TLV5510INS [TI]

2.7-V TO 3.6-V 8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER; 2.7 V至3.6 V的8位高速模拟数字转换器
TLV5510INS
型号: TLV5510INS
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

2.7-V TO 3.6-V 8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER
2.7 V至3.6 V的8位高速模拟数字转换器

转换器 模数转换器 光电二极管
文件: 总19页 (文件大小:308K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLV5510  
2.7-V TO 3.6-V 8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER  
SLAS124C– DECEMBER 1997 – REVISED DECEMBER 1999  
PW OR NS PACKAGE  
(TOP VIEW)  
8-Bit Resolution  
Integral Linearity Error  
±0.75 LSB Max (25°C)  
OE  
DGND  
D1(LSB)  
D2  
DGND  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
±1 LSB Max (35°C to 85°C)  
REFB  
2
Differential Linearity Error  
± 0.5 LSB (25°C)  
REFBS  
AGND  
3
4
±0.75 LSB Max (35°C to 85°C)  
D3  
AGND  
5
D4  
ANALOG IN  
6
Maximum Conversion Rate  
10 Mega-Samples per Second  
(MSPS) Min  
D5  
V
7
DDA  
REFT  
D6  
8
D7  
REFTS  
9
2.7-V to 3.6-V Single-Supply Operation  
D8(MSB)  
V
10  
11  
DDA  
Low Power Consumption . . . 42 mW Typ at  
3 V  
V
V
DDD  
CLK 12  
DDA  
V
DDD  
Low Voltage Replacement for CXD1175  
Also available in tape and reel and  
ordered as the TLV5510INSR.  
Applications  
Communications  
AVAILABLE OPTIONS  
PACKAGE  
Digital Imaging  
T
A
Video Conferencing  
High-Speed Data Conversion  
TSSOP (PW)  
SOP (NS)  
TLV5510INS  
TLV5510IPW  
35°C to 85°C  
description  
The TLV5510isaCMOS8-bitresolutionsemiflashanalog-to-digitalconverter(ADC)witha2.7-Vto3.6-Vsingle  
power supply and an internal reference voltage source. It converts a wide band analog signal (such as a video  
signal) to a digital signal at a sampling rate of dc to 10 MHz.  
functional block diagram  
Resistor  
Reference  
Divider  
OE  
REFB  
200 Ω  
NOM  
Lower Sampling  
Comparators  
(4 Bit)  
REFT  
Lower Encoder  
(4 Bit)  
D1(LSB)  
D2  
REFBS  
Lower Data  
Latch  
60 Ω  
NOM  
D3  
AGND  
AGND  
D4  
Lower Sampling  
Comparators  
(4 Bit)  
Lower Encoder  
(4 Bit)  
V
DDA  
D5  
D6  
40 Ω  
NOM  
Upper Data  
Latch  
D7  
REFTS  
ANALOG IN  
Upper Sampling  
Comparators  
(4 Bit)  
Upper Encoder  
(4 Bit)  
D8(MSB)  
Clock  
Generator  
CLK  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 1999, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5510  
2.7-V TO 3.6-V 8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER  
SLAS124C– DECEMBER 1997 – REVISED DECEMBER 1999  
schematics of inputs and outputs  
EQUIVALENT OF ANALOG INPUT  
EQUIVALENT OF EACH DIGITAL INPUT  
EQUIVALENT OF EACH DIGITAL OUTPUT  
V
DDA  
V
DDD  
V
DDD  
D1D8  
OE, CLK  
ANALOG IN  
AGND  
DGND  
DGND  
Terminal Functions  
TERMINAL  
NAME NO.  
AGND  
I/O  
DESCRIPTION  
20, 21  
19  
Analog ground  
Analog input  
Clock input  
ANALOG IN  
CLK  
I
I
12  
DGND  
D1D8  
OE  
2, 24  
3–10  
1
Digital ground  
O
I
Digital data out. D1:LSB, D8:MSB  
Output enable. When OE = low, data is enabled. When OE = high, D1 – D8 is high impedance.  
V
V
14, 15, 18  
11, 13  
23  
Analog supply voltage  
DDA  
Digital supply voltage  
DDD  
REFB  
I
I
Reference voltage in (bottom)  
REFBS  
22  
Reference voltage (bottom). When using the internal voltage divider to generate a nominal 2-V reference,  
this terminal is shorted to the REFB terminal and the REFTS terminal is shorted to the REFT terminal (see  
Figure 21).  
REFT  
17  
16  
Reference voltage in (top)  
REFTS  
Reference voltage (top). When using the internal voltage divider to generate a nominal 2-V reference, this  
terminal is shorted to the REFT terminal and the REFBS terminal is shorted to the REFB terminal (see  
Figure 21).  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V  
DDA DDD  
Reference voltage input range, REFT, REFB, REFBS, REFTS . . . . . . . . . . . . . . . . . . . . . . . . . AGND to V  
Analog input voltage range, V  
Digital input voltage range, V  
Digital output voltage range, V  
Operating free-air temperature range, T  
Storage temperature range, T  
DDA  
DDA  
DDD  
DDD  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AGND to V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DGND to V  
I(ANLG)  
I(DGTL)  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DGND to V  
O(DGTL)  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35°C to 85°C  
A
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5510  
2.7-V TO 3.6-V 8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER  
SLAS124C– DECEMBER 1997 – REVISED DECEMBER 1999  
recommended operating conditions  
MIN  
2.7  
NOM  
MAX  
3.6  
UNIT  
V
V
AGND  
DGND  
3
3
0
DDA  
V
Supply voltage  
2.7  
3.6  
DDD  
AGNDDGND  
100  
REFB+2  
0
100  
mV  
V
Reference input voltage (top), REFT  
VDDA–0.3  
REFT2  
REFT  
Reference input voltage (bottom), REFB  
0.6  
V
Analog input voltage range, V  
I(ANLG)  
(see Note 1)  
V
REFB  
2.5  
High-level input voltage, V  
IH  
V
Low-level input voltage, V  
0.5  
V
IL  
Pulse duration, clock high, t  
10  
10  
ns  
ns  
MHz  
w(H)  
Pulse duration, clock low, t  
w(L)  
Clock frequency, f  
(CLK)  
10  
Sampling frequency, f  
10 MSPS  
s
NOTE 1: REFT – REFB 2.4 V maximum  
electrical characteristics at V  
A
= V  
= 3 V, REFT = 2.5 V, REFB = 0.5 V, f  
= 10 MHz,  
DDD  
DDA  
(CLK)  
T = 25°C (unless otherwise noted)  
digital I/O  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
I
I
I
I
High-level input current  
Low-level input current  
High-level output current  
Low-level output current  
V
V
= MAX,  
= MAX,  
V
V
V
V
= V  
= 0  
5
5
IH  
DDD  
IH  
DDD  
µA  
IL  
DDD  
IL  
OE = GND,  
OE = GND,  
= MIN,  
= MIN,  
V
V
= V  
DDD  
= 0.4 V  
0.5 V  
1.6  
2.6  
OH  
OL  
DDD  
DDD  
OH  
mA  
OL  
High-level high-impedance-state  
output leakage current  
I
OE = V  
OE = V  
,
,
V
= MAX  
= MIN  
V
= V  
= 0  
15  
15  
OZH  
DDD  
DDD  
OH  
DDD  
µA  
Low-level high-impedance-state  
output leakage current  
I
V
DDD  
V
OL  
OZL  
DDD  
Conditions marked MIN or MAX are as stated in recommended operating conditions.  
power  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
4
MAX  
10  
UNIT  
mA  
I
I
Supply current  
f
sin  
= 1 MHz sine wave, reference resistor dissipation is separate  
DD  
Reference voltage current REF = REFT – REFB = 2 V  
6
10  
14  
mA  
ref  
Conditions marked MIN or MAX are as stated in recommended operating conditions.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5510  
2.7-V TO 3.6-V 8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER  
SLAS124C– DECEMBER 1997 – REVISED DECEMBER 1999  
electrical characteristics at V  
= V  
= 3 V, REFT = 2.5 V, REFB = 0.5 V, f  
= 10 MHz,  
DDD  
DDA  
(CLK)  
T = 25°C (unless otherwise noted) (continued)  
A
static performance  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
0.72  
2.4  
UNIT  
Self-bias (1), at REFB  
0.54  
1.8  
0.60  
2
Short REFB to REFBS, Short REFT to REFTS  
Self-bias (1), REFT – REFB  
Self-bias (2), at REFT  
V
Short REFB to AGND,  
Short REFT to REFTS  
rms  
2.25  
140  
2.5  
200  
16  
3
R
C
Reference voltage resistor  
Analog input capacitance  
Between REFT and REFB  
260  
ref  
i
V
= 1.5 V + 0.07 V  
pF  
I(ANLG)  
T
= 25°C  
±0.3 ±0.75  
±1  
f
= 10 MHz,  
A
(CLK)  
V = 0.5 V to 2.5 V  
Integral nonlinearity (INL)  
T
= 35°C to 85°C  
T = 25°C  
A
I
A
LSB  
±0.2  
±0.5  
±0.75  
68  
f
= 10 MHz,  
(CLK)  
V = 0.5 V to 2.5 V  
Differential nonlinearity (DNL)  
T
A
= 35°C to 85°C  
I
E
E
Zero-scale error  
Full-scale error  
REF = REFT – REFB = 2 V  
REF = REFT – REFB = 2 V  
18  
20  
43  
0
mV  
mV  
ZS  
20  
FS  
Conditions marked MIN or MAX are as stated in recommended operating conditions.  
operating characteristics at V  
A
= V  
= 3 V, REFT = 2.5 V, REFB = 0.5 V, f  
= 10 MHz,  
DDD  
DDA  
(CLK)  
T = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
f = 1-kHz ramp wave form,  
MIN  
TYP  
MAX  
UNIT  
I
f
Maximum conversion rate  
Analog input bandwidth  
0.2  
10 MSPS  
conv  
V
= 0.5 V – 2.5 V  
I(ANLG)  
At – 1 dB  
At – 3 dB  
17  
36  
18  
30  
4
MHz  
MHz  
ns  
BW  
t
t
t
Digital output delay time  
Aperture jitter time  
C
10 pF (see Note 1 and Figure 1)  
30  
d(D)  
L
ps  
AJ  
Sampling delay time  
ns  
d(s)  
t
Enable time, OEto valid data  
C
C
= 10 pF  
= 10 pF  
15  
10  
ns  
ns  
en  
L
L
t
Disable time, OEto high impedance  
dis  
T
= 25°C  
41  
41  
38  
38  
38  
37  
A
Input tone = 1 MHz  
Input tone = 1.4 MHz  
Input tone = 1.4 MHz  
Full range  
= 25°C  
Spurious free dynamic range (SFDR)  
dB  
dB  
T
A
Full range  
= 25°C  
T
A
SNR  
Signal-to-noise ratio  
Full range  
NOTE 2:  
C includes probe and jig capacitance.  
L
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5510  
2.7-V TO 3.6-V 8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER  
SLAS124C– DECEMBER 1997 – REVISED DECEMBER 1999  
PARAMETER MEASUREMENT INFORMATION  
t
t
w(L)  
w(H)  
CLK (Clock)  
ANALOG IN  
(Input Signal)  
N+2  
N+1  
N–2  
N+4  
N
N+3  
D1D8  
(Output Data)  
N–3  
N–1  
N
N+1  
t
pd  
Figure 1. I/O Timing Diagram  
TYPICAL CHARACTERISTICS  
POWER DISSIPATION  
vs  
ANALOG INPUT BANDWIDTH  
SAMPLING FREQUENCY  
0
12  
T
V
V
V
= 25°C  
A
–1  
= 2.7 V,  
DDA  
10  
8
= 0.5 V,  
= 2.5 V,  
REFB  
REFT  
–2  
Fclk = 10 MHz  
–3  
–4  
–5  
6
4
T
= 25°C  
A
–6  
–7  
–8  
V
V
V
= 2.7 V,  
DDA  
= 0.5 V,  
= 2.5 V,  
REFB  
REFT  
2
0
Fclk = 10 MHz  
0
1
10  
2
10  
0
2
4
6
8
10  
12  
10  
f – Input Frequency – MHz  
I
Sampling Frequency – MHz  
Figure 2  
Figure 3  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5510  
2.7-V TO 3.6-V 8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER  
SLAS124C– DECEMBER 1997 – REVISED DECEMBER 1999  
TYPICAL CHARACTERISTICS  
SIGNAL-TO-NOISE RATIO  
vs  
INPUT FREQUENCY  
60  
T
= 25°C  
A
V
V
V
= 3 V,  
DDA  
50  
= 0.5 V,  
= 2.5 V,  
REFB  
REFT  
Fclk = 10 MHz  
40  
30  
20  
10  
0
0
0.5  
1
1.5  
2
2.5  
3
Input Frequency – MHz  
Figure 4  
DIFFERENTIAL NONLINEARITY  
vs  
SAMPLES  
(Under Recommended Operating Conditions)  
0.5  
0.4  
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
200  
220  
240 253  
Samples  
Figure 5  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5510  
2.7-V TO 3.6-V 8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER  
SLAS124C– DECEMBER 1997 – REVISED DECEMBER 1999  
TYPICAL CHARACTERISTICS  
EFFECTIVE NUMBER OF BITS  
vs  
TEMPERATURE  
6.5  
V
V
V
= 3 V,  
DDA  
= 0.5 V,  
= 2.5 V,  
REFB  
REFT  
6.45  
6.4  
Fclk = 10 MHz,  
f
= 1 MHz  
sin  
6.35  
6.3  
6.25  
–40  
–20  
0
20  
40  
60  
80  
Ambient Temperature – °C  
Figure 6  
INTEGRAL NONLINEARITY  
vs  
SAMPLES  
(Under Recommended Operating Conditions)  
0.75  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.75  
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
200  
220  
240 254  
Samples  
Figure 7  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5510  
2.7-V TO 3.6-V 8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER  
SLAS124C– DECEMBER 1997 – REVISED DECEMBER 1999  
TYPICAL CHARACTERISTICS  
FAST FOURIER TRANSFORMER  
vs  
FREQUENCY  
(Under Recommended Operating Conditions)  
0
–20  
–40  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
–200  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
f – Frequency – MHz  
Figure 8  
INTEGRAL LINEARITY ERROR  
DIFFERENTIAL LINEARITY ERROR  
vs  
vs  
FREQUENCY  
FREQUENCY  
1.8  
1.6  
1.8  
V
V
V
V
= 2.7 V,  
V
= 2.7 V,  
= 2.7 V,  
= 2.5 V,  
DDD  
DDA  
DDD  
1.6  
= 2.7 V,  
= 2.5 V,  
V
V
V
DDA  
REFT  
REFB  
T
A
= 25°C  
REFT  
REFB  
1.4  
1.2  
1
= 0.5 V  
1.4  
1.2  
1
= 0.5 V  
T
A
= 25°C  
T
A
= –35°C  
0.8  
0.6  
T
A
= 85°C  
0.8  
0.6  
T
A
= –35°C  
T
A
= 85°C  
0.4  
0.4  
0.2  
0
0.2  
0
5
7
9
11  
13  
15  
17  
19  
21  
5
7
9
11  
13  
15  
17  
19  
21  
f
– Frequency – MHz  
f
– Frequency – MHz  
CLK  
CLK  
Figure 9  
Figure 10  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5510  
2.7-V TO 3.6-V 8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER  
SLAS124C– DECEMBER 1997 – REVISED DECEMBER 1999  
TYPICAL CHARACTERISTICS  
INTEGRAL LINEARITY ERROR  
DIFFERENTIAL LINEARITY ERROR  
vs  
vs  
FREQUENCY  
FREQUENCY  
1.8  
1.6  
1.8  
1.6  
V
V
V
V
= 3 V,  
= 3 V,  
DDD  
DDA  
V
V
V
V
= 3 V,  
= 3 V,  
DDD  
DDA  
= 2.5 V,  
= 0.5 V  
REFT  
REFB  
= 2.5 V,  
= 0.5 V  
REFT  
REFB  
1.4  
1.2  
1
1.4  
1.2  
1
T
A
= 25°C  
T
A
= 25°C  
0.8  
0.6  
0.8  
0.6  
T
A
= 85°C  
T
A
= 85°C  
0.4  
T
A
= –35°C  
0.4  
T
= –35°C  
A
0.2  
0
0.2  
0
5
7
9
11  
13  
15  
17  
19  
21  
5
7
9
f
11  
13  
15  
17  
19  
21  
f
– Frequency – MHz  
CLK  
– Frequency – MHz  
CLK  
Figure 11  
Figure 12  
INTEGRAL LINEARITY ERROR  
DIFFERENTIAL LINEARITY ERROR  
vs  
vs  
FREQUENCY  
FREQUENCY  
1.8  
1.6  
1.8  
1.6  
V
V
V
V
= 3.3 V,  
= 3.3 V,  
DDD  
DDA  
V
V
V
V
= 3.3 V,  
= 3.3 V,  
DDD  
DDA  
= 2.5 V,  
= 0.5 V  
REFT  
REFB  
= 2.5 V,  
= 0.5 V  
REFT  
REFB  
1.4  
1.2  
1
1.4  
1.2  
1
T
A
= 25°C  
T
A
= 25°C  
0.8  
0.6  
0.8  
0.6  
T
A
= 85°C  
T
A
= 85°C  
0.4  
0.4  
T
A
= –35°C  
0.2  
0
0.2  
0
T
A
= –35°C  
5
7
9
11  
13  
15  
17  
19  
21  
5
7
9
11  
13  
15  
17  
19  
21  
f
– Frequency – MHz  
CLK  
f
CLK  
– Frequency – MHz  
Figure 13  
Figure 14  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5510  
2.7-V TO 3.6-V 8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER  
SLAS124C– DECEMBER 1997 – REVISED DECEMBER 1999  
TYPICAL CHARACTERISTICS  
EFFECTIVE NUMBER OF BITS  
vs  
INPUT SINEWAVE FREQUENCY  
EFFECTIVE NUMBER OF BITS  
vs  
INPUT SINEWAVE FREQUENCY  
8
7.5  
7
8
7.5  
7
V
DDD  
V
DDA  
= 2.7 V,  
= 2.7 V  
V
DDD  
V
DDA  
= 3 V,  
= 3 V  
T
= –35°C  
A
T
= –35°C  
= 85°C  
A
6.5  
6
6.5  
6
T
A
= 25°C  
T
A
= 25°C  
T
A
5.5  
5
5.5  
5
T
= 85°C  
A
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
f – Input Sinewave Frequency – MHz  
f – Input Sinewave Frequency – MHz  
Figure 15  
Figure 16  
EFFECTIVE NUMBER OF BITS  
vs  
INPUT SINEWAVE FREQUENCY  
8
7.5  
7
V
V
= 3.3 V,  
= 3.3 V  
DDD  
DDA  
T
= –35°C  
A
T
A
= 25°C  
T
A
= 85°C  
6.5  
6
5.5  
5
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
f – Input Sinewave Frequency – MHz  
Figure 17  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5510  
2.7-V TO 3.6-V 8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER  
SLAS124C– DECEMBER 1997 – REVISED DECEMBER 1999  
APPLICATION INFORMATION  
The following notes are design recommendations that should be used with the TLV5510.  
External analog and digital circuitry should be physically separated and shielded as much as possible to  
reduce system noise.  
RF breadboarding or printed-circuit-board (PCB) techniques should be used throughout the evaluation and  
production process. Breadboards should be copper clad for bench evaluation.  
Since AGND and DGND are connected internally, the ground lead in must be kept as noise free as possible.  
A good method to use is twisted-pair cables for the supply lines to minimize noise pickup. An analog and  
digital ground plane should be used on PCB layouts when additional logic devices are used. The AGND  
and DGND terminals of the device should be tied to the analog ground plane.  
V
to AGND and V  
to DGND should be decoupled with 1-µF and 0.01-µF capacitors, respectively,  
DDA  
DDD  
placed as close as possible to the appropriate device terminals. A ceramic chip capacitor is recommended  
for the 0.01-µF capacitor. Care should be exercised to assure a solid noise-free ground connection for the  
analog and digital grounds.  
V
, AGND, and ANALOG IN terminals should be shielded from the higher frequency terminals, CLK and  
DDA  
D0–D7. If possible, AGND traces should be placed on both sides of the ANALOG IN traces on the PCB for  
shielding.  
In testing or application of the device, the resistance of the driving source connected to the analog input  
should be 10 or less within the analog frequency range of interest.  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5510  
2.7-V TO 3.6-V 8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER  
SLAS124C– DECEMBER 1997 – REVISED DECEMBER 1999  
APPLICATION INFORMATION  
V
DDA  
3.3 V  
V
DDD  
3.3 V  
FB2  
+
C10  
FB3  
FB1  
14  
C3  
C8  
C9  
13  
11  
V
DV  
DV  
DDA  
DDD  
DDD  
C4  
C5  
15  
18  
V
DDA  
V
DDA  
16  
17  
10  
9
REFTS  
REFT  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
C6  
8
7
From Clamp  
Output  
6
5
4
3
C1  
R1  
19  
Video Input  
Buffer  
ANALOG IN  
(2V  
)
PP  
C2  
A
22  
23  
20  
21  
12  
REFBS  
REFB  
CLK  
OE  
C7  
1
2
AGND  
AGND  
DGND  
DGND  
24  
D
Output Enable  
Clock  
LOCATION  
C1, C3, C4 C9  
C2  
DESCRIPTION  
0.1 µF Capacitor  
10 pF Capacitor  
47 µF Capacitor  
Ferrite bead  
C10  
FB1, FB2, FB3  
R1  
75 Resistor  
Figure 18. Application and Test Schematic Using Internal Reference  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5510  
2.7-V TO 3.6-V 8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER  
SLAS124C– DECEMBER 1997 – REVISED DECEMBER 1999  
PRINCIPLES OF OPERATION  
functional description  
The TLV5510 is a semiflash ADC featuring two lower comparator blocks of four bits each.  
As shown in Figure 19, input voltage V (1) is sampled with the falling edge of CLK1 to the upper comparators  
I
block and the lower comparators block(A), S(1). The upper comparators block finalizes the upper data UD(1)  
with the rising edge of CLK2, and simultaneously, the lower reference voltage generates the voltage RV(1)  
corresponding to the upper data. The lower comparators block (A) finalizes the lower data LD(1) with the rising  
edge of CLK3. UD(1) and LD(1) are combined and output as OUT(1) with the rising edge of CLK4. According  
to the above internal operation described, output data is delayed 2.5 clocks from the analog input voltage  
sampling point.  
Input voltage V (2) is sampled with the falling edge of CLK2. UD(2) is finalized with the rising edge of CLK3, and  
I
LD(2) is finalized with the rising edge of CLK4 at the lower comparators block(B). OUT(2) is output with the rising  
edge of CLK5.  
V (1)  
I
V (2)  
I
V (3)  
I
V (4)  
I
ANALOG IN  
(Sampling Points)  
CLK1  
CLK2  
S(2)  
CLK3  
S(3)  
CLK4  
S(4)  
CLK (Clock)  
S(1)  
C(1)  
C(2)  
C(3)  
C(4)  
Upper Comparators Block  
Upper Data  
UD(0)  
UD(1)  
RV(1)  
UD(2)  
RV(2)  
UD(3)  
RV(3)  
RV(0)  
Lower Reference Voltage  
S(1)  
H(1)  
C(1)  
S(3)  
H(3)  
C(3)  
Lower Comparators Block (A)  
Lower Data (A)  
LD(1)  
LD(1)  
H(0)  
C(0)  
S(2)  
H(2)  
C(2)  
S(4)  
H(4)  
Lower Comparators Block (B)  
Lower Data (B)  
LD(2)  
LD(0)  
LD(2)  
OUT(2)  
OUT(–1)  
OUT(0)  
OUT(1)  
D1D8 (Data Output)  
Figure 19. Internal Functional Timing Diagram  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5510  
2.7-V TO 3.6-V 8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER  
SLAS124C– DECEMBER 1997 – REVISED DECEMBER 1999  
PRINCIPLES OF OPERATION  
functional description (continued)  
TheMSBcomparatorblockconvertsonthefallingedgeofeachappliedclockcycle. TheLSBcomparatorblocks  
CB-A and CB-B convert on the falling edges of the first and second following clock cycles, respectively. The  
timing diagram of the conversion algorithm is shown in Figure 19.  
analog input operation  
The analog input stage to the TLV5510 is a chopper-stabilized comparator and is equivalently shown below:  
φ2  
S2  
φ1  
To Encoder Logic  
To Encoder Logic  
V
DDA  
C
C
s
s
φ2  
φ2  
S3  
φ1  
φ1  
φ1  
φ2  
ANALOG IN  
S1  
ref(N)  
V
S(N)  
To Encoder Logic  
C
s
Figure 20. External Connections for Using the Internal Reference Resistor Divider  
Figure 20 depicts the analog input for the TLV5510. The switches shown are controlled by two internal clocks,  
φ1 and φ2. These are nonoverlapping clocks that are generated from the CLK input. During the sampling period,  
φ1, S1isclosedandtheinputsignalisappliedtoonesideofthesamplingcapacitor, C . Alsoduringthesampling  
s
period, S2 through S(N) are closed. This sets the comparator input to approximately 2.5 V. The delta voltage  
is developed across C . During the comparison phase, φ2, S1 is switched to the appropriate reference voltage  
s
for the bit value N, i.e., V  
. S2 is opened and V  
– VC toggles the comparator output to the appropriate  
ref(N)  
ref(N) s  
digital 1 or 0. The small resistance values for the switch, S1, and small value of the sampling capacitor combine  
to produce the wide analog input bandwidth of the TLV5510. The source impedance driving the analog input  
of the TLV5510 should be less than 100 across the range of input frequency spectrum.  
reference inputs REFB, REFT, REFBS, REFTS  
The range of analog inputs that can be converted are determined by REFB and REFT, REFT being the  
maximum reference voltage and REFB being the minimum reference voltage. The TLV5510 is tested with  
REFT = 2.5 V or 2 V and REFB = 0.5 V or 0 V producing a 2-V full-scale range. The TLV5510 can operate with  
REFT REFB = 2.4 V, but the power dissipation in the reference resistor increases significantly (49 mW at 3.3 V  
nominally). It is recommended that a 0.1 µF capacitor be attached to REFB and REFT whether using externally  
or internally generated voltages.  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5510  
2.7-V TO 3.6-V 8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER  
SLAS124C– DECEMBER 1997 – REVISED DECEMBER 1999  
PRINCIPLES OF OPERATION  
internal reference voltage conversion  
Three internal resistors allow the device to generate an internal reference voltage. These resistors are brought  
out on terminals V , REFTS, REFT, REFB, REFBS, and AGND. Two different bias voltages are possible  
DDA  
without the use of external resistors.  
The internal resistors are provided to develop REFT and REFB as listed in Table 1 (bias option 1) with only two  
external connections. This is developed with a 3-resistor network connected to V  
. When using this feature,  
DDA  
connect REFT to REFTS and connect REFB to REFBS. For applications where the variance associated with  
is acceptable, this internal voltage reference saves space and cost (see Figure 21).  
V
DDA  
A second internal bias option (bias two option) is shown in Figure 22. Using this scheme REFB = AGND and  
REFT is as shown in Table 1 (bias option 2). These bias voltage options can be used to provide the values listed  
in the following table.  
Table 1. Bias Voltage Options for Different V  
DDA  
BIAS VOLTAGE  
BIAS OPTION  
V
DDA  
V
V
REFT  
V
– V  
REFB  
REFT REFB  
2.7 V  
3 V  
0.54  
2.34  
1.8  
2
0.6  
2.60  
2.86  
3.12  
2.25  
2.5  
1
3.3 V  
3.6 V  
2.7 V  
3 V  
0.66  
0.72  
2.2  
2.4  
2.25  
2.5  
2.75  
3
AGND  
AGND  
AGND  
AGND  
2
3.3 V  
3.6 V  
2.75  
3
To use the internally-generated reference voltage, terminal connections should be made as shown in  
Figure 21 or Figure 22.  
TLV5510  
18  
V
DDA  
R1  
40 NOM  
REFTS  
16  
17  
2.63 V dc  
0.1 µF  
0.1 µF  
REFT  
REFB  
R
ref  
200 NOM  
23  
22  
REFBS  
AGND  
R2  
60 NOM  
21  
Figure 21. External Connections Using the Internal Bias One Option  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5510  
2.7-V TO 3.6-V 8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER  
SLAS124C– DECEMBER 1997 – REVISED DECEMBER 1999  
PRINCIPLES OF OPERATION  
TLV5510  
18  
V
DDA  
(Analog Supply)  
R1  
40 NOM  
REFTS  
16  
17  
0.1 µF  
REFT  
REFB  
R
ref  
200 NOM  
23  
22  
REFBS  
AGND  
R2  
60 NOM  
21  
Figure 22. External Connections for Using the Internal Reference Resistor Divider  
functional operation  
The TLV5510 functions as shown in the Table 2.  
Table 2. Functional Operation  
DIGITAL OUTPUT CODE  
INPUT SIGNAL  
VOLTAGE  
STEP  
MSB  
LSB  
REFT  
255  
1
1
1
1
1
1
1
1
128  
127  
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
REFB  
0
0
0
0
0
0
0
0
0
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5510  
2.7-V TO 3.6-V 8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER  
SLAS124C– DECEMBER 1997 – REVISED DECEMBER 1999  
MECHANICAL DATA  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
M
0,10  
0,65  
0,19  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
7,70  
9,80  
9,60  
A MAX  
A MIN  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5510  
2.7-V TO 3.6-V 8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER  
SLAS124C– DECEMBER 1997 – REVISED DECEMBER 1999  
MECHANICAL DATA  
NS (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PIN SHOWN  
PINS **  
14  
16  
20  
24  
DIM  
10,50  
10,50  
12,90  
15,30  
A MAX  
0,51  
0,35  
1,27  
14  
M
0,25  
8
9,90  
9,90  
12,30  
14,70  
A MIN  
0,15 NOM  
5,60  
5,00  
8,20  
7,40  
Gage Plane  
1
7
0,25  
0°10°  
A
1,05  
0,55  
Seating Plane  
0,10  
2,00 MAX  
0,05 MIN  
4040062/B 2/95  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1999, Texas Instruments Incorporated  

相关型号:

TLV5510INSLE

IC,A/D CONVERTER,SINGLE,8-BIT,CMOS,SOP,24PIN
TI

TLV5510INSR

8-Bit, 10 MSPS ADC Single Ch., Low Voltage, Low Power 24-SO
TI

TLV5510IPW

2.7-V TO 3.6-V 8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER
TI

TLV5510IPWLE

1-CH 8-BIT FLASH METHOD ADC, PARALLEL ACCESS, PDSO24, PLASTIC, TSSOP-24
TI

TLV5510IPWR

8-Bit, 10 MSPS ADC Single Ch., Low Voltage, Low Power 24-TSSOP
TI

TLV5510NSR

TLV5510NSR
TI

TLV5510_05

2.7-V TO 3.6-V 8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER
TI

TLV5535

8-BIT, 35 MSPS, LOW-POWER ANALOG-TO-DIGITAL CONVERTER
TI

TLV5535-Q1

8-BIT, 35 MSPS, LOW-POWER ANALOG-TO-DIGITAL CONVERTER
TI

TLV5535IPW

8-BIT, 35 MSPS, LOW-POWER ANALOG-TO-DIGITAL CONVERTER
TI

TLV5535IPWG4

8-Bit, 35-MSPS Analog-to-Digital Converter (ADC) 28-TSSOP -40 to 85
TI

TLV5535IPWR

8 位、35MSPS 模数转换器 (ADC) | PW | 28 | -40 to 85
TI