TLV2334IDR [TI]

LinCMOSE LOW-VOLTAGE MEDIUM-POWER OPERATIONAL AMPLIFIERS; LinCMOSE低压中等功率运算放大器
TLV2334IDR
型号: TLV2334IDR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

LinCMOSE LOW-VOLTAGE MEDIUM-POWER OPERATIONAL AMPLIFIERS
LinCMOSE低压中等功率运算放大器

运算放大器 放大器电路 光电二极管
文件: 总33页 (文件大小:499K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLV2332, TLV2332Y, TLV2334, TLV2334Y  
LinCMOS LOW-VOLTAGE MEDIUM-POWER  
OPERATIONAL AMPLIFIERS  
SLOS189 – FEBRUARY 1997  
TLV2332  
D OR P PACKAGE  
(TOP VIEW)  
Wide Range of Supply Voltages Over  
Specified Temperature Range:  
T = 40°C to 85°C . . . 2 V to 8 V  
A
Fully Characterized at 3 V and 5 V  
Single-Supply Operation  
1OUT  
1IN–  
1IN+  
/GND  
V
DD  
1
2
3
4
8
7
6
5
2OUT  
2IN–  
2IN+  
Common-Mode Input-Voltage Range  
Extends Below the Negative Rail and up to  
V
DD–  
V
–1 V at T = 25°C  
DD  
A
TLV2332  
PW PACKAGE  
(TOP VIEW)  
Output Voltage Range Includes Negative  
Rail  
12  
High Input Impedance . . . 10 Typ  
1
2
3
4
8
7
6
5
1OUT  
1IN–  
1IN+  
/GND  
V
DD+  
ESD-Protection Circuitry  
2OUT  
2IN–  
2IN+  
Designed-In Latch-Up Immunity  
V
DD –  
description  
TLV2334  
D OR N PACKAGE  
(TOP VIEW)  
The TLV233x operational amplifiers are in a family  
of devices that has been specifically designed for  
use in low-voltage single-supply applications.  
Unlike the TLV2322 which is optimized for  
ultra-low power, the TLV233x is designed to  
provide a combination of low power and good ac  
performance. Each amplifier is fully functional  
down to a minimum supply voltage of 2 V, is fully  
characterized, tested, and specified at both 3-V  
and 5-V power supplies. The common-mode  
input-voltage range includes the negative rail and  
extends to within 1 V of the positive rail.  
1OUT  
4OUT  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
1IN–  
1IN+  
4IN–  
4IN+  
V
V
DD+  
DD–/GND  
2IN+  
3IN+  
3IN–  
3OUT  
2N–  
2OUT  
8
TLV2334  
PW PACKAGE  
(TOP VIEW)  
Having a maximum supply current of only 310 µA  
per amplifier over full temperature range, the  
TLV233x devices offer a combination of good ac  
performance and microampere supply currents.  
From a 3-V power supply, the amplifier’s typical  
slew rate is 0.38 V/µs and its bandwidth is  
300 kHz.  
1
14  
1OUT  
1IN–  
1IN+  
4OUT  
4IN–  
4IN+  
V
2IN+  
V
DD+  
DD–/GND  
3IN+  
3IN–  
3OUT  
2IN–  
2OUT  
7
8
AVAILABLE OPTIONS  
PACKAGED DEVICES  
§
V
max  
CHIP FORM  
(Y)  
IO  
T
A
SMALL OUTLINE  
(D)  
PLASTIC DIP PLASTIC DIP  
TSSOP  
(PW)  
AT 25°C  
(N)  
(P)  
TLV2332IP  
9 mV  
TLV2332ID  
TLV2334ID  
TLV2332IPWLE  
TLV2334IPWLE  
TLV2332Y  
TLV2334Y  
40°C to 85°C  
10 mV  
TLV2334IN  
§
The D package is available taped and reeled. Add R suffix to the device type (e.g., TLV2332IDR).  
The PW package is only available left-end taped and reeled (e.g., TLV2332IPWLE).  
Chip forms are tested at 25°C only.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
LinCMOS is a trademark of Texas Instruments Incorporated.  
Copyright 1997, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2332, TLV2332Y, TLV2334, TLV2334Y  
LinCMOS LOW-VOLTAGE MEDIUM-POWER  
OPERATIONAL AMPLIFIERS  
SLOS189 – FEBRUARY 1997  
description (continued)  
These amplifiers offer a level of ac performance greater than that of many other devices operating at  
comparable power levels. The TLV233x operational amplifiers are especially well suited for use in low-current  
or battery-powered applications.  
Low-voltage and low-power operation has been made possible by using the Texas Instruments silicon-gate  
LinCMOS technology. TheLinCMOSprocessalsofeaturesextremelyhighinputimpedanceandultra-lowbias  
currents making these amplifiers ideal for interfacing to high-impedance sources such as sensor circuits or filter  
applications.  
To facilitate the design of small portable equipment, the TLV233x is made available in a wide range of package  
options, including the small-outline and thin-shrink small-outline package (TSSOP). The TSSOP package has  
significantly reduced dimensions compared to a standard surface-mount package. Its maximum height of only  
1.1 mm makes it particularly attractive when space is critical.  
The device inputs and outputs are designed to withstand –100-mA currents without sustaining latch-up. The  
TLV233x incorporates internal ESD-protection circuits that prevents functional failures at voltages up to  
2000 V as tested under MIL-STD 883C, Method 3015.2; however, care should be exercised in handling these  
devices as exposure to ESD may result in the degradation of the device parametric performance.  
TLV2332Y chip information  
This chip, when properly assembled, display characteristics similar to the TLV2332. Thermal compression or  
ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive  
epoxy or a gold-silicon preform.  
BONDING PAD ASSIGNMENTS  
(4)  
(3)  
(2)  
(5)  
(6)  
V
DD  
(8)  
(3)  
(2)  
1IN+  
1IN–  
+
(1)  
1OUT  
(5)  
(6)  
2IN+  
2IN–  
59  
+
(7)  
2OUT  
(4)  
V
DD–  
/GND  
CHIP THICKNESS: 15 MILS TYPICAL  
(1)  
(7)  
BONDING PADS: 4 × 4 MILS MINIMUM  
(8)  
72  
T max = 150°C  
J
TOLERANCES ARE ±10%.  
ALL DIMENSIONS ARE IN MILS.  
PIN (4) IS INTERNALLY CONNECTED  
TO BACKSIDE OF CHIP.  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2332, TLV2332Y, TLV2334, TLV2334Y  
LinCMOS LOW-VOLTAGE MEDIUM-POWER  
OPERATIONAL AMPLIFIERS  
SLOS189 – FEBRUARY 1997  
TLV2334Y chip information  
This chip, when properly assembled, displays characteristics similar to the TLV2334. Thermal compression or  
ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive  
epoxy or a gold-silicon preform.  
V
DD  
(4)  
BONDING PAD ASSIGNMENTS  
(3)  
(2)  
1IN+  
1IN–  
+
+
+
(14)  
(13)  
(12) (11)  
(10)  
(9)  
(8)  
(1)  
(7)  
(8)  
1OUT  
2OUT  
3OUT  
(5)  
(6)  
2IN+  
2IN–  
68  
(10)  
(9)  
3IN+  
3IN–  
(12)  
(13)  
+
4IN+  
4IN–  
(14)  
4OUT  
(1)  
(2)  
(3)  
(4) (5)  
108  
(6)  
(7)  
(11)  
V
/GND  
DD–  
CHIP THICKNESS: 15 MILS TYPICAL  
BONDING PADS: 4 × 4 MILS MINIMUM  
T max = 150°C  
J
TOLERANCES ARE ±10%.  
ALL DIMENSIONS ARE IN MILS.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2332, TLV2332Y, TLV2334, TLV2334Y  
LinCMOS LOW-VOLTAGE MEDIUM-POWER  
OPERATIONAL AMPLIFIERS  
SLOS189 – FEBRUARY 1997  
equivalent schematic (each amplifier)  
V
DD  
P3  
P4  
R6  
P2  
P1  
N5  
IN–  
IN+  
R2  
R1  
P6  
P5  
C1  
R5  
N3  
OUT  
N4  
N2  
N1  
N6  
N7  
D2  
D1  
R4  
R3  
R7  
GND  
ACTUAL DEVICE COMPONENT COUNT  
COMPONENT  
TLV2332  
TLV2334  
Transistors  
Resistors  
Diodes  
54  
14  
4
108  
28  
8
Capacitors  
2
4
Includes both amplifiers and all ESD, bias, and trim  
circuitry.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2332, TLV2332Y, TLV2334, TLV2334Y  
LinCMOS LOW-VOLTAGE MEDIUM-POWER  
OPERATIONAL AMPLIFIERS  
SLOS189 – FEBRUARY 1997  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Supply voltage, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 V  
DD  
Differential input voltage, V (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
Input voltage range, V (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to V  
ID  
DD±  
I
DD  
Input current, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±5 mA  
I
Output current, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±30 mA  
O
Duration of short-circuit current at (or below) T = 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . unlimited  
A
Continuous total dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating free-air temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
A
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.  
2. Differential voltages are at the noninverting input with respect to the inverting input.  
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum  
dissipation rating is not exceeded (see application section).  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T = 85°C  
A
POWER RATING  
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
A
D–8  
D–14  
N
725 mW  
5.8 mW/°C  
7.6 mW/°C  
12.6 mW/°C  
8.0 mW/°C  
4.2 mW/°C  
5.6 mW/°C  
377 mW  
950 mW  
494 mW  
1575 mW  
1000 mW  
525 mW  
819 mW  
P
520 mW  
PW–8  
PW–14  
273 mW  
700 mW  
364 mW  
recommended operating conditions  
MIN  
2
MAX  
8
UNIT  
Supply voltage, V  
V
DD  
V
V
= 3 V  
= 5 V  
0.2  
0.2  
40  
1.8  
3.8  
85  
DD  
Common-mode input voltage, V  
V
IC  
Operating free-air temperature, T  
DD  
°C  
A
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2332, TLV2332Y, TLV2334, TLV2334Y  
LinCMOS LOW-VOLTAGE MEDIUM-POWER  
OPERATIONAL AMPLIFIERS  
SLOS189 – FEBRUARY 1997  
TLV2332I electrical characteristics at specified free-air temperature  
TLV2332I  
TEST  
CONDITIONS  
PARAMETER  
V
= 3 V  
DD  
TYP  
V
= 5 V  
DD  
TYP  
UNIT  
T
A
MIN  
MAX  
MIN  
MAX  
V
V
R
R
= 1 V,  
= 1 V,  
= 50 ,  
= 100 kΩ  
O
IC  
S
L
25°C  
0.6  
9
1.1  
9
V
IO  
Input offset voltage  
mV  
Full range  
11  
11  
Average temperature coefficient of  
input offset voltage  
25°C to  
85°C  
α
1
1.7  
µV/°C  
VIO  
25°C  
85°C  
25°C  
85°C  
0.1  
22  
0.1  
24  
V
V
= 1 V,  
= 1 V  
O
IC  
I
Input offset current (see Note 4)  
Input bias current (see Note 4)  
pA  
IO  
1000  
2000  
1000  
2000  
0.6  
175  
0.6  
200  
V
V
= 1 V,  
= 1 V  
O
IC  
I
IB  
pA  
0.2  
to  
0.3  
to  
2.3  
0.2  
to  
4
0.3  
to  
4.2  
25°C  
2
Common-mode input  
voltage range (see Note 5)  
V
ICR  
V
0.2  
to  
0.2  
to  
Full range  
1.8  
3.8  
V
V
= 1 V,  
= 100 mV,  
= 1 mA  
25°C  
Full range  
25°C  
1.75  
1.7  
1.9  
115  
83  
3.2  
3
3.9  
95  
IC  
ID  
V
V
A
High-level output voltage  
Low-level output voltage  
V
mV  
V/mV  
dB  
OH  
I
OH  
V
V
= 1 V,  
= 100 mV,  
= 1 mA  
150  
190  
150  
190  
IC  
ID  
OL  
Full range  
25°C  
I
OL  
V
R
= 1 V,  
= 100 k,  
25  
15  
65  
60  
70  
65  
25  
15  
65  
60  
70  
65  
170  
91  
IC  
Large-signal differential  
voltage amplification  
VD  
L
Full range  
25°C  
See Note 6  
V
V
R
= 1 V,  
92  
O
IC  
CMRR Common-mode rejection ratio  
= V  
= 50 Ω  
min,  
ICR  
Full range  
25°C  
S
V
V
R
= 1 V,  
= 1 V,  
= 50 Ω  
94  
94  
IC  
O
Supply-voltage rejection ratio  
k
dB  
SVR  
(V  
DD  
/V )  
IO  
Full range  
25°C  
S
V
= 1 V,  
= 1 V,  
160  
500  
620  
210  
560  
800  
O
I
Supply current  
µA  
V
IC  
DD  
Full range  
No load  
Full range is 40°C to 85°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA are determined mathematically.  
5. This range also applies to each input individually.  
6. At V  
= 5 V, V = 0.25 V to 2 V; at V = 3 V, V = 0.5 V to 1.5 V.  
DD O  
DD  
O
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2332, TLV2332Y, TLV2334, TLV2334Y  
LinCMOS LOW-VOLTAGE MEDIUM-POWER  
OPERATIONAL AMPLIFIERS  
SLOS189 – FEBRUARY 1997  
TLV2332I operating characteristics at specified free-air temperature, V  
= 3 V  
DD  
TLV2332I  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
MAX  
V
= 1 V,  
= 20 pF,  
V
R
= 1 V,  
= 100 k,  
I(PP)  
25°C  
85°C  
0.38  
IC  
L
C
R
C
SR  
Slew rate at unity gain  
V/µs  
L
S
L
0.29  
32  
See Figure 34  
f =1 kHz,  
See Figure 35  
= 20 ,  
V
n
Equivalent input noise voltage  
25°C  
nV/Hz  
25°C  
85°C  
25°C  
85°C  
40°C  
25°C  
85°C  
34  
32  
V
R
= V  
OH  
= 100 k,  
,
= 20 pF,  
O
B
Maximum output-swing bandwidth  
kHz  
OM  
1
See Figure 34  
C = 20 pF,  
L
L
300  
235  
42°  
39°  
36°  
V = 10 mV,  
I
B
Unity-gain bandwidth  
Phase margin  
kHz  
R
= 100 k,  
See Figure 36  
L
V = 10 mV,  
f = B ,  
R = 100 k,  
I
1
C
= 20 pF,  
φ
m
L
L
See Figure 36  
TLV2332I operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLV2332I  
TYP  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
MAX  
25°C  
85°C  
25°C  
85°C  
0.43  
V
R
C
= 1 V,  
= 100 k,  
= 20 pF,  
IC  
L
L
V
= 1 V  
I(PP)  
I(PP)  
0.35  
SR  
Slew rate at unity gain  
V/µs  
0.40  
V
= 2.5 V  
See Figure 34  
0.32  
f =1 kHz,  
See Figure 35  
R
= 20 ,  
S
V
n
Equivalent input noise voltage  
25°C  
32  
nV/Hz  
25°C  
85°C  
25°C  
85°C  
40°C  
25°C  
85°C  
55  
45  
V
R
= V  
,
C
= 20 pF,  
O
L
OH  
= 100 k,  
L
B
Maximum output-swing bandwidth  
kHz  
OM  
1
See Figure 34  
C = 20 pF,  
L
525  
370  
43°  
40°  
38°  
V = 10 mV,  
I
B
Unity-gain bandwidth  
Phase margin  
kHz  
R
= 100 k,  
See Figure 36  
L
V = 10 mV,  
f = B ,  
R = 100 k,  
I
1
C
= 20 pF,  
φ
m
L
L
See Figure 36  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2332, TLV2332Y, TLV2334, TLV2334Y  
LinCMOS LOW-VOLTAGE MEDIUM-POWER  
OPERATIONAL AMPLIFIERS  
SLOS189 – FEBRUARY 1997  
TLV2334I electrical characteristics at specified free-air temperature  
TLV2334I  
PARAMETER  
TEST CONDITIONS  
V
= 3 V  
DD  
TYP  
V
= 5 V  
DD  
TYP  
UNIT  
T
A
MIN  
MAX  
MIN  
MAX  
V
R
R
= 1 V,  
= 50 Ω,  
= 100 kΩ  
V
= 1 V,  
25°C  
0.6  
10  
1.1  
10  
O
S
L
IC  
V
IO  
Input offset voltage  
mV  
Full range  
12  
12  
Average temperature coefficient  
of input offset voltage  
25°C to  
85°C  
α
1
1.7  
µV/°C  
VIO  
25°C  
85°C  
25°C  
85°C  
0.1  
22  
0.1  
24  
I
Input offset current (see Note 4)  
Input bias current (see Note 4)  
V
V
= 1 V,  
= 1 V,  
V
V
= 1 V  
= 1 V  
pA  
IO  
O
IC  
IC  
1000  
2000  
1000  
2000  
0.6  
175  
0.6  
200  
I
IB  
pA  
V
O
0.2  
to  
0.3  
to  
2.3  
0.2  
to  
4
0.3  
to  
4.2  
25°C  
2
Common-mode input voltage  
range (see Note 5)  
V
ICR  
0.2  
to  
1.8  
0.2  
to  
3.8  
Full range  
V
V
V
V
= 1 V,  
= 100 mV,  
= 1 mA  
25°C  
Full range  
25°C  
1.75  
1.7  
1.9  
115  
83  
3.2  
3
3.9  
95  
IC  
ID  
V
V
A
High-level output voltage  
Low-level output voltage  
OH  
I
OH  
V
V
= 1 V,  
= 100 mV,  
= 1 mA  
150  
190  
150  
190  
IC  
ID  
mV  
V/mV  
dB  
OL  
Full range  
25°C  
I
OL  
V
R
= 1 V,  
= 100 k,  
25  
15  
65  
60  
70  
65  
25  
15  
65  
60  
70  
65  
170  
91  
IC  
Large-signal differential  
voltage amplification  
VD  
L
Full range  
25°C  
See Note 6  
V
V
R
= 1 V,  
= V  
ICR  
= 50 Ω  
92  
O
IC  
CMRR Common-mode rejection ratio  
min,  
Full range  
25°C  
S
V
= 3 V to 5 V,  
= 1 V, V = 1 V,  
= 50 Ω  
94  
94  
DD  
Supply-voltage rejection ratio  
k
dB  
V
IC  
SVR  
O
(V  
DD  
/V )  
IO  
Full range  
R
S
25°C  
320  
1000  
1200  
420  
1120  
1600  
V
= 1 V,  
V
= 1 V,  
IC  
O
I
Supply current  
µA  
DD  
No load  
Full range  
Full range is 40°C to 85°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA are determined mathematically.  
5. This range also applies to each input individually.  
6. At V  
= 5 V, V = 0.25 V to 2 V; at V = 3 V, V = 0.5 V to 1.5 V.  
DD O  
DD  
O
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2332, TLV2332Y, TLV2334, TLV2334Y  
LinCMOS LOW-VOLTAGE MEDIUM-POWER  
OPERATIONAL AMPLIFIERS  
SLOS189 – FEBRUARY 1997  
TLV2334I operating characteristics at specified free-air temperature, V  
= 3 V  
DD  
TLV2334I  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
MAX  
V
= 1 V,  
= 20 pF,  
V
R
= 1 V,  
= 100 k,  
I(PP)  
25°C  
85°C  
0.38  
IC  
L
C
R
C
SR  
Slew rate at unity gain  
V/µs  
L
S
L
0.29  
32  
See Figure 34  
f = 1 kHz,  
See Figure 35  
= 20 ,  
V
n
Equivalent input noise voltage  
25°C  
nV/Hz  
25°C  
85°C  
25°C  
85°C  
40°C  
25°C  
85°C  
34  
32  
V
R
= V  
OH  
= 100 k,  
,
= 20 pF,  
O
B
Maximum output-swing bandwidth  
kHz  
OM  
1
See Figure 34  
C = 20 pF,  
L
L
300  
235  
42°  
39°  
36°  
V = 10 mV,  
I
B
Unity-gain bandwidth  
Phase margin  
kHz  
R
= 100 k,  
See Figure 36  
L
V = 10 mV,  
I
f = B ,  
R
1
C
= 20 pF,  
φ
m
L
= 100 k,  
L
See Figure 36  
TLV2334I operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLV2334I  
TYP  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
MAX  
25°C  
85°C  
25°C  
85°C  
0.43  
V
R
C
= 1 V,  
= 100 k,  
= 20 pF,  
IC  
L
L
V
= 1 V  
I(PP)  
I(PP)  
0.35  
SR  
Slew rate at unity gain  
V/µs  
0.40  
V
= 2.5 V  
See Figure 34  
0.32  
f = 1 kHz,  
See Figure 35  
R
= 20 ,  
S
V
n
Equivalent input noise voltage  
25°C  
32  
nV/Hz  
25°C  
85°C  
25°C  
85°C  
40°C  
25°C  
85°C  
55  
45  
V
R
= V  
,
C
= 20 pF,  
O
L
OH  
= 100 k,  
L
B
Maximum output-swing bandwidth  
kHz  
OM  
1
See Figure 34  
C = 20 pF,  
L
525  
370  
43°  
40°  
38°  
V = 10 mV,  
I
B
Unity-gain bandwidth  
Phase margin  
kHz  
R
= 100 k,  
See Figure 36  
L
V = 10 mV,  
f = B ,  
R = 100 k,  
I
1
C
= 20 pF,  
φ
m
L
L
See Figure 36  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2332, TLV2332Y, TLV2334, TLV2334Y  
LinCMOS LOW-VOLTAGE MEDIUM-POWER  
OPERATIONAL AMPLIFIERS  
SLOS189 – FEBRUARY 1997  
TLV2332Y electrical characteristics, T = 25°C  
A
TLV2332Y  
V
= 3 V  
DD  
TYP  
V
= 5 V  
DD  
TYP  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
MIN  
MAX  
V
= 1 V,  
= 50 ,  
V
R
= 1 V,  
= 100 kΩ  
O
IC  
L
V
Input offset voltage  
0.6  
1.1  
mV  
IO  
R
S
O
O
I
I
Input offset current (see Note 4)  
Input bias current (see Note 4)  
V
V
= 1 V,  
= 1 V,  
V
V
= 1 V  
= 1 V  
0.1  
0.6  
0.1  
0.6  
pA  
pA  
IO  
IC  
IB  
IC  
0.3  
to  
2.3  
0.3  
to  
4.2  
Common-mode input voltage  
range (see Note 5)  
V
ICR  
V
V
= 1 V,  
= 1 mA  
V
V
= 100 mV,  
= 100 mV,  
= 100 k,  
IC  
ID  
V
V
High-level output voltage  
Low-level output voltage  
1.9  
115  
83  
3.9  
95  
V
mV  
V/mV  
dB  
OH  
I
OH  
V
= 1 V,  
= 1 mA  
IC  
ID  
OL  
I
OL  
Large-signal differential voltage  
amplification  
V
IC  
= 1 V,  
R
L
A
VD  
170  
91  
See Note 6  
V
R
= 1 V,  
= 50 Ω  
V
IC  
V
IC  
V
IC  
= V  
min,  
ICR  
O
CMRR Common-mode rejection ratio  
Supply-voltage rejection ratio  
92  
S
V
R
= 1 V,  
= 50 Ω  
= 1 V,  
= 1 V,  
O
k
94  
94  
dB  
SVR  
(V  
DD  
/V  
ID  
)
S
V
O
= 1 V,  
I
Supply current  
160  
210  
µA  
DD  
No load  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA are determined mathematically.  
5. This range also applies to each input individually.  
6. At V  
= 5 V, V = 0.25 V to 2 V; at V = 3 V, V = 0.5 V to 1.5 V.  
DD O  
DD  
O
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2332, TLV2332Y, TLV2334, TLV2334Y  
LinCMOS LOW-VOLTAGE MEDIUM-POWER  
OPERATIONAL AMPLIFIERS  
SLOS189 – FEBRUARY 1997  
TLV2334Y electrical characteristics, T = 25°C  
A
TLV2334Y  
V
= 3 V  
DD  
TYP  
V
= 5 V  
DD  
TYP  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
MIN  
MAX  
V
= 1 V,  
= 50 ,  
V
R
= 1 V  
= 100 kΩ  
O
IC  
L
V
Input offset voltage  
0.6  
1.1  
mV  
IO  
R
S
O
O
I
I
Input offset current (see Note 4)  
Input bias current (see Note 4)  
V
V
= 1 V,  
= 1 V,  
V
V
= 1 V  
= 1 V  
0.1  
0.6  
0.1  
0.6  
pA  
pA  
IO  
IC  
IB  
IC  
0.3  
to  
2.3  
0.3  
to  
4.2  
Common-mode input voltage  
range (see Note 5)  
V
ICR  
V
V
= 1 V,  
= 1 mA  
V
V
= 100 mV,  
= 100 mV,  
= 100 k,  
IC  
ID  
V
V
High-level output voltage  
Low-level output voltage  
1.9  
115  
83  
3.9  
95  
V
mV  
V/mV  
dB  
OH  
I
OH  
V
= 1 V,  
= 1 mA  
IC  
ID  
OL  
I
OL  
Large-signal differential voltage  
amplification  
V
IC  
= 1 V,  
R
L
A
VD  
170  
91  
See Note 6  
V
R
= 1 V,  
= 50 Ω  
V
IC  
V
O
V
IC  
= V  
min,  
ICR  
O
CMRR Common-mode rejection ratio  
Supply-voltage rejection ratio  
92  
S
V
R
= 1 V,  
= 50 Ω  
= 1 V,  
= 1 V,  
IC  
k
94  
94  
dB  
SVR  
(V  
DD  
/V  
ID  
)
S
V
O
= 1 V,  
I
Supply current  
320  
420  
µA  
DD  
No load  
NOTES: 4. The typical values of input bias current offset current below 5 pA are determined mathematically.  
5. This range also applies to each input individually.  
6. At V  
= 5 V, V = 0.25 V to 2 V; at V = 3 V, V = 0.5 V to 1.5 V.  
DD O  
DD  
O
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2332, TLV2332Y, TLV2334, TLV2334Y  
LinCMOS LOW-VOLTAGE MEDIUM-POWER  
OPERATIONAL AMPLIFIERS  
SLOS189 – FEBRUARY 1997  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
V
Input offset voltage  
Distribution  
1 – 4  
5 – 8  
9
IO  
α
Input offset voltage temperature coefficient  
Input bias current  
Distribution  
VIO  
I
IB  
I
IO  
vs Free-air temperature  
vs Free-air temperature  
vs Supply voltage  
Input offset current  
9
V
IC  
Common-mode input voltage  
10  
vs High-level output current  
vs Supply voltage  
vs Free-air temperature  
11  
12  
13  
V
High-level output voltage  
Low-level output voltage  
OH  
vs Common-mode input voltage  
vs Free-air temperature  
vs Differential input voltage  
vs Low-level output current  
14  
15, 16  
17  
V
OL  
18  
vs Supply voltage  
vs Free-air temperature  
vs Frequency  
19  
20  
21, 22  
A
Large-signal differential voltage amplification  
Supply current  
VD  
vs Supply voltage  
vs Free-air temperature  
23  
24  
I
DD  
vs Supply voltage  
vs Free-air temperature  
25  
26  
SR  
Slew rate  
V
Maximum peak-to-peak output voltage  
Unity-gain bandwidth  
vs Frequency  
27  
O(PP)  
1
vs Supply voltage  
vs Free-air temperature  
28  
29  
B
vs Supply voltage  
vs Free-air temperature  
vs Load capacitance  
30  
31  
32  
φ
m
Phase margin  
Phase shift  
vs Frequency  
vs Frequency  
21, 22  
33  
V
n
Equivalent input noise voltage  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2332, TLV2332Y, TLV2334, TLV2334Y  
LinCMOS LOW-VOLTAGE MEDIUM-POWER  
OPERATIONAL AMPLIFIERS  
SLOS189 – FEBRUARY 1997  
TYPICAL CHARACTERISTICS  
DISTRIBUTION OF TLV2332  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLV2332  
INPUT OFFSET VOLTAGE  
50  
60  
50  
40  
30  
20  
10  
0
V
= 3 V  
DD  
= 25°C  
V
= 5 V  
DD  
= 25°C  
T
A
P Package  
T
A
P Package  
40  
30  
20  
10  
0
– 5 – 4 – 3 – 2 – 1  
0
1
2
3
4
5
– 5 – 4 – 3 – 2 – 1  
0
1
2
3
4
5
V
IO  
– Input Offset Voltage – mV  
V
IO  
– Input Offset Voltage – mV  
Figure 1  
Figure 2  
DISTRIBUTION OF TLV2334  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLV2334  
INPUT OFFSET VOLTAGE  
60  
50  
50  
V
T
= 3 V  
V
T
= 5 V  
DD  
= 25°C  
DD  
= 25°C  
A
A
N Package  
N Package  
40  
30  
40  
30  
20  
20  
10  
0
10  
0
–1  
0
1
2
3
4
5
–5 –4 –3 –2  
–1  
0
1
2
3
4
5
–5 –4 –3 –2  
V
IO  
– Input Offset Voltage – mV  
V
IO  
– Input Offset Voltage – mV  
Figure 3  
Figure 4  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2332, TLV2332Y, TLV2334, TLV2334Y  
LinCMOS LOW-VOLTAGE MEDIUM-POWER  
OPERATIONAL AMPLIFIERS  
SLOS189 – FEBRUARY 1997  
TYPICAL CHARACTERISTICS  
DISTRIBUTION OF TLV2332  
INPUT OFFSET VOLTAGE  
TEMPERATURE COEFFICIENT  
DISTRIBUTION OF TLV2332  
INPUT OFFSET VOLTAGE  
TEMPERATURE COEFFICIENT  
60  
50  
40  
30  
20  
10  
0
50  
V
= 3 V  
DD  
= 25°C to 85°C  
V
= 5 V  
DD  
= 25°C to 85°C  
T
A
P Package  
T
A
P Package  
40  
30  
Outliers:  
(1) 33 mV/°C  
20  
10  
0
– 10 – 8 – 6 – 4 – 2  
0
2
4
6
8
10  
– 10 – 8 – 6 – 4 – 2  
0
2
4
6
8
10  
α
– Temperature Coefficient – µV/°C  
α
– Temperature Coefficient – µV/°C  
VIO  
VIO  
Figure 5  
Figure 6  
DISTRIBUTION OF TLV2334  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLV2334  
INPUT OFFSET VOLTAGE  
TEMPERATURE COEFFICIENT  
TEMPERATURE COEFFICIENT  
50  
60  
50  
V
T
= 3 V  
V
T
= 5 V  
= 25°C to 85°C  
DD  
= 25°C to 85°C  
DD  
A
A
N Package  
N Package  
Outliers:  
(1) 33 mV/°C  
40  
30  
40  
30  
20  
10  
0
20  
10  
0
–10 8 –6 –4 2  
0
2
4
6
8
10  
–8 –6 –4  
–10  
–2  
0
2
4
6
8
10  
α
– Temperature Coefficient – µV/°C  
α
– Temperature Coefficient – µV/°C  
VIO  
VIO  
Figure 7  
Figure 8  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2332, TLV2332Y, TLV2334, TLV2334Y  
LinCMOS LOW-VOLTAGE MEDIUM-POWER  
OPERATIONAL AMPLIFIERS  
SLOS189 – FEBRUARY 1997  
TYPICAL CHARACTERISTICS  
COMMON-MODE INPUT VOLTAGE  
INPUT BIAS CURRENT AND INPUT OFFSET CURRENT  
vs  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
4
10  
3
10  
2
10  
8
6
4
T
= 25°C  
V
V
= 3 V  
A
DD  
= 1 V  
Positive Limit  
IC  
See Note A  
I
IB  
1
1
10  
I
IO  
2
0
0.1  
25  
45  
65  
85  
105  
125  
0
2
4
6
8
T
A
– Free-Air Temperature – °C  
V
DD  
– Supply Voltage – V  
NOTE: The typical values of input bias current and input offset  
current below 5 pA were determined mathematically.  
Figure 9  
Figure 10  
HIGH-LEVEL OUTPUT VOLTAGE  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
vs  
SUPPLY VOLTAGE  
HIGH-LEVEL OUTPUT CURRENT  
8
6
4
5
V
V
R
= 1 V  
V
V
T
= 1 V  
IC  
IC  
= 100 mV  
= 100 mV  
ID  
ID  
= 100 kΩ  
= 25°C  
= 25°C  
L
A
4
3
2
1
0
T
A
V
DD  
= 5 V  
V
DD  
= 3 V  
2
0
0
–2  
–4  
–6  
–8  
0
2
4
6
8
V
DD  
– Supply Voltage – V  
I
– High-Level Output Current – mA  
OH  
Figure 11  
Figure 12  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2332, TLV2332Y, TLV2334, TLV2334Y  
LinCMOS LOW-VOLTAGE MEDIUM-POWER  
OPERATIONAL AMPLIFIERS  
SLOS189 – FEBRUARY 1997  
TYPICAL CHARACTERISTICS  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
COMMON-MODE INPUT VOLTAGE  
700  
650  
600  
550  
3
2.4  
1.8  
1.2  
0.6  
0
V
V
V
= 3 V  
DD  
V
I
= 5 V  
DD  
= 1 V  
IC  
ID  
= 5 mA  
OL  
= 100 mV  
T
A
= 25°C  
V
= –100 mV  
ID  
500  
450  
I
I
I
I
I
= 500 µA  
= 1 mA  
= 2 mA  
= 3 mA  
= 4 mA  
OH  
OH  
OH  
OH  
OH  
400  
350  
V
= –1 V  
ID  
300  
75 50 25  
0
25  
50  
75 100 125  
0
0.5  
V
1
1.5  
2
2.5  
3
3.5  
4
T
A
– Free-Air Temperature – °C  
– Common-Mode Input Voltage – V  
IC  
Figure 13  
Figure 14  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
200  
185  
170  
155  
140  
125  
110  
95  
900  
800  
700  
600  
500  
V
V
V
I
= 3 V  
DD  
V
= 5 V  
DD  
= 1 V  
IC  
ID  
V
IC  
V
ID  
I
= 0.5 V  
= 1 V  
= 5 mA  
= 100 mV  
= 1 mA  
OL  
OL  
400  
300  
200  
100  
80  
65  
50  
0
75 50 25  
0
25  
50  
75 100 125  
75 50 25  
0
25  
50  
75 100 125  
T
A
– Free-Air Temperature – °C  
T
A
– Free-Air Temperature – °C  
Figure 15  
Figure 16  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2332, TLV2332Y, TLV2334, TLV2334Y  
LinCMOS LOW-VOLTAGE MEDIUM-POWER  
OPERATIONAL AMPLIFIERS  
SLOS189 – FEBRUARY 1997  
TYPICAL CHARACTERISTICS  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
DIFFERENTIAL INPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
800  
700  
600  
500  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
V
V
= 5 V  
DD  
V
V
= 1 V  
IC  
= |V /2|  
IC  
ID  
= 100 mV  
ID  
I
= 5 mA  
OL  
T
A
= 25°C  
T
A
= 25°C  
V
DD  
= 5 V  
400  
300  
V
DD  
= 3 V  
200  
100  
0.2  
0.1  
0
0
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
0
1
2
3
4
5
6
7
8
V
ID  
– Differential Input Voltage – V  
I
– Low-Level Output Current – mA  
OL  
Figure 17  
Figure 18  
LARGE-SIGNAL  
LARGE-SIGNAL  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
vs  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
500  
500  
R
= 100 kΩ  
R
= 100 kΩ  
L
L
450  
450  
400  
350  
400  
350  
T
A
= 40°C  
300  
300  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
T
A
= 25°C  
V
DD  
= 5 V  
T
= 85°C  
V
DD  
= 3 V  
A
0
0
0
2
4
6
8
75 50 25  
0
25  
50  
75 100 125  
V
DD  
– Supply Voltage – V  
T
A
– Free-Air Temperature – °C  
Figure 19  
Figure 20  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2332, TLV2332Y, TLV2334, TLV2334Y  
LinCMOS LOW-VOLTAGE MEDIUM-POWER  
OPERATIONAL AMPLIFIERS  
SLOS189 – FEBRUARY 1997  
TYPICAL CHARACTERISTICS  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE SHIFT  
vs  
FREQUENCY  
7
6
60°  
30°  
0°  
10  
V
= 3 V  
= 100 kΩ  
= 20 pF  
= 25°C  
DD  
R
L
L
10  
C
T
A
5
4
10  
10  
30°  
A
VD  
3
2
60°  
10  
10  
90°  
Phase Shift  
1
10  
120°  
150°  
1
0.1  
180°  
1 M  
1
10  
100  
1 k  
10 k  
100 k  
f – Frequency – Hz  
Figure 21  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE SHIFT  
vs  
FREQUENCY  
7
6
10  
60°  
30°  
0°  
V
= 5 V  
= 100 kΩ  
= 20 pF  
= 25°C  
DD  
R
L
L
10  
C
T
A
5
10  
4
10  
10  
30°  
A
VD  
3
60°  
2
10  
10  
90°  
Phase Shift  
1
120°  
150°  
180°  
1
0.1  
1
10  
100  
1 k  
10 k  
100 k  
1 M  
f – Frequency – Hz  
Figure 22  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2332, TLV2332Y, TLV2334, TLV2334Y  
LinCMOS LOW-VOLTAGE MEDIUM-POWER  
OPERATIONAL AMPLIFIERS  
SLOS189 – FEBRUARY 1997  
TYPICAL CHARACTERISTICS  
SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
SUPPLY CURRENT  
vs  
SUPPLY VOLTAGE  
400  
350  
300  
250  
450  
V
V
= 1 V  
IC  
V
V
= 1 V  
= 1 V  
IC  
= 1 V  
O
400  
350  
O
T
= 40°C  
No Load  
A
No Load  
300  
V
DD  
= 5 V  
T
= 25°C  
A
250  
200  
150  
100  
50  
V
DD  
= 3 V  
200  
150  
T
A
= 85°C  
100  
50  
0
0
0
2
4
6
8
75 50 25  
0
25  
50  
75 100 125  
V
DD  
– Supply Voltage – V  
T
A
– Free-Air Temperature – °C  
Figure 23  
Figure 24  
SLEW RATE  
vs  
SUPPLY VOLTAGE  
SLEW RATE  
vs  
FREE-AIR TEMPERATURE  
0.9  
0.9  
0.8  
0.7  
V
V
= 1 V  
IC  
V
V
= 1 V  
IC  
I(PP)  
= 1  
= 1 V  
I(PP)  
= 1  
= 1 V  
A
V
A
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
V
R
C
= 100 kΩ  
= 20 pF  
= 25°C  
L
L
R
C
= 100 kΩ  
= 20 pF  
L
L
T
A
0.6  
0.5  
0.4  
0.3  
V
DD  
= 5 V  
V
DD  
= 3 V  
0.2  
0
2
4
6
8
75 50 25  
0
25  
50  
75  
100 125  
V
DD  
– Supply Voltage – V  
T
– Free-Air Temperature – °C  
A
Figure 25  
Figure 26  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2332, TLV2332Y, TLV2334, TLV2334Y  
LinCMOS LOW-VOLTAGE MEDIUM-POWER  
OPERATIONAL AMPLIFIERS  
SLOS189 – FEBRUARY 1997  
TYPICAL CHARACTERISTICS  
UNITY-GAIN BANDWIDTH  
vs  
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE  
vs  
SUPPLY VOLTAGE  
FREQUENCY  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
5
4
3
V = 10 mV  
R
= 100 kΩ  
I
L
R
= 100 kΩ  
= 20 pF  
= 25°C  
L
L
C
T
V
= 5 V  
DD  
A
T
= – 40°C  
A
V
= 3 V  
T
DD  
2
1
0
= 85°C  
A
T
= 25°C  
A
0
1
2
3
4
5
6
7
8
1
10  
100  
1000  
V
DD  
– Supply Voltage – V  
f – Frequency – kHz  
Figure 27  
Figure 28  
UNITY-GAIN BANDWIDTH  
vs  
FREE-AIR TEMPERATURE  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
V = 10 mV  
I
R
L
C
L
= 100 kΩ  
= 20 pF  
V
= 5 V  
DD  
V
= 3 V  
DD  
75 50 25  
0
25  
50  
75 100 125  
T
A
– Free-Air Temperature – °C  
Figure 29  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2332, TLV2332Y, TLV2334, TLV2334Y  
LinCMOS LOW-VOLTAGE MEDIUM-POWER  
OPERATIONAL AMPLIFIERS  
SLOS189 – FEBRUARY 1997  
TYPICAL CHARACTERISTICS  
PHASE MARGIN  
vs  
PHASE MARGIN  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
50°  
45°  
V = 10 mV  
V = 10 mV  
I
I
48°  
46°  
44°  
42°  
40°  
38°  
36°  
R
L
L
= 100 kΩ  
= 20 pF  
= 25°C  
R
L
L
= 100 kΩ  
C
C
= 20 pF  
43°  
43°  
T
A
V
= 5 V  
DD  
39°  
37°  
35°  
V
DD  
= 3 V  
34°  
32°  
30°  
0
1
2
3
4
5
6
7
8
– 75 – 50 – 25  
0
25  
50  
75 100 125  
V
DD  
– Supply Voltage – V  
T
A
– Free-Air Temperature – °C  
Figure 30  
Figure 31  
PHASE MARGIN  
vs  
LOAD CAPACITANCE  
EQUIVALENT INPUT NOISE VOLTAGE  
vs  
FREQUENCY  
44°  
300  
250  
V = 10 mV  
I
R
T
= 20 Ω  
= 25°C  
S
A
R
= 100 KΩ  
= 25°C  
L
42°  
40°  
T
A
V
DD  
= 5 V  
200  
150  
38°  
36°  
34°  
32°  
30°  
28°  
V
DD  
= 3 V  
100  
50  
0
V
= 5 V  
DD  
V
= 3 V  
DD  
0
20  
40  
60  
80  
100  
1
10  
100  
1000  
C
– Load Capacitance – pF  
f – Frequency – Hz  
L
Figure 32  
Figure 33  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2332, TLV2332Y, TLV2334, TLV2334Y  
LinCMOS LOW-VOLTAGE MEDIUM-POWER  
OPERATIONAL AMPLIFIERS  
SLOS189 – FEBRUARY 1997  
PARAMETER MEASUREMENT INFORMATION  
single-supply versus split-supply test circuits  
Because the TLV233x is optimized for single-supply operation, circuit configurations used for the various tests  
often present some inconvenience since the input signal, in many cases, must be offset from ground. This  
inconvenience can be avoided by testing the device with split supplies and the output load tied to the negative  
rail. A comparison of single-supply versus split-supply test circuits is shown below. The use of either circuit gives  
the same result.  
V
DD  
V
DD+  
+
+
V
O
V
O
V
I
V
I
R
C
C
L
R
L
L
L
V
DD–  
(a) SINGLE SUPPLY  
(b) SPLIT SUPPLY  
Figure 34. Unity-Gain Amplifier  
2 kΩ  
2 kΩ  
V
DD  
V
DD+  
20 Ω  
20 Ω  
+
+
V
O
1/2 V  
V
O
DD  
20 Ω  
20 Ω  
V
DD–  
(a) SINGLE SUPPLY  
(b) SPLIT SUPPLY  
Figure 35. Noise-Test Circuit  
10 kΩ  
10 kΩ  
V
DD  
V
DD+  
100 Ω  
100 Ω  
V
I
V
I
+
+
V
V
O
O
1/2 V  
DD  
C
L
C
L
V
DD–  
(a) SINGLE SUPPLY  
(b) SPLIT SUPPLY  
Figure 36. Gain-of-100 Inverting Amplifier  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2332, TLV2332Y, TLV2334, TLV2334Y  
LinCMOS LOW-VOLTAGE MEDIUM-POWER  
OPERATIONAL AMPLIFIERS  
SLOS189 – FEBRUARY 1997  
PARAMETER MEASUREMENT INFORMATION  
input bias current  
Because of the high input impedance of the TLV233x operational amplifier, attempts to measure the input bias  
current can result in erroneous readings. The bias current at normal ambient temperature is typically less than  
1 pA, a value that is easily exceeded by leakages on the test socket. Two suggestions are offered to avoid  
erroneous measurements:  
Isolate the device from other potential leakage sources. Use a grounded shield around and between the  
device inputs (see Figure 37). Leakages that would otherwise flow to the inputs are shunted away.  
Compensate for the leakage of the test socket by actually performing an input bias current test (using a  
picoammeter) with no device in the test socket. The actual input bias current can then be calculated by  
subtracting the open-socket leakage readings from the readings obtained with a device in the test  
socket.  
Many automatic testers as well as some bench-top operational amplifier testers use the servo-loop  
technique with a resistor in series with the device input to measure the input bias current (the voltage  
drop across the series resistor is measured and the bias current is calculated). This method requires  
thatadevicebeinsertedintoatestsockettoobtainacorrectreading;therefore, anopen-socketreading  
is not feasible using this method.  
8
5
V = V  
IC  
1
4
Figure 37. Isolation Metal Around Device Inputs (P package)  
low-level output voltage  
To obtain low-level supply-voltage operation, some compromise is necessary in the input stage. This  
compromise results in the device low-level output voltage being dependent on both the common-mode input  
voltage level as well as the differential input voltage level. When attempting to correlate low-level output  
readings with those quoted in the electrical specifications, these two conditions should be observed. If  
conditions other than these are to be used, please refer to the Typical Characteristics section of this data sheet.  
input offset voltage temperature coefficient  
Erroneous readings often result from attempts to measure temperature coefficient of input offset voltage. This  
parameter is actually a calculation using input offset voltage measurements obtained at two different  
temperatures. When one (or both) of the temperatures is below freezing, moisture can collect on both the device  
and the test socket. This moisture results in leakage and contact resistance which can cause erroneous input  
offset voltage readings. The isolation techniques previously mentioned have no effect on the leakage since the  
moisture also covers the isolation metal itself, thereby rendering it useless. These measurements should be  
performed at temperatures above freezing to minimize error.  
full-power response  
Full-power response, the frequency above which the operational amplifier slew rate limits the output voltage  
swing, is often specified two ways: full-linear response and full-peak response. The full-linear response is  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2332, TLV2332Y, TLV2334, TLV2334Y  
LinCMOS LOW-VOLTAGE MEDIUM-POWER  
OPERATIONAL AMPLIFIERS  
SLOS189 – FEBRUARY 1997  
PARAMETER MEASUREMENT INFORMATION  
generallymeasuredbymonitoringthedistortionleveloftheoutputwhileincreasingthefrequencyofasinusoidal  
input signal until the maximum frequency is found above which the output contains significant distortion. The  
full-peak response is defined as the maximum output frequency, without regard to distortion, above which full  
peak-to-peak output swing cannot be maintained.  
Because there is no industry-wide accepted value for significant distortion, the full-peak response is specified  
in this data sheet and is measured using the circuit of Figure 34. The initial setup involves the use of a sinusoidal  
input to determine the maximum peak-to-peak output of the device (the amplitude of the sinusoidal wave is  
increased until clipping occurs). The sinusoidal wave is then replaced with a square wave of the same  
amplitude. Thefrequencyisthenincreaseduntilthemaximumpeak-to-peakoutputcannolongerbemaintained  
(Figure 38). A square wave is used to allow a more accurate determination of the point at which the maximum  
peak-to-peak output is reached.  
(a) f = 100 Hz  
(b) B  
OM  
> f > 100 Hz  
(c) f = B  
OM  
(d) f > B  
OM  
Figure 38. Full-Power-Response Output Signal  
test time  
Inadequate test time is a frequent problem, especially when testing CMOS devices in a high-volume,  
short-test-time environment. Internal capacitances are inherently higher in CMOS than in bipolar and BiFET  
devices and require longer test times than their bipolar and BiFET counterparts. The problem becomes more  
pronounced with reduced supply levels and lower temperatures.  
APPLICATION INFORMATION  
single-supply operation  
While the TLV233x performs well using dual-  
power supplies (also called balanced or split  
supplies), the design is optimized for single-  
supply operation. This includes an input common-  
mode voltage range that encompasses ground as  
well as an output voltage range that pulls down to  
ground. The supply voltage range extends down  
to 2 V, thus allowing operation with supply levels  
commonly available for TTL and HCMOS.  
V
DD  
R2  
R1  
V
I
+
V
I
O
TLE2426  
Many single-supply applications require that a  
voltage be applied to one input to establish a  
reference level that is above ground. This virtual  
ground can be generated using two large  
resistors, but a preferred technique is to use a  
virtual-ground generator such as the TLE2426  
(see Figure 39).  
V
–V  
V
DD  
2
R2  
R1  
DD  
2
V
O
Figure 39. Inverting Amplifier With Voltage  
Reference  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2332, TLV2332Y, TLV2334, TLV2334Y  
LinCMOS LOW-VOLTAGE MEDIUM-POWER  
OPERATIONAL AMPLIFIERS  
SLOS189 – FEBRUARY 1997  
APPLICATION INFORMATION  
single-supply operation (continued)  
The TLE2426 supplies an accurate voltage equal to V /2, while consuming very little power and is suitable  
DD  
for supply voltages of greater than 4 V. The TLV233x works well in conjunction with digital logic; however, when  
powering both linear devices and digital logic from the same power supply, the following precautions are  
recommended:  
Power the linear devices from separate bypassed supply lines (see Figure 40); otherwise, the linear  
device supply rails can fluctuate due to voltage drops caused by high switching currents in the digital  
logic.  
Use proper bypass techniques to reduce the probability of noise-induced errors. Single capacitive  
decoupling is often adequate; however, RC decoupling may be necessary in high-frequency  
applications.  
Power  
Supply  
Logic  
Logic  
Logic  
+
(a) COMMON-SUPPLY RAILS  
+
Power  
Supply  
Logic  
Logic  
Logic  
(b) SEPARATE-BYPASSED SUPPLY RAILS (preferred)  
Figure 40. Common Versus Separate Supply Rails  
input characteristics  
The TLV233x is specified with a minimum and a maximum input voltage that, if exceeded at either input, could  
cause the device to malfunction. Exceeding this specified range is a common problem, especially in  
single-supply operation. The lower the range limit includes the negative rail, while the upper range limit is  
specified at V  
– 1 V at T = 25°C and at V  
– 1.2 V at all other temperatures.  
DD  
A
DD  
The use of the polysilicon-gate process and the careful input circuit design gives the TLV233x very good input  
offset voltage drift characteristics relative to conventional metal-gate processes. Offset voltage drift in CMOS  
devices is highly influenced by threshold voltage shifts caused by polarization of the phosphorus dopant  
implanted in the oxide. Placing the phosphorus dopant in a conductor (such as a polysilicon gate) alleviates the  
polarization problem, thus reducing threshold voltage shifts by more than an order of magnitude. The offset  
voltage drift with time has been calculated to be typically 0.1 µV/month, including the first month of operation.  
Because of the extremely high input impedance and resulting low bias-current requirements, the TLV233x is  
well suited for low-level signal processing; however, leakage currents on printed-circuit boards and sockets can  
easily exceed bias-current requirements and cause a degradation in device performance.  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2332, TLV2332Y, TLV2334, TLV2334Y  
LinCMOS LOW-VOLTAGE MEDIUM-POWER  
OPERATIONAL AMPLIFIERS  
SLOS189 – FEBRUARY 1997  
APPLICATION INFORMATION  
input characteristics (continued)  
It is good practice to include guard rings around inputs (similar to those of Figure 37 in the Parameter  
Measurement Information section). These guards should be driven from a low-impedance source at the same  
voltage level as the common-mode input (see Figure 41).  
The inputs of any unused amplifiers should be tied to ground to avoid possible oscillation.  
V
I
+
+
+
V
O
V
O
V
O
V
I
V
I
(a) NONINVERTING AMPLIFIER  
(b) INVERTING AMPLIFIER  
(c) UNITY-GAIN AMPLIFIER  
Figure 41. Guard-Ring Schemes  
noise performance  
The noise specifications in operational amplifiers circuits are greatly dependent on the current in the first-stage  
differential amplifier. The low input bias-current requirements of the TLV233x results in a very low noise current,  
which is insignificant in most applications. This feature makes the device especially favorable over bipolar  
devices when using values of circuit impedance greater than 50 k, since bipolar devices exhibit greater noise  
currents.  
feedback  
Operational amplifiers circuits nearly always  
employ feedback, and since feedback is the first  
prerequisite for oscillation, caution is appropriate.  
Most oscillation problems result from driving  
capacitive loads and ignoring stray input  
capacitance. A small-value capacitor connected  
in parallel with the feedback resistor is an effective  
remedy (see Figure 42). The value of this  
capacitor is optimized empirically.  
+
Figure 42. Compensation for Input Capacitance  
electrostatic-discharge protection  
The TLV233x incorporates an internal electrostatic-discharge (ESD)-protection circuit that prevents functional  
failures at voltages up to 2000 V as tested under MIL-PRF-38535. Method 3015.2. Care should be exercised,  
however, when handling these devices as exposure to ESD may result in the degradation of the device  
parametric performance. The protection circuit also causes the input bias currents to be temperature dependent  
and have the characteristics of a reverse-biased diode.  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2332, TLV2332Y, TLV2334, TLV2334Y  
LinCMOS LOW-VOLTAGE MEDIUM-POWER  
OPERATIONAL AMPLIFIERS  
SLOS189 – FEBRUARY 1997  
APPLICATION INFORMATION  
latch-up  
BecauseCMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLV233xinputs  
and outputs are designed to withstand 100-mA surge currents without sustaining latch-up; however,  
techniques should be used to reduce the chance of latch-up whenever possible. Internal-protection diodes  
should not by design be forward biased. Applied input and output voltage should not exceed the supply voltage  
by more than 300 mV. Care should be exercised when using capacitive coupling on pulse generators. Supply  
transients should be shunted by the use of decoupling capacitors (0.1 µF typical) located across the supply rails  
as close to the device as possible.  
The current path established if latch-up occurs is usually between the positive supply rail and ground and can  
be triggered by surges on the supply lines and/or voltages on either the output or inputs that exceed the supply  
voltage. Once latch-up occurs, the current flow is limited only by the impedance of the power supply and the  
forward resistance of the parasitic thyristor and usually results in the destruction of the device. The chance of  
latch-up occurring increases with increasing temperature and supply voltages.  
output characteristics  
V
DD  
The output stage of the TLV233x is designed to  
sink and source relatively high amounts of current  
(see Typical Characteristics). If the output is  
subjected to a short-circuit condition, this high-  
current capability can cause device damage  
undercertainconditions. Outputcurrentcapability  
increases with supply voltage.  
R
P
V
F
V
I
I
P
DD  
O
I
V
I
+
R
P
I
I
L
P
V
O
I
P
= Pullup Current  
Required by the  
F
Operational Amplifier  
(typically 500 µA)  
R2  
Although the TLV233x possesses excellent  
high-level output voltage and current capability,  
methods are available for boosting this capability  
if needed. The simplest method involves the use  
I
L
R
R1  
L
Figure 43. Resistive Pullup to Increase V  
OH  
of a pullup resistor (R )connectedfromtheoutput  
P
to the positive supply rail (see Figure 43). There  
are two disadvantages to the use of this circuit.  
First, the NMOS pulldown transistor N4 (see  
equivalent schematic) must sink a comparatively  
largeamountofcurrent. Inthiscircuit, N4behaves  
likealinearresistorwithanonresistancebetween  
approximately 60 and 180 , depending on  
how hard the operational amplifier input is driven.  
2.5 V  
V
O
+
V
I
C
L
With very low values of R , a voltage offset from  
0 V at the output occurs. Secondly, pullup resistor  
P
T
= 25°C  
A
f = 1 kHz  
= 1 V  
R acts as a drain load to N4 and the gain of the  
V
P
I(PP)  
operational amplifier is reduced at output voltage  
levels where N5 is not supplying the output  
current.  
2.5 V  
Figure 44. Test Circuit for Output Characteristics  
All operating characteristics of the TLV233x are measured using a 20-pF load. The device drives higher  
capacitive loads; however, as output load capacitance increases, the resulting response pole occurs at lower  
frequencies thereby causing ringing, peaking, or even oscillation (see Figure 44 and Figure 45). In many cases,  
adding some compensation in the form of a series resistor in the feedback loop alleviates the problem.  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2332, TLV2332Y, TLV2334, TLV2334Y  
LinCMOS LOW-VOLTAGE MEDIUM-POWER  
OPERATIONAL AMPLIFIERS  
SLOS189 – FEBRUARY 1997  
APPLICATION INFORMATION  
output characteristics (continued)  
(a) C = 20 pF, R = NO LOAD  
(b) C = 170 pF, R = NO LOAD  
(c) C = 190 pF, R = NO LOAD  
L L  
L
L
L
L
Figure 45. Effect of Capacitive Loads  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2332, TLV2332Y, TLV2334, TLV2334Y  
LinCMOS LOW-VOLTAGE MEDIUM-POWER  
OPERATIONAL AMPLIFIERS  
SLOS189 – FEBRUARY 1997  
MECHANICAL INFORMATION  
D (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PIN SHOWN  
PINS **  
0.050 (1,27)  
8
14  
16  
DIM  
0.020 (0,51)  
0.014 (0,35)  
0.010 (0,25)  
0.197  
(5,00)  
0.344  
(8,75)  
0.394  
(10,00)  
M
A MAX  
14  
8
0.189  
(4,80)  
0.337  
(8,55)  
0.386  
(9,80)  
A MIN  
0.244 (6,20)  
0.228 (5,80)  
0.008 (0,20) NOM  
0.157 (4,00)  
0.150 (3,81)  
Gage Plane  
1
7
A
0.010 (0,25)  
0°8°  
0.044 (1,12)  
0.016 (0,40)  
Seating Plane  
0.004 (0,10)  
0.010 (0,25)  
0.004 (0,10)  
0.069 (1,75) MAX  
4040047/B 03/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).  
D. Four center pins are connected to die mount pad.  
E. Falls within JEDEC MS-012  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2332, TLV2332Y, TLV2334, TLV2334Y  
LinCMOS LOW-VOLTAGE MEDIUM-POWER  
OPERATIONAL AMPLIFIERS  
SLOS189 – FEBRUARY 1997  
MECHANICAL INFORMATION  
N (R-PDIP-T**)  
PLASTIC DUAL-IN-LINE PACKAGE  
16 PIN SHOWN  
PINS **  
14  
16  
18  
20  
DIM  
0.775  
(19,69)  
0.775  
(19,69)  
0.920  
(23.37)  
0.975  
(24,77)  
A MAX  
A
16  
9
0.745  
(18,92)  
0.745  
(18,92)  
0.850  
(21.59)  
0.940  
(23,88)  
A MIN  
0.260 (6,60)  
0.240 (6,10)  
1
8
0.070 (1,78) MAX  
0.020 (0,51) MIN  
0.310 (7,87)  
0.290 (7,37)  
0.035 (0,89) MAX  
0.200 (5,08) MAX  
Seating Plane  
0.125 (3,18) MIN  
0.100 (2,54)  
0°15°  
0.021 (0,53)  
0.015 (0,38)  
0.010 (0,25)  
M
0.010 (0,25) NOM  
14/18 PIN ONLY  
4040049/C 08/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-001 (20 pin package is shorter then MS-001.)  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2332, TLV2332Y, TLV2334, TLV2334Y  
LinCMOS LOW-VOLTAGE MEDIUM-POWER  
OPERATIONAL AMPLIFIERS  
SLOS189 – FEBRUARY 1997  
MECHANICAL INFORMATION  
P (R-PDIP-T8)  
PLASTIC DUAL-IN-LINE PACKAGE  
0.400 (10,60)  
0.355 (9,02)  
8
5
0.260 (6,60)  
0.240 (6,10)  
1
4
0.070 (1,78) MAX  
0.310 (7,87)  
0.290 (7,37)  
0.020 (0,51) MIN  
0.200 (5,08) MAX  
Seating Plane  
0.125 (3,18) MIN  
0.100 (2,54)  
0°15°  
0.021 (0,53)  
0.015 (0,38)  
0.010 (0,25)  
M
0.010 (0,25) NOM  
4040082/B 03/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-001  
31  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2332, TLV2332Y, TLV2334, TLV2334Y  
LinCMOS LOW-VOLTAGE MEDIUM-POWER  
OPERATIONAL AMPLIFIERS  
SLOS189 – FEBRUARY 1997  
MECHANICAL INFORMATION  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PIN SHOWN  
0,32  
0,19  
0,65  
M
0,13  
14  
8
0,15 NOM  
4,50  
4,30  
6,70  
6,10  
Gage Plane  
0,25  
1
7
0°8°  
0,75  
A
0,50  
Seating Plane  
0,10  
1,20 MAX  
0,10 MIN  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
7,70  
9,80  
9,60  
A MAX  
A MIN  
4040064/D 10/95  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
32  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1998, Texas Instruments Incorporated  

相关型号:

TLV2334IDRG4

QUAD OP-AMP, 12000uV OFFSET-MAX, 0.525MHz BAND WIDTH, PDSO14, PLASTIC, SO-14

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2334IN

LinCMOSE LOW-VOLTAGE MEDIUM-POWER OPERATIONAL AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2334IN

QUAD OP-AMP, 12000uV OFFSET-MAX, 0.525MHz BAND WIDTH, PDIP14, PLASTIC, DIP-14

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ROCHESTER

TLV2334IPW

QUAD OP-AMP, 12000uV OFFSET-MAX, 0.3MHz BAND WIDTH, PDSO14, PLASTIC, TSSOP-14

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2334IPW

QUAD OP-AMP, 12000uV OFFSET-MAX, 0.3MHz BAND WIDTH, PDSO14, PLASTIC, TSSOP-14

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ROCHESTER

TLV2334IPWLE

LinCMOSE LOW-VOLTAGE MEDIUM-POWER OPERATIONAL AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2334IPWR

QUAD OP-AMP, 12000uV OFFSET-MAX, 0.3MHz BAND WIDTH, PDSO14, GREEN, PLASTIC, TSSOP-14

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ROCHESTER

TLV2334IPWRG4

QUAD OP-AMP, 12000uV OFFSET-MAX, 0.3MHz BAND WIDTH, PDSO14, GREEN, PLASTIC, TSSOP-14

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2334Y

LinCMOSE LOW-VOLTAGE MEDIUM-POWER OPERATIONAL AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2341

LinCMOSE PROGRAMMABLE LOW-VOLTAGE OPERATIONAL AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2341ID

LinCMOSE PROGRAMMABLE LOW-VOLTAGE OPERATIONAL AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2341ID

OP-AMP, 10000 uV OFFSET-MAX, 1.7 MHz BAND WIDTH, PDSO8, SO-8

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ROCHESTER