E, TLV810E  
SLVSES2G – AUGUST 2018 – REVISED OCTOBER 2020  
www.ti.com  
PACKAGE OUTLINE  
DPW0004A  
X2SON - 0.4 mm max height  
S
C
A
L
E
1
2
.
0
0
0
PLASTIC SMALL OUTLINE - NO LEAD  
0.85  
0.75  
A
B
PIN 1 INDEX AREA  
0.85  
0.75  
0.4 MAX  
C
SEATING PLANE  
NOTE 4  
(0.1)  
0.25 0.1  
0.05  
0.00  
THERMAL PAD  
2
3
4
NOTE 4  
5
2X  
(45 ) TYP  
0.48  
1
0.27  
4X  
PIN 1 ID  
(OPTIONAL)  
NOTE 5  
0.17  
0.32  
3X  
0.1 C A  
0.05 C  
B
0.27  
0.17  
0.23  
4218860/A 12/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
4. The size and shape of this feature may vary.  
5. Features may not exist. Recommend use of pin 1 marking on top of package for orientation purposes.  
www.ti.com  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TLV803E TLV809E TLV810E  
TLV803E, TLV809E, TLV810E  
SLVSES2G – AUGUST 2018 – REVISED OCTOBER 2020  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DPW0004A  
X2SON - 0.4 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.78)  
( 0.1)  
VIA  
SYMM  
4X (0.42)  
1
0.05 MIN  
ALL AROUND  
TYP  
4
4X (0.22)  
SYMM  
5
4X (0.26)  
(0.48)  
2
3
(R0.05) TYP  
SOLDER MASK  
OPENING, TYP  
4X (0.06)  
(
0.25)  
METAL UNDER  
SOLDER MASK  
TYP  
LAND PATTERN EXAMPLE  
SOLDER MASK DEFINED  
SCALE:60X  
4218860/A 12/2015  
NOTES: (continued)  
6. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
7. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown.  
www.ti.com  
Copyright © 2020 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TLV803E TLV809E TLV810E  
TLV803E, TLV809E, TLV810E  
SLVSES2G – AUGUST 2018 – REVISED OCTOBER 2020  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DPW0004A  
X2SON - 0.4 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
4X (0.42)  
4X (0.06)  
4
1
4X (0.22)  
(
0.24)  
4X (0.26)  
5
SYMM  
(0.21)  
(0.48)  
TYP  
SOLDER MASK  
EDGE  
2
3
(R0.05) TYP  
SYMM  
(0.78)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD 5:  
92% PRINTED SOLDER COVERAGE BY AREA  
SCALE:100X  
4218860/A 12/2015  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TLV803E TLV809E TLV810E  
PACKAGE OPTION ADDENDUM  
www.ti.com  
1-Nov-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PTLV803ED29DBZR  
PTLV803EF26DBZR  
TLV803EA17DPWR  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
X2SON  
DBZ  
DBZ  
DPW  
3
3
5
3000  
3000  
3000  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
-40 to 125  
-40 to 125  
-40 to 125  
Call TI  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
Level-2-260C-1 YEAR  
IT  
TLV803EA18DPWR  
TLV803EA26DBZR  
TLV803EA26DCKR  
TLV803EA26DPWR  
TLV803EA26RDBZR  
TLV803EA29DBZR  
TLV803EA29DCKR  
TLV803EA29DPWR  
TLV803EA29RDBZR  
TLV803EA30DCKR  
TLV803EA42RDBZR  
TLV803EA43DBZR  
TLV803EA43RDBZR  
TLV803EB29DBZR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
PREVIEW  
ACTIVE  
ACTIVE  
ACTIVE  
X2SON  
SOT-23  
SC70  
DPW  
DBZ  
DCK  
DPW  
DBZ  
DBZ  
DCK  
DPW  
DBZ  
DCK  
DBZ  
DBZ  
DBZ  
DBZ  
5
3
3
5
3
3
3
5
3
3
3
3
3
3
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
SN  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
IV  
Green (RoHS  
& no Sb/Br)  
326A  
32A  
IW  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
NIPDAU  
SN  
X2SON  
SOT-23  
SOT-23  
SC70  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
36AR  
329A  
39A  
IX  
Green (RoHS  
& no Sb/Br)  
SN  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
NIPDAU  
SN  
X2SON  
SOT-23  
SC70  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
39AR  
30A  
3DAR  
343A  
34AR  
329B  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
SN  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
SN  
Green (RoHS  
& no Sb/Br)  
SN  
Green (RoHS  
& no Sb/Br)  
SN  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
1-Nov-2020  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV803EB33VDBZR  
TLV803EB42VDBZR  
TLV803EB46DCKR  
TLV803EC29DBZR  
TLV803EC30DBZR  
TLV803ED17DPWR  
TLV803ED18DPWR  
TLV809EA26DBZR  
TLV809EA26DPWR  
TLV809EA29DBZR  
TLV809EA29DCKR  
TLV809EA29DPWR  
TLV809EA30DBZR  
TLV809EA43DBZR  
TLV809EA46DBZR  
TLV809EA46DPWR  
TLV809EC26DBZR  
PREVIEW  
SOT-23  
SOT-23  
SC70  
DBZ  
3
3
3
3
3
5
5
3
5
3
3
5
3
3
3
5
3
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
Green (RoHS  
& no Sb/Br)  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
3CBV  
3DBV  
36B  
329C  
330C  
IS  
PREVIEW  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DBZ  
Green (RoHS  
& no Sb/Br)  
SN  
NIPDAU  
SN  
DCK  
DBZ  
Green (RoHS  
& no Sb/Br)  
SOT-23  
SOT-23  
X2SON  
X2SON  
SOT-23  
X2SON  
SOT-23  
SC70  
Green (RoHS  
& no Sb/Br)  
DBZ  
Green (RoHS  
& no Sb/Br)  
SN  
DPW  
DPW  
DBZ  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
NIPDAU  
SN  
Green (RoHS  
& no Sb/Br)  
IU  
Green (RoHS  
& no Sb/Br)  
926A  
IZ  
DPW  
DBZ  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
SN  
Green (RoHS  
& no Sb/Br)  
929A  
99A  
J1  
DCK  
DPW  
DBZ  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
NIPDAU  
SN  
X2SON  
SOT-23  
SOT-23  
SOT-23  
X2SON  
SOT-23  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
930A  
943A  
946A  
J2  
DBZ  
Green (RoHS  
& no Sb/Br)  
SN  
DBZ  
Green (RoHS  
& no Sb/Br)  
SN  
DPW  
DBZ  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
SN  
Green (RoHS  
& no Sb/Br)  
926C  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
1-Nov-2020  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV809EC46DBZR  
TLV810EA29DBZR  
TLV810EA29DPWR  
ACTIVE  
SOT-23  
SOT-23  
X2SON  
DBZ  
3
3
5
3000  
3000  
3000  
Green (RoHS  
& no Sb/Br)  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
946C  
029A  
J3  
ACTIVE  
ACTIVE  
DBZ  
Green (RoHS  
& no Sb/Br)  
SN  
DPW  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
1-Nov-2020  
Addendum-Page 4  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Sep-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV803EA17DPWR  
TLV803EA18DPWR  
TLV803EA26DBZR  
TLV803EA26DCKR  
TLV803EA26DPWR  
TLV803EA26RDBZR  
TLV803EA29DBZR  
TLV803EA29DCKR  
TLV803EA29DPWR  
TLV803EA29RDBZR  
TLV803EA30DCKR  
TLV803EA43DBZR  
TLV803EA43RDBZR  
TLV803EB29DBZR  
TLV803EB46DCKR  
TLV803EC29DBZR  
TLV803EC30DBZR  
TLV803ED17DPWR  
X2SON  
X2SON  
SOT-23  
SC70  
DPW  
DPW  
DBZ  
DCK  
DPW  
DBZ  
DBZ  
DCK  
DPW  
DBZ  
DCK  
DBZ  
DBZ  
DBZ  
DCK  
DBZ  
DBZ  
DPW  
5
5
3
3
5
3
3
3
5
3
3
3
3
3
3
3
3
5
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
8.4  
8.4  
9.0  
9.0  
8.4  
9.0  
9.0  
9.0  
8.4  
9.0  
9.0  
9.0  
9.0  
9.0  
9.0  
9.0  
9.0  
8.4  
0.91  
0.91  
3.15  
2.4  
0.91  
0.91  
2.77  
2.5  
0.5  
0.5  
2.0  
2.0  
4.0  
4.0  
2.0  
4.0  
4.0  
4.0  
2.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
2.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q2  
Q2  
Q3  
Q3  
Q2  
Q3  
Q3  
Q3  
Q2  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q2  
1.22  
1.2  
X2SON  
SOT-23  
SOT-23  
SC70  
0.91  
3.15  
3.15  
2.4  
0.91  
2.77  
2.77  
2.5  
0.5  
1.22  
1.22  
1.2  
X2SON  
SOT-23  
SC70  
0.91  
3.15  
2.4  
0.91  
2.77  
2.5  
0.5  
1.22  
1.2  
SOT-23  
SOT-23  
SOT-23  
SC70  
3.15  
3.15  
3.15  
2.4  
2.77  
2.77  
2.77  
2.5  
1.22  
1.22  
1.22  
1.2  
SOT-23  
SOT-23  
X2SON  
3.15  
3.15  
0.91  
2.77  
2.77  
0.91  
1.22  
1.22  
0.5  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Sep-2020  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV803ED18DPWR  
TLV809EA26DBZR  
TLV809EA26DPWR  
TLV809EA29DBZR  
TLV809EA29DCKR  
TLV809EA29DPWR  
TLV809EA30DBZR  
TLV809EA43DBZR  
TLV809EA46DBZR  
TLV809EA46DPWR  
TLV809EC26DBZR  
TLV809EC46DBZR  
TLV810EA29DBZR  
TLV810EA29DPWR  
X2SON  
SOT-23  
X2SON  
SOT-23  
SC70  
DPW  
DBZ  
DPW  
DBZ  
DCK  
DPW  
DBZ  
DBZ  
DBZ  
DPW  
DBZ  
DBZ  
DBZ  
DPW  
5
3
5
3
3
5
3
3
3
5
3
3
3
5
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
8.4  
9.0  
8.4  
9.0  
9.0  
8.4  
9.0  
9.0  
9.0  
8.4  
9.0  
9.0  
9.0  
8.4  
0.91  
3.15  
0.91  
3.15  
2.4  
0.91  
2.77  
0.91  
2.77  
2.5  
0.5  
1.22  
0.5  
2.0  
4.0  
2.0  
4.0  
4.0  
2.0  
4.0  
4.0  
4.0  
2.0  
4.0  
4.0  
4.0  
2.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q2  
Q3  
Q2  
Q3  
Q3  
Q2  
Q3  
Q3  
Q3  
Q2  
Q3  
Q3  
Q3  
Q2  
1.22  
1.2  
X2SON  
SOT-23  
SOT-23  
SOT-23  
X2SON  
SOT-23  
SOT-23  
SOT-23  
X2SON  
0.91  
3.15  
3.15  
3.15  
0.91  
3.15  
3.15  
3.15  
0.91  
0.91  
2.77  
2.77  
2.77  
0.91  
2.77  
2.77  
2.77  
0.91  
0.5  
1.22  
1.22  
1.22  
0.5  
1.22  
1.22  
1.22  
0.5  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV803EA17DPWR  
TLV803EA18DPWR  
TLV803EA26DBZR  
X2SON  
X2SON  
SOT-23  
DPW  
DPW  
DBZ  
5
5
3
3000  
3000  
3000  
205.0  
205.0  
180.0  
200.0  
200.0  
180.0  
33.0  
33.0  
18.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Sep-2020  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV803EA26DCKR  
TLV803EA26DPWR  
TLV803EA26RDBZR  
TLV803EA29DBZR  
TLV803EA29DCKR  
TLV803EA29DPWR  
TLV803EA29RDBZR  
TLV803EA30DCKR  
TLV803EA43DBZR  
TLV803EA43RDBZR  
TLV803EB29DBZR  
TLV803EB46DCKR  
TLV803EC29DBZR  
TLV803EC30DBZR  
TLV803ED17DPWR  
TLV803ED18DPWR  
TLV809EA26DBZR  
TLV809EA26DPWR  
TLV809EA29DBZR  
TLV809EA29DCKR  
TLV809EA29DPWR  
TLV809EA30DBZR  
TLV809EA43DBZR  
TLV809EA46DBZR  
TLV809EA46DPWR  
TLV809EC26DBZR  
TLV809EC46DBZR  
TLV810EA29DBZR  
TLV810EA29DPWR  
SC70  
DCK  
DPW  
DBZ  
DBZ  
DCK  
DPW  
DBZ  
DCK  
DBZ  
DBZ  
DBZ  
DCK  
DBZ  
DBZ  
DPW  
DPW  
DBZ  
DPW  
DBZ  
DCK  
DPW  
DBZ  
DBZ  
DBZ  
DPW  
DBZ  
DBZ  
DBZ  
DPW  
3
5
3
3
3
5
3
3
3
3
3
3
3
3
5
5
3
5
3
3
5
3
3
3
5
3
3
3
5
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
180.0  
205.0  
180.0  
180.0  
180.0  
205.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
205.0  
205.0  
180.0  
205.0  
180.0  
180.0  
205.0  
180.0  
180.0  
180.0  
205.0  
180.0  
180.0  
180.0  
205.0  
180.0  
200.0  
180.0  
180.0  
180.0  
200.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
200.0  
200.0  
180.0  
200.0  
180.0  
180.0  
200.0  
180.0  
180.0  
180.0  
200.0  
180.0  
180.0  
180.0  
200.0  
18.0  
33.0  
18.0  
18.0  
18.0  
33.0  
18.0  
18.0  
18.0  
18.0  
18.0  
18.0  
18.0  
18.0  
33.0  
33.0  
18.0  
33.0  
18.0  
18.0  
33.0  
18.0  
18.0  
18.0  
33.0  
18.0  
18.0  
18.0  
33.0  
X2SON  
SOT-23  
SOT-23  
SC70  
X2SON  
SOT-23  
SC70  
SOT-23  
SOT-23  
SOT-23  
SC70  
SOT-23  
SOT-23  
X2SON  
X2SON  
SOT-23  
X2SON  
SOT-23  
SC70  
X2SON  
SOT-23  
SOT-23  
SOT-23  
X2SON  
SOT-23  
SOT-23  
SOT-23  
X2SON  
Pack Materials-Page 3  
4203227/C  
PACKAGE OUTLINE  
DBZ0003A  
SOT-23 - 1.12 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
2.64  
2.10  
1.12 MAX  
1.4  
1.2  
B
A
0.1 C  
PIN 1  
INDEX AREA  
1
0.95  
3.04  
2.80  
1.9  
3
2
0.5  
0.3  
3X  
0.10  
0.01  
(0.95)  
TYP  
0.2  
C A B  
0.25  
GAGE PLANE  
0.20  
0.08  
TYP  
0.6  
0.2  
TYP  
SEATING PLANE  
0 -8 TYP  
4214838/C 04/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC registration TO-236, except minimum foot length.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBZ0003A  
SOT-23 - 1.12 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
3X (1.3)  
1
3X (0.6)  
SYMM  
3
2X (0.95)  
2
(R0.05) TYP  
(2.1)  
LAND PATTERN EXAMPLE  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214838/C 04/2017  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBZ0003A  
SOT-23 - 1.12 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
3X (1.3)  
1
3X (0.6)  
SYMM  
3
2X(0.95)  
2
(R0.05) TYP  
(2.1)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:15X  
4214838/C 04/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DCK0003A  
SOT-SC70 - 1.1 max height  
S
C
A
L
E
5
.
6
0
0
SMALL OUTLINE TRANSISTOR SC70  
C
2.4  
1.8  
0.1 C  
1.4  
1.1  
B
1.1 MAX  
A
PIN 1  
INDEX AREA  
1
2
0.65  
1.3  
2.15  
1.85  
3
0.30  
3X  
0.15  
C A B  
0.1  
0.0  
0.1  
(0.9)  
TYP  
0.15  
0.22  
0.08  
GAGE PLANE  
TYP  
0.46  
0.26  
8
TYP  
TYP  
0
SEATING PLANE  
4220745/B 06/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-203.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DCK0003A  
SOT-SC70 - 1.1 max height  
SMALL OUTLINE TRANSISTOR SC70  
PKG  
3X (0.95)  
3X (0.4)  
1
SYMM  
3
(1.3)  
(0.65)  
2
(R0.05) TYP  
(2.2)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4220745/B 06/2020  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DCK0003A  
SOT-SC70 - 1.1 max height  
SMALL OUTLINE TRANSISTOR SC70  
PKG  
3X (0.95)  
3X (0.4)  
1
SYMM  
3
(1.3)  
(0.65)  
2
(R0.05) TYP  
(2.2)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:18X  
4220745/B 06/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DPW0005A  
X2SON - 0.4 mm max height  
S
C
A
L
E
1
2
.
0
0
0
PLASTIC SMALL OUTLINE - NO LEAD  
0.85  
0.75  
A
B
PIN 1 INDEX AREA  
0.85  
0.75  
0.4 MAX  
C
SEATING PLANE  
NOTE 3  
(0.1)  
0.05  
0.00  
(0.25)  
4X (0.05)  
0.25 0.1  
2
1
4
5
NOTE 3  
2X  
0.48  
3
2X (0.26)  
0.27  
0.17  
4X  
0.27  
0.17  
0.1 C A B  
0.05 C  
(0.06)  
3X  
0.32  
0.23  
4223102/B 09/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The size and shape of this feature may vary.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DPW0005A  
X2SON - 0.4 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.78)  
(
0.1)  
SYMM  
4X (0.42)  
VIA  
0.05 MIN  
ALL AROUND  
TYP  
1
5
4X (0.22)  
SYMM  
4X (0.26)  
(0.48)  
3
2
4
(R0.05) TYP  
SOLDER MASK  
OPENING, TYP  
4X (0.06)  
(
0.25)  
(0.21) TYP  
EXPOSED METAL  
CLEARANCE  
METAL UNDER  
SOLDER MASK  
TYP  
LAND PATTERN EXAMPLE  
SOLDER MASK DEFINED  
SCALE:60X  
4223102/B 09/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, refer to QFN/SON PCB application note  
in literature No. SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DPW0005A  
X2SON - 0.4 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
4X (0.42)  
4X (0.06)  
5
1
4X (0.22)  
SYMM  
(
0.24)  
4X (0.26)  
(0.21)  
(0.48)  
TYP  
SOLDER MASK  
EDGE  
3
2
4
(R0.05) TYP  
SYMM  
(0.78)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD  
92% PRINTED SOLDER COVERAGE BY AREA  
SCALE:100X  
4223102/B 09/2017  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

TLV803EA43DBZR

低电平有效漏极开路输出型低功耗电压监控器(复位 IC) | DBZ | 3 | -40 to 125
TI

TLV803EA43DCKR

低电平有效漏极开路输出型低功耗电压监控器(复位 IC) | DCK | 3 | -40 to 125
TI

TLV803EA43RDBZR

低电平有效漏极开路输出型低功耗电压监控器(复位 IC) | DBZ | 3 | -40 to 125
TI

TLV803EA43VDBZR

TLV803E, TLV809E, TLV810E Low Power 250-nA IQ and Small Size Supply Voltage Supervisors
TI

TLV803EB22DCKR

低电平有效漏极开路输出型低功耗电压监控器(复位 IC) | DCK | 3 | -40 to 125
TI

TLV803EB26RDBZR

TLV803E, TLV809E, TLV810E Low Power 250-nA IQ and Small Size Supply Voltage Supervisors
TI

TLV803EB29DBZR

低电平有效漏极开路输出型低功耗电压监控器(复位 IC) | DBZ | 3 | -40 to 125
TI

TLV803EB29RDBZR

低电平有效漏极开路输出型低功耗电压监控器(复位 IC) | DBZ | 3 | -40 to 125
TI

TLV803EB33VDBZR

TLV803E, TLV809E, TLV810E Low Power 250-nA IQ and Small Size Supply Voltage Supervisors
TI

TLV803EB42VDBZR

TLV803E, TLV809E, TLV810E Low Power 250-nA IQ and Small Size Supply Voltage Supervisors
TI

TLV803EB46DCKR

低电平有效漏极开路输出型低功耗电压监控器(复位 IC) | DCK | 3 | -40 to 125
TI

TLV803EC29DBZR

低电平有效漏极开路输出型低功耗电压监控器(复位 IC) | DBZ | 3 | -40 to 125
TI