TLC5502-5M [TI]

8-BIT ANALOG-TO-DIGITAL CONVERTER; 8位模拟数字转换器
TLC5502-5M
型号: TLC5502-5M
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

8-BIT ANALOG-TO-DIGITAL CONVERTER
8位模拟数字转换器

转换器
文件: 总11页 (文件大小:92K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁꢂ ꢃꢃ ꢄꢅ ꢆꢃ ꢇ  
ꢈ ꢆꢉꢊ ꢀ ꢋꢌꢋ ꢁꢍ ꢎ ꢆꢀꢍ ꢆꢏꢊꢎ ꢊ ꢀꢋꢁ ꢂꢍ ꢌ ꢐꢑ ꢒꢀ ꢑꢒ  
SGLS067 − MARCH 1992  
LinEPIC1-µm CMOS Process  
8-Bit Resolution  
J PACKAGE  
(TOP VIEW)  
Differential Linearity Error . . . 0.2% Max  
DGTL GND1  
ANLG GND  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
Maximum Conversion Rate . . . 20 MHz Typ  
(LSB) D0  
DGTL V  
ANLG V  
REFB  
1
2
DD  
DD  
. . . 10 MHz Min  
D1  
D2  
D3  
D4  
D5  
3
Analog Input Voltage Range . . . 0 V to V  
DD  
4
ANLG INPUT  
ANLG INPUT  
REFM  
TTL Digital I/O Level  
5
6
Low Power Consumption . . . 150 mW Typ  
5-V Single-Supply Operation  
7
D6  
REFT  
8
(MSB) D7  
CLK  
DGTL GND2  
NC  
ANLG V  
9
DD  
description  
DGTL V  
2
10  
11  
12  
DD  
ANLG GND  
NC  
The TLC5502-5M is a low-power ultra-high-speed  
8-bit analog-to-digital converter that uses the  
LinEPICCMOS process. It utilizes the full parallel comparison (flash method) for high-speed conversion.  
Because of such high-speed capability, the TLC5502-5M is suitable for motor control, high-speed signal  
NCNo internal connection  
processing, and video or radar signal processing.  
Separate analog and digital supply pins are provided to reduce coupling between the high-speed digital  
switching sections and the lower-frequency analog signal comparators. This pin partitioning minimizes crosstalk  
and unwanted spurious signals.  
The TLC5502-5M is characterized for operation from 55°C to 125°C.  
During storage or handling, the device leads should be shorted together or the device should be placed in conductive foam. In a circuit,  
unused inputs should always be connected to an appropriated logic voltage level, preferably either V  
CC  
or ground. Specific guidelines  
for handling devices of this type are contained in the publication Guidelines for Handling Electrostatic-Discharge-Sensitive (ESDS)  
Devices and Assemblies available from Texas Instruments.  
LinEPIC is a trademark of Texas Instruments Incorporated.  
ꢞ ꢘꢖ ꢗꢘ ꢙ ꢚ ꢜ ꢘ ꢝ ꢡꢠ ꢞ ꢕ ꢗꢕ ꢞ ꢛ ꢜ ꢕꢘ ꢖꢝ ꢡꢠ ꢙ ꢜꢦ ꢠ ꢜꢠ ꢙ ꢚꢝ ꢘꢗ ꢀꢠꢧ ꢛ ꢝ ꢊꢖꢝ ꢜꢙ ꢟꢚ ꢠꢖꢜ ꢝ ꢝꢜ ꢛꢖ ꢤꢛꢙ ꢤ  
Copyright 1992, Texas Instruments Incorporated  
ꢡꢛ ꢙ ꢛ ꢚ ꢠ ꢜ ꢠ ꢙ ꢝ ꢥ  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
4−179  
ꢀ ꢁ ꢂ ꢃꢃ ꢄ ꢅ ꢆꢃꢇ  
ꢍꢎ  
ꢊꢀꢋ  
SGLS067 − MARCH 1992  
functional block diagram  
10  
CLK  
19, 20  
17  
ANLG INPUT  
REFT  
1
2
EN  
R1  
9
8
7
6
5
4
3
2
D7 (MSB)  
D6  
R
R
127  
128  
D5  
Latch  
and  
Buffer  
255-to-8  
Encoder  
D4  
R/2  
R/2  
18  
REFM  
D3  
D2  
254  
255  
D1  
R
D0 (LSB)  
R
R2  
21  
REFB  
operating sequence  
CLK  
Sample  
N
Sample  
N + 1  
Sample  
N + 2  
ANALOG  
INPUT  
t
d
Data  
N−1  
Data  
N
Data  
N+1  
D0−D7  
Following the operating sequence above, the rising edge of the clock samples the analog input (sample N) at  
time t and latches sample N−1 at the output. Sample N is encoded to eight digital lines on the next falling edge  
N
of the clock and then the following high clock level latches these eight bits to the outputs (with a delay t ) and  
d
acquires sample N + 1. Conversion is completed in one clock cycle and continues the sequence for the next  
cycle.  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
4−180  
ꢀ ꢁ ꢂꢃ ꢃꢄ ꢅꢆ ꢃꢇ  
ꢀꢋ  
SGLS067 − MARCH 1992  
equivalents of analog input circuit  
ANALOG INPUT  
SAMPLE AND HOLD  
S
ANLG  
H
V
DD  
REFT  
ANLG INPUT  
Out 1  
ANLG  
C
C
Sample-  
INPUT  
and-  
mR  
V
mR  
Hold  
Circuit  
ref′  
REFT  
REFB  
Out 2  
(256−m)R  
ANLG  
GND  
(256−m)R  
REFB  
m = comparator position along the resistor string  
M
ƪ
ƫ
ƪ1 * ƫ ) V  
V
Ȁ + V  
* V  
ref  
refT refB  
refB  
256  
equivalent of digital input circuit  
DGTL V  
DD  
CLK  
ANLG  
GND  
DGTL  
GND  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
4−181  
ꢀ ꢁ ꢂ ꢃꢃ ꢄ ꢅ ꢆꢃꢇ  
ꢈ ꢆꢉ ꢊ ꢀ ꢋ ꢌ ꢋꢁ ꢍꢎ ꢆꢀꢍ ꢆꢏꢊ ꢎ ꢊꢀꢋꢁ ꢂꢍ ꢌꢐ ꢑꢒꢀ ꢑꢒ  
SGLS067 − MARCH 1992  
FUNCTION TABLE  
ANALOG INPUT  
VOLTAGE  
DIGITAL OUTPUT  
CODE  
STEP  
0
1
.
.
.
0.000 V  
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
0.019 V  
H
.
.
.
.
.
.
127  
128  
129  
.
.
.
2.413 V  
2.432 V  
2.451 V  
L
H
L
L
H
L
L
H
L
L
H
L
L
H
L
L
H
L
L
H
L
H
H
H
.
.
.
.
.
.
254  
4.826 V  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
255  
4.845 V  
H
These values are based on the assumption that V  
and V  
have  
been adjusted so that the voltage at the transition from digital 0 to 1  
refB  
refT  
(V ) is 0 V and the transition to full scale (V ) is 4.8545 V. 1 LSB  
ZT  
= 19 mV.  
FT  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage range, ANLG V  
Supply voltage range, DGTL V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 7 V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 7 V  
DD  
DD  
Input voltage range at CLK, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to DGTL V  
+ 0.3 V  
+ 0.5 V  
+ 0.5 V  
I
DD  
DD  
DD  
Input voltage range at analog input, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to ANLG V  
I
Analog reference voltage range, V  
Operating free-air temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to ANLG V  
ref  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 125°C  
A
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 150°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
NOTE 1: Voltages at analog inputs and ANLG V  
are with respect to the ANLG GND terminals. Voltages at the digital outputs and DGTL V  
DD  
DD  
are with respect to the DGTL GND terminals.  
recommended operating conditions  
MIN NOM  
MAX  
5.25  
5.25  
UNIT  
Supply voltage, ANLG V  
Supply voltage, DGTL V  
4.75  
4.75  
2
5
5
V
V
V
V
V
DD  
DD  
High-level input voltage, V , CLK  
IH  
Low-level input voltage V , CLK  
IL  
0.8  
5
Input voltage at analog input, V  
0
I
ANLG  
Analog reference voltage (top side), V  
refT  
V
V
V
DD  
V
* V  
refT  
refB  
Analog reference voltage (midpoint), V  
refM  
2
Analog reference voltage (bottom side), V  
refB  
0
V
V
Differential reference voltage, V  
refT  
− V  
refB  
5
High-level output current, I  
400  
4
µA  
mA  
ns  
°C  
OH  
Low-level output current, I  
OL  
Clock pulse duration, high or low, t  
wH  
Operating free-air temperature, T  
or t  
wL  
50  
55  
125  
A
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
4−182  
ꢀ ꢁ ꢂꢃ ꢃꢄ ꢅꢆ ꢃꢇ  
ꢈ ꢆꢉꢊ ꢀ ꢋꢌꢋ ꢁꢍ ꢎ ꢆꢀꢍ ꢆꢏꢊꢎ ꢊ ꢀꢋꢁ ꢂꢍꢌ ꢐ ꢑꢒ ꢀꢑ ꢒ  
SGLS067 − MARCH 1992  
electrical characteristics over operating supply voltage range, T = 25°C  
A
PARAMETER  
High-level output voltage  
Low-level output voltage  
Analog input current  
TEST CONDITIONS  
= 400 µA  
MIN  
TYP  
MAX  
UNIT  
V
V
V
I
I
2.4  
OH  
OL  
OH  
= 4 mA  
0.4  
V
OL  
I
I
I
I
I
V = 0 to 5 V,  
f = 10 MHz  
clock  
0.5  
mA  
µA  
µA  
mA  
mA  
pF  
I
I
Digitial high-level input current  
Digital low-level input current  
Reference current  
V = 5 V  
1
−1  
IH  
I
V = 0  
IL  
I
V
= 0  
10  
10  
20  
20  
refB  
refT  
refB  
Reference current  
V
= 5 V  
refT  
C
Analog input capacitance  
Supply current  
50  
i
I
f
= 10 MHz  
30  
60  
mA  
DD  
clock  
operating characteristics over operating supply voltage range, T = 25°C  
A
PARAMETER  
Maximum conversion rate  
Linearity error, differential  
Linearity error, best straight line  
Signal to noise ratio  
TEST CONDITIONS  
MIN  
TYP  
20  
MAX  
UNIT  
f
10  
MHz  
c(max)  
E
V = 0 to 5 V  
0.1  
0.2 %FSR  
0.4 %FSR  
dB  
D
L
I
E
V = 0 to 5 V  
I
SNR  
THD  
BW  
f
= 9.9 MHz,  
f
IN  
= 97 kHz,  
50  
51  
5
clock  
BW = 5 MHz  
= 10 MHz  
Total harmonic distortion  
Analog input bandwidth (3 dB)  
Delay time, digital output  
dB  
f
MHz  
clock  
= 15 pF  
t
d
C
10  
30  
ns  
L
SNR is total noise without THD.  
timing diagram  
t
t
wL  
wH  
1.4 V  
CLK  
Sample  
N
Sample  
N+1  
Sample  
N+2  
Analog  
Input  
t
d
Data  
N−1  
Data  
N
Data  
N+1  
D0−D7  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
4−183  
ꢀ ꢁ ꢂ ꢃꢃ ꢄ ꢅ ꢆꢃꢇ  
ꢈ ꢆꢉ ꢊ ꢀ ꢋ ꢌ ꢋꢁ ꢍꢎ ꢆꢀꢍ ꢆꢏꢊ ꢎ ꢊꢀꢋꢁ ꢂꢍ ꢌꢐ ꢑꢒꢀ ꢑꢒ  
SGLS067 − MARCH 1992  
TYPICAL CHARACTERISTICS  
255  
254  
11111111  
11111110  
See Note A  
11111101  
253  
V
FS  
10000001  
10000000  
129  
128  
127  
V
ZT  
V
ZS  
=
V
FT  
V
FS  
=
+ 1/2 LSB  
− 1/2 LSB  
01111111  
V
ZS  
00000010  
00000001  
00000000  
2
1
0
V − Analog Input Voltage − V  
I
NOTE A: This curve is based on the assumption that V  
refB  
and V have been adjusted so that the voltage at the transition from digital 0 to 1  
refT  
(V ) is 0 and the transition to full scale (V ) is 4.8545 V. 1 LSB = 19 mV.  
ZT  
FT  
Figure 1. Ideal Conversion Characteristics  
SUPPLY CURRENT  
vs  
OPERATING FREE-AIR TEMPERATURE  
REFERENCE CURRENT  
vs  
OPERATING FREE-AIR TEMPERATURE  
40  
35  
30  
25  
20  
15  
10  
14  
12  
10  
8
V
= 5 V  
= 5 V  
= 0  
DD  
V
= 5 V  
= 8 MHz  
DD  
V
V
refT  
f
clock  
refB  
6
4
2
5
0
0
10  
20  
30  
40  
50  
60  
70  
0
10  
20  
30  
40  
50  
60  
70  
T
A
− Operating Free-Air Temperature − °C  
T
A
− Operating Free-Air Temperature − °C  
Figure 2  
Figure 3  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
4−184  
ꢀ ꢁ ꢂꢃ ꢃꢄ ꢅꢆ ꢃꢇ  
ꢈ ꢆꢉꢊ ꢀ ꢋꢌꢋ ꢁꢍ ꢎ ꢆꢀꢍ ꢆꢏꢊꢎ ꢊ ꢀꢋꢁ ꢂꢍꢌ ꢐ ꢑꢒ ꢀꢑ ꢒ  
SGLS067 − MARCH 1992  
TYPICAL CHARACTERISTICS  
TOTAL HARMONIC DISTORTION  
TOTAL HARMONIC DISTORTION  
vs  
vs  
OPERATING FREE-AIR TEMPERATURE  
OPERATING FREE-AIR TEMPERATURE  
0
− 10  
− 20  
− 30  
− 40  
− 50  
− 60  
0
− 10  
− 20  
− 30  
− 40  
V
= 5 V  
= 1.25 MHz  
= 10 MHz  
DD  
V
= 5 V  
DD  
= 100 kHz  
f
f
IN  
clock  
f
f
IN  
clock  
= 10 MHz  
− 50  
− 60  
− 70  
− 80  
0
10  
20  
30  
40  
50  
60  
70  
0
10  
20  
30  
40  
50  
60  
70  
T
A
− Operating Free-Air Temperature − °C  
T
A
− Operating Free-Air Temperature − °C  
Figure 4  
Figure 5  
DIFFERENTIAL LINEARITY ERROR  
vs  
DIFFERENTIAL LINEARITY ERROR  
vs  
OPERATING FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
0.4  
0.4  
0.35  
0.3  
0.35  
0.3  
0.25  
0.2  
0.25  
0.2  
0.15  
0.1.5  
0.1  
0.05  
0
0.1  
0.05  
0
T
= 25°C  
V
= 5 V  
A
I
DD  
V = 0 to 5 V  
V = 0 to 5 V  
I
4.75  
4.875  
V
5.0  
5.125  
5.25  
0
10  
20  
30  
40  
50  
60  
70  
− Supply Voltage − V  
T
− Operating Free-Air Temperature − °C  
DD  
A
Figure 6  
Figure 7  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
4−185  
ꢀ ꢁ ꢂ ꢃꢃ ꢄ ꢅ ꢆꢃꢇ  
ꢈ ꢆꢉ ꢊ ꢀ ꢋ ꢌ ꢋꢁ ꢍꢎ ꢆꢀꢍ ꢆꢏꢊ ꢎ ꢊꢀꢋꢁ ꢂꢍ ꢌꢐ ꢑꢒꢀ ꢑꢒ  
SGLS067 − MARCH 1992  
TYPICAL CHARACTERISTICS  
TOTAL HARMONIC DISTORTION  
TOTAL HARMONIC DISTORTION  
vs  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
0
− 10  
− 20  
− 30  
− 40  
0
− 10  
− 20  
− 30  
− 40  
T
f
= 25°C  
T
= 25°C  
= 100 kHz  
= 10 MHz  
A
IN  
A
= 97 kHz  
f
f
IN  
clock  
f
= 9.9 MHz  
clock  
− 50  
− 60  
− 50  
− 60  
4.75  
4.875  
5.0  
5.125  
5.25  
4.75  
4.875  
5.0  
5.125  
5.25  
V
DD  
− Supply Voltage − V  
V
DD  
− Supply Voltage − V  
Figure 8  
Figure 9  
PARAMETER MEASUREMENT INFORMATION  
Measurement  
Point  
5 V  
R
= 2 kΩ  
L
To  
Digital  
Output  
(D5)  
C
= 15 pF  
L
Figure 10. Load Circuit  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
4−186  
ꢀ ꢁ ꢂꢃ ꢃꢄ ꢅꢆ ꢃꢇ  
ꢈ ꢆꢉꢊ ꢀ ꢋꢌꢋ ꢁꢍ ꢎ ꢆꢀꢍ ꢆꢏꢊꢎ ꢊ ꢀꢋꢁ ꢂꢍꢌ ꢐ ꢑꢒ ꢀꢑ ꢒ  
SGLS067 − MARCH 1992  
APPLICATION INFORMATION  
The following design recommendations will benefit the TLC5502-5M user:  
1. External analog and digital circuitry should be physically separated and shielded as much as possible to  
reduce system noise.  
2. RF breadboarding or PCB techniques should be used throughout the evaluation and production process.  
Breadboards should be copper clad for bench evaluation.  
3. Since the ANLG GND, DGTL GND1, and DGTL GND2 are not connected internally, these pins need to be  
connected externally. With breadboards, these ground lines should be connected through separate leads  
with proper supply bypassing. A good method to use is a separate twisted-pair cable for the supply lines  
to minimize noise pickup. An analog and digital ground plane should be used on PCB layouts.  
4. Since the ANLG V , DGTL V 1, and DGTL V 2 are not connected internally, these pins also need to  
DD  
DD  
DD  
be connected externally. To connect ANLG V , DGTL V 1, and DGTL V 2, a 50-resistor should be  
DD  
DD  
DD  
placed in series with DGTL V 1 and then a 0.1-µF capacitor to ground before being connected to  
DD  
ANLG V  
and DGTL V  
.
DD  
DD2  
5. ANLG V  
to ANLG GND, DGTL V 1 to DGTL GND1, and DGTL V 2 to DGTL GND2 should be  
DD DD  
DD  
decoupled with 1-µF and 0.01-µF capacitors, respectively, as close as possible to the appropriate device  
pins. A ceramic-chip capacitor is recommended for the 0.01-µF capacitor. Care should be exercised to  
assure a solid noise free ground connection for the analog and digital grounds.  
6. The no connection (NC) pins on the J package should be connected to ground.  
7. ANLG V , ANLG GND, and ANLG INPUT should be shielded from the higher-frequency pins, CLK and  
DD  
D0−D7. If possible, ANLG GND traces should be placed on both sides of the ANLG INPUT traces on the  
PCB.  
8. In testing or application of the device, the resistance of the driving source connected to the analog input  
should be 10 or less within the analog frequency range of interest.  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
4−187  
ꢀ ꢁ ꢂ ꢃꢃ ꢄ ꢅ ꢆꢃꢇ  
ꢈ ꢆꢉ ꢊ ꢀ ꢋ ꢌ ꢋꢁ ꢍꢎ ꢆꢀꢍ ꢆꢏꢊ ꢎ ꢊꢀꢋꢁ ꢂꢍ ꢌꢐ ꢑꢒꢀ ꢑꢒ  
SGLS067 − MARCH 1992  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
4−188  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Amplifiers  
Data Converters  
DSP  
Clocks and Timers  
Interface  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/audio  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
Logic  
Military  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Optical Networking  
Security  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2008, Texas Instruments Incorporated  

相关型号:

TLC5502-5MJ

1-CH 8-BIT FLASH METHOD ADC, PARALLEL ACCESS, CDIP24, 0.600 INCH, HERMETIC SEALED, CERAMIC, MO-015AA, DIP-24
TI

TLC5502-5N

8-BIT FLASH METHOD ADC, PARALLEL ACCESS, PDIP22, 0.400 INCH, PLASTIC, DIP-22
TI

TLC5502N

1-CH 8-BIT FLASH METHOD ADC, PARALLEL ACCESS, PDIP22, 0.400 INCH, PLASTIC, DIP-22
TI

TLC5503-2DW

8-BIT FLASH METHOD ADC, PARALLEL ACCESS, PDSO24
TI

TLC5503-2N

8-BIT FLASH METHOD ADC, PARALLEL ACCESS, PDIP22, 0.400 INCH, PLASTIC, DIP-22
TI

TLC5503-5DW

8-BIT FLASH METHOD ADC, PARALLEL ACCESS, PDSO24
TI

TLC551

LinCMOSE TIMERS
TI

TLC5510

8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTERS
TI

TLC5510A

8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTERS
TI

TLC5510AINS

具有 4Vpp 输入的 8 位 20MSPS 模数转换器 (ADC) | NS | 24 | -20 to 75
TI

TLC5510AINSG4

8-Bit, 20 MSPS ADC Single Ch., Internal S&H, Low Power 24-SO -20 to 75
TI

TLC5510AINSLE

8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTERS
TI