TLV2254QDREP [TI]

Advanved LinCMOS™ RAIL-TO-RAIL VERY-LOW-POWER OPERATIOPNAL AMPLIFIERS; 中晚期原发性肝癌LinCMOSâ ?? ¢ RAIL- TO -RAIL极低功耗OPERATIOPNAL放大器
TLV2254QDREP
型号: TLV2254QDREP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Advanved LinCMOS™ RAIL-TO-RAIL VERY-LOW-POWER OPERATIOPNAL AMPLIFIERS
中晚期原发性肝癌LinCMOSâ ?? ¢ RAIL- TO -RAIL极低功耗OPERATIOPNAL放大器

运算放大器 放大器电路 光电二极管
文件: 总38页 (文件大小:1021K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁꢂꢃ ꢃ ꢄ ꢅ ꢆꢇꢈꢉ ꢀ ꢁꢂ ꢃꢃ ꢄꢅ ꢊꢆ ꢇꢈ  
ꢂꢇ ꢖꢘꢆꢁ ꢔ ꢙꢆꢈꢔ ꢙ ꢇꢖ ꢔ ꢈꢇꢖ ꢊꢀ ꢗꢔ ꢚꢊꢁ ꢊꢓ ꢈ ꢁꢗ ꢛꢗ ꢇꢖ ꢕ  
ꢖꢊꢗ ꢁꢆ ꢀꢔ ꢆꢖ ꢊ ꢗꢁ  
SGLS217B − NOVEMBER 2003 − REVISED JUNE 2006  
D
Controlled Baseline  
− One Assembly/Test Site, One Fabrication  
Site  
D Output Swing Includes Both Supply Rails  
D Low Noise . . . 19 nV/Hz Typ at f = 1 kHz  
D Low Input Bias Current . . . 1 pA Typ  
D
D
D
D
D
Extended Temperature Performance of  
−40°C to 125°C  
Enhanced Diminishing Manufacturing  
Sources (DMS) Support  
D Fully Specified for Both Single-Supply and  
Split-Supply Operation  
D Very Low Power . . . 34 µA Per Channel  
(Typ)  
Enhanced Product-Change Notification  
D Common-Mode Input Voltage Range  
Qualification Pedigree  
Includes Negative Rail  
ESD Protection Exceeds 2000 V Per  
D Low Input Offset Voltage:  
MIL-STD-883, Method 3015; Exceeds 150 V  
(TLV2252/52A) and 100 V (TLV2254/54A)  
Using Machine Model (C = 200 pF, R = 0)  
850 µV Max at T = 25°C  
A
D Wide Supply Voltage Range:  
2.7 V to 16 V  
Component qualification in accordance with JEDEC and industry  
standards to ensure reliable operation over an extended  
temperature range. This includes, but is not limited to, Highly  
Accelerated Stress Test (HAST) or biased 85/85, temperature  
cycle, autoclave or unbiased HAST, electromigration, bond  
intermetallic life, and mold compound life. Such qualification  
testing should not be viewed as justifying use of this component  
beyond specified performance and environmental limits.  
D Macromodel Included  
HIGH-LEVEL OUTPUT VOLTAGE  
description/ordering information  
vs  
HIGH-LEVEL OUTPUT CURRENT  
The TLV2252 and TLV2254 are dual and  
quadruple low-voltage operational amplifiers from  
Texas Instruments. Both devices exhibit rail-to-rail  
output performance for increased dynamic range  
in single- or split-supply applications. The  
TLV225x family consumes only 34 µA of supply  
current per channel. This micropower operation  
makes them good choices for battery-powered  
applications. This family is fully characterized at  
3 V and 5 V and is optimized for low-voltage  
applications. The noise performance has been  
dramatically improved over previous generations  
of CMOS amplifiers. The TLV225x has a noise  
level of 19 nV/Hz at 1kHz, four times lower than  
competitive micropower solutions.  
3
2.5  
2
V
DD  
= 3 V  
T
A
= 40°C  
T
A
= 25°C  
1.5  
1
T
A
= 85°C  
T
A
= 125°C  
0.5  
0
The TLV225x, exhibiting high input impedance  
and low noise, are excellent for small-signal  
conditioning for high-impedance sources, such as  
piezoelectric transducers. Because of the micro-  
power dissipation levels combined with 3-V  
operation, these devices work well in hand-held  
0
200  
400  
600  
800  
|I | − High-Level Output Current − µA  
OH  
Figure 1  
monitoring and remote-sensing applications. In addition, the rail-to-rail output feature with single or split supplies  
makes this family a great choice when interfacing with analog-to-digital converters (ADCs). For precision  
applications, the TLV225xA family is available and has a maximum input offset voltage of 850 µV.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Advanced LinCMOS is a trademark of Texas Instruments.  
ꢀꢐ  
Copyright 2003 − 2006, Texas Instruments Incorporated  
ꢣ ꢐ ꢤ ꢣꢑ ꢎꢭ ꢠꢟ ꢍ ꢨꢨ ꢦꢍ ꢡ ꢍ ꢢ ꢐ ꢣ ꢐ ꢡ ꢤ ꢩ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃꢄ ꢅ ꢆꢇꢈꢉ ꢀ ꢁꢂ ꢃ ꢃꢄ ꢅ ꢊꢆꢇ ꢈ  
ꢂ ꢇꢖꢘꢆꢁ ꢔꢙꢆꢈ ꢔꢙꢇ ꢖ ꢔ ꢈꢇ ꢖꢊꢀꢗ ꢔ ꢚꢊ ꢁ ꢊꢓꢈ ꢁꢗ ꢛ ꢗꢇꢖꢕ  
ꢖꢊ ꢗ ꢁꢆꢀꢔ ꢆꢖꢊꢗ ꢁ  
SGLS217B − NOVEMBER 2003 − REVISED JUNE 2006  
description/ordering information (continued)  
The TLV2252/2254 also make great upgrades to the TLV2322/2424 in standard designs. They offer increased  
output dynamic range, lower noise voltage, and lower input offset voltage. This enhanced feature set allows  
them to be used in a wider range of applications. For applications that require higher output drive and wider input  
voltage range, see the TLV2432 and TLV2442 devices. If your design requires single amplifiers, please see the  
TLV2211/21/31 family. These devices are single rail-to-rail operational amplifiers in the SOT-23 package. Small  
size and low power consumption make them ideal for high density, battery-powered equipment.  
ORDERING INFORMATION  
V
max  
ORDERABLE  
PART NUMBER  
TOP-SIDE  
MARKING  
IO  
PACKAGE  
T
A
AT 25°C  
SOIC (D)  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
TLV2252AQDREP  
TLV2252AQPWREP  
TLV2252QDREP  
2252AE  
850 µV  
TSSOP (PW)  
SOIC (D)  
2252EP  
1500 µV  
850 µV  
TSSOP (PW)  
SOIC (D)  
TLV2252QPWREP  
−40°C to 125°C  
TLV2254AQDREP  
TLV2254AEP  
TLV2254EP  
TSSOP (PW)  
SOIC (D)  
TLV2254AQPWREP  
TLV2254QDREP  
1500 µV  
TLV2254QPWREP  
TSSOP (PW)  
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available  
at www.ti.com/sc/package.  
Product preview  
TLV2252, TLV2252A  
D OR PW PACKAGE  
(TOP VIEW)  
TLV2254, TLV2254A  
D PACKAGE  
TLV2254, TLV2254A  
PW PACKAGE  
(TOP VIEW)  
(TOP VIEW)  
1
1OUT  
1IN−  
1IN+  
/GND  
V
1OUT  
1IN −  
1IN +  
4OUT  
4IN −  
4IN +  
1
2
3
4
8
7
6
5
14  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
DD+  
1OUT  
1IN−  
1IN+  
4OUT  
4IN−  
4IN+  
2OUT  
2IN−  
2IN+  
V
V
/GND  
DD+  
DD −  
V
DD−  
V
V
/GND  
DD+  
DD−  
2IN +  
2IN −  
2OUT  
3IN +  
3IN −  
3OUT  
2IN+  
2IN−  
3IN+  
3IN−  
3OUT  
7
8
8
2OUT  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢃ ꢄ ꢅ ꢆꢇꢈꢉꢮ ꢀ ꢁꢂꢃ ꢃꢄ ꢅꢊ ꢆꢇ ꢈ  
ꢂꢇ ꢖꢘꢮꢁ ꢔ ꢙꢆꢈꢔ ꢙ ꢇꢖꢮ ꢔ ꢈꢇꢖꢊꢀ ꢗꢔ ꢚꢊꢁꢮꢊꢓ ꢈ ꢁꢗ ꢛꢗ ꢇꢖ ꢕ  
  
ꢖꢊꢗ ꢁꢆ ꢀꢔ ꢆꢖ ꢊ ꢗꢁ  
SGLS217B − NOVEMBER 2003 − REVISED JUNE 2006  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢂ ꢇꢖꢘ ꢁ ꢔꢙꢆꢈ ꢔꢙꢇ ꢖ ꢔ ꢈꢇ ꢖꢊꢀꢗ ꢔ ꢚꢊ ꢁ ꢊꢓꢈ ꢁꢗ ꢛ ꢗꢇꢖꢕ  
SGLS217B − NOVEMBER 2003 − REVISED JUNE 2006  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 V  
DD  
Differential input voltage, V (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Input voltage range, V (any input, see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
V
ID  
DD  
− 0.3 V to V  
I
DD−  
DD+  
Input current, I (each input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 mA  
I
Output current, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
O
Total current into V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
DD+  
DD−  
Total current out of V  
Duration of short-circuit current (at or below 25°C) (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unlimited  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating free-air temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 125°C  
A
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
stg  
Lead temperature 1,6 mm (1/16 in) from case for 10 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values, except differential voltages, are with respect to V  
.
DD −  
2. Differential voltages are at the noninverting input with respect to the inverting input. Excessive current flows when input is brought  
below V − 0.3 V.  
DD−  
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum  
dissipation rating is not exceeded.  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T
= 85°C  
T = 125°C  
A
POWER RATING  
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING  
A
D−8  
D−14  
725 mW  
5.8 mW/°C  
7.6 mW/°C  
4.2 mW/°C  
5.6 mW/°C  
377 mW  
145 mW  
950 mW  
494 mW  
190 mW  
PW−8  
PW−14  
525 mW  
273 mW  
105 mW  
700 mW  
364 mW  
140 mW  
recommended operating conditions  
MIN  
MAX  
UNIT  
V
Supply voltage, V  
ꢀ ꢁ ꢂꢂ ꢃ ꢄꢅ ꢂ ꢆꢇ  
Input voltage range, V  
2.7  
8
DD  
V
V
V
V
1.3  
V
I
DD−  
DD+  
Common-mode input voltage, V  
IC  
1.3  
V
DD−  
40  
DD+  
Operating free-air temperature, T  
125  
°C  
A
NOTE 1: All voltage values, except differential voltages, are with respect to V  
DD −  
.
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢃ ꢄ ꢅ ꢆꢇꢈꢉ ꢀ ꢁꢂꢃ ꢃꢄ ꢅꢊ ꢆꢇ ꢈ  
ꢂꢇ ꢖꢘ ꢁ ꢔ ꢙꢆꢈꢔ ꢙ ꢇꢖ ꢔ ꢈꢇꢖ ꢊꢀ ꢗꢔ ꢚꢊꢁ ꢊꢓ ꢈ ꢁꢗ ꢛꢗ ꢇꢖ ꢕ  
  
ꢖꢊꢗ ꢁꢆ ꢀꢔ ꢆꢖ ꢊ ꢗꢁ  
SGLS217B − NOVEMBER 2003 − REVISED JUNE 2006  
TLV2252 electrical characteristics at specified free-air temperature, V  
noted)  
= 3 V (unless otherwise  
DD  
TLV2252  
TLV2252A  
UNIT  
PARAMETER  
TEST CONDITIONS  
T
A
MIN  
TYP MAX  
200 1500  
1750  
MIN  
TYP MAX  
25°C  
200  
850  
V
V
=
= 0,  
1.5 V,  
1.5 V,  
V
R
= 0,  
= 50 Ω  
S
DD  
O
IC  
V
IO  
Input offset voltage  
µV  
Full range  
1000  
V
V
=
= 0,  
V
R
= 0,  
IC  
Temperature coefficient  
of input offset voltage  
25°C  
to 85°C  
DD  
O
α
VIO  
0.5  
0.5  
µV/°C  
= 50 Ω  
S
Input offset voltage  
long-term drift  
(see Note 4)  
V
V
=
= 0,  
1.5 V,  
V
R
= 0,  
= 50 Ω  
DD  
O
IC  
S
25°C  
0.003  
0.003  
0.5  
µV/mo  
25°C  
125°C  
25°C  
0.5  
1
60  
1000  
60  
60  
1000  
60  
V
V
=
= 0,  
1.5 V,  
1.5 V,  
V
R
= 0,  
= 50 Ω  
DD  
O
IC  
I
I
Input offset current  
Input bias current  
pA  
pA  
IO  
S
1
V
V
=
= 0,  
V
R
= 0,  
= 50 Ω  
DD  
O
IC  
IB  
125°C  
1000  
1000  
S
0
to  
2
0.3  
to  
2.2  
0
to  
2
0.3  
to  
2.2  
25°C  
Common-mode input  
voltage range  
V
V
V
R
= 50 Ω,  
|V | ≤ 5 mV  
IO  
V
V
ICR  
OH  
OL  
S
0
to  
1.7  
0
to  
1.7  
Full range  
I
I
I
= 20 µA  
= 75 µA  
2.98  
2.98  
OH  
OH  
OH  
25°C  
2.9  
2.8  
2.8  
2.9  
2.8  
2.8  
High-level  
output voltage  
Full range  
= 150 µA  
25°C  
V
IC  
= 1.5 V,  
I
I
= 50 µA  
10  
10  
OL  
25°C  
100  
150  
165  
300  
300  
100  
150  
165  
300  
300  
V
IC  
= 1.5 V,  
= 1.5 V,  
= 500 µA  
Low-level  
output voltage  
OL  
Full range  
25°C  
mV  
200  
250  
800  
200  
250  
800  
V
IC  
I
= 1 A  
OL  
Full range  
25°C  
100  
10  
100  
10  
R
R
= 100 kΩ  
Large-signal differential  
voltage amplification  
V
IC  
V
O
= 1.5 V,  
= 1 V to 2 V  
L
L
Full range  
25°C  
A
VD  
V/mV  
= 1 MΩ  
Differential  
input resistance  
12  
10  
12  
10  
r
r
25°C  
25°C  
25°C  
25°C  
i(d)  
i(c)  
Common-mode  
input resistance  
12  
10  
12  
10  
Common-mode  
input capacitance  
c
z
f = 10 kHz  
f = 25 kHz,  
8
8
pF  
i(c)  
o
Closed-loop  
output impedance  
A
= 10  
220  
75  
220  
77  
V
25°C  
Full range  
25°C  
65  
60  
80  
80  
65  
60  
80  
80  
Common-mode  
rejection ratio  
V
O
= 1.5 V,  
V
R
= 0 to 1.7 V,  
= 50 Ω  
IC  
S
CMRR  
dB  
dB  
µA  
95  
68  
100  
68  
Supply-voltage rejection  
ratio (V  
DD  
V
= 2.7 V to 8 V,  
DD  
k
SVR  
/V  
IO  
)
V
IC  
= V  
/2,  
No load  
Full range  
25°C  
DD  
125  
150  
125  
150  
I
Supply current  
V
O
= 1.5 V,  
No load  
DD  
Full range  
Full range is −40°C to 125°C.  
Referenced to 1.5 V  
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢂ ꢇꢖꢘ ꢁ ꢔꢙꢆꢈ ꢔꢙꢇ ꢖ ꢔ ꢈꢇ ꢖꢊꢀꢗ ꢔ ꢚꢊ ꢁ ꢊꢓꢈ ꢁꢗ ꢛ ꢗꢇꢖꢕ  
  
ꢖꢊ ꢗ ꢁꢆꢀꢔ ꢆꢖꢊꢗ ꢁ  
SGLS217B − NOVEMBER 2003 − REVISED JUNE 2006  
TLV2252 operating characteristics at specified free-air temperature, V  
= 3 V  
DD  
TLV2252  
TLV2252A  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP MAX  
MIN  
TYP MAX  
25°C  
0.07  
0.1  
0.07  
0.1  
V
C
= 0.8 V to 1.4 V,  
= 100 pF  
R
= 100 k,  
L
O
L
SR  
Slew rate at unity gain  
V/µs  
Full  
range  
0.05  
0.05  
f = 10 Hz  
f = 1 kHz  
35  
19  
35  
19  
Equivalent input noise  
voltage  
nV/Hz  
µV  
V
25°C  
25°C  
n
Peak-to-peak  
equivalent input  
noise voltage  
f = 0.1 Hz to 1 Hz  
f = 0.1 Hz to 10 Hz  
0.6  
1.1  
0.6  
1.1  
V
I
N(PP)  
Equivalent input noise  
current  
25°C  
25°C  
0.6  
0.6  
fA/Hz  
n
Gain-bandwidth  
product  
f = 1 kHz,  
R
= 50 k,  
L
0.187  
0.187  
MHz  
C
= 100 pF  
L
Maximum  
output-swing  
bandwidth  
V
R
= 1 V,  
= 50 k,  
A
C
= 1,  
= 100 pF  
O(PP)  
L
V
L
B
25°C  
60  
60  
kHz  
dB  
OM  
Phase margin  
at unity gain  
φ
m
25°C  
25°C  
63°  
63°  
R
R
= 50 k,  
C
C
= 100 pF  
L
L
L
L
Gain margin  
15  
15  
= 50 k,  
= 100 pF  
Full range is −40°C to 125°C.  
Referenced to 1.5 V  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢂꢇ ꢖꢘ ꢁ ꢔ ꢙꢆꢈꢔ ꢙ ꢇꢖ ꢔ ꢈꢇꢖ ꢊꢀ ꢗꢔ ꢚꢊꢁ ꢊꢓ ꢈ ꢁꢗ ꢛꢗ ꢇꢖ ꢕ  
  
ꢖꢊꢗ ꢁꢆ ꢀꢔ ꢆꢖ ꢊ ꢗꢁ  
SGLS217B − NOVEMBER 2003 − REVISED JUNE 2006  
TLV2252 electrical characteristics at specified free-air temperature, V  
noted)  
= 5 V (unless otherwise  
DD  
TLV2252  
TLV2252A  
UNIT  
PARAMETER  
TEST CONDITIONS  
T
A
MIN  
TYP MAX  
200 1500  
1750  
MIN  
TYP MAX  
25°C  
200  
850  
V
V
=
2.5 V,  
V
R
= 0,  
= 50 Ω  
S
DD  
O
IC  
V
IO  
Input offset voltage  
µV  
= 0,  
Full range  
1000  
V
V
=
= 0,  
2.5 V,  
2.5 V,  
Temperature coefficient  
of input offset voltage  
25°C  
to 85°C  
V
R
= 0,  
= 50 Ω  
DD  
O
IC  
S
α
0.5  
0.5  
µV/°C  
VIO  
V
V
=
= 0,  
Input offset voltage long-  
term drift (see Note 4)  
V
R
= 0,  
= 50 Ω  
DD  
O
IC  
25°C  
0.003  
0.003  
0.5  
µV/mo  
S
25°C  
125°C  
25°C  
0.5  
1
60  
1000  
60  
60  
1000  
60  
V
V
=
= 0,  
2.5 V,  
2.5 V,  
V
R
= 0,  
= 50 Ω  
DD  
O
IC  
I
I
Input offset current  
Input bias current  
pA  
pA  
IO  
S
1
V
V
=
= 0,  
V
R
= 0,  
= 50 Ω  
DD  
O
IC  
IB  
S
125°C  
1000  
1000  
0
to  
4
0.3  
to  
4.2  
0
to  
4
0.3  
to  
4.2  
25°C  
Common-mode  
input voltage range  
V
V
V
|V | ≤ 5 mV,  
IO  
R
= 50 Ω  
V
V
ICR  
OH  
OL  
S
0
to  
3.5  
0
to  
3.5  
Full range  
I
I
I
= 20 µA  
= 75 µA  
4.98  
4.94  
4.98  
4.94  
OH  
OH  
OH  
25°C  
4.9  
4.8  
4.8  
4.9  
4.8  
4.8  
High-level  
output voltage  
Full range  
= 150 µA  
25°C  
4.88  
0.01  
0.09  
4.88  
0.01  
0.09  
V
IC  
= 2.5 V,  
I
I
= 50 µA  
OL  
25°C  
0.15  
0.15  
0.3  
0.15  
0.15  
0.3  
V
= 2.5 V,  
= 2.5 V,  
= 500 µA  
Low-level  
output voltage  
IC  
OL  
Full range  
25°C  
V
0.2  
350  
0.2  
350  
V
IC  
I
= 1 A  
OL  
Full range  
25°C  
0.3  
0.3  
100  
10  
100  
10  
R
R
= 100 kΩ  
Large-signal differential  
voltage amplification  
V
IC  
V
O
= 2.5 V,  
= 1 V to 4 V  
L
L
Full range  
25°C  
A
VD  
V/mV  
1700  
1700  
= 1 MΩ  
Differential  
input resistance  
12  
10  
12  
10  
r
r
25°C  
25°C  
25°C  
25°C  
i(d)  
i(c)  
Common-mode  
input resistance  
12  
10  
12  
10  
Common-mode  
input capacitance  
c
z
f = 10 kHz  
f = 25 kHz,  
8
8
pF  
i(c)  
o
Closed-loop  
output impedance  
A
= 10  
200  
83  
200  
83  
V
25°C  
Full range  
25°C  
70  
70  
80  
80  
70  
70  
80  
80  
Common-mode  
rejection ratio  
V
IC  
V
O
= 0 to 2.7 V,  
= 2.5 V,  
CMRR  
dB  
dB  
R
= 50 Ω  
S
95  
95  
Supply-voltage rejection  
ratio (V  
DD  
V
= 4.4 V to 8 V,  
DD  
k
SVR  
/V  
IO  
)
V
IC  
= V  
/2,  
No load  
Full range  
DD  
Full range is −40°C to 125°C.  
Referenced to 2.5 V  
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢂ ꢇꢖꢘ ꢁ ꢔꢙꢆꢈ ꢔꢙꢇ ꢖ ꢔ ꢈꢇ ꢖꢊꢀꢗ ꢔ ꢚꢊ ꢁ ꢊꢓꢈ ꢁꢗ ꢛ ꢗꢇꢖꢕ  
  
SGLS217B − NOVEMBER 2003 − REVISED JUNE 2006  
TLV2252 electrical characteristics at specified free-air temperature, V  
noted) (continued)  
= 5 V (unless otherwise  
DD  
TLV2252  
TLV2252A  
UNIT  
PARAMETER  
TEST CONDITIONS  
T
A
MIN  
TYP MAX  
MIN  
TYP MAX  
25°C  
70  
125  
150  
70  
125  
150  
I
Supply current  
V
O
= 2.5 V,  
No load  
µA  
DD  
Full range  
Full range is −40°C to 125°C for Q level part.  
TLV2252 operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLV2252  
TLV2252A  
PARAMETER  
TEST CONDITIONS  
UNIT  
V/µs  
T
A
MIN  
TYP MAX MIN  
TYP MAX  
25°C  
0.07  
0.12  
0.07  
0.05  
0.12  
V
R
= 1.25 V to 2.75 V,  
O
L
SR  
Slew rate at unity gain  
Full  
range  
= 100 k, C = 100 pF  
L
0.05  
f = 10 Hz  
f = 1 kHz  
25°C  
25°C  
36  
19  
36  
19  
Equivalent input  
noise voltage  
nV/Hz  
V
n
Peak-to-peak  
equivalent input  
noise voltage  
f = 0.1 Hz to 1 Hz  
f = 0.1 Hz to 10 Hz  
25°C  
25°C  
0.7  
1.1  
0.7  
1.1  
V
I
µV  
N(PP)  
Equivalent input  
noise current  
25°C  
25°C  
0.6  
0.6  
fA/Hz  
n
V
= 0.5 V to 2.5 V,  
A
= 1  
0.2%  
1%  
0.2%  
1%  
O
V
Total harmonic  
distortion plus noise  
f = 20 kHz,  
THD+N  
A
V
= 10  
R
= 50 kΩ  
L
f = 50 kHz,  
R
= 50 k,  
L
Gain-bandwidth product  
25°C  
25°C  
0.2  
30  
0.2  
30  
MHz  
kHz  
C
= 100 pF  
L
Maximum output-swing  
bandwidth  
V
= 2 V,  
= 50 k,  
A
= 1,  
O(PP)  
V
B
OM  
R
R
R
C
= 100 pF  
= 100 pF  
= 100 pF  
L
L
L
L
L
L
Phase margin  
at unity gain  
φ
m
25°C  
25°C  
63°  
63°  
= 50 k,  
C
C
Gain margin  
15  
15  
dB  
= 50 k,  
Full range is −40°C to 125°C.  
Referenced to 2.5 V  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢃ ꢄ ꢅ ꢆꢇꢈꢉ ꢀ ꢁꢂꢃ ꢃꢄ ꢅꢊ ꢆꢇ ꢈ  
ꢂꢇ ꢖꢘ ꢁ ꢔ ꢙꢆꢈꢔ ꢙ ꢇꢖ ꢔ ꢈꢇꢖ ꢊꢀ ꢗꢔ ꢚꢊꢁ ꢊꢓ ꢈ ꢁꢗ ꢛꢗ ꢇꢖ ꢕ  
  
ꢖꢊꢗ ꢁꢆ ꢀꢔ ꢆꢖ ꢊ ꢗꢁ  
SGLS217B − NOVEMBER 2003 − REVISED JUNE 2006  
TLV2254 electrical characteristics at specified free-air temperature, V  
noted)  
= 3 V (unless otherwise  
DD  
TLV2254  
TLV2254A  
UNIT  
PARAMETER  
TEST CONDITIONS  
T
A
MIN  
TYP MAX  
200 1500  
1750  
MIN  
TYP MAX  
25°C  
200  
850  
V
V
=
= 0,  
1.5 V,  
1.5 V,  
V
R
= 0,  
= 50 Ω  
DD  
O
IC  
S
V
IO  
Input offset voltage  
µV  
Full range  
1000  
Temperature coefficient  
of input offset voltage  
V
V
=
= 0,  
V
R
= 0,  
= 50 Ω  
25°C  
to 125°C  
DD  
O
IC  
α
VIO  
0.5  
0.5  
µV/°C  
S
Input offset voltage  
long-term drift  
(see Note 4)  
V
V
=
= 0,  
1.5 V,  
V
R
= 0,  
= 50 Ω  
DD  
O
IC  
S
25°C  
0.003  
0.003  
0.5  
µV/mo  
25°C  
125°C  
25°C  
0.5  
1
60  
1000  
60  
60  
1000  
60  
V
V
=
= 0,  
1.5 V,  
1.5 V,  
V
R
= 0,  
= 50 Ω  
DD  
O
IC  
I
I
Input offset current  
Input bias current  
pA  
pA  
IO  
S
1
V
V
=
= 0,  
V
R
= 0,  
= 50 Ω  
DD  
O
IC  
IB  
125°C  
1000  
1000  
S
0
to  
2
0.3  
to  
2.2  
0
to  
2
0.3  
to  
2.2  
25°C  
Common-mode  
input voltage range  
V
R
= 50 Ω,  
|V | ≤ 5 mV  
IO  
V
V
ICR  
S
0
to  
1.7  
0
to  
1.7  
Full range  
I
I
I
= 20 µA  
= 75 µA  
2.98  
2.98  
OH  
OH  
OH  
25°C  
2.9  
2.8  
2.8  
2.9  
2.8  
2.8  
High-level  
output voltage  
V
V
OH  
Full range  
= 150 µA  
25°C  
V
IC  
= 1.5 V,  
I
I
= 50 µA  
10  
10  
OL  
25°C  
100  
150  
165  
300  
300  
100  
150  
165  
300  
300  
V
IC  
= 1.5 V,  
= 1.5 V,  
= 500 µA  
Low-level  
output voltage  
OL  
Full range  
25°C  
mV  
OL  
200  
225  
800  
200  
225  
800  
V
IC  
I
= 1 A  
OL  
Full range  
25°C  
100  
10  
100  
10  
R
R
= 100 kΩ  
Large-signal differential  
voltage amplification  
V
IC  
V
O
= 1.5 V,  
= 1 V to 2 V  
L
L
Full range  
25°C  
A
VD  
V/mV  
= 1 MΩ  
Differential input  
resistance  
12  
10  
12  
10  
r
r
25°C  
25°C  
25°C  
25°C  
i(d)  
i(c)  
Common-mode  
input resistance  
12  
10  
12  
10  
Common-mode  
input capacitance  
c
z
f = 10 kHz  
f = 25 kHz,  
8
8
pF  
i(c)  
o
Closed-loop  
output impedance  
A
= 10  
220  
75  
220  
77  
V
25°C  
65  
60  
65  
60  
Common-mode  
rejection ratio  
V
R
= 0 to 1.7 V,  
= 50 Ω  
V
O
= 1.5 V,  
IC  
S
CMRR  
dB  
dB  
Full range  
Supply-voltage  
rejection ratio  
25°C  
80  
80  
95  
80  
80  
100  
V
V
= 2.7 V to 8 V,  
= V  
DD  
DD  
IC  
k
SVR  
/2,  
No load  
Full range  
(V  
DD  
/V )  
IO  
Full range is −40°C to 125°C.  
Referenced to 1.5 V  
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃꢄ ꢅ ꢆꢇꢈꢉ ꢀ ꢁꢂ ꢃ ꢃꢄ ꢅ ꢊꢆꢇ ꢈ  
ꢂ ꢇꢖꢘ ꢁ ꢔꢙꢆꢈ ꢔꢙꢇ ꢖ ꢔ ꢈꢇ ꢖꢊꢀꢗ ꢔ ꢚꢊ ꢁ ꢊꢓꢈ ꢁꢗ ꢛ ꢗꢇꢖꢕ  
  
SGLS217B − NOVEMBER 2003 − REVISED JUNE 2006  
TLV2254 electrical characteristics at specified free-air temperature, V  
noted) (continued)  
= 3 V (unless otherwise  
DD  
TLV2254  
TLV2254A  
UNIT  
PARAMETER  
TEST CONDITIONS  
T
A
MIN  
TYP MAX  
MIN  
TYP MAX  
25°C  
135  
250  
300  
135  
250  
300  
Supply current  
(four amplifiers)  
I
V
O
= 1.5 V,  
No load  
µA  
DD  
Full range  
Full range is −40°C to 125°C for Q level part.  
TLV2254 operating characteristics at specified free-air temperature, V  
= 3 V  
DD  
TLV2254  
TLV2254A  
TYP  
PARAMETER  
TEST CONDITIONS  
UNIT  
V/µs  
T
A
MIN  
TYP  
MAX  
MIN  
MAX  
V
R
C
= 0.5 V to 1.7 V,  
0.07  
0.1  
0.07  
0.1  
O
L
L
25°C  
= 100 k,  
SR  
Slew rate at unity gain  
Equivalent input noise voltage  
Full range  
0.05  
0.05  
= 100 pF  
f = 10 Hz  
35  
19  
35  
19  
nV/Hz  
V
n
25°C  
f = 1 kHz  
f = 0.1 Hz to 1 Hz  
f = 0.1 Hz to 10 Hz  
0.6  
1.1  
0.6  
0.6  
1.1  
0.6  
Peak-to-peak equivalent  
input noise voltage  
V
I
25°C  
25°C  
µV  
N(PP)  
Equivalent input noise current  
fA/Hz  
n
f = 1 kHz,  
R
C
= 50 k,  
Gain-bandwidth product  
25°C  
25°C  
0.187  
60  
0.187  
60  
MHz  
L
L
= 100 pF  
V
A
R
= 1 V,  
O(PP)  
= 1,  
Maximum output-swing  
bandwidth  
V
B
OM  
kHz  
= 50 k,  
L
L
C
= 100 pF  
R
C
= 50 k,  
L
L
φ
m
Phase margin at unity gain  
Gain margin  
25°C  
25°C  
63°  
63°  
= 100 pF  
R
C
= 50 k,  
L
L
15  
15  
dB  
= 100 pF  
Full range is −40°C to 125°C for Q level part.  
Referenced to 1.5 V  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢂꢇ ꢖꢘ ꢁ ꢔ ꢙꢆꢈꢔ ꢙ ꢇꢖ ꢔ ꢈꢇꢖ ꢊꢀ ꢗꢔ ꢚꢊꢁ ꢊꢓ ꢈ ꢁꢗ ꢛꢗ ꢇꢖ ꢕ  
  
ꢖꢊꢗ ꢁꢆ ꢀꢔ ꢆꢖ ꢊ ꢗꢁ  
SGLS217B − NOVEMBER 2003 − REVISED JUNE 2006  
TLV2254 electrical characteristics at specified free-air temperature, V  
noted)  
= 5 V (unless otherwise  
DD  
TLV2254  
TLV2254A  
UNIT  
PARAMETER  
TEST CONDITIONS  
T
A
MIN  
TYP MAX  
200 1500  
1750  
MIN  
TYP MAX  
25°C  
200  
850  
V
V
=
= 0,  
2.5 V,  
2.5 V,  
V
R
= 0,  
= 50 Ω  
DD  
O
IC  
S
V
IO  
Input offset voltage  
µV  
Full range  
1000  
Temperature coefficient  
of input offset voltage  
V
V
=
= 0,  
V
R
= 0,  
= 50 Ω  
25°C  
to 125°C  
DD  
O
IC  
α
VIO  
0.5  
0.5  
µV/°C  
S
Input offset voltage  
long-term drift  
(see Note 4)  
V
V
=
= 0,  
2.5 V,  
V
R
= 0,  
= 50 Ω  
DD  
O
IC  
S
25°C  
0.003  
0.003  
0.5  
µV/mo  
25°C  
125°C  
25°C  
0.5  
1
60  
1000  
60  
60  
1000  
60  
V
V
=
= 0,  
2.5 V,  
2.5 V,  
V
R
= 0,  
= 50 Ω  
DD  
O
IC  
I
I
Input offset current  
Input bias current  
pA  
pA  
IO  
S
1
V
V
=
= 0,  
V
R
= 0,  
= 50 Ω  
DD  
O
IC  
IB  
125°C  
1000  
1000  
S
0
to  
4
0.3  
to  
4.2  
0
to  
4
0.3  
to  
4.2  
25°C  
Common-mode  
input voltage range  
V
|V | ≤ 5 mV,  
IO  
R
= 50 Ω  
V
V
ICR  
S
0
to  
3.5  
0
to  
3.5  
Full range  
I
I
I
= 20 µA  
= 75 µA  
4.98  
4.94  
4.98  
4.94  
OH  
OH  
OH  
25°C  
4.9  
4.8  
4.8  
4.9  
4.8  
4.8  
High-level  
output voltage  
V
V
OH  
Full range  
= 150 µA  
25°C  
4.88  
0.01  
0.09  
4.88  
0.01  
0.09  
V
IC  
= 2.5 V,  
I
I
= 50 µA  
OL  
25°C  
0.15  
0.15  
0.3  
0.15  
0.15  
0.3  
V
= 2.5 V,  
= 2.5 V,  
= 500 µA  
Low-level  
output voltage  
IC  
OL  
Full range  
25°C  
V
OL  
0.2  
350  
0.2  
350  
V
IC  
I
= 1 A  
OL  
Full range  
25°C  
0.3  
0.3  
100  
10  
100  
10  
R
R
= 100 kΩ  
Large-signal differential  
voltage amplification  
V
IC  
V
O
= 2.5 V,  
= 1 V to 4 V  
L
L
Full range  
25°C  
A
VD  
V/mV  
1700  
1700  
= 1 MΩ  
Differential input  
resistance  
12  
10  
12  
10  
r
r
25°C  
25°C  
25°C  
25°C  
i(d)  
i(c)  
Common-mode  
input resistance  
12  
10  
12  
10  
Common-mode  
input capacitance  
c
z
f = 10 kHz  
f = 25 kHz,  
8
8
pF  
i(c)  
o
Closed-loop  
output impedance  
A
= 10  
200  
83  
200  
83  
V
25°C  
70  
70  
70  
70  
Common-mode  
rejection ratio  
V
R
= 0 to 2.7 V,  
= 50 Ω  
V
= 2.5 V,  
IC  
O
CMRR  
dB  
Full range  
S
Supply-voltage  
rejection ratio  
25°C  
80  
80  
95  
80  
80  
95  
V
V
= 4.4 V to 8 V,  
DD  
IC  
k
dB  
SVR  
= V  
DD  
/2,  
No load  
Full range  
(V  
DD  
/V )  
IO  
Full range is −40°C to 125°C.  
Referenced to 2.5 V  
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢂ ꢇꢖꢘ ꢁ ꢔꢙꢆꢈ ꢔꢙꢇ ꢖ ꢔ ꢈꢇ ꢖꢊꢀꢗ ꢔ ꢚꢊ ꢁ ꢊꢓꢈ ꢁꢗ ꢛ ꢗꢇꢖꢕ  
  
ꢖꢊ ꢗ ꢁꢆꢀꢔ ꢆꢖꢊꢗ ꢁ  
SGLS217B − NOVEMBER 2003 − REVISED JUNE 2006  
TLV2254 electrical characteristics at specified free-air temperature, V  
noted) (continued)  
= 5 V (unless otherwise  
DD  
TLV2254  
TLV2254A  
UNIT  
PARAMETER  
TEST CONDITIONS  
T
A
MIN  
TYP MAX  
MIN  
TYP MAX  
25°C  
140  
250  
300  
140  
250  
300  
Supply current  
(four amplifiers)  
I
V
O
= 2.5 V,  
No load  
µA  
DD  
Full range  
Full range is −40°C to 125°C.  
TLV2254 operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLV2254  
TLV2254A  
PARAMETER  
TEST CONDITIONS  
UNIT  
V/µs  
T
A
MIN  
TYP MAX  
MIN  
TYP MAX  
0.07  
0.12  
0.07  
0.12  
25°C  
Slew rate  
at unity gain  
V
O
= 0.5 V to 3.5 V,  
R
= 100 k,  
L
SR  
Full  
range  
C = 100 pF  
L
0.05  
0.05  
f = 10 Hz  
f = 1 kHz  
36  
19  
36  
19  
Equivalent input  
noise voltage  
nV/Hz  
V
n
25°C  
Peak-to-peak  
equivalent input  
noise voltage  
f = 0.1 Hz to 1 Hz  
f = 0.1 Hz to 10 Hz  
0.7  
1.1  
0.7  
1.1  
V
I
25°C  
25°C  
µV  
N(PP)  
Equivalent input  
noise current  
0.6  
0.6  
fA/Hz  
n
Total harmonic  
distortion plus  
noise  
V
= 0.5 V to 2.5 V,  
A
= 1  
0.2%  
1%  
0.2%  
1%  
O
V
f = 20 kHz,  
R
THD+N  
25°C  
A
V
= 10  
= 50 kΩ  
L
Gain-bandwidth  
product  
f = 50 kHz,  
R
= 50 k,  
L
25°C  
25°C  
0.2  
30  
0.2  
30  
MHz  
kHz  
C
= 100 pF  
L
Maximum output-  
swing bandwidth  
V
= 2 V,  
= 50 k,  
A
= 1,  
O(PP)  
V
B
OM  
R
R
R
C
= 100 pF  
L
L
L
L
L
L
Phase margin  
at unity gain  
φ
m
25°C  
25°C  
63°  
63°  
= 50 k,  
C
C
= 100 pF  
Gain margin  
15  
15  
dB  
= 50 k,  
= 100 pF  
Full range is −40°C to 125°C for Q level part.  
Referenced to 2.5 V  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢂꢇ ꢖꢘ ꢁ ꢔ ꢙꢆꢈꢔ ꢙ ꢇꢖ ꢔ ꢈꢇꢖ ꢊꢀ ꢗꢔ ꢚꢊꢁ ꢊꢓ ꢈ ꢁꢗ ꢛꢗ ꢇꢖ ꢕ  
  
ꢖꢊꢗ ꢁꢆ ꢀꢔ ꢆꢖ ꢊ ꢗꢁ  
SGLS217B − NOVEMBER 2003 − REVISED JUNE 2006  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
Distribution  
vs Common-mode voltage  
2−5  
V
Input offset voltage  
IO  
6, 7  
8−11  
12  
α
VIO  
Input offset voltage temperature coefficient  
Input bias and input offset currents  
Distribution  
I
/I  
vs Free-air temperature  
IB IO  
vs Supply voltage  
vs Free-air temperature  
13  
14  
V
I
Input voltage  
V
V
V
High-level output voltage  
vs High-level output current  
vs Low-level output current  
vs Frequency  
15, 18  
16, 17, 19  
20  
OH  
Low-level output voltage  
OL  
Maximum peak-to-peak output voltage  
O(PP)  
vs Supply voltage  
vs Free-air temperature  
21  
22  
I
Short-circuit output current  
OS  
V
Differential input voltage  
vs Output voltage  
vs Load resistance  
23, 24  
25  
ID  
A
VD  
Differential voltage amplification  
vs Frequency  
vs Free-air temperature  
26, 27  
28, 29  
A
Large-signal differential voltage amplification  
Output impedance  
VD  
o
z
vs Frequency  
30, 31  
vs Frequency  
vs Free-air temperature  
32  
33  
CMRR  
Common-mode rejection ratio  
vs Frequency  
vs Free-air temperature  
34, 35  
36  
k
Supply-voltage rejection ratio  
Supply current  
SVR  
I
vs Supply voltage  
37, 38  
DD  
vs Load capacitance  
vs Free-air temperature  
39  
40  
SR  
Slew rate  
V
V
V
V
V
Inverting large-signal pulse response  
Voltage-follower large-signal pulse response  
Inverting small-signal pulse response  
Voltage-follower small-signal pulse response  
Equivalent input noise voltage  
41, 42  
43, 44  
45, 46  
47, 48  
49, 50  
51  
O
O
O
O
n
vs Frequency  
Over a 10-s period  
vs Frequency  
vs Frequency  
Input noise voltage  
Integrated noise voltage  
52  
THD+N  
Total harmonic distortion plus noise  
53  
vs Supply voltage  
vs Free-air temperature  
54  
55  
Gain-bandwidth product  
Phase margin  
vs Frequency  
vs Load capacitance  
26, 27  
56  
φ
m
Gain margin  
vs Load capacitance  
vs Load capacitance  
vs Load capacitance  
57  
58  
59  
B
1
Unity-gain bandwidth  
Overestimation of phase margin  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃꢄ ꢅ ꢆꢇꢈꢉ ꢀ ꢁꢂ ꢃ ꢃꢄ ꢅ ꢊꢆꢇ ꢈ  
ꢂ ꢇꢖꢘ ꢁ ꢔꢙꢆꢈ ꢔꢙꢇ ꢖ ꢔ ꢈꢇ ꢖꢊꢀꢗ ꢔ ꢚꢊ ꢁ ꢊꢓꢈ ꢁꢗ ꢛ ꢗꢇꢖꢕ  
ꢖꢊ ꢗ ꢁꢆꢀꢔ ꢆꢖꢊꢗ ꢁ  
SGLS217B − NOVEMBER 2003 − REVISED JUNE 2006  
TYPICAL CHARACTERISTICS  
DISTRIBUTION OF TLV2252  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLV2252  
INPUT OFFSET VOLTAGE  
20  
15  
10  
20  
15  
10  
1020 Amplifiers From 1 Wafer Lot  
1020 Amplifiers From 1 Wafer Lot  
V
T
=
1.5 V  
V
DD  
=
2.5 V  
T = 25°C  
A
DD  
= 25°C  
A
5
0
5
0
1.6  
0.8  
0
0.8  
1.6  
1.6  
0.8  
0
0.8  
1.6  
V
IO  
− Input Offset Voltage − mV  
V
IO  
− Input Offset Voltage − mV  
Figure 2  
Figure 3  
DISTRIBUTION OF TLV2254  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLV2254  
INPUT OFFSET VOLTAGE  
35  
30  
25  
20  
15  
35  
30  
682 Amplifiers From 1 Wafer Lot  
682 Amplifiers From 1 Wafer Lot  
V
T
=
1.5 V  
V
T
=
2.5 V  
DD  
DD  
= 25°C  
= 25°C  
A
A
25  
20  
15  
10  
5
10  
5
0
0
1.6  
0.8  
0
0.8  
1.6  
1.6  
0.8  
0
0.8  
1.6  
V
IO  
− Input Offset Voltage − mV  
V
IO  
− Input Offset Voltage − mV  
Figure 4  
Figure 5  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢃ ꢄ ꢅ ꢆꢇꢈꢉ ꢀ ꢁꢂꢃ ꢃꢄ ꢅꢊ ꢆꢇ ꢈ  
ꢂꢇ ꢖꢘ ꢁ ꢔ ꢙꢆꢈꢔ ꢙ ꢇꢖ ꢔ ꢈꢇꢖ ꢊꢀ ꢗꢔ ꢚꢊꢁ ꢊꢓ ꢈ ꢁꢗ ꢛꢗ ꢇꢖ ꢕ  
  
ꢖꢊꢗ ꢁꢆ ꢀꢔ ꢆꢖ ꢊ ꢗꢁ  
SGLS217B − NOVEMBER 2003 − REVISED JUNE 2006  
TYPICAL CHARACTERISTICS  
INPUT OFFSET VOLTAGE  
INPUT OFFSET VOLTAGE  
vs  
vs  
COMMON-MODE INPUT VOLTAGE  
COMMON-MODE INPUT VOLTAGE  
1
1
V
R
T
= 5 V  
= 50 Ω  
= 25°C  
V
R
T
= 3 V  
= 50 Ω  
= 25°C  
DD  
S
A
DD  
S
A
0.8  
0.8  
0.6  
0.4  
0.2  
0.6  
0.4  
0.2  
0
0.2  
0.4  
0
0.2  
0.4  
0.6  
0.8  
0.6  
0.8  
−1  
−1  
−1  
−1  
0
1
2
3
4
5
0
1
2
3
V
IC  
− Common-Mode Input Voltage − V  
V
IC  
− Common-Mode Input Voltage − V  
Figure 6  
Figure 7  
DISTRIBUTION OF TLV2252 INPUT OFFSET  
VOLTAGE TEMPERATURE COEFFICIENT  
DISTRIBUTION OF TLV2252 INPUT OFFSET  
VOLTAGE TEMPERATURE COEFFICIENT  
25  
20  
15  
25  
20  
15  
62 Amplifiers From 1 Wafer Lot  
62 Amplifiers From 1 Wafer Lot  
V
=
2.5 V  
P Package  
= 25°C to 85°C  
V
=
1.5 V  
P Package  
= 25°C to 85°C  
DD  
DD  
T
T
A
A
10  
5
10  
5
0
−2  
0
−2  
−1  
0
1
2
−1  
0
1
2
α
− Temperature Coefficient − µV/°C  
α
− Temperature Coefficient − µV/°C  
VIO  
VIO  
Figure 8  
Figure 9  
For all curves where V  
DD  
= 5 V, all loads are referenced to 2.5 V. For all curves where V  
DD  
= 3 V, all loads are referenced to 1.5 V.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃꢄ ꢅ ꢆꢇꢈꢉ ꢀ ꢁꢂ ꢃ ꢃꢄ ꢅ ꢊꢆꢇ ꢈ  
ꢂ ꢇꢖꢘ ꢁ ꢔꢙꢆꢈ ꢔꢙꢇ ꢖ ꢔ ꢈꢇ ꢖꢊꢀꢗ ꢔ ꢚꢊ ꢁ ꢊꢓꢈ ꢁꢗ ꢛ ꢗꢇꢖꢕ  
ꢖꢊ ꢗ ꢁꢆꢀꢔ ꢆꢖꢊꢗ ꢁ  
SGLS217B − NOVEMBER 2003 − REVISED JUNE 2006  
TYPICAL CHARACTERISTICS  
DISTRIBUTION OF TLV2254 INPUT OFFSET  
VOLTAGE TEMPERATURE COEFFICIENT  
DISTRIBUTION OF TLV2254 INPUT OFFSET  
VOLTAGE TEMPERATURE COEFFICIENT  
25  
20  
15  
10  
25  
20  
15  
10  
62 Amplifiers From 1 Wafer Lot  
62 Amplifiers From 1 Wafer Lot  
V
=
1.5 V  
P Package  
= 25°C to 85°C  
DD  
V
=
2.5 V  
P Package  
= 25°C to 85°C  
DD  
T
A
T
A
5
0
5
0
−2  
−1  
0
1
2
−2  
−1  
0
1
2
α
− Temperature Coefficient  
α
− Temperature Coefficient  
VIO  
VIO  
of Input Offset Voltage − µV/°C  
of Input Offset Voltage − µV/°C  
Figure 10  
Figure 11  
INPUT VOLTAGE  
vs  
SUPPLY VOLTAGE  
INPUT BIAS AND INPUT OFFSET CURRENTS  
vs  
FREE-AIR TEMPERATURE  
2.5  
35  
30  
25  
R
T
= 50 Ω  
= 25°C  
V
V
V
= 2.5 V  
= 0  
= 0  
= 50 Ω  
S
A
DD  
IC  
O
2
1.5  
1
R
S
0.5  
0
20  
15  
10  
5
| V | 5 mV  
IO  
0.5  
−1  
I
IB  
1.5  
−2  
I
IO  
2.5  
0
25  
1
1.5  
2
2.5  
3
3.5  
4
45  
65  
85  
105  
125  
| V  
DD  
| − Supply Voltage − V  
T
A
− Free-Air Temperature − °C  
Figure 12  
Figure 13  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢃ ꢄ ꢅ ꢆꢇꢈꢉ ꢀ ꢁꢂꢃ ꢃꢄ ꢅꢊ ꢆꢇ ꢈ  
ꢂꢇ ꢖꢘ ꢁ ꢔ ꢙꢆꢈꢔ ꢙ ꢇꢖ ꢔ ꢈꢇꢖ ꢊꢀ ꢗꢔ ꢚꢊꢁ ꢊꢓ ꢈ ꢁꢗ ꢛꢗ ꢇꢖ ꢕ  
ꢖꢊꢗ ꢁꢆ ꢀꢔ ꢆꢖ ꢊ ꢗꢁ  
SGLS217B − NOVEMBER 2003 − REVISED JUNE 2006  
TYPICAL CHARACTERISTICS  
†‡  
†‡  
INPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
HIGH-LEVEL OUTPUT CURRENT  
5
4
3
2
1
3
2.5  
2
V
DD  
= 5 V  
V
= 3 V  
DD  
T
= 40°C  
= 25°C  
A
T
A
| V | 5 mV  
IO  
1.5  
1
T
= 85°C  
A
T
A
= 125°C  
0
0.5  
0
−1  
55 35 15  
5
25  
45  
65 85 105 125  
0
200  
400  
600  
800  
T
A
− Free-Air Temperature − °C  
| I  
OH  
| − High-Level Output Current − µA  
Figure 14  
Figure 15  
†‡  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT CURRENT  
1.4  
1.2  
1
1.2  
1
V
T
= 3 V  
V
V
= 3 V  
= 1.5 V  
DD  
= 25°C  
DD  
IC  
A
T
= 125°C  
= 85°C  
A
V
= 0  
IC  
0.8  
0.6  
0.4  
0.2  
0
T
A
0.8  
0.6  
V
IC  
= 0.75 V  
T
= 25°C  
A
V
IC  
= 1.5 V  
0.4  
T
A
= − 40°C  
0.2  
0
0
1
2
3
4
5
0
1
2
3
4
5
I − Low-Level Output Current − mA  
OL  
I
− Low-Level Output Current − mA  
OL  
Figure 16  
Figure 17  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
For all curves where V = 5 V, all loads are referenced to 2.5 V. For all curves where V = 3 V, all loads are referenced to 1.5 V.  
DD DD  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢂ ꢇꢖꢘ ꢁ ꢔꢙꢆꢈ ꢔꢙꢇ ꢖ ꢔ ꢈꢇ ꢖꢊꢀꢗ ꢔ ꢚꢊ ꢁ ꢊꢓꢈ ꢁꢗ ꢛ ꢗꢇꢖꢕ  
  
ꢖꢊ ꢗ ꢁꢆꢀꢔ ꢆꢖꢊꢗ ꢁ  
SGLS217B − NOVEMBER 2003 − REVISED JUNE 2006  
TYPICAL CHARACTERISTICS  
†‡  
†‡  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT CURRENT  
5
4
3
1.4  
1.2  
V
V
= 5 V  
V
= 5 V  
DD  
= 2.5 V  
DD  
T
= 125°C  
A
IC  
1
T
= 40°C  
= 25°C  
= 85°C  
T
A
= 85°C  
A
0.8  
T
A
= 25°C  
T
A
0.6  
0.4  
0.2  
0
2
1
0
T
A
T
= 40°C  
A
T
= 125°C  
A
0
200  
400  
600  
800  
0
1
2
3
4
5
6
| I  
OH  
| − High-Level Output Current − µA  
I
− Low-Level Output Current − mA  
OL  
Figure 18  
Figure 19  
SHORT-CIRCUIT OUTPUT CURRENT  
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE  
vs  
vs  
SUPPLY VOLTAGE  
FREQUENCY  
10  
9
8
7
6
5
4
3
2
1
5
R = 50 kΩ  
V
= 5 V  
I
DD  
DD  
T
= 25°C  
A
4
V
= 100 mV  
ID  
3
2
V
= 3 V  
V
= V /2  
DD  
O
T
= 25°C  
A
V
IC  
= V /2  
DD  
1
0
V
= 100 mV  
0
ID  
−1  
2
3
4
5
6
7
8
2
3
4
5
10  
10  
10  
10  
V
− Supply Voltage − V  
DD  
f − Frequency − Hz  
Figure 20  
Figure 21  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
For all curves where V  
= 5 V, all loads are referenced to 2.5 V. For all curves where V  
= 3 V, all loads are referenced to 1.5 V.  
DD  
DD  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢂꢇ ꢖꢘ ꢁ ꢔ ꢙꢆꢈꢔ ꢙ ꢇꢖ ꢔ ꢈꢇꢖ ꢊꢀ ꢗꢔ ꢚꢊꢁ ꢊꢓ ꢈ ꢁꢗ ꢛꢗ ꢇꢖ ꢕ  
  
ꢖꢊꢗ ꢁꢆ ꢀꢔ ꢆꢖ ꢊ ꢗꢁ  
SGLS217B − NOVEMBER 2003 − REVISED JUNE 2006  
TYPICAL CHARACTERISTICS  
DIFFERENTIAL INPUT VOLTAGE  
SHORT-CIRCUIT OUTPUT CURRENT  
vs  
vs  
OUTPUT VOLTAGE  
FREE-AIR TEMPERATURE  
11  
1000  
800  
V
= 3 V  
V
V
= 2.5 V  
DD  
R = 50 kΩ  
O
10  
9
=
5 V  
I
DD  
V
T
= 1.5 V  
= 25°C  
IC  
600  
A
8
V
ID  
= 100 mV  
400  
7
6
5
4
200  
0
200  
400  
600  
800  
3
2
1
V
ID  
= 100 mV  
0
−1  
75  
1000  
0
0.5  
1
1.5  
2
2.5  
3
50 25  
0
25  
50  
75  
100 125  
V
O
− Output Voltage − V  
T
A
− Free-Air Temperature − °C  
Figure 22  
Figure 23  
DIFFERENTIAL INPUT VOLTAGE  
†‡  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
vs  
vs  
OUTPUT VOLTAGE  
LOAD RESISTANCE  
1000  
800  
4
10  
3
10  
2
10  
1
10  
V
T
= 2 V  
V
V
R
= 5 V  
O(PP)  
= 25°C  
DD  
IC  
L
= 2.5 V  
= 50 kΩ  
= 25°C  
A
600  
T
A
400  
V
DD  
= 5 V  
V
200  
0
= 3 V  
DD  
200  
400  
600  
800  
1000  
1
1
10  
2
3
10  
1
10  
0
1
2
3
4
5
V
O
− Output Voltage − V  
R
− Load Resistance − kΩ  
L
Figure 24  
Figure 25  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
For all curves where V = 5 V, all loads are referenced to 2.5 V. For all curves where V = 3 V, all loads are referenced to 1.5 V.  
DD DD  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢂ ꢇꢖꢘ ꢁ ꢔꢙꢆꢈ ꢔꢙꢇ ꢖ ꢔ ꢈꢇ ꢖꢊꢀꢗ ꢔ ꢚꢊ ꢁ ꢊꢓꢈ ꢁꢗ ꢛ ꢗꢇꢖꢕ  
  
ꢖꢊ ꢗ ꢁꢆꢀꢔ ꢆꢖꢊꢗ ꢁ  
SGLS217B − NOVEMBER 2003 − REVISED JUNE 2006  
TYPICAL CHARACTERISTICS  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE MARGIN  
vs  
FREQUENCY  
80  
60  
180°  
135°  
V
R
= 5 V  
= 50 kΩ  
DD  
L
L
C = 100 pF  
T
A
= 25°C  
40  
90°  
45°  
Phase Margin  
20  
0
Gain  
0°  
20  
40  
45°  
90°  
3
4
5
6
7
10  
10  
10  
10  
10  
f − Frequency − Hz  
Figure 26  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE MARGIN  
vs  
FREQUENCY  
80  
60  
180°  
135°  
V
= 3 V  
DD  
R = 50 kΩ  
L
L
C = 100 pF  
T
A
= 25°C  
40  
90°  
45°  
Phase Margin  
20  
0
Gain  
0°  
20  
40  
45°  
90°  
3
4
5
6
7
10  
10  
10  
10  
10  
f − Frequency − Hz  
Figure 27  
For all curves where V  
DD  
= 5 V, all loads are referenced to 2.5 V. For all curves where V  
= 3 V, all loads are referenced to 1.5 V.  
DD  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢂꢇ ꢖꢘ ꢁ ꢔ ꢙꢆꢈꢔ ꢙ ꢇꢖ ꢔ ꢈꢇꢖ ꢊꢀ ꢗꢔ ꢚꢊꢁ ꢊꢓ ꢈ ꢁꢗ ꢛꢗ ꢇꢖ ꢕ  
  
SGLS217B − NOVEMBER 2003 − REVISED JUNE 2006  
TYPICAL CHARACTERISTICS  
†‡  
†‡  
LARGE-SIGNAL DIFFERENTIAL  
LARGE-SIGNAL DIFFERENTIAL  
VOLTAGE AMPLIFICATION  
vs  
VOLTAGE AMPLIFICATION  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
4
3
4
3
10  
10  
10  
10  
V
V
V
= 5 V  
= 2.5 V  
= 1 V to 4 V  
DD  
IC  
O
V
V
V
= 3 V  
= 1.5 V  
= 0.5 V to 2.5 V  
DD  
IC  
O
R
= 1 MΩ  
L
R
= 1 MΩ  
= 50 kΩ  
L
R
R
= 50 kΩ  
L
L
2
2
1
10  
10  
10  
1
10  
75 50 25  
0
25  
50  
75  
100 125  
75 50 25  
0
25  
50  
75 100 125  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 28  
Figure 29  
OUTPUT IMPEDANCE  
OUTPUT IMPEDANCE  
vs  
vs  
FREQUENCY  
FREQUENCY  
1000  
100  
10  
1000  
100  
10  
V
T
= 5 V  
= 25°C  
V
T
= 3 V  
= 25°C  
DD  
A
DD  
A
A
= 100  
V
A
= 100  
V
A
= 10  
= 1  
A
= 10  
= 1  
V
V
1
1
A
V
A
V
0.1  
10  
0.1  
10  
2
3
4
5
6
2
3
4
5
6
10  
10  
10  
10  
10  
10  
10  
10  
f− Frequency − Hz  
f− Frequency − Hz  
Figure 30  
Figure 31  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
For all curves where V = 5 V, all loads are referenced to 2.5 V. For all curves where V = 3 V, all loads are referenced to 1.5 V.  
DD DD  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃꢄ ꢅ ꢆꢇꢈꢉ ꢀ ꢁꢂ ꢃ ꢃꢄ ꢅ ꢊꢆꢇ ꢈ  
ꢂ ꢇꢖꢘ ꢁ ꢔꢙꢆꢈ ꢔꢙꢇ ꢖ ꢔ ꢈꢇ ꢖꢊꢀꢗ ꢔ ꢚꢊ ꢁ ꢊꢓꢈ ꢁꢗ ꢛ ꢗꢇꢖꢕ  
  
ꢖꢊ ꢗ ꢁꢆꢀꢔ ꢆꢖꢊꢗ ꢁ  
SGLS217B − NOVEMBER 2003 − REVISED JUNE 2006  
TYPICAL CHARACTERISTICS  
†‡  
COMMON-MODE REJECTION RATIO  
COMMON-MODE REJECTION RATIO  
vs  
vs  
FREE-AIR TEMPERATURE  
FREQUENCY  
100  
80  
94  
92  
90  
88  
86  
84  
82  
V
V
= 5 V  
= 2.5 V  
T
A
= 25°C  
DD  
IC  
V
V
= 3 V  
= 1.5 V  
DD  
IC  
V
DD  
= 5 V  
60  
40  
20  
0
V
DD  
= 3 V  
80  
4
5
6
10  
1
2
3
10  
10  
10  
10  
10  
− 75 − 50 − 25  
0
25  
50  
75 100  
125  
T
A
− Free-Air Temperature − °C  
f − Frequency − Hz  
Figure 32  
Figure 33  
SUPPLY-VOLTAGE REJECTION RATIO  
SUPPLY-VOLTAGE REJECTION RATIO  
vs  
vs  
FREQUENCY  
FREQUENCY  
100  
80  
100  
80  
60  
40  
20  
V
T
= 3 V  
V
T
= 5 V  
= 25°C  
DD  
= 25°C  
DD  
A
k
SVR+  
A
60  
k
SVR+  
k
SVR−  
40  
k
SVR−  
20  
0
0
20  
20  
1
2
3
4
5
6
10  
6
1
2
3
4
5
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 34  
Figure 35  
For all curves where V  
DD  
= 5 V, all loads are referenced to 2.5 V. For all curves where V  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
= 3 V, all loads are referenced to 1.5 V.  
DD  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢃ ꢄ ꢅ ꢆꢇꢈꢉ ꢀ ꢁꢂꢃ ꢃꢄ ꢅꢊ ꢆꢇ ꢈ  
ꢂꢇ ꢖꢘ ꢁ ꢔ ꢙꢆꢈꢔ ꢙ ꢇꢖ ꢔ ꢈꢇꢖ ꢊꢀ ꢗꢔ ꢚꢊꢁ ꢊꢓ ꢈ ꢁꢗ ꢛꢗ ꢇꢖ ꢕ  
  
ꢖꢊꢗ ꢁꢆ ꢀꢔ ꢆꢖ ꢊ ꢗꢁ  
SGLS217B − NOVEMBER 2003 − REVISED JUNE 2006  
TYPICAL CHARACTERISTICS  
TLV2252  
SUPPLY CURRENT  
SUPPLY-VOLTAGE REJECTION RATIO  
vs  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
110  
105  
120  
100  
80  
60  
40  
20  
0
V
V
= 2.7 V to 8 V  
DD  
= V = V /2  
DD  
V
= 0  
O
IC  
O
No Load  
T
= 40°C  
= 85°C  
A
100  
95  
T
A
T
A
= 25°C  
90  
75 50 25  
0
25  
50  
75 100  
125  
0
1
2
3
4
5
6
7
8
T
A
− Free-Air Temperature − °C  
V
DD  
− Supply Voltage − V  
Figure 36  
Figure 37  
TLV2254  
SUPPLY CURRENT  
SLEW RATE  
vs  
vs  
SUPPLY VOLTAGE  
LOAD CAPACITANCE  
0.2  
0.18  
0.16  
0.14  
0.12  
0.1  
240  
200  
160  
120  
80  
V
= 5 V  
DD  
= 1  
V
= 0  
O
A
V
A
No Load  
T
= 25°C  
T
= 40°C  
A
SR−  
T
= 85°C  
A
SR+  
T
A
= 25°C  
0.08  
0.06  
0.04  
40  
0.02  
0
0
1
2
3
4
10  
0
1
2
3
4
5
6
7
8
10  
10  
10  
| V  
DD  
| − Supply Voltage − V  
C
− Load Capacitance − pF  
L
Figure 38  
Figure 39  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
For all curves where V = 5 V, all loads are referenced to 2.5 V. For all curves where V = 3 V, all loads are referenced to 1.5 V.  
DD DD  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃꢄ ꢅ ꢆꢇꢈꢉ ꢀ ꢁꢂ ꢃ ꢃꢄ ꢅ ꢊꢆꢇ ꢈ  
ꢂ ꢇꢖꢘ ꢁ ꢔꢙꢆꢈ ꢔꢙꢇ ꢖ ꢔ ꢈꢇ ꢖꢊꢀꢗ ꢔ ꢚꢊ ꢁ ꢊꢓꢈ ꢁꢗ ꢛ ꢗꢇꢖꢕ  
  
ꢖꢊ ꢗ ꢁꢆꢀꢔ ꢆꢖꢊꢗ ꢁ  
SGLS217B − NOVEMBER 2003 − REVISED JUNE 2006  
TYPICAL CHARACTERISTICS  
†‡  
SLEW RATE  
vs  
FREE-AIR TEMPERATURE  
0.2  
INVERTING LARGE-SIGNAL PULSE  
RESPONSE  
3
2.5  
2
V
= 5 V  
= 50 kΩ  
= 100 pF  
= 1  
DD  
V
= 3 V  
= 50 kΩ  
= 100 pF  
= 1  
DD  
R
C
A
L
L
V
R
C
A
L
L
V
0.16  
T
A
= 25°C  
SR−  
0.12  
0.08  
1.5  
1
SR+  
0.04  
0
0.5  
0
0
10 20 30 40 50 60 70 80 90 100  
75 50 25  
0
25  
50  
75 100 125  
T
A
− Free-Air Temperature − °C  
t − Time − µs  
Figure 40  
Figure 41  
INVERTING LARGE-SIGNAL PULSE  
VOLTAGE-FOLLOWER LARGE-SIGNAL  
RESPONSE  
PULSE RESPONSE  
5
3
2.5  
2
V
R
C
A
= 5 V  
V
= 3 V  
= 50 kΩ  
= 100 pF  
= 1  
DD  
L
L
DD  
= 50 kΩ  
= 100 pF  
= 1  
R
C
A
T
L
L
V
4
3
2
V
= 25°C  
T
A
= 25°C  
A
1.5  
1
1
0
0.5  
0
0
10 20 30 40 50 60 70 80 90 100  
0
10 20 30 40 50 60 70 80 90 100  
t − Time − µs  
t − Time − µs  
Figure 42  
Figure 43  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
For all curves where V  
= 5 V, all loads are referenced to 2.5 V. For all curves where V  
= 3 V, all loads are referenced to 1.5 V.  
DD  
DD  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢃ ꢄ ꢅ ꢆꢇꢈꢉ ꢀ ꢁꢂꢃ ꢃꢄ ꢅꢊ ꢆꢇ ꢈ  
ꢂꢇ ꢖꢘ ꢁ ꢔ ꢙꢆꢈꢔ ꢙ ꢇꢖ ꢔ ꢈꢇꢖ ꢊꢀ ꢗꢔ ꢚꢊꢁ ꢊꢓ ꢈ ꢁꢗ ꢛꢗ ꢇꢖ ꢕ  
  
ꢖꢊꢗ ꢁꢆ ꢀꢔ ꢆꢖ ꢊ ꢗꢁ  
SGLS217B − NOVEMBER 2003 − REVISED JUNE 2006  
TYPICAL CHARACTERISTICS  
VOLTAGE-FOLLOWER LARGE-SIGNAL  
INVERTING SMALL-SIGNAL  
PULSE RESPONSE  
PULSE RESPONSE  
0.95  
0.9  
5
4
V
= 5 V  
= 50 kΩ  
= 100 pF  
= 1  
V
R
C
A
= 3 V  
DD  
L
L
DD  
L
L
R
C
A
= 50 kΩ  
= 100 pF  
= 1  
V
A
V
T
= 25°C  
T
A
= 25°C  
0.85  
0.8  
3
2
0.75  
0.7  
1
0
0.65  
0.6  
0
10  
20  
30  
40  
50  
0
10 20 30 40 50 60 70 80 90 100  
t − Time − µs  
t − Time − µs  
Figure 44  
Figure 45  
VOLTAGE-FOLLOWER SMALL-SIGNAL  
INVERTING SMALL-SIGNAL  
PULSE RESPONSE  
PULSE RESPONSE  
0.95  
2.65  
2.6  
V
= 3 V  
= 50 kΩ  
= 100 pF  
= 1  
V
= 5 V  
DD  
L
L
DD  
L
L
R
C
A
R
C
A
= 50 kΩ  
= 100 pF  
= 1  
0.9  
0.85  
0.8  
V
A
V
A
T
= 25°C  
T
= 25°C  
2.55  
2.5  
0.75  
0.7  
2.45  
2.4  
0.65  
0.6  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
t − Time − µs  
t − Time − µs  
Figure 46  
Figure 47  
For all curves where V  
DD  
= 5 V, all loads are referenced to 2.5 V. For all curves where V = 3 V, all loads are referenced to 1.5 V.  
DD  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃꢄ ꢅ ꢆꢇꢈꢉ ꢀ ꢁꢂ ꢃ ꢃꢄ ꢅ ꢊꢆꢇ ꢈ  
ꢂ ꢇꢖꢘ ꢁ ꢔꢙꢆꢈ ꢔꢙꢇ ꢖ ꢔ ꢈꢇ ꢖꢊꢀꢗ ꢔ ꢚꢊ ꢁ ꢊꢓꢈ ꢁꢗ ꢛ ꢗꢇꢖꢕ  
  
ꢖꢊ ꢗ ꢁꢆꢀꢔ ꢆꢖꢊꢗ ꢁ  
SGLS217B − NOVEMBER 2003 − REVISED JUNE 2006  
TYPICAL CHARACTERISTICS  
EQUIVALENT INPUT NOISE VOLTAGE  
vs  
VOLTAGE-FOLLOWER SMALL-SIGNAL  
FREQUENCY  
PULSE RESPONSE  
60  
50  
2.65  
2.6  
V
R
C
= 5 V  
= 50 kΩ  
= 100 pF  
= 1  
DD  
L
L
V
R
T
A
= 3 V  
= 20 Ω  
= 25°C  
DD  
S
A
V
A
T
= 25°C  
40  
30  
2.55  
2.5  
20  
10  
0
2.45  
2.4  
1
2
3
4
10  
10  
10  
10  
0
10  
20  
30  
40  
50  
f − Frequency − Hz  
t − Time − µs  
Figure 48  
Figure 49  
EQUIVALENT INPUT NOISE VOLTAGE  
INPUT NOISE VOLTAGE OVER  
vs  
A 10-s PERIOD  
FREQUENCY  
1000  
750  
500  
250  
0
60  
50  
40  
30  
20  
V
R
T
A
= 5 V  
= 20 Ω  
= 25°C  
DD  
S
V
= 5 V  
DD  
f = 0.1 Hz to 10 Hz  
T
A
= 25°C  
250  
500  
10  
0
750  
1000  
1
2
3
4
10  
0
2
4
6
8
10  
10  
10  
10  
f − Frequency − Hz  
t − Time − s  
Figure 50  
Figure 51  
For all curves where V  
DD  
= 5 V, all loads are referenced to 2.5 V. For all curves where V  
= 3 V, all loads are referenced to 1.5 V.  
DD  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢃ ꢄ ꢅ ꢆꢇꢈꢉ ꢀ ꢁꢂꢃ ꢃꢄ ꢅꢊ ꢆꢇ ꢈ  
ꢂꢇ ꢖꢘ ꢁ ꢔ ꢙꢆꢈꢔ ꢙ ꢇꢖ ꢔ ꢈꢇꢖ ꢊꢀ ꢗꢔ ꢚꢊꢁ ꢊꢓ ꢈ ꢁꢗ ꢛꢗ ꢇꢖ ꢕ  
  
ꢖꢊꢗ ꢁꢆ ꢀꢔ ꢆꢖ ꢊ ꢗꢁ  
SGLS217B − NOVEMBER 2003 − REVISED JUNE 2006  
TYPICAL CHARACTERISTICS  
INTEGRATED NOISE VOLTAGE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs  
vs  
FREQUENCY  
FREQUENCY  
100  
1
Calculated Using Ideal Pass-Band Filter  
Low Frequency = 1 Hz  
A
V
= 100  
T
= 25°C  
A
10  
0.1  
A
V
= 10  
1
0.01  
A
V
= 1  
V
R
T
A
= 5 V  
= 50 kΩ  
= 25°C  
DD  
L
0.001  
0.1  
1
2
3
4
5
1
10  
2
3
4
5
10  
10  
10  
10  
10  
10  
1
10  
10  
10  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 52  
Figure 53  
†‡  
GAIN-BANDWIDTH PRODUCT  
vs  
GAIN-BANDWIDTH PRODUCT  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
300  
260  
V
DD  
= 5 V  
220  
210  
200  
f = 10 kHz  
R
C
= 50 kHz  
= 100 pF  
L
L
220  
180  
140  
100  
190  
180  
170  
75 50 25  
0
25  
50  
75  
100  
125  
0
1
2
V
3
4
5
6
7
8
T
A
− Free-Air Temperature − °C  
− Supply Voltage − V  
DD  
Figure 54  
Figure 55  
For all curves where V  
DD  
= 5 V, all loads are referenced to 2.5 V. For all curves where V = 3 V, all loads are referenced to 1.5 V.  
DD  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃꢄ ꢅ ꢆꢇꢈꢉ ꢀ ꢁꢂ ꢃ ꢃꢄ ꢅ ꢊꢆꢇ ꢈ  
ꢂ ꢇꢖꢘ ꢁ ꢔꢙꢆꢈ ꢔꢙꢇ ꢖ ꢔ ꢈꢇ ꢖꢊꢀꢗ ꢔ ꢚꢊ ꢁ ꢊꢓꢈ ꢁꢗ ꢛ ꢗꢇꢖꢕ  
  
ꢖꢊ ꢗ ꢁꢆꢀꢔ ꢆꢖꢊꢗ ꢁ  
SGLS217B − NOVEMBER 2003 − REVISED JUNE 2006  
TYPICAL CHARACTERISTICS  
PHASE MARGIN  
vs  
LOAD CAPACITANCE  
GAIN MARGIN  
vs  
LOAD CAPACITANCE  
75°  
60°  
45°  
20  
15  
10  
T
A
= 25°C  
R
= 200 Ω  
null  
R
= 500 Ω  
null  
R
= 500 Ω  
null  
R
= 200 Ω  
= 100 Ω  
null  
R
= 100 Ω  
R
null  
null  
R
= 50 Ω  
= 10 Ω  
null  
R
= 50 Ω  
= 10 Ω  
null  
30°  
R
null  
R
null  
50 kΩ  
5
0
V
15°  
0°  
DD +  
DD −  
R
= 0  
null  
50 kΩ  
R
null  
R
= 0  
V
+
null  
I
C
L
T
= 25°C  
A
V
1
2
3
4
10  
10  
10  
10  
1
2
L
3
4
5
10  
10  
10  
C
10  
10  
C
− Load Capacitance − pF  
− Load Capacitance − pF  
L
Figure 56  
Figure 57  
OVERESTIMATION OF PHASE MARGIN  
vs  
UNITY-GAIN BANDWIDTH  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
25  
T
= 25°C  
200  
175  
150  
A
T
A
= 25°C  
R
= 500 Ω  
null  
20  
15  
10  
5
125  
100  
R
= 100 Ω  
null  
R
= 200 Ω  
null  
R
= 50 Ω  
= 10 Ω  
null  
75  
50  
R
null  
25  
0
10  
1
2
3
4
5
10  
10  
10  
10  
0
10  
1
2
3
4
5
10  
10  
C
10  
10  
C − Load Capacitance − pF  
L
− Load Capacitance − pF  
L
See application information  
Figure 58  
Figure 59  
For all curves where V  
= 5 V, all loads are referenced to 2.5 V. For all curves where V  
= 3 V, all loads are referenced to 1.5 V.  
DD  
DD  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢃ ꢄ ꢅ ꢆꢇꢈꢉ ꢀ ꢁꢂꢃ ꢃꢄ ꢅꢊ ꢆꢇ ꢈ  
ꢂꢇ ꢖꢘ ꢁ ꢔ ꢙꢆꢈꢔ ꢙ ꢇꢖ ꢔ ꢈꢇꢖ ꢊꢀ ꢗꢔ ꢚꢊꢁ ꢊꢓ ꢈ ꢁꢗ ꢛꢗ ꢇꢖ ꢕ  
  
ꢖꢊꢗ ꢁꢆ ꢀꢔ ꢆꢖ ꢊ ꢗꢁ  
SGLS217B − NOVEMBER 2003 − REVISED JUNE 2006  
APPLICATION INFORMATION  
driving large capacitive loads  
The TLV2252 is designed to drive larger capacitive loads than most CMOS operational amplifiers. Figure 56  
and Figure 57 illustrate its ability to drive loads up to 1000 pF while maintaining good gain and phase margins  
(R  
= 0).  
null  
A smaller series resistor (R ) at the output of the device (see Figure 60) improves the gain and phase margins  
null  
when driving large capacitive loads. Figure 55 and Figure 56 show the effects of adding series resistances of  
10 , 50 , 100 , 200 , and 500 . The addition of this series resistor has two effects – the first adds a zero  
to the transfer function and the second reduces the frequency of the pole associated with the output load in the  
transfer function.  
The zero introduced to the transfer function is equal to the series resistance times the load capacitance. To  
calculate the improvement in phase margin, equation 1 can be used.  
–1  
ǒ2 × π × UGBW × R  
LǓ  
(1)  
∆φ  
Where :  
+ tan  
× C  
m1  
null  
∆φ  
= improvement in phase margin  
m1  
UGBW = unity-gain bandwidth frequency  
R
C
= output series resistance  
= load capacitance  
null  
L
The unity-gain bandwidth (UGBW) frequency decreases as the capacitive load increases (see Figure 58). To  
use equation 1, UGBW must be approximated from Figure 58.  
Using equation 1 alone overestimates the improvement in phase margin as illustrated in Figure 59. The  
overestimation is caused by the decrease in the frequency of the pole associated with the load, providing  
additional phase shift and reducing the overall improvement in phase margin.  
Using Figure 60, with equation 1 enables the designer to choose the appropriate output series resistance to  
optimize the design of circuits driving large capacitance loads.  
50 kΩ  
V
DD+  
50 kΩ  
R
null  
V
I
+
C
L
V
DD−  
/GND  
Figure 60. Series-Resistance Circuit  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃꢄ ꢅ ꢆꢇꢈꢉ ꢀ ꢁꢂ ꢃ ꢃꢄ ꢅ ꢊꢆꢇ ꢈ  
ꢂ ꢇꢖꢘ ꢁ ꢔꢙꢆꢈ ꢔꢙꢇ ꢖ ꢔ ꢈꢇ ꢖꢊꢀꢗ ꢔ ꢚꢊ ꢁ ꢊꢓꢈ ꢁꢗ ꢛ ꢗꢇꢖꢕ  
  
ꢖꢊ ꢗ ꢁꢆꢀꢔ ꢆꢖꢊꢗ ꢁ  
SGLS217B − NOVEMBER 2003 − REVISED JUNE 2006  
APPLICATION INFORMATION  
macromodel information  
Macromodel information provided was derived using Microsim Parts, the model generation software used  
with Microsim PSpice. The Boyle macromodel (see Note 5) and subcircuit in Figure 61 are generated using  
the TLV2252 typical electrical and operating characteristics at T = 25°C. Using this information, output  
A
simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):  
D
D
D
D
D
D
Maximum positive output voltage swing  
Maximum negative output voltage swing  
Slew rate  
D
D
D
D
D
D
Unity-gain frequency  
Common-mode rejection ratio  
Phase margin  
Quiescent power dissipation  
Input bias current  
DC output resistance  
AC output resistance  
Short-circuit output current limit  
Open-loop voltage amplification  
NOTE 4: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers,” IEEE Journal  
of Solid-State Circuits, SC-9, 353 (1974).  
99  
DLN  
3
EGND  
+
V
CC+  
92  
9
FB  
+
91  
90  
RSS  
ISS  
RO2  
+
+
VB  
DLP  
RP  
2
VLP  
VLN  
HLIM  
+
10  
+
VC  
IN −  
IN+  
R2  
C2  
J1  
J2  
7
DP  
6
53  
+
1
VLIM  
11  
DC  
12  
RD2  
GA  
GCM  
8
C1  
RD1  
60  
RO1  
+
DE  
VAD  
5
54  
V
CC−  
+
4
VE  
OUT  
.SUBCKT TLV225x 1 2 3 4 5  
RD1  
RD2  
R01  
R02  
RP  
RSS  
VAD  
VB  
VC  
VE  
60  
60  
8
11  
12  
5
37.23E3  
37.23E3  
84  
C1  
11  
6
12  
7
6.369E−12  
C2  
25.00E−12  
DC  
5
53  
5
DX  
DX  
DX  
DX  
DX  
7
99  
4
84  
DE  
54  
90  
92  
4
3
71.43E3  
64.52E6  
−.5  
DLP  
DLN  
DP  
91  
90  
3
10  
60  
9
99  
4
0
DC 0  
EGND  
FB  
99  
7
0
99  
POLY (2) (3,0) (4,0) 0 .5 .5  
POLY (5) VB VC VE VLP  
3
53  
4
DC .605  
DC .605  
DC 0  
54  
7
+ VLN 0 57.62E6 −60E6 60E6 60E6 −60E6  
VLIM  
VLP  
VLN  
8
GA  
6
0
6
11  
10  
12 26.86E−6  
99 2.686E−9  
91  
0
0
DC −0.235  
DC 7.5  
GCM  
ISS  
HLIM  
J1  
0
92  
3
10  
0
DC 3.1E−6  
VLIM 1K  
10 JX  
10 JX  
100.0E3  
.MODEL DX D (IS=800.0E−18)  
90  
11  
12  
6
.MODEL JX PJF (IS=500.0E−15 BETA=139E−6  
2
1
+ VTO=−.05)  
.ENDS  
J2  
R2  
9
Figure 61. Boyle Macromodel and Subcircuit  
PSpice and Parts are trademarks of MicroSim Corporation.  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Sep-2008  
PACKAGING INFORMATION  
Orderable Device  
TLV2252AQDREP  
TLV2252QDREP  
TLV2254AQDREP  
TLV2254QDREP  
V62/04651-01UE  
V62/04651-02UE  
V62/04651-03XE  
V62/04651-04XE  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
D
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
D
D
D
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
14  
14  
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
14  
14  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TLV2252-EP, TLV2252A-EP, TLV2254-EP, TLV2254A-EP :  
Catalog: TLV2252, TLV2252A, TLV2254, TLV2254A  
Automotive: TLV2252-Q1, TLV2252A-Q1, TLV2254-Q1, TLV2254A-Q1  
Military: TLV2252M, TLV2252AM, TLV2254M, TLV2254AM  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Sep-2008  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Military - QML certified for Military and Defense Applications  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jul-2012  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV2252AQDREP  
TLV2252QDREP  
TLV2254AQDREP  
TLV2254QDREP  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
8
8
2500  
2500  
2500  
2500  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
16.4  
16.4  
6.4  
6.4  
6.5  
6.5  
5.2  
5.2  
9.0  
9.0  
2.1  
2.1  
2.1  
2.1  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
16.0  
16.0  
Q1  
Q1  
Q1  
Q1  
14  
14  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jul-2012  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV2252AQDREP  
TLV2252QDREP  
TLV2254AQDREP  
TLV2254QDREP  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
8
8
2500  
2500  
2500  
2500  
367.0  
367.0  
333.2  
333.2  
367.0  
367.0  
345.9  
345.9  
35.0  
35.0  
28.6  
28.6  
14  
14  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All  
semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time  
of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which  
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such  
components to meet such requirements.  
Products  
Audio  
Applications  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Medical  
Logic  
Security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
www.ti.com/video  
OMAP Mobile Processors www.ti.com/omap  
Wireless Connectivity www.ti.com/wirelessconnectivity  
TI E2E Community  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2012, Texas Instruments Incorporated  

相关型号:

TLV2254QDRG4

Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER POERATIONAL AMPLIFIERS
TI

TLV2254QDRG4Q1

Advanced LinCMOS™ RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
TI

TLV2254QDRQ1

Advanced LinCMOS™ RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
TI

TLV225X

Advanced LinCMOSE RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
TI

TLV225XA

Advanced LinCMOSE RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
TI

TLV225X_08

Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER POERATIONAL AMPLIFIERS
TI

TLV2262

Advanced LinCMOSE RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
TI

TLV2262-Q1

Advanced LinCMOS™ RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
TI

TLV2262A

Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
TI

TLV2262A-Q1

汽车类精密高级 LinCMOS 轨到轨双路运算放大器
TI

TLV2262AID

Advanced LinCMOSE RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
TI

TLV2262AID

ADVANCED LINCOMS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
STMICROELECTR