TLC320AD56 [TI]

Sigma-Delta Analog Interface Circuit; Σ-Δ模拟接口电路
TLC320AD56
型号: TLC320AD56
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Sigma-Delta Analog Interface Circuit
Σ-Δ模拟接口电路

文件: 总42页 (文件大小:218K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLC320AD56C  
Data Manual  
Sigma-Delta Analog Interface Circuit  
SLAS101A  
September 1996  
Printed on Recycled Paper  
IMPORTANT NOTICE  
Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any  
semiconductor product or service without notice, and advises its customers to obtain the latest  
version of relevant information to verify, before placing orders, that the information being relied  
on is current.  
TIwarrantsperformanceofitssemiconductorproductsandrelatedsoftwaretothespecifications  
applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality  
control techniques are utilized to the extent TI deems necessary to support this warranty.  
Specific testing of all parameters of each device is not necessarily performed, except those  
mandated by government requirements.  
Certain applications using semiconductor products may involve potential risks of death,  
personal injury, or severe property or environmental damage (“Critical Applications”).  
TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES  
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.  
Inclusion of TI products in such applications is understood to be fully at the risk of the customer.  
Use of TI products in such applications requires the written approval of an appropriate TI officer.  
Questions concerning potential risk applications should be directed to TI through a local SC  
sales office.  
In order to minimize risks associated with the customer’s applications, adequate design and  
operating safeguards should be provided by the customer to minimize inherent or procedural  
hazards.  
TI assumes no liability for applications assistance, customer product design, software  
performance, or infringement of patents or services described herein. Nor does TI warrant or  
represent that any license, either express or implied, is granted under any patent right, copyright,  
mask work right, or other intellectual property right of TI covering or relating to any combination,  
machine, or process in which such semiconductor products or services might be or are used.  
Copyright 1996, Texas Instruments Incorporated  
Contents  
Section  
1
Title  
Page  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–1  
1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
1.2 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
1.3 Terminal Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
1.4 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
1.5 Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
1.6 Definitions and Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
1.7 Register Functional Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1  
2.1 Device Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
2.1.1  
2.1.2  
2.1.3  
2.1.4  
2.1.5  
2.1.6  
2.1.7  
2.1.8  
2.1.9  
Operating Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
ADC Signal Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
DAC Signal Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Register Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Sigma-Delta ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Decimation Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Sigma-Delta DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Interpolation Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
2.1.10 Digital Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
2.1.11 FIR Overflow Flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
2.2 Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
2.2.1  
2.2.2  
2.2.3  
2.2.4  
2.2.5  
2.2.6  
2.2.7  
2.2.8  
2.2.9  
Reset and Power-Down Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Master Clock Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Data Out (DOUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Data In (DIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Hardware Program Terminal (FC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Frame-Sync Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Multiplexed Analog Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Analog Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Analog Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
3
4
Serial Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–1  
3.1 Primary Serial Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
3.2 Secondary Serial Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
3.3 Conversion Rate vs Serial Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
3.4 Phone Mode Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–1  
4.1 Absolute Maximum Ratings Over Operating  
Free-Air Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
4.2 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
4.2.1  
4.2.2  
Recommended Operating Conditions, DV  
Recommended Operating Conditions, DV  
= 5 V, AV  
= 3 V, AV  
= 5 V . . . . . 41  
= 5 V . . . . . 41  
DD  
DD  
DD  
DD  
iii  
Contents (Continued)  
Section  
Title  
Page  
4.3 Electrical Characteristics Over Recommended Operating Free-Air  
Temperature Range, DV = 5 V, AV = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
DD  
DD  
4.3.1  
Digital Inputs and Outputs, MCLK = 4.096 MHz,  
f = 8 kHz, Outputs Not Loaded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
s
4.3.2  
Digital Inputs and Outputs, MCLK = 4.096 MHz,  
f = 8 kHz, Outputs Not Loaded, DV  
ADC Path Filter, MCLK = 4.096 MHz, f = 8 kHz . . . . . . . . . . . . . . . . . . 42  
ADC Dynamic Performance, MCLK = 4.096 MHz, f = 8 kHz . . . . . . . . 42  
ADC Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
= 3 V . . . . . . . . . . . . . . . . . . . . . 42  
s
DD  
s
4.3.3  
4.3.4  
4.3.5  
4.3.6  
4.3.7  
4.3.8  
4.3.9  
s
DAC Path Filter, MCLK = 8.192 MHz, f = 8 kHz . . . . . . . . . . . . . . . . . . 44  
s
DAC Dynamic Performance, DV  
= 5 V or 3 V . . . . . . . . . . . . . . . . . . . 45  
DD  
DAC Channel, DV  
= 5 V or 3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
DD  
Power Supplies, No Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
4.3.10 Power-Supply Rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
4.3.11 Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
5
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Appendix A Register Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A1  
Appendix B Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B1  
iv  
List of Illustrations  
Figure  
Title  
Page  
11. Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
12. Terminal Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
13. Terminal Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
21. Internal Power-Down Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
22. Differential Analog-Input Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
31. Primary Serial Communication Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
32. Hardware and Software Ways to Make a Secondary Request . . . . . . . . . . . . . . . . . . . 33  
33. Hardware FC Secondary Request  
(Phone Mode Disabled) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
34. Software FC Secondary Request (Phone Mode Disabled) . . . . . . . . . . . . . . . . . . . . . . 35  
35. Phone Mode Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
36. Secondary DIN Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
41. ADC Decimation Filter Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
42. ADC Decimation Filter Passband Ripple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
43. DAC Interpolation Filter Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
44. DAC Interpolation Passband Ripple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
51. Application Schematic For Single-Ended Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
52. Application Schematic For Differential Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
List of Tables  
Table  
Title  
Page  
31. Secondary Request Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
32. Least Significant Bit Control Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
33. Secondary Communication Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
v
vi  
1 Introduction  
The TLC320AD56C provides high resolution low-speed signal conversion from digital-to-analog (D/A) and  
from analog-to-digital (A/D) using oversampling sigma-delta technology. This device consists of two serial  
synchronous conversion paths (one for each data direction) and includes an interpolation filter before the  
digital-to-analog converter (DAC) and a decimation filter after the analog-digital-converter (ADC) (see  
Figure 11). Other overhead functions provide on-chip timing and control. The sigma-delta architecture  
produces high resolution A/D and D/A conversion at low system speeds and low cost.  
The options and the circuit configurations of this device can be programmed through the serial interface.  
The options include reset, power-down, communications protocol, serial clock rate, and test mode as  
outlined in Appendix A. The TLC320AD56C is characterized for operation from 0°C to 70°C.  
1.1 Features  
The TLC320AD56C includes the following features:  
Single 5-V power supply voltage or 5 V analog and 3 V digital supply voltages  
Power dissipation (P ) of 150 mW maximum in the operating mode  
D
Power-down mode to 2.5 mW typical  
General-purpose 16-bit signal processing  
2s-complement data format  
Typical dynamic range of 85 dB for the DAC and 87 dB for the ADC  
Minimum 79-dB total signal-to-(noise + distortion) for the ADC  
Minimum 80-dB total signal-to-(noise + distortion) for the DAC  
Differential architecture throughout the device  
Internal reference voltage (V  
Internal 64X oversampling  
Serial port interface  
)
ref  
Phone-mode output control  
System test mode, digital loopback test mode  
Capable of supporting all V.34 sample rates by varying MCLK frequency  
Supports business audio applications  
Variable conversion rate selected as MCLK/512  
11  
1.2 Functional Block Diagram  
MONOUT  
INP  
INM  
MUX  
Decimation Filter  
Sigma-  
Delta  
ADC  
SINC  
Filter  
FIR  
Filter  
DOUT (2s-  
complement)  
Buffer  
AUXP  
AUXM  
Digital  
Loopback  
FILT  
V
ref  
V
ref  
IGAIN  
OUTP  
DIN (2s-  
complement)  
Sigma-  
Delta  
DAC  
Interpolation Filter  
OUTM  
FLAG 0  
FLAG 1  
Buffer  
ALT DATA  
FC  
FS  
fclk  
I/O  
Control  
÷8  
÷4  
MCLK  
SCLK  
Figure 11. Functional Block Diagram  
12  
1.3 Terminal Assignments  
FN PACKAGE  
(TOP VIEW)  
4
3
2 1 28 27 26  
5
25 INM  
INP  
OUTP  
OUTM  
6
24  
23 AV  
V
7
COM(DAC)  
DD  
8
V
22  
PWRDWN  
RESET  
SS (SUB)  
9
21 AV  
SS  
10  
20 DV  
DV  
SS  
DD  
11  
19  
ALT DATA  
DIN  
12 13 14 15 16 17 18  
NC No internal connection  
Figure 12. Terminal Assignments  
13  
PT PACKAGE  
(TOP VIEW)  
48 47 46 45 44 43 42 41 40 39 38 37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
INM  
INP  
NC  
AV  
OUTP  
OUTM  
NC  
1
2
3
V
COM(DAC)  
NC  
4
DD  
NC  
NC  
V
5
6
PWRDWN  
RESET  
NC  
7
SS(SUB)  
NC  
8
9
AV  
DV  
SS  
DD  
10  
11  
12  
NC  
DV  
DIN  
NC  
DOUT  
SS  
ALT DATA  
13 14 15 16 17 18 19 20 21 22 23 24  
NC No internal connection  
Figure 13. Terminal Assignments  
1.4 Ordering Information  
PACKAGE  
T
A
CHIP CARRIER  
(FN)  
QUAD FLAT PACK  
(PT)  
0°C to 70°C  
TLC320AD56CFN  
TLC320AD56CPT  
14  
1.5 Terminal Functions  
TERMINALS  
NUMBER  
I/O  
DESCRIPTION  
NAME  
PT  
FN  
Signals on this terminal are routed to DOUT during secondary communication  
if phone mode is enabled.  
ALT DATA  
AUXM  
25  
19  
I
I
Inverting input to auxiliary analog input. AUXM requires an external RC antialias  
filter.  
38  
26  
Noninverting input to auxiliary analog input. Requires an external RC antialias  
filter.  
AUXP  
39  
33  
10  
27  
23  
11  
I
I
I
AV  
DD  
Analog ADC path supply (5 V only)  
Data input. DIN receives the DAC input data and command information from the  
DSP and is synchronized to SCLK.  
DIN  
Data output. DOUT transmits the ADC output bits and is synchronized to SCLK.  
This terminal is at high-Z when FS is not activated.  
DOUT  
12  
12  
O
DV  
DV  
9
10  
20  
I
I
Digital power supply (5 V or 3 V)  
Digital ground  
DD  
SS  
26  
Functioncode. FCissampledandlatchedontherisingedgeofFSfortheprimary  
serial communication. Refer to the Serial Communications section for more  
details.  
FC  
21  
16  
I
Output flag 0. During phone mode, FLAG 0 contains the value set in Control 2  
register.  
FLAG 0  
FLAG 1  
23  
24  
17  
18  
O
O
Output flag 1. During phone mode, FLAG 1 contains the value set in Control 2  
register.  
Bandgap filter. FILT is provided for decoupling of the bandgap reference, and  
provides 2.5 V to which the analog inputs or outputs can be referenced. The  
optimal capacitor value is 0.1 µF (ceramic). This voltage node should be loaded  
only with a high-impedance dc load.  
FILT  
FS  
47  
13  
3
O
O
Frame sync. When FS goes low, the serial communication port is activated. In  
all serial transmission modes, FS is held low during bit transmission. Refer to  
section 3 Serial Communications for detailed description.  
13  
INM  
INP  
36  
35  
25  
24  
I
I
Inverting input to analog modulator. INM requires an external RC antialias filter.  
Noninverting input to analog modulator. INP requires an external RC antialias  
filter.  
Current gain reference scaling. IGAIN is provided for decoupling of the current  
gain reference and provides a 1.35-V reference. The optimal load is a  
27-K resistor.  
IGAIN  
45  
1
O
Master clock. The master clock derives the internal clocks of the sigma-delta  
analog interface circuit.  
MCLK  
17  
40  
15  
28  
I
Monitor output. MONOUT allows for monitoring of the analog input and is a  
high-impedance output. The gain or mute is selected using Control 2 register.  
MONOUT  
O
Inverting current output of the DAC. OUTM is functionally identical with and  
complementary to OUTP. OUTM and OUTP current outputs can be loaded with  
5 kdifferentially or single-ended. This signal can also be used alone for  
single-ended operation.  
OUTM  
2
6
O
NOTE 1: All digital inputs and outputs are TTL-compatible, unless otherwise noted for DV  
DD  
= 5 V.  
15  
1.5 Terminal Functions (Continued)  
TERMINALS  
NUMBER  
I/O  
DESCRIPTION  
NAME  
PT  
FN  
Noninverting current output of the DAC. OUTM and OUTP current outputs can  
be loaded with 5 kdifferentially or single ended. This signal can also be used  
alone for single-ended operation.  
OUTP  
1
5
O
I
PWRDWN  
6
8
Powerdown. Whenthisterminalispulledlow, thedevicegoesintoapower-down  
mode; the serial interface is disabled and most of the high-speed clocks are  
disabled. However, all the register values are sustained and the device resumes  
full power operation without reinitialization when this terminal is pulled high  
again. PWRDWN resets the counters only and preserves the programmed  
register contents. See subsection 2.21. Reset and Power-Down Functions.  
RESET  
SCLK  
7
9
I
Reset. The reset function is provided to initialize all the internal registers to their  
default values. The serial port can be configured to the default state accordingly.  
Refer to section 1.7 Register Functional Summary and subsection 2.2.1 Reset  
and Power-Down Functions for more detailed descriptions.  
16  
14  
O
Shiftclock. The shift clock signal is derived from MCLK and is used to clock serial  
data into DIN and out of DOUT.  
V
V
30  
46  
22  
2
I
Analog substrate. This terminal must be grounded.  
SS(SUB)  
O
Common mode filter. This terminal is provided for decoupling of the common  
mode reference and provides a 2.5 V reference. The optimal capacitor value is  
0.10 µF. This node should be loaded only with a high-impedance dc load.  
COM(ADC)  
V
4
7
O
I
Common mode filter. This terminal is provided for decoupling of the common  
mode reference and provides a 2.5 V reference. The optimal capacitor value is  
0.10 µF. This node should be loaded only with a high-impedance dc load.  
COM(DAC)  
AV  
SS  
28  
21  
Analog ground  
NOTE 1: All digital inputs and outputs are TTL-compatible, unless otherwise noted for DV  
= 5 V.  
DD  
1.6 Definitions and Terminology  
Data Transfer Interval This is time during which data is transferred from DOUT and to DIN. This interval  
is 16 shift clocks and this data transfer is initiated by the falling edge of the  
frame-sync signal.  
Signal Data  
This refers to the input signal and all of the converted representations through the  
ADC channel and return through the DAC channel to the analog output. This is  
contrasted with the purely digital software control data.  
Primary  
Communications  
This refers to the digital data transfer interval. Since the device is synchronous, the  
signal data words from the ADC channel and to the DAC channel occur  
simultaneously.  
Secondary  
Communications  
This refers to the digital control and configuration data transfer interval into DIN and  
the register read data cycle from DOUT. The data transfer interval occurs when  
requested by hardware or software.  
Frame Sync  
Frame sync refers only to the fallingedgeofthesignalthatinitiatesthedatatransfer  
interval. The primary frame sync starts the primary communications, and the  
secondary frame sync starts the secondary communications.  
16  
Frame Sync and  
Sampling Period  
The time between the falling edges of successive primary frame-sync signals.  
The sampling frequency that is the reciprocal of the sampling period.  
f
s
Frame-Sync Interval  
The time period occupied by 16 shift clocks. It goes high on the sixteenth rising  
edge of SCLK after the falling edge of the frame sync.  
ADC Channel  
This term refers to all signal processing circuits between the analog input and the  
digital conversion results at DOUT.  
DAC Channel  
This term refers to all signal processing circuits between the digital data word  
applied to DIN and the differential output analog signal available at OUTP and  
OUTM.  
Host  
Dxx  
DSxx  
d
Any processing system that interfaces to DIN, DOUT, SCLK, or FS.  
Bit position in the primary data word (xx is the bit number).  
Bit position in the secondary data word (xx is the bit number).  
The alpha character d represents valid programmed or default data in the control  
register format (see section 3.2 Secondary Serial Communications) when  
discussing other data bit portions of the register.  
X
The alpha character X represents a do-not-care bit position within the control  
register format.  
FIR  
Finite duration impulse response.  
1.7 Register Functional Summary  
There are three data and control registers that are used as follows:  
Register 0  
The No-Op register. The 0 address allows secondary requests without altering any other  
register.  
Register 1  
The Control 1 register. The data in this register controls:  
The software reset  
The software power down  
Selection of the normal or auxiliary analog inputs  
Selection of the digital loopback  
16-bit or 15-bit mode of operation  
Selection of monitor amp output  
Register 2  
The Control 2 register. The data in this register:  
Contains the output flag indicating a decimator FIR filter overflow  
Contains Flag 0 and Flag 1 output values for use in the phone mode  
Selects the phone mode  
17  
18  
2
Functional Description  
2.1 Device Functions  
The functions of the TLC320AD56C are described in the following sections.  
2.1.1  
Operating Frequencies  
The sampling (conversion) frequency is derived from the master clock (MCLK) input by equation 1.  
MCLK  
(1)  
f
Sampling (conversion) frequency  
s
512  
The inverse is the time between the falling edges of two successive primary frame synchronization signals  
and is the conversion period.  
2.1.2  
ADC Signal Channel  
To produce excellent common-mode rejection of unwanted signals, the analog signal is processed  
differentially until it is converted to digital data.  
The input signal is filtered and applied to the ADC input. The ADC converts the signal into discrete output  
digitalwordsin2s-complementformat, correspondingtotheanalogsignalvalueatthesamplingtime. These  
16-bit digital words, representing sampled values of the analog input signal, are clocked out of the serial port  
during the frame-sync interval, (DOUT), one word for each primary communication interval. During  
secondary communications, the data previously programmed into the registers can be read out with the  
appropriate register address, and the read bit set to 1. When no register read is requested, all 16 bits are  
0 in the secondary word.  
2.1.3  
DAC Signal Channel  
DIN receives the 16-bit serial data word (2s complement) from the host during the primary communications  
interval and latches the data on the seventeenth rising edge of SCLK. The data are converted to an analog  
current by the sigma-delta DAC comprised of a digital interpolation filter, and a digital 1-bit modulator. The  
DACs differential outputs OUTP and OUTM are a current output-type, (which requires resistive loading 5kΩ  
maximum). These outputs are then connected to the external low pass filter, as shown in the application  
schematics in Figure 37 and Figure 38 to complete the signal reconstruction. This filter can be  
incorporated in the data access arrangement (DAA) for modem applications.  
2.1.4  
Serial Interface  
The digital serial interface consists of the shift clock, the frame synchronization signal, the ADC-channel  
data output, and the DAC-channel data input. During the primary 16-bit frame synchronization interval, the  
SCLK transfers the ADC channel results from DOUT and transfers 16-bit DAC data into DIN.  
During the secondary frame synchronization interval, the SCLK transfers the register read data from DOUT  
when the read bit is set to a 1. In addition, the SCLK transfers control and device parameter information into  
DIN. The functional sequence is shown in Figure 31.  
2.1.5  
Register Programming  
All register programming occurs during secondary communications, and data is latched and valid on the  
rising edge of the frame-sync signal. When the default value for a particular register is desired, that register  
does not need to be addressed during the secondary communications. The no-op command addresses the  
pseudo-register (register 0), and no register programming takes place during this communications.  
21  
DOUT is released from the high-impedance state on the falling edge of the primary or secondary frame-sync  
interval. In addition, each register can be read back during DOUT secondary communications by setting the  
read bit D13 to 1 in the appropriate register. When the register is in the read mode, no data can be written  
to the register during this cycle. To return this register to the write mode requires a subsequent secondary  
communication.  
2.1.6  
Sigma-Delta ADC  
The sigma-delta ADC is a fourth-order sigma-delta modulator with 64 times oversampling. The ADC  
provides high resolution and low noise performance using oversampling techniques.  
2.1.7  
Decimation Filter  
The decimation filter reduces the digital data rate to the sampling rate. This is accomplished by decimating  
with a ratio of 1:64. The output of this filter is a sixteen-bit 2s-complement data word clocking at the sample  
rate selected.  
NOTE  
The sample rate is determined through a relationship of MCLK/512.  
2.1.8  
Sigma-Delta DAC  
The sigma-delta DAC is a fourth-order sigma-delta modulator with 64 times oversampling. The DAC  
provideshigh-resolution, low-noiseperformancefroma1-bitconverterusingoversamplingtechniques. The  
TLC320AD56C is a current-output DAC and requires a load resistor for current-to-voltage conversion (see  
Figures 37 and 38).  
2.1.9  
Interpolation Filter  
The interpolation filter resamples the digital data at a rate of 64 times the incoming sample rate. The  
high-speed data output from this filter is then used in the sigma-delta DAC.  
2.1.10 Digital Loopback  
The digital loopback provides a means of testing the ADC/DAC channels and can be used for in-circuit  
system-level tests. The loopback feeds the ADC output to the DAC input on the IC.  
Digital loopback is enabled by setting the appropriate bit in Control 1 register (see Appendix A).  
2.1.11 FIR Overflow Flag  
The decimator FIR filter provides an overflow flag to the Control 2 register to indicate that the input to the  
filter has exceeded the range of the internal filter calculations. When this bit is set in the register, it will remain  
set until the register is read by the user. Reading this value will always reset the overflow flag.  
2.2 Terminal Functions  
The terminal functions are described in the following sections.  
2.2.1  
Reset and Power-Down Functions  
2.2.1.1 Reset  
The TLC320AD56C resets the internal counters and registers, including the programmed registers, in one  
of two ways:  
1. By applying a low-going reset pulse to the reset terminal  
2. By writing to the programmable software reset bit (D07 in Control 1 register)  
PWRDWN resets the counters only and preserves the programmed register contents. The PWRDWN  
terminal must be kept low 20 ms after the power supplies have settled.  
22  
2.2.1.2 Conditions of Reset  
The two internal reset signals used for the reset and synchronization functions are:  
1. Counter Reset This signal resets all flip-flops and latches that are not externally programmed,  
with the exception of those generating the reset pulse itself. Additionally, this  
signal resets the software power-down bit. A counter reset is initiated with the  
RESET terminal or RESET bit or PWRDWN terminal.  
2. Register Reset This signal resets all flip-flops and latches that are not reset by the counter  
reset, except those generating the reset pulse itself. A register reset is initiated  
with the RESET terminal or RESET bit.  
Bothresetsignalsshouldbeatleastsixmasterclockperiodslong,T  
edge of the master clock.  
,andshouldreleaseonthetrailing  
RESET  
2.2.1.3 Software and Hardware Power Down  
Given the definitions above, the software programmed power-down condition is cleared by clearing the  
software bit (Control 1 register, bit 6) to a 0 or by cycling the power to the device or bringing RESET low.  
The output of the monitor amplifier maintains its midpoint voltage during hardware and software power  
downs to minimize pops and clicks.  
PWRDWN powers down the entire chip. Cycling the power-down terminal from high to low and back high  
resetsallflip-flopsandlatchesthatarenotexternallyprogrammed, therebypreservingtheregistercontents.  
When PWRDWN is not used, it should be tied high.  
2.2.2  
Master Clock Circuit  
The clock circuit generates and distributes necessary clocks throughout the device. MCLK is the external  
master clock input. SCLK is derived from MCLK in order to provide clocking of the serial communications  
between the device and a digital signal processor (DSP). The sample rates of the data paths are set to  
MCLK/512.  
2.2.3  
Data Out (DOUT)  
DOUT is taken from the high-impedance state by the falling edge of frame sync. The most significant data  
bit then appears on DOUT.  
DOUT is placed in a high-impedance state on the sixteenth rising edge of SCLK after the falling edge of  
frame sync. In the primary communication, the data word is the ADC conversion result. In the secondary  
communication, the data is the register read results when requested by the read/write (R/W) bit with the  
eight MSBs set to 0 (see Section 3 Serial Communications). If no register read is requested, the secondary  
word is all zeroes.  
2.2.4  
Data In (DIN)  
In the primary communication, the data word is the input digital signal to the DAC channel. In the secondary  
communication, the data is the control and configuration data to set up the device for a particular function.  
(see section 3 Serial Communications).  
2.2.5  
Hardware Program Terminal (FC)  
FC provides for hardware programming requests for secondary communication. It works in conjunction with  
the control bit D00 of the secondary data word. The signal on FC is latched 1/2 shift clock after the rising  
edge of the next internally generated primary frame-sync interval. The FC terminal should be tied low when  
not used (see Section 3.2 Secondary Serial Communication and Table 32).  
23  
2.2.6  
Frame-Sync Function  
The frame-sync signal indicates that the device is ready to send and receive data. The data transfer from  
DOUT and into DIN begins on the falling edge of the frame-sync signal.  
The frame sync is generated internally and goes low on the rising edge of SCLK and remains low during  
the 16-bit data transfer.  
2.2.7  
Multiplexed Analog Input  
The two differential analog inputs (INP and INM or AUXP and AUXM) are multiplexed into the sigma-delta  
modulator. The performance of the AUX channel is similar to the normal input channel. A simple RC  
antialiasing filter must be connected to AUXP and AUXM (also INP and INM when used).  
Digital Circuitry  
Power Down  
Analog Circuitry  
Power Down  
PWRDWN  
Clear  
(For Control  
Reg. 1, Bit 6)  
Bit 6 is Programmed  
Through a Secondary  
Write Operation  
Internal TLC320AD56C  
Figure 21. Internal Power-Down Logic  
2.2.8  
Analog Input  
The signal applied to the terminals INM and INP (shown in Figure 22) should be differential to preserve  
the device specifications. A single-ended input signal should always be converted to a differential input  
signal prior to being used by the TLC320AD56C (see section 5 Application Information). The signal source  
driving the analog inputs (INM, INP, AUXM, AUXP) should have a low source impedance for lowest noise  
performance and accuracy. To obtain maximum dynamic range, the input signal should be centered at  
midsupply. AsimpleRCantialiasingfiltermustbeconnectedtoINPandINM(alsoAUXPandAUXMifused).  
Asuitabletradeoffforthecutofffrequency(f )oftheantialiasingfilterisf =3xf .Withthiscutofffrequency,  
co  
co  
s
the attenuation within the band of interest (0 f /2) is less than 0.1 dB.  
s
2.2.9  
Analog Output  
The analog output swing across the OUTP and OUTM terminals depends on the value of the resistor used  
from the IGAIN terminal to analog ground and the resistor load across the OUTP and OUTM terminals. Both  
resistors can be used to set the output voltage swing and then gained to the desired value in the external  
DAC outputfilterasshowninFigure51andFigure52. Withthisexternalfilter, thegainoftheDACchannel  
is 2.5 dB.  
The resistor on the IGAIN terminal sets up the output current pumped and the resistor across OUTP and  
OUTMistheloadwhichconvertsthecurrentoutputoftheDACtoavoltage. Hence, thevoltageswingacross  
OUTPandOUTMdependsontheratiooftheloadresistortothevalueoftheresistorfromtheIGAINterminal  
to analog ground. With 0 dB digital code applied to the DAC channel, the IGAIN resistor set at 27 k, and  
a load resistor of 5 k, the output swing across OUTP and OUTM is 10.5 dB. The ratio of IGAIN resistance  
to load resistance can be adjusted to get the desired voltage swing. For the best distortion performance,  
it is recommended that the output swing be limited to 6 dB relative to 6 V  
.
PP  
24  
TLC320AD56C  
INP  
4 V  
2.5 V  
1 V  
4 V  
INM  
2.5 V  
1 V  
Figure 22. Differential Analog-Input Configuration  
25  
26  
3 Serial Communications  
DOUT, DIN, SCLK, FS, and FC are the serial communication signals. The digital output data from the ADC  
is taken from DOUT. The digital input data for the DAC is applied to DIN. The synchronizing clock for the  
serial communication data and the frame sync is taken from SCLK. The frame synchronization pulse that  
encloses the ADC/DAC data transfer interval is taken from FS. For an audio signal data transmitted from  
the ADC or to the DAC, primary serial communication is used. To read or write words that control both the  
options and the circuit configurations of the device, secondary communication is used.  
The purpose of the primary and secondary communications is to allow conversion data and control data to  
be transferred across the same serial port. A primary transfer is always dedicated to conversion data. A  
secondary transfer is used to set up and read the register values described in Appendix A. A primary transfer  
occurs for every conversion period. A secondary transfer occurs only when requested. Two methods exist  
for requesting a secondary command. The FC terminal can be used to request a secondary communication  
by asserting it, or the least significant bit (LSB) of the DAC data within a primary transfer can request a  
secondary communication. The selection of which method is enabled is provided in Control 1 register (bit  
D0) as shown in Appendix A.  
For all serial communications, the most significant bit (MSB) is transferred first. For a 16-bit ADC word and  
a 16-bit DAC word, D15 is the MSB and D0 is the LSB. For a 15-bit DAC data word in the 16-bit primary  
communication, D15 is the MSB, D1 is the LSB, and D0 is used for the embedded function control. All digital  
data values are in 2s-complement format.  
These logic signals are compatible with TTL-voltage levels and CMOS current levels (when V  
These logic signals are also compatible with a 3-V supply.  
= 5 V dc).  
DD  
3.1 Primary Serial Communication  
A primary serial communication transmits and receives conversion signal data. The ADC word length is  
always 16 bits. The DAC word length depends on the status of D0 in the Control 1 register. After power up  
or reset, the device defaults to a 15-bit mode (not 16-bit mode). The DAC word length is 15 bits and the last  
bit of the primary 16-bit serial communication word is a function control bit used to request secondary serial  
communications. In 16-bit mode, all 16 bits of the primary communications word are used as data for the  
DAC and the hardware terminal FC must be used to request secondary communications.  
31  
Figure 31 shows the timing relationship for SCLK, FS, DOUT and DIN in a primary communication. The  
timing sequence for this operation is as follows:  
1. FS is brought low by the TLC320AD56C.  
2. One 16-bit word is transmitted from the ADC (DOUT) and one 16-bit word is received for the DAC  
(DIN).  
3. FS is brought high by the TLC320AD56C signaling the end of the conversion.  
t
d3  
V
V
IH  
IL  
MCLK  
SCLK  
V
OH  
OL  
V
0th  
1st  
2nd  
14th  
15th  
16th  
t
d1  
t
d2  
V
V
OH  
FS  
OL  
t
t
dis  
D0  
en  
D15  
D14  
D14  
D1  
D1  
...D2  
...D2  
DOUT  
t
su  
In 16-Bit Mode:  
DIN  
D0  
D15  
MSB  
LSB  
t
h
t
su  
In 16-Bit Mode:  
DIN  
FC  
D15  
D14  
D1  
...D2  
MSB  
LSB  
t
h
Figure 31. Primary Serial Communication Timing  
When a secondary request is made through the LSB of the DAC data word (16-bit mode), the format in  
Table 31 is used.  
Table 31. Secondary Request Format  
D15 D14 D13 D12 D11 D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
15-bit DAC  
2s-complement format  
control  
16-bit ADC  
2s-complement format  
32  
3.2 Secondary Serial Communication  
Secondary serial communication is used to read or write 16-bit words that program both the options and the  
circuitconfigurationsofthedevice. Allregisterprogrammingoccursduringsecondarycommunications. Two  
primary and secondary communication cycles are required to program the two registers. When the default  
value for a particular register is desired, then the user could omit addressing it during secondary  
communication. The NOOP command addresses a pseudo-register, register 0, and no register  
programming takes place during this secondary communication.  
There are two methods for initiating secondary communications. They are 1) by asserting a high signal level  
on FC, or 2) by asserting the LSB of the DIN 16-bit serial communication high while not in 16-bit mode (see  
Control 1 register, bit 0).  
FC  
Secondary  
(Hardware)  
Request  
(LSB of DIN)  
16-Bit Mode  
(Control 1 Register,  
Bit 0)  
Internal TLC320AD56C  
Figure 32. Hardware and Software Ways to Make a Secondary Request  
1. Figures 33 and 34 show the two different ways FC requests secondary communication words  
as well as the timing for FS, DOUT, DIN, and SCLK. The examples span two primary  
communication frames. Figure 33 shows the use of hardware function control.  
During a secondary communication, a register may be written to or read from. When writing a  
value to a register, the DIN line contains the value to be written. The data returned on DOUT is  
00H. When performing a read function, the DIN line may still provide data to be written to an  
addressed register; however, the DOUT line contains the most recent value in the register  
addressed by DIN.  
In Figure 33, FC is clocked in and latched on the rising edge of frame sync (FS). This causes  
the start of the secondary information 32 FCLKs after the start of the primary communication  
frame. Read and write examples are shown for DIN and DOUT.  
2. Figure 34 shows the use of software function control.  
The software request is typically used when the required resolution of the DAC channel is less  
than 16 bits. Then the least significant bit (D0) can be used for the secondary requests as shown  
in Table 32.  
Table 32. Least Significant Bit Control Function  
Control Bit D0  
Control Bit Function  
No operation (NOOP)  
Secondary communication request  
0
1
On the falling edge of the next FS, D15D1 is input to DIN or D15D0 is output to DOUT.  
When a secondary communication request is made, FS goes low 32 FCLKs after the beginning of the  
primary frame.  
33  
Communication Frame 1 (CF1)  
(CF2)  
FS  
FC  
No Secondary  
Request  
Primary  
Secondary  
Primary  
8 SCLKs  
DOUT  
(Secondary  
Read)  
ADC Data  
Out  
ADC Data  
Out  
Register  
Data  
DOUT  
(Secondary  
Write)  
ADC Data  
Out  
ADC Data  
Out  
All Bits 0  
DIN  
(Secondary  
Read or Write)  
Secondary  
Update  
DAC Data In  
DAC Data In  
16 SCLKs  
16 SCLKs  
16 SCLKs  
32 FCLKs  
64 FCLKs  
64 FCLKs  
Figure 33. Hardware FC Secondary Request  
(Phone Mode Disabled)  
In Figure 34, FC hardware terminal 15 is left in its unasserted state (0). FC is asserted through software  
by embedding an asserted high level (1) in the LSB of the 16-bit primary word. This is possible when not  
in 16-bit mode (Control 1 register, bit 2 = 0) because the user is using only 15 bits of DAC information.  
34  
Communication Frame 1 (CF1)  
Secondary  
(CF2)  
FS  
FC  
Primary  
Primary  
No Secondary  
Request  
0
D15-D1 D0 = 0  
DAC Data  
D15-D1 D0 = 1  
DAC Data  
DIN  
(Secondary  
Read or Write)  
Secondary  
Update  
See Note A  
Software FC Bit  
ADC Data  
8 SCLKs  
DOUT  
(Secondary  
Read)  
ADC Data  
ADC Data  
Register  
Data  
DOUT  
(Secondary  
Write)  
All Bits 0  
ADC Data  
16 SCLKs  
16 SCLKs  
16 SCLKs  
32 FCLKs  
64 FCLKs  
64 FCLKs  
NOTE A: For a read cycle, the last 8 bits are do-not-care bits.  
Figure 34. Software FC Secondary Request (Phone Mode Disabled)  
Table 33 shows the secondary communications format. D13 is the read/not-write (R/W) bit.  
D12D8 are address bits. The register map is specified in the register set section in Appendix A. D7D0  
are data bits. The data bits are the new values for the specified register addressed by D12D8.  
Table 33. Secondary Communication Data Format  
D15 D14 D13 D12 D11 D10  
–– –– R/W  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
A
A
A
A
A
D
D
D
D
D
D
D
D
35  
3.3 Conversion Rate vs Serial Port  
The SCLK frequency is set by the frequency of MCLK. There is a 2-stage clock divider that sets the SCLK  
frequency as MCLK/4.  
3.4 Phone Mode Control  
Phone mode control is provided for applications that need hardware control and monitoring of external  
events. By allowing the device to drive two FLAG terminals (set through the Control 2 register), the host  
(DSP) is capable of system control through the same serial port that connects to the device. Along with this  
control is the capability of monitoring the value of the ALT DATA terminal during a secondary communication  
cycle. One application for this function is in monitoring RING DETECT or OFFHOOK DETECT from a phone  
answering system. The two FLAG terminals allow response to these incoming control signals. Figure 36  
shows the timing associated with this operating mode.  
Primary  
Secondary  
Primary  
Secondary  
Primary  
FS  
Register  
Data  
ALT DATA  
DOUT  
(Secondary  
Read)  
8 SCLKs  
ALT DATA  
DOUT  
(Secondary  
Write)  
ALT DATA  
1 SCLK MAX  
DIN  
Set FLAG0 = FLAG1 = 1  
Set FLAG0 = FLAG1 = 0  
FLAG0,  
FLAG1  
Figure 35. Phone Mode Timing  
Do Not Care  
8 Bits  
DIN  
(Secondary  
Read)  
R/W  
Register Address  
DIN  
(Secondary  
Write)  
8 Bits  
Data to the  
Register  
Figure 36. Secondary DIN Format  
36  
4 Specifications  
4.1 Absolute Maximum Ratings Over Operating Free-Air Temperature Range  
(Unless Otherwise Noted)  
Supply voltage range, DV  
AV  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 7 V  
DD,  
DD  
Output voltage range, DOUT, FS, SCLK, FLAG0, FLAG1 . . . . 0.3 V to DV  
Output voltage range, OUTP, OUTM . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to V  
Input voltage range, DIN, PWRDWN, RESET, ALT DATA,  
+ 0.3 V  
+ 0.3 V  
DD  
DD  
MCLK, FC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to DV  
Input voltage range, INP, INM, AUXP, AUXM . . . . . . . . . . . . . . . . 0.3 V to V  
+ 0.3 V  
+ 0.3 V  
DD  
DD  
Case temperature for 10 seconds, T : DW package . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
C
Operating free-air temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Stresses beyond those listed under absolute maximum ratingsmay cause permanent damage to the device. These  
are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated  
under recommended operating conditionsis not implied. Exposure to absolute-maximum-rated conditions for  
extended periods may affect device reliability.  
NOTE 1: All voltage values are with respect to V  
.
SS  
4.2 Recommended Operating Conditions  
MIN  
NOM  
MAX  
UNIT  
Supply voltage, AV  
(see Note 2)  
DD  
4.75  
5.25  
V
Analog signal input voltage,  
Differential, (INPINM) peak,  
for full scale operation  
6
V
V
I(analog)  
Resistance, IGAIN, R  
20  
27  
54  
kΩ  
kΩ  
(IGAIN)  
Load resistance, OUTP, OUTM, R  
5/27  
R
(IGAIN)  
L
ADC or DAC conversion rate  
(sample rate)  
8
22.05  
70  
kHz  
Operating free-air temperature, T  
0
°C  
A
4.2.1  
Recommended Operating Conditions, DV  
= 5 V, AV  
= 5 V  
DD  
DD  
MIN  
NOM  
MAX  
UNIT  
V
Supply voltage, DV  
DD  
(see Note 2)  
4.5  
2
5.5  
High-level input voltage, V  
IH  
V
Low-level input voltage, V  
IL  
MCLK frequency (see Note 3)  
0.8  
V
4.096  
11.29  
MHz  
4.2.2  
Recommended Operating Conditions, DV  
= 3 V, AV  
= 5 V  
DD  
DD  
MIN  
2.7  
NOM  
MAX  
UNIT  
V
Supply voltage, DV  
(see Note 2)  
3
3.3  
DD  
High-level input voltage, V  
IH  
1.8  
V
Low-level input voltage, V  
0.6  
V
IL  
MCLK frequency (see Note 3)  
4.096  
11.29  
MHz  
NOTES: 2. Voltages at analog inputs and outputs and V  
are with respect to the V  
terminal.  
SS  
DD  
3. The default state for an 8-kHz conversion rate requires a 4.096-MHz MCLK frequency.  
41  
4.3 Electrical Characteristics Over Recommended Operating Free-Air  
Temperature Range, DV = 5 V, AV = 5 V (Unless Otherwise Noted)  
DD  
DD  
4.3.1  
Digital Inputs and Outputs, MCLK = 4.096 MHz, f = 8 kHz, Outputs Not Loaded  
s
PARAMETER  
High-level output voltage, DOUT  
Low-level output voltage, DOUT  
High-level input current, any digital input  
Low-level input current, any digital input  
Input capacitance  
TEST CONDITIONS  
MIN  
TYP  
4.6  
MAX  
UNIT  
V
V
V
I
I
= 360 µA  
2.4  
OH  
O
= 2 mA  
0.2  
0.4  
10  
10  
V
OL  
O
I
I
V
= 5 V  
µA  
µA  
pF  
pF  
IH  
IH  
IL  
V
= 0.8 V  
IL  
C
C
5
5
i
Output capacitance  
o
4.3.2  
Digital Inputs and Outputs, MCLK = 4.096 MHz, f = 8 kHz, Outputs Not Loaded,  
s
DV  
= 3 V  
DD  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
V
High-level output voltage, DOUT  
Low-level output voltage, DOUT  
High-level input current, any digital input  
Low-level input current, any digital input  
Input capacitance  
I
I
= 360 µA  
2
OH  
O
= 2 mA  
0.4  
10  
10  
V
OL  
O
I
I
V
V
= 3.3 V  
= 0.6 V  
µA  
µA  
pF  
pF  
IH  
IH  
IL  
IL  
C
C
5
5
i
Output capacitance  
o
4.3.3  
ADC Path Filter, MCLK = 4.096 MHz, f = 8 kHz (see Note 4)  
s
PARAMETER  
TEST CONDITIONS  
0 to 300 Hz  
300 Hz to 3 kHz  
3.3 kHz  
MIN  
TYP  
MAX  
0.2  
UNIT  
0.5  
0.35  
0.4  
0.2  
0.3  
Filter gain relative to gain at 1020 Hz  
dB  
3.6 kHz  
3  
4 kHz  
40  
74  
4.4 kHz  
NOTE 4: The filter gain outside of the passband is measured with respect to the gain at 1020 Hz. The analog input test  
signal is a sine wave with 0 dB = 6 V as the reference level for the analog input signal. The 1 dB pass  
I(PP)  
band is 0 to 3400 Hz for an 8-kHz sample rate. This pass band scales linearly with the sample rate.  
4.3.4  
ADC Dynamic Performance, MCLK = 4.096 MHz, f = 8 kHz  
s
4.3.4.1 ADC Signal-to-Noise (see Note 5)  
PARAMETER  
TEST CONDITIONS  
V = 1 dB  
MIN  
TYP  
86  
84  
81  
78  
47  
22  
78  
MAX  
UNIT  
I
V = 3 dB  
I
80  
76  
73  
42  
17  
73  
V = 6 dB  
I
Signal-to-noise ratio (SNR)  
V = 9 dB  
I
dB  
V = 40 dB  
I
V = 65 dB  
I
V
AUX  
= 9 dB  
NOTE 5: The test condition is a 1020-Hz input signal with an 8-kHz conversion rate. Input and output voltages are  
referred to AV /2.  
DD  
42  
4.3.4.2 ADC Signal-to-Distortion (see Note 5)  
PARAMETER  
TEST CONDITIONS  
V = 1 dB  
MIN  
TYP  
78  
79  
82  
85  
70  
47  
85  
MAX  
UNIT  
I
V = 3 dB  
I
74  
77  
80  
65  
42  
80  
V = 6 dB  
I
Signal-to-total harmonic distortion (THD)  
V = 9 dB  
I
dB  
V = 40 dB  
I
V = 65 dB  
I
V
AUX  
= 9 dB  
NOTE 5: The test condition is a 1020-Hz input signal with an 8-kHz conversion rate. Input and output voltages are  
referred to V /2.  
DD  
4.3.4.3 ADC Signal-to-Distortion, DV  
= 3 V (see Note 5)  
DD  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
79  
MAX  
UNIT  
V = 1 dB  
I
V = 3 dB  
90  
92  
94  
68  
42  
94  
95  
I
V = 6 dB  
I
100  
103  
76  
Signal-to-total harmonic distortion (THD)  
V = 9 dB  
I
dB  
V = 40 dB  
I
V = 65 dB  
I
52  
V
AUX  
= 9 dB  
103  
NOTE 5: The test condition is a 1020-Hz input signal with an 8-kHz conversion rate. Input and output voltages are  
referred to V /2.  
DD  
4.3.4.4 ADC Signal-to-Distortion+Noise (see Note 5)  
PARAMETER  
TEST CONDITIONS  
V = 1 dB  
MIN  
TYP  
77  
78  
78  
77  
46  
21  
77  
MAX  
UNIT  
I
V = 3 dB  
I
73  
73  
72  
41  
16  
72  
V = 6 dB  
I
Total harmonic distortion + noise (THD+N)  
V = 9 dB  
I
dB  
V = 40 dB  
I
V = 65 dB  
I
V
AUX  
= 9 dB  
NOTE 5: The test condition is a 1020-Hz input signal with an 8-kHz conversion rate. Input and output voltages are  
referred to V /2.  
DD  
43  
4.3.4.5 ADC Signal-to-Distortion+Noise, DV  
= 3 V (see Note 5)  
DD  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
78  
84  
81  
78  
47  
22  
78  
MAX  
UNIT  
V = 1 dB  
I
V = 3 dB  
I
79  
76  
73  
42  
17  
73  
V = 6 dB  
I
Total harmonic distortion + noise (THD+N)  
V = 9 dB  
I
dB  
V = 40 dB  
I
V = 65 dB  
I
V
AUX  
= 9 dB  
NOTE 5: The test condition is a 1020-Hz input signal with an 8-kHz conversion rate. Input and output voltages are  
referred to V /2.  
DD  
4.3.5  
ADC Channel  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
6
MAX  
UNIT  
V
I(PP)  
Peak-to-peak input voltage  
Dynamic range  
V
87  
Interchannel isolation  
Gain error  
110  
±0.3  
5
dB  
E
E
V = 1 dB at 1020 Hz  
I
G
ADC converter offset error  
mV  
dB  
O(ADC)  
Common-mode rejection ratio at INM,  
INP or AUXM, AUXP  
CMRR  
V = 0 dB at 1020 kHz  
I
80  
Idle channel noise (on-chip reference)  
Input resistance  
30  
75 µV rms  
R
T
A
= 25°C  
100  
kΩ  
i
Channel delay  
17/f  
s
s
4.3.6  
DAC Path Filter, MCLK = 8.192 MHz, f = 8 kHz (see Note 6)  
s
PARAMETER  
TEST CONDITIONS  
0 to 300 Hz  
300 Hz to 3 kHz  
3.3 kHz  
MIN  
TYP  
MAX  
UNIT  
0.5  
0.2  
0.25  
0.3  
0.25  
0.35  
Filter gain relative to gain at 1020 Hz  
dB  
3.6 kHz  
3  
4 kHz  
40  
74  
4.4 kHz  
NOTE 6: The filter gain outside of the passband is measured with respect to the gain at 1020 Hz. The input signal is the  
digital equivalent of a sine wave (digital full scale = 0 dB). The nominal differential DAC channel output with  
this input condition is 6 V  
scales linearly with the sample rate.  
. The 1 dB pass band is 0 to 3400 Hz for an 8-kHz sample rate. This pass band  
I(PP)  
44  
4.3.7  
DAC Dynamic Performance, DV  
= 5 V or 3 V  
DD  
4.3.7.1 DAC Signal-to-Noise (see Note 7)  
PARAMETER  
TEST CONDITIONS  
MIN  
80  
TYP  
85  
MAX  
UNIT  
V
O
V
O
V
O
V
O
= 0 dB  
= 9 dB  
= 40 dB  
= 65 dB  
72  
77  
Signal-to-noise ratio (SNR)  
dB  
41  
46  
16  
21  
NOTE 7: The test condition is the digital equivalent of a 1020-Hz input signal with an 8-kHz conversion rate. The test  
is measured at the output of a single pole RC filter with a cutoff frequency of 32 kHz. The test is conducted in  
16-bit mode.  
4.3.7.2 DAC Signal-to-Distortion (see Note 7)  
PARAMETER  
TEST CONDITIONS  
MIN  
86  
TYP  
92  
MAX  
UNIT  
V
O
V
O
V
O
V
O
= 0 dB  
= 9 dB  
= 40 dB  
= 65 dB  
90  
96  
Signal-to-total harmonic distortion (THD)  
dB  
60  
66  
40  
46  
NOTE 7: The test condition is the digital equivalent of a 1020-Hz input signal with an 8-kHz conversion rate. The test  
is measured at the output of a single pole RC filter with a cutoff frequency of 32 kHz. The test is conducted in  
16-bit mode.  
4.3.7.3 DAC Signal-to-Distortion+Noise (see Note 7)  
PARAMETER  
TEST CONDITIONS  
MIN  
80  
TYP  
84  
MAX  
UNIT  
V
O
V
O
V
O
V
O
= 0 dB  
= 9 dB  
= 40 dB  
= 65 dB  
72  
76  
Total harmonic distortion + noise (THD+N)  
dB  
41  
45  
16  
20  
NOTE 7: The test condition is the digital equivalent of a 1020-Hz input signal with an 8-kHz conversion rate. The test  
is measured at the output of a single pole RC filter with a cutoff frequency of 32 kHz. The test is conducted in  
16-bit mode.  
45  
4.3.8  
DAC Channel, DV  
PARAMETER  
= 5 V or 3 V  
DD  
TEST CONDITIONS  
MIN  
TYP  
85  
MAX  
UNIT  
Dynamic range  
Interchannel isolation  
Gain error, 0 dB  
108  
±0.5  
dB  
E
G
V
O
= 0 dB at 1020 Hz  
Idle channel  
broad-band noise  
See Note 8  
70  
2
150 µV rms  
Idle channel  
narrow-band noise  
0 4 kHz,  
See Note 8  
20 µV rms  
Channel delay  
18/f  
s
s
Output offset voltage  
at OUT (differential)  
V
V
DIN = zero code  
2
mV  
OO  
With internal  
reference and  
full-scale digital  
input,  
Analog output  
voltage,  
OUTPOUTM  
9.6  
R
R
LOAD  
Differential  
V
PP  
O
(IGAIN)  
See Note 9  
NOTES: 8. The conversion rate is 8 kHz; the out-of-band measurement is made from 4400 Hz to 3 MHz.  
9. The digital input to the DAC channel at DIN is in 2s complement format. The TLC320AD56C is a current  
DAC and requires a load resistor for current-to-voltage conversion. This output voltage is across the load  
resistor (see Figures 51 and 52).  
4.3.9  
Power Supplies, No Load (Unless Otherwise Noted)  
PARAMETER  
TEST CONDITIONS  
Operating  
MIN  
TYP  
18  
0.5  
2
MAX  
UNIT  
mA  
mA  
mA  
µA  
25  
I
I
I
Power supply current, ADC  
DD (analog)  
DD (digital1)  
DD (digital2)  
Power down  
Operating  
5
Power supply current, digital  
Power supply current, digital,  
Power down  
Operating  
3
1
mA  
µA  
DV  
= 3.3 V  
Power down  
Operating  
3
DD  
100  
2.5  
150  
5
P
D
Power dissipation  
mW  
Power down  
46  
4.3.10 Power-Supply Rejection (see Note 10)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
Supply-voltage rejection ratio, ADC channel,  
V
V
V
f = 0 to 30 kHz  
55  
55  
50  
50  
55  
dB  
DD1  
DD2  
DD3  
i
DV  
DD  
Supply-voltage rejection ratio, DAC channel,  
DV  
f = 0 to 30 kHz  
i
dB  
dB  
dB  
dB  
DD  
Supply-voltage rejection ratio, ADC channel,  
AV  
f = 0 to 30 kHz  
i
DD  
Single ended,  
f = 0 to 30 kHz  
i
Supply-voltage rejection ratio, DAC channel,  
V
DD4  
AV  
Differential,  
f = 0 to 30 kHz  
i
DD  
All typical values are at 25°C.  
NOTE 10: Power supply rejection measurements are made with both the ADC and the DAC channels idle and a 200-mV  
peak-to-peak signal applied to the appropriate supply.  
4.3.11 Timing Requirements (see Figure 31)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
0
UNIT  
t
t
t
t
t
t
t
Delay time, SCLKto FS↓  
d1  
d2  
su  
h
Delay time, SCLKto DOUT valid  
DIN setup time before SCLK low  
DIN hold time after SCLK high  
Enable time, FSto DOUT valid  
Disable time, FSto DOUT Hi-Z  
Delay time, MCLKto SCLK↑  
20  
20  
C
= 20 pF  
20  
25  
L
ns  
en  
dis  
d3  
20  
50  
t
Pulse duration, MCLK high  
Pulse duration, MCLK low  
32  
20  
wH  
wL  
t
47  
0
20  
40  
60  
80  
100  
120  
140  
160  
0
0.8  
1.6  
2.4  
3.2  
4
4.8  
5.6  
6.4  
7.2  
8
f Input Frequency kHz  
I
Figure 41. ADC Decimation Filter Response  
0.6  
0.4  
0.2  
0
0.2  
0.4  
0.6  
0.8  
1  
0
0.4  
0.8  
1.2  
1.6  
2
2.4  
2.8  
3.2  
3.6  
4
f Input Frequency kHz  
I
Figure 42. ADC Decimation Passband Ripple  
48  
0
20  
40  
60  
80  
100  
120  
140  
160  
0
0.8  
1.6  
2.4  
3.2  
4
4.8  
5.6  
6.4  
7.2  
8
f Input Frequency kHz  
I
Figure 43. DAC Interpolation Filter Response  
0.3  
0.2  
0.1  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0
0.4  
0.8  
1.2  
1.6  
2
2.4  
2.8  
3.2  
3.6  
4
f Input Frequency kHz  
I
Figure 44. DAC Interpolation Passband Ripple  
49  
410  
5 Application Information  
TLC320AD56C  
+V  
_
10 kΩ  
V
V
I()  
INP(+)  
I(+)  
+
0.22 µF  
300 pF  
20 kΩ  
V  
INM()  
10 kΩ  
AGND  
2.5 V  
0.1 µF  
AGND  
38.4 kΩ  
0.39 nF  
+V  
V
COM(ADC)  
1 µF  
6.8 kΩ  
10 kΩ  
_
OUTM()  
V
O(+)  
10 kΩ  
+
10 kΩ  
15 nF  
12 nF  
OUTP(+)  
V  
V
COM(DAC)  
IGAIN  
AGND  
0.1 µF  
AGND  
AGND  
27 kΩ  
(1%)  
AGND  
Figure 51. Application Schematic For Single-Ended Input/Output  
51  
TLC320AD56C  
+V  
_
20 kΩ  
V
I1()  
INP(+)  
V
I1(GND)  
+
0.22 µF  
V  
20 kΩ  
150 pF  
AGND  
2.5 V  
V
COM(ADC)  
0.1 µF  
AGND  
20 kΩ  
20 kΩ  
+V  
150 pF  
_
V
I2(+)  
INM()  
V
I2(GND)  
+
0.22 µF  
V  
AGND  
38.4 kΩ  
0.39 nF  
+V  
1 µF  
6.8 kΩ  
10 kΩ  
_
OUTM()  
V
O(+)  
+
10 kΩ  
12 nF  
10 kΩ  
AGND  
V  
V
COM(DAC)  
AGND  
0.1 µF  
38.4 kΩ  
8.2 nF  
0.39 nF  
+V  
AGND  
10 kΩ  
1 µF  
6.8 kΩ  
10 kΩ  
_
OUTP(+)  
IGAIN  
V
O()  
+
12 nF  
10 kΩ  
AGND  
V  
27 kΩ  
(1%)  
AGND  
AGND  
Figure 52. Application Schematic For Differential Input/Output  
52  
Appendix A  
Register Set  
Bits D12 through D8 in a secondary serial communication comprise the address of the register that is written  
with the data carried in D7 through D0. D13 determines a read or write cycle to the addressed register. When  
low, a write cycle is selected.  
Table A1 shows the register map.  
Table A1. Data and Control Registers  
BITS  
REGISTER NO.  
REGISTER NAME  
D15 D14 D13 D12 D11 D10 D9  
D8  
0
0
1
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
No operation  
Control 1  
1
0
Control 2  
Table A2. Control 1 Register  
BITS  
DESCRIPTION  
D7  
1
0
D6  
1
0
D5  
1
0
D4  
0
1
D3  
1
1
0
0
D2  
1
0
1
0
D1  
1
0
D0  
1
0
Software reset  
Software reset not asserted  
Software power down (analog and filters)  
Software power down (not asserted)  
Select AUXP and AUXM  
Select INP and INM  
Select INP and INM for monitor  
Select AUXP and AUXM for monitor  
Monitor amp gain = 18 dB (see Note B)  
Monitor amp gain = 8 dB (see Note B)  
Monitor amp gain = 0 dB (see Note B)  
Monitor amp mute  
Digital loopback asserted  
Digital loopback not asserted  
16-bit mode (hardware secondary requests)  
Not 16-bit mode (software secondary requests)  
NOTES: A. Default value: 00000000  
B. These gains are for a single-ended input. The gain is 6 dB lower with a differential input.  
The software reset is a one-shot operation and this bit is cleared to 0 after reset. It is not necessary to write  
a zero to end the master reset operation. Writing 0s to the reserved bits is suggested.  
A1  
Table A3. Control 2 Register  
BITS  
DESCRIPTION  
D7  
D6  
D5  
X
D4  
D3  
D2  
D1  
D0  
X
Decimator FIR overflow flag (valid only during read cycle)  
FLAG 1 output value (valid only during read cycle)  
FLAG 0 output value (valid only during read cycle)  
Phone mode enabled  
X
1
0
Phone mode disabled  
X
X
X
X
Reserved  
NOTES: A. Default value: 00000000  
B. X = do not care  
Writing 0s to the reserved bits is suggested.  
A2  
Appendix B  
Mechanical Data  
FN (S-PQCC-J**)  
PLASTIC J-LEADED CHIP CARRIER  
20 PIN SHOWN  
Seating Plane  
0.004 (0,10)  
0.180 (4,57) MAX  
D
0.120 (3,05)  
0.090 (2,29)  
D1  
0.020 (0,51) MIN  
3
1
19  
0.032 (0,81)  
0.026 (0,66)  
4
18  
D2/E2  
D2/E2  
E
E1  
8
14  
0.021 (0,53)  
0.013 (0,33)  
0.050 (1,27)  
9
13  
0.008 (0,20) NOM  
0.007 (0,18)  
M
D / E  
D1 / E1  
D2 / E2  
NO. OF  
PINS  
**  
MIN  
MAX  
0.395 (10,03)  
MIN  
0.350 (8,89)  
MAX  
MIN  
MAX  
0.385 (9,78)  
0.356 (9,04)  
0.141 (3,58)  
0.191 (4,85)  
0.291 (7,39)  
0.341 (8,66)  
0.169 (4,29)  
0.219 (5,56)  
0.319 (8,10)  
0.369 (9,37)  
20  
28  
44  
52  
68  
84  
0.485 (12,32) 0.495 (12,57) 0.450 (11,43) 0.456 (11,58)  
0.685 (17,40) 0.695 (17,65) 0.650 (16,51) 0.656 (16,66)  
0.785 (19,94) 0.795 (20,19) 0.750 (19,05) 0.756 (19,20)  
0.985 (25,02) 0.995 (25,27) 0.950 (24,13) 0.958 (24,33) 0.441 (11,20) 0.469 (11,91)  
1.185 (30,10) 1.195 (30,35) 1.150 (29,21) 1.158 (29,41) 0.541 (13,74) 0.569 (14,45)  
4040005/B 03/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-018  
B1  
PT (S-PQFP-G48)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
M
0,08  
0,50  
36  
25  
37  
24  
0,13 NOM  
48  
13  
Gage Plane  
1
12  
5,50 TYP  
0,25  
7,20  
SQ  
0,05 MIN  
0°7°  
6,80  
9,20  
SQ  
8,80  
0,75  
0,45  
1,45  
1,35  
Seating Plane  
1,60 MAX  
0,10  
4040052/B 03/95  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MO-136  
D. Also may be a thermally enhanced plastic package with leads conected to the die pads  
B2  

相关型号:

TLC320AD56C

Sigma-Delta Analog Interface Circuit
TI

TLC320AD56CFN

Sigma-Delta Analog Interface Circuit
TI

TLC320AD56CFNR

Single Channel Codec With 85-87 dB Dynamic Range 28-PLCC 0 to 70
TI

TLC320AD56CPT

Sigma-Delta Analog Interface Circuit
TI

TLC320AD56CPTB

TLC320AD56CPTB
TI

TLC320AD56CPTR

SPECIALTY ANALOG CIRCUIT, PQFP48, PLASTIC, QFP-48
TI

TLC320AD56C_16

Sigma-Delta Analog Interface Circuit
TI

TLC320AD57

Sigma-Delta Stereo Analog-to-Digital Converter
TI

TLC320AD57C

Sigma-Delta Stereo Analog-to-Digital Converter
TI

TLC320AD57CDW

Sigma-Delta Stereo Analog-to-Digital Converter
TI

TLC320AD57CDWR

Sigma-Delta Stereo Analog-to-Digital Converter
TI

TLC320AD58

Sigma-Delta Stereo Analog-to-Digital Converter
TI