TIBPLS506ACFK [TI]

OT PLD, 20ns, CQCC28;
TIBPLS506ACFK
型号: TIBPLS506ACFK
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

OT PLD, 20ns, CQCC28

时钟 输入元件 可编程逻辑
文件: 总16页 (文件大小:322K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TIBPLS506AC  
13 × 97 × 8 FIELD-PROGRAMMABLE LOGIC SEQUENCER  
SRPS003C – D3090, DECEMBER 1987 – REVISED NOVEMBER 1995  
JT OR NT PACKAGE  
(TOP VIEW)  
58-MHz Max Clock Rate  
Two Transition Complement Array Terms  
16-Bit Internal State Registers  
8-Bit Output Registers  
CLK  
I0  
V
CC  
I6  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
2
I1  
I7  
3
I2  
I8  
4
Outputs Programmable for Registered or  
Combinational Operation  
I3  
I9  
5
I4  
I5  
I10  
I11  
I12/OE  
Q7  
Q6  
Q5  
Q4  
6
7
Ideal for Waveform Generation and  
High-Performance State Machine  
Applications  
Q0  
Q1  
Q2  
Q3  
GND  
8
9
10  
11  
12  
Programmable Output Enable  
Programmable Clock Polarity  
FK OR FN PACKAGE  
(TOP VIEW)  
description  
The TIBPLS506AC is a TTL field-programmable  
state machine of the Mealy type. This state  
machine (logic sequencer) contains 97 product  
terms (AND terms) and 48 sum terms (OR terms).  
The product and sum terms are used to control the  
16-bit internal state registers and the 8-bit output  
registers.  
4
3
2
1
28 27 26  
25  
5
I2  
I3  
I4  
NC  
I5  
Q0  
Q1  
I8  
I9  
I10  
6
24  
23  
7
8
22 NC  
21 I11  
20 I12/OE  
19 Q7  
9
The outputs of the internal state registers  
(P0P15) are fed back and combined with the
inputs (I0I12) to form the AND array. In addition,  
two sum terms are complemented and fed back to  
the AND array, which allows any product m to  
be summed, complemented, and used as inut to  
the AND array.  
10  
11  
12 13 14 15 16 17 18  
NC – No internal connection  
The eight output cells can be individually  
programmed for registered or combinational  
operation. Nonregistered operation is selected by  
blowing the output multiplexer fuse. Registered  
output operation is selected by leaving the output  
multiplexer fuse intact.  
Pin 17 can be programmeunction as an input and/or an output enable. Blowing the output enable fuse lets  
pin 17 function as an output enable but does not disconnect pin 17 from the input array. When the output enable  
fuse is intact, pin 17 functions only as an input with the outputs being permanently enabled.  
The state and output registers are synchronously clocked by the fuse programmable clock input. The clock  
polarity fuse selects either postive- or negative-edge triggering. Negative-edge triggering is selected by blowing  
the clock polarity e. Leaving this fuse intact selects positive-edge triggering. After power-up, the device must  
be initialized to the desired state. When the output multiplexer fuse is left intact, registered operation is selected.  
The TIBPLS506AC is characterized for operation from 0°C to 75°C.  
PRODUCTION DATA information is current as of publication date.  
Copyright 1995, Texas Instruments Incorporated  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
1
logic diagram (positive logic)  
1
CLK  
DETAIL:  
10670  
1S  
C1  
2
0
I0  
3
I1  
4
1R  
I2  
5
5
I3  
6
Each S-R Flip-Flop  
I4  
7
10  
15  
20  
25  
I5  
23  
I6  
MUX  
1
22  
I7  
21  
I8  
20  
I9  
19  
I10  
G1  
18  
17  
I11  
PRE/OE  
Each Multiplexer  
P0  
26  
30  
36  
41  
46  
51  
10671  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
P8  
P9  
P10  
P11  
P12  
P13  
P14  
C0  
P15  
59  
60  
C
5  
1S  
1
1S  
C1  
1R  
64  
68  
72  
P14  
P0  
P1  
P2  
P3  
P4  
1S  
C1  
1R  
1S  
C1  
1R  
1S  
C1  
1R  
1S  
C1  
1R  
1S  
C1  
1R  
1S  
C1  
1R  
76  
80  
84  
88  
92  
P5  
1S  
C1  
1R  
P6  
1S  
C1  
1R  
P7  
1S  
C1  
1R  
P8  
1S  
C1  
1R  
P9  
1S  
C1  
1R  
P10  
P11  
P12  
P13  
1S  
C1  
1R  
1S  
C1  
1R  
1S  
C1  
1R  
MUX  
1
8
9
1S  
C1  
1R  
Q0  
Q1  
Q2  
Q3  
Q4  
Q5  
Q6  
Q7  
G1  
10672  
10673  
10674  
10675  
10676  
10677  
10678  
10679  
MUX  
1
1S  
C1  
1R  
96  
100  
104  
G1  
MUX  
1
10  
11  
13  
14  
15  
16  
1S  
C1  
1R  
G1  
MUX  
1
1S  
C1  
1R  
G1  
MUX  
1
1S  
C1  
1R  
1  
MUX  
1
1S  
C1  
1R  
G1  
MUX  
1
1S  
C1  
1R  
G1  
MUX  
1
1S  
C1  
1R  
108  
109  
G1  
All inputs to AND gates, exclusive-OR gates, and multiplexers with a blown link assume the logic-1 state.  
All OR gate inputs with a blown link assume the logic-0 state.  
TIBPLS506AC  
13 × 97 × 8 FIELD-PROGRAMMABLE LOGIC SEQUENCER  
SRPS003C – D3090, DECEMBER 1987 – REVISED NOVEMBER 1995  
S-R FUNCTION TABLE (see Note 1)  
CLK POLARITY FUSE CLK  
S
L
R
L
STATE REGISTER  
INTACT  
INTACT  
INTACT  
INTACT  
BLOWN  
BLOWN  
BLOWN  
BLOWN  
Q
0
L
H
L
L
H
H
L
H
H
L
INDETERMINATE  
Q
0
L
H
L
L
H
H
H
H
INDETENATE  
NOTE 1: Q is the state of the S-R registers before the active clck edge.  
0
functional block diagram (positive logic)  
CLK  
16  
2
1  
97 x 50  
C1  
16 x  
&
16  
16  
16  
8
1S  
60 x 97  
1R  
8 x MUX  
2
2
2 x  
1
1
16  
16 x  
16  
C1  
8 x  
97  
16  
8
Q0 – Q7  
8
8
8
1S  
12  
1
13  
13  
13 x  
I0 – I11  
I12/OE  
G1  
EN  
1R  
denotes fused inputs  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
4
TIBPLS506AC  
13 × 97 × 8 FIELD-PROGRAMMABLE LOGIC SEQUENCER  
SRPS003C – D3090, DECEMBER 1987 – REVISED NOVEMBER 1995  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
(see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V  
CC  
Input voltage (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 V  
Voltage applied to disabled output (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 V  
Operating free-air temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 75°C  
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
NOTE 2: These ratings apply except when programming pins during a programming cycle or during diagnostic testing.  
recommended operating conditions  
MIN NOM  
MAX  
5.25  
5.5  
UNIT  
V
V
V
V
Supply voltage  
4.75  
2
5
CC  
IH  
High-level input voltage, V  
= 5.25 V  
= 4.75 V  
V
CC  
CC  
Low-level input voltage, V  
High-level output current  
Low-level output current  
0.8  
V
IL  
I
I
3.2  
16  
mA  
mA  
OH  
OL  
Clock high  
6
6
t
w
ns  
Pulse duration  
Clock low  
Input or feedback to S/Rinputs  
Input or feedback to S/Rinputs  
Input or feedback to S/R inputs  
Input or feedback to S/R input
12  
20  
25  
0
Without C-array  
With C-array  
Setup time before CLK  
active transition  
t
ns  
su  
t
h
Hold time after CLK  
Operating free-air temperature  
ns  
T
0
25  
75  
°C  
A
The active edge of CLK is determined by the programmed state of CLK polarity fuse.  
See the OR term loading section and Figure 3.  
electrical characteristics over recommendoperating free-air temperature range (unless  
otherwise noted)  
§
PARAMETER  
TECONDITIONS  
I 8 mA  
MIN TYP  
MAX  
UNIT  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
= 4.75 V,  
= 4.75 V,  
= 4.75 V,  
= 5.25 V,  
= 5.25 V,  
= 5.25 V,  
= 5.25 V,  
= 5.25 V,  
= 5
= 5.25 V,  
1.2  
IK  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
I
I
I
= 3.2 mA  
= 16 mA  
= 2.7 V  
2.4  
3
V
OH  
OL  
OZH  
OZL  
I
OH  
OL  
0.37  
0.5  
20  
V
I
I
I
I
I
I
I
V
µA  
µA  
mA  
µA  
mA  
mA  
mA  
pF  
pF  
pF  
O
O
V
= 0.4 V  
–20  
0.1  
V = 5.5 V  
I
V = 2.7 V  
I
20  
IH  
V = 0.4 V  
I
0.25  
–130  
210  
IL  
V
O
= 0.5 V  
30  
O
See Note 3,  
V = 2 V  
Outputs open  
156  
7
CC  
C
C
C
f = 1 MHz,  
f = 1 MHz,  
f = 1 MHz,  
i
I
V = 2 V  
O
11  
14  
o
V = 2 V  
CLK  
clk  
§
All typical values are at V  
= 5 V, T = 25°C.  
A
OS  
C
This parameter approximates I . The condition V = 0.5 V takes tester noise into account. Not more than one output should be shorted at a  
time and duration of the short circuit should not exceed one second.  
O
NOTE 3: When the clock is programmed for negitive edge, then V = 4.75 V. When the clock is programmed for positive edge, then V = 0.  
I
I
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
5
TIBPLS506AC  
13 × 97 × 8 FIELD-PROGRAMMABLE LOGIC SEQUENCER  
SRPS003C – D3090, DECEMBER 1987 – REVISED NOVEMBER 1995  
switching characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted)  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
TEST CONDITION  
MIN TYP  
MAX  
UNIT  
MHz  
ns  
Without C-array  
With C-array  
58  
33  
45  
28.5  
6
65  
45  
60  
40  
f
max  
External feedback without C-array  
External feedback with C-array  
R1 = 300 Ω,  
R2 = 390 Ω,  
See Figure 5  
Q (nonregistered)  
25  
10  
20  
10  
10  
CLK  
t
pd  
Q (registered)  
3
I or Feedback  
OE↓  
Q (nonregistered)  
6
ns  
ns  
ns  
t
t
Q
Q
1
1
6
6
en  
OE↑  
dis  
All typical values are at V  
= 5 V, T = 25°C.  
A
CC  
calculations section.  
See the f  
max  
f
calculations  
max  
The following is a brief description of how the different operating frequencies can be achieved when using the  
TIBPLS506A.  
1
f
without C-(complementary) array =  
where setup time t before CLK at the S/R  
su  
max  
t
t
LK to Q  
su  
register inputs = 12 ns and propagation delay time t CLK to Q for the internal S/R registers = 5ns (difference  
pd  
in t from CLK and feedback, 25 to 20).  
pd  
1
1
Thus: f  
for this condition  
58 MHz.  
max  
(12 + 5) ns  
17 ns  
1
f
with the C-array =  
where t setup time before CLK at the S/R register  
su  
max  
t
t
LK to Q  
su  
pd  
inputs = 25 ns and propagation delay time t CLK to Q for the internal S/R registers = 5 ns (difference in t  
from CLK and feedback, 25 to 20)  
pd  
pd  
1
1
Thus: f  
for this condition  
33 MHz.  
where setup time t before CLK at the  
max  
(25 + 5) ns  
30 ns  
1
f
external feedback without the C-array =  
max  
su  
t
t
CLK to Q  
su  
pd  
S/R register inputs = 12 ns and propagation delay time t CLK to Q for the internal S/R registers = 10 ns  
pd  
1
1
Thus: f  
for this con
45 MHz.  
max  
(12 + 10) ns  
22 ns  
1
f
external feedback with the C-array =  
where setup time t before CLK at the S/R  
max  
su  
t
t
CLK to Q  
su  
register inputs = 25 ns and propagation delay time t CLK to Q for the internal S/R registers = 10 ns.  
pd  
pd  
1
1
Thus: f  
for this condition  
28.5 MHz.  
max  
(25 + 10) ns  
35 ns  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
6
TIBPLS506AC  
13 × 97 × 8 FIELD-PROGRAMMABLE LOGIC SEQUENCER  
SRPS003C – D3090, DECEMBER 1987 – REVISED NOVEMBER 1995  
Dedicated Inputs  
a, b  
t
Min Clock Period for This Path  
Internal SRs  
min(2)  
c
a
C Array  
b, c  
SR  
SR  
Feedback Lines  
t
I to Internal S or R,  
su(a)  
Data Through C Array  
CLK  
SR  
SR  
t
Min Clock Period  
min(3)  
for This Path  
t
I to Internal S or R  
su(2)  
CLK Internal  
Output SRs  
CLK  
SR  
t
Min Clock Period  
min(1)  
for This Path  
t
CLK Internal to Output Response  
pd(3)  
SR  
SR  
t
or t  
min(c)  
su(b)  
t
t
or t  
pd(c)  
pd(b)  
pd(2)  
CLK to Q Pin  
t
I to Output S or R  
su(1)  
t
I to Output Pin  
pd(1)  
Dedicated Inputs  
Output Pin  
Figure 1. Timing Model  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
7
TIBPLS506AC  
13 × 97 × 8 FIELD-PROGRAMMABLE LOGIC SEQUENCER  
SRPS003C – D3090, DECEMBER 1987 – REVISED NOVEMBER 1995  
glossary — timing model  
t
t
t
t
Maximum time interval from the time a signal edge is received at any input pin to the time any logically  
affected combinational output pin delivers a response.  
pd(1)  
pd(2)  
pd(3)  
Maximum time interval from a positive edge on the clock input pin to data delivery on the output pin  
corresponding to any output SR register.  
Maximum time interval from the positive edge on the clock input pin to the response on any logically  
affected combinational configured output (at the pin), where data origin is any internal SR register.  
) — Maximum time interval from the time a signal edge is received at any input pin to the time any logically  
affected combinational output pin delivers a response, where data passes through a C-array once  
before reaching the affected output.  
pd(b  
t
Maximum time interval from the positive edge on the clock input pin to the response on any logically  
affected combinational configured output (at the pin), where data origin is any internal SR register  
and data passes once through a C-array before reaching an affected output.  
pd(c)  
t
t
t
Minimum time interval that must be allowed between the data edge on any dedicated input and the  
active clock edge on the clock input pin when data affects the S or R line of any output SR register.  
su(1)  
su(2)  
su(a)  
Minimum time interval that must be allowed between the data edge on any dedicated input and the  
active clock edge on the clock input pin when ta affects the S or R line of any internal SR register.  
Minimum time interval that must be allowed between the data edge on any dedicated input and the  
active clock edge on the clock input pin whata passes once through a C-array before reaching  
an affected S or R line on any internal SR register.  
t
Minimum time interval that must be allowed between the data edge on any dedicated input and the  
active clock edge on the clock input n when data passes once through a C-array before reaching  
an affected S or R line on any outpuregister.  
su(b)  
t
t
t
— Minimum clock period (or 1/[maximum frequency]) that the device will accommodate when using  
feedback from any internal SR rister or counter bit to feed the S or R line of any output SR register.  
min(1)  
min(2)  
min(3)  
— Minimum clock period (or 1/[maxmum frequency]) that the device will accommodate when using  
feedback from any internal SR register to feed the S or R line of any internal SR register.  
— Minimum clock period (or 1/[maximum frequency]) that the device will accommodate when using  
feedback from any internal SR register to feed the S or R line of any internal SR register and data  
passes once through a C-array before reaching an affected S or R line on any internal SR register.  
t
— Minimum clock period (or 1/[maximum frequency]) that the device will accommodate when using  
feedback from any internal SR register to feed the S or R line of any output SR register and data  
passes once through a C-array before reaching an affected S or R line on any output SR register.  
min(c)  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
8
TIBPLS506AC  
13 × 97 × 8 FIELD-PROGRAMMABLE LOGIC SEQUENCER  
SRPS003C – D3090, DECEMBER 1987 – REVISED NOVEMBER 1995  
PARAMETER VALUES FOR TIMING MODEL  
t
t
t
= 20 ns  
= 10 ns  
= 25 ns  
t
t
t
t
= 12 ns  
= 12 ns  
= 25 ns  
= 25 ns  
t
t
t
t
= 20 ns  
= 20 ns  
= 25 ns  
= 25 ns  
pd(1)  
pd(2)  
pd(3)  
su(1)  
su(2)  
su(a)  
su(b)  
min(1)  
min(2)  
min(3)  
min(c)  
INTERNAL NODE NUMBERS  
RESET 25-32 P0-P15  
Q0-Q7  
SET 33-48  
C0  
C1  
65  
66  
RESET 49-64  
Use tsu = 20 ns for applications where the setup time for S/Rinputs are required.  
diagnostics  
A diagnostic mode is provided with these devices that allows the user to inspect the contents of the state  
registers. The step-by-step procedures required to use the diagnostics follow.  
Step 1.  
Step 2.  
Step 3.  
Disable all outputs by taking pin 17 (OE) high (see Note 4).  
Take pin 8 (Q0) to V to enable the diagnostics test sequence.  
Apply appropriate levels of voltage to pins 11 (Q3), 13 (Q4), and 14 (Q5) to select the desired  
state register (see Table 1).  
IHH  
The voltage level monitored on pin 9 will indicate the of the selected state register.  
NOTE 4: If pin 17 is being used as an input to the array, then pin 7 (I5) must be taken to V  
before pin 17 is taken high.  
IHH  
V
IHH  
I5  
Pin 7  
V
IH  
OE  
Pin 17  
100 ns  
V
V
OHH  
OH  
Q0  
Pin 8  
V
V
OL  
100 ns  
OHH  
V
OH  
Q3, Q4, Q5  
Pins 11, 13, 14  
V
V
OL  
100 ns  
OH  
Q1  
Pin 9  
V
OL  
V
IHH  
= 10.25 V min, 10.5 V nom, 10.75 V max  
Figure 2. Diagnostics Waveforms  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
9
TIBPLS506AC  
13 × 97 × 8 FIELD-PROGRAMMABLE LOGIC SEQUENCER  
SRPS003C – D3090, DECEMBER 1987 – REVISED NOVEMBER 1995  
Table 1. Addressing State Registers  
During Diagnostics  
REGISTER BINARY ADDRESS  
BURIED REGISTER  
PIN 11  
PIN13  
L
PIN 14  
L
SELECTED  
C1  
L
L
L
H
P15  
C0  
L
L
HH  
L
L
H
P14  
P0  
L
H
H
L
H
HH  
L
P1  
L
HH  
HH  
HH  
L
P2  
L
H
P3  
L
HH  
L
P4  
H
H
H
H
H
H
H
H
H
P5  
L
H
P6  
L
HH  
L
P7  
H
P8  
H
H
P9  
H
HH  
L
P10  
P11  
P12  
P13  
HH  
HH  
HH  
H
HH  
V
IHH  
= 10.25 V min, 10.5 V nom, 10.75 V max  
programming information  
Texas Instruments programmable logic devices can be programmed using widely available software and  
inexpensive device programmers.  
Complete programming specifications, algithms, and the latest information on hardware, software, and  
firmware are available upon request. Information on programmers that are capable of programming Texas  
Instruments programmable logic is also available, upon request, from the nearest TI sales office, local  
authorized TI distributor, or by calling Texas Instruments at (214) 997-5666.  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
10  
TIBPLS506AC  
13 × 97 × 8 FIELD-PROGRAMMABLE LOGIC SEQUENCER  
SRPS003C – D3090, DECEMBER 1987 – REVISED NOVEMBER 1995  
OR term loading  
As shown in Figure 3 and by the f  
calculations, f  
is calculated as:  
is affected by the number of terms connected to each  
max  
max  
OR array line. Theoretically, f  
max  
1
f
=
max  
t
t
CLK to Q  
su  
pd  
Since the setup time (input or feedback to S/R) varies with the number of terms connected to each OR array  
line, (due to capacitance loading) f will also vary. Figure 3 illustrates the relationship between the number of  
max  
terms connected per OR line and the setup time.  
Use Figure 3 to determine the worst-case setup time for a particular appation. Identify the OR array line with  
the maximum number of terms connected. Count the number of terms ane the graph to determine the setup  
time.  
WORST-CASE SETUP TIME  
(input or feedback to SR)  
vs  
”OR” TERM LOAD  
20  
V
T
= 4.75 V  
CC  
= 75°C  
A
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
0
20  
40  
60  
80  
100  
Maximum Number of OR Terms Connected  
Figure 3  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
11  
TIBPLS506AC  
13 × 97 × 8 FIELD-PROGRAMMABLE LOGIC SEQUENCER  
SRPS003C – D3090, DECEMBER 1987 – REVISED NOVEMBER 1995  
f
with external feedback  
max  
The configuration shown is a typical state-machine design with feedback signals sent off-chip. This external  
feedback could go back to the device inputs or to a second device in a multi-chip state machine. The slowest  
path defining the clock period is the sum of the clock-to-output delay time and the setup time for the input or  
feedback signals (t + t CLK to Q).  
su  
pd  
1
Thus: f  
with external feedback =  
max  
t
t
CLK to Q  
su  
pd  
Internal  
SR  
Registers  
CLK  
Logic  
Array  
Input  
Output  
SR  
Registers  
Next Device  
t
pd  
t
su  
CLK to Q  
Figure 4  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
12  
TIBPLS506AC  
13 × 97 × 8 FIELD-PROGRAMMABLE LOGIC SEQUENCER  
SRPS003C – D3090, DECEMBER 1987 – REVISED NOVEMBER 1995  
PARAMETER MEASUREMENT INFORMATION  
5 V  
S1  
R1  
From Output  
Under Test  
Test  
Point  
C
R2  
L
(see Note A)  
LOAD CIRCUIT FOR  
3-STATE OUTPUTS  
3.5 V  
0.3 V  
High-Level  
Pulse  
3.5 V  
0.3 V  
1.5 V 1.5 V  
Timing  
Input  
1.5 V  
t
w
t
h
t
su  
3.5 V  
0.3 V  
3.5 V  
0.3 V  
Data  
Input  
Lw-Level  
Pulse  
1.5 V  
1.5 V 1.5 V  
1.5 V  
VOLTAGE WAVEFORMS  
SETUP AND HOLD TIMES  
VOLTAGE WAVEFORMS  
PULSE DURATIONS  
3.5 V  
0.3 V  
Output  
Control  
(low–level  
3.5 V  
0.3 V  
1.5 V  
1.5 V  
1.5 V  
1.5 V  
Input  
enabling)  
t
en  
t
pd  
t
t
t
dis  
pd  
V
OH  
In-Phase  
Output  
3.3 V  
1.5 V  
1.5 V  
1.5 V  
Waveform 1  
S1 Closed  
(see Note B)  
1.5 V  
V
+0.5 V  
OL  
V
OL  
V
OL  
t
pd  
pd  
t
dis  
V
OH  
t
en  
Out-of-Phase  
Output  
(see Note D)  
1.5 V  
V
OH  
Waveform 2  
S1 Open  
(see Note B)  
V
OL  
1.5 V  
V
–0.5 V  
OH  
0 V  
VOLTAGE WAVEFORMS  
PROPAGATION DELMES  
VOLTAGE WAVEFORMS  
ENABLE AND DISABLE TIMES, 3-STATE OUTPUTS  
NOTES: A. C includes probe and jig capacitance and is 50 pF for t and t , 5 pF for t  
pd en dis  
.
L
B. Waveform1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2  
is for an output wh internal conditions such that the output is high except when disabled by the output control.  
C. All input pulses ve the following characteristics: PRR 1 MHz, t = t 2 ns, duty cycle = 50%.  
r
f
D. When measuring propagation delay times of 3-state outputs, switch S1 is closed.  
E. Equivalent loads may be used for testing.  
Figure 5. Load Circuit and Voltage Waveforms  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
13  
TIBPLS506AC  
13 × 97 × 8 FIELD-PROGRAMMABLE LOGIC SEQUENCER  
SRPS003C – D3090, DECEMBER 1987 – REVISED NOVEMBER 1995  
TYPICAL CHARACTERISTICS  
SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
200  
175  
150  
125  
V
CC  
= 5.25 V  
V
CC  
= 5 V  
100  
75  
V
CC  
= 4.75 V  
50  
25  
0
0
25  
50  
75  
T
A
– Free-Air Temperature – °C  
Figure 6  
POWER DISSIPATION  
vs  
REQUENCY  
1000  
950  
900  
800  
750  
700  
T
= 0°C  
A
T
= 25°C  
A
T
= 50°C  
A
1
2
4
7
10  
20  
40  
70 100  
f – Frequency – MHz  
Figure 7  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
14  
TIBPLS506AC  
13 × 97 × 8 FIELD-PROGRAMMABLE LOGIC SEQUENCER  
SRPS003C – D3090, DECEMBER 1987 – REVISED NOVEMBER 1995  
TYPICAL CHARACTERISTICS  
PROPAGATION DELAY TIME  
PROPAGATION DELAY TIME  
vs  
vs  
SUPPLY VOLTAGE  
LOAD CAPACITANCE  
30  
25  
20  
15  
10  
5
20  
18  
16  
14  
12  
10  
8
V
= 5 V  
CC  
R1 = 300 Ω  
R2 = 390 Ω  
T
A
t
(I or Feedback to Q)  
= 25°C  
PHL  
t
(I or Feedback to Q)  
PLH  
t
t
t
t
(I or Feedback to Q)  
(I or Feedback to Q)  
(CLK to Q)  
t
(CLK to Q)  
PHL  
PLH  
PLH  
PHL  
PLH  
6
t
(CLK to Q)  
PHL  
(CLK to Q)  
4
2
0
R1 = 300 Ω  
R2 = 390 Ω  
C
= 50 pF  
= 25°C  
L
T
A
0
0
100  
200  
300  
400  
500  
600  
4.75  
5
5.25  
C
– Load Capacitance – pF  
V
CC  
– Supply Voltage – V  
L
Figure 9  
Figure 8  
PROPAGATION DELAY TIME  
vs  
PROPAGATION DELAY TIME  
vs  
FREE-AIR TEMPERATURE  
NUMBER OF OUTPUTS SWITCHING  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
t
(I or Feedback to Q)  
PHL  
t
(I or Feedback to Q)  
PHL  
t
(I or Feedback to Q)  
PLH  
t
(I or Feedback to Q)  
PLH  
t
t
(CLK to Q)  
(CLK to Q)  
PLH  
PHL  
t
(CLK to Q)  
PLH  
6
6
t
(CLK to Q)  
PHL  
V
= 5 V  
CC  
4
2
0
4
2
0
V
= 5 V  
R1 = 300 Ω  
R2 = 390 Ω  
R1 = 300 Ω  
R2 = 390 Ω  
CC  
C
T
= 50 pF  
L
C
= 50 pF  
= 25°C  
L
A
0
25  
50  
75  
0
1
2
3
4
5
6
7
8
– Free-Air Temperature – °C  
Number of Outputs Switching  
Figure 10  
Figure 11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
15  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1998, Texas Instruments Incorporated  

相关型号:

TIBPLS506ACFN

13 × 97 × 8 FIELD-PROGRAMMABLE LOGIC SEQUENCER
TI

TIBPLS506ACJT

OT PLD, 20ns, CDIP24
TI

TIBPLS506ACNT

13 X 97 X 8 Field-Programmable Logic Sequencer 24-PDIP
TI

TIBPLS506CFK

OT PLD, 6ns, CQCC28
TI

TIBPLS506CFN

OT PLD, 6ns, PQCC28
TI

TIBPLS506CJT

OT PLD, 6ns, CDIP24
TI

TIBPLS506CNT

OT PLD, 6ns, PDIP24
TI

TIBPLS506MFK

OT PLD, 6ns, CQCC28
TI

TIBPLS506MJT

OT PLD, 6ns, CDIP24
TI

TIBPSG507AC

13 × 80 × 8 PROGRAMMABLE SEQUENCE GENERATOR
TI

TIBPSG507ACFK

OT PLD, 20ns, CQCC28
TI

TIBPSG507ACFN

13 X 80 X 8 Programmable Sequence Generator 28-PLCC
TI