TLV3691IDCKR [TI]

小型毫微功耗单路比较器 | DCK | 5 | -40 to 125;
TLV3691IDCKR
型号: TLV3691IDCKR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

小型毫微功耗单路比较器 | DCK | 5 | -40 to 125

放大器 光电二极管 比较器
文件: 总32页 (文件大小:3657K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TLV3691  
ZHCSBY0A DECEMBER 2013REVISED NOVEMBER 2015  
TLV3691 0.9V 6.5V、毫微功耗比较器  
1 特性  
3 说明  
1
低静态电流:75nA  
宽电源:  
TLV3691提供宽电源电压范围、低至 150nA(最大  
值)的静态电流和轨到轨输入。所有这些 具有 搭配行  
业标准的超小型封装,使得这款器件成为便携式电子和  
工业系统中 低压和低功耗 应用的理想选择。  
0.9V 6.5V  
±0.45V ±3.25V  
微型封装:双列扁平无脚封装 (DFN)-6 (1mm ×  
1mm)5 引脚 SC70  
单通道、低功耗、宽电源和温度范围使得这款器件能够  
灵活处理从消费类到工业类的几乎全部应用。  
TLV3691 采用 SC70-5 1mm × 1mm DFN-6 封装。  
这款器件可在 -40°C 125°C 的扩展工业温度范围内  
运行。  
输入共模范围扩展至两个电源轨以上 100mV  
响应时间:24µs  
低输入偏移电压:±3mV  
推挽输出  
器件信息(1)  
工业温度范围:  
-40°C 125°C  
器件型号  
TLV3691  
封装  
SC70 (5)  
X2SON (6)  
封装尺寸(标称值)  
1.25mm × 2.00mm  
1.00mm x 1.00mm  
2 应用  
过压和欠压检测  
(1) 要了解所有可用封装,请参见数据表末尾的可订购产品附录。  
窗口比较器  
过流检测  
零交叉检测  
系统监控:  
智能电话  
平板电脑  
工业传感器  
便携式医疗设备  
毫微功耗运行  
160  
140  
120  
100  
80  
125°C  
-40°C  
60  
25°C  
40  
20  
VS = 0.9 V  
1.5  
0
0.5  
2.5  
3.5  
4.5  
5.5  
6.5  
Supply Voltage (V)  
C001  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBOS694  
 
 
 
 
TLV3691  
ZHCSBY0A DECEMBER 2013REVISED NOVEMBER 2015  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 12  
Application and Implementation ........................ 13  
8.1 Application Information............................................ 13  
8.2 Typical Application ................................................. 16  
Power Supply Recommendations...................... 18  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings ............................................................ 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Switching Characteristics.......................................... 6  
6.7 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 12  
7.1 Overview ................................................................. 12  
7.2 Functional Block Diagram ....................................... 12  
7.3 Feature Description................................................. 12  
8
9
10 Layout................................................................... 19  
10.1 Layout Guidelines ................................................. 19  
10.2 Layout Example .................................................... 19  
11 器件和文档支持 ..................................................... 20  
11.1 器件支持................................................................ 20  
11.2 文档支持................................................................ 20  
11.3 社区资源................................................................ 20  
11.4 ....................................................................... 20  
11.5 静电放电警告......................................................... 20  
11.6 Glossary................................................................ 21  
12 机械、封装和可订购信息....................................... 21  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (December 2013) to Revision A  
Page  
已添加 ESD 额定值表,特性 描述 部分,器件功能模式应用和实施部分,电源相关建议部分,布局部分,器件和文  
档支持部分以及机械、封装和可订购信息........................................................................................................................ 1  
2
Copyright © 2013–2015, Texas Instruments Incorporated  
 
TLV3691  
www.ti.com.cn  
ZHCSBY0A DECEMBER 2013REVISED NOVEMBER 2015  
5 Pin Configuration and Functions  
DCK Package  
5-Pin SC70  
Top View  
DPF Package  
6-Pin X2SON  
Top View  
IN+  
GND  
IN-  
1
2
3
5
VCC  
IN+  
GND  
IN-  
1
2
3
6
5
4
VCC  
NC  
4
OUT  
OUT  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
GND  
IN+  
X2SON  
SC70  
2
1
3
5
4
6
2
1
I
Ground  
Noninverting input  
Inverting input  
IN–  
3
I
NC  
4
O
I
No internal connection  
Output (push-pull)  
Positive power supply  
OUT  
VCC  
5
Copyright © 2013–2015, Texas Instruments Incorporated  
3
TLV3691  
ZHCSBY0A DECEMBER 2013REVISED NOVEMBER 2015  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
MAX  
7
UNIT  
V
Supply voltage  
Voltage(2)  
Signal input terminals  
Current(2)  
Output short circuit(3)  
(V–) – 0.5  
(V+) + 0.5  
±10  
V
mA  
mA  
Continuous  
Operating, TA  
–55  
150  
150  
150  
Temperature  
Junction, TJ  
Storage, Tstg  
°C  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5 V beyond the supply rails should  
be current-limited to 10 mA or less.  
(3) Short-circuit to ground, one comparator per package.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all  
pins(1)  
±2500  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-  
C101, all pins(2)  
±1000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
0.9  
NOM  
MAX  
6.5  
UNIT  
V
Power supply voltage  
Ambient Temperature, TA  
–40  
125  
°C  
6.4 Thermal Information  
TLV3691  
THERMAL METRIC(1)  
DCK (SC70)  
5 PINS  
297.4  
109.3  
74.4  
DPF (X2SON)  
UNIT  
6 PINS  
252.4  
93.9  
192.8  
3
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJCtop  
RθJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
3
ψJB  
73.6  
203.8  
N/A  
RθJCbot  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
4
Copyright © 2013–2015, Texas Instruments Incorporated  
TLV3691  
www.ti.com.cn  
ZHCSBY0A DECEMBER 2013REVISED NOVEMBER 2015  
6.5 Electrical Characteristics  
At TA = 25°C, VS = 0.9 V to 6.5 V, VCM = VS/2 and CL = 15 pF, unless otherwise noted.  
PARAMETER  
OFFSET VOLTAGE  
TEST CONDITIONS  
MIN  
TYP  
±3  
MAX  
UNIT  
TA = 25°C  
±15  
±22  
mV  
mV  
VOS  
Input offset voltage  
TA = –40°C to 125°C  
VHYS  
Hysteresis  
17  
mV  
dVOS/dT  
PSRR  
Input offset voltage drift  
Power-supply rejection ratio  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
±70  
µV/°C  
µV/V  
2000  
INPUT VOLTAGE RANGE  
VCM Common-mode voltage range  
Hysteresis  
INPUT BIAS CURRENT  
TA = –40°C to 125°C  
(V–) – 0.1  
(V+) + 0.1  
V
±17  
30  
8
mV  
TA = 25°C  
100  
20  
pA  
nA  
pA  
IB  
Input bias current  
TA = –40°C to 125°C  
IOS  
Input offset current  
CLOAD  
OUTPUT  
Capacitive load drive  
See Typical Characteristics  
IO = 2.5 mA, input overdrive 50 mV,  
VS = 6.5 V  
155  
6
165  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
IO = 2.5 mA, input overdrive 50 mV,  
VS = 6.5 V, TA = –40°C to 125°C  
220  
10  
IO 100 µA, input overdrive 50 mV,  
VS = 6.5 V  
VOH  
Voltage output swing from upper rail  
IO 100 µA, input overdrive 50 mV,  
20  
VS = 6.5 V, TA = –40°C to 125°C  
IO 100 µA, input overdrive 50 mV,  
70  
155  
6
75  
VS = 0.9 V  
IO 100 µA, input overdrive 50 mV,  
80  
VS = 0.9 V, TA = –40°C to 125°C  
IO = 2.5 mA, input overdrive 50 mV,  
VS = 6.5 V  
165  
220  
10  
IO = 2.5 mA, input overdrive 50 mV,  
VS = 6.5 V, TA = –40°C to 125°C  
IO 100 µA, input overdrive 50 mV,  
VS = 6.5 V  
VOL  
Voltage output swing from lower rail  
IO 100 µA, input overdrive 50 mV,  
20  
VS = 6.5 V, TA = –40°C to 125°C  
IO 100 µA, input overdrive 50 mV,  
35  
40  
VS = 0.9 V  
IO 100 µA, input overdrive 50 mV,  
45  
VS = 0.9 V, TA = –40°C to 125°C  
Short circuit sink current  
VS = 6.5 V, see Typical Characteristics  
VS = 6.5 V, see Typical Characteristics  
42  
35  
mA  
mA  
ISC  
Short circuit source current  
Copyright © 2013–2015, Texas Instruments Incorporated  
5
TLV3691  
ZHCSBY0A DECEMBER 2013REVISED NOVEMBER 2015  
www.ti.com.cn  
Electrical Characteristics (continued)  
At TA = 25°C, VS = 0.9 V to 6.5 V, VCM = VS/2 and CL = 15 pF, unless otherwise noted.  
PARAMETER  
POWER SUPPLY  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VS  
Specified voltage range  
0.9  
6.5  
150  
200  
V
TA = 25°C  
TA = –40°C to 125°C  
75  
nA  
nA  
IQ  
Quiescent current (per channel)  
TEMPERATURE RANGE  
Specified range  
–40  
–55  
–65  
125  
150  
150  
°C  
°C  
°C  
Operating range  
Storage range  
6.6 Switching Characteristics  
At TA = 25°C, VS = 0.9 V to 6.5 V, VCM = VS/2 and CL = 15 pF, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VS = 6.5 V, Input overdrive = 50 mV  
VS = 0.9 V, Input overdrive = 50 mV  
VS = 6.5 V, Input overdrive = 100 mV  
VS = 0.9 V, Input overdrive = 100 mV  
VS = 6.5 V, Input overdrive = 50 mV  
VS = 0.9 V, Input overdrive = 50 mV  
VS = 6.5 V, Input overdrive = 100 mV  
VS = 0.9 V, Input overdrive = 100 mV  
32  
45  
24  
35  
32  
40  
24  
28  
tPHL  
High-to-low  
Low-to-high  
Propagation delay time  
µs  
tPLH  
tR  
tF  
Rise time  
Fall time  
Input overdrive = 100 mV  
Input overdrive = 100 mV  
ns  
330  
6
Copyright © 2013–2015, Texas Instruments Incorporated  
TLV3691  
www.ti.com.cn  
ZHCSBY0A DECEMBER 2013REVISED NOVEMBER 2015  
6.7 Typical Characteristics  
At TA = 25°C, VS = 0.9 V to 6.5 V, and input overdrive = 100 mV, unless otherwise noted.  
160  
140  
120  
100  
80  
10  
9
+ Bias Current (6.5 V)  
125°C  
8
7
œ Bias Current (6.5 V)  
6
5
-40°C  
4
60  
3
25°C  
2
40  
1
20  
0
VS = 0.9 V  
1.5  
0
-1  
0.5  
2.5  
3.5  
4.5  
5.5  
6.5  
œ50  
œ25  
0
25  
50  
75  
100  
125  
Supply Voltage (V)  
Temperature (°C)  
C001  
C006  
Figure 1. Quiescent Current vs Supply Voltage  
Figure 2. Input Bias Current vs Temperature  
1
0.8  
0.6  
0.4  
0.2  
0
4
3
VOH  
VOH  
-40°C  
-40°C  
125°C  
-40°C  
25°C  
25°C  
2
125°C  
125°C  
1
125°C  
125°C  
-40°C  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
125°C  
œ1  
œ2  
œ3  
œ4  
-40°C  
-40°C  
VOL  
VS = ±0.45 V  
VS = ±3.25V  
40  
VOL  
0
0.1  
0.2  
0.3  
0
10  
20  
30  
50  
IOUT (mA)  
IOUT (mA)  
C011  
C011  
VS = 0.9 V  
VS = 6.5 V  
Figure 3. Output Voltage vs Output Current  
Figure 4. Output Voltage vs Output Current  
1000  
800  
60  
40  
VS = 0.9 V  
Sourcing  
VS = 6.5 V  
Sourcing  
600  
400  
20  
200  
0
0
œ200  
œ400  
œ600  
œ800  
œ1000  
œ20  
œ40  
œ60  
Sinking  
100  
Sinking  
100  
œ50  
œ25  
0
25  
50  
75  
125  
œ50  
œ25  
0
25  
50  
75  
125  
Temperature (°C)  
Temperature (°C)  
C005  
C003  
VS = 0.9 V  
Figure 5. Short Circuit Current vs Temperature  
VS = 6.5 V  
Figure 6. Short Circuit Current vs Temperature  
Copyright © 2013–2015, Texas Instruments Incorporated  
7
 
TLV3691  
ZHCSBY0A DECEMBER 2013REVISED NOVEMBER 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, VS = 0.9 V to 6.5 V, and input overdrive = 100 mV, unless otherwise noted.  
140  
120  
100  
80  
140  
120  
100  
80  
Propagation Delay H-L  
Propagation Delay L-H  
Propagation Delay H-L  
Propagation Delay L-H  
VOD = 50 mV  
VOD = 50 mV  
60  
60  
40  
40  
20  
20  
VS = 0.9 V  
300  
VS = 6.5 V  
800 1000  
0
0
0
100  
200  
Input Overdrive (mV)  
400  
0
200  
400  
600  
Input Overdrive (mV)  
C009  
C008  
VS = 0.9 V  
VS = 6.5 V  
Figure 7. Propagation Delay vs Input Overdrive  
Figure 8. Propagation Delay vs Input Overdrive  
1m  
100  
10  
1m  
100  
10  
0.9-V Supply, Overdrive = 50 mV  
0.9-V Supply, Overdrive = 100 mV  
6.5-V Supply, Overdrive = 50 mV  
6.5-V Supply, Overdrive = 100 mV  
0.9-V Supply, Overdrive = 50 mV  
0.9-V Supply, Overdrive = 100 mV  
6.5-V Supply, Overdrive = 50 mV  
6.5-V Supply, Overdrive = 100 mV  
10p  
100p  
1n  
10n  
100n  
10p  
100p  
1n  
10n  
100n  
Output Capacitive Load (F)  
Output Capacitive Load (F)  
C017  
C018  
Figure 9. Propagation Delay (TPLH) vs Capacitive Load  
Figure 10. Propagation Delay (TPHL) vs Capacitive Load  
Overdrive = 50 mV  
Input Voltage  
Overdrive = 50 mV  
Output Voltage  
tPLH = 45 s  
tPLH = 40 s  
Input Voltage  
Output Voltage  
VS = 0.9 V, CL = 20 pF  
Time (6 s/div)  
VS = 0.9 V, CL = 20 pF  
Time (6 s/div)  
C023  
C024  
VS = 0.9 V  
Overdrive = 50 mV  
VS = 0.9 V  
Overdrive = 50 mV  
Figure 11. Propagation Delay (TPLH  
)
Figure 12. Propagation Delay (TPHL  
)
8
Copyright © 2013–2015, Texas Instruments Incorporated  
TLV3691  
www.ti.com.cn  
ZHCSBY0A DECEMBER 2013REVISED NOVEMBER 2015  
Typical Characteristics (continued)  
At TA = 25°C, VS = 0.9 V to 6.5 V, and input overdrive = 100 mV, unless otherwise noted.  
Overdrive = 50 mV  
Overdrive = 50 mV  
Output Voltage  
Input Voltage  
tPLH = 32 s  
tPLH = 32 s  
Input Voltage  
Output Voltage  
VS = 6.5 V, CL = 20 pF  
VS = 6.5 V, CL = 20 pF  
Time (4 s/div)  
Time (4 s/div)  
C013  
C025  
C015  
C014  
C026  
C016  
VS = 6.5 V  
Overdrive = 50 mV  
VS = 6.5 V  
Overdrive = 50 mV  
Figure 13. Propagation Delay (TPLH  
Overdrive = 100 mV  
)
Figure 14. Propagation Delay (TPHL  
)
Overdrive = 100 mV  
Output Voltage  
Input Voltage  
tPLH = 35 s  
tPLH = 28 s  
Input Voltage  
Output Voltage  
VS = 0.9 V, CL = 20 pF  
Time (4 s/div)  
VS = 0.9 V, CL = 20 pF  
Time (6 s/div)  
VS = 0.9 V,  
Overdrive = 100 mV  
VS = 0.9 V  
Overdrive = 100 mV  
Figure 15. Propagation Delay (TPLH  
)
Figure 16. Propagation Delay (TPHL)  
Overdrive = 100 mV  
Input Voltage  
Overdrive = 100 mV  
Output Voltage  
tPLH = 24 s  
tPLH = 24 s  
Input Voltage  
Output Voltage  
VS = 6.5 V, CL = 20 pF  
Time (4 s/div)  
VS = 6.5 V, CL = 20 pF  
Time (4 s/div)  
VS = 6.5 V  
Overdrive = 100 mV  
VS = 6.5 V  
Overdrive = 100 mV  
Figure 17. Propagation Delay (TPLH  
)
Figure 18. Propagation Delay (TPHL)  
Copyright © 2013–2015, Texas Instruments Incorporated  
9
TLV3691  
ZHCSBY0A DECEMBER 2013REVISED NOVEMBER 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, VS = 0.9 V to 6.5 V, and input overdrive = 100 mV, unless otherwise noted.  
40  
VS Voltage  
35  
30  
25  
20  
15  
10  
5
tPHL  
tTURN-ON = 200 s  
tPLH  
VS = 6.5 V  
-25  
VOD = 100 mV  
100  
VS = 6.5 V  
VOUT Voltage  
0
Time (40 s/div)  
-50  
0
25  
50  
75  
125  
Temperature (°C)  
C010  
C029  
Figure 19. Propagation Delay vs Temperature  
Figure 20. Start-Up Time  
45  
40  
35  
30  
25  
20  
15  
10  
5
45  
40  
35  
30  
25  
20  
15  
10  
5
Distribution Taken From 1000 Comparators  
VS = 0.9 V  
Distribution Taken From 1000 Comparators  
VS = 6.5 V  
0
0
Offset Voltage (mV)  
Offset Voltage (mV)  
C020  
C019  
VS = 0.9 V  
VS = 6.5 V  
Figure 21. Offset Voltage Production Distribution  
Figure 22. Offset Voltage Production Distribution  
15  
15  
8 Typical Units Shown  
VS = 0.9 V  
8 Typical Units Shown  
VS = 6.5 V  
12  
9
12  
9
6
6
3
3
0
0
œ3  
œ6  
œ9  
œ12  
œ15  
œ3  
œ6  
œ9  
œ12  
œ15  
-0.1  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Common-Mode Voltage (V)  
1
-1  
0
1
2
3
4
5
6
7
Common-Mode Voltage (V)  
C028  
C027  
VS = 0.9 V  
Figure 23. Offset Voltage vs Common-Mode Voltage  
VS = 6.5 V  
Figure 24. Offset Voltage vs Common-Mode Voltage  
10  
Copyright © 2013–2015, Texas Instruments Incorporated  
TLV3691  
www.ti.com.cn  
ZHCSBY0A DECEMBER 2013REVISED NOVEMBER 2015  
Typical Characteristics (continued)  
At TA = 25°C, VS = 0.9 V to 6.5 V, and input overdrive = 100 mV, unless otherwise noted.  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
Distribution Taken From 1000 Comparators  
VS = 0.9 V  
Distribution Taken From 1000 Comparators  
VS = 6.5 V  
0
0
Hysteresis Voltage (mV)  
Hysteresis Voltage (mV)  
C021  
C022  
VS = 0.9 V  
Figure 25. Hysteresis Production Distribution  
VS = 6.5 V  
Figure 26. Hysteresis Production Distribution  
Copyright © 2013–2015, Texas Instruments Incorporated  
11  
TLV3691  
ZHCSBY0A DECEMBER 2013REVISED NOVEMBER 2015  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TLV3691 is a nano-power comparator with push-pull output. Operating from 0.9 V to 6.5 V and consuming a  
maximum quiescent current of only 200 nA over the temperature range from –40°C to 125°C, the TLV3691 is  
ideally suited for portable and industrial applications. The TLV3691 is available in the 5-pin SC70 and 6-pin DFN  
packages.  
7.2 Functional Block Diagram  
VCC  
IN+  
IN-  
+
OUT  
œ
Bias  
Power-on-reset  
GND  
7.3 Feature Description  
The TLV3691 features a nano-power comparator capable of operating at low voltages. The TLV3691 features a  
rail-to-rail input stage capable of operating up to 100 mV beyond each power supply rail. The TLV3691 also  
features a push-pull output stage with internal hysteresis.  
7.4 Device Functional Modes  
The TLV3691 has a single functional mode and is operational when the power supply voltage is greater than  
0.9 V. The maximum power supply voltage for the TLV3691 is 6.5 V.  
7.4.1 Nano-Power  
The TLV3691 features nano-power operation. With a maximum of 150 nA of operating current at 25°C, the  
TLV3691 is ideally suited for portable and battery powered applications. With a maximum of 200 nA of operating  
current over the temperature range from -40°C to 125°C, the TLV3691 is also ideally suited for industrial  
applications and is a must have in every designer's toolbox.  
7.4.2 Rail-to-Rail Inputs  
The TLV3691 features an input stage capable of operating up to –100 mV beyond ground and 100 mV beyond  
the positive supply voltage, allowing for ease of use and flexible design options. Internal hysteresis of 17 mV  
(typical) allows for operation in noisy environments without the need for additional external components.  
7.4.3 Push-Pull Output  
The TLV3691 features a push-pull output, eliminating the need for an external pullup resistor and allows for  
nano-power operation across all operating conditions.  
12  
Copyright © 2013–2015, Texas Instruments Incorporated  
TLV3691  
www.ti.com.cn  
ZHCSBY0A DECEMBER 2013REVISED NOVEMBER 2015  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TLV3691 comparators feature rail-to-rail inputs and outputs on supply voltages as low as 0.9 V. The push-  
pull output stage is optimal for reduced power budget applications and features no shoot-through current. Low  
minimum supply voltages, common-mode input range beyond supply rails, and a typical supply current of 75 nA  
make the TLV3691 an excellent candidate for battery-operated and portable, handheld designs.  
8.1.1 Comparator Inputs  
The TLV3691 is a rail-to-rail input comparator, with an input common-mode range that exceeds the supply rails  
by 100 mV for both positive and negative supplies. The device is designed to prevent phase inversion when the  
input pins exceed the supply voltage. Figure 27 shows the device response when input voltages exceed the  
supply, resulting in no phase inversion.  
Output Voltage  
Input Voltage  
Time (2 ms/div)  
C030  
Figure 27. No Phase Inversion: Comparator Response to Input Voltage (Propagation Delay Included)  
8.1.2 External Hysteresis  
The device hysteresis transfer curve is shown in Figure 28. This curve is a function of three components: VTH  
,
VOS, and VHYST  
.
VTH is the actual set voltage or threshold trip voltage.  
VOS is the internal offset voltage between VIN+ and VIN–. This voltage is added to VTH to form the actual trip  
point at which the comparator must respond to change output states.  
VHYST is the internal hysteresis (or trip window) that is designed to reduce comparator sensitivity to noise  
(17 mV for the TLV3691).  
Copyright © 2013–2015, Texas Instruments Incorporated  
13  
 
TLV3691  
ZHCSBY0A DECEMBER 2013REVISED NOVEMBER 2015  
www.ti.com.cn  
Application Information (continued)  
VTH + VOS - (VHYST / 2)  
VTH + VOS  
VTH + VOS + (VHYST / 2)  
Figure 28. Hysteresis Transfer Curve  
8.1.2.1 Inverting Comparator With Hysteresis  
The inverting comparator with hysteresis requires a three-resistor network that is referenced to the comparator  
supply voltage (VCC), as shown in Figure 29. When VIN at the inverting input is less than VA, the output voltage is  
high (for simplicity, assume VO switches as high as VCC). The three network resistors can be represented as R1  
|| R3 in series with R2. Equation 1 defines the high-to-low trip voltage (VA1).  
R2  
VA1 = VCC  
´
(R1 || R3) + R2  
(1)  
When VIN is greater than VA, the output voltage is low, very close to ground. In this case, the three network  
resistors can be presented as R2 || R3 in series with R1. Use Equation 2 to define the low to high trip voltage  
(VA2).  
R2 || R3  
VA2 = VCC  
´
R1 + (R2 || R3)  
(2)  
(3)  
Equation 3 defines the total hysteresis provided by the network.  
DVA = VA1 - VA2  
14  
Copyright © 2013–2015, Texas Instruments Incorporated  
 
 
 
TLV3691  
www.ti.com.cn  
ZHCSBY0A DECEMBER 2013REVISED NOVEMBER 2015  
Application Information (continued)  
+VCC  
+5 V  
R1  
1 MW  
VIN  
5 V  
0 V  
RLOAD  
VA  
VO  
100 kW  
VA2  
1.67 V  
VA1  
3.33 V  
R3  
1 MW  
VIN  
R2  
1 MW  
VO High  
+VCC  
VO Low  
+VCC  
R1  
VA1  
R2  
R3  
R1  
VA2  
R2  
R3  
Figure 29. TLV3691 in an Inverting Configuration With Hysteresis  
8.1.2.2 Noninverting Comparator With Hysteresis  
A noninverting comparator with hysteresis requires a two-resistor network, as shown in Figure 30, and a voltage  
reference (VREF) at the inverting input. When VIN is low, the output is also low. For the output to switch from low  
to high, VIN must rise to VIN1. Use Equation 4 to calculate VIN1  
VREF  
.
VIN1 = R1 ´  
+ VREF  
R2  
(4)  
When VIN is high, the output is also high. For the comparator to switch back to a low state, VIN must drop to VIN2  
such that VA is equal to VREF. Use Equation 5 to calculate VIN2  
VREF (R1 + R2) - VCC ´ R1  
.
VIN2  
=
R2  
(5)  
(6)  
The hysteresis of this circuit is the difference between VIN1 and VIN2, as shown in Equation 6.  
R1  
DVIN = VCC  
´
R2  
Copyright © 2013–2015, Texas Instruments Incorporated  
15  
 
 
 
TLV3691  
ZHCSBY0A DECEMBER 2013REVISED NOVEMBER 2015  
www.ti.com.cn  
Application Information (continued)  
+VCC  
+5 V  
VREF  
VO  
+2.5 V  
VA  
VIN  
RLOAD  
R1  
330 kW  
R2  
1 MW  
VO High  
+VCC  
VO Low  
VIN1  
5 V  
0 V  
R2  
R1  
VA = VREF  
R2  
VO  
VA = VREF  
R1  
VIN2  
VIN1  
1.675 V 3.325 V  
VIN  
VIN2  
Figure 30. TLV3691 in a Noninverting Configuration With Hysteresis  
8.1.3 Capacitive Loads  
Under reasonable capacitive loads, the device maintains specified propagation delay (see Typical  
Characteristics). However, excessive capacitive loading under high switching frequencies may increase supply  
current, propagation delay, or induce decreased slew rate.  
8.1.4 Setting the Reference Voltage  
Using a stable reference when setting the transition point for the device is important. The REF3312, as shown in  
Figure 31, provides a 1.25-V reference voltage with low drift and only 3.9 μA of quiescent current.  
VCC  
REF3312  
VCC  
GND  
+
TLV3691  
OUT  
_
GND  
VIN  
Figure 31. Reference Voltage for the TLV3691  
8.2 Typical Application  
8.2.1 Window Comparator  
Window comparators are commonly used to detect undervoltage and overvoltage conditions. Figure 32 illustrates  
a simple window comparator circuit.  
16  
Copyright © 2013–2015, Texas Instruments Incorporated  
 
TLV3691  
www.ti.com.cn  
ZHCSBY0A DECEMBER 2013REVISED NOVEMBER 2015  
Typical Application (continued)  
VIN  
VTH+  
VTH-  
V+  
VTH+  
+
TLV3691  
_
V-  
AND  
VOUT  
VOUT  
VIN  
V+  
+
TLV3691  
_
VTH-  
V-  
Figure 32. Window Comparator  
8.2.1.1 Design Requirements  
Alert when an input signal is less than 1.25 V  
Alert when an input signal is greater than 3.3 V  
Alert signal is active low  
Operate from 5-V power supply  
Consume less than 1 µA over the temperature range from –40°C to 125°C  
8.2.1.2 Detailed Design Procedure  
Configure the circuit as shown in Figure 32. Connect V+ to a 5-V power supply. Connect V- to ground. Connect  
VTH- to a 1.25-V voltage source; this can be a low power voltage reference such as REF3312. Connect VTH+ to a  
3.3-V voltage source; this can be a low power voltage reference such as REF3333. Apply an input voltage at VIN.  
VOUT will be low when VIN is less than 1.25 V or greater than 3.3 V. VOUT will be high when VIN is in the range of  
1.25 V to 3.3 V.  
8.2.1.3 Application Curve  
5
VOUT  
VIN  
VTH+  
VTH-  
4
3
2
1
0
0
1
2
3
4
5
VIN (V)  
Figure 33. Window Comparator Results  
8.2.2 Overvoltage and Undervoltage Detection  
The TLV3691 can be easily configured as and overvoltage and undervoltage detection circuit. Figure 34  
illustrates an overvoltage and undervoltage detection circuit. This circuit can be configured to detect the validity  
of a bus voltage source. The outputs of the TLV3691 will transition low when the bus voltage is out of range.  
A bus voltage overvoltage condition is indicated when VOV is low. VOV will transition low according to  
Equation 7.  
Copyright © 2013–2015, Texas Instruments Incorporated  
17  
 
TLV3691  
ZHCSBY0A DECEMBER 2013REVISED NOVEMBER 2015  
www.ti.com.cn  
Typical Application (continued)  
«
÷
RA  
VBUS  
x
> V  
TH  
RA +RB +RC  
(7)  
A bus voltage undervoltage condition is indicated when VUV is low. VUV will transition low according to  
Equation 8.  
«
÷
RA +RB  
RA +RB +RC  
VBUS  
x
< V  
TH  
(8)  
VOV and VUV will both be high when the bus voltage is within the desired range determined by Equation 7 and  
Equation 8.  
RC  
TLV3691  
+
VUV  
œ
VTH  
+
VBUS  
RB  
œ
REF33xx  
+
VOV  
œ
TLV3691  
RA  
Figure 34. Overvoltage and Undervoltage Detection  
9 Power Supply Recommendations  
The TLV3691 is specified for operation from 0.9 V to 6.5 V. Many specifications apply from –40°C to 125°C.  
Parameters capable of exhibiting significant variance regarding the operating voltage or temperature are  
presented in the Typical Characteristics.  
18  
Copyright © 2013–2015, Texas Instruments Incorporated  
 
 
TLV3691  
www.ti.com.cn  
ZHCSBY0A DECEMBER 2013REVISED NOVEMBER 2015  
10 Layout  
10.1 Layout Guidelines  
Comparators are very sensitive to input noise. For best results, adhere to the following layout guidelines.  
1. Use a printed-circuit-board (PCB) with a good, unbroken, low-inductance ground plane. Proper grounding  
(use of a ground plane) helps maintain specified device performance.  
2. To minimize supply noise, place a decoupling capacitor (0.1-μF ceramic, surface-mount capacitor) as close  
as possible to VCC  
.
3. On the inputs and the output, keep lead lengths as short as possible to avoid unwanted parasitic feedback  
around the comparator. Keep inputs away from the output.  
4. Solder the device directly to the PCB rather than using a socket.  
5. For slow-moving input signals, take care to prevent parasitic feedback. A small capacitor (1000 pF or less)  
placed between the inputs can help eliminate oscillations in the transition region. This capacitor causes some  
degradation to propagation delay when impedance is low. The topside ground plane runs between the output  
and inputs.  
6. The ground pin ground trace runs under the device up to the bypass capacitor, shielding the inputs from the  
outputs.  
10.2 Layout Example  
V+  
Run the input traces  
as far away from  
the supply lines  
as possible  
GND  
IN+  
VCC  
OUT  
VIN+  
To reduce oscillations in the  
transition region from very  
slow moving input signals, use  
a low-ESR, ceramic capacitor  
< 1000 pF  
GND  
Use low-ESR, ceramic  
bypass capacitor. Place  
close to device to reduce  
parasitic errors  
GND  
INœ  
VIN-  
VOUT  
Ground (GND) plane on another layer  
Figure 35. TLV3691 Layout Example  
版权 © 2013–2015, Texas Instruments Incorporated  
19  
TLV3691  
ZHCSBY0A DECEMBER 2013REVISED NOVEMBER 2015  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
11.1.1.1 TINA-TI™(免费软件下载)  
TINA™是一款简单、功能强大且易于使用的电路仿真程序,此程序基于 SPICE 引擎。TINA-TI TINA 软件的一  
款免费全功能版本,除了一系列无源和有源模型外,此版本软件还预先载入了一个宏模型库。TINA-TI 提供所有传  
统的 SPICE 直流、瞬态和频域分析,以及其他设计功能。  
TINA-TI 可从 Analog eLab Design Center(模拟电子实验室设计中心)免费下载,它提供全面的后续处理能力,  
使得用户能够以多种方式形成结果。虚拟仪器提供选择输入波形和探测电路节点、电压和波形的功能,从而创建一  
个动态的快速入门工具。  
这些文件需要安装 TINA 软件(由 DesignSoft™提供)或者 TINA-TI 软件。请从 TINA-TI 文  
件夹 中下载免费的 TINA-TI 软件。  
11.1.1.2 TI 高精度设计  
OPAx188(或类似运算放大器)采用多种  
TI  
高精度设计。如需获取相关内容,请访问  
http://www.ti.com.cn/ww/analog/precision-designs/TI 高精度设计是由 TI 公司高精度模拟 应用 专家创建的模拟  
解决方案,提供了许多实用电路的工作原理、组件选择、仿真、完整印刷电路板 (PCB) 电路原理图和布局布线、物  
料清单以及性能测量结果。  
11.2 文档支持  
11.2.1 相关文档ꢀ  
相关文档如下:  
《电路板布局布线技巧》SLOA089。  
《适用于所有人的运算放大器》SLOD006。  
《无铅组件涂层的保存期评估》SZZA046。  
11.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.4 商标  
E2E is a trademark of Texas Instruments.  
TINA-TI is a trademark of Texas Instruments, Inc and DesignSoft, Inc.  
TINA, DesignSoft are trademarks of DesignSoft, Inc.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
20  
版权 © 2013–2015, Texas Instruments Incorporated  
TLV3691  
www.ti.com.cn  
ZHCSBY0A DECEMBER 2013REVISED NOVEMBER 2015  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2013–2015, Texas Instruments Incorporated  
21  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV3691IDCKR  
TLV3691IDCKT  
TLV3691IDPFR  
TLV3691IDPFT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SC70  
SC70  
DCK  
DCK  
DPF  
DPF  
5
5
6
6
3000 RoHS & Green  
250 RoHS & Green  
5000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
SIV  
SIV  
EW  
EW  
NIPDAU  
NIPDAU  
NIPDAU  
X2SON  
X2SON  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Jul-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV3691IDCKR  
TLV3691IDCKT  
TLV3691IDPFR  
TLV3691IDPFT  
SC70  
SC70  
DCK  
DCK  
DPF  
DPF  
5
5
6
6
3000  
250  
178.0  
178.0  
180.0  
180.0  
9.0  
8.4  
9.5  
9.5  
2.4  
2.4  
2.5  
2.5  
1.2  
1.2  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q2  
Q2  
X2SON  
X2SON  
5000  
250  
1.16  
1.16  
1.16  
1.16  
0.63  
0.63  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Jul-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV3691IDCKR  
TLV3691IDCKT  
TLV3691IDPFR  
TLV3691IDPFT  
SC70  
SC70  
DCK  
DCK  
DPF  
DPF  
5
5
6
6
3000  
250  
190.0  
190.0  
184.0  
184.0  
190.0  
190.0  
184.0  
184.0  
30.0  
30.0  
19.0  
19.0  
X2SON  
X2SON  
5000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DPF0006A  
X2SON - 0.4 mm max height  
S
C
A
L
E
1
0
.
0
0
0
PLASTIC SMALL OUTLINE - NO LEAD  
1.05  
0.95  
B
A
1.05  
0.95  
PIN 1 INDEX AREA  
0.4 MAX  
C
SEATING PLANE  
0.05 C  
(0.12) TYP  
SYMM  
0.05  
0.00  
3
4
SYMM  
2X  
0.7  
4X  
0.35  
6
1
0.22  
0.12  
6X  
(0.075)  
PIN 1 ID  
0.2  
0.1  
0.1  
C A B  
C
6X  
0.05  
4220595/A 03/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC registration MO-287, variation X2AAF.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DPF0006A  
X2SON - 0.4 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
6X (0.35)  
6X (0.17)  
(R0.05) TYP  
6
1
SYMM  
4X (0.35)  
4
3
SYMM  
(1.05)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:40X  
0.07 MIN  
ALL AROUND  
EXPOSED METAL  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4220595/A 03/2020  
NOTES: (continued)  
4. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DPF0006A  
X2SON - 0.4 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
6X (0.35)  
6X (0.17)  
(R0.05) TYP  
6
1
SYMM  
4X (0.35)  
4
3
SYMM  
(1.05)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:40X  
4220595/A 03/2020  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
DCK0005A  
SOT - 1.1 max height  
S
C
A
L
E
5
.
6
0
0
SMALL OUTLINE TRANSISTOR  
C
2.4  
1.8  
0.1 C  
1.4  
1.1  
B
1.1 MAX  
A
PIN 1  
INDEX AREA  
1
2
5
NOTE 4  
(0.15)  
(0.1)  
2X 0.65  
1.3  
2.15  
1.85  
1.3  
4
3
0.33  
5X  
0.23  
0.1  
0.0  
(0.9)  
TYP  
0.1  
C A B  
0.15  
0.22  
0.08  
GAGE PLANE  
TYP  
0.46  
0.26  
8
0
TYP  
TYP  
SEATING PLANE  
4214834/C 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-203.  
4. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X (0.65)  
4
(R0.05) TYP  
(2.2)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214834/C 03/2023  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X(0.65)  
4
(R0.05) TYP  
(2.2)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:18X  
4214834/C 03/2023  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TLV3691IDCKT

小型毫微功耗单路比较器 | DCK | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV3691IDPFR

小型毫微功耗单路比较器 | DPF | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV3691IDPFT

小型毫微功耗单路比较器 | DPF | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV369IDCKR

适用于成本敏感型应用的单路、800nA、1.8V、RRIO 零交叉失真运算放大器 | DCK | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV369IDCKT

适用于成本敏感型应用的单路、800nA、1.8V、RRIO 零交叉失真运算放大器 | DCK | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV3701

FAMILY OF NANOPOWER PUSH-PULL OUTPUT COMPARATORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV3701-EP

NANOPOWER PUSH-PULL OUTPUT COMPARATOR

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV3701-Q1

FAMILY OF NANNOPOWER PUSH=PULL OUTPUT COMPARATORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV3701CD

FAMILY OF NANOPOWER PUSH-PULL OUTPUT COMPARATORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV3701CDBV

FAMILY OF NANOPOWER PUSH-PULL OUTPUT COMPARATORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV3701CDBVR

FAMILY OF NANOPOWER PUSH-PULL OUTPUT COMPARATORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV3701CDBVRG4

FAMILY OF NANOPOWER PUSH-PULL OUTPUT COMPARATORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI