TIC12400DCPR [TI]

具有集成式 1:1 (SPST)、10 通道 ADC 和 SPI 的 24 输入传感器监控器 | DCP | 38 | -40 to 105;
TIC12400DCPR
型号: TIC12400DCPR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成式 1:1 (SPST)、10 通道 ADC 和 SPI 的 24 输入传感器监控器 | DCP | 38 | -40 to 105

监控 输入元件 光电二极管 接口集成电路 传感器
文件: 总138页 (文件大小:2162K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
具有集成 ADC 和可调湿性电流的  
TIC12400 24 路输入多开关检测接口 (MSDI) 器件  
1 特性  
3 说明  
1
工作电源电压 (VS) 范围为 6.5V 35V,具有过压  
和欠压警告  
TIC12400 是一款先进的多开关检测接口 (MSDI) 器  
件,用于检测外部开关状态。TIC12400 支持 24 路直  
接输入,并可配置其中 10 路输入以监控数字 I/O 开  
关。可为每路输入设定 6 种湿性电流设置,从而支持  
不同的应用场景。TIC12400 采用了 集成的 10 位  
ADC 对多位模拟开关进行监控,并采用比较器来独立  
MCU 对数字开关进行监控。该器件支持所有开关输  
入的唤醒操作,因此无需持续使 MCU 保持活动状态,  
进而可降低系统功耗。TIC12400 支持 2 种工作模式:  
连续模式和轮询模式。连续模式下将连续提供湿性电  
流。轮询模式下将根据可编程计时器来定期接通湿性电  
流以对输入状态进行采样,从而显著降低系统功耗。  
TIC12400 还提供各种故障检测和诊断 特性 以提高系  
统稳健性。  
监控多达 24 路直接开关输入,并可配置其中 10 路  
输入以监控接地或连接到电源的开关  
开关输入可接受 40V 电压和低至 -24V 的反向供电  
条件  
6 种可配置的湿性电流设置:  
0mA1mA2mA5mA10mA 15mA)  
适用于多位模拟开关监控的 10 位集成 ADC  
适用于输入监控并具有 4 个可编程阈值的集成比较  
在轮询模式下具有超低工作电流:  
典型值为 68μAtPOLL = 64mstPOLL_ACT  
128μs,  
=
全部 24 路输入均处于活动状态,比较器模式,所  
有开关均打开)  
器件信息(1)  
使用 3.3V/5V 串行外设接口 (SPI) 协议直接与  
MCU 连接  
器件型号  
TIC12400  
封装  
封装尺寸(标称值)  
TSSOP (38)  
9.70 mm x 4.40 mm  
可产生中断来支持所有输入的唤醒操作  
集成电源和温度传感  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
采用适当的外部组件根据 IEC 61000-4-2 在输入引  
脚上实现 ±8kV 接触放电 ESD 保护  
简化电路原理图  
38 引脚 TSSOP 封装  
ë{Ütt[ò  
ëolꢁꢂge  
wegulꢂꢁor  
2 应用  
信号测量  
ë{Ütt[ò  
ë{  
ë{  
PLCDCS PAC  
Lb0  
Lb9  
400 O  
400 O  
仪表  
ë55  
/LbÇ  
/ꢀ{  
{ꢀ[Y  
{L  
ë55  
/LbÇ  
/ꢀ{  
ë{Ütt[ò  
{ensor  
Lb10  
Lb23  
{ꢀ[Y  
ah{L  
aL{h  
{ensor  
{h  
ÇLꢀ12400  
aicroconꢁroller  
Copyright © 2017, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SCPS269  
 
 
 
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 28  
8.5 Programming .......................................................... 45  
8.6 Register Maps......................................................... 49  
8.7 Programming Guidelines....................................... 121  
Application and Implementation ...................... 124  
9.1 Application Information.......................................... 124  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings ............................................................ 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 6  
6.5 Electrical Characteristics........................................... 6  
6.6 Timing Requirements ............................................... 9  
6.7 Typical Characteristics............................................ 10  
Parameter Measurement Information ................ 12  
Detailed Description ............................................ 13  
8.1 Overview ................................................................. 13  
8.2 Functional Block Diagram ....................................... 14  
8.3 Feature Description................................................. 15  
9
9.2 Digital IO Switches and Analog Voltage  
Monitoring .............................................................. 124  
10 Power Supply Recommendations ................... 127  
11 Layout................................................................. 128  
11.1 Layout Guidelines ............................................... 128  
11.2 Layout Example .................................................. 129  
12 器件和文档支持 ................................................... 130  
12.1 接收文档更新通知 ............................................... 130  
12.2 社区资源.............................................................. 130  
12.3 ..................................................................... 130  
12.4 静电放电警告....................................................... 130  
12.5 Glossary.............................................................. 130  
13 机械、封装和可订购信息..................................... 130  
7
8
4 修订历史记录  
日期  
修订版本  
说明  
2017 9 月  
*
初始发行版。  
空白  
2
Copyright © 2017, Texas Instruments Incorporated  
 
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
5 Pin Configuration and Functions  
DCP Package  
38-Pin TSSOP  
Top View  
IN13  
1
2
3
38  
VS  
37  
36  
IN14  
IN15  
VS  
IN12  
35  
34  
IN16  
IN17  
4
5
IN11  
IN10  
6
7
33  
32  
IN18  
IN19  
IN9  
IN8  
IN20  
AGND  
IN21  
8
9
31  
30  
IN7  
IN6  
IN5  
Exposed  
Pad  
10  
11  
29  
28  
IN22  
IN23  
DGND  
IN4  
12  
13  
27  
26  
IN0  
IN1  
IN3  
IN2  
14  
15  
25  
24  
/CS  
/INT  
16  
17  
18  
19  
23  
22  
21  
20  
SCLK  
CAP_D  
SI  
CAP_PRE  
RESET  
SO  
VDD  
CAP_A  
Not to Scale  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NO.  
1
NAME  
IN13  
IN14  
IN15  
IN16  
IN17  
IN18  
IN19  
IN20  
AGND  
IN21  
IN22  
IN23  
IN0  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
P
Ground switch monitoring input with current source  
Ground switch monitoring input with current source  
Ground switch monitoring input with current source  
Ground switch monitoring input with current source  
Ground switch monitoring input with current source  
Ground switch monitoring input with current source  
Ground switch monitoring input with current source  
Ground switch monitoring input with current source  
Ground for analog circuitry  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
I/O  
I/O  
I/O  
I/O  
I/O  
Ground switch monitoring input with current source  
Ground switch monitoring input with current source  
Ground switch monitoring input with current source  
Ground/VSUPPLY switch monitoring input with configurable current sink or source.  
Ground/VSUPPLY switch monitoring input with configurable current sink or source.  
IN1  
(1) I = input, O = output, I/O = input and output, P = power.  
Copyright © 2017, Texas Instruments Incorporated  
3
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
TYPE(1)  
DESCRIPTION  
NO.  
15  
NAME  
CS  
I
I
Active-low input. Chip select from the master for the SPI Interface.  
Serial clock output from the master for the SPI Interface  
Serial data input for the SPI Interface.  
16  
SCLK  
SI  
17  
I
18  
SO  
O
Serial data output for the SPI Interface  
3.3 V to 5.0 V logic supply for the SPI communication. The SPI I/Os are not fail-safe  
protected: VDD needs to be present during any SPI traffic to avoid excessive leakage  
currents and corrupted SPI I/O logic levels.  
19  
20  
VDD  
P
CAP_A  
I/O  
External capacitor connection for the analog LDO. Use capacitance value of 100nF.  
Keep RESET low for normal operation and drive RESET high and release it to perform a  
hardware reset of the device. The RESET pin is connected to ground via a 1Mpull-down  
resistor. If not used, the RESET pin shall be grounded to avoid any accidental device reset  
due to coupled noise onto this pin.  
21  
RESET  
I
22  
23  
CAP_Pre  
CAP_D  
I/O  
I/O  
External capacitor connection for the pre-regulator. Use capacitance value of 1μF.  
External capacitor connection for the digital LDO. Use capacitance value of 100nF.  
Open drain output. Pulled low (internally) upon change of state on the input or occurrence of  
a special event.  
24  
INT  
O
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
IN2  
IN3  
I/O  
I/O  
I/O  
P
Ground/VSUPPLY switch monitoring input with configurable current sink or source.  
Ground/VSUPPLY switch monitoring input with configurable current sink or source.  
Ground/VSUPPLY switch monitoring input with configurable current sink or source.  
Ground for digital circuitry  
IN4  
DGND  
IN5  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
P
Ground/VSUPPLY switch monitoring input with configurable current sink or source.  
Ground/VSUPPLY switch monitoring input with configurable current sink or source.  
Ground/VSUPPLY switch monitoring input with configurable current sink or source.  
Ground/VSUPPLY switch monitoring input with configurable current sink or source.  
Ground/VSUPPLY switch monitoring input with configurable current sink or source.  
Ground switch monitoring input with current source  
IN6  
IN7  
IN8  
IN9  
IN10  
IN11  
IN12  
VS  
Ground switch monitoring input with current source  
Ground switch monitoring input with current source  
Power supply input pin.  
VS  
P
Power supply input pin.  
Exposed Pad. The exposed pad is not electrically connected to AGND or DGND. Connect  
EP to the board ground to achieve rated thermal and ESD performance.  
---  
EP  
P
4
Copyright © 2017, Texas Instruments Incorporated  
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
-0.3  
-0.3  
-24  
MAX  
40  
UNIT  
V
VS, INT  
VDD, SCLK, SI, SO, CS, RESET  
6
V
IN0- IN23  
Input voltage  
40  
V
CAP_Pre  
-0.3  
-0.3  
-0.3  
-40  
5.5  
5.5  
2
V
CAP_A  
CAP_D  
V
V
Operating junction temperature, TJ, VS = 18 V  
Operating junction temperature, TJ, VS = 24 V  
Storage temperature, Tstg  
125  
95  
°C  
°C  
°C  
-40  
-55  
155  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±4000  
±500  
UNIT  
All pins  
Pins IN0-IN23(2)  
All pins  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Electrostatic  
discharge  
V(ESD)  
V
Charged-device model (CDM), per JEDEC specification JESD-  
C101(1)  
Corner pins (pin 1, 19, 20  
and 38)  
±750  
(3)(4)  
Contact discharge per IEC61000-4-2 contact discharge  
Pins IN0-IN23v  
±8000  
(1) JEDEC document JEP155 that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less  
than 500-V HBM is possible if necessary if precautions are taken.  
(2) ±4kV rating on pins IN0-IN23 are stressed with respect to GND (with AGND, DGND, and EP tied together).  
(3) External components: capacitor = 15 nF; resistor = 33 Ω  
(4) ESD generator parameters: storage capacitance = 150 pF or 330pF; discharge resistance = 330 Ω or 2000 Ω  
6.3 Recommended Operating Conditions  
over operating free-air temperature range and VS = 12 V (unless otherwise noted)  
MIN  
6.5  
6.5  
3.0  
0
NOM  
MAX  
18  
UNIT  
V
Power supply voltage, TA = -40 °C to 105 °C  
Power supply voltage, TA = -40 °C to 85 °C  
Logic supply voltage  
VS  
24  
V
VDD  
5.5  
35  
V
V/INT  
VINX  
VRESET  
VSPI_IO  
fSPI  
INT pin voltage  
V
IN0 to IN23 input voltage  
0
35  
V
RESET pin voltage  
0
5.5  
VDD  
4M  
102  
85  
V
SPI input/output logic level  
0
V
SPI communication frequency  
Operating free-air temperature, VS = 18 V  
Operating free-air temperature, VS = 24 V  
20(1)  
-40  
-40  
Hz  
°C  
°C  
TA  
TA  
(1) Lowest frequency characterized.  
Copyright © 2017, Texas Instruments Incorporated  
5
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
6.4 Thermal Information  
TIC10024-Q1  
DCP (TSSOP)  
38 PINS  
33.6  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
18.4  
15.2  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.5  
ψJB  
15.0  
RθJC(bot)  
1.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
over operating free-air temperature range, VS = 6.5 V to 35 V, and VDD = 3 V to 5.5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
Continuous mode VS Continuous mode, IWETT= 10 mA, all switches open, no active  
power supply current comparator operation, no unserviced interrupt  
IS_CONT  
5.6  
7
mA  
IS_POLL_COMP_25  
IS_POLL_COMP_85  
IS_POLL_COMP  
TA= 25°  
68  
68  
68  
100  
110  
170  
µA  
µA  
µA  
Polling mode VS  
power supply  
average current  
Polling mode, tPOLL= 64 ms, tPOLL_ACT= 128  
µs, all switches open, IWETT= 10 mA, no  
unserviced interrupt  
TA= -40° to 85°C  
TA= -40° to 105°C  
Reset mode VS  
power supply current  
IS_RESET  
IS_IDLE_25  
IS_IDLE_85  
IS_IDLE  
Reset mode, VRESET= VDD. VS= 12 V, all switches open, TA=25°C  
12  
50  
17  
75  
µA  
µA  
µA  
µA  
µA  
V
TRIGGER bit in CONFIG register = logic 0, TA= 25°C, no  
unserviced interrupt  
VS power supply  
average current in  
idle state  
TRIGGER bit in CONFIG register = logic 0, TA= -40°C to 85°C, no  
unserviced interrupt  
50  
95  
TRIGGER bit in CONFIG register = logic 0, TA= -40°C to 125°C,  
no unserviced interrupt  
50  
145  
10  
Logic supply current  
from VDD  
IDD  
SCLK = SI = 0 V, CS = INT = VDD, no SPI communication  
1.5  
Threshold for rising VS from device OFF condition resulting in INT  
pin assertion and a flagged POR bit in the INT_STAT register  
VPOR_R  
VPOR_F  
VOV_R  
3.85  
1.95  
35  
4.5  
2.8  
40  
Power on reset  
(POR) voltage for VS  
Threshold for falling VS from device normal operation to reset  
mode and loss of SPI communication  
V
Over-voltage (OV)  
condition for VS  
Threshold for rising VS from device normal operation resulting in  
INT pin assertion and a flagged OV bit in the INT_STAT register  
V
Over-voltage (OV)  
condition hysteresis  
for VS  
VOV_HYST  
1
3.5  
V
Threshold for rising VS from under-voltage condition resulting in  
INT pin assertion and a flagged UV bit in the INT_STAT register  
VUV_R  
VUV_F  
3.85  
3.7  
4.5  
4.4  
V
V
Under-voltage (UV)  
condition for VS  
Threshold for falling VS from under-votlage condition resulting in  
INT pin assertion and a flagged UV bit in the INT_STAT register  
Under-voltage (UV)  
condition hysteresis  
for VS  
VUV_HYST  
75  
275  
mV  
(1)  
VDD_F  
Threshold for falling VDD resulting in loss of SPI communication  
2.5  
50  
2.9  
V
Valid VDD voltage  
hysteresis  
VDD_HYST  
150  
mV  
(1) Specified by design.  
6
Copyright © 2017, Texas Instruments Incorporated  
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
Electrical Characteristics (continued)  
over operating free-air temperature range, VS = 6.5 V to 35 V, and VDD = 3 V to 5.5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
WETTING CURRENT ACCURACY (DIGITAL SWITCHES, MAXIMUM RESISTANCE VALUE WITH SWITCH CLOSED 100, MINIMUM RESISTANCE  
VALUE WITH SWITCH OPEN 5000 )  
1 mA setting  
2 mA setting  
5 mA setting  
10 mA setting  
15 mA setting  
1 mA setting  
2 mA setting  
5 mA setting  
10 mA setting  
15 mA setting  
0.84  
1.71  
4.3  
1
2
1.14  
2.32  
5.6  
Wetting current  
accuracy for CSO  
(switch closed)  
IWETT (CSO)  
5
8.4  
10  
11.4  
17  
12.5  
0.75  
1.6  
15  
6.5 V VS 35 V  
mA  
1.1  
2.2  
5.6  
11.5  
16.5  
2.05  
3.3  
Wetting current  
accuracy for CSI  
(switch closed)  
IWETT (CSI)  
4.3  
7.1  
9.2  
13.4  
19.2  
13.7  
10 mA setting,  
RSW= 5kΩ  
1.7  
1.7  
1.2  
1.3  
Voltage drop from INx  
pin to AGND across  
CSI (switch open)  
VCSI_DROP_OPEN  
6.5 V VS 35V  
V
15 mA setting,  
RSW= 5kΩ  
2mA setting, IIN  
1mA  
=
=
V
V
5mA setting, IIN  
1mA or 2mA  
Voltage drop from  
INx pin to ground  
across CSI (switch  
closed)  
10mA setting, IIN  
1mA, 2mA, or  
5mA  
=
VCSI_DROP_CLOSED  
6.5 V VS 35V  
1.5  
2.1  
V
V
15mA setting, IIN  
1mA, 2mA, 5mA,  
or 10mA  
=
LEAKAGE CURRENTS  
IIN_LEAK_OFF  
0 V VINx VS , channel disabled (EN_INx register bit= logic 0)  
-4  
5.3  
0.5  
Leakage current at  
input INx when  
channel is disabled  
µA  
0 V VINx VS , channel disabled (EN_INx register bit= logic 0),  
TA = 25°C  
IIN_LEAK_OFF_25  
-0.5  
Leakage current at  
input INx when  
wetting current  
setting is 0mA  
µA  
µA  
IIN_LEAK_0mA  
0 V VINx 6 V, 6.5 V VS 35 V , IWETT setting = 0 mA  
-110  
-5  
110  
Leakage current at  
input INx under loss  
of GND condition  
VS = 24 V, 0 V VINx 24 V, all grounds (AGND, DGND, and EP)  
IIN_LEAK_LOSS_OF_GND  
µA  
µA  
= 24 V, VDD shorted to the grounds(1)  
Leakage current at  
input INx under loss  
of VS condition  
IIN_LEAK_LOSS_OF_VS  
0 V VINx 24 V, VS shorted to the grounds = 0 V, VDD = 0 V  
5
LOGIC LEVELS  
I/INT = 2 mA  
I/INT = 4 mA  
0.35  
0.6  
INT output low  
voltage  
V/INT_L  
V
SO output low  
voltage  
VSO_L  
ISO = 2 mA  
ISO = -2 mA  
0.2VDD  
0.3VDD  
0.8  
V
V
V
V
V
V
SO output high  
voltage  
VSO_H  
0.8VDD  
0.7VDD  
1.6  
SI, SCLK, and CS  
input low voltage  
VIN_L  
SI, SCLK, and CS  
input high voltage  
VIN_H  
RESET input low  
voltage  
VRESET_L  
VRESET_H  
RESET input high  
voltage  
RRESET_25  
RRESET  
VRESET = 0 to 5.5V, TA = 25°C  
0.85  
0.2  
1.25  
1.7  
2.1  
RESET pin internal  
pull-down resistor  
MΩ  
VRESET = 0 to 5.5V, TA = –40° to 105°C  
Copyright © 2017, Texas Instruments Incorporated  
7
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating free-air temperature range, VS = 6.5 V to 35 V, and VDD = 3 V to 5.5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
COMPARATOR PARAMETERS  
Comparator threshold  
for 2 V  
VTH_ COMP_2V  
VTH_ COMP_2p7V  
VTH_ COMP_3V  
VTH_ COMP_4V  
THRES_COMP = 2 V  
THRES_COMP = 2.7 V  
THRES_COMP = 3 V  
THRES_COMP = 4 V  
1.85  
2.4  
2.25  
2.9  
V
V
V
V
Comparator threshold  
for 2.7 V  
Comparator threshold  
for 3 V  
2.85  
3.7  
3.3  
Comparator threshold  
for 4 V  
4.35  
THRES_COMP = 2 V  
THRES_COMP = 2.7 V  
THRES_COMP = 3 V  
THRES_COMP = 4 V  
30  
35  
35  
43  
130  
130  
105  
95  
Comparator  
equivalent input  
resistance  
RIN, COMP  
kΩ  
8
Copyright © 2017, Texas Instruments Incorporated  
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
6.6 Timing Requirements  
VS= 6.5 V to 35 V, VDD= 3 V to 5.5 V, and 10 pF capacitive load on SO unless otherwise noted; verified by design and  
characterization  
MIN  
NOM  
MAX UNIT  
SWITCH MONITORING, INTERRUPT, STARTUP AND RESET  
tPOLL_ACT Polling active time accuracy  
Polling mode  
Polling mode  
-12%  
-12%  
12%  
12%  
µs  
tPOLL  
Polling time accuracy  
tCOMP  
Comparator detection time  
18  
20  
tCCP_TRAN Transition time between last input sampling and start of clean current  
tCCP_ACT Clean current active time  
µs  
-12%  
200  
12%  
tSTARTUP Polling startup time  
300  
2
400  
µs  
tINT_ACTIV  
E
Active INT assertion duration  
1.5  
2.5  
ms  
tINT_INACT  
IVE  
INT de-assertion duration during a pending interrupt  
3
80  
2
4
5
ms  
µs  
µs  
tINT_IDLE  
tRESET  
Interrupt idle time  
100  
120  
Time required to keep the RESET pin high to successfully reset the device (no pending  
interrupt)(1)  
Delay between a fault event (OV, UV, TW, or TSD) to a  
See 10 for OV example.  
tREACT  
20  
µs  
high to low transition on the INT pin  
SPI INTERFACE  
tLEAD Falling edge of CS to rising edge of SCLK setup time  
tLAG  
100  
100  
30  
ns  
ns  
ns  
ns  
ns  
ns  
Falling edge of SCLK to rising edge of CS setup time  
SI to SCLK falling edge setup time  
tSU  
tHOLD  
tVALID  
tSO(EN)  
SI hold time after falling edge of SCLK  
20  
Time from rising edge of SCLK to valid SO data  
Time from falling edge of CS to SO low-impedance  
70  
60  
Loading of 1 kto GND.  
See 11.  
tSO(DIS)  
Time from rising edge of CS to SO high-impedance  
60  
ns  
tR  
tF  
SI, CS, and SCLK signals rise time  
SI, CS, and SCLK signals fall time  
5
5
30  
30  
ns  
ns  
tINTER_FR  
AME  
Delay between two SPI communication (CS low) sequences  
1.5  
µs  
tCKH  
SCLK High time  
SCLK Low time  
120  
120  
45  
ns  
ns  
µs  
tCKL  
tINITIATION Delay between valid VDD voltage and initial SPI communication  
(1) If there is a pending interrupt (/INT pin asserted low), it can take up to 1ms for the device to complete the reset.  
版权 © 2017, Texas Instruments Incorporated  
9
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
6.7 Typical Characteristics  
18  
16  
14  
12  
10  
8
16  
14  
12  
10  
8
IWETT=1mA  
IWETT=2mA  
IWETT=5mA  
IWETT=10mA  
IWETT=15mA  
IWETT=1mA  
IWETT=2mA  
IWETT=5mA  
IWETT=10mA  
IWETT=15mA  
6
6
4
4
2
2
0
0
0
5
10  
15  
20  
25  
30  
35  
40  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
VS voltage (V)  
Temperature (C)  
D001  
D001  
TA = 25°C  
VS = 12 V  
2. Wetting Current Output - CSO vs. Temperature  
1. Wetting Surrent Output - CSO vs. VS Voltage  
4
800  
700  
600  
500  
400  
300  
200  
100  
0
ADC Code Min  
ADC Code Max  
3.75  
3.5  
3.25  
3
THRES_COMP=2V  
THRES_COMP=2.7V  
THRES_COMP=3V  
THRES_COMP=4V  
2.75  
2.5  
2.25  
2
1.75  
0
500 1000 1500 2000 2500 3000 3500 4000 4500 5000  
0
5
10  
15  
20  
25  
30  
35  
40  
Input Equivalent Resistance (Ohm)  
VS voltage (V)  
D001  
D001  
I(WETT) = 1 mA  
6.5 V VS 35 V  
TA = 25°C  
4. ADC Code vs. Equivalent Resistance at INx  
3. Comparator Threshold vs. VS Voltage  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
ADC Code Min  
ADC Code Max  
ADC Code Min  
ADC Code Max  
0
500 1000 1500 2000 2500 3000 3500 4000 4500 5000  
0
500 1000 1500 2000 2500 3000 3500 4000 4500 5000  
Input Equivalent Resistance (Ohm)  
Input Equivalent Resistance (Ohm)  
D001  
D001  
I(WETT) = 2 mA  
6.5 V VS 35 V  
I(WETT) = 5 mA  
6.5 V VS 35 V  
5. ADC Code vs. Equivalent Resistance at INx  
6. ADC Code vs. Equivalent Resistance at INx  
10  
版权 © 2017, Texas Instruments Incorporated  
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
Typical Characteristics (接下页)  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
ADC Code Min  
ADC Code Max  
ADC Code Min  
ADC Code Max  
0
500 1000 1500 2000 2500 3000 3500 4000 4500 5000  
0
500 1000 1500 2000 2500 3000 3500 4000 4500 5000  
Input Equivalent Resistance (Ohm)  
Input Equivalent Resistance (Ohm)  
D001  
D001  
I(WETT) = 10 mA  
6.5 V VS 35 V  
I(WETT) = 15 mA  
6.5 V VS 35 V  
7. ADC Code vs. Equivalent Resistance at INx  
8. ADC Code vs. Equivalent Resistance at INx  
版权 © 2017, Texas Instruments Incorporated  
11  
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
7
Parameter Measurement Information  
VDD  
tINITIATION  
tINTERFRAME  
/CS  
ttLAG  
t
ttCKH  
t
ttCKLt  
ttLEAD  
t
SCLK  
SI  
tHOLD  
ttSU  
t
tSO(EN)  
tVALID  
tSO(DIS)  
SO  
9. SPI Timing Parameters  
VOV_R  
VS  
tREACT  
/INT  
V/INT_L  
10. tREACT Timing Parameters  
VIN_H  
/CS  
SO  
tSO(DIS)  
SO  
VSO_H  
GND  
11. tSO(DIS) Timing Parameters  
12  
版权 © 2017, Texas Instruments Incorporated  
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
8 Detailed Description  
8.1 Overview  
The TIC12400 is an advanced 24-input Multiple Switch Detection Interface (MSDI) device designed to detect  
external mechanical switches status in an industrial system by acting as an interface between the switches and  
the low-voltage microcontroller. The TIC12400 is an integrated solution that replaces many discrete components  
and provides integrated protection, input serialization, and system wake-up capability.  
The device monitors 14 switches to GND and 10 additional switches that can be programmed to be connected to  
either GND or VSUPPLY. It features SPI interface to report individual switch status and provides programmability to  
control the device operation. The TIC12400 features a 10-bit ADC, which is useful to monitor analog inputs, such  
as resistor coded switches, that have multiple switching positions. To monitor only digital switches, an integrated  
comparator can be used instead to monitor the input status. The device has 2 modes of operation: continuous  
mode and polling mode. The polling mode is a low-power mode that can be activated to reduce current drawn in  
the system by only turning on the wetting current for a small duty cycle to detect switch status changes. An  
interrupt is generated upon detection of switch status change and it can be used to wake up the microcontroller  
to bring the entire system back to operation.  
版权 © 2017, Texas Instruments Incorporated  
13  
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
8.2 Functional Block Diagram  
VS  
37  
VS  
38  
VS  
Over-voltage  
protection  
1mA to 15mA  
or  
Over-temperature  
protection  
OFF  
Under-voltage  
protection  
SW  
IN0  
IN1  
IN2  
IN3  
13  
14  
AGND  
ESD  
Protection  
1mA to 15mA  
22  
Pre-regulator  
CAP_PRE  
or  
OFF  
25  
26  
SW  
AGND  
20  
Analog LDO  
Digital LDO  
CAP_A  
Vtest  
+
VS  
23  
CAP_D  
œ
AGND  
Power management  
AGND  
1mA to 15mA  
VS  
or  
OFF  
IN9  
33  
SW  
SW  
ESD  
Protection  
1mA to 15mA  
VDIG  
or  
OFF  
Oscillator  
24  
/INT  
AGND  
AGND  
R1  
SW  
ADC  
State  
machine  
AGND  
19  
15  
16  
17  
18  
21  
VDD  
/CS  
VS  
Control  
logic  
SCLK  
SI  
AGND  
MUX  
Input/  
output  
buffer  
1mA to 15mA  
or  
OFF  
SO  
Registers  
SW  
RESET  
IN10 34  
R5  
SW  
+
ESD  
Digital Block  
Protection  
35  
œ
IN11  
1MΩ  
+
VS  
DGND  
œ
AGND  
IN12 36  
AGND  
AGND  
1
IN13  
1mA to 15mA  
or  
OFF  
SW  
IN23 12  
ESD  
Protection  
AGND  
DGND  
9
28  
DGND  
AGND  
Copyright © 2016, Texas Instruments Incorporated  
14  
版权 © 2017, Texas Instruments Incorporated  
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
8.3 Feature Description  
8.3.1 VS Pin  
The VS supply provides power to the entire chip and the TIC12400 is designed to operate with VS ranging from  
6.5 V to 35 V.  
8.3.2 VDD Pin  
The VDD supply is used to determine the logic level on the SPI communication interface, source the current for  
the SO driver, and sets the pull-up voltage for the CS pin. It can also be used as a possible external pull-up  
supply for the INT pin in addition to the VS and it shall be connected to a 3 V to 5.5 V logic supply. Removing VDD  
from the device disables SPI communications, but does not reset the register configurations.  
8.3.3 Device Initialization  
When the device is powered up for the first time, the condition is called Power-On Reset (POR), which sets the  
registers to their default values and initializes the device state machine. The internal POR controller holds the  
device in a reset condition until VS has reached VPOR_R, at which the reset condition is released with the device  
registers and state machine initialized to their default values. After the initialization process is completed, the INT  
pin is asserted low to notify the microcontroller, and the register bit POR in the INT_STAT register is asserted to  
logic 1. The SPI flag bit POR is also asserted at the SPI output (SO).  
During device initialization, some factory settings are programmed into the device to allow accurate device  
operation. The device performs a self-check after the device is programmed to ensure correct settings are  
loaded. If the self-check returns an error, the CHK_FAIL bit in the INT_STAT register will be flagged to logic 1  
along with the POR bit. If this very unlikely event occurs, the microcontroller is recommended to initiate software  
reset (see section Software Reset) to re-initialize the device to allow the correct settings to be re-programmed.  
8.3.4 Device Trigger  
After device initialization, the TIC12400 is ready to be configured. The microcontroller can use SPI commands to  
program desired settings to the configuration registers. Once the device configuration is completed, the  
microcontroller is required to set the bit TRIGGER in the CONFIG register to logic 1 in order to activate wetting  
current and start external switch monitoring.  
After the switch monitoring starts, the configuration registers turn into read-only registers (with the exception of  
the TRIGGER, CRC_T, and RESET bits in the CONFIG register and all bits in the CCP_CFG1 register). If at any  
time the device setting needs to be re-configured, the microcontroller is required to first set the bit TRIGGER in  
the CONFIG register to logic 0 to stop wetting current and switch monitoring. The microcontroller can then  
program configuration registers to the desired settings. Once the re-configuration is completed, the  
microcontroller can set the TRIGGER bit back to logic 1 to re-start switch monitoring.  
Note the cyclic redundancy check (CRC) feature stays accessible during switch monitoring, which allows the  
microcontroller to verify device settings at all time. Refer to section Cyclic Redundancy Check (CRC) for more  
details of the CRC feature.  
8.3.5 Device Reset  
There are 3 ways to reset the TIC12400 and re-initialize all registers to their default values:  
8.3.5.1 VS Supply POR  
The device is turned off and all register contents are lost if the VS voltage drops below VPOR_F. To turn the device  
back on, the VS voltage must be raised back above VPOR_R, as illustrated in 12. The device then starts the  
initialization process as described in section Device Initialization .  
版权 © 2017, Texas Instruments Incorporated  
15  
 
 
 
 
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
Feature Description (接下页)  
VS  
Device  
OFF  
Normal  
Operation  
Device  
OFF  
Normal  
Operation  
VPOR_R  
VPOR_F  
Time  
12. VS is Lowered Below The POR threshold, Then Ramped Back Up To Complete A POR Cycle  
8.3.5.2 Hardware Reset  
Microcontroller can toggle the RESET pin to perform a hardware reset to the device. The RESET pin is internally  
pulled-down via a 1Mresistor and must be kept low for normal operation. When the RESET pin is toggled high,  
the device enters the reset state with most of the internal blocks turned off and consumes very little current of  
IS_RESET. Switch monitoring and SPI communications are stopped in the reset state, and all register contents are  
cleared. When RESET pin is toggled back low, all the registers are set to their default values and the device  
state machine is re-initialized, similar to a POR event. When the re-initialization process is completed, the INT pin  
is asserted low, and the interrupt register bit POR and the SPI status flag POR are both asserted to notify the  
microcontroller that the device has completed the reset process.  
Note in order to successfully reset the device, the RESET pin needs to be kept high for a minimum duration of  
tRESET. The pin is required to be driven with a stable input (below VRESET_L for logic low or above VRESET_H for  
logic H) to prevent the device from accidental reset.  
8.3.5.3 Software Reset  
In addition to hardware reset, the microcontroller can also issue a SPI command to initiate software reset. This is  
triggered by setting the RESET bit in the register CONFIG to logic 1, which re- initialized the device with all  
registers set to their default value. When the re-initialization process is completed, the INT pin is asserted low,  
and the interrupt register bit POR and the SPI status flag POR are both asserted to notify the microcontroller that  
the device has completed the reset process.  
8.3.6 VS Under-Voltage (UV) Condition  
During normal operation of a typical 12 V system, the VS voltage is usually quite stable and stays well above 12  
V. However, the VS voltage might drops temporarily during certain operations. If the VS voltage drops below  
VUV_F, the TIC12400 enters the under-voltage (UV) condition since there is not enough voltage headroom for the  
device to accurately generate wetting currents. The following describes the behavior of the TIC12400 under UV  
condition:  
1. All current sources/sinks de-activate and switch monitoring stops.  
2. Interrupt is generated by asserting the INT pin low and the bit UV in the interrupt register (INT_STAT) is  
flagged to logic 1. The bit UV_STAT is asserted to logic 1 in the register IN_STAT_MISC. The OI SPI flag is  
asserted during any SPI transactions. The INT pin is released and the interrupt register (INT_STAT) is  
cleared on the rising edge of CS provided the interrupt register has been read during the SPI transaction.  
3. SPI communication stays active, and all register settings say intact without resetting. Previous switch status,  
if needed, can be retrieved without any interruption.  
4. The device continues to monitor the VS voltage, and the UV condition sustains if the VS voltage continues to  
stay below VUV_R. No further interrupt is generated once cleared.  
Note the device resets as described in section VS Supply POR if the VS voltage drops below VPOR_F, .  
16  
版权 © 2017, Texas Instruments Incorporated  
 
 
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
Feature Description (接下页)  
When the VS voltage rises above VUV_R, the INT pin is asserted low to notify the microcontroller that the UV  
condition no longer exists. The UV bit in the register INT_STAT is flagged to logic 1 and the bit UV_STAT bit is  
de-asserted to logic 0 in the register IN_STAT_MISC to reflect the clearance of the UV condition. The device  
resumes operation using current register settings (regardless of the INT pin and SPI communication status) with  
polling restarted from the first enabled channel. The Switch State Change (SSC) interrupt is generated at the end  
of the first polling cycle and the detected switch status becomes the baseline switch status for subsequent polling  
cycles. The content of the INT_STAT register, once read by the microcontroller, is cleared, and the INT pin is  
released afterwards. .  
The following diagram describes the TIC12400 operation at various different VS voltages. If the VS voltage stays  
above VUV_F (Case 1), the device stays in normal operation. If the VS voltage drops below VUV_F but stays above  
VPOR_F (Case 2), the device enters the UV condition. If VS voltage drops below VPOR_F (Case 3), the device  
resets and all register settings are cleared. The microcontroller is then required to re-program all the  
configuration registers in order to resume normal operation after the VS voltage recovers.  
VS  
tCrankingt  
Device  
OFF  
VPOR_R  
Case 1  
VUV_F  
Case 2  
VPOR_F  
Case 3  
Time  
13. TIC12400 Operation At Various VS Voltage Levels  
8.3.7 VS Over-Voltage (OV) Condition  
If VS voltage rises above VOV_R, the TIC12400 enters the over-voltage (OV) condition to prevent damage to  
internal structures of the device on the VS and INx pins. The following describes the behavior of the TIC12400  
under OV condition:  
1. All current sources/sinks de-activate and switch monitoring stops.  
2. Interrupt is generated by asserting the INT pin low and the bit OV in the interrupt register (INT_STAT) is  
flagged to logic 1. The bit OV_STAT is asserted to logic 1 in the register IN_STAT_MISC. The OI SPI flag is  
asserted during any SPI transactions. The INT pin is released and the interrupt register (INT_STAT) is  
cleared on the rising edge of CS provided the interrupt register has been read during the SPI transaction.  
3. SPI communication stays active, and all register settings say intact without resetting. Previous switch status,  
if needed, can be retrieved without any interruption.  
4. The device continues to monitor the VS voltage, and the OV condition sustains if the VS voltage continues to  
stays above VOV_R- VOV_HYST. No further interrupt is generated once cleared.  
When the VS voltage drops below VOV_R- VOV_HYST, the INT pin is asserted low to notify the microcontroller that  
the over-voltage condition no longer exists. The OV bit in the register INT_STAT is flagged to logic 1 and the bit  
OV_STAT bit is de-asserted to logic 0 in the register IN_STAT_MISC to reflect the clearance of the OV condition.  
The device resumes operation using current register settings (regardless of the INT pin and SPI communication  
status) with polling restarted from the first enabled channel. The Switch State Change (SSC) interrupt is  
generated at the end of the first polling cycle and the detected switch status becomes the baseline status for  
subsequent polling cycles. The content of the INT_STAT register, once read by the microcontroller, is cleared,  
and the INT pin is released afterwards.  
版权 © 2017, Texas Instruments Incorporated  
17  
 
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
Feature Description (接下页)  
8.3.8 Switch inputs Settings  
IN0 to IN23 are inputs connected to external mechanical switches. All the inputs can sustain up to 40 V without  
being damaged. The switch status of each input, whether open or closed, is indicated by the status registers. 表  
1 below describe various settings that can be configured for each input. Note some settings are shared between  
multiple inputs and it is required to first stop device operation by setting the TRIGGER bit low in the register  
CONFIG before making any configuration changes, as described in Device Trigger.  
1. TIC12400 Wetting Current and Threshold Setting Details  
Threshold  
Current Source (CSO) / Supported Switch  
Input  
Wetting Current  
Comparator Input  
Mode  
Current Sink (CSI)  
Type  
ADC Input Mode  
THRES0 to  
CSO  
CSI  
Switch to GND  
Switch to VSUPPLY  
IN0  
IN1  
THRES7  
WC_IN0_IN1  
THRES0 to  
THRES7  
CSO  
CSI  
Switch to GND  
Switch to VSUPPLY  
THRES_COMP_IN  
0_IN3  
THRES0 to  
THRES7  
CSO  
CSI  
Switch to GND  
Switch to VSUPPLY  
IN2  
WC_IN2_IN3  
THRES0 to  
THRES7  
CSO  
CSI  
Switch to GND  
Switch to VSUPPLY  
IN3  
THRES0 to  
THRES7  
CSO  
CSI  
Switch to GND  
Switch to VSUPPLY  
IN4  
WC_IN4  
WC_IN5  
THRES0 to  
THRES7  
CSO  
CSI  
Switch to GND  
Switch to VSUPPLY  
IN5  
THRES_COMP_IN  
4_IN7  
THRES_COM  
THRES0 to  
THRES7  
CSO  
CSI  
Switch to GND  
Switch to VSUPPLY  
IN6  
WC_IN6_IN7  
WC_IN8_IN9  
THRES0 to  
THRES7  
CSO  
CSI  
Switch to GND  
Switch to VSUPPLY  
IN7  
THRES0 to  
THRES7  
CSO  
CSI  
Switch to GND  
Switch to VSUPPLY  
IN8  
THRES0 to  
THRES7  
CSO  
CSI  
Switch to GND  
Switch to VSUPPLY  
IN9  
THRES_COMP_IN  
8_IN11  
THRES0 to  
THRES7  
IN10  
IN11  
IN12  
IN13  
IN14  
IN15  
IN16  
IN17  
WC_IN10  
WC_IN11  
CSO  
CSO  
CSO  
CSO  
CSO  
CSO  
CSO  
CSO  
Switch to GND  
Switch to GND  
Switch to GND  
Switch to GND  
Switch to GND  
Switch to GND  
Switch to GND  
Switch to GND  
THRES0 to  
THRES7  
THRES2A  
THRES2B  
WC_IN12_13  
WC_IN14_15  
WC_IN16_17  
THRES2A  
THRES2B  
THRES_COMP_IN  
12_IN15  
THRES2A  
THRES2B  
THRES2A  
THRES2B  
THRES2A  
THRES2B  
THRES2A  
THRES2B  
THRES_COMP_IN  
16_IN19  
THRES3A  
THRES3B  
THRES3C  
IN18  
IN19  
CSO  
CSO  
Switch to GND  
Switch to GND  
WC_IN18_19  
THRES3A  
THRES3B  
THRES3C  
18  
版权 © 2017, Texas Instruments Incorporated  
 
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
Feature Description (接下页)  
1. TIC12400 Wetting Current and Threshold Setting Details (接下页)  
Threshold  
Current Source (CSO) / Supported Switch  
Input  
Wetting Current  
Comparator Input  
Mode  
Current Sink (CSI)  
Type  
ADC Input Mode  
THRES3A  
THRES3B  
THRES3C  
IN20  
IN21  
IN22  
CSO  
Switch to GND  
WC_IN20_21  
THRES3A  
THRES3B  
THRES3C  
CSO  
CSO  
Switch to GND  
Switch to GND  
THRES_COMP_IN  
20_IN23  
THRES3A  
THRES3B  
THRES3C  
WC_IN22  
WC_IN23  
THRES3A  
THRES3B  
THRES3C  
THRES8  
IN23  
CSO  
Switch to GND  
THRES9  
8.3.8.1 Input Current Source/Sink Selection  
Among the 24 inputs, IN10 to IN23 are intended for monitoring only ground-connected switches and are  
connected to current sources. IN0 to IN9 can be programmed to monitor either ground-connected switches or  
supply-connected switches by configuring the CS_SELECT register. The default configuration of the IN0-IN9  
inputs after POR is to monitor ground-connected switches (current sources are selected). To set an input to  
monitor supply-connected switches, set the corresponding bit to logic 1.  
8.3.8.2 Input Mode Selection  
The TIC12400 has a built-in ADC and a comparator that can be used to monitor resistor coded switches or digital  
switches. Digital switch inputs have only two states, either open or closed, and can be adequately detected by a  
comparator. Resistor coded switches may have multiple positions that need to be detected, and an ADC is  
appropriate to monitor the different states. Each input of the TIC12400 can be individually programmed to use  
either a comparator or an ADC by configuring the appropriate bits in theMODE register depending on the  
knowledge of the external switch connections. The benefit of using a comparator instead of an ADC to monitor  
digital switches is its reduced polling time, which translates to overall power saving when the device operates in  
the low-power polling mode.  
Comparator input mode is selected by default for all enabled inputs upon device reset.  
8.3.8.3 Input Enable Selection  
The TIC12400 provides switch status monitoring for up to 24 inputs, but there might be circumstances in which  
not all inputs need to be constantly monitored. The microcontroller may choose to enable/disable monitoring of  
certain inputs by configuring the IN_EN register. Setting the corresponding bit to logic 0 to de-activates the  
wetting current source/sink and stops switch status monitoring for the input. Disabling monitoring of unused  
inputs reduce overall power consumption of the device.  
All inputs are disabled by default upon device reset.  
版权 © 2017, Texas Instruments Incorporated  
19  
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
8.3.8.4 Thresholds Adjustment  
When an input is configured as comparator input mode, the threshold level for interrupt generation of can be  
programmed by setting the THRES_COMP register. The threshold level settings can be set to for each individual  
input groups and each group consist of 4 inputs. Four threshold levels are available: 2V, 2.7V, 3V, and 4V.  
When an input is configured as ADC input mode, the threshold level for interrupt generation can be configured,  
up to 1023 different levels, by setting the THRES_CFG1 to THRES_CFG2 registers. One threshold level can be  
programmed individually for each of the input from IN0 to IN11. Additionally, one common threshold, shared  
between inputs IN0 to IN11, can be programmed by configuring the THRES_COM bits in register MATRIX. The  
common threshold acts independently from the threshold THRES0 to THRES7. Inputs IN12 to IN17 use 2 preset  
threshold levels (THRES2A and THRES2B). Inputs 18 to 22 use 3 preset threshold levels (THRES3A,  
THRES3B, and THRES3C). Input 23 uses 5 preset threshold levels (THRES3A, THRES3B, THRES3C, THRES8  
and THRES9).  
When multiple threshold settings are used for ADC inputs, the thresholds levels needs to be configured properly.  
Use the rules below (see 2) when setting up the threshold levels:  
2. Proper Threshold Configuration For ADC Inputs  
Input  
IN12 to IN17  
IN18 to IN22  
IN23  
Proper Threshold Configuration  
THRES2B THRES2A  
THRES3C THRES3B THRES3A  
THRES9 THRES8 THRES3C THRES3B THRES3A  
Caution should be used when setting up the threshold for switches that are connected externally to the supply as  
there are finite voltage drop (as high as VCSI_DROP for 10mA and 15mA settings) across the current sinks.  
Therefore, even for an open switch, then voltage on the INx pin can be as high as VCSI_DROP and the detection  
threshold shall be configured above it. It shall also be noted that a lower wetting current sink setting might not be  
stronger enough to pull the INx pin close to ground in the presence of a leaky open external switch, as illustrated  
in the diagram below (see 14). In this example, the external switch, although in the open state, has large  
leakage current and can be modelled as an equivalent resistor (RDIRT) of 5k. The 2mA current sink is only able  
to pull the INx pin voltage down to 2V, even the switch is in the open state.  
Supply- connected switch  
+
14V  
RDIRT  
RSW  
œ
ë{Ütt[ò  
5kΩ  
GND  
Open  
TIC12400  
INx  
2mA  
GND  
Copyright © 2017, Texas Instruments Incorporated  
14. Example showing The Calculation Of The INx Pin Voltage For A Leaky Supply-connected Switch  
It is possible to configure an input to ADC input mode, instead of comparator input mode, to monitor single-  
threshold digital switches. The following programming procedure is recommended under such configuration:  
20  
版权 © 2017, Texas Instruments Incorporated  
 
 
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
3. Recommended threshold Configuration When Using An ADC Input To Monitor Digital Switches  
Input  
Recommended Threshold Configuration  
IN0 to IN11  
Configure the desired threshold to one of the settings from THRES0 to THRES7 and map it accordingly  
Configure the desired threshold to THRES2B  
Set THRES2A to the same code as THRES2B  
Disable interrupt generation for THRES2A by configuring the INT_EN_CFG1 or INT_EN_CFG2  
register.  
IN12 to IN17  
IN18 to IN22  
IN23  
Configure the desired threshold to THRES3C  
Set THRES3A and THRES3B to the same code as THRES3C.  
Disable interrupt generation for THRES3A and THRES3B by configuring the INT_EN_CFG3 or  
INT_EN_CFG4 register.  
Configure the desired threshold to THRES9  
Set THRES3A, THRES3B, THRES3C, and THRES8 to the same code as THRES9.  
Disable interrupt generation for THRES3A, THRES3B, THRES3C, and THRES8 by configuring the  
INT_EN_CFG4 register.  
8.3.8.5 Wetting Current Configuration  
There are 6 different wetting current settings (0mA, 1mA, 2mA, 5mA, 10mA, and 15mA) that can be programmed  
by configuring the WC_CFG0 and WC_CFG1 registers. 0mA is selected by default upon device reset.  
To monitor resistor coded switches, a lower wetting current setting (1 mA, 2 mA, or 5 mA) is generally desirable  
to get the resolution needed to resolve different input voltages while keeping them within the ADC full-scale  
range (0 V to 6 V). Higher wetting current settings (10mA and 15mA) are useful to clean switch contact oxidation  
that may form on the surface of an open switch contact. If switch contact cleaning is required for resistor coded  
switches, the clean current polling (CCP) feature can be activated to generate short cleaning pulses periodically  
using higher wetting current settings at the end of every polling cycle.  
The accuracy of the wetting current has stronger dependency on the VS voltage when VS voltage is low. The  
lower the VS voltage falls, the more deviation on the wetting currents from their nominal values. Refer to IWETT  
(CSO) and IWETT (CSI) specifications for more details.  
8.3.9 Interrupt Generation and INT Assertion  
The INT pin is an active-low, open-drain output that asserts low when an event (switch input state change,  
temperature warning, over-voltage shutdown…etc) is detected by the TIC12400. An external pull-up resistor to  
VDD is needed on the INT pin (see 15). If VDD supply is absent, the INT output is functional provided that it is  
pulled up to a different supply voltage. The INT pin can tolerate up to 40 V but is recommended to be kept below  
35V for normal operation.  
TIC12400  
Microcontroller  
VDD  
VDD  
/INT  
GPI  
AGND  
GND  
AGND  
GND  
Copyright © 2017, Texas Instruments Incorporated  
15. INT Connection Example #1  
版权 © 2017, Texas Instruments Incorporated  
21  
 
 
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
8.3.9.1 INT Pin Assertion Scheme  
TIC12400 supports two configurable schemes for INT assertion: static and dynamic. The scheme can be  
adjusted by configuring the INT_CONFIG bit in the CONFIG register.  
If the static INT assertion scheme is used (INT_CONFIG = 0 in the CONFIG register), the INT pin is asserted low  
upon occurrence of an event. The INT pin is released on the rising edge of CS only if a READ command has  
been issued to read the INT_STAT register while CS is low, otherwise the INT will be kept low indefinitely. The  
content of the INT_STAT interrupt register is latched on the first rising edge of SCLK after CS goes low for every  
SPI transaction, and the content is cleared upon a READ command issued to the INT_STAT register, as  
illustrated in 16.  
ñ INT_STAT register  
content cleared  
ñ /INT pin released  
Event occurance  
/INT  
/CS  
Register READ  
(non- INT_STAT register)  
Register READ  
(INT_STAT register)  
16. Static INT Assertion Scheme  
In some system implementation, an edge-triggered based microcontroller might potentially miss the INT assertion  
if it is configured to the static scheme, especially when the microcontroller is in the process of waking up. To  
prevent missed INT assertion and improve robustness of the interrupt behavior, the TIC12400 provides the  
option to use the dynamic assertion scheme for the INT pin. When the dynamic scheme is used (INT_CONFIG=  
1 in the CONFIG register), the INT pin is asserted low for a duration of tINT_ACTIVE, and is de-asserted back to  
high if the INT_STAT register has not been read after tINT_ACTIVE has elapsed. The INT is kept high for a duration  
of tINT_INACTIVE, and is re-asserted low after tINT_INACTIVE has elapsed. TheINT pin continues to toggle until the  
INT_STAT register is read.  
If the INT_STAT register is read when INT pin is asserted low, the INT pin is released on the READ command’s  
CS rising edge and the content of the INT_STAT register is also cleared, as shown in 17. If the INT_STAT  
register is read when INT pin is de-asserted, the content of the INT_STAT register is cleared on the READ  
command’s CS rising edge, and the INT pin is not re-asserted back low, as shown in 18.  
ñ INT_STAT register  
content cleared  
ñ /INT pin released  
Event  
occurance  
ttINT_INACTIVE  
t
/INT  
/CS  
tINT_ACTIVE  
Register READ  
(INT_STAT register)  
17. INT Assertion Scheme With INT_STAT Register Read During tINT_ACTIVE  
22  
版权 © 2017, Texas Instruments Incorporated  
 
 
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
ñ INT_STAT register  
content cleared  
ñ /INT pin will not be re-  
asserted tINT_INACTIVE  
after /INT returns high  
Event  
occurance  
ttINT_INACTIVE  
t
/INT  
/CS  
tINT_ACTIVE  
Register READ  
(INT_STAT register)  
18. Dynamic INT Assertion Scheme With INT_STAT Register Read During tINT_INACTIVE  
The static INT assertion scheme is selected by default upon device reset. The INT pin assertion scheme can  
only be changed when bit TRIGGER is logic 0 in the CONFIG register.  
8.3.9.2 Interrupt Idle Time (tINT_IDLE) Time  
Interrupt idle time (tINT_IDLE) is implemented in TIC12400 to:  
Allow the INT pin enough time to be pulled back high by the external pull-up resistor to allow the next  
assertion to be detectable by an edge-triggered microcontroller.  
Minimize the chance of glitching on the INT pin if back-to-back events occur.  
When there is a pending interrupt event and the interrupt event is not masked, tINT_IDLE is applied after the READ  
command is issued to the INT_STAT register. If another event occurs during the interrupt idle time, the  
INT_STAT register content is updated instantly, but the INT pin is not asserted low until tINT_IDLE has elapsed. If  
another READ command is issued to the INT_STAT register during tINT_IDLE, the INT_STAT register content is  
cleared immediately, but the INT pin is not re-asserted back low after tINT_IDLE has elapsed. An example of the  
interrupt idle time is given below to illustrate the INT pin behavior under the static /INT assertion schemes:  
/INT pin is not  
asserted until  
tINT_IDLE has expired  
1st Event  
2nd Event  
occurance  
occurance  
/INT  
/CS  
ttINT_IDLE  
Register READ  
Register READ  
(INT_STAT register)  
(INT_STAT register)  
19. INT Assertion Scheme With tINT_IDLE  
版权 © 2017, Texas Instruments Incorporated  
23  
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
8.3.9.3 Microcontroller Wake-Up  
When used together with external PNP transistors, the INT pin could also be used for wake-up purpose to  
activate a voltage regulator via its inhibit inputs (see 20). This is especially useful for waking up a  
microcontroller in sleep mode. Before the wake-up, the VDD could be unavailable to the TIC12400 and the INT  
pin can be pulled up externally to the VS voltage. When an event (switch status change, temperature warning, or  
OV…etc) takes place, the INT pin will be asserted low to activate the voltage regulator, which in turn activates  
the microcontroller to enable the communication between the microcontroller and the TIC12400. The event  
information is stored inside the device interrupt register (INT_STAT) for the microcontrollers retrieval when the  
communication is reestablished.  
The wake-up implementation is applicable only when the device is configured to use the static INT assertion  
scheme.  
Regulator  
VIN  
+
VSUPPLY  
10kΩ  
œ
VOUT  
Q1  
GND  
Microcontroller  
LDO_EN  
10kΩ  
TIC12400  
10kΩ  
GND  
V3p3  
VDD  
VDD  
10kΩ  
/INT  
C_INT  
GPIO 1  
GPIO 2  
Q2  
C_LDO_EN  
AGND  
GND  
GND  
10kΩ  
GND  
Copyright © 2017, Texas Instruments Incorporated  
GND  
20. INT Connection to Support Microcontroller Wake-Up  
8.3.9.4 Interrupt Enable/disable And Interrupt generation Conditions  
Each switch input can be programmed to enable or disable interrupt generation upon status change by  
configuring registers INT_EN_COMP1 to INT_EN_COMP2 (for comparator inputs) and INT_EN_CFG1 to  
INT_EN_CFG4 (for ADC inputs). Interrupt generation condition can be adjusted for THRES_COM (for IN0-IN11)  
by adjusting the IN_COM_EN bit in the MATRIX register.  
The abovementioned registers can also be used to control interrupt generation condition based on the following  
settings:  
1. Rising edge: an interrupt is generated if the current input measurement is above the corresponding  
threshold and the previous measurement was below.  
2. Falling edge: an interrupt is generated if the current input measurement is below the corresponding  
threshold and the previous measurement was above.  
3. Both edges: changes of the input voltage in either direction results in an interrupt generation.  
Note interrupt generation from switch status change is disabled for all inputs by default upon device reset.  
24  
版权 © 2017, Texas Instruments Incorporated  
 
 
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
8.3.9.5 Detection Filter  
When monitoring the switch input status, an detection filter can be configured by setting the DET_FILTER bits in  
the CONFIG register to generate switch status change (SSC) interrupt only if the same input status (w.r.t the  
threshold) is sampled consecutively. This detection filter can be useful to debounce inputs during switch toggle  
event. Four different filtering schemes are available:  
1. Generate an SSC interrupt if the voltage level at an input crossed its threshold  
2. Generate an SSC interrupt if the voltage level at an input crossed its threshold and the status is stable (w.r.t.  
the threshold) for at least 2 consecutive polling cycles  
3. Generate an SSC interrupt if the voltage level at an input crossed its threshold and the status is stable (w.r.t.  
the threshold) for at least 3 consecutive polling cycles  
4. Generate an SSC interrupt if the voltage level at an input crossed its threshold and the status is stable (w.r.t.  
the threshold) for at least 4 consecutive polling cycles  
The default value of switch status is stored internally after the 1st detection cycle, even if detection filter (by  
configure the DET_FILTER in the CONFIG register) is used. An example is illustrated below with the assumption  
that DET_FILTER in register CONFIG is set to 11 (SSC interrupt generated if the input crosses threshold and the  
status is stable w.r.t. the threshold for at least 4 consecutive detection cycles). Assume switch status change is  
detected in the 3rd detection cycle and stays the same for the next 3 cycles.  
Detection cycle  
Event  
1
2
3
4
5
6
Default Switch status stored  
INT asserted  
SSC flagged  
Switch status change  
detected  
INT asserted  
SSC flagged  
Tthe detection filter applies to all enabled inputs regardless its input modes (ADC or comparator) selection. The  
detection filter counter is reset to 0 when the TRIGGER bit in the CONFIG register is de-asserted to logic 0.  
Upon device reset, the default setting for the detection filter is set to generating an SSC interrupt at every  
threshold crossing.  
Note the detection filter does not apply to the common threshold THRES_COM.  
8.3.10 Temperature Monitor  
With multiple switch inputs closed and high wetting current setting enabled, considerable power could be  
dissipated by the device and raise the device temperature. TIC12400 has integrated temperature monitoring and  
protection circuitry to prevent permanent device damage resulted from device overheating. Two types of  
temperature protection mechanisms are integrated in the device: Temperature Warning (TW) and Temperature  
Shutdown (TSD). The triggering temperatures and hysteresis are specified in 4 below:  
4. Temperature Monitoring Characteristics of TIC12400  
Parameter  
Min  
130  
150  
Typ  
140  
160  
15  
Max  
155  
175  
Unit  
°C  
Temperature warning trigger temperature (TTW  
)
Temperature shutdown trigger temperature (TTSD  
Temperature hysteresis (THYS) for TTW and TTSD  
)
°C  
°C  
8.3.10.1 Temperature Warning (TW)  
When the device temperature goes above the temperature warning trigger temperature (TTW), the TIC12400  
performs the following operations:  
1. Generate an interrupt by asserting the INT pin low and flag the TW bit in INT_STAT register to logic 1. The  
TEMP bit in the SPI flag is also flagged to logic 1 for all SPI transactions.  
2. The TW_STAT bit of the IN_STAT_MISC register is flagged to logic 1.  
3. If the TW_CUR_DIS_CSO or TW_CUR_DIS_CSO bit in CONFIG register set to logic 0 (default), the wetting  
current is adjusted down to 2 mA for 10 mA or 15 mA settings. The wetting current stays at its pre-configured  
value if 0 mA, 1 mA, 2 mA, or 5 mA setting is used.  
4. Maintain the low wetting current as long as the device junction temperature stays above TTW - THYS  
.
版权 © 2017, Texas Instruments Incorporated  
25  
 
 
 
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
The INT pin is released and the INT_STAT register content is cleared on the rising edge of CS provided the  
INT_STAT register has been read during CS low. The TIC12400 continues to monitor the temperature, but does  
not issue further interrupts if the temperature continues to stay above TTW- THYS. The status bit TW_STAT in  
register IN_STAT_MISC continues to stay at logic 1 as long as the temperature warning condition exists.  
If desired, the reduction of wetting current down to 2 mA setting (from 10 mA or 15 mA) can be disabled by  
setting the TW_CUR_DIS_CSO or TW_CUR_DIS_CSI bit in the CONFIG register to 1. The interrupt is still  
generated (INT asserted low and INT_STAT interrupt register content updated) when the temperature warning  
event occurs but the wetting current is not reduced. This setting applies to both the polling and continuous mode  
operation. Note if the feature is enabled, switch detection result might be impacted upon TTW event if the wetting  
current is reduced to 2mA from 10mA or 15mA.  
When the temperature drops below TTW - THYS, the INT pin is asserted low (if released previously) to notify the  
microcontroller that the temperature warning condition no longer exists. The TW bit of the interrupt register  
INT_STAT is flagged logic 1. The TW_STAT bit in the IN_STAT_MISC register is de-asserted back to logic 0.  
The device resumes operation using the current programmed settings (regardless of the INT and CS status).  
8.3.10.2 Temperature Shutdown (TSD)  
After the device enters TW condition, if the junction temperature continues to rise and goes above the  
temperature shutdown threshold (TTSD), the TIC12400 enters the Temperature Shutdown (TSD) condition and  
performs the following operations:  
1. Opens all the switches connected to the current sources/sinks to prevent any further heating due to  
excessive current flow.  
2. Generate an interrupt by asserting the INT pin (if not already asserted) low and flag the bit TSD in the  
INT_STAT register to logic 1. The TEMP bit in the SPI flag is also flagged to logic 1 for all SPI transactions.  
3. The TSD_STAT bit of the IN_STAT_MISC register is flagged to logic 1. The TW_STAT bit also stays at logic  
1.  
4. SPI communication stays on, and all register settings say intact without resetting. Previous switch status, if  
needed, can be retrieved without any interruption.  
5. Maintain the setting as long as the junction temperature stays above TTSD - THYS  
.
The INT pin is released and the INT_STAT register content is cleared on the rising edge of CS provided the  
INT_STAT register has been read during CS low. The TIC12400 continues to monitor the temperature, but does  
not issue further interrupts if the temperature continues to stay above TTSD- THYS. The status bit TSD_STAT in  
register IN_STAT_MISC continues to stay at logic 1 as long as the temperature shutdown condition exists.  
When the temperature drops below TTSD - THYS, the INT pin is asserted low (if released previously) to notify the  
microcontroller that the temperature shutdown condition no longer exists. The TSD bit of the interrupt register  
INT_STAT is flagged logic 1. In the IN_STAT_MISC register, the TSD_STAT bit is de-asserted back to logic 0,  
while the TW_STAT bit stays at logic 1. The device resumes operation using the wetting current setting  
described in section Temperature Warning if the temperature stays above TTW - THYS. Note the polling restarts  
from the first enabled channel and the SSC interrupt is generated at the end of the first polling cycle. The  
detected switch status from the first polling cycle becomes the default switch status for subsequent polling.  
8.3.11 Parity Check And Parity Generation  
The TIC12400 uses parity bit check to ensure error-free data transmission from/to the SPI master.  
The device uses odd parity, for which the parity bit is set so that the total number of ones in the transmitted data  
on SO (including the parity bit) is an odd number (that is, Bit0 Bit1 ….Bit30 Bit31Parity = 1).  
The device also does odd parity check after receiving data on SI from the SPI master. If the total number of ones  
in the received data (including the parity bit) is an even number, the received data is discarded. The INT will be  
asserted low and the PRTY_FAIL bit in the interrupt register (INT_STAT) is flagged to logic 1 to notify the host  
that transmission error occurred. The PRTY_FAIL flag is also asserted during SPI communications.  
26  
版权 © 2017, Texas Instruments Incorporated  
 
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
8.3.12 Cyclic Redundancy Check (CRC)  
The TIC12400 includes a CRC module to support redundancy checks on the configuration registers to ensure  
the integrity of data. The CRC calculation is based on the ITU-T X.25 implementation, and the CRC polynomial  
(0x1021) used is popularly known as CRC-CCITT-16 since it was initially proposed by the ITU-T (formerly  
CCITT) committee. The CRC calculation rule is defined as:  
5. CRC calculation rule  
CRC Rule  
CRC result width  
Polynomial  
Value  
16 bits  
x^16+ x^12+ x^5+1 (1021h)  
Initial (seed) value  
Input data reflected  
Result data reflected  
XOR value  
FFFFh  
No  
No  
0000h  
The CRC calculation is done on all the configuration registers starting from register CONFIG and ending at  
register MODE. The device substitutes a “zero” for each reserved configuration register bit during the CRC  
calculation. The CRC calculation can be triggered by asserting the CRC_T bit in the CONFIG register. Once  
completed, the CRC_CALC interrupt bit in the INT_STAT register is asserted and an interrupt is issued, The 16-  
bit CRC calculation result is stored in the register CRC. This interrupt can be disabled by de-asserting the  
CRC_CALC_EN bit in the INT_EN_CFG0 register. It is important to avoid writing data to the configuration  
registers when the device is undergoing CRC calculations to prevent generation of any false calculation result.  
The diagram below shows the block diagram of the CRC module. The module consists of 16 shift-registers and 3  
exclusive-OR gates. The registers start with 1111-1111-1111-1111 (or FFFFh) and the module performs XOR  
action and shifts its content until the last bit of the register string is used. The final register’s content after the last  
data bit is the calculated CRC value of the data set and the content is stored in the CRC register.  
Note the CRC_T bit is self-clearing after CRC calculation is completed. Logic 1 is used for CRC_T bit during  
CRC calculation.  
X15 X14 X13 X12  
X11 X10  
X9  
X8  
X7  
X6  
X5  
X4  
X3  
X2  
X1  
X0  
+
+
+
XOR  
XOR  
XOR  
Data  
MSB  
LSB  
21. CCITT-16 CRC Module Block Diagram  
版权 © 2017, Texas Instruments Incorporated  
27  
 
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
8.4 Device Functional Modes  
The TIC12400 has 2 modes of operation: continuous mode, and polling mode. The following sections describe  
the two operation modes in details, as well as some of the advanced features that could be activated during  
normal operations.  
8.4.1 Continuous Mode  
In continuous mode, wetting current is continuously applied to each enabled input channel, and the status of  
each channel is sampled sequentially (starting from the IN0 to IN23). The TIC12400 monitors enabled inputs and  
issues an interrupt (if enabled) if switch status change event is detected. The wetting current setting for each  
input can be individually adjusted by configuring the WC_CFG0 and WC_CFG1 to the 0 mA, 1 mA, 2 mA, 5 mA,  
10 mA, or 15 mA setting. Each input is monitored by either a comparator or an ADC depending on the setting of  
the input mode in the register MODE.  
22 below illustrates an example of the timing diagram of the detection sequence in continuous mode. After the  
TRIGGER bit in register CONFIG is set to logic 1, it takes tSTARTUP to activate the wetting current for all enabled  
inputs. The wetting currents stay on continuously, while each input is routed to the ADC/comparator for sampling  
in a sequential fashion. After conversion/comparison is done for an input, the switch status (below or above  
detection threshold) is stored in registers (IN_STAT_COMP for comparator inputs and IN_STAT_ADC0 to  
IN_STAT_ADC1 for ADC inputs) to be used as the default state for subsequent detection cycles. The digital  
values (if the input is configured as ADC input mode) are stored inside the registers ANA_STAT0  
toANA_STAT11. After the end of the first polling cycle, the INT pin is asserted low to notify the microcontroller  
that the default switch status is ready to be read. The SSC bit in INT_STAT register and the SPI status flag SSC  
are also asserted to logic 1. The polling cycle time (tPOLL) determines how frequently each input is sampled and  
can be configured in the register CONFIG.  
Input sampling restarts  
from first enabled input  
after tPOLL_TIME  
Wetting  
current  
TRIGGER bit set  
to logic 1 in  
CONFIG register  
ttPOLL_TIME  
t
ttSTARTUP  
t
IN0  
IN1  
IN3  
ttADC or tCOMP  
t
ttADC or tCOMP  
t
IN23  
/INT  
ñ Default input status is stored  
ñ /INT pin is asserted after the  
1st detection cycle  
Time  
22. An Example Of The Detection Sequence In continuous Mode  
28  
版权 © 2017, Texas Instruments Incorporated  
 
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
Device Functional Modes (接下页)  
The INT_STAT register is cleared and INT pin de-asserted if a SPI READ commanded is issued to the register.  
Note the interrupt is always generated after the 1st detection cycle (after the TRIGGER bit in register CONFIG is  
set to logic 1). In subsequent detection cycles, the interrupt is generated only if switch status change is detected.  
No wetting current is applied to the inputs configured to the 0mA setting, although some biasing current (as  
specified by IIN_LEAK_0mA) may still flow in and out of the input. Threshold crossing monitoring is still performed for  
the input using the defined threshold(s). The 0mA setting is useful to utilize the integrated ADC or comparator to  
measure applied voltage on a specific input without getting affected by the device wetting current.  
8.4.2 Polling Mode  
The polling mode can be activated to reduce current drawn to reduce heat dissipation. Unlike in the continuous  
mode, the current sources/sinks do not stay on continuously in the polling mode. Instead, they are turned on/off  
sequentially from IN0 to IN23 and cycled through each individual input channel. The microcontroller can be put to  
sleep to reduce overall system power. If a switch status change (SSC) is detected by the TIC12400, the INT pin  
(if enabled for the input channel) is asserted low (and the SSC bit in INT_STAT register and the SPI status flag  
SSC are also asserted to logic 1). The INT assertion can be used to wake up the system regulator, which in turn  
wakes up the microcontroller as described in section Microcontroller Wake-Up. The microcontroller can then use  
SPI communication to read the switch status information.  
The polling is activated when the TRIGGER bit in the CONFIG register is set to logic 1. There are 2 different  
polling schemes that can be configured in TIC12400: standard polling and matrix polling.  
8.4.2.1 Standard Polling  
In standard polling mode, wetting current is applied to each input for a pre-programmed polling active time set by  
the POLL_ACT_TIME bits in the CONFIG register between 64us and 2048 us. At the end of the wetting current  
application, the input voltage is sampled by the comparator (if input is configured as comparator input mode) or  
the ADC (if input is configured as ADC input mode). Each input is cycled through in sequential order from IN0 to  
IN23. Sampling is repeated at a frequency set by the POLL_TIME bits in the CONFIG register from 2ms to  
4096ms. Wetting currents are applied to closed switches only during the polling active time; hence the overall  
system current consumption can be greatly reduced.  
Similar to continuous mode, after the first polling cycle, the switch status of each input (below or above detection  
threshold) is stored internally in registers (IN_STAT_COMP for comparator inputs and IN_STAT_ADC0 to  
IN_STAT_ADC1 for ADC inputs) to be used as the default state for subsequent polling cycles. The digital values  
(if the input is configured as ADC input mode) are stored inside the registers ANA_STAT0 toANA_STAT11. The  
INT pin is asserted low to notify the microcontroller that the default switch status is ready to be read. The SSC bit  
in INT_STAT register and the SPI status flag SSC are also asserted to logic 1. The INT_STAT register is cleared  
and /INT pin de-asserted if a SPI READ commanded is issued to the register. Note the interrupt is always  
generated after the 1st polling cycle (after the TRIGGER bit in register CONFIG is set to logic 1). In subsequent  
polling cycles, the interrupt is generated only if switch status change is detected.  
An example of the timing diagram of the polling mode operation is shown in 23. Note in this example, IN1 is  
set to comparator input mode, while the other inputs are set to ADC input mode. As a result, the wetting current  
applied to IN2 is activated faster (tCOMP instead of tADC after IN1 wetting current turns off) to shorten the overall  
polling period. Shortened polling period translates to reduced overall power consumption for the system.  
版权 © 2017, Texas Instruments Incorporated  
29  
 
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
Device Functional Modes (接下页)  
Wetting current is  
activated for  
tPOLL_ACT_TIME  
Wetting  
current  
Input sampling restarts  
from first enabled input  
after tPOLL_TIME  
TRIGGER bit set  
to logic 1 in  
ttPOLL_ACT_TIME  
t
CONFIG register  
ttPOLL_TIME  
t
ttSTARTUP  
t
ttPOLL_ACT_TIMEt  
ttSTARTUP  
t
IN0  
IN1  
IN3  
ttADC or tCOMP  
t
ttADC or tCOMP  
t
IN23  
/INT  
ñ Default input status is stored  
ñ /INT pin is asserted after the  
1st detection cycle  
ttADC or tCOMP  
t
Time  
23. An Example Of The Polling Sequence In Standard Polling Mode  
30  
版权 © 2017, Texas Instruments Incorporated  
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
Device Functional Modes (接下页)  
If the switch position changes between two active polling times, no interrupt will be generated and the status  
registers (IN_STAT_COMP for comparator inputs and IN_STAT_ADC0 to IN_STAT_ADC1 for ADC inputs) will  
not reflect such a change. An example is shown in 24.  
Wetting  
current  
Switch  
state  
Ignored  
Initial switch  
switch state  
state change  
change  
/INT  
/INT asserted  
due to initial  
state change  
/CS  
Time  
24. Example For Ignored Switch Position Change Between 2 Wetting Current Cycles  
版权 © 2017, Texas Instruments Incorporated  
31  
 
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
Device Functional Modes (接下页)  
8.4.2.2 Matrix Polling  
TIC12400  
VS  
1mA to 15mA  
or  
OFF  
IN10  
34  
ESD  
Protection  
IN11  
IN12  
35  
36  
VS  
IN13  
IN14  
1
2
1mA to 15mA  
or  
OFF  
IN15  
3
6 x 6 matrix  
ESD  
Protection  
5 x 5 matrix  
4 x 4 matrix  
IN4  
IN5  
IN6  
27  
29  
ESD  
Protection  
1mA to 15mA  
or  
OFF  
AGND  
30  
31  
IN7  
IN8  
IN9  
32  
33  
ESD  
Protection  
1mA to 15mA  
or  
OFF  
AGND  
Copyright © 2017, Texas Instruments Incorporated  
25. TIC12400 Matrix Configuration  
32  
版权 © 2017, Texas Instruments Incorporated  
 
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
Device Functional Modes (接下页)  
From IN4 to IN15, a special input switch matrix (see 25) can be configured and monitored in addition to the  
standard switches to GND and VSUPPLY. This feature could be useful to monitor a special switch input  
configuration call Matrix, as required by some specific OEMs.  
Three different matrix configurations are possible, and are defined by MATRIX bits in the MATRIX register. If the  
MATRIX bits are set to ‘00’, all inputs are treated as standard inputs with identical polling active time according to  
the POLL_ACT_TIME bits in the CONFIG register. Any settings other than ‘00’ for MATRIX bits causes the  
polling active time for the matrix inputs to be configured according to POLL_ACT_TIME_M bits in the MATRIX  
register. Inputs that are not part of the matrix configuration will be configured using the POLL_ACT_TIME bits in  
the CONFIG register. tPOLL_ACT_TIME_M should be configured properly to allow sufficient time for the current  
source/sink to charge/discharge the capacitors (if any) connected to the switch inputs.  
6. TIC12400 Matrix Configuration Settings  
4x4 matrix  
5x5 matrix  
6x6 matrix  
Polling Active Time  
Input  
Current Source  
Polling Active  
Time Setting  
Current Source Polling Active Time Current Source  
Or Sink  
Or Sink  
CSI  
Setting  
Or Sink  
Setting  
IN4  
IN5  
IN6  
IN7  
CSI  
CSI  
CSI  
CSI  
CSI  
CSI  
CSI  
POLL_ACT_TIME  
_M  
CSI  
CSI  
POLL_ACT_TIME_M  
CSI  
CSI  
Configurable to  
CSO or CSI  
IN8  
IN9  
CSI  
CSI  
CSI  
POLL_ACT_TIME  
Configurable to  
CSO or CSI  
Configurable to  
CSO or CSI  
POLL_ACT_TIME_  
M
POLL_ACT_TIME  
IN10  
IN11  
IN12  
IN13  
IN14  
IN15  
CSO  
CSO  
CSO  
CSO  
CSO  
CSO  
CSO  
CSO  
CSO  
CSO  
CSO  
CSO  
CSO  
CSO  
CSO  
CSO  
CSO  
CSO  
POLL_ACT_TIME  
_M  
POLL_ACT_TIME_M  
POLL_ACT_TIME  
POLL_ACT_TIME  
The TIC12400 implements a different polling scheme when matrix input is configured. After the polling sequence  
is started (by setting TRIGGER bit in CONFIG register to logic 1), the polling takes place within the matrix input  
group first before the rest of the standard inputs are polled. After the matrix inputs are polled, the switch status of  
each input combination (below or above detection threshold) is stored internally in registers IN_STAT_MATRIX0  
and IN_STAT_MATRIX1, and it is used as the default state for subsequent matrix polling cycles. The standard  
inputs follow the same polling behavior as described in section Standard Polling. After the polling cycle (matrix+  
standard) is completed, the INT pin is asserted low to notify the microcontroller that the default switch status is  
ready to be read. The SSC bit in the INT_STAT register and the SPI status flag SSC are also asserted to logic 1.  
The INT_STAT register is cleared and INT pin de-asserted if a SPI READ commanded is issued to the register.  
Note the interrupt is always generated after the 1st complete polling cycle (after the TRIGGER bit in register  
CONFIG is set to logic 1). In subsequent polling cycles, the interrupt is generated only if switch status change is  
detected.  
版权 © 2017, Texas Instruments Incorporated  
33  
 
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
Note the following programming requirement when using the matrix polling:  
It is critical to program the CSO/CSI configuration for each matrix input appropriately according to 6 to  
avoid incorrect switch status detection.  
It is mandatory to set higher wetting current for the sinks (IN4-IN9) than the sources (IN10-IN15). The actual  
current flowing through the external switches will be the lesser of the two settings. If the same setting is used  
for both the sink and the source, the detected result might be incorrect. Because of this, 15mA setting shall  
not be used for the current sources and 1 mA setting shall not be used for the current sinks. Depending on  
the type of matrix switches, the TIC12400 might require some specific wetting current settings to be able to  
distinguish between switch open/closed states.  
If TW_CUR_DIS_CSO or TW_CUR_DIS_CSI is set to logic 0 in the CONFIG register, wetting current is  
reduced to 2 mA for 10 mA and 15 mA settings upon TW event. Since it’s mandatory to have higher wetting  
current for the sinks (IN4-IN9) than the sources (IN10-IN15) during matrix polling,7 below summarizes the  
only possible settings if TW event is expected:  
7. Possible Wetting Current Settings For The Matrix Polling Mode If TW_CUR_DIS=0 And TW Event Is  
Expected  
CSO (IN10-IN15)  
1 mA  
CSI (IN4-IN9)  
2 mA, 5 mA, 10 mA, 15 mA  
5 mA  
Resulting wetting current  
1 mA  
2 mA  
2 mA  
If higher wetting current is needed and TW event might be expected, the TW wetting current reduction feature  
needs to be disabled by setting TW_CUR_DIS_CSO or TW_CUR_DIS_CSI bit in the CONFIG register to 1.  
Only comparator input mode is supported for the matrix polling. Do not program the matrix inputs into ADC  
input mode. The comparison takes place on the source side (IN10-IN15) since the sink side is pulled to  
ground. Interrupt generation condition can be set by configuring the INT_EN_COMP1and INT_EN_COMP2  
registers for inputs IN10 to IN15.  
Some programmability is removed when matrix polling mode is used, as listed below:  
To keep the polling scheme simple, the ability to disable inputs is removed for the matrix inputs. Only 3  
configurations (4x4, 5x5, and 6x6) can be used for the matrix polling. Standard inputs outside the matrix input  
group can still be disabled, if desired.  
Detection filter (by configure the DET_FILTER in the CONFIG register) does not apply to the matrix inputs,  
but still applies to the standard inputs outside the matrix input group.  
When matrix polling is selected, continuous mode is not available to the standard inputs outside the matrix  
input group.  
34  
版权 © 2017, Texas Instruments Incorporated  
 
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
26 illustrates an example of the polling sequence for the 6x6 matrix input configuration:  
TRIGGER bit set  
to logic 1 in  
CONFIG register  
ttPOLL_TIME  
t
Wetting  
current  
tPOLL_ACT_TIME_M  
tSTARTUP  
tSTARTUP  
IN10  
IN11  
IN12  
IN13  
IN14  
IN15  
IN4 to IN5 to IN6 to IN7 to IN8 to IN9 to  
GND  
GND  
GND  
GND  
GND  
GND  
IN0  
IN1  
ttPOLL_ACT_TIME  
t
ttADC or tCOMP  
t
IN2  
IN3  
IN16  
IN17  
IN23  
/INT  
/CS  
ñ Default input status is stored  
ñ /INT pin is asserted after the  
1st detection cycle  
Read on INT_STAT register  
release the /INT pin  
Time  
26. Polling Scheme for 6x6 Matrix Inputs  
版权 © 2017, Texas Instruments Incorporated  
35  
 
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
27 illustrates an example of the polling sequence for the 5x5 matrix input configuration. Note the input IN9 and  
IN15 are included in the standard polling sequence.  
TRIGGER bit set  
to logic 1 in  
CONFIG register  
ttPOLL_TIME  
t
Wetting  
current  
tPOLL_ACT_TIME_M  
tSTARTUP  
tSTARTUP  
IN10  
IN11  
IN12  
IN13  
IN14  
IN0  
IN4 to IN5 to IN6 to IN7 to IN8 to  
GND GND GND GND GND  
ttPOLL_ACT_TIME  
t
IN1  
ttADC or tCOMP  
t
IN2  
IN3  
IN9  
IN15  
IN23  
/INT  
/CS  
ñ Default input status is stored  
ñ /INT pin is asserted after the  
1st detection cycle  
Read on INT_STAT register  
release the /INT pin  
Time  
27. Polling Scheme For 5x5 Matrix Inputs  
36  
版权 © 2017, Texas Instruments Incorporated  
 
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
28 illustrates an example of the polling sequence for the 4x4 matrix input configuration. Note inputs IN8, IN9,  
IN14, and IN15 are included in the standard polling sequence.  
TRIGGER bit set  
to logic 1 in  
CONFIG register  
ttPOLL_TIME  
t
Wetting  
current  
tPOLL_ACT_TIME_M  
tSTARTUP  
tSTARTUP  
IN10  
IN11  
IN12  
IN13  
IN4 to IN5 to IN6 to IN7 to  
GND GND GND GND  
IN0  
IN1  
IN2  
IN3  
IN8  
IN9  
IN14  
ttPOLL_ACT_TIME  
t
ttADC or tCOMP  
t
IN23  
/INT  
/CS  
ñ Default input status is stored  
ñ /INT pin is asserted after the  
1st detection cycle  
Read on INT_STAT register  
release the /INT pin  
Time  
28. Polling Scheme For 4x4 Matrix Inputs  
版权 © 2017, Texas Instruments Incorporated  
37  
 
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
8.4.3 Additional Features  
There are additional features that can be enabled during continuous and polling mode to increase robustness of  
device operation or provide more system information. These features are described in detail in the following  
sections:  
8.4.3.1 Clean Current Polling (CCP)  
To detect resistor coded switches or reduce overall power consumption of the chip, a lower wetting current  
setting might be desired. However, certain system design requires 10mA or higher cleaning current to clear oxide  
build-up on the mechanical switch contact surface when the current is applied to closed switches. A special type  
of polling, called the Clean Current Polling (CCP) can be used for this application.  
If CCP is enabled, each polling cycle consists of two wetting current activation steps. The first step uses the  
wetting current setting configured in the WC_CFG0 and WC_CFG1 registers as in the continuous mode or  
polling mode. The second step (cleaning cycle) is activated simultaneously for all CCP enabled inputs tCCP_TRAN  
after the normal polling step of the last enabled input. Interrupt generation and INT pin assertion is not impacted  
by the clean current pulses.  
The wetting current and its active time for the cleaning cycle can be configured in the CCP_CFG0 register. The  
cleaning cycle can be disabled, if desired, for each individual input by programming the CCP_CFG1 register.  
CCP is available for both continuous mode and the polling mode. To use the CCP feature, at least one input  
(standard or matrix) or the VS measurement has to be enabled.  
Note that although CCP can be enabled in Matrix polling mode, it is not an effective way to clean the matrix  
switch contact, since the current supplied from the TIC12400 is divided and distributed across multiple matrix  
channels.  
38  
版权 © 2017, Texas Instruments Incorporated  
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
29 illustrates the operation of the CCP when the device is configured to the standard polling mode.  
Wetting  
current  
TRIGGER bit set  
to logic 1 in  
CONFIG register  
ttPOLL_TIME  
t
tSTARTUP  
IN0  
tSTARTUP  
IN1  
IN2  
ttADC or tCOMP  
t
ttCCP_TIME  
t
IN22  
IN23  
ttCCP_TRAN  
t
/INT  
ñ Default input status is stored  
ñ /INT pin is asserted after the  
1st detection cycle  
/CS  
Read on INT_STAT register  
release the /INT pin  
Time  
29. Standard Polling With CCP Enabled  
版权 © 2017, Texas Instruments Incorporated  
39  
 
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
30 illustrates the operation of the CCP when the device is configured to the continuous mode:  
Wetting  
current  
TRIGGER bit set  
to logic 1 in  
CONFIG register  
ttPOLL_TIME  
t
tSTARTUP  
IN0  
tSTARTUP  
IN1  
IN2  
ttADC or tCOMP  
t
ttCCP_TIME  
t
IN22  
IN23  
/INT  
ñ Default input status is stored  
ñ /INT pin is asserted after the  
1st detection cycle  
/CS  
Read on INT_STAT register  
release the /INT pin  
Time  
30. Continue Mode With CCP Enabled  
8.4.3.2 Wetting Current Auto-Scaling  
The 10 mA and 15 mA wetting current settings are useful to clean oxide build-up on the mechanical switch  
contact surface when the switch changes state from open to close. After the switch is closed, it might be  
undesirable to keep the wetting current level at high level if only digital switches are monitored since it results in  
high current consumption and could potentially heat up the device quickly if multiple inputs are monitored. The  
wetting current auto-scaling feature help mitigate this issue.  
When enabled (AUTO_SCALE_DIS_CSO or AUTO_SCALE_DIS_CSI bit = logic 0 in the WC_CFG1 register),  
wetting current is reduced to 2 mA from 10 mA or 15 mA setting after switch closure is detected. The threshold  
used to determine a switch closure is the threshold configured in the THRES_COMP register for inputs  
configured as comparator input mode. For inputs configured as ADC input mode, the threshold used to  
determine a switch closure depends on the input number, as described in 8 below:  
8. Threshold Used To Determine A Switch Closure For Wetting Current Auto-scaling For ADC Inputs  
Input  
IN0-IN11  
IN12 to IN17  
IN18 to IN22  
IN23  
Threshold used to determine a switch closure  
Mapped threshold from THRES0 to THRES7  
THRES2B  
THRES3C  
THRES9  
40  
版权 © 2017, Texas Instruments Incorporated  
 
 
 
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
The current reduction takes place N cycles after switch closure is detected on an input, where N depends on the  
setting of the DET_FILTER bits in the CONFIG register:  
DET_FILTER= 00: wetting current is reduced immediately in the next detection cycle after a closed switch is  
detected.  
DET_FILTER= 01: wetting current is reduced when a closed switch is detected and the switch status is stable  
for at least 2 consecutive detection cycles  
DET_FILTER= 10: wetting current is reduced when a closed switch is detected and the switch status is stable  
for at least 3 consecutive detection cycles  
DET_FILTER= 11: when a closed switch is detected and the switch status is stable for at least 4 consecutive  
detection cycles  
The wetting current is adjusted back to the original setting of 10 mA or 15 mA N cycles after an open switch is  
detected, where N again depends on the DET_FILTER bit setting in the CONFIG register. 31 depicts the  
behavior of the wetting current auto-scaling feature.  
Switch open  
Switch closed  
Auto-scaling  
disabled  
15mA  
15mA  
0mA  
0mA  
Auto-scaling  
enabled  
2mA  
31. Wetting Current Auto-scaling Behavior  
The wetting current auto-scaling only applies to 10 mA and 15 mA settings and is only available in continuous  
mode. If AUTO_SCALE_DIS_CSO or AUTO_SCALE_DIS_CSI bit is set to logic 1 in the WC_CFG1 registers,  
the wetting current stays at its original setting when a closed switch is detected. Power dissipation needs to be  
closely monitored when wetting current auto-scaling is disabled for multiple inputs as the device could heat up  
quickly when high wetting current settings are used. If the auto-scaling feature is disabled in continuous mode,  
total power dissipation can be calculated using 公式 1 below.  
P
=VS ì  
(
IS _CONT + IWETT (TOTAL)  
)
TOTAL  
(1)  
where IWETT  
is the sum of all wetting currents from all input channels. Increase in device junction  
(TOTOAL)  
temperature can be calculated based on P ×RθJA. The junction temperature has to be limited below TTSD for  
proper device operation. An interrupt will be issued when the junction temperature exceeds TTW or TTSD. For  
detailed description of the temperature monitoring, please refer to sections Temperature Warning (TW)and  
Temperature Shutdown (TSD).  
8.4.3.3 VS Measurement  
When the TIC12400 is used to monitor resistor-coded switches, the level of VS supply voltage becomes very  
critical. If VS is not sufficiently high, the device might not have enough headroom to produce accurate wetting  
currents. This could impact the accuracy of the switch status monitoring. It is imperative for the microcontroller to  
have knowledge of the VS voltage on a constant basis in such a case.  
Measurement of VS voltage is a feature in TIC12400 that can be enabled by setting the VS_MEAS_EN bit in  
register CONFIG to logic 1. If enabled, at the end of every detection/polling cycle, the voltage on the VS pin is  
sampled and converted by the ADC to an digital value. The conversion takes one extra tADC, and the converted  
value is recorded in the ANA_STAT12 register.  
The VS measurement supports two different VS voltage ranges that can be configured by the VS_RATIO bit in  
the CONFIG register. By default (VS_RATIO = logic 0), the supported VS voltage range is from 6.5 V to 9 V, and  
VS voltage in excess of 9 V results in a saturated ADC raw code of 1023. This setting provides better  
measurement resolution at lower VS voltages. When VS_RATIO bit is set to logic 1, the supported VS voltage  
range is widened to 6.5V to 30V, and VS voltage in excess of 30 V results in a saturated ADC raw code of 1023.  
This setting allows wider measurement range but more coarse measurement resolution. It is important to adjust  
the detection thresholds accordingly depending on the VS voltage range configured.  
版权 © 2017, Texas Instruments Incorporated  
41  
 
 
 
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
Four different thresholds (VS0_THRES2A/B and VS1_THRES2A/B) can be programmed to have the TIC12400  
notify the microcontroller when the VS voltage crosses the thresholds. The value of these thresholds can be  
programmed by configuring registers THRES_CFG0 to THRES_CFG3 and the mapping can be programmed by  
configuring registers THRESMAP_VS0_THRES2A/B and THRESMAP_VS1_THRES2A/B bits in the register  
THRESMAP_CFG2. When setting the thresholds, follow the rules in 9 below:  
9. Proper threshold configuration for VS measurements  
VS Threshold  
VS0  
Proper Threshold Configuration  
VS0_THRES2B VS0_THRES2A  
VS1_THRES2B VS1_THRES2A  
VS1  
After the VS measurement is enabled for the first time, the VS measurement interrupt is always generated (INT  
pin is asserted low, and the VS0 or VS1 bit in the INT_STAT register is flagged to logic 1) at the end of the first  
polling cycle to notify the microcontroller the initial VS measurement result is ready to be retrieved . The  
VS0_STAT and VS1_STAT bits from register IN_STAT_MISC indicate the status of the VS voltage with respect  
to the thresholds, and the ANA_STAT12 register stores the converted digital value of the VS voltage. The SPI  
status flag VS_TH is also asserted to logic 1 during SPI communications. Note the status detected in the first  
polling cycle becomes the baseline value of comparison for subsequent VS measurements and the interrupt will  
be generated only if threshold crossing is detected.  
Similar to regular inputs, interrupt generation condition can be programmed by setting the VS_TH0_EN and  
VS_TH1_EN bits in the INT_EN_CFG4 register to the following settings:  
1. Rising edge: an interrupt is generated if the current VS measurement is above the corresponding threshold  
and the previous measurement was below.  
2. Falling edge: an interrupt is generated if the current VS measurement is below the corresponding threshold  
and the previous measurement was above.  
3. Both edges: changes of the VS measurement status in either direction results in an interrupt generation.  
Interrupt generation can also be disabled by setting VS_TH0_EN or VS_TH1_EN to logic 0 in register  
INT_EN_CFG4. Once disabled, VS voltage crossing does not flag the VS0 or VS1 bit in INT_STAT register and  
does not assert INT pin low. To only mask the INT pin from assertion (while keeping INT_STAT register  
updated), configure the VS1_EN and VS0_EN bits in register INT_EN_CFG0 to logic 0.  
Note the VS measurement is only intended to be used as part of switch detection sequence to determine the  
validity of the switch detection states that are reported by the TIC12400. It is not intended to be used for  
standalone supply monitoring, such as monitoring cranking voltages, due to the potentially delayed response  
being part of the polling sequence. The VS measurement result is accurate for VS above 6.5V.  
By default, the VS voltage measurement is disabled upon device reset.  
8.4.3.4 Wetting Current Diagnostic  
When the TIC12400 is used to monitor safety-critical switches, it might be valuable for the microcontroller to have  
knowledge of the wetting current sources/ sinks operating status. This can be achieved by activating the wetting  
current diagnostic feature provided for inputs IN0 to IN3. IN0 and IN1 can be diagnosed for defective wetting  
current sources, while IN2 and IN3 can be diagnosed for failed current sinks.  
The wetting current diagnostic feature can be activated by setting the WET_D_INx_EN bits in the CONFIG  
register to 1 for the desired inputs, where x can be 0, 1, 2, or 3. If activated, the TIC12400 checks the status of  
the wetting current sources/sinks for the configured input periodically as part of the polling sequence. If the  
wetting current is determined to be flawed, the TIC12400 pulls the INT pin low to notify the host and flag the  
WET_DIAG bit in the INT_STAT register to logic 1. The OI bit in the SPI flag is also asserted during SPI  
transactions. The microcontroller can then read bits IN0_D to IN3_D in register IN_STAT_MISC to learn more  
information on which wetting current source/sink is defective.  
The wetting current diagnostic is not performed for inputs that are disabled (IN_EN_x bit = 0 in the IN_EN  
register) from polling, even if the feature if activated for those inputs. Also, it is critical to configure the current  
source/sink appropriately (CSO for IN0/IN1 and CSI for IN2/IN3) and program the input to ADC input mode  
before activating the wetting current diagnostic feature to avoid false interrupt from generation. The wetting  
current diagnostic feature can be performed regardless of the states of external switches, and it is available in  
both continuous mode and the polling mode.  
42  
版权 © 2017, Texas Instruments Incorporated  
 
 
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
32 shows an example of the feature carried out in a typical polling sequence. In this example, it can be  
observed that the wetting current is activated for duration of tPOLL_ACT+ tADC for each input diagnosed. After IN3 is  
diagnosed, normal polling sequence resumes and the wetting current is activated for tPOLL_ACT for the rest of the  
inputs. The diagnostic is not executed on input IN2 in this example since it is disabled.  
Wetting current is activated for  
Input sampling restarts  
tPOLL_ACT_TIME+ tADC (or tCOMP) for  
channels with WCD enabled  
Wetting  
current  
from first enabled input  
after tPOLL_TIME  
TRIGGER bit set  
to logic 1 in  
CONFIG register  
ttPOLL_TIME  
ttADC or tCOMP  
t
ttSTARTUP  
t
ttPOLL_ACT_TIME  
t
t
ttSTARTUP  
t
IN0  
IN2  
IN4  
ttADC or tCOMP  
t
ttADC or tCOMP  
t
IN23  
/INT  
ñ Default input status is stored  
ñ /INT pin is asserted after the  
1st detection cycle  
ttADC or tCOMP  
t
Time  
32. An Example Of The Polling Sequence In Standard Polling Mode With Wetting Current Diagnostic  
Enabled  
版权 © 2017, Texas Instruments Incorporated  
43  
 
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
8.4.3.5 ADC Self-Diagnostic  
In addition to the wetting current diagnostic, another diagnostic feature, the ADC self-diagnostic, can be enabled  
to monitor the integrity of the internal ADC.  
The ADC self-diagnostic feature is activated by setting the ADC_DIAG_T bit in the CONFIG register to logic 1.  
Once enabled, the TIC12400 periodically sends a test voltage to the ADC. The conversion result is stored in the  
ADC_SELF_ANA bits in the register ANA_STAT12 and it is compared with a pre-defined code to determine  
whether the conversion is performed properly. If an error is detected, the TIC12400 pulls the INT pin low to notify  
the host and flag the ADC_DIAG bit in the INT_STAT to logic 1. The bit ADC_D in register IN_STAT_MISC is  
updated with the result from the self-diagnostic. The ADC self-diagnostic feature is available in both continuous  
mode and the polling mode.  
44  
版权 © 2017, Texas Instruments Incorporated  
 
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
8.5 Programming  
The SPI interface communication consists of the 4 pins: CS, SCLK, SI, and SO. The interface can work with  
SCLK frequency up to 4MHz.  
8.5.1 SPI Communication Interface Buses  
8.5.1.1 Chip Select (CS)  
The system microcontroller selects the TIC12400 to receive communication using the CS pin. With the CS pin in  
a logic LOW state, command words may be sent to the TIC12400 via the serial input (SI) pin, and the device  
information can be retrieved by the microcontroller via the serial output (SO) pin. The falling edge of the CS  
enables the SO output and latches the content of the interrupt register INT_STAT. The microcontroller may issue  
a READ command to retrieve information stored in the registers. Rising edge on the CS pin initiates the following  
operations:  
1. Disable the output driver and makes SO high-impedance  
2. INT pin is reset to logic HIGH if a READ command to the INT_STAT register was issued during CS = LOW.  
To avoid any corrupted data, it is essential the HIGH-to-LOW and LOW-to-HIGH transitions of the CS signal  
occur only when SCLK is in a logic LOW state. A clean CS signal is needed to ensure no incomplete SPI words  
are sent to the device. The CS pin should be externally pulled up to VDD by a 10-kΩ resistor.  
8.5.1.2 System Clock (SCLK)  
The system clock (SCLK) pin clocks the internal shift register of the TIC12400. The SI data is latched into the  
input shift register on the falling edge of the SCLK signal. The SO pin shifts the device stored information out on  
the rising edge of SCLK. The SO data is available for the microcontroller to read on the falling edge of SCLK.  
False clocking of the shift register must be avoided to ensure validity of data and it is essential the SCLK pin be  
in a logic LOW state whenever CS makes any transition. Therefore, it is recommended that the SCLK pin gets  
pulled to a logic LOW state as long as the device is not accessed and CS is in a logic HIGH state. When the CS  
is in a logic HIGH state, any signal on the SCLK and SI pins will be ignored and the SO pin remains as a high  
impedance output. Refer to 33 and 34 for examples of typical SPI read and write sequence.  
8.5.1.3 Slave In (SI)  
The SI pin is used for serial instruction data input. SI information is latched into the input register on the falling  
edge of the SCLK. To program a complete word, 32 bits of information must be enter into the device. The SPI  
logic counts the number of bits clocked into the IC and enables data latching only if exactly 32 bits have been  
clocked in. In case the word length exceeds or does not meet the required length, the SPI_FAIL bit of the  
INT_STAT register is asserted to logic 1 and the INT pin will be asserted low. The data received is considered  
invalid. Note the SPI_FAIL bit is not flagged if SCLK is not present.  
8.5.1.4 Slave Out (SO)  
The SO pin is the output from the internal shift register. The SO pin remains high-impedance until the CS pin  
transitions to a logic LOW state. The negative transition of CS enables the SO output driver and drive the SO  
output to the HIGH state (by default). The first positive transition of SCLK makes the status data bit 32 available  
on the SO pin. Each successive positive clock makes the next status data bit available for the microcontroller to  
read on the falling edge of SCLK. The SI/SO shifting of the data follows a first-in, first-out scheme, with both  
input and output words transferring the most significant bit (MSB) first.  
版权 © 2017, Texas Instruments Incorporated  
45  
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
Programming (接下页)  
8.5.2 SPI Sequence  
The following diagrams depict the SPI communication sequence during read and write operations for  
TIC12400.  
Bit 31  
(MSB)  
Bit 0  
(LSB)  
...  
Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24 Bit 23 Bit 22  
Bit 1  
Read/  
Write  
SI  
Register address  
Don‘t care  
PAR  
0
Bit 31  
(MSB)  
Bit 0  
(LSB)  
...  
Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24 Bit 23 Bit 22  
Bit 1  
SO  
Status flag  
Data out  
PAR  
SPI_ PRTY_  
POR  
SSC VS_TH TEMP  
OI  
FAIL  
FAIL  
33. TIC12400 Read SPI Sequence  
Bit 31  
(MSB)  
Bit 0  
(LSB)  
...  
...  
Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24 Bit 23 Bit 22  
Bit 1  
Read/  
Write  
SI  
Register address  
Data in  
PAR  
1
Bit 31  
(MSB)  
Bit 0  
(LSB)  
Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24 Bit 23 Bit 22  
Bit 1  
SO  
Status flag  
Previous content of the  
register addressed  
PAR  
SPI_ PRTY_  
FAIL FAIL  
POR  
SSC VS_TH TEMP  
OI  
34. TIC12400 Write SPI Sequence  
8.5.2.1 Read Operation  
The Read/Write bit (bit 31) of the SI bus needs to be set to logic 0 for a READ operation. The 6-bits address of  
the register to be accessed follows next on the SI bus. The content from bit 24 to bit 1 does not represent valid  
command for a read operation and will be ignored. The LSB (bit 0) is the parity bit used to detect communication  
errors.  
On the SO bus, the status flags will be outputted from the TIC12400, followed by the data content in the register  
that was requested. The LSB is the parity bit used to detect communication errors.  
Note there are several test mode registers (not shown in this ASD) used in the TIC12400 in addition to the  
normal functional registers, and a READ command to these test registers returns the register content. If a READ  
command is issued to an invalid register address, the TIC12400 will return all 0’s.  
8.5.2.2 Write Operation  
The Read/Write bit (bit 31) on the SI bus needs to be set to 1 for a write operation. The 6-bits address of the  
register to be accessed follows next on the SI bus. Note the register needs to be a writable configuration register,  
or otherwise, the command will be ignored. The content from bit 24 to bit 1 represents the data to be written to  
the register. The LSB (bit 0) is the parity bit used to detect communication errors.  
46  
版权 © 2017, Texas Instruments Incorporated  
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
Programming (接下页)  
On the SO bus, the status flags will be outputted from the TIC12400, followed by the previous data content of the  
same register being written to. The previous data content of the register is latched after the full register address  
is decoded in the SI command (after bit 25 is transmitted). The new data will replace the previous data content at  
the end of the SPI transaction if the SI write is a valid command (valid register address and no SPI/parity error).  
If the write command is invalid, the new data will be ignored and the previous data content of the register stays.  
The LSB is the parity bit used to detect communication errors.  
Note there are several test mode registers (not shown in this ASD) used in the TIC12400 in addition to the  
normal functional registers. A WRITE command to these test registers have no effect on the register content,  
though the register content is returned on the SO output. If a WRITE command is issued to an invalid register  
address, the SO output would returns all 0’s.  
8.5.2.3 Status Flag  
The status flags are output from SO during every READ or WRITE SPI transaction to indicate system conditions.  
These bits do not belong to an actual register, but the content is mirrored from the interrupt register INT_STAT. A  
READ command executed on the INT_STAT would clear both the bits inside the register and the status flag. The  
following table describes the information that can be obtained from each SPI status flag:  
10. TIC12400 SPI Status Flag Description  
Symbol  
Name  
Description  
This flag mirrors the POR bit in the interrupt register INT_STAT and it indicates, if set to 1, that a  
reset event has occurred. This bit is asserted after a successful power-on=reset, hardware reset or  
software reset. Refer to section Device Reset for more details.  
POR  
Power-on Reset  
This flag mirrors the SPI_FAIL bit in the interrupt register INT_STAT and it indicates, if set to 1,  
that the last SPI Slave In (SI) transaction is invalid. To program a complete word, 32 bits of  
information must be entered into the device. The SPI logic counts the number of bits clocked into  
the IC and enables data latching only if exactly 32 bits have been clocked in. In case the word  
length exceeds or does not meet the required size, the SPI_FAIL bit, which mirrors its value to this  
SPI_FAIL status flag, of the interrupt register INT_STAT will be set to 1 and the INT pin will be  
asserted low. The data received will be considered invalid. Once the INT_STAT register is read, its  
content will be cleared on the rising edge of CS. The SPI_FAIL status flag, which mirrors the  
SPI_FAIL bit in the INT_STAT register, will also be de-asserted. Note the SPI_FAIL bit is not  
flagged if SCLK is not present.  
SPI_FAIL  
SPI Error  
This flag mirrors the PRTY_FAIL bit in the interrupt register INT_STAT and it indicates, if set to 1,  
that the last SPI Slave In (SI) transaction has a parity error. The device uses odd parity. If the total  
number of ones in the received data (including the parity bit) is an even number, the received data  
is discarded. The INT will be asserted low and the PRTY_FAIL bit in the interrupt register  
(INT_STAT) is flagged to logic 1, and the PRTY_FAIL status flag, which mirrors the PRTY_FAIL  
bit in the INT_STAT register, is also set to 1. Once the INT_STAT register is read, its content will  
be cleared on the rising edge of CS. The PRTY_FAIL status flag, which mirrors the PRTY_FAIL bit  
in the INT_STAT register, will also be de-asserted.  
PRTY_FAIL  
Parity Fail  
This flag mirrors the SSC bit in the interrupt register INT_STAT and it indicates, if set to 1, that one  
or more switch input crossed threshold(s). To determine the origin of the state change, the  
microcontroller can read the content of registers IN_STAT_COMP (if input is set to comparator  
SSC  
VS_TH  
TEMP  
Switch State Change input mode), IN_STAT_ADC0 to IN_STAT_ADC1 (if input is set to ADC input mode), or  
IN_STAT_MATRIX0 to IN_STAT_MATRIX1 (if input is set to matrix input). Once the interrupt  
register (INT_STAT) is read, its content will be cleared on the rising edge of CS. The SSC status  
flag, which mirrors the SSC bit in the INT_STAT register, will also be de-asserted.  
This flag is set to 1 if either VS0 or VS1 bit in the interrupt register INT_STAT is flagged to 1. It  
indicates the VS voltage crosses thresholds defined by VS0_THRES2A, VS0_THRES2B,  
VS Threshold  
Crossing  
VS1_THRES2A, or VS1_THRES2A. To determine the origin of the threshold crossing, the  
microcontroller can read register bits VS0_STAT and VS1_STAT in the register IN_STAT_MISC.  
Once the interrupt register (INT_STAT) is read, its content will be cleared on the rising edge of CS,  
and the VS_TH status flag will also be de-asserted.  
This flag is set to 1 if either TW or TSD bit in the interrupt register INT_STAT is flagged to 1. It  
indicates a Temperature Warning (TW) event or a Temperature Shutdown (TSD) event has  
occurred. It is also flagged to 1 if a Temperature Warning (TW) event or a Temperature Shutdown  
(TSD) event cleared. The interrupt register INT_STAT should be read to determine which event  
occurred. The SPI master can also read the IN_STAT_MISC register to get information on the  
temperature status of the device. Once the interrupt register (INT_STAT) is read, its content will be  
cleared on the rising edge of CS, and the TEMP status flag will also be de-asserted.  
Temperature event  
版权 © 2017, Texas Instruments Incorporated  
47  
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
Programming (接下页)  
10. TIC12400 SPI Status Flag Description (接下页)  
Symbol  
Name  
Description  
Other interrupt include interrupts such as OV, UV, CRC_CALC. WET_DIAG, ADC_DIAG and  
CHK_FAIL. This flag will be asserted 1 when any of the abovementioned bits is flagged in the  
interrupt register INT_STAT. The interrupt register INT_STAT should be read to determine which  
event(s) occurred. The SPI master can also read the IN_STAT_MISC register to get information  
on the latest status of the device. Once the INT_STAT register is read, its content will be cleared  
on the rising edge of CS, and the OI status flag will also be de-asserted.  
OI  
Other Interrupt  
48  
版权 © 2017, Texas Instruments Incorporated  
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
8.6 Register Maps  
11 lists the memory-mapped registers for the TIC12400. All register offset addresses not listed in 11 should  
be considered as reserved locations and the register contents should not be modified.  
11. TIC12400 Registers  
Offset  
1h  
Type  
R
Reset  
20h  
1h  
Acronym  
Register Name  
Section  
Go  
DEVICE_ID  
INT_STAT  
Device ID Register  
2h  
RC  
R
Interrupt Status Register  
CRC Result Register  
Miscellaneous Status Register  
Comparator Status Register  
ADC Status Register  
Go  
3h  
FFFFh  
0h  
CRC  
Go  
4h  
R
IN_STAT_MISC  
IN_STAT_COMP  
Go  
5h  
R
0h  
Go  
6h-7h  
R
0h  
IN_STAT_ADC0,  
IN_STAT_ADC1  
Go  
8h-9h  
R
R
0h  
0h  
IN_STAT_MATRIX0,  
IN_STAT_MATRIX1  
Matrix Status Register  
ADC Raw Code Register  
RESERVED  
Go  
Go  
Ah-16h  
ANA_STAT0-  
ANA_STAT12  
17h-  
19h  
RESERVED  
1Ah  
1Bh  
1Ch  
R/W  
R/W  
R/W  
0h  
0h  
0h  
CONFIG  
IN_EN  
Device Global Configuration Register  
Input Enable Register  
Go  
Go  
Go  
CS_SELECT  
Current Source/Sink Selection  
Register  
1Dh-  
1Eh  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
WC_CFG0, WC_CFG1  
CCP_CFG0, CCP_CFG1  
THRES_COMP  
Wetting Current Configuration  
Register  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
1Fh-  
20h  
Clean Current Polling Register  
21h  
Comparator Threshold Control  
Register  
22h-  
23h  
INT_EN_COMP1,  
INT_EN_COMP2  
Comparator Input Interrupt  
Generation Control Register  
24h  
INT_EN_CFG0  
Global Interrupt Generation Control  
Register  
25h-  
28h  
INT_EN_CFG1-  
INT_EN_CFG4  
ADC Input Interrupt Generation  
Control Register  
29h-  
2Dh  
THRES_CFG0-  
THRES_CFG4  
ADC Threshold Control Register  
2Eh-  
30h  
THRESMAP_CFG0-  
THRESMAP_CFG2  
ADC Threshold Mapping Register  
31h  
32h  
R/W  
R/W  
0h  
0h  
Matrix  
Mode  
Matrix Setting Register  
Mode Setting Register  
Go  
Go  
版权 © 2017, Texas Instruments Incorporated  
49  
 
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
8.6.1 DEVICE_ID register (Offset = 1h) [reset = 20h]  
DEVICE_ID is shown in 35 and described in 12.  
Return to Summary Table.  
This register represents the device ID of the TIC12400.  
35. DEVICE_ID Register  
23  
22  
10  
21  
9
20  
8
19  
18  
RESERVED  
R-0h  
17  
16  
15  
3
14  
2
13  
1
12  
0
11  
7
6
5
4
RESERV  
ED  
MAJOR  
MINOR  
R-0h  
R-0h  
R-2h  
LEGEND: R = Read only  
12. DEVICE_ID Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23-11  
RESERVED  
R
0h  
RESERVED  
10-4  
MAJOR  
R
2h  
These 7 bits represents major revision ID. For TIC12400 the major  
revision ID is 2h.  
3-0  
MINOR  
R
0h  
These 4 bits represents minor revision ID. For TIC12400 the minor  
revision ID is 0h.  
50  
版权 © 2017, Texas Instruments Incorporated  
 
 
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
8.6.2 INT_STAT Register (Offset = 2h) [reset = 1h]  
INT_STAT is shown in 36 and described in 13.  
Return to Summary Table.  
This register records the information of the event as it occurs in the device. A READ command executed on this  
register clears its content and resets the register to its default value. The INT pin is released at the rising edge of  
the CS pin from the READ command.  
36. INT_STAT Register  
23  
15  
22  
14  
21  
20  
19  
18  
17  
16  
RESERVED  
R-0h  
13  
12  
11  
10  
9
8
RESERVED  
R-0h  
CHK_FAIL  
RC-0h  
ADC_DIAG  
RC-0h  
WET_DIAG  
RC-0h  
VS1  
VS0  
CRC_CALC  
RC-0h  
RC-0h  
RC-0h  
7
6
5
4
3
2
1
0
UV  
OV  
TW  
TSD  
SSC  
RC-0h  
PRTY_FAIL  
RC-0h  
SPI_FAIL  
RC-0h  
POR  
RC-1h  
RC-0h  
RC-0h  
RC-0h  
RC-0h  
LEGEND: R = Read only; RC = Read to clear  
13. INT_STAT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23-14  
RESERVED  
R
0h  
RESERVED  
13  
CHK_FAIL  
RC  
0h  
0h = Default factory setting is successfully loaded upon device  
initialization or the event status got cleared after a READ command  
was executed on the INT_STAT register.  
1h = An error is detected when loading factory settings into the  
device upon device initialization.  
During device initialization, factory settings are programmed into the  
device to allow proper device operation. The device performs a self-  
check after the device is programmed to diagnose whether correct  
settings are loaded. If the self-check returns an error, the CHK_FAIL  
bit is flagged to logic 1 along with the POR bit. The host controller is  
then recommended to initiate a software reset (see section Software  
Reset) to re-initialize the device and allow correct settings to be re-  
programmed.  
12  
11  
ADC_DIAG  
RC  
RC  
0h  
0h  
0h = No ADC self-diagnostic error is detected or the event status got  
cleared after a READ command was executed on the INT_STAT  
register.  
1h = ADC self-diagnostic error is detected.  
The ADC Self-Diagnostic feature (see section ADC Self-Diagnostic)  
can be activated to monitor the integrity of the internal ADC. The  
ADC_DIAG bit is flagged to logic 1 if an ADC error is diagnosed.  
WET_DIAG  
0h = No wetting current error is detected, or the event status got  
cleared after a READ command was executed on the INT_STAT  
register.  
1h = Wetting current error is detected.  
The Wetting Current Diagnostic feature (see section Wetting Current  
Diagnostic) can be activated to monitor the integrity of the internal  
current sources or sinks. The WET_DIAG bit is flagged to logic 1 if  
an wetting current error is diagnosed.  
版权 © 2017, Texas Instruments Incorporated  
51  
 
 
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
13. INT_STAT Register Field Descriptions (接下页)  
Bit  
Field  
Type  
Reset  
Description  
10  
VS1  
RC  
0h  
0h No VS voltage state change occurred with respect to  
=
VS1_THRES2A or VS1_THRES2B or the status got cleared after a  
READ command was executed on the INT_STAT register.  
1h  
=
VS voltage state change occurred with respect to  
VS1_THRES2A or VS1_THRES2B.  
The VS1 interrupt bit indicates whether VS voltage state change  
occurred with respect to thresholds VS1_THRES2A and  
VS1_THRES2B if the VS Measurement feature (see section VS  
Measurement) is activated.  
9
VS0  
RC  
0h  
0h  
= No VS voltage state change occurred with respect to  
VS0_THRES2A or VS0_THRES2B or the status got cleared after a  
READ command was executed on the INT_STAT register.  
1h  
=
VS voltage state change occurred with respect to  
VS0_THRES2A 10or VS0_THRES2B.  
The VS0 interrupt bit indicates whether VS voltage state change  
occurred with respect to thresholds VS0_THRES2A and  
VS0_THRES2B if the VS Measurement feature (see section VS  
Measurement) is activated.  
8
7
6
5
CRC_CALC  
RC  
RC  
RC  
RC  
0h  
0h  
0h  
0h  
0h = CRC calculation is running, not started, or was acknowledged  
after a READ command was executed on the INT_STAT register.  
1h = CRC calculation is finished.  
CRC calculation (see section Cyclic Redundancy Check (CRC)) can  
be triggered to make sure correct register values are programmed  
into the device. Once the calculation is completed, the CRC_CALC  
bit is flagged to logic 1 to indicate completion of the calculation, and  
the result can then be accessed from the CRC (offset = 3h) register.  
UV  
OV  
TW  
0h = No under-voltage condition occurred or cleared on the VS pin,  
or the event status got cleared after  
executed on the INT_STAT register.  
a READ command was  
1h = Under-voltage condition occurred or cleared on the VS pin.  
When the UV bit is flagged to logic 1, it indicates the Under-Voltage  
(UV) event has occurred. The bit is also flagged to logic 1 when the  
event clears. For more details about the UV operation, please refer  
to section VS under-voltage (UV) condition.  
0h = No over-voltage condition occurred or cleared on the VS pin, or  
the event status got cleared after a READ command was executed  
on the INT_STAT register.  
1h = Over-voltage condition occurred or cleared on the VS pin.  
When the OV bit is flagged to logic 1, it indicates the Over-Voltage  
(OV) event has occurred. The bit is also flagged to logic 1 when the  
event clears. For more details about the OV operation, please refer  
to section VS over-voltage (OV) condition.  
0h = No temperature warning event occurred or the event status got  
cleared after a READ command was executed on the INT_STAT  
register.  
1h = Temperature warning event occurred or cleared.  
When the TW bit is flagged to logic 1, it indicates the temperature  
warning event has occurred. The bit is also flagged to logic 1 when  
the event clears. For more details about the temperature warning  
operation, please refer to section Temperature Warning (TW)  
52  
版权 © 2017, Texas Instruments Incorporated  
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
13. INT_STAT Register Field Descriptions (接下页)  
Bit  
Field  
Type  
Reset  
Description  
4
TSD  
RC  
0h  
0h = No temperature shutdown event occurred or the event status  
got cleared after a READ command was executed on the INT_STAT  
register.  
1h = Temperature shutdown event occurred or cleared.  
When the TSD bit is flagged to logic 1, it indicates the temperature  
shutdown event has occurred. The bit is also flagged to logic 1 when  
the event clears. For more details about the temperature shutdown  
operation, please refer to section Temperature shutdown (TSD)  
3
2
SSC  
RC  
RC  
0h  
0h  
0h = No switch state change occurred or the status got cleared after  
a READ command was executed on the INT_STAT register.  
1h = Switch state change occurred.  
The Switch State Change (SSC) bit indicates whether input  
threshold crossing has occurred from switch inputs IN0 to IN23. This  
bit is also flagged to logic 1 after the first polling cycle is completed  
after device polling is triggered.  
PRTY_FAIL  
0h = No parity error occurred in the last received SI stream or the  
error status got cleared after a READ command was executed on  
the INT_STAT register.  
1h = Parity error occurred.  
When the PRTY_FAIL bit is flagged to logic 1, it indicates the last  
SPI Slave In (SI) transaction has a parity error. The device uses odd  
parity. If the total number of ones in the received data (including the  
parity bit) is an even number, the received data is discarded. The  
value of this register bit is mirrored to the PRTY_FLAG SPI status  
flag.  
1
SPI_FAIL  
RC  
0h  
0h = 32 clock pulse during a CS = low sequence was detected or the  
error status got cleared after a READ command was executed on  
the INT_STAT register.  
1h = SPI error occurred  
When the SPI_FAIL bit is flagged to logic 1, it indicates the last SPI  
Slave In (SI) transaction is invalid. To program a complete word, 32  
bits of information must be entered into the device. The SPI logic  
counts the number of bits clocked into the IC and enables data  
latching only if exactly 32 bits have been clocked in. In case the  
word length exceeds or does not meet the required length, the  
SPI_FAIL bit is flagged to logic 1, and the data received is  
considered invalid. The value of this register bit is mirrored to the  
SPI_FLAG SPI status flag. Note the SPI_FAIL bit is not flagged if  
SCLK is not present.  
0
POR  
RC  
1h  
0h = no Power-On-Reset (POR) event occurred or the status got  
cleared after a READ command was executed on the INT_STAT  
register.  
1h = Power-On-Reset (POR) event occurred.  
The Power-On-Reset (POR) interrupt bit indicates whether a reset  
event has occurred. A reset event sets the registers to their default  
values and re-initializes the device state machine. This bit is  
asserted after  
a successful power-on-reset, hardware reset, or  
software reset. The value of this register bit is mirrored to the POR  
SPI status flag.  
版权 © 2017, Texas Instruments Incorporated  
53  
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
8.6.3 CRC Register (Offset = 3h) [reset = FFFFh]  
CRC is shown in 37 and described in 14.  
Return to Summary Table.  
This register returns the CRC-16-CCCIT calculation result. The microcontroller can compare this value with its  
own calculated value to ensure correct register settings are programmed to the device.  
37. CRC Register  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
CRC  
R-FFFFh  
LEGEND: R = Read only  
14. CRC Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23-16  
RESERVED  
R
0h  
Reserved  
15-0  
CRC  
R
FFFFh  
CRC-16-CCITT calculation result: Bit1: LSB of CRC Bit16: MSB or  
CRC  
54  
版权 © 2017, Texas Instruments Incorporated  
 
 
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
8.6.4 IN_STAT_MISC Register (Offset = 4h) [reset = 0h]  
IN_STAT_MISC is shown in 38 and described in 15.  
Return to Summary Table.  
This register indicates current device status unrelated to switch input monitoring.  
38. IN_STAT_MISC Register  
23  
15  
7
22  
21  
13  
5
20  
19  
18  
17  
16  
RESERVED  
R-0h  
14  
12  
11  
10  
9
8
RESERVED  
R-0h  
ADC_D  
R-0h  
IN3_D  
R-0h  
IN2_D  
R-0h  
IN1_D  
R-0h  
IN0_D  
R-0h  
6
4
3
2
1
0
VS1_STAT  
VS0_STAT  
R-0h  
UV_STAT  
R-0h  
OV_STAT  
R-0h  
TW_STAT  
R-0h  
TSD_STAT  
R-0h  
R-0h  
15. IN_STAT_MISC Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23-13  
12  
RESERVED  
R
0h  
Reserved  
ADC_D  
R
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
0h  
0h = No error is identified from ADC self-diagnostic.  
1h = An error is identified from ADC self-diagnostic.  
11  
10  
9
IN3_D  
0h = Current sink on IN3 is operational.  
1h = Current sink on IN3 is abnormal.  
IN2_D  
0h = Current sink on IN2 is operational.  
1h = Current sink on IN2 is abnormal.  
IN1_D  
0h = Current source on IN1 is operational.  
1h = Current source on IN1 is abnormal.  
8
IN0_D  
0h = Current source on IN0 is operational.  
1h = Current source on IN0 is abnormal.  
7-6  
VS1_STAT  
0h = VS voltage is below threshold VS1_THRES2A.  
1h = VS voltage is below threshold VS1_THRES2B and equal to or  
above threshold VS1_THRES2A.  
2h = VS voltage is equal to or above threshold VS1_THRES2B.  
3h = N/A.  
5-4  
VS0_STAT  
R
0h  
0h = VS voltage is below threshold VS0_THRES2A.  
1h = VS voltage is below threshold VS0_THRES2B and equal to or  
above threshold VS0_THRES2A.  
2h = VS voltage is equal to or above threshold VS0_THRES2B.  
3h = N/A  
3
2
1
UV_STAT  
OV_STAT  
TW_STAT  
R
R
R
0h  
0h  
0h  
0h = VS voltage is above the under-voltage condition threshold.  
1h = VS voltage is below the under-voltage condition threshold.  
0h = VS voltage is below the over-voltage condition threshold.  
1h = VS voltage is above the over-voltage condition threshold.  
0h = Device junction temperature is below the temperature warning  
threshold TTW  
1h = Device junction temperature is above the temperature warning  
threshold TTW  
.
.
版权 © 2017, Texas Instruments Incorporated  
55  
 
 
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
15. IN_STAT_MISC Register Field Descriptions (接下页)  
Bit  
Field  
Type  
Reset  
Description  
0
TSD_STAT  
R
0h  
0h = Device junction temperature is below the temperature shutdown  
threshold TTSD  
1h Device junction temperature is above the temperature  
shutdown threshold TTSD  
.
=
.
56  
版权 © 2017, Texas Instruments Incorporated  
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
8.6.5 IN_STAT_COMP Register (Offset = 5h) [reset = 0h]  
IN_STAT_COMP is shown in 39 and described in 16.  
Return to Summary Table.  
This register indicates whether an input is below or above the comparator threshold when it is configured as  
comparator input mode.  
39. IN_STAT_COMP Register  
23  
22  
21  
20  
19  
18  
17  
16  
INC_23  
R-0h  
INC_22  
R-0h  
INC_21  
R-0h  
INC_20  
R-0h  
INC_19  
R-0h  
INC_18  
R-0h  
INC_17  
R-0h  
INC_16  
R-0h  
15  
14  
13  
12  
11  
10  
9
8
INC_15  
R-0h  
INC_14  
R-0h  
INC_13  
R-0h  
INC_12  
R-0h  
INC_11  
R-0h  
INC_10  
R-0h  
INC_9  
R-0h  
INC_8  
R-0h  
7
6
5
4
3
2
1
0
INC_7  
R-0h  
INC_6  
R-0h  
INC_5  
R-0h  
INC_4  
R-0h  
INC_3  
R-0h  
INC_2  
R-0h  
INC_1  
R-0h  
INC_0  
R-0h  
LEGEND: R = Read only  
16. IN_STAT_COMP Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23  
INC_23  
R
0h  
0h = Input IN23 is below the comparator threshold.  
1h = Input IN23 is above the comparator threshold.  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
INC_22  
INC_21  
INC_20  
INC_19  
INC_18  
INC_17  
INC_16  
INC_15  
INC_14  
INC_13  
INC_12  
INC_11  
INC_10  
R
R
R
R
R
R
R
R
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h = Input IN22 is below the comparator threshold.  
1h = Input IN22 is above the comparator threshold.  
0h = Input IN21 is below the comparator threshold.  
1h = Input IN21 is above the comparator threshold.  
0h = Input IN20 is below the comparator threshold.  
1h = Input IN20 is above the comparator threshold.  
0h = Input IN19 is below the comparator threshold.  
1h = Input IN19 is above the comparator threshold.  
0h = Input IN18 is below the comparator threshold.  
1h = Input IN18 is above the comparator threshold.  
0h = Input IN17 is below the comparator threshold.  
1h = Input IN17 is above the comparator threshold.  
0h = Input IN16 is below the comparator threshold.  
1h = Input IN16 is above the comparator threshold.  
0h = Input IN15 is below the comparator threshold.  
1h = Input IN15 is above the comparator threshold.  
0h = Input IN14 is below the comparator threshold.  
1h = Input IN14 is above the comparator threshold.  
0h = Input IN13 is below the comparator threshold.  
1h = Input IN13 is above the comparator threshold.  
0h = Input IN12 is below the comparator threshold.  
1h = Input IN12 is above the comparator threshold.  
0h = Input IN11 is below the comparator threshold.  
1h = Input IN11 is above the comparator threshold.  
0h = Input IN10 is below the comparator threshold.  
1h = Input IN10 is above the comparator threshold.  
版权 © 2017, Texas Instruments Incorporated  
57  
 
 
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
16. IN_STAT_COMP Register Field Descriptions (接下页)  
Bit  
Field  
Type  
Reset  
Description  
9
INC_9  
R
0h  
0h = Input IN9 is below the comparator threshold.  
1h = Input IN9 is above the comparator threshold.  
8
7
6
5
4
3
2
1
0
INC_8  
INC_7  
INC_6  
INC_5  
INC_4  
INC_3  
INC_2  
INC_1  
INC_0  
R
R
R
R
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h = Input IN8 is below the comparator threshold.  
1h = Input IN8 is above the comparator threshold.  
0h = Input IN7 is below the comparator threshold.  
1h = Input IN7 is above the comparator threshold.  
0h = Input IN6 is below the comparator threshold.  
1h = Input IN6 is above the comparator threshold.  
0h = Input IN5 is below the comparator threshold.  
1h = Input IN5 is above the comparator threshold.  
0h = Input IN4 is below the comparator threshold.  
1h = Input IN4 is above the comparator threshold.  
0h = Input IN3 is below the comparator threshold.  
1h = Input IN3 is above the comparator threshold.  
0h = Input IN2 is below the comparator threshold.  
1h = Input IN2 is above the comparator threshold.  
0h = Input IN1 is below the comparator threshold.  
1h = Input IN1 is above the comparator threshold.  
0h = Input IN0 is below the comparator threshold.  
1h = Input IN0 is above the comparator threshold.  
58  
版权 © 2017, Texas Instruments Incorporated  
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
8.6.6 IN_STAT_ADC0 Register (Offset = 6h) [reset = 0h]  
IN_STAT_ADC0 is shown in 40 and described in 17.  
Return to Summary Table.  
This register indicates whether an input is below or above the programmed threshold (for IN0-IN11) when it is  
configured as ADC input mode. For IN12-IN17, there are 2 thresholds and the register bits indicate whether the  
input is below, above or in-between the 2 thresholds.  
40. IN_STAT_ADC0 Register  
23  
15  
22  
14  
21  
13  
20  
12  
19  
18  
17  
16  
INA_17  
R-0h  
INA_16  
R-0h  
INA_15  
R-0h  
INA_14  
R-0h  
11  
10  
9
8
INA_13  
R-0h  
INA_12  
R-0h  
INA_11  
R-0h  
INA_10  
R-0h  
INA_9  
R-0h  
INA_8  
R-0h  
7
6
5
4
3
2
1
0
INA_7  
R-0h  
INA_6  
R-0h  
INA_5  
R-0h  
INA_4  
R-0h  
INA_3  
R-0h  
INA_2  
R-0h  
INA_1  
R-0h  
INA_0  
R-0h  
LEGEND: R = Read only  
17. IN_STAT_ADC0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23-22  
INA_17  
R
0h  
0h = Input IN17 is below threshold 2A.  
1h = Input IN17 is below threshold 2B and equal to or above  
threshold 2A.  
2h = Input IN17 is equal to or above threshold 2B.  
3h = N/A  
21-20  
19-18  
17-16  
15-14  
13-12  
INA_16  
INA_15  
INA_14  
INA_13  
INA_12  
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
0h = Input IN16 is below threshold 2A.  
1h = Input IN16 is below threshold 2B and equal to or above  
threshold 2A.  
2h = Input IN16 is equal to or above threshold 2B.  
3h = N/A  
0h = Input IN15 is below threshold 2A.  
1h = Input IN15 is below threshold 2B and equal to or above  
threshold 2A.  
2h = Input IN15 is equal to or above threshold 2B.  
3h = N/A  
0h = Input IN14 is below threshold 2A.  
1h = Input IN14 is below threshold 2B and equal to or above  
threshold 2A.  
2h = Input IN14 is equal to or above threshold 2B.  
3h = N/A  
0h = Input IN13 is below threshold 2A.  
1h = Input IN13 is below threshold 2B and equal to or above  
threshold 2A.  
2h = Input IN13 is equal to or above threshold 2B.  
3h = N/A  
0h = Input IN12 is below threshold 2A.  
1h = Input IN12 is below threshold 2B and equal to or above  
threshold 2A.  
2h = Input IN12 is equal to or above threshold 2B.  
3h = N/A  
版权 © 2017, Texas Instruments Incorporated  
59  
 
 
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
17. IN_STAT_ADC0 Register Field Descriptions (接下页)  
Bit  
Field  
Type  
Reset  
Description  
11  
INA_11  
R
0h  
0h = Input IN11 is below configured threshold.  
1h = Input IN11 is above configured threshold.  
10  
9
8
7
6
5
4
3
2
1
0
INA_10  
INA_9  
INA_8  
INA_7  
INA_6  
INA_5  
INA_4  
INA_3  
INA_2  
INA_1  
INA_0  
R
R
R
R
R
R
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h = Input IN10 is below configured threshold.  
1h = Input IN10 is above configured threshold.  
0h = Input IN9 is below configured threshold.  
1h = Input IN9 is above configured threshold.  
0h = Input IN8 is below configured threshold.  
1h = Input IN8 is above configured threshold.  
0h = Input IN7 is below configured threshold.  
1h = Input IN7 is above configured threshold.  
0h = Input IN6 is below configured threshold.  
1h = Input IN6 is above configured threshold.  
0h = Input IN5 is below configured threshold.  
1h = Input IN5 is above configured threshold.  
0h = Input IN4 is below configured threshold.  
1h = Input IN4 is above configured threshold.  
0h = Input IN3 is below configured threshold.  
1h = Input IN3 is above configured threshold.  
0h = Input IN2 is below configured threshold.  
1h = Input IN2 is above configured threshold.  
0h = Input IN1 is below configured threshold.  
1h = Input IN1 is above configured threshold.  
0h = Input IN0 is below configured threshold.  
1h = Input IN0 is above configured threshold.  
60  
版权 © 2017, Texas Instruments Incorporated  
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
8.6.7 IN_STAT_ADC1 Register (Offset = 7h) [reset = 0h]  
IN_STAT_ADC1 is shown in 41 and described in 18.  
Return to Summary Table.  
This register indicates whether an input is above or below the programmed thresholds 3A, 3B, and 3C when it is  
configured as ADC input mode. For IN23, there are 5 thresholds that can be programmed.  
41. IN_STAT_ADC1 Register  
23  
11  
22  
10  
21  
9
20  
8
19  
7
18  
17  
5
16  
4
15  
3
14  
2
13  
1
12  
RESERVED  
R-0h  
INA_23  
R-0h  
6
0
INA_23  
R-0h  
INA_22  
R-0h  
INA_21  
R-0h  
INA_20  
R-0h  
INA_19  
R-0h  
INA_18  
R-0h  
LEGEND: R = Read only  
18. IN_STAT_ADC1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23-13  
RESERVED  
R
0h  
Reserved  
12-10  
INA_23  
R
0h  
0h = Input IN23 is below threshold 3A.  
1h = Input IN23 is below threshold 3B and equal to or above  
threshold 3A.  
2h = Input IN23 is below threshold 3C and equal to or above  
threshold 3B.  
3h = Input IN23 is below threshold THRES8 and equal to or above  
threshold 3C.  
4h = Input IN23 is below threshold THRES9 and equal to or above  
threshold THRES8.  
5h = Input IN23 is equal to or above threshold THRES9.  
9-8  
7-6  
5-4  
3-2  
INA_22  
INA_21  
INA_20  
INA_19  
R
R
R
R
0h  
0h  
0h  
0h  
0h = Input IN22 is below threshold 3A.  
1h = Input IN22 is below threshold 3B and equal to or above  
threshold 3A.  
2h = Input IN22 is below threshold 3C and equal to or above  
threshold 3B.  
3h = Input IN22 is equal to or above threshold 3C.  
0h = Input IN21 is below threshold 3A.  
1h = Input IN21 is below threshold 3B and equal to or above  
threshold 3A.  
2h = Input IN21 is below threshold 3C and equal to or above  
threshold 3B.  
3h = Input IN21 is equal to or above threshold 3C.  
0h = Input IN20 is below threshold 3A.  
1h = Input IN20 is below threshold 3B and equal to or above  
threshold 3A.  
2h = Input IN20 is below threshold 3C and equal to or above  
threshold 3B.  
3h = Input IN20 is equal to or above threshold 3C.  
0h = Input IN19 is below threshold 3A.  
1h = Input IN19 is below threshold 3B and equal to or above  
threshold 3A.  
2h = Input IN19 is below threshold 3C and equal to or above  
threshold 3B.  
3h = Input IN19 is equal to or above threshold 3C.  
版权 © 2017, Texas Instruments Incorporated  
61  
 
 
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
18. IN_STAT_ADC1 Register Field Descriptions (接下页)  
Bit  
Field  
Type  
Reset  
Description  
1-0  
INA_18  
R
0h  
0h = Input is IN18 is below threshold 3A.  
1h = Input is IN18 is below threshold 3B and equal to or above  
threshold 3A.  
2h = Input is IN18 is below threshold 3C and equal to or above  
threshold 3B.  
3h = Input is IN18 is equal to or above threshold 3C.  
62  
版权 © 2017, Texas Instruments Incorporated  
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
8.6.8 IN_STAT_MATRIX0 Register (Offset = 8h) [reset = 0h]  
IN_STAT_MATRIX0 is shown in 42 and described in 19.  
Return to Summary Table.  
This register indicates whether an input is below or above the programmed threshold in the matrix polling mode  
for switches connected to IN10-IN13.  
42. IN_STAT_MATRIX0 Register  
23  
22  
21  
20  
19  
18  
17  
16  
INMAT_13_IN9 INMAT_13_IN8 INMAT_13_IN7 INMAT_13_IN6 INMAT_13_IN5 INMAT_13_IN4 INMAT_12_IN9 INMAT_12_IN8  
R-0h  
15  
R-0h  
14  
R-0h  
13  
R-0h  
12  
R-0h  
11  
R-0h  
10  
R-0h  
9
R-0h  
8
INMAT_12_IN7 INMAT_12_IN6 INMAT_12_IN5 INMAT_12_IN4 INMAT_11_IN9 INMAT_11_IN8 INMAT_11_IN7 INMAT_11_IN6  
R-0h  
7
R-0h  
6
R-0h  
5
R-0h  
4
R-0h  
3
R-0h  
2
R-0h  
1
R-0h  
0
INMAT_11_IN5 INMAT_11_IN4 INMAT_10_IN9 INMAT_10_IN8 INMAT_10_IN7 INMAT_10_IN6 INMAT_10_IN5 INMAT_10_IN4  
R-0h R-0h R-0h R-0h R-0h R-0h R-0h R-0h  
LEGEND: R = Read only  
19. IN_STAT_MATRIX0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23  
INMAT_13_IN9  
R
0h  
0h = Input IN13 is below threshold while IN9 pulled to GND.  
1h = Input IN13 is above threshold while IN9 pulled to GND.  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
INMAT_13_IN8  
INMAT_13_IN7  
INMAT_13_IN6  
INMAT_13_IN5  
INMAT_13_IN4  
INMAT_12_IN9  
INMAT_12_IN8  
INMAT_12_IN7  
INMAT_12_IN6  
INMAT_12_IN5  
INMAT_12_IN4  
INMAT_11_IN9  
INMAT_11_IN8  
R
R
R
R
R
R
R
R
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h = Input IN13 is below threshold while IN8 pulled to GND.  
1h = Input IN13 is above threshold while IN8 pulled to GND.  
0h = Input IN13 is below threshold while IN7 pulled to GND.  
1h = Input IN13 is above threshold while IN7 pulled to GND.  
0h = Input IN13 is below threshold while IN6 pulled to GND.  
1h = Input IN13 is above threshold while IN6 pulled to GND.  
0h = Input IN13 is below threshold while IN5 pulled to GND.  
1h = Input IN13 is above threshold while IN5 pulled to GND.  
0h = Input IN13 is below threshold while IN4 pulled to GND.  
1h = Input IN13 is above threshold while IN4 pulled to GND.  
0h = Input IN12 is below threshold while IN9 pulled to GND.  
1h = Input IN12 is above threshold while IN9 pulled to GND.  
0h = Input IN12 is below threshold while IN8 pulled to GND.  
1h = Input IN12 is above threshold while IN8 pulled to GND.  
0h = Input IN12 is below threshold while IN7 pulled to GND.  
1h = Input IN12 is above threshold while IN7 pulled to GND.  
0h = Input IN12 is below threshold while IN6 pulled to GND.  
1h = Input IN12 is above threshold while IN6 pulled to GND.  
0h = Input IN12 is below threshold while IN5 pulled to GND.  
1h = Input IN12 is above threshold while IN5 pulled to GND.  
0h = Input IN12 is below threshold while IN4 pulled to GND.  
1h = Input IN12 is above threshold while IN4 pulled to GND.  
0h = Input IN11 is below threshold while IN9 pulled to GND.  
1h = Input IN11 is above threshold while IN9 pulled to GND.  
0h = Input IN11 is below threshold while IN8 pulled to GND.  
1h = Input IN11 is above threshold while IN8 pulled to GND.  
版权 © 2017, Texas Instruments Incorporated  
63  
 
 
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
19. IN_STAT_MATRIX0 Register Field Descriptions (接下页)  
Bit  
Field  
Type  
Reset  
Description  
9
INMAT_11_IN7  
R
0h  
0h = Input IN11 is below threshold while IN7 pulled to GND.  
1h = Input IN11 is above threshold while IN7 pulled to GND.  
8
7
6
5
4
3
2
1
0
INMAT_11_IN6  
INMAT_11_IN5  
INMAT_11_IN4  
INMAT_10_IN9  
INMAT_10_IN8  
INMAT_10_IN7  
INMAT_10_IN6  
INMAT_10_IN5  
INMAT_10_IN4  
R
R
R
R
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h = Input IN11 is below threshold while IN6 pulled to GND.  
1h = Input IN11 is above threshold while IN6 pulled to GND.  
0h = Input IN11 is below threshold while IN5 pulled to GND.  
1h = Input IN11 is above threshold while IN5 pulled to GND.  
0h = Input IN11 is below threshold while IN4 pulled to GND.  
1h = Input IN11 is above threshold while IN4 pulled to GND.  
0h = Input IN10 is below threshold while IN9 pulled to GND.  
1h = Input IN10 is above threshold while IN9 pulled to GND.  
0h = Input IN10 is below threshold while IN8 pulled to GND.  
1h = Input IN10 is above threshold while IN8 pulled to GND.  
0h = Input IN10 is below threshold while IN7 pulled to GND.  
1h = Input IN10 is above threshold while IN7 pulled to GND.  
0h = Input IN10 is below threshold while IN6 pulled to GND.  
1h = Input IN10 is above threshold while IN6 pulled to GND.  
0h = Input IN10 is below threshold while IN5 pulled to GND.  
1h = Input IN10 is above threshold while IN5 pulled to GND.  
0h = Input IN10 is below threshold while IN4 pulled to GND.  
1h = Input IN10 is above threshold while IN4 pulled to GND.  
64  
版权 © 2017, Texas Instruments Incorporated  
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
8.6.9 IN_STAT_MATRIX1 Register (Offset = 9h) [reset = 0h]  
IN_STAT_MATRIX1 is shown in 43 and described in 20.  
Return to Summary Table.  
This register indicates whether an input is below or above the programmed threshold in the matrix polling mode  
for switches connected to IN14-IN15. This register also indicates the status of IN0-IN11 with respect to. the  
common threshold THRES_COM.  
43. IN_STAT_MATRIX1 Register  
23  
22  
21  
20  
19  
18  
17  
16  
IN11_COM  
R-0h  
IN10_COM  
R-0h  
IN9_COM  
R-0h  
IN8_COM  
R-0h  
IN7_COM  
R-0h  
IN6_COM  
R-0h  
IN5_COM  
R-0h  
IN4_COM  
R-0h  
15  
14  
13  
12  
11  
10  
9
8
IN3_COM  
R-0h  
IN2_COM  
R-0h  
IN1_COM  
R-0h  
IN0_COM  
R-0h  
INMAT_15_IN9 INMAT_15_IN8 INMAT_15_IN7 INMAT_15_IN6  
R-0h  
3
R-0h  
2
R-0h  
1
R-0h  
0
7
6
5
4
INMAT_15_IN5 INMAT_15_IN4 INMAT_14_IN9 INMAT_14_IN8 INMAT_14_IN7 INMAT_14_IN6 INMAT_14_IN5 INMAT_14_IN4  
R-0h R-0h R-0h R-0h R-0h R-0h R-0h R-0h  
LEGEND: R = Read only  
20. IN_STAT_MATRIX1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23  
IN11_COM  
R
0h  
0h = Input IN11 below threshold THRES_COM  
1h = Input IN11 equal to or above threshold THRES_COM  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
IN10_COM  
IN9_COM  
IN8_COM  
IN7_COM  
IN6_COM  
IN5_COM  
IN4_COM  
IN3_COM  
IN2_COM  
IN1_COM  
IN0_COM  
INMAT_15_IN9  
R
R
R
R
R
R
R
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h = Input IN10 below threshold THRES_COM  
1h = Input IN10 equal to or above threshold THRES_COM  
0h = Input IN9 below threshold THRES_COM  
1h = Input IN9 equal to or above threshold THRES_COM  
0h = Input IN8 below threshold THRES_COM  
1h = Input IN8 equal to or above threshold THRES_COM  
0h = Input IN7 below threshold THRES_COM  
1h = Input IN7 equal to or above threshold THRES_COM  
0h = Input IN6 below threshold THRES_COM  
1h = Input IN6 equal to or above threshold THRES_COM  
0h = Input IN5 below threshold THRES_COM  
1h = Input IN5 equal to or above threshold THRES_COM  
0h = Input IN4 below threshold THRES_COM  
1h = Input IN4 equal to or above threshold THRES_COM  
0h = Input IN3 below threshold THRES_COM  
1h = Input IN3 equal to or above threshold THRES_COM  
0h = Input IN2 below threshold THRES_COM  
1h = Input IN2 equal to or above threshold THRES_COM  
0h = Input IN1 below threshold THRES_COM  
1h = Input IN1 equal to or above threshold THRES_COM  
0h = Input IN0 below threshold THRES_COM  
1h = Input IN0 equal to or above threshold THRES_COM  
0h = Input IN15 below threshold while IN9 pulled to GND  
1h = Input IN15 above threshold while IN9 pulled to GND  
版权 © 2017, Texas Instruments Incorporated  
65  
 
 
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
20. IN_STAT_MATRIX1 Register Field Descriptions (接下页)  
Bit  
Field  
Type  
Reset  
Description  
10  
INMAT_15_IN8  
R
0h  
0h = Input IN15 below threshold while IN8 pulled to GND  
1h = Input IN15 above threshold while IN8 pulled to GND  
9
8
7
6
5
4
3
2
1
0
INMAT_15_IN7  
INMAT_15_IN6  
INMAT_15_IN5  
INMAT_15_IN4  
INMAT_14_IN9  
INMAT_14_IN8  
INMAT_14_IN7  
INMAT_14_IN6  
INMAT_14_IN5  
INMAT_14_IN4  
R
R
R
R
R
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h = Input IN15 below threshold while IN7 pulled to GND  
1h = Input IN15 above threshold while IN7 pulled to GND  
0h = Input IN15 below threshold while IN6 pulled to GND  
1h = Input IN15 above threshold while IN6 pulled to GND  
0h = Input IN15 below threshold while IN5 pulled to GND  
1h = Input IN15 above threshold while IN5 pulled to GND  
0h = Input IN15 below threshold while IN4 pulled to GND  
1h = Input IN15 above threshold while IN4 pulled to GND  
0h = Input IN14 below threshold while IN9 pulled to GND  
1h = Input IN14 above threshold while IN9 pulled to GND  
0h = Input IN14 below threshold while IN8 pulled to GND  
1h = Input IN14 above threshold while IN8 pulled to GND  
0h = Input IN14 below threshold while IN7 pulled to GND  
1h = Input IN14 above threshold while IN7 pulled to GND  
0h = Input IN14 below threshold while IN6 pulled to GND  
1h = Input IN14 above threshold while IN6 pulled to GND  
0h = Input IN14 below threshold while IN5 pulled to GND  
1h = Input IN14 above threshold while IN5 pulled to GND  
0h = Input IN14 below threshold while IN4 pulled to GND  
1h = Input IN14 above threshold while IN4 pulled to GND  
66  
版权 © 2017, Texas Instruments Incorporated  
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
8.6.10 ANA_STAT0 Register (Offset = Ah) [reset = 0h]  
ANA_STAT0 is shown in 44 and described in 21.  
Return to Summary Table.  
44. ANA_STAT0 Register  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
IN1_ANA  
R-0h  
IN0_ANA  
R-0h  
LEGEND: R = Read only  
21. ANA_STAT0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23-20  
RESERVED  
R
0h  
Reserved  
19-10  
IN1_ANA  
R
R
0h  
0h  
10-bits value of IN1  
Bit 10: LSB  
Bit 19: MSB  
9-0  
IN0_ANA  
10-bits value of IN0  
Bit 0: LSB  
Bit 9: MSB  
版权 © 2017, Texas Instruments Incorporated  
67  
 
 
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
8.6.11 ANA_STAT1 Register (Offset = Bh) [reset = 0h]  
ANA_STAT1 is shown in 45 and described in 22.  
Return to Summary Table.  
45. ANA_STAT1 Register  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
IN5_ANA  
R-0h  
IN4_ANA  
R-0h  
LEGEND: R = Read only  
22. ANA_STAT1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23-20  
RESERVED  
R
0h  
Reserved  
19-10  
IN3_ANA  
R
R
0h  
0h  
10-bits value of IN3  
Bit 10: LSB  
Bit 19: MSB  
9-0  
IN2_ANA  
10-bits value of IN2  
Bit 0: LSB  
Bit 9: MSB  
68  
版权 © 2017, Texas Instruments Incorporated  
 
 
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
8.6.12 ANA_STAT2 Register (Offset = Ch) [reset = 0h]  
ANA_STAT2 is shown in 46 and described in 23.  
Return to Summary Table.  
46. ANA_STAT2 Register  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
IN5_ANA  
R-0h  
IN4_ANA  
R-0h  
LEGEND: R = Read only  
23. ANA_STAT2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23-20  
RESERVED  
R
0h  
Reserved  
19-10  
IN5_ANA  
R
R
0h  
0h  
10-bits value of IN5  
Bit 10: LSB  
Bit 19: MSB  
9-0  
IN4_ANA  
10-bits value of IN4  
Bit 0: LSB  
Bit 9: MSB  
版权 © 2017, Texas Instruments Incorporated  
69  
 
 
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
8.6.13 ANA_STAT3 Register (Offset = Dh) [reset = 0h]  
ANA_STAT3 is shown in 47 and described in 24.  
Return to Summary Table.  
47. ANA_STAT3 Register  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
IN7_ANA  
R-0h  
IN6_ANA  
R-0h  
LEGEND: R = Read only  
24. ANA_STAT3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23-20  
RESERVED  
R
0h  
Reserved  
19-10  
IN7_ANA  
R
R
0h  
0h  
10-bits value of IN7  
Bit 10: LSB  
Bit 19: MSB  
9-0  
IN6_ANA  
10-bits value of IN6  
Bit 0: LSB  
Bit 9: MSB  
70  
版权 © 2017, Texas Instruments Incorporated  
 
 
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
8.6.14 ANA_STAT4 Register (Offset = Eh) [reset = 0h]  
ANA_STAT4 is shown in 48 and described in 25.  
Return to Summary Table.  
48. ANA_STAT4 Register  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
IN9_ANA  
R-0h  
IN8_ANA  
R-0h  
LEGEND: R = Read only  
25. ANA_STAT4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23-20  
RESERVED  
R
0h  
Reserved  
19-10  
IN9_ANA  
R
R
0h  
0h  
10-bits value of IN9  
Bit 10: LSB  
Bit 19: MSB  
9-0  
IN8_ANA  
10-bits value of IN8  
Bit 0: LSB  
Bit 9: MSB  
版权 © 2017, Texas Instruments Incorporated  
71  
 
 
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
8.6.15 ANA_STAT5 Register (Offset = Fh) [reset = 0h]  
ANA_STAT5 is shown in 49 and described in 26.  
Return to Summary Table.  
49. ANA_STAT5 Register  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
IN11_ANA  
R-0h  
IN10_ANA  
R-0h  
LEGEND: R = Read only  
26. ANA_STAT5 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23-20  
RESERVED  
R
0h  
Reserved  
19-10  
IN11_ANA  
R
R
0h  
0h  
10-bits value of IN11  
Bit 10: LSB  
Bit 19: MSB  
9-0  
IN10_ANA  
10-bits value of IN10  
Bit 0: LSB  
Bit 9: MSB  
72  
版权 © 2017, Texas Instruments Incorporated  
 
 
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
8.6.16 ANA_STAT6 Register (Offset = 10h) [reset = 0h]  
ANA_STAT6 is shown in 50 and described in 27.  
Return to Summary Table.  
50. ANA_STAT6 Register  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
IN13_ANA  
R-0h  
IN12_ANA  
R-0h  
LEGEND: R = Read only  
27. ANA_STAT6 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23-20  
RESERVED  
R
0h  
Reserved  
19-10  
IN13_ANA  
R
R
0h  
0h  
10-bits value of IN13  
Bit 10: LSB  
Bit 19: MSB  
9-0  
IN12_ANA  
10-bits value of IN12  
Bit 0: LSB  
Bit 9: MSB  
版权 © 2017, Texas Instruments Incorporated  
73  
 
 
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
8.6.17 ANA_STAT7 Register (Offset = 11h) [reset = 0h]  
ANA_STAT7 is shown in 51 and described in 28.  
Return to Summary Table.  
51. ANA_STAT7 Register  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
IN15_ANA  
R-0h  
IN14_ANA  
R-0h  
LEGEND: R = Read only  
28. ANA_STAT7 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23-20  
RESERVED  
R
0h  
Reserved  
19-10  
IN15_ANA  
R
R
0h  
0h  
10-bits value of IN15  
Bit 10: LSB  
Bit 19: MSB  
9-0  
IN14_ANA  
10-bits value of IN14  
Bit 0: LSB  
Bit 9: MSB  
74  
版权 © 2017, Texas Instruments Incorporated  
 
 
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
8.6.18 ANA_STAT8 Register (Offset = 12h) [reset = 0h]  
ANA_STAT8 is shown in 52 and described in 29.  
Return to Summary Table.  
52. ANA_STAT8 Register  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
IN17_ANA  
R-0h  
IN16_ANA  
R-0h  
LEGEND: R = Read only  
29. ANA_STAT8 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23-20  
RESERVED  
R
0h  
Reserved  
19-10  
IN17_ANA  
R
R
0h  
0h  
10-bits value of IN17  
Bit 10: LSB  
Bit 19: MSB  
9-0  
IN16_ANA  
10-bits value of IN16  
Bit 0: LSB  
Bit 9: MSB  
版权 © 2017, Texas Instruments Incorporated  
75  
 
 
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
8.6.19 ANA_STAT9 Register (Offset = 13h) [reset = 0h]  
ANA_STAT9 is shown in 53 and described in 30.  
Return to Summary Table.  
53. ANA_STAT9 Register  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
IN19_ANA  
R-0h  
IN18_ANA  
R-0h  
LEGEND: R = Read only  
30. ANA_STAT9 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23-20  
RESERVED  
R
0h  
Reserved  
19-10  
IN19_ANA  
R
R
0h  
0h  
10-bits value of IN19  
Bit 10: LSB  
Bit 19: MSB  
9-0  
IN18_ANA  
10-bits value of IN18  
Bit 0: LSB  
Bit 9: MSB  
76  
版权 © 2017, Texas Instruments Incorporated  
 
 
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
8.6.20 ANA_STAT10 Register (Offset = 14h) [reset = 0h]  
ANA_STAT10 is shown in 54 and described in 31.  
Return to Summary Table.  
54. ANA_STAT10 Register  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
IN21_ANA  
R-0h  
IN20_ANA  
R-0h  
LEGEND: R = Read only  
31. ANA_STAT10 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23-20  
RESERVED  
R
0h  
Reserved  
19-10  
IN21_ANA  
R
R
0h  
0h  
10-bits value of IN21  
Bit 10: LSB  
Bit 19: MSB  
9-0  
IN20_ANA  
10-bits value of IN20  
Bit 0: LSB  
Bit 9: MSB  
版权 © 2017, Texas Instruments Incorporated  
77  
 
 
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
8.6.21 ANA_STAT11 Register (Offset = 15h) [reset = 0h]  
ANA_STAT11 is shown in 55 and described in 32.  
Return to Summary Table.  
55. ANA_STAT11 Register  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
IN23_ANA  
R-0h  
IN22_ANA  
R-0h  
LEGEND: R = Read only  
32. ANA_STAT11 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23-20  
RESERVED  
R
0h  
Reserved  
19-10  
IN23_ANA  
R
R
0h  
0h  
10-bits value of IN23  
Bit 10: LSB  
Bit 19: MSB  
9-0  
IN22_ANA  
10-bits value of IN22  
Bit 0: LSB  
Bit 9: MSB  
78  
版权 © 2017, Texas Instruments Incorporated  
 
 
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
8.6.22 ANA_STAT12 Register (Offset = 16h) [reset = 0h]  
ANA_STAT12 is shown in 56 and described in 33.  
Return to Summary Table.  
56. ANA_STAT12 Register  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
ADC_SELF_ANA  
R-0h  
VS_ANA  
R-0h  
LEGEND: R = Read only  
33. ANA_STAT12 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23-20  
RESERVED  
R
0h  
Reserved  
19-10  
ADC_SELF_ANA  
R
R
0h  
0h  
10-bits value of the ADC self-diagnosis  
Bit 10: LSB  
Bit 19: MSB  
9-0  
VS_ANA  
10-bits value of VS measurement  
Bit 0: LSB  
Bit 9: MSB  
版权 © 2017, Texas Instruments Incorporated  
79  
 
 
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
8.6.23 CONFIG Register (Offset = 1Ah) [reset = 0h]  
CONFIG is shown in 57 and described in 34.  
Return to Summary Table.  
57. CONFIG Register  
23  
22  
21  
20  
19  
18  
17  
16  
VS_RATIO  
ADC_DIAG_T WET_D_IN3_E WET_D_IN2_E WET_D_IN1_E WET_D_IN0_E VS_MEAS_EN TW_CUR_DIS_  
N
N
N
N
CSI  
R/W-0h  
15  
R/W-0h  
14  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
13  
12  
11  
10  
9
8
DET_FILTER  
TW_CUR_DIS_ INT_CONFIG  
CSO  
TRIGGER  
POLL_EN  
CRC_T  
POLL_ACT_TI  
ME  
R/W-0h  
R/W-0h  
5
R/W-0h  
4
R/W-0h  
3
R/W-0h  
2
R/W-0h  
1
R/W-0h  
7
6
0
POLL_ACT_TIME  
R/W-0h  
POLL_TIME  
R/W-0h  
RESET  
R/W-0h  
LEGEND: R/W = Read/Write  
34. CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23  
VS_RATIO  
R/W  
0h  
0h = Use voltage divider factor of 3 for the VS measurement  
1h = Use voltage divider factor of 10 for the VS measurement  
22  
ADC_DIAG_T  
R/W  
0h  
For detailed descriptions for the ADC self-diagnostic feature, refer to  
section ADC Self-Diagnostic  
0h = Disable ADC self-diagnostic feature  
1h = Enable ADC self-diagnostic feature  
21  
20  
19  
18  
17  
WET_D_IN3_EN  
WET_D_IN2_EN  
WET_D_IN1_EN  
WET_D_IN0_EN  
VS_MEAS_EN  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h = Disable wetting current diagnostic for input IN3  
1h = Enable wetting current diagnostic for input IN3  
0h = Disable wetting current diagnostic for input IN2  
1h = Enable wetting current diagnostic for input IN2  
0h = Disable wetting current diagnostic for input IN1  
1h = Enable wetting current diagnostic for input IN1  
0h = Disable wetting current diagnostic for input IN0  
1h = Enable wetting current diagnostic for input IN0  
For detailed descriptions for the VS measurement, refer to section  
VS Measurement.  
0h = Disable VS measurement at the end of every polling cycle  
1h = Enable VS measurement at the end of every polling cycle  
16  
TW_CUR_DIS_CSI  
DET_FILTER  
R/W  
R/W  
0h  
0h  
0h = Enable wetting current reduction (to 2 mA) for 10mA and 15mA  
settings upon TW event for all inputs enabled with CSI.  
1h = Disable wetting current reduction (to 2 mA) for 10mA and 15mA  
settings upon TW event for all inputs enabled with CSI.  
15-14  
For detailed descriptions for the detection filter, refer to section  
Detection Filter.  
0h = every sample is valid and taken for threshold evaluation  
1h = 2 consecutive and equal samples required to be valid data  
2h = 3 consecutive and equal samples required to be valid data  
3h = 4 consecutive and equal samples required to be valid data  
13  
TW_CUR_DIS_CSO  
R/W  
0h  
0h = Enable wetting current reduction (to 2mA) for 10mA and 15mA  
settings upon TW event for all inputs enabled with CSO.  
1h = Disable wetting current reduction (to 2mA) for 10mA and 15mA  
settings upon TW event for all inputs enabled with CSO.  
80  
版权 © 2017, Texas Instruments Incorporated  
 
 
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
34. CONFIG Register Field Descriptions (接下页)  
Bit  
Field  
Type  
Reset  
Description  
12  
INT_CONFIG  
R/W  
0h  
For detailed descriptions for the INT pin assertion scheme, refer to  
section Interrupt Generation and /INT Assertion.  
0h = INT pin assertion scheme set to static  
1h = INT pin assertion scheme set to dynamic  
11  
TRIGGER  
R/W  
0h  
When the TRIGGER bit is set to logic 1, normal device operation  
(wetting current activation and polling) starts. To stop device  
operation and keep the device in an idle state, de-assert this bit to 0.  
After device normal operation is triggered, if at any time the device  
setting needs to be re-configured, the microcontroller is required to  
first set the bit TRIGGER to logic 0 to stop device operation. Once  
the re-configuration is completed, the microcontroller can set the  
TRIGGER bit back to logic 1 to re-start device operation. If re-  
configuration is done on the fly without first stopping the device  
operation, false switch status could be reported and accidental  
interrupt might be issued. The following register bits are the  
exception and can be configured when TRIGGER bit is set to logic 1:  
TRIGGER (bit 11 of the CONFIG register)  
CRC_T (bit 9 of the CONFIG register)  
RESEST (bit 0 of the CONFIG register)  
The CCP_CFG1 register  
0h = Stop TIC12400 from normal operation.  
1h = Trigger TIC12400 normal operation  
10  
9
POLL_EN  
CRC_T  
R/W  
R/W  
0h  
0h  
0h = Polling disabled. Device operates in continuous mode.  
1h = Polling enabled and the device operates in one of the polling  
modes.  
Set this bit to 1 to trigger a CRC calculation on all the configuration  
register bits. Once triggered, it is strongly recommended the SPI  
master does not change the content of the configuration registers  
until the CRC calculation is completed to avoid erroneous CRC  
calculation result. The TIC12400 sets the CRC_CALC interrupt bit  
and asserts the INT pin low when the CRC calculation is completed.  
The calculated result will be available in the CRC register. This bit  
self-clears back to 0 after CRC calculation is executed.  
0h = no CRC calculation triggered  
1h = trigger CRC calculation  
8-5  
POLL_ACT_TIME  
R/W  
0h  
0h = 64μs  
1h = 128μs  
2h = 192μs  
3h = 256μs  
4h = 320μs  
5h = 384μs  
6h = 448μs  
7h = 512μs  
8h = 640μs  
9h = 768μs  
Ah = 896μs  
Bh = 1024μs  
Ch = 2048μs  
Dh-15h = 512μs (most frequently-used setting)  
版权 © 2017, Texas Instruments Incorporated  
81  
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
34. CONFIG Register Field Descriptions (接下页)  
Bit  
Field  
Type  
Reset  
Description  
4-1  
POLL_TIME  
R/W  
0h  
0h = 2ms  
1h = 4ms  
2h = 8ms  
3h = 16ms  
4h = 32ms  
5h = 48ms  
6h = 64ms  
7h = 128ms  
8h = 256ms  
9h = 512ms  
Ah = 1024ms  
Bh = 2048ms  
Ch = 4096ms  
Dh-15h = 8ms (most frequently-used setting)  
0
RESET  
R/W  
0h  
0h = No reset  
1h = Trigger software reset of the device.  
82  
版权 © 2017, Texas Instruments Incorporated  
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
8.6.24 IN_EN Register (Offset = 1Bh) [reset = 0h]  
IN_EN is shown in 58 and described in 35.  
Return to Summary Table.  
58. IN_EN Register  
23  
22  
21  
20  
19  
18  
17  
16  
IN_EN_23  
R/W-0h  
IN_EN_22  
R/W-0h  
IN_EN_21  
R/W-0h  
IN_EN_20  
R/W-0h  
IN_EN_19  
R/W-0h  
IN_EN_18  
R/W-0h  
IN_EN_17  
R/W-0h  
IN_EN_16  
R/W-0h  
15  
14  
13  
12  
11  
10  
9
8
IN_EN_15  
R/W-0h  
IN_EN_14  
R/W-0h  
IN_EN_13  
R/W-0h  
IN_EN_12  
R/W-0h  
IN_EN_11  
R/W-0h  
IN_EN_10  
R/W-0h  
IN_EN_9  
R/W-0h  
IN_EN_8  
R/W-0h  
7
6
5
4
3
2
1
0
IN_EN_7  
R/W-0h  
IN_EN_6  
R/W-0h  
IN_EN_5  
R/W-0h  
IN_EN_4  
R/W-0h  
IN_EN_3  
R/W-0h  
IN_EN_2  
R/W-0h  
IN_EN_1  
R/W-0h  
IN_EN_0  
R/W-0h  
LEGEND: R/W = Read/Write  
35. IN_EN Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23  
IN_EN_23  
R/W  
0h  
0h = Input channel IN23 disabled. Polling sequence skips this  
channel  
1h = Input channel IN23 enabled.  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
IN_EN_22  
IN_EN_21  
IN_EN_20  
IN_EN_19  
IN_EN_18  
IN_EN_17  
IN_EN_16  
IN_EN_15  
IN_EN_14  
IN_EN_13  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h = Input channel IN22 disabled. Polling sequence skips this  
channel  
1h = Input channel IN22 enabled.  
0h = Input channel IN21 disabled. Polling sequence skips this  
channel  
1h = Input channel IN21 enabled.  
0h = Input channel IN20 disabled. Polling sequence skips this  
channel  
1h = Input channel IN20 enabled.  
0h = Input channel IN19 disabled. Polling sequence skips this  
channel  
1h = Input channel IN19 enabled.  
0h = Input channel IN18 disabled. Polling sequence skips this  
channel  
1h = Input channel IN18 enabled.  
0h = Input channel IN17 disabled. Polling sequence skips this  
channel  
1h = Input channel IN17 enabled.  
0h = Input channel IN16 disabled. Polling sequence skips this  
channel  
1h = Input channel IN16 enabled.  
0h = Input channel IN15 disabled. Polling sequence skips this  
channel  
1h = Input channel IN15 enabled.  
0h = Input channel IN14 disabled. Polling sequence skips this  
channel  
1h = Input channel IN14 enabled.  
0h = Input channel IN13 disabled. Polling sequence skips this  
channel  
1h = Input channel IN13 enabled.  
版权 © 2017, Texas Instruments Incorporated  
83  
 
 
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
35. IN_EN Register Field Descriptions (接下页)  
Bit  
Field  
Type  
Reset  
Description  
12  
IN_EN_12  
R/W  
0h  
0h = Input channel IN12 disabled. Polling sequence skips this  
channel  
1h = Input channel IN12 enabled.  
11  
10  
IN_EN_11  
IN_EN_10  
R/W  
R/W  
0h  
0h  
0h = Input channel IN11 disabled. Polling sequence skips this  
channel  
1h = Input channel IN11 enabled.  
0h = Input channel IN10 disabled. Polling sequence skips this  
channel  
1h = Input channel IN10 enabled.  
9
8
7
6
5
4
3
2
1
0
IN_EN_9  
IN_EN_8  
IN_EN_7  
IN_EN_6  
IN_EN_5  
IN_EN_4  
IN_EN_3  
IN_EN_2  
IN_EN_1  
IN_EN_0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h = Input channel IN9 disabled. Polling sequence skips this channel  
1h = Input channel IN9 enabled.  
0h = Input channel IN8 disabled. Polling sequence skips this channel  
1h = Input channel IN8 enabled.  
0h = Input channel IN7 disabled. Polling sequence skips this channel  
1h = Input channel IN7 enabled.  
0h = Input channel IN6 disabled. Polling sequence skips this channel  
1h = Input channel IN6 enabled.  
0h = Input channel IN5 disabled. Polling sequence skips this channel  
1h = Input channel IN5 enabled.  
0h = Input channel IN4 disabled. Polling sequence skips this channel  
1h = Input channel IN4 enabled.  
0h = Input channel IN3 disabled. Polling sequence skips this channel  
1h = Input channel IN3 enabled.  
0h = Input channel IN2 disabled. Polling sequence skips this channel  
1h = Input channel IN2 enabled.  
0h = Input channel IN1 disabled. Polling sequence skips this channel  
1h = Input channel IN1 enabled.  
0h = Input channel IN0 disabled. Polling sequence skips this channel  
1h = Input channel IN0 enabled.  
84  
版权 © 2017, Texas Instruments Incorporated  
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
8.6.25 CS_SELECT Register (Offset = 1Ch) [reset = 0h]  
CS_SELECT is shown in 59 and described in 36.  
Return to Summary Table.  
59. CS_SELECT Register  
23  
22  
21  
20  
19  
18  
RESERVED  
R-0h  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
CS_IN9  
R/W-0h  
CS_IN8  
R/W-0h  
CS_IN7  
R/W-0h  
CS_IN6  
R/W-0h  
CS_IN5  
R/W-0h  
CS_IN4  
R/W-0h  
CS_IN3  
R/W-0h  
CS_IN2  
R/W-0h  
CS_IN1  
R/W-0h  
CS_IN0  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only  
36. CS_SELECT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23-10  
RESERVED  
R
0h  
Reserved  
9
8
7
6
5
4
3
2
1
0
CS_IN9  
CS_IN8  
CS_IN7  
CS_IN6  
CS_IN5  
CS_IN4  
CS_IN3  
CS_IN2  
CS_IN1  
CS_IN0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h = Current Source (CSO) selected  
1h = Current Sink (CSI) selected  
0h = Current Source (CSO) selected  
1h = Current Sink (CSI) selected  
0h = Current Source (CSO) selected  
1h = Current Sink (CSI) selected  
0h = Current Source (CSO) selected  
1h = Current Sink (CSI) selected  
0h = Current Source (CSO) selected  
1h = Current Sink (CSI) selected  
0h = Current Source (CSO) selected  
1h = Current Sink (CSI) selected  
0h = Current Source (CSO) selected  
1h = Current Sink (CSI) selected  
0h = Current Source (CSO) selected  
1h = Current Sink (CSI) selected  
0h = Current Source (CSO) selected  
1h = Current Sink (CSI) selected  
0h = Current Source (CSO) selected  
1h = Current Sink (CSI) selected  
版权 © 2017, Texas Instruments Incorporated  
85  
 
 
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
8.6.26 WC_CFG0 Register (Offset = 1Dh) [reset = 0h]  
WC_CFG0 is shown in 60 and described in 37.  
Return to Summary Table.  
60. WC_CFG0 Register  
23  
11  
22  
21  
9
20  
8
19  
18  
6
17  
16  
WC_IN8_IN9  
R/W-0h  
15  
3
14  
2
13  
12  
WC_IN11  
R/W-0h  
10  
WC_IN10  
R/W-0h  
7
WC_IN6_IN7  
R/W-0h  
5
4
1
0
WC_IN5  
R/W-0h  
WC_IN4  
R/W-0h  
WC_IN2_IN3  
R/W-0h  
WC_IN0_IN1  
R/W-0h  
LEGEND: R/W = Read/Write  
37. WC_CFG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23-21  
WC_IN11  
R/W  
0h  
0h = no wetting current  
1h = 1mA (typ.) wetting current  
2h = 2mA (typ.) wetting current  
3h = 5mA (typ.) wetting current  
4h = 10mA (typ.) wetting current  
5h-7h = 15mA (typ.) wetting current  
20-18  
17-15  
14-12  
11-9  
WC_IN10  
WC_IN8_IN9  
WC_IN6_IN7  
WC_IN5  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h = no wetting current  
1h = 1mA (typ.) wetting current  
2h = 2mA (typ.) wetting current  
3h = 5mA (typ.) wetting current  
4h = 10mA (typ.) wetting current  
5h-7h = 15mA (typ.) wetting current  
0h = no wetting current  
1h = 1mA (typ.) wetting current  
2h = 2mA (typ.) wetting current  
3h = 5mA (typ.) wetting current  
4h = 10mA (typ.) wetting current  
5h-7h = 15mA (typ.) wetting current  
0h = no wetting current  
1h = 1mA (typ.) wetting current  
2h = 2mA (typ.) wetting current  
3h = 5mA (typ.) wetting current  
4h = 10mA (typ.) wetting current  
5h-7h = 15mA (typ.) wetting current  
0h = no wetting current  
1h = 1mA (typ.) wetting current  
2h = 2mA (typ.) wetting current  
3h = 5mA (typ.) wetting current  
4h = 10mA (typ.) wetting current  
5h-7h = 15mA (typ.) wetting current  
8-6  
WC_IN4  
0h = no wetting current  
1h = 1mA (typ.) wetting current  
2h = 2mA (typ.) wetting current  
3h = 5mA (typ.) wetting current  
4h = 10mA (typ.) wetting current  
5h-7h = 15mA (typ.) wetting current  
86  
版权 © 2017, Texas Instruments Incorporated  
 
 
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
37. WC_CFG0 Register Field Descriptions (接下页)  
Bit  
Field  
Type  
Reset  
Description  
5-3  
WC_IN2_IN3  
R/W  
0h  
0h = no wetting current  
1h = 1mA (typ.) wetting current  
2h = 2mA (typ.) wetting current  
3h = 5mA (typ.) wetting current  
4h = 10mA (typ.) wetting current  
5h-7h = 15mA (typ.) wetting current  
2-0  
WC_IN0_IN1  
R/W  
0h  
0h = no wetting current  
1h = 1mA (typ.) wetting current  
2h = 2mA (typ.) wetting current  
3h = 5mA (typ.) wetting current  
4h = 10mA (typ.) wetting current  
5h-7h = 15mA (typ.) wetting current  
版权 © 2017, Texas Instruments Incorporated  
87  
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
8.6.27 WC_CFG1 Register (Offset = 1Eh) [reset = 0h]  
WC_CFG1 is shown in 61 and described in 38.  
Return to Summary Table.  
61. WC_CFG1 Register  
23  
22  
21  
20  
8
19  
18  
17  
16  
15  
3
14  
2
13  
12  
RESERV AUTO_S AUTO_S  
WC_IN23  
WC_IN22  
WC_IN20_IN21  
ED  
CALE_DI CALE_DI  
S_CSI  
S_CSO  
R/W-0h  
9
R-0h  
11  
R/W-0h  
R/W-0h  
7
R/W-0h  
4
R/W-0h  
1
10  
6
5
0
WC_IN18_IN19  
R/W-0h  
WC_IN16_IN17  
R/W-0h  
WC_IN14_IN15  
R/W-0h  
WC_IN12_IN13  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only  
38. WC_CFG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
24-23  
RESERVED  
R
0h  
Reserved  
22  
AUTO_SCALE_DIS_CSI  
R/W  
0h  
0h = Enable wetting current auto-scaling (to 2mA) in continuous  
mode for 10mA and 15mA settings upon switch closure for all inputs  
enabled with CSI  
1h = Disable wetting current auto-scaling (to 2mA) in continuous  
mode for 10mA and 15mA settings upon switch closure for all inputs  
enabled with CS  
For detailed descriptions for the wetting current auto-scaling, refer to  
section Wetting Current Auto-Scaling.  
21  
AUTO_SCALE_DIS_CSO R/W  
0h  
0h = Enable wetting current auto-scaling (to 2mA) in continuous  
mode for 10mA and 15mA settings upon switch closure for all inputs  
enabled with CSO  
1h = Disable wetting current auto-scaling (to 2mA) in continuous  
mode for 10mA and 15mA settings upon switch closure for all inputs  
enabled with CSO  
For detailed descriptions for the wetting current auto-scaling, refer to  
section Wetting Current Auto-Scaling.  
20-18  
17-15  
14-12  
WC_IN23  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h = no wetting current  
1h = 1mA (typ.) wetting current  
2h = 2mA (typ.) wetting current  
3h = 5mA (typ.) wetting current  
4h = 10mA (typ.) wetting current  
5h-7h = 15mA (typ.) wetting current  
WC_IN22  
0h = no wetting current  
1h = 1mA (typ.) wetting current  
2h = 2mA (typ.) wetting current  
3h = 5mA (typ.) wetting current  
4h = 10mA (typ.) wetting current  
5h-7h = 15mA (typ.) wetting current  
WC_IN20_IN21  
0h = no wetting current  
1h = 1mA (typ.) wetting current  
2h = 2mA (typ.) wetting current  
3h = 5mA (typ.) wetting current  
4h = 10mA (typ.) wetting current  
5h-7h = 15mA (typ.) wetting current  
88  
版权 © 2017, Texas Instruments Incorporated  
 
 
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
38. WC_CFG1 Register Field Descriptions (接下页)  
Bit  
Field  
Type  
Reset  
Description  
11-9  
WC_IN18_IN19  
R/W  
0h  
0h = no wetting current  
1h = 1mA (typ.) wetting current  
2h = 2mA (typ.) wetting current  
3h = 5mA (typ.) wetting current  
4h = 10mA (typ.) wetting current  
5h-7h = 15mA (typ.) wetting current  
8-6  
5-3  
2-0  
WC_IN16_IN17  
WC_IN14_IN15  
WC_IN12_IN13  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h = no wetting current  
1h = 1mA (typ.) wetting current  
2h = 2mA (typ.) wetting current  
3h = 5mA (typ.) wetting current  
4h = 10mA (typ.) wetting current  
5h-7h = 15mA (typ.) wetting current  
0h = no wetting current  
1h = 1mA (typ.) wetting current  
2h = 2mA (typ.) wetting current  
3h = 5mA (typ.) wetting current  
4h = 10mA (typ.) wetting current  
5h-7h = 15mA (typ.) wetting current  
0h = no wetting current  
1h = 1mA (typ.) wetting current  
2h = 2mA (typ.) wetting current  
3h = 5mA (typ.) wetting current  
4h = 10mA (typ.) wetting current  
5h-7h = 15mA (typ.) wetting current  
版权 © 2017, Texas Instruments Incorporated  
89  
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
8.6.28 CCP_CFG0 Register (Offset = 1Fh) [reset = 0h]  
CCP_CFG0 is shown in 62 and described in 39.  
Return to Summary Table.  
62. CCP_CFG0 Register  
23  
11  
22  
10  
21  
20  
8
19  
7
18  
RESERVED  
R-0h  
17  
16  
15  
3
14  
2
13  
1
12  
0
9
6
5
4
RESERVED  
CCP_TIME  
WC_CCP WC_CCP WC_CCP WC_CCP  
3
2
1
0
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
LEGEND: R/W = Read/Write; R = Read only  
39. CCP_CFG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23-7  
RESERVED  
R
0h  
Reserved  
6-4  
CCP_TIME  
R/W  
0h  
Wetting current activation time in CCP mode  
0h = 64μs  
1h = 128μs  
2h = 192μs  
3h = 256μs  
4h = 320μs  
5h = 384μs  
6h = 448μs  
7h = 512μs  
3
2
1
0
WC_CCP3  
WC_CCP2  
WC_CCP1  
WC_CCP0  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
Wetting current setting for IN18 to IN23 in CCP mode  
0h = 10mA (typ.) wetting current  
1h = 15mA (typ.) wetting current  
Wetting current setting for IN12 to IN17 in CCP mode  
0h = 10mA (typ.) wetting current  
1h = 15mA (typ.) wetting current  
Wetting current setting for IN6 to IN11 in CCP mode  
0h = 10mA (typ.) wetting current  
1h = 15mA (typ.) wetting current  
Wetting current setting for IN0 to IN5 in CCP mode  
0h = 10mA (typ.) wetting current  
1h = 15mA (typ.) wetting current  
90  
版权 © 2017, Texas Instruments Incorporated  
 
 
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
8.6.29 CCP_CFG1 Register (Offset = 20h) [reset = 0h]  
CCP_CFG1 is shown in 63 and described in 40.  
Return to Summary Table.  
63. CCP_CFG1 Register  
23  
22  
21  
20  
19  
18  
17  
16  
CCP_IN23  
R/W-0h  
CCP_IN22  
R/W-0h  
CCP_IN21  
R/W-0h  
CCP_IN20  
R/W-0h  
CCP_IN19  
R/W-0h  
CCP_IN18  
R/W-0h  
CCP_IN17  
R/W-0h  
CCP_IN16  
R/W-0h  
15  
14  
13  
12  
11  
10  
9
8
CCP_IN15  
R/W-0h  
CCP_IN14  
R/W-0h  
CCP_IN13  
R/W-0h  
CCP_IN12  
R/W-0h  
CCP_IN11  
R/W-0h  
CCP_IN10  
R/W-0h  
CCP_IN9  
R/W-0h  
CCP_IN8  
R/W-0h  
7
6
5
4
3
2
1
0
CCP_IN7  
R/W-0h  
CCP_IN6  
R/W-0h  
CCP_IN5  
R/W-0h  
CCP_IN4  
R/W-0h  
CCP_IN3  
R/W-0h  
CCP_IN2  
R/W-0h  
CCP_IN1  
R/W-0h  
CCP_IN0  
R/W-0h  
LEGEND: R/W = Read/Write  
40. CCP_CFG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23  
CCP_IN23  
R/W  
0h  
0h = no CCP wetting current  
1h = CCP wetting current activated  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
CCP_IN22  
CCP_IN21  
CCP_IN20  
CCP_IN19  
CCP_IN18  
CCP_IN17  
CCP_IN16  
CCP_IN15  
CCP_IN14  
CCP_IN13  
CCP_IN12  
CCP_IN11  
CCP_IN10  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h = no CCP wetting current  
1h = CCP wetting current activated  
0h = no CCP wetting current  
1h = CCP wetting current activated  
0h = no CCP wetting current  
1h = CCP wetting current activated  
0h = no CCP wetting current  
1h = CCP wetting current activated  
0h = no CCP wetting current  
1h = CCP wetting current activated  
0h = no CCP wetting current  
1h = CCP wetting current activated  
0h = no CCP wetting current  
1h = CCP wetting current activated  
0h = no CCP wetting current  
1h = CCP wetting current activated  
0h = no CCP wetting current  
1h = CCP wetting current activated  
0h = no CCP wetting current  
1h = CCP wetting current activated  
0h = no CCP wetting current  
1h = CCP wetting current activated  
0h = no CCP wetting current  
1h = CCP wetting current activated  
0h = no CCP wetting current  
1h = CCP wetting current activated  
版权 © 2017, Texas Instruments Incorporated  
91  
 
 
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
40. CCP_CFG1 Register Field Descriptions (接下页)  
Bit  
Field  
Type  
Reset  
Description  
9
CCP_IN9  
R/W  
0h  
0h = no CCP wetting current  
1h = CCP wetting current activated  
8
7
6
5
4
3
2
1
0
CCP_IN8  
CCP_IN7  
CCP_IN6  
CCP_IN5  
CCP_IN4  
CCP_IN3  
CCP_IN2  
CCP_IN1  
CCP_IN0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h = no CCP wetting current  
1h = CCP wetting current activated  
0h = no CCP wetting current  
1h = CCP wetting current activated  
0h = no CCP wetting current  
1h = CCP wetting current activated  
0h = no CCP wetting current  
1h = CCP wetting current activated  
0h = no CCP wetting current  
1h = CCP wetting current activated  
0h = no CCP wetting current  
1h = CCP wetting current activated  
0h = no CCP wetting current  
1h = CCP wetting current activated  
0h = no CCP wetting current  
1h = CCP wetting current activated  
0h = no CCP wetting current  
1h = CCP wetting current activated  
92  
版权 © 2017, Texas Instruments Incorporated  
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
8.6.30 THRES_COMP Register (Offset = 21h) [reset = 0h]  
THRES_COMP is shown in 64 and described in 41.  
Return to Summary Table.  
64. THRES_COMP Register  
23  
15  
7
22  
14  
6
21  
13  
5
20  
12  
4
19  
18  
10  
17  
9
16  
8
RESERVED  
R-0h  
11  
RESERVED  
R-0h  
THRES_COMP_IN20_IN23  
R/W-0h  
THRES_COMP_IN16_IN19  
R/W-0h  
3
2
1
0
THRES_COMP_IN12_IN15  
R/W-0h  
THRES_COMP_IN8_IN11  
R/W-0h  
THRES_COMP_IN4_IN7  
R/W-0h  
THRES_COMP_IN0_IN3  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only  
41. THRES_COMP Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31-12  
RESERVED  
R
0h  
Reserved  
11-10  
THRES_COMP_IN20_IN2 R/W  
3
0h  
0h  
0h  
0h  
0h  
These 2 bits configures the comparator thresholds for input channels  
IN20 to IN23  
0h = comparator threshold set to 2V  
1h = comparator threshold set to 2.7V  
2h = comparator threshold set to 3V  
3h = comparator threshold set to 4V  
9-8  
THRES_COMP_IN16_IN1 R/W  
9
These 2 bits configures the comparator thresholds for input channels  
IN16 to IN19  
0h = comparator threshold set to 2V  
1h = comparator threshold set to 2.7V  
2h = comparator threshold set to 3V  
3h = comparator threshold set to 4V  
7-6  
THRES_COMP_IN12_IN1 R/W  
5
These 2 bits configures the comparator thresholds for input channels  
IN12 to IN15  
0h = comparator threshold set to 2V  
1h = comparator threshold set to 2.7V  
2h = comparator threshold set to 3V  
3h = comparator threshold set to 4V  
5-4  
THRES_COMP_IN8_IN11 R/W  
These 2 bits configures the comparator thresholds for input channels  
IN8 to IN11  
0h = comparator threshold set to 2V  
1h = comparator threshold set to 2.7V  
2h = comparator threshold set to 3V  
3h = comparator threshold set to 4V  
3-2  
THRES_COMP_IN4_IN7 R/W  
These 2 bits configures the comparator thresholds for input channels  
IN4 to IN7  
0h = comparator threshold set to 2V  
1h = comparator threshold set to 2.7V  
2h = comparator threshold set to 3V  
3h = comparator threshold set to 4V  
版权 © 2017, Texas Instruments Incorporated  
93  
 
 
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
41. THRES_COMP Register Field Descriptions (接下页)  
Bit  
Field  
Type  
Reset  
Description  
1-0  
THRES_COMP_IN0_IN3 R/W  
0h  
These 2 bits configures the comparator thresholds for input channels  
IN0 to IN3  
0h = comparator threshold set to 2V  
1h = comparator threshold set to 2.7V  
2h = comparator threshold set to 3V  
3h = comparator threshold set to 4V  
94  
版权 © 2017, Texas Instruments Incorporated  
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
8.6.31 INT_EN_COMP1 Register (Offset = 22h) [reset = 0h]  
INT_EN_COMP1 is shown in 65 and described in 42.  
Return to Summary Table.  
65. INT_EN_COMP1 Register  
23  
INC_EN_11  
R/W-0h  
22  
21  
INC_EN_10  
R/W-0h  
20  
19  
INC_EN_9  
R/W-0h  
18  
17  
INC_EN_8  
R/W-0h  
16  
15  
INC_EN_7  
R/W-0h  
14  
13  
INC_EN_6  
R/W-0h  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
INC_EN_5  
R/W-0h  
INC_EN_4  
R/W-0h  
INC_EN_3  
R/W-0h  
INC_EN_2  
R/W-0h  
INC_EN_1  
R/W-0h  
INC_EN_0  
R/W-0h  
LEGEND: R/W = Read/Write  
42. INT_EN_COMP1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23-22  
INC_EN_11  
R/W  
0h  
0h = no interrupt generation for IN11  
1h  
=
interrupt  
generation  
on  
on  
rising  
falling  
edge  
edge  
above  
below  
THRES_COMP_IN8_IN11 for IN11  
2h interrupt generation  
THRES_COMP_IN8_IN11 for IN11  
3h interrupt generation on falling and rising edge of  
=
=
THRES_COMP_IN8_IN11 for IN11  
21-20  
19-18  
17-16  
15-14  
INC_EN_10  
INC_EN_9  
INC_EN_8  
INC_EN_7  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h = no interrupt generation for IN10  
1h  
=
interrupt  
generation  
on  
on  
rising  
falling  
edge  
edge  
above  
below  
THRES_COMP_IN8_IN11 for IN10  
2h interrupt generation  
THRES_COMP_IN8_IN11 for IN10  
3h interrupt generation on falling and rising edge of  
=
=
THRES_COMP_IN8_IN11 for IN10  
0h = no interrupt generation for IN9  
1h  
=
interrupt  
generation  
on  
on  
rising  
falling  
edge  
edge  
above  
below  
THRES_COMP_IN8_IN11 for IN9  
2h interrupt generation  
THRES_COMP_IN8_IN11 for IN9  
3h interrupt generation on falling and rising edge of  
=
=
THRES_COMP_IN8_IN11 for IN9  
0h = no interrupt generation for IN8  
1h  
=
interrupt  
generation  
on  
on  
rising  
falling  
edge  
edge  
above  
below  
THRES_COMP_IN8_IN11 for IN8  
2h interrupt generation  
THRES_COMP_IN8_IN11 for IN8  
3h interrupt generation on falling and rising edge of  
=
=
THRES_COMP_IN8_IN11 for IN8  
0h = no interrupt generation for IN7  
1h  
=
interrupt  
generation  
on  
on  
rising  
falling  
edge  
edge  
above  
below  
THRES_COMP_IN4_IN7 for IN7  
2h interrupt generation  
THRES_COMP_IN4_IN7 for IN7  
3h interrupt generation on falling and rising edge of  
THRES_COMP_IN4_IN7 for IN7  
=
=
版权 © 2017, Texas Instruments Incorporated  
95  
 
 
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
42. INT_EN_COMP1 Register Field Descriptions (接下页)  
Bit  
Field  
Type  
Reset  
Description  
13-12  
INC_EN_6  
R/W  
0h  
0h = no interrupt generation for IN6  
1h  
=
interrupt  
generation  
on  
on  
rising  
falling  
edge  
edge  
above  
below  
THRES_COMP_IN4_IN7 for IN6  
2h interrupt generation  
THRES_COMP_IN4_IN7 for IN6  
3h interrupt generation on falling and rising edge of  
=
=
THRES_COMP_IN4_IN7 for IN6  
11-10  
INC_EN_5  
INC_EN_4  
INC_EN_3  
INC_EN_2  
INC_EN_1  
INC_EN_0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h = no interrupt generation for IN5  
1h  
=
interrupt  
generation  
on  
on  
rising  
falling  
edge  
edge  
above  
below  
THRES_COMP_IN4_IN7 for IN5  
2h interrupt generation  
THRES_COMP_IN4_IN7 for IN5  
3h interrupt generation on falling and rising edge of  
=
=
THRES_COMP_IN4_IN7 for IN5  
9-8  
0h = no interrupt generation for IN4  
1h  
=
interrupt  
generation  
on  
on  
rising  
falling  
edge  
edge  
above  
below  
THRES_COMP_IN4_IN7 for IN4  
2h interrupt generation  
THRES_COMP_IN4_IN7 for IN4  
3h interrupt generation on falling and rising edge of  
=
=
THRES_COMP_IN4_IN7 for IN4  
7-6  
0h = no interrupt generation for IN3  
1h  
=
interrupt  
generation  
on  
on  
rising  
falling  
edge  
edge  
above  
below  
THRES_COMP_IN0_IN3 for IN3  
2h interrupt generation  
THRES_COMP_IN0_IN3 for IN3  
3h interrupt generation on falling and rising edge of  
=
=
THRES_COMP_IN0_IN3 for IN3  
5-4  
0h = no interrupt generation for IN2  
1h  
=
interrupt  
generation  
on  
on  
rising  
falling  
edge  
edge  
above  
below  
THRES_COMP_IN0_IN3 for IN2  
2h interrupt generation  
THRES_COMP_IN0_IN3 for IN2  
3h interrupt generation on falling and rising edge of  
=
=
THRES_COMP_IN0_IN3 for IN2  
3-2  
0h = no interrupt generation for IN1  
1h  
=
interrupt  
generation  
on  
on  
rising  
falling  
edge  
edge  
above  
below  
THRES_COMP_IN0_IN3 for IN1  
2h interrupt generation  
THRES_COMP_IN0_IN3 for IN1  
3h interrupt generation on falling and rising edge of  
=
=
THRES_COMP_IN0_IN3 for IN1  
1-0  
0h = no interrupt generation for IN0  
1h  
=
interrupt  
generation  
on  
on  
rising  
falling  
edge  
edge  
above  
below  
THRES_COMP_IN0_IN3 for IN0  
2h interrupt generation  
THRES_COMP_IN0_IN3 for IN0  
3h interrupt generation on falling and rising edge of  
THRES_COMP_IN0_IN3 for IN0  
=
=
96  
版权 © 2017, Texas Instruments Incorporated  
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
8.6.32 INT_EN_COMP2 Register (Offset = 23h) [reset = 0h]  
INT_EN_COMP2 is shown in 66 and described in 43.  
Return to Summary Table.  
66. INT_EN_COMP2 Register  
23  
INC_EN_23  
R/W-0h  
22  
21  
INC_EN_22  
R/W-0h  
20  
19  
INC_EN_21  
R/W-0h  
18  
17  
INC_EN_20  
R/W-0h  
16  
15  
INC_EN_19  
R/W-0h  
14  
13  
INC_EN_18  
R/W-0h  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
INC_EN_17  
R/W-0h  
INC_EN_16  
R/W-0h  
INC_EN_15  
R/W-0h  
INC_EN_14  
R/W-0h  
INC_EN_13  
R/W-0h  
INC_EN_12  
R/W-0h  
LEGEND: R/W = Read/Write  
43. INT_EN_COMP2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23-22  
INC_EN_23  
R/W  
0h  
0h = no interrupt generation for IN23  
1h  
=
interrupt  
generation  
on  
on  
rising  
falling  
edge  
edge  
above  
below  
THRES_COMP_IN20_IN23 for IN23  
2h interrupt generation  
THRES_COMP_IN20_IN23 for IN23  
3h interrupt generation on falling and rising edge of  
=
=
THRES_COMP_IN20_IN23 for IN23  
21-20  
19-18  
17-16  
15-14  
INC_EN_22  
INC_EN_21  
INC_EN_20  
INC_EN_19  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h = no interrupt generation for IN22  
1h  
=
interrupt  
generation  
on  
on  
rising  
falling  
edge  
edge  
above  
below  
THRES_COMP_IN20_IN23 for IN22  
2h interrupt generation  
THRES_COMP_IN20_IN23 for IN22  
3h interrupt generation on falling and rising edge of  
=
=
THRES_COMP_IN20_IN23 for IN22  
0h = no interrupt generation for IN21  
1h  
=
interrupt  
generation  
on  
on  
rising  
falling  
edge  
edge  
above  
below  
THRES_COMP_IN20_IN23 for IN21  
2h interrupt generation  
THRES_COMP_IN20_IN23 for IN21  
3h interrupt generation on falling and rising edge of  
=
=
THRES_COMP_IN20_IN23 for IN21  
0h = no interrupt generation for IN20  
1h  
=
interrupt  
generation  
on  
on  
rising  
falling  
edge  
edge  
above  
below  
THRES_COMP_IN20_IN23 for IN20  
2h interrupt generation  
THRES_COMP_IN20_IN23 for IN20  
3h interrupt generation on falling and rising edge of  
=
=
THRES_COMP_IN20_IN23 for IN20  
0h = no interrupt generation for IN19  
1h  
=
interrupt  
generation  
on  
on  
rising  
falling  
edge  
edge  
above  
below  
THRES_COMP_IN16_IN19 for IN19  
2h interrupt generation  
THRES_COMP_IN16_IN19 for IN19  
3h interrupt generation on falling and rising edge of  
THRES_COMP_IN16_IN19 for IN19  
=
=
版权 © 2017, Texas Instruments Incorporated  
97  
 
 
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
43. INT_EN_COMP2 Register Field Descriptions (接下页)  
Bit  
Field  
Type  
Reset  
Description  
13-12  
INC_EN_18  
R/W  
0h  
0h = no interrupt generation for IN18  
1h  
=
interrupt  
generation  
on  
on  
rising  
falling  
edge  
edge  
above  
below  
THRES_COMP_IN16_IN19 for IN18  
2h interrupt generation  
THRES_COMP_IN16_IN19 for IN18  
3h interrupt generation on falling and rising edge of  
=
=
THRES_COMP_IN16_IN19 for IN18  
11-10  
INC_EN_17  
INC_EN_16  
INC_EN_15  
INC_EN_14  
INC_EN_13  
INC_EN_12  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h = no interrupt generation for IN17  
1h  
=
interrupt  
generation  
on  
on  
rising  
falling  
edge  
edge  
above  
below  
THRES_COMP_IN16_IN19 for IN17  
2h interrupt generation  
THRES_COMP_IN16_IN19 for IN17  
3h interrupt generation on falling and rising edge of  
=
=
THRES_COMP_IN16_IN19 for IN17  
9-8  
0h = no interrupt generation for IN16  
1h  
=
interrupt  
generation  
on  
on  
rising  
falling  
edge  
edge  
above  
below  
THRES_COMP_IN16_IN19 for IN16  
2h interrupt generation  
THRES_COMP_IN16_IN19 for IN16  
3h interrupt generation on falling and rising edge of  
=
=
THRES_COMP_IN16_IN19 for IN16  
7-6  
0h = no interrupt generation for IN15  
1h  
=
interrupt  
generation  
on  
on  
rising  
falling  
edge  
edge  
above  
below  
THRES_COMP_IN12_IN15 for IN15  
2h interrupt generation  
THRES_COMP_IN12_IN15 for IN15  
3h interrupt generation on falling and rising edge of  
=
=
THRES_COMP_IN12_IN15 for IN15  
5-4  
0h = no interrupt generation for IN14  
1h  
=
interrupt  
generation  
on  
on  
rising  
falling  
edge  
edge  
above  
below  
THRES_COMP_IN12_IN15 for IN14  
2h interrupt generation  
THRES_COMP_IN12_IN15 for IN14  
3h interrupt generation on falling and rising edge of  
=
=
THRES_COMP_IN12_IN15 for IN14  
3-2  
0h = no interrupt generation for IN13  
1h  
=
interrupt  
generation  
on  
on  
rising  
falling  
edge  
edge  
above  
below  
THRES_COMP_IN12_IN15 for IN13  
2h interrupt generation  
THRES_COMP_IN12_IN15 for IN13  
3h interrupt generation on falling and rising edge of  
=
=
THRES_COMP_IN12_IN15 for IN13  
1-0  
0h = no interrupt generation for IN12  
1h  
=
interrupt  
generation  
on  
on  
rising  
falling  
edge  
edge  
above  
below  
THRES_COMP_IN12_IN15 for IN12  
2h interrupt generation  
THRES_COMP_IN12_IN15 for IN12  
3h interrupt generation on falling and rising edge of  
THRES_COMP_IN12_IN15 for IN12  
=
=
98  
版权 © 2017, Texas Instruments Incorporated  
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
8.6.33 INT_EN_CFG0 Register (Offset = 24h) [reset = 0h]  
INT_EN_CFG0 is shown in 67 and described in 44.  
Return to Summary Table.  
67. INT_EN_CFG0 Register  
23  
15  
22  
14  
21  
13  
20  
12  
19  
18  
10  
17  
16  
RESERVED  
R-0h  
11  
9
8
RESERVED  
R-0h  
ADC_DIAG_EN WET_DIAG_E  
N
VS1_EN  
VS0_EN  
R/W-0h  
R/W-0h  
R/W-0h  
1
R/W-0h  
0
7
6
5
4
3
2
CRC_CALC_E  
N
UV_EN  
OV_EN  
TW_EN  
TSD_EN  
SSC_EN  
PRTY_FAIL_E SPI_FAIL_EN  
N
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only  
44. INT_EN_CFG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23-12  
RESERVED  
R
0h  
Reserved  
11  
10  
9
ADC_DIAG_EN  
WET_DIAG_EN  
VS1_EN  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h = INT pin assertion due to ADC error disabled.  
1h = INT pin assertion due to ADC error enabled.  
0h = INT pin assertion due to wetting current error disabled.  
1h = INT pin assertion due to wetting current error enabled.  
0h = INT pin assertion due to VS1 threshold crossing disabled.  
1h = INT pin assertion due to VS1 threshold crossing enabled.  
8
VS0_EN  
0h = INT pin assertion due to VS0 threshold crossing disabled.  
1h = INT pin assertion due to VS0 threshold crossing enabled.  
7
CRC_CALC_EN  
UV_EN  
0h = INT pin assertion due to CRC calculation completion disabled.  
1h = INT pin assertion due to CRC calculation completion enabled.  
6
0h =INT pin assertion due to UV event disabled.  
1h = INT pin assertion due to UV event enabled.  
5
OV_EN  
0h = INT pin assertion due to OV event disabled.  
1h = INT pin assertion due to OV event enabled.  
4
TW_EN  
0h = INT pin assertion due to TW event disabled.  
1h = INT pin assertion due to TW event enabled.  
3
TSD_EN  
0h = INT pin assertion due to TSD event disabled.  
1h = INT pin assertion due to TSD event enabled.  
2
SSC_EN  
0h = INT pin assertion due to SSC event disabled.  
1h = INT pin assertion due to SSC event enabled.  
1
PRTY_FAIL_EN  
SPI_FAIL_EN  
0h = INT pin assertion due to parity fail event disabled.  
1h = INT pin assertion due to parity fail event enabled.  
0
0h = INT pin assertion due to SPI fail event disabled.  
1h = INT pin assertion due to SPI fail event enabled.  
版权 © 2017, Texas Instruments Incorporated  
99  
 
 
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
8.6.34 INT_EN_CFG1 Register (Offset = 25h) [reset = 0h]  
INT_EN_CFG1 is shown in 68 and described in 45.  
Return to Summary Table.  
68. INT_EN_CFG1 Register  
23  
11  
22  
10  
21  
9
20  
8
19  
7
18  
6
17  
5
16  
15  
3
14  
2
13  
1
12  
IN6_EN  
R/W-0h  
0
IN11_EN  
R/W-0h  
IN10_EN  
R/W-0h  
IN9_EN  
R/W-0h  
IN8_EN  
R/W-0h  
IN7_EN  
R/W-0h  
4
IN5_EN  
R/W-0h  
IN4_EN  
R/W-0h  
IN3_EN  
R/W-0h  
IN2_EN  
R/W-0h  
IN1_EN  
R/W-0h  
IN0_EN  
R/W-0h  
LEGEND: R/W = Read/Write  
45. INT_EN_CFG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23-22  
IN11_EN  
R/W  
0h  
0h = no interrupt generation for IN11  
1h = interrupt generation on rising edge above THRESx for IN11  
2h = interrupt generation on falling edge below THRESx for IN11  
3h = interrupt generation on falling and rising edge of THRESx for  
IN11  
21-20  
19-18  
17-16  
15-14  
13-12  
11-10  
IN10_EN  
IN9_EN  
IN8_EN  
IN7_EN  
IN6_EN  
IN5_EN  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h = no interrupt generation for IN10  
1h = interrupt generation on rising edge above THRESx for IN10  
2h = interrupt generation on falling edge below THRESx for IN10  
3h = interrupt generation on falling and rising edge of THRESx for  
IN10  
0h = no interrupt generation for IN9  
1h = interrupt generation on rising edge above THRESx for IN9  
2h = interrupt generation on falling edge below THRESx for IN9  
3h = interrupt generation on falling and rising edge of THRESx for  
IN9  
0h = no interrupt generation for IN8  
1h = interrupt generation on rising edge above THRESx for IN8  
2h = interrupt generation on falling edge below THRESx for IN8  
3h = interrupt generation on falling and rising edge of THRESx for  
IN8  
0h = no interrupt generation for IN7  
1h = interrupt generation on rising edge above THRESx for IN7  
2h = interrupt generation on falling edge below THRESx for IN7  
3h = interrupt generation on falling and rising edge of THRESx for  
IN7  
0h = no interrupt generation for IN6  
1h = interrupt generation on rising edge above THRESx for IN6  
2h = interrupt generation on falling edge below THRESx for IN6  
3h = interrupt generation on falling and rising edge of THRESx for  
IN6  
0h = no interrupt generation for IN5  
1h = interrupt generation on rising edge above THRESx for IN5  
2h = interrupt generation on falling edge below THRESx for IN5  
3h = interrupt generation on falling and rising edge of THRESx for  
IN5  
100  
版权 © 2017, Texas Instruments Incorporated  
 
 
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
45. INT_EN_CFG1 Register Field Descriptions (接下页)  
Bit  
Field  
Type  
Reset  
Description  
9-8  
IN4_EN  
R/W  
0h  
0h = no interrupt generation for IN4  
1h = interrupt generation on rising edge above THRESx for IN4  
2h = interrupt generation on falling edge below THRESx for IN4  
3h = interrupt generation on falling and rising edge of THRESx for  
IN4  
7-6  
5-4  
3-2  
1-0  
IN3_EN  
IN2_EN  
IN1_EN  
IN0_EN  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h = no interrupt generation for IN3  
1h = interrupt generation on rising edge above THRESx for IN3  
2h = interrupt generation on falling edge below THRESx for IN3  
3h = interrupt generation on falling and rising edge of THRESx for  
IN3  
0h = no interrupt generation for IN2  
1h = interrupt generation on rising edge above THRESx for IN2  
2h = interrupt generation on falling edge below THRESx for IN2  
3h = interrupt generation on falling and rising edge of THRESx for  
IN2  
0h = no interrupt generation for IN1  
1h = interrupt generation on rising edge above THRESx for IN1  
2h = interrupt generation on falling edge below THRESx for IN1  
3h = interrupt generation on falling and rising edge of THRESx for  
IN1  
0h = no interrupt generation for IN0  
1h = interrupt generation on rising edge above THRESx for IN0  
2h = interrupt generation on falling edge below THRESx for IN0  
3h = interrupt generation on falling and rising edge of THRESx for  
IN0  
版权 © 2017, Texas Instruments Incorporated  
101  
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
8.6.35 INT_EN_CFG2 Register (Offset = 26h) [reset = 0h]  
INT_EN_CFG2 is shown in 69 and described in 46.  
Return to Summary Table.  
69. INT_EN_CFG2 Register  
23  
11  
22  
10  
21  
9
20  
8
19  
7
18  
6
17  
5
16  
15  
3
14  
2
13  
1
12  
0
IN17_EN  
R/W-0h  
IN16_EN  
R/W-0h  
IN15_EN  
R/W-0h  
4
IN14_EN  
R/W-0h  
IN13_EN  
R/W-0h  
IN12_EN  
R/W-0h  
LEGEND: R/W = Read/Write  
46. INT_EN_CFG2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23-20  
IN17_EN  
R/W  
0h  
xx00: no interrupt generation for IN17 w.r.t. THRES2A  
xx01: interrupt generation on rising edge above THRES2A for IN17  
xx10: interrupt generation on falling edge below THRES2A for IN17  
xx11: interrupt generation on falling and rising edge of THRES2A for  
IN17  
00xx: no interrupt generation for IN17 w.r.t. THRES2B  
01xx: interrupt generation on rising edge above THRES2B for IN17  
10xx: interrupt generation on falling edge below THRES2B for IN17  
11xx: interrupt generation on falling and rising edge of THRES2B for  
IN17  
19-16  
IN16_EN  
R/W  
0h  
xx00: no interrupt generation for IN16 w.r.t. THRES2A  
xx01: interrupt generation on rising edge above THRES2A for IN16  
xx10: interrupt generation on falling edge below THRES2A for IN16  
xx11: interrupt generation on falling and rising edge of THRES2A for  
IN16  
00xx: no interrupt generation for IN16 w.r.t. THRES2B  
01xx: interrupt generation on rising edge above THRES2B for IN16  
10xx: interrupt generation on falling edge below THRES2B for IN16  
11xx: interrupt generation on falling and rising edge of THRES2B for  
IN16  
15-12  
IN15_EN  
R/W  
0h  
xx00: no interrupt generation for IN15 w.r.t. THRES2A  
xx01: interrupt generation on rising edge above THRES2A for IN15  
xx10: interrupt generation on falling edge below THRES2A for IN15  
xx11: interrupt generation on falling and rising edge of THRES2A for  
IN15  
00xx: no interrupt generation for IN15 w.r.t. THRES2B  
01xx: interrupt generation on rising edge above THRES2B for IN15  
10xx: interrupt generation on falling edge below THRES2B for IN15  
11xx: interrupt generation on falling and rising edge of THRES2B for  
IN15  
102  
版权 © 2017, Texas Instruments Incorporated  
 
 
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
46. INT_EN_CFG2 Register Field Descriptions (接下页)  
Bit  
Field  
Type  
Reset  
Description  
11-8  
IN14_EN  
R/W  
0h  
xx00: no interrupt generation for IN14 w.r.t. THRES2A  
xx01: interrupt generation on rising edge above THRES2A for IN14  
xx10: interrupt generation on falling edge below THRES2A for IN14  
xx11: interrupt generation on falling and rising edge of THRES2A for  
IN14  
00xx: no interrupt generation for IN14 w.r.t. THRES2B  
01xx: interrupt generation on rising edge above THRES2B for IN14  
10xx: interrupt generation on falling edge below THRES2B for IN14  
11xx: interrupt generation on falling and rising edge of THRES2B for  
IN14  
7-4  
IN13_EN  
R/W  
0h  
xx00: no interrupt generation for IN13 w.r.t. THRES2A  
xx01: interrupt generation on rising edge above THRES2A for IN13  
xx10: interrupt generation on falling edge below THRES2A for IN13  
xx11: interrupt generation on falling and rising edge of THRES2A for  
IN13  
00xx: no interrupt generation for IN13 w.r.t. THRES2B  
01xx: interrupt generation on rising edge above THRES2B for IN13  
10xx: interrupt generation on falling edge below THRES2B for IN13  
11xx: interrupt generation on falling and rising edge of THRES2B for  
IN13  
3-0  
IN12_EN  
R/W  
0h  
xx00: no interrupt generation for IN12 w.r.t. THRES2A  
xx01: interrupt generation on rising edge above THRES2A for IN12  
xx10: interrupt generation on falling edge below THRES2A for IN12  
xx11: interrupt generation on falling and rising edge of THRES2A for  
IN12  
00xx: no interrupt generation for IN12 w.r.t. THRES2B  
01xx: interrupt generation on rising edge above THRES2B for IN12  
10xx: interrupt generation on falling edge below THRES2B for IN12  
11xx: interrupt generation on falling and rising edge of THRES2B for  
IN12  
版权 © 2017, Texas Instruments Incorporated  
103  
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
8.6.36 INT_EN_CFG3 Register (Offset = 27h) [reset = 0h]  
INT_EN_CFG3 is shown in 70 and described in 47.  
Return to Summary Table.  
70. INT_EN_CFG3 Register  
23  
11  
22  
10  
21  
9
20  
8
19  
7
18  
6
17  
5
16  
15  
3
14  
2
13  
1
12  
0
IN21_EN  
R/W-0h  
IN20_EN  
R/W-0h  
4
IN19_EN  
R/W-0h  
IN18_EN  
R/W-0h  
LEGEND: R/W = Read/Write  
47. INT_EN_CFG3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23-18  
IN21_EN  
R/W  
0h  
xxxx00: no interrupt generation for IN21 w.r.t. THRES3A  
xxxx01: interrupt generation on rising edge above THRES3A for  
IN21  
xxxx10: interrupt generation on falling edge below THRES3A for  
IN21  
xxxx11: interrupt generation on falling and rising edge of THRES3A  
for IN21  
xx00xx: no interrupt generation for IN21 w.r.t. THRES3B  
xx01xx: interrupt generation on rising edge above THRES3B for  
IN21  
xx10xx: interrupt generation on falling edge below THRES3B for  
IN21  
xx11xx: interrupt generation on falling and rising edge of THRES3B  
for IN21  
00xxxx: no interrupt generation for IN21 w.r.t. THRES3C  
01xxxx: interrupt generation on rising edge above THRES3C for  
IN21  
10xxxx: interrupt generation on falling edge below THRES3C for  
IN21  
11xxxx: interrupt generation on falling and rising edge of THRES3C  
for IN21  
17-12  
IN20_EN  
R/W  
0h  
xxxx00: no interrupt generation for IN20 w.r.t. THRES3A  
xxxx01: interrupt generation on rising edge above THRES3A for  
IN20  
xxxx10: interrupt generation on falling edge below THRES3A for  
IN20  
xxxx11: interrupt generation on falling and rising edge of THRES3A  
for IN20  
xx00xx: no interrupt generation for IN20 w.r.t. THRES3B  
xx01xx: interrupt generation on rising edge above THRES3B for  
IN20  
xx10xx: interrupt generation on falling edge below THRES3B for  
IN20  
xx11xx: interrupt generation on falling and rising edge of THRES3B  
for IN20  
00xxxx: no interrupt generation for IN20 w.r.t. THRES3C  
01xxxx: interrupt generation on rising edge above THRES3C for  
IN20  
10xxxx: interrupt generation on falling edge below THRES3C for  
IN20  
11xxxx: interrupt generation on falling and rising edge of THRES3C  
for IN20  
104  
版权 © 2017, Texas Instruments Incorporated  
 
 
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
47. INT_EN_CFG3 Register Field Descriptions (接下页)  
Bit  
Field  
Type  
Reset  
Description  
11-6  
IN19_EN  
R/W  
0h  
xxxx00: no interrupt generation for IN19 w.r.t. THRES3A  
xxxx01: interrupt generation on rising edge above THRES3A for  
IN19  
xxxx10: interrupt generation on falling edge below THRES3A for  
IN19  
xxxx11: interrupt generation on falling and rising edge of THRES3A  
for IN19  
xx00xx: no interrupt generation for IN19 w.r.t. THRES3B  
xx01xx: interrupt generation on rising edge above THRES3B for  
IN19  
xx10xx: interrupt generation on falling edge below THRES3B for  
IN19  
xx11xx: interrupt generation on falling and rising edge of THRES3B  
for IN19  
00xxxx: no interrupt generation for IN19 w.r.t. THRES3C  
01xxxx: interrupt generation on rising edge above THRES3C for  
IN19  
10xxxx: interrupt generation on falling edge below THRES3C for  
IN19  
11xxxx: interrupt generation on falling and rising edge of THRES3C  
for IN19  
5-0  
IN18_EN  
R/W  
0h  
xxxx00: no interrupt generation for IN18 w.r.t. THRES3A  
xxxx01: interrupt generation on rising edge above THRES3A for  
IN18  
xxxx10: interrupt generation on falling edge below THRES3A for  
IN18  
xxxx11: interrupt generation on falling and rising edge of THRES3A  
for IN18  
xx00xx: no interrupt generation for IN18 w.r.t. THRES3B  
xx01xx: interrupt generation on rising edge above THRES3B for  
IN18  
xx10xx: interrupt generation on falling edge below THRES3B for  
IN18  
xx11xx: interrupt generation on falling and rising edge of THRES3B  
for IN18  
00xxxx: no interrupt generation for IN18 w.r.t. THRES3C  
01xxxx: interrupt generation on rising edge above THRES3C for  
IN18  
10xxxx: interrupt generation on falling edge below THRES3C for  
IN18  
11xxxx: interrupt generation on falling and rising edge of THRES3C  
for IN18  
版权 © 2017, Texas Instruments Incorporated  
105  
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
8.6.37 INT_EN_CFG4 Register (Offset = 28h) [reset = 0h]  
INT_EN_CFG4 is shown in 71 and described in 48.  
Return to Summary Table.  
71. INT_EN_CFG4 Register  
23  
11  
22  
VS_TH1_EN  
R/W-0h  
21  
20  
8
19  
7
18  
VS_TH0_EN  
R/W-0h  
17  
16  
15  
3
14  
2
13  
1
12  
0
IN23_EN  
R/W-0h  
10  
9
6
5
4
IN23_EN  
R/W-0h  
IN22_EN  
R/W-0h  
LEGEND: R/W = Read/Write  
48. INT_EN_CFG4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23-20  
VS_TH1_EN  
R/W  
0h  
xx00: no interrupt generation for VS w.r.t. VS1_THRES2A  
xx01: interrupt generation on rising edge above VS1_THRES2A for  
VS  
xx10: interrupt generation on falling edge below VS1_THRES2A for  
VS  
xx11: interrupt generation on falling and rising edge of  
VS1_THRES2A for VS  
00xx: no interrupt generation for VS w.r.t. VS1_THRES2B  
01xx: interrupt generation on rising edge above VS1_THRES2B for  
VS  
10xx: interrupt generation on falling edge below VS1_THRES2B for  
VS  
11xx: interrupt generation on falling and rising edge of  
VS1_THRES2B for VS  
19-16  
VS_TH0_EN  
R/W  
0h  
xx00: no interrupt generation for VS w.r.t. VS0_THRES2A  
xx01: interrupt generation on rising edge above VS0_THRES2A for  
VS  
xx10: interrupt generation on falling edge below VS0_THRES2A for  
VS  
xx11: interrupt generation on falling and rising edge of  
VS0_THRES2A for VS  
00xx: no interrupt generation for VS w.r.t. VS0_THRES2B  
01xx: interrupt generation on rising edge above VS0_THRES2B for  
VS  
10xx: interrupt generation on falling edge below VS0_THRES2B for  
VS  
11xx: interrupt generation on falling and rising edge of  
VS0_THRES2B for VS  
106  
版权 © 2017, Texas Instruments Incorporated  
 
 
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
48. INT_EN_CFG4 Register Field Descriptions (接下页)  
Bit  
Field  
Type  
Reset  
Description  
15-6  
IN23_EN  
R/W  
0h  
xxxxxxxx00: no interrupt generation for IN23 w.r.t. THRES3A  
xxxxxxxx01: interrupt generation on rising edge above THRES3A for  
IN23  
xxxxxxxx10: interrupt generation on falling edge below THRES3A for  
IN23  
xxxxxxxx11: interrupt generation on falling and rising edge of  
THRES3A for IN23  
xxxxxx00xx: no interrupt generation for IN23 w.r.t. THRES3B  
xxxxxx01xx: interrupt generation on rising edge above THRES3B for  
IN23  
xxxxxx10xx: interrupt generation on falling edge below THRES3B for  
IN23  
xxxxxx11xx: interrupt generation on falling and rising edge of  
THRES3B for IN23  
xxxx00xxxx: no interrupt generation for IN23 w.r.t. THRES3C  
xxxx01xxxx: interrupt generation on rising edge above THRES3C for  
IN23  
xxxx10xxxx: interrupt generation on falling edge below THRES3C for  
IN23  
xxxx11xxxx: interrupt generation on falling and rising edge of  
THRES3C for IN23  
xx00xxxxxx: no interrupt generation for IN23 w.r.t. THRES8  
xx01xxxxxx: interrupt generation on rising edge above THRES8 for  
IN23  
xx10xxxxxx: interrupt generation on falling edge below THRES8 for  
IN23  
xx11xxxxxx: interrupt generation on falling and rising edge of  
THRES8 for IN23  
00xxxxxxxx: no interrupt generation for IN23 w.r.t. THRES9  
01xxxxxxxx: interrupt generation on rising edge above THRES9 for  
IN23  
10xxxxxxxx: interrupt generation on falling edge below THRES9 for  
IN23  
11xxxxxxxx: interrupt generation on falling and rising edge of  
THRES9 for IN23  
5-0  
IN22_EN  
R/W  
0h  
xxxx00: no interrupt generation for IN22 w.r.t. THRES3A  
xxxx01: interrupt generation on rising edge above THRES3A for  
IN22  
xxxx10: interrupt generation on falling edge below THRES3A for  
IN22  
xxxx11: interrupt generation on falling and rising edge of THRES3A  
for IN22  
xx00xx: no interrupt generation for IN22 w.r.t. THRES3B  
xx01xx: interrupt generation on rising edge above THRES3B for  
IN22  
xx10xx: interrupt generation on falling edge below THRES3B for  
IN22  
xx11xx: interrupt generation on falling and rising edge of THRES3B  
for IN22  
00xxxx: no interrupt generation for IN22 w.r.t. THRES3C  
01xxxx: interrupt generation on rising edge above THRES3C for  
IN22  
10xxxx: interrupt generation on falling edge below THRES3C for  
IN22  
11xxxx: interrupt generation on falling and rising edge of THRES3C  
for IN22  
版权 © 2017, Texas Instruments Incorporated  
107  
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
8.6.38 THRES_CFG0 Register (Offset = 29h) [reset = 0h]  
THRES_CFG0 is shown in 72 and described in 49.  
Return to Summary Table.  
72. THRES_CFG0 Register  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
THRES1  
R-0h  
THRES0  
R-0h  
LEGEND: R/W = Read/Write; R = Read only  
49. THRES_CFG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31-20  
RESERVED  
R
0h  
Reserved  
19-10  
THRES1  
R/W  
R/W  
0h  
0h  
10-bits value of threshold 1:  
Bit10: LSB  
Bit19: MSB  
9-0  
THRES0  
10-bits value of threshold 0  
Bit0: LSB  
Bit9: MSB  
108  
版权 © 2017, Texas Instruments Incorporated  
 
 
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
8.6.39 THRES_CFG1 Register (Offset = 2Ah) [reset = 0h]  
THRES_CFG1 is shown in 73 and described in 50.  
Return to Summary Table.  
73. THRES_CFG1 Register  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
THRES3  
R-0h  
THRES2  
R-0h  
LEGEND: R/W = Read/Write; R = Read only  
50. THRES_CFG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23-20  
RESERVED  
R
0h  
Reserved  
19-10  
THRES3  
R/W  
R/W  
0h  
0h  
10-bits value of threshold 3:  
Bit10: LSB  
Bit19: MSB  
9-0  
THRES2  
10-bits value of threshold 2  
Bit0: LSB  
Bit9: MSB  
版权 © 2017, Texas Instruments Incorporated  
109  
 
 
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
8.6.40 THRES_CFG2 Register (Offset = 2Bh) [reset = 0h]  
THRES_CFG2 is shown in 74 and described in 51.  
Return to Summary Table.  
74. THRES_CFG2 Register  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
THRES5  
R-0h  
THRES4  
R-0h  
LEGEND: R/W = Read/Write; R = Read only  
51. THRES_CFG2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23-20  
RESERVED  
R
0h  
Reserved  
19-10  
THRES5  
R/W  
R/W  
0h  
0h  
10-bits value of threshold 5:  
Bit10: LSB  
Bit19: MSB  
10-1  
THRES4  
10-bits value of threshold 4:  
Bit0: LSB  
Bit9: MSB  
110  
版权 © 2017, Texas Instruments Incorporated  
 
 
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
8.6.41 THRES_CFG3 Register (Offset = 2Ch) [reset = X]  
THRES_CFG3 is shown in 75 and described in 52.  
Return to Summary Table.  
75. THRES_CFG3 Register  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
THRES6  
R-0h  
THRES7  
R-0h  
LEGEND: R/W = Read/Write; R = Read only  
52. THRES_CFG3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31-20  
RESERVED  
R
0h  
Reserved  
19-10  
THRES7  
R/W  
R/W  
0h  
0h  
10-bits value of threshold 7:  
Bit10: LSB  
Bit19: MSB  
9-0  
THRES6  
10-bits value of threshold 6:  
Bit0: LSB  
Bit9: MSB  
版权 © 2017, Texas Instruments Incorporated  
111  
 
 
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
8.6.42 THRES_CFG4 Register (Offset = 2Dh) [reset = X]  
THRES_CFG4 is shown in 76 and described in 53.  
Return to Summary Table.  
76. THRES_CFG4 Register  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
THRES9  
R-0h  
THRES8  
R-0h  
LEGEND: R/W = Read/Write; R = Read only  
53. THRES_CFG4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31-20  
RESERVED  
R
0h  
Reserved  
19-10  
THRES9  
R/W  
R/W  
0h  
0h  
10-bits value of threshold 9:  
Bit10: LSB  
Bit19: MSB  
9-0  
THRES8  
10-bits value of threshold 8:  
Bit0: LSB  
Bit9: MSB  
112  
版权 © 2017, Texas Instruments Incorporated  
 
 
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
8.6.43 THRESMAP_CFG0 Register (Offset = 2Eh) [reset = 0h]  
THRESMAP_CFG0 is shown in 77 and described in 54.  
Return to Summary Table.  
77. THRESMAP_CFG0 Register  
23  
11  
22  
THRESMAP_IN7  
R/W-0h  
21  
9
20  
8
19  
THRESMAP_IN6  
R/W-0h  
18  
6
17  
5
16  
THRESMAP_IN5  
R/W-0h  
15  
3
14  
2
13  
THRESMAP_IN4  
R/W-0h  
12  
0
10  
7
4
1
THRESMAP_IN3  
R/W-0h  
THRESMAP_IN2  
R/W-0h  
THRESMAP_IN1  
R/W-0h  
THRESMAP_IN0  
R/W-0h  
LEGEND: R/W = Read/Write  
54. THRESMAP_CFG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23-21  
THRESMAP_IN7  
R/W  
0h  
0h = THRES0  
1h = THRES1  
2h = THRES2  
3h = THRES3  
4h = THRES4  
5h = THRES5  
6h = THRES6  
7h = THRES7  
20-18  
17-15  
14-12  
THRESMAP_IN6  
THRESMAP_IN5  
THRESMAP_IN4  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h = THRES0  
1h = THRES1  
2h = THRES2  
3h = THRES3  
4h = THRES4  
5h = THRES5  
6h = THRES6  
7h = THRES7  
0h = THRES0  
1h = THRES1  
2h = THRES2  
3h = THRES3  
4h = THRES4  
5h = THRES5  
6h = THRES6  
7h = THRES7  
0h = THRES0  
1h = THRES1  
2h = THRES2  
3h = THRES3  
4h = THRES4  
5h = THRES5  
6h = THRES6  
7h = THRES7  
版权 © 2017, Texas Instruments Incorporated  
113  
 
 
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
54. THRESMAP_CFG0 Register Field Descriptions (接下页)  
Bit  
Field  
Type  
Reset  
Description  
11-9  
THRESMAP_IN3  
R/W  
0h  
0h = THRES0  
1h = THRES1  
2h = THRES2  
3h = THRES3  
4h = THRES4  
5h = THRES5  
6h = THRES6  
7h = THRES7  
8-6  
5-3  
2-0  
THRESMAP_IN2  
THRESMAP_IN1  
THRESMAP_IN0  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h = THRES0  
1h = THRES1  
2h = THRES2  
3h = THRES3  
4h = THRES4  
5h = THRES5  
6h = THRES6  
7h = THRES7  
0h = THRES0  
1h = THRES1  
2h = THRES2  
3h = THRES3  
4h = THRES4  
5h = THRES5  
6h = THRES6  
7h = THRES7  
0h = THRES0  
1h = THRES1  
2h = THRES2  
3h = THRES3  
4h = THRES4  
5h = THRES5  
6h = THRES6  
7h = THRES7  
114  
版权 © 2017, Texas Instruments Incorporated  
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
8.6.44 THRESMAP_CFG1 Register (Offset = 2Fh) [reset = 0h]  
THRESMAP_CFG1 is shown in 78 and described in 55.  
Return to Summary Table.  
78. THRESMAP_CFG1 Register  
23  
11  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
RESERVED  
THRESMAP_IN12_IN17_THRES THRESMAP_IN12_IN17_THRES  
2B  
R/W-0h  
2A  
R/W-0h  
R/W-0h  
10  
9
8
7
6
5
4
3
2
1
0
THRESMAP_IN11  
R/W-0h  
THRESMAP_IN10  
R/W-0h  
THRESMAP_IN9  
R/W-0h  
THRESMAP_IN8  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only  
55. THRESMAP_CFG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23-18  
RESERVED  
R
0h  
Reserved  
17-15  
14-12  
11-9  
8-6  
THRESMAP_IN12_IN17_ R/W  
THRES2B  
0h  
0h  
0h  
0h  
0h = THRES0  
1h = THRES1  
2h = THRES2  
3h = THRES3  
4h = THRES4  
5h = THRES5  
6h = THRES6  
7h = THRES7  
THRESMAP_IN12_IN17_ R/W  
THRES2A  
0h = THRES0  
1h = THRES1  
2h = THRES2  
3h = THRES3  
4h = THRES4  
5h = THRES5  
6h = THRES6  
7h = THRES7  
THRESMAP_IN11  
R/W  
0h = THRES0  
1h = THRES1  
2h = THRES2  
3h = THRES3  
4h = THRES4  
5h = THRES5  
6h = THRES6  
7h = THRES7  
THRESMAP_IN10  
R/W  
0h = THRES0  
1h = THRES1  
2h = THRES2  
3h = THRES3  
4h = THRES4  
5h = THRES5  
6h = THRES6  
7h = THRES7  
版权 © 2017, Texas Instruments Incorporated  
115  
 
 
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
55. THRESMAP_CFG1 Register Field Descriptions (接下页)  
Bit  
Field  
Type  
Reset  
Description  
5-3  
THRESMAP_IN9  
R/W  
0h  
0h = THRES0  
1h = THRES1  
2h = THRES2  
3h = THRES3  
4h = THRES4  
5h = THRES5  
6h = THRES6  
7h = THRES7  
2-0  
THRESMAP_IN8  
R/W  
0h  
0h = THRES0  
1h = THRES1  
2h = THRES2  
3h = THRES3  
4h = THRES4  
5h = THRES5  
6h = THRES6  
7h = THRES7  
116  
版权 © 2017, Texas Instruments Incorporated  
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
8.6.45 THRESMAP_CFG2 Register (Offset = 30h) [reset = 0h]  
THRESMAP_CFG2 is shown in 79 and described in 56.  
Return to Summary Table.  
79. THRESMAP_CFG2 Register  
23  
22  
RESERVED  
R-0h  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
THRESMAP_VS1_THRES2B  
R/W-0h  
THRESMAP_VS1_THRES2A  
R/W-0h  
THRESMAP_VS0_THRES2B  
R/W-0h  
11  
10  
9
8
7
6
5
4
3
2
1
0
THRESMAP_VS0_THRES2A  
THRESMAP_IN18_IN23_THRES THRESMAP_IN18_IN23_THRES THRESMAP_IN18_IN23_THRES  
3C  
3B  
3A  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only  
56. THRESMAP_CFG2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23-21  
RESERVED  
R
0h  
Reserved  
20-18  
17-15  
14-12  
11-9  
THRESMAP_VS1_THRE R/W  
S2B  
0h  
0h  
0h  
0h  
0h = THRES0  
1h = THRES1  
2h = THRES2  
3h = THRES3  
4h = THRES4  
5h = THRES5  
6h = THRES6  
7h = THRES7  
THRESMAP_VS1_THRE R/W  
S2A  
0h = THRES0  
1h = THRES1  
2h = THRES2  
3h = THRES3  
4h = THRES4  
5h = THRES5  
6h = THRES6  
7h = THRES7  
THRESMAP_VS0_THRE R/W  
S2B  
0h = THRES0  
1h = THRES1  
2h = THRES2  
3h = THRES3  
4h = THRES4  
5h = THRES5  
6h = THRES6  
7h = THRES7  
THRESMAP_VS0_THRE R/W  
S2A  
0h = THRES0  
1h = THRES1  
2h = THRES2  
3h = THRES3  
4h = THRES4  
5h = THRES5  
6h = THRES6  
7h = THRES7  
版权 © 2017, Texas Instruments Incorporated  
117  
 
 
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
56. THRESMAP_CFG2 Register Field Descriptions (接下页)  
Bit  
Field  
Type  
Reset  
Description  
8-6  
THRESMAP_IN18_IN23_ R/W  
THRES3C  
0h  
0h = THRES0  
1h = THRES1  
2h = THRES2  
3h = THRES3  
4h = THRES4  
5h = THRES5  
6h = THRES6  
7h = THRES7  
5-3  
THRESMAP_IN18_IN23_ R/W  
THRES3B  
0h  
0h = THRES0  
1h = THRES1  
2h = THRES2  
3h = THRES3  
4h = THRES4  
5h = THRES5  
6h = THRES6  
7h = THRES7  
2-0  
THRESMAP_IN18_IN23_ R/W  
THRES3A  
0h  
0h = THRES0  
1h = THRES1  
2h = THRES2  
3h = THRES3  
4h = THRES4  
5h = THRES5  
6h = THRES6  
7h = THRES7  
118  
版权 © 2017, Texas Instruments Incorporated  
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
8.6.46 Matrix Register (Offset = 31h) [reset = 0h]  
Matrix is shown in 80 and described in 57.  
Return to Summary Table.  
80. Matrix Register  
23  
11  
22  
10  
21  
9
20  
RESERVED  
R-0h  
19  
7
18  
6
17  
16  
15  
14  
2
13  
THRES_COM  
R/W-0h  
12  
0
IN_COM_EN  
R/W-0h  
8
5
4
3
1
THRES_COM  
R/W-0h  
MATRIX  
R/W-0h  
POLL_ACT_TIME_M  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only  
57. Matrix Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23-17  
RESERVED  
R
0h  
Reserved  
16-15  
IN_COM_EN  
R/W  
0h  
0h = no interrupt generation for w.r.t. threshold THRES_COM  
1h interrupt generation on rising edge above threshold  
THRES_COM  
2h interrupt generation on falling edge below threshold  
=
=
THRES_COM  
3h = interrupt generation on falling and rising edge of threshold  
THRES_COM  
14-5  
4-3  
THRES_COM  
MATRIX  
R/W  
R/W  
0h  
0h  
10-bits value of threshold THRES_COM:  
Bit5: LSB  
Bit14: MSB  
0h = no matrix, regular inputs only  
1h = 4x4 matrix  
2h = 5x5 matrix  
3h = 6x6 matrix  
2-0  
POLL_ACT_TIME_M  
R/W  
0h  
Polling active time setting for the matrix inputs:  
0h = 64μs  
1h = 128μs  
2h = 256μs  
3h = 384μs  
4h = 512μs  
5h = 768μs  
6h = 1024μs  
7h = 1360μs  
版权 © 2017, Texas Instruments Incorporated  
119  
 
 
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
8.6.47 Mode Register (Offset = 32h) [reset = 0h]  
Mode is shown in 81 and described in 58.  
Return to Summary Table.  
81. Mode Register  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
M_IN23  
R/W-0h  
11  
M_IN22  
R/W-0h  
10  
M_IN21  
R/W-0h  
9
M_IN20  
R/W-0h  
8
M_IN19  
R/W-0h  
7
M_IN18  
R/W-0h  
6
M_IN17  
R/W-0h  
5
M_IN16  
R/W-0h  
4
M_IN15  
R/W-0h  
3
M_IN14  
R/W-0h  
2
M_IN13  
R/W-0h  
1
M_IN12  
R/W-0h  
0
M_IN11  
R/W-0h  
M_IN10  
R/W-0h  
M_IN9  
R/W-0h  
M_IN8  
R/W-0h  
M_IN7  
R/W-0h  
M_IN6  
R/W-0h  
M_IN5  
R/W-0h  
M_IN4  
R/W-0h  
M_IN3  
R/W-0h  
M_IN2  
R/W-0h  
M_IN1  
R/W-0h  
M_IN0  
R/W-0h  
LEGEND: R/W = Read/Write  
58. Mode Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23  
M_IN23  
R/W  
0h  
0h = comparator mode for IN23  
1h = ADC mode for IN23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
M_IN22  
M_IN21  
M_IN20  
M_IN19  
M_IN18  
M_IN17  
M_IN16  
M_IN15  
M_IN14  
M_IN13  
M_IN12  
M_IN11  
M_IN10  
M_IN9  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h = comparator mode for IN22  
1h = ADC mode for IN22  
0h = comparator mode for IN21  
1h = ADC mode for IN21  
0h = comparator mode for IN20  
1h = ADC mode for IN20  
0h = comparator mode for IN19  
1h = ADC mode for IN19  
0h = comparator mode for IN18  
1h = ADC mode for IN18  
0h = comparator mode for IN17  
1h = ADC mode for IN17  
0h = comparator mode for IN16  
1h = ADC mode for IN16  
0h = comparator mode for IN15  
1h = ADC mode for IN15  
0h = comparator mode for IN14  
1h = ADC mode for IN14  
0h = comparator mode for IN13  
1h = ADC mode for IN13  
0h = comparator mode for IN12  
1h = ADC mode for IN12  
0h = comparator mode for IN11  
1h = ADC mode for IN11  
0h = comparator mode for IN10  
1h = ADC mode for IN10  
0h = comparator mode for IN9  
1h = ADC mode for IN9  
8
M_IN8  
0h = comparator mode for IN8  
1h = ADC mode for IN8  
120  
版权 © 2017, Texas Instruments Incorporated  
 
 
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
58. Mode Register Field Descriptions (接下页)  
Bit  
Field  
Type  
Reset  
Description  
7
M_IN7  
R/W  
0h  
0h = comparator mode for IN7  
1h = ADC mode for IN7  
6
5
4
3
2
1
0
M_IN6  
M_IN5  
M_IN4  
M_IN3  
M_IN2  
M_IN1  
M_IN0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h = comparator mode for IN6  
1h = ADC mode for IN6  
0h = comparator mode for IN5  
1h = ADC mode for IN5  
0h = comparator mode for IN4  
1h = ADC mode for IN4  
0h = comparator mode for IN3  
1h = ADC mode for IN1  
0h = comparator mode for IN2  
1h = ADC mode for IN0  
0h = comparator mode for IN1  
1h = ADC mode for IN1  
0h = comparator mode for IN0  
1h = ADC mode for IN0  
8.7 Programming Guidelines  
When configuring the TIC12400, it is critical to follow the programming guideline summarized below (see 59)  
to ensure proper behavior of the device.  
59. TIC12400 Programming Guidelines  
Category  
Programming requirement  
Threshold setup:  
THRES2B THRES2A (for IN12 to IN17)  
THRES3C THRES3B THRES3A (for IN18 to IN22)  
THRES9 THRES8 THRES3C THRES3B THRES3A (for IN23)  
Continuous mode  
Regular polling mode  
Matrix mode (non-matrix inputs)  
Threshold setup:  
VS0_THRES2B > VS0_THRES2A  
VS1_THRES2B > VS1_THRES2A  
VS measurement  
POLL_EN=1  
IN_EN[7:4]=4’b1111; IN_EN[13:10]= 4’b1111  
MODE[7:4] = 4’b0000; MODE[13:10] = 4’b0000  
CS_SELECT[7:4]= 4’b1111; CS_SELECT[13:10]= 4’b0000  
IWETT(CSI) > IWETT (CSO):  
1. WC_CFG0[20:18] > WC_CFG0[8:6]  
2. WC_CFG0[23:21] > WC_CFG0[11:9]  
3. WC_CFG1[2:0] > WC_CFG0[14:12]  
If TW event is expected, CSO can only be set to 1mA or 2mA:  
4x4 matrix mode (MATRIX [4:3] = 2'b01)  
1. If WC_CFG0[8:6]= 3’b001: WC_CFG0[20:18]= 3’b010, 3’b011, 3’b100, 3’b101,  
3’b110, or 3’b111; If WC_CFG0[8:6]= 3’b010: WC_CFG0[20:18] = 3’b011  
2. If WC_CFG0[11:9]= 3’b001: WC_CFG0[23:21]= 3’b010, 3’b011, 3’b100, 3’b101,  
3’b110, or 3’b111; If WC_CFG0[11:9]= 3’b010: WC_CFG0[23:21] = 3’b011  
3. If WC_CFG1[2:0]= 3’b001: WC_CFG0[14:12]= 3’b010, 3’b011, 3’b100, 3’b101,  
3’b110, or 3’b111; If WC_CFG1[2:0]= 3’b010: WC_CFG0[14:12] = 3’b011  
版权 © 2017, Texas Instruments Incorporated  
121  
 
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
Programming Guidelines (接下页)  
59. TIC12400 Programming Guidelines (接下页)  
Category  
Programming requirement  
POLL_EN=1  
IN_EN[8:4]= 4’b1111; IN_EN[14:10]= 4’b1111  
MODE[8:4] = 4’b0000; MODE[14:10] = 4’b0000  
CS_SELECT[8:4]= 4’b1111; CS_SELECT[14:10]= 4’b0000  
IWETT(CSI) > IWETT (CSO):  
1. WC_CFG0[20:18] > WC_CFG0[8:6]  
2. WC_CFG0[23:21] > WC_CFG0[11:9]  
3. WC_CFG1[2:0] > WC_CFG0[14:12]  
4. WC_CFG1[5:3] > WC_CFG0[17:15]  
5x5 matrix mode (MATRIX [4:3] = 2'b10)  
If TW event is expected, CSO can only be set to 1mA or 2mA:  
1. If WC_CFG0[8:6]= 3’b001: WC_CFG0[20:18]= 3’b010, 3’b011, 3’b100, 3’b101,  
3’b110, or 3’b111; If WC_CFG0[8:6]= 3’b010: WC_CFG0[20:18] = 3’b011  
2. If WC_CFG0[11:9]= 3’b001: WC_CFG0[23:21]= 3’b010, 3’b011, 3’b100, 3’b101,  
3’b110, or 3’b111; If WC_CFG0[11:9]= 3’b010: WC_CFG0[23:21] = 3’b011  
3. If WC_CFG1[2:0]= 3’b001: WC_CFG0[14:12]= 3’b010, 3’b011, 3’b100, 3’b101,  
3’b110, or 3’b111; If WC_CFG1[2:0]= 3’b010: WC_CFG0[14:12] = 3’b011  
4. If WC_CFG1[5:3]= 3’b001: WC_CFG0[17:15]= 3’b010, 3’b011, 3’b100, 3’b101,  
3’b110, or 3’b111; If WC_CFG1[5:3]= 3’b010:WC_CFG0[17:15] = 3’b011  
POLL_EN=1  
IN_EN[9:4]= 4’b1111; IN_EN[15:10]= 4’b1111  
MODE[9:4] = 4’b0000; MODE[15:10] = 4’b0000  
CS_SELECT[9:4]= 4’b1111; CS_SELECT[15:10]= 4’b0000  
IWETT(CSI) > IWETT (CSO):  
1. WC_CFG0[20:18] > WC_CFG0[8:6]  
2. WC_CFG0[23:21] > WC_CFG0[11:9]  
3. WC_CFG1[2:0] > WC_CFG0[14:12]  
4. WC_CFG1[5:3] > WC_CFG0[17:15]  
If TW event is expected, CSO can only be set to 1mA or 2mA:  
6x6 Matrix Mode (MATRIX [4:3]= 2’b11)  
1. If WC_CFG0[8:6]= 3’b001: WC_CFG0[20:18]= 3’b010, 3’b011, 3’b100, 3’b101,  
3’b110, or 3’b111; If WC_CFG0[8:6]= 3’b010: WC_CFG0[20:18] = 3’b011  
2. If WC_CFG0[11:9]= 3’b001: WC_CFG0[23:21]= 3’b010, 3’b011, 3’b100, 3’b101,  
3’b110, or 3’b111; If WC_CFG0[11:9]= 3’b010: WC_CFG0[23:21] = 3’b011  
3. If WC_CFG1[2:0]= 3’b001: WC_CFG0[14:12]= 3’b010, 3’b011, 3’b100, 3’b101,  
3’b110, or 3’b111; If WC_CFG1[2:0]= 3’b010: WC_CFG0[14:12] = 3’b011  
4. If WC_CFG1[5:3]= 3’b001: WC_CFG0[17:15]= 3’b010, 3’b011, 3’b100, 3’b101,  
3’b110, or 3’b111; If WC_CFG1[5:3]= 3’b010: WC_CFG0[17:15] = 3’b011  
Clean Current Polling (if CCP_INx= 1 in the At least one input (standard or matrix) or the VS measurement has to be enabled: IN_EN_x=  
CCP_CFG1 register)  
1 in the IN_EN register or CONFIG [16]= 1’b1(1)  
The wetting current auto-scaling feature is only activated in the continuous mode:  
(2)  
POLL_EN= 0  
Wetting current auto-scaling (if WC_CFG1  
[22:21] != 2b’11)  
The wetting current auto-scaling only applies to 10mA or 15mA wetting currents:  
WC_INx bits = 3’b100, 3’b101, 3’b110, or 3’b111 in the WC_CFG0 and WC_CFG1  
registers.(2)  
At least one channel has to be enabled from IN0 to IN3 (IN_EN[3:0] != 4b’0000)  
Inputs IN0 to IN3 need to be configured to ADC input mode: MODE[3:0] = 4’b1111  
Inputs IN0 and IN1 need to be configured to CSO: CS SELECT [1:0]= 2b’00  
Inputs IN2 and IN3 need to be configured to CSI: CS SELECT [3:2]= 2b’11  
Wetting current diagnostic (If CONFIG  
[21:18] != 4b’0000)  
tPOLL_TIME and tPOLL_ACT_TIME settings have to meet the below requirement:  
tPOLL_TIME 1.3 ×[ tPOLL_ACT_TIME + n × 24μs + 10 μs](3)(4)  
Continuous mode  
Standard polling mode  
n: the number of enabled channels configured in register IN_EN  
tPOLL_TIME: timing setting configured in CONFIG[4:1]  
tPOLL_ACT_TIME: timing setting configured in CONFIG[8:5]  
(1) This is a soft requirement to take advantage of the clean current polling feature. The feature takes no effect otherwise.  
(2) These are soft requirements to take advantage of the wetting current auto-scaling feature. The feature takes no effect otherwise.  
(3) If WCD is enable, add additional 96μs  
(4) If CCP is enabled, add tCCP_TRAN + tCCP_TIME, where tCCP_TIME is the timing setting configured in CCP_CFG0[6:4]  
122  
版权 © 2017, Texas Instruments Incorporated  
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
Programming Guidelines (接下页)  
59. TIC12400 Programming Guidelines (接下页)  
Category  
Programming requirement  
tPOLL_TIME ,tPOLL_ACT_TIME, and tPOLL_ACT_TIME_M settings have to meet the below  
requirement:  
(3)(4)  
tPOLL_TIME > 1.3 × [ m × tPOLL_ACT_TIME_M + tPOLL_ACT_TIME + n × 24μs + 10 μs]  
n: the number of enabled channels configured in register IN_EN  
m: 16 for 4x4 matrix; 25 for 5x5 matrix; 36 for 6x6 matrix  
tPOLL_TIME: timing setting configured in CONFIG[4:1]  
tPOLL_ACT_TIME_M: timing setting configured in MATRIX[2:0]  
tPOLL_ACT_TIME: timing setting configured in CONFIG[8:5]  
Matrix polling mode  
版权 © 2017, Texas Instruments Incorporated  
123  
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TIC12400 is an advanced 24-input Multiple Switch Detection Interface (MSDI) device designed to detect  
external switch status and voltage levels by acting as an interface between the switches and the low- voltage  
microcontroller. The device offers a number of unique features to replace systems implemented with discrete  
components, providing board space savings and reduced bill of material (BOM). The device can also be  
configured into low-power polling mode, which provides significant savings on system power consumption. The  
TIC12400 is also suitable for many types of data acquisition systems with its integrated ADC, serialization, and  
digital communication capabilities.  
9.2 Digital IO Switches and Analog Voltage Monitoring  
The input stage of the TIC12400 is designed so that for an input resistance of 400 Ω on the IN0 - IN9 pins, the  
10 mA current sink setting can be used for IEC61131-2 Type1, Type 2, and Type 3 switches.  
82 depicts how the TIC12400 is used in a multiple purpose application with Digital IO Switches an analog  
sensor inputs using both the internal comparator and the ADC.  
ë{Ütt[ò  
ëolꢁꢂge  
wegulꢂꢁor  
ë{Ütt[ò  
ë{  
ë{  
Lb0  
Lb9  
400 O  
400 O  
ë55  
/LbÇ  
/ꢀ{  
{ꢀ[Y  
{L  
ë55  
/LbÇ  
/ꢀ{  
ë{Ütt[ò  
{ensor  
Lb10  
Lb23  
{ꢀ[Y  
ah{L  
aL{h  
{ensor  
{h  
ÇLꢀ12400  
aicroconꢁroller  
Copyright © 2017, Texas Instruments Incorporated  
82. Using TIC12400 to Monitor digital IO switches and analog sensor inputs  
124  
版权 © 2017, Texas Instruments Incorporated  
 
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
Digital IO Switches and Analog Voltage Monitoring (接下页)  
9.2.1 Design Requirements  
60. Example Digital IO Switch Specification  
Specification  
6.5 V VSUPPLY 18 V  
400 Ω ± 10%  
Min  
6.5 V  
Max  
18 V  
VSUPPLY  
RIN  
360 Ω  
9.2 mA  
440 Ω  
13.4 mA  
ISINK  
10 mA  
9.2.2 Detailed Design Procedure  
For digital I/O applications, the inputs must be connected to the IN0 - IN9 pins as these are the only inputs that  
have the current sink necessary to facilitate these type of switches. The external resistor must be sized so that  
the pin voltage VINX remains below the max comparator threshold of 4.7 V until the current sink is saturated by  
the pin voltage. This ensures a low will always be considered a low as the external system voltage VIN continues  
to increase. Lower comparator voltages can be used if the external components are sized to ensure that until the  
current sink is saturated, the voltage remains below the comparator threshold.  
To select the resistor for a digital I/O application, ensure the voltage on the INX pin (IN0 - IN9) remains below the  
comparator threshold until the input voltage VIN is above the OFF region defined by the IEC standard. With a  
400-Ω resistor and worst case current of 9.2 mA, a 3.68 V voltage drop is observer across the resistor. This  
keeps the VINX 3.68 V below the system input VIN, ensuring that comparator does not detect a high until VIN is out  
of the OFF region and in the ON region.  
The second use case for TIC12400 is to monitor analog input voltages from external sensors. These sensors  
could be a high or low type sensor that has a 1 or 0 representation of the output. In this case, the comparator  
mode of the input can be used. To ensure correct operation, a voltage divider may be necessary to scale the  
incoming voltage so that a low will be below the chosen comparator threshold. For reference the available  
comparator thresholds are 2 V, 2.7 V, 3 V, and 4 V.  
For multi level sensor outputs the TIC12400 internal ADC can be used to set to monitor analog input  
voltages. The following procedure can be used to setup the TIC12400 ADC inputs  
1. The first step is to set any input that will be used in a pure analog ADC mode to the 0 mA current setting.  
2. The second step is to estimate the voltage output of the sensor. The full-scale range of the 10-bit ADC is  
from 0 V to 6 V, with 6 V corresponding to the max code of 1023. A resistor divider can be used to scale  
the input voltage to meet this requirement by using VIN = VSENSOR_OUTPUT x R1/(R1+ R2) = 6 V max.  
3. The next step is to determine if a wake up feature is needed that uses the ADC thresholds. This could be  
used to wake up the system in the case that a temperature sensor has indicated a potentially damaging  
temperature that requires system interaction to fix. The TIC12400 can handle two input states on inputs  
IN0 - IN11, three input states on inputs IN12 - IN17, 4 input states on IN18 - IN22 and 6 input states on  
IN 23. Every threshold crossing can trigger an interrupt if required by the system. If no interrupt triggers  
are needed move on to step three.  
4. After the measurement is taken, the raw ADC code will be stored in the ANA_STAT registers to be read  
by the host for interpretation.  
版权 © 2017, Texas Instruments Incorporated  
125  
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
ë{Ütt[ò  
ÇL/12400  
ëLb  
ëLbó  
Lb0  
Lb9  
400 O  
400 O  
ë{Ütt[ò  
83. Digital IO Switch Input Example  
9.2.3 Application Curves  
30  
30  
VIN  
VIN  
VINX  
VINX  
25  
25  
ON  
ON  
20  
15  
10  
5
20  
15  
10  
5
OFF  
OFF  
0
0
0
5
10  
15  
0
5
10  
15  
20  
25  
30  
IIN (mA)  
IIN (mA)  
TIC1  
TIC1  
84. Type-1 Switch with 400-Ω Input Resistor  
85. Type-2 Switch with 400-Ω Input Resistor  
30  
VIN  
VINX  
25  
ON  
20  
15  
10  
5
OFF  
0
0
5
10  
15  
IIN (mA)  
TIC1  
86. Type-3 Switch with 400-Ω Input Resistor  
126  
版权 © 2017, Texas Instruments Incorporated  
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
10 Power Supply Recommendations  
There are two supply input pins for the TIC12400: VS and VDD. VS is the main power supply for the entire chip  
and is essential for all critical functions of the device. The TIC12400 is designed to operate with VS ranging from  
6.5 V to 35 V. The VDD supply is used to determine the logic level on the SPI communication interface, source  
the current for the SO driver, and sets the pull-up voltage for the CS pin. It can also be used as a possible  
external pull-up supply for the /INT pinas an alternative to the VS supply and it shall be connected to a 3 V to 5.5  
V logic supply. Removing VDD from the device disables SPI communications, but does not impact normal  
operation of the device.  
To improve stability of the supply inputs, some decoupling capacitors are recommended on the PCB. 87  
shows an example on the on-board power supply decoupling scheme. The supply voltage (VSUPPLY) is decoupled  
on the Electronic Control Unit (ECU) board using a large decoupling capacitor (CBUFF). The diode is installed to  
prevent damage to the internal system under reversed supply condition. CVS shall be installed closed to the  
TIC12400 for best decoupling performance. The voltage regulator provides a regulated voltage for the digital  
potion of the device and for the local microcontroller and its output is decoupled with CDECOUPLE. 61 lists  
recommended values for each individual decoupling capacitor shown in the system diagram.  
61. Decoupling Capacitor Recommendations  
Component  
CBUFF  
Value  
100 μF, 50V rated, ±20%  
100 nF, 50 V rated, ±10%; X7R  
100 nF, 50 V rated  
CVSUPPLY  
CVS  
CDECOUPLE  
100 nF ~ 1 μF  
ë{Üꢀꢀ[ò  
ëoltage  
wegulator  
37  
38  
19  
ë{  
ë{  
ë55  
ë55  
ÇL/12400  
87. Recommended Power Supply Decoupling  
ꢁ/Ü  
版权 © 2017, Texas Instruments Incorporated  
127  
 
 
 
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
88 illustrates an example of a PCB layout with the TIC12400. Some key considerations are:  
1. Decouple the VS and VDD pins with capacitor using recommended values from section Power Supply  
Recommendations , and place them as close to the pin as possible. Make sure that the capacitor voltage  
rating is sufficient for the VS and VDD supplies.  
2. Keep the input lines as short as possible.  
3. Use a solid ground plane to help distribute heat and reduce electromagnetic interference (EMI) noise  
pickup.  
4. Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if  
possible, and only make perpendicular crossings when necessary  
5. To achieve good thermal performance, the exposed thermal pad underneath the device must be soldered  
to the board and flooded with VIAs to ground planes. For simple double-sided PCBs where there are no  
internal layers, the surface layers can be used to remove heat. For multilayer PCBs, internal ground plane  
can be used for heat removal.  
128  
版权 © 2017, Texas Instruments Incorporated  
TIC12400  
www.ti.com.cn  
ZHCSGR5 SEPTEMBER 2017  
11.2 Layout Example  
VIA to  
ground plane  
C
C
IN13  
VS  
VIAs to ground  
plane and heat  
sink of the PCB  
IN14  
IN15  
VS  
IN12  
IN16  
IN17  
IN11  
IN10  
IN18  
IN19  
IN9  
IN8  
IN20  
AGND  
IN21  
IN7  
IN6  
IN5  
VIA to  
ground plane  
VIA to  
ground plane  
IN22  
IN23  
DGND  
IN4  
IN0  
IN1  
IN3  
IN2  
/CS  
/INT  
C
C
SCLK  
CAP_D  
VIA to  
ground plane  
SI  
CAP_PRE  
RESET  
SO  
VDD  
CAP_A  
Not to Scale  
VIA to  
ground plane  
C
R
R
VIA to ground plane  
88. Example Layout  
版权 © 2017, Texas Instruments Incorporated  
129  
TIC12400  
ZHCSGR5 SEPTEMBER 2017  
www.ti.com.cn  
12 器件和文档支持  
12.1 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.3 商标  
E2E is a trademark of Texas Instruments.  
12.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更,恕不另行通知  
和修订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航。  
130  
版权 © 2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TIC12400DCPR  
ACTIVE  
HTSSOP  
DCP  
38  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 105  
TIC12400  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Feb-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TIC12400DCPR  
HTSSOP DCP  
38  
2000  
330.0  
16.4  
6.9  
10.2  
1.8  
12.0  
16.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Feb-2019  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HTSSOP DCP 38  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
TIC12400DCPR  
2000  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DCP 38  
4.4 x 9.7, 0.5 mm pitch  
PowerPAD TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224560/B  
www.ti.com  
PACKAGE OUTLINE  
DCP0038A  
PowerPADTM TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
0
0
0
SMALL OUTLINE PACKAGE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX  
AREA  
SEATING  
PLANE  
36X 0.5  
38  
1
2X  
9
9.8  
9.6  
NOTE 3  
19  
20  
0.27  
0.17  
0.08  
38X  
4.5  
4.3  
B
C A B  
SEE DETAIL A  
(0.15) TYP  
2X 0.95 MAX  
NOTE 5  
19  
20  
2X 0.95 MAX  
NOTE 5  
0.25  
GAGE PLANE  
1.2 MAX  
39  
4.70  
3.94  
THERMAL  
PAD  
0.15  
0.05  
0.75  
0.50  
0 -8  
A
20  
DETAIL A  
TYPICAL  
1
38  
2.90  
2.43  
4218816/A 10/2018  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DCP0038A  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(3.4)  
NOTE 9  
METAL COVERED  
BY SOLDER MASK  
(2.9)  
SYMM  
38X (1.5)  
38X (0.3)  
SEE DETAILS  
38  
1
(R0.05) TYP  
36X (0.5)  
3X (1.2)  
SYMM  
39  
(4.7)  
(9.7)  
NOTE 9  
(0.6) TYP  
SOLDER MASK  
DEFINED PAD  
(
0.2) TYP  
VIA  
20  
19  
(1.2)  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 8X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
SOLDER MASK DETAILS  
4218816/A 10/2018  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged  
or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DCP0038A  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(2.9)  
BASED ON  
0.125 THICK  
STENCIL  
38X (1.5)  
38X (0.3)  
METAL COVERED  
BY SOLDER MASK  
1
38  
(R0.05) TYP  
36X (0.5)  
(4.7)  
SYMM  
39  
BASED ON  
0.125 THICK  
STENCIL  
19  
20  
SYMM  
(5.8)  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 8X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
3.24 X 5.25  
2.90 X 4.70 (SHOWN)  
2.65 X 4.29  
0.125  
0.15  
0.175  
2.45 X 3.97  
4218816/A 10/2018  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TIC12400QDCPRQ1

具有 SPI 和集成 ADC 的汽车类 35V 多开关检测接口 (MSDI) | DCP | 38 | -40 to 125
TI

TIC126

SILICON CONTROLLED RECTIFIERS
POINN

TIC126A

P-N-P-N SILICON REVERSE-BLOCKING TRIODE THYRISTORS
COMSET

TIC126A

12A, 100V, SCR
TI

TIC126A_12

P-N-P-N SILICON REVERSE-BLOCKING TRIODE THYRISTORS
COMSET

TIC126B

P-N-P-N SILICON REVERSE-BLOCKING TRIODE THYRISTORS
COMSET

TIC126B

12A, 200V, SCR
TI

TIC126C

P-N-P-N SILICON REVERSE-BLOCKING TRIODE THYRISTORS
COMSET

TIC126C

12A, 300V, SCR
TI

TIC126D

SILICON CONTROLLED RECTIFIERS
POINN

TIC126D

P-N-P-N SILICON REVERSE-BLOCKING TRIODE THYRISTORS
COMSET

TIC126D

12A, 400V, SCR
TI