THS6302 [TI]

双端口 G.Fast 和 G.mgFast DSL 线路驱动器;
THS6302
型号: THS6302
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

双端口 G.Fast 和 G.mgFast DSL 线路驱动器

驱动 驱动器
文件: 总29页 (文件大小:1691K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
THS6302  
ZHCSNF4A JUNE 2016 REVISED FEBRUARY 2021  
THS6302 双端口、G.Fast G.mgFast DSL 线路驱动器  
1 特性  
3 说明  
专为 G.Fast 106MHz212MHz DSL 模式而设计  
兼容 G.mgFast 424MHz  
支持传统 VDSL ADSL2+ 应用  
适用于 G.Fast 和传统应用的出色 MTPR线路功  
= 8dBm):  
THS6302 是一款采用电流反馈架构的双端口差分线路  
驱动器专为 G.Fast 和各种数字用户线路 (DSL) 系统  
而设计。该器件适用于 G.Fast 数字用户线路系统这  
些系统支持本地离散多音调制 (DMT) 信号并支持带宽  
高达 212MHz 8dBm 线路功率具有出色的线性特  
性。  
ADSL2+ = 75dB  
VDSL-17a = 74dB  
VDSL-30a = 70dB  
该器件的独特架构可实现超小的静态电流同时仍然实  
现超高线性度。对于并不需要该放大器全部性能的线路  
驱动模式该器件的内在偏置设置可提供更高的节能效  
果。为了进一步提高灵活性并节省更多电力可以通过  
连接到一个器件引脚的外部偏置电阻器来调节两个端口  
的总静态电流。该器件还具有两种线路端接模式以便  
在非常低的功耗下保持阻抗匹配。  
G.Fast 106MHz = 60dB  
G.Fast 212MHz = 48dB  
多种电源模式可适应不同外形  
可通过外部电阻器调节偏置电流  
差分增益11V/V  
线性输出电流80mA最小值)  
低功率线路端接模式<7mA  
掉电模式  
THS6302 是适用于 DSL 系统中 CO局端应用的双  
端口器件类似于适用于 CPE客户驻地设备DSL  
应用的单端口 THS6301 器件。  
12V 技术支持高功率输出  
12.6V 最大工作电压  
THS6302 器件采用 4mm x 5mm 28 引脚 VQFN 封  
装。  
2 应用  
器件信息(1)  
G.Fast 和传统 DSL 线路驱动器  
封装尺寸标称值)  
器件型号  
THS6302  
封装  
VQFN (28)  
兼容 G.mgFast 的线路驱动器  
通用宽带线路驱动器  
4.00mm × 5.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
Channel A  
Channel B  
1M 25M 50M 75M 100M 125M 150M 175M 200M 225M  
Frequency (Hz)  
D001  
多音功率比 (MTPR) 模式G.Fast212MHz8dBm)  
本文档旨在为方便起见提供有关 TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOS746  
 
 
 
THS6302  
www.ti.com.cn  
ZHCSNF4A JUNE 2016 REVISED FEBRUARY 2021  
Table of Contents  
7.4 Device Functional Modes..........................................15  
7.5 Programming............................................................ 16  
8 Application and Implementation..................................17  
8.1 Application Information............................................. 17  
8.2 Typical Application.................................................... 17  
9 Power Supply Recommendations................................19  
10 Layout...........................................................................20  
10.1 Layout Guidelines................................................... 20  
10.2 Layout Example...................................................... 20  
11 Device and Documentation Support..........................21  
11.1 接收文档更新通知................................................... 21  
11.2 支持资源..................................................................21  
11.3 Trademarks............................................................. 21  
11.4 静电放电警告...........................................................21  
11.5 术语表..................................................................... 21  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics.............................................5  
6.6 Switching Characteristics............................................7  
6.7 Typical Characteristics................................................8  
7 Detailed Description......................................................14  
7.1 Overview...................................................................14  
7.2 Functional Block Diagram.........................................14  
7.3 Feature Description...................................................15  
Information.................................................................... 21  
4 Revision History  
Changes from Revision * (June 2016) to Revision A (February 2021)  
Page  
首次公开发布量产数据表.................................................................................................................................... 1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: THS6302  
 
THS6302  
www.ti.com.cn  
ZHCSNF4A JUNE 2016 REVISED FEBRUARY 2021  
5 Pin Configuration and Functions  
IREF  
INA+  
INAœ  
GND  
GND  
INBœ  
INB+  
NC  
1
2
3
4
5
6
7
8
22  
21  
20  
19  
18  
17  
16  
15  
NC  
GND  
VS  
VS  
Thermal  
Pad  
VS  
GND  
VS  
NC  
Not to scale  
5-1. RHF Package 28-Pin VQFN Top View  
5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
IREF  
NO.  
1
Bias current reference pin  
Positive input for channel A  
Negative input for channel A  
Positive input for channel B  
Negative input for channel B  
Positive output for channel A  
Negative output for channel A  
Positive output for channel B  
Negative output for channel B  
Most significant bit (MSB) of channel A  
Least significant bit (LSB) of channel A  
MSB of channel B  
INA+  
2
I
3
I
I
INA–  
INB+  
7
6
I
INB–  
OUTA+  
OUTA–  
OUTB+  
OUTB–  
M11  
27  
25  
10  
12  
28  
26  
9
O
O
O
O
I
M12  
I
M21  
I
M22  
11  
I
LSB of channel B  
VS  
16, 18, 19, 20  
4, 5, 17, 21  
Positive supply voltage connection  
Ground  
GND  
8, 13, 14, 15,  
22, 23, 24  
NC  
Not connected  
Thermal pad  
Device thermal pad, connected to ground  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: THS6302  
 
THS6302  
www.ti.com.cn  
ZHCSNF4A JUNE 2016 REVISED FEBRUARY 2021  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)  
.
MIN  
MAX  
13.2  
5.5  
UNIT  
Supply voltage  
VS pin to GND (all modes)  
M11, M12, M21, M22  
V
V
V
Digital inputs to GND  
Analog inputs to GND  
Continuous power dissipation  
Storage temperature, Tstg  
0.3  
0.3  
12  
VINA+, VINA, VINB+, VINB–  
See 6.4  
150  
°C  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted).  
MIN  
11.4  
40  
40  
NOM  
MAX  
UNIT  
Power-supply voltage range  
Operating junction temperature  
Operating ambient temperature  
12  
12.6  
125  
85  
V
TJ  
°C  
°C  
TA  
6.4 Thermal Information  
THS6302  
THERMAL METRIC(1)  
RHF (VQFN)  
UNIT  
28 PINS  
35  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
27  
6.8  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ψJT  
6.6  
ψJB  
RθJC(bot)  
2.4  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: THS6302  
 
 
 
 
 
 
 
 
 
THS6302  
www.ti.com.cn  
ZHCSNF4A JUNE 2016 REVISED FEBRUARY 2021  
6.5 Electrical Characteristics  
At TA = 25°C, VS pin = 12 V, GND = 0 V, gain = 11 V/V, 100-Ω load, RSERIES = 47.5 Ω, RIREF = 75 kΩ, CIREF = 100 pF,  
G.Fast 106-MHz bias mode, PAR = 15 dB, and output power measured at input of transformer (1:1) with no assumed  
transformer insertion losses (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AC PERFORMANCE  
VOUT = 15 VPP, ADSL2+ bias mode  
140  
180  
VOUT = 15 VPP, VDSL 17a bias mode  
LSBW  
Large-signal bandwidth  
MHz  
VOUT = 15 VPP, G.Fast 106-MHz bias mode  
VOUT = 15 VPP, G.Fast 212-MHz bias mode  
ADSL2+ bias mode, 4 kHz to 2.208 MHz  
VDSL2-17a bias mode, 4 kHz to 17.6 MHz  
VDSL2-30a bias mode, 4 kHz to 30 MHz  
G.Fast 106-MHz bias mode, 4 kHz to 106 MHz  
G.Fast 212-MHz bias mode, 4 kHz to 212 MHz  
ADSL2+ bias mode, 10%-90% 15-VPP pulse  
VDSL2-17a bias mode, 10%-90% 15-VPP pulse  
VDSL2-30a bias mode, 10%-90% 15-VPP pulse  
220  
320  
±0.001  
±0.02  
±0.02  
±0.02  
±0.2  
Gain flatness referenced to  
1 MHz  
dB  
5100  
6600  
6600  
SR  
Slew rate  
V/µs  
G.Fast 106-MHz bias mode,  
10%-90% 15-VPP pulse  
7400  
G.Fast 212-MHz bias mode,  
10%-90% 15-VPP pulse  
10600  
f > 100 kHz, ADSL2+ bias mode  
4.3  
3.9  
3.9  
3.7  
3.5  
f > 100 kHz, VDSL2-17a bias mode  
f > 100 kHz, VDSL2-30a bias mode  
f > 100 kHz, G.Fast 106-MHz bias mode  
f > 100 kHz, G.Fast 212-MHz bias mode  
en  
Input-referred voltage noise  
nV/Hz  
Noise floor  
(line-termination mode)  
Output-referred, bias 00 and bias Z0  
dBm/ Hz  
dB  
152.5  
66  
66  
66  
72  
72  
70  
67  
58  
50  
127  
92  
82  
85  
75  
Line power = 8 dBm, f 552 kHz  
Line power = 8 dBm, f 1.104 MHz  
Line power = 8 dBm, f 2.208 MHz  
Line power = 8 dBm, f 14 MHz  
Line power = 8 dBm, f 17.6 MHz  
Line power = 8 dBm, f 30 MHz  
Line power = 4 dBm, f 106 MHz  
Line power = 8 dBm, f 106 MHz  
Line power = 8 dBm, f 212 MHz, bias 10  
ADSL2+ bias mode  
ADSL2+ MTPR  
VDSL2-17a MTPR  
dB  
dB  
dB  
dB  
VDSL2-30a MTPR  
G.Fast 106-MHz MTPR  
G.Fast 212-MHz MTPR  
VDSL2-17a bias mode  
Crosstalk  
VDSL2-30a bias mode  
dB  
G.Fast 106-MHz bias mode  
G.Fast 212-MHz bias mode  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: THS6302  
 
THS6302  
www.ti.com.cn  
ZHCSNF4A JUNE 2016 REVISED FEBRUARY 2021  
6.5 Electrical Characteristics (continued)  
At TA = 25°C, VS pin = 12 V, GND = 0 V, gain = 11 V/V, 100-Ω load, RSERIES = 47.5 Ω, RIREF = 75 kΩ, CIREF = 100 pF,  
G.Fast 106-MHz bias mode, PAR = 15 dB, and output power measured at input of transformer (1:1) with no assumed  
transformer insertion losses (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DC PERFORMANCE  
AV  
Differential gain  
At dc, no load, all modes  
10.5  
100  
18  
11  
11.5  
100  
V/V  
mV  
VPP  
Differential output offset  
Maximum output swing  
G.Fast 106-MHz bias mode  
Differential, at dc, 200-Ω load at amplifier output  
ADSL2+ bias mode, sourcing,  
output offset < 20-mV deviation  
40  
40  
80  
80  
ADSL2+ bias mode, sinking,  
output offset < 20-mV deviation  
Linear output current  
mA  
G.Fast 212-MHz bias mode, sourcing,  
output offset < 20-mV deviation  
G.Fast 212-MHz bias mode, sinking,  
output offset < 20-mV deviation  
COMMON MODE  
Input CM bias voltage  
Output CM bias voltage  
POWER SUPPLY  
5.9  
5.9  
6.0  
6.0  
6.1  
6.1  
V
V
Maximum supply voltage  
All modes  
12.6  
V
PSRR  
Power-supply rejection ratio  
f = dc  
60  
dB  
ADSL2+ bias mode  
14.5  
19.5  
28.0  
23.0  
17.8  
39.0  
9.5  
16.5  
22.0  
32.0  
25.5  
20.0  
44.5  
10.5  
7.0  
VDSL2 bias mode  
VDSL2 high-power bias mode  
G.Fast 106-MHz bias mode  
G.Fast 106-MHz low-power bias mode  
G.Fast 212-MHz bias mode  
Line-termination high-power mode  
Line-termination low-power mode  
Power-down bias mode  
IQ  
Quiescent current per channel  
mA  
6.3  
1.35  
219  
298  
340  
525  
525  
115  
77  
1.7  
ADSL2+ bias mode, line power = 8 dBm  
VDSL2 bias mode, bias Z1  
G.Fast 106-MHz bias mode, line power = 8 dBm  
G.Fast 212-MHz bias mode, line power = 8 dBm  
G.Fast 212-MHz bias mode, line power = 7 dBm  
Line-termination high-power mode  
Line-termination low-power mode  
Power-down bias mode  
Dynamic power consumption  
mW  
19  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: THS6302  
THS6302  
www.ti.com.cn  
ZHCSNF4A JUNE 2016 REVISED FEBRUARY 2021  
6.6 Switching Characteristics  
Over operating free-air temperature range (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
VIH  
VIL  
Minimum logic high level  
Maximum logic low level  
Logic mid range  
All digital pins, high  
2.3  
All digital pins, low  
0.6  
1.6  
V
VMID  
VFloat  
IIH  
All digital pins, driven externally  
1.2  
1.3  
V
Logic self-bias voltage  
Logic high-level leakage current  
Logic low-level leakage current  
All digital pins, floating  
1.4  
110  
75  
64  
1.5  
V
All digital pins, logic level = 3.6 V  
135  
µA  
µA  
IIL  
All digital pins, logic level = ground  
95  
Line-termination mode (bias 00) to G.Fast 212-MHz mode (bias 10)  
Line-termination mode (bias Z0) to G.Fast 212-MHz mode (bias 10)  
Power-down mode (bias ZZ) to G.Fast 212-MHz mode (bias 10)  
G.Fast 212-MHz mode (bias 10) to line-termination mode (bias 00)  
G.Fast 212-MHz mode (bias 10) to line-termination mode (bias Z0)  
G.Fast 212-MHz mode (bias 10) to power-down mode (bias ZZ)  
Turn-on switching time  
Turn-off switching time  
50  
ns  
ns  
60  
76  
400  
380  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: THS6302  
 
THS6302  
www.ti.com.cn  
ZHCSNF4A JUNE 2016 REVISED FEBRUARY 2021  
6.7 Typical Characteristics  
At TA = 25 °C, VS pin = 12 V, GND = 0 V, gain = 11 V/V, 100 Ω Load, RSERIES = 47.5 Ω, PAR = 15 dB, and output power  
measured at input of transformer (1:1) with no assumed transformer insertion losses (unless otherwise noted).  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
Channel A  
Channel B  
Bias10 Ch. A  
Bias10 Ch. B  
Bias11 Ch. A  
Bias11 Ch. B  
1M 25M 50M 75M 100M 125M 150M 175M 200M 225M  
Frequency (Hz)  
1M  
20M  
40M  
60M  
Frequency (Hz)  
80M  
100M  
120M  
D001  
D002  
Line power = 8 dBm  
Line power = 8 dBm  
6-2. MTPR G.Fast 106-MHz Mode  
6-1. MTPR G.Fast 212-MHz Mode  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-70  
-72  
-74  
-76  
-78  
-80  
Bias01 Ch. A  
Bias01 Ch. B  
Bias10 Ch. A  
Bias10 Ch. B  
Bias11 Ch. A  
Bias11 Ch. B  
BiasZ1 Ch. A  
BiasZ1 Ch. B  
Bias1Z Ch. A  
Bias1Z Ch. B  
1M  
20M  
40M  
60M  
Frequency (Hz)  
80M  
100M  
120M  
1M  
5M  
10M  
15M 20M  
Frequency (Hz)  
25M  
30M  
35M  
D003  
D004  
Line power = 4 dBm  
Line power = 8 dBm  
6-4. MTPR VDSL-30a Mode  
6-3. MTPR G.Fast 106-MHz Mode  
-60  
-65  
-70  
-75  
-80  
-55  
-60  
-65  
-70  
-75  
BiasZ1 Ch. A  
BiasZ1 Ch. B  
Bias1Z Ch. A  
Bias1Z Ch. B  
Bias0Z Ch. A  
Bias0Z Ch. B  
Bias01 Ch. A  
Bias01 Ch. B  
1M  
5M  
10M  
Frequency (Hz)  
15M  
20M  
0.1M  
0.5M  
1M 1.5M  
Frequency (Hz)  
2M  
2.5M  
D005  
D006  
Line power = 8 dBm  
6-5. MTPR VDSL-17a Mode  
Line power = 8 dBm  
6-6. MTPR ADSL2+ Mode  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: THS6302  
 
THS6302  
www.ti.com.cn  
ZHCSNF4A JUNE 2016 REVISED FEBRUARY 2021  
6.7 Typical Characteristics (continued)  
At TA = 25 °C, VS pin = 12 V, GND = 0 V, gain = 11 V/V, 100 Ω Load, RSERIES = 47.5 Ω, PAR = 15 dB, and output power  
measured at input of transformer (1:1) with no assumed transformer insertion losses (unless otherwise noted).  
600  
550  
500  
450  
400  
350  
300  
250  
200  
500  
450  
400  
350  
300  
250  
200  
150  
106 MHz Bias01  
106 MHz Bias11  
106 MHz Bias10  
212 MHz Bias10  
ADSL2 Bias0Z  
ADSL2 Bias01  
VDSL17a BiasZ1  
VDSL17a Bias1Z  
VDSL30a BiasZ1  
VDSL30a Bias1Z  
-10  
-8  
-6  
-4  
-2  
Tx Power (dBm)  
0
2
4
6
8
-10  
-8  
-6  
-4  
-2  
Tx Power (dBm)  
0
2
4
6
8
D007  
D008  
6-7. G.Fast Modes Power Consumption  
6-8. xDSL Modes Power Consumption  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
Ch. A-to-B  
Ch. B-to-A  
Ch. A-to-B  
Ch. B-to-A  
1M  
10M  
Frequency (Hz)  
100M  
1M  
10M  
Frequency (Hz)  
100M  
D009  
D010  
6-9. Crosstalk G.Fast 212-MHz Mode  
6-10. Crosstalk G.Fast 106-MHz Mode  
-60  
-62  
-64  
-66  
-68  
-70  
-72  
-74  
-60  
-62  
-64  
-66  
-68  
-70  
-72  
-74  
-40° C  
0° C  
25° C  
50° C  
85° C  
-40° C  
0° C  
25° C  
50° C  
85° C  
1M  
20M  
40M  
60M  
Frequency (Hz)  
80M  
100M  
120M  
1M  
20M  
40M  
60M  
Frequency (Hz)  
80M  
100M  
120M  
D011  
D012  
G.Fast 106-MHz channel A, line power = 8 dBm  
G.Fast 106-MHz channel B, line power = 8 dBm  
6-11. MTPR vs Temperature  
6-12. MTPR vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: THS6302  
THS6302  
www.ti.com.cn  
ZHCSNF4A JUNE 2016 REVISED FEBRUARY 2021  
6.7 Typical Characteristics (continued)  
At TA = 25 °C, VS pin = 12 V, GND = 0 V, gain = 11 V/V, 100 Ω Load, RSERIES = 47.5 Ω, PAR = 15 dB, and output power  
measured at input of transformer (1:1) with no assumed transformer insertion losses (unless otherwise noted).  
20  
0
20  
0
-20  
-40  
-60  
-80  
-20  
-40  
-60  
-80  
Bias10  
Bias0Z  
Bias1Z  
Bias01  
BiasZ1  
Bias11  
Bias10  
Bias0Z  
Bias1Z  
Bias01  
BiasZ1  
Bias11  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
Frequency (Hz)  
Frequency (Hz)  
D013  
D014  
6-13. Normalized Small-Signal Frequency Response  
VOUT = 13 VPP  
6-14. Normalized Large-Signal Frequency Response  
150  
-145  
Bias00  
BiasZ0  
125  
Bias00 AB  
BiasZ0 AB  
Bias00 CD  
BiasZ0 CD  
-146  
-147  
-148  
100  
75  
50  
25  
0
-149  
-150  
-151  
-152  
-153  
-154  
-155  
10k  
100k  
1M 10M  
Frequency (Hz)  
100M  
1G  
0
50M  
100M  
150M  
Frequency (Hz)  
200M  
250M  
300M  
D015  
D016  
6-15. Terminal Modes Output Impedance  
6-16. Terminal Modes Noise Floor  
11.5  
11.25  
11  
2
8.8  
8.6  
8.4  
8.2  
8
4.4  
4.2  
4
Bias10  
Bias0Z  
Bais1Z  
Bias01  
BiasZ1  
Bias11  
Bias10  
Bias0Z  
Bias1Z  
Bias01  
BiasZ1  
Bias11  
1.75  
1.5  
1.25  
1
Sourcing  
Sourcing  
10.75  
10.5  
10.25  
10  
3.8  
3.6  
3.4  
Sinking  
Sinking  
0.75  
0.5  
7.8  
0
10  
20  
30  
40  
50  
Current (mA)  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
50  
Current (mA)  
60  
70  
80  
90 100  
D017  
D018  
Full-scale input  
6-17. Output Voltage vs Current  
Mid-scale input  
6-18. Output Voltage vs Current  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: THS6302  
THS6302  
www.ti.com.cn  
ZHCSNF4A JUNE 2016 REVISED FEBRUARY 2021  
6.7 Typical Characteristics (continued)  
At TA = 25 °C, VS pin = 12 V, GND = 0 V, gain = 11 V/V, 100 Ω Load, RSERIES = 47.5 Ω, PAR = 15 dB, and output power  
measured at input of transformer (1:1) with no assumed transformer insertion losses (unless otherwise noted).  
6.6  
6.4  
6.2  
6
6.6  
6.4  
6.2  
6
Bias10  
Bias0Z  
Bias1Z  
Bias01  
BiasZ1  
Bias11  
Bias00 Ch. A  
Bias00 Ch. B  
BiasZ0 Ch. A  
BiasZ0 Ch. B  
Channel A  
5.8  
5.6  
5.4  
5.2  
5.8  
5.6  
5.4  
Channel B  
-100 -80 -60 -40 -20  
0
20  
Output Current (mA)  
40  
60  
80 100  
-100 -80 -60 -40 -20  
0
20  
Output Current (mA)  
40  
60  
80 100  
D019  
D020  
Zero input  
Terminal modes  
6-20. Output Voltage vs Current  
6-19. Output Voltage vs Current  
3.5  
3
2
3.5  
2
Bias Level Signal  
Differential Output  
Bias Level Signal  
Differential Output  
1.5  
1
3
2.5  
2
1.5  
1
2.5  
2
0.5  
0
0.5  
0
1.5  
1
1.5  
1
-0.5  
-1  
-0.5  
-1  
0.5  
0
0.5  
0
-1.5  
-1.5  
0
20  
40  
60  
80 100 120 140 160 180 200  
Time (ns)  
0
80 160 240 320 400 480 560 640 720 800  
Time (ns)  
D021  
D022  
Bias mode 00 to mode 10  
Bias mode Z0 to mode 10  
6-21. Mode Switching Time  
6-22. Mode Switching Time  
3.5  
3
2
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
Bias Level Signal  
Differential Output  
1.5  
1
2.5  
2
0.5  
0
1.5  
1
-0.5  
-1  
0.5  
0
-1.5  
0
80 160 240 320 400 480 560 640 720 800  
Time (ns)  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
Temperature (èC)  
D023  
D024  
Bias mode ZZ to mode 10  
10 devices, channels A and B, G.Fast 212-MHz bias (mode  
10)  
6-23. Mode Switching Time  
6-24. Quiescent Current vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: THS6302  
THS6302  
www.ti.com.cn  
ZHCSNF4A JUNE 2016 REVISED FEBRUARY 2021  
6.7 Typical Characteristics (continued)  
At TA = 25 °C, VS pin = 12 V, GND = 0 V, gain = 11 V/V, 100 Ω Load, RSERIES = 47.5 Ω, PAR = 15 dB, and output power  
measured at input of transformer (1:1) with no assumed transformer insertion losses (unless otherwise noted).  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
Temperature (èC)  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
Temperature (èC)  
D025  
D026  
10 devices, channels A and B, G.Fast 106-MHz bias (mode  
11)  
10 devices, channels A and B, VDSL bias (mode Z1)  
6-26. Quiescent Current vs Temperature  
6-25. Quiescent Current vs Temperature  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
14  
13  
12  
11  
10  
9
8
7
6
5
4
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
Temperature (èC)  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
Temperature (èC)  
D027  
D028  
10 devices, channels A and B, ADSL bias (mode 0Z)  
10 devices, channels A and B, line-termination high-power  
bias (mode 00)  
6-27. Quiescent Current vs Temperature  
6-28. Quiescent Current vs Temperature  
10  
9
8
7
6
5
4
3
2
1
0
3
2.5  
2
1.5  
1
0.5  
0
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
Temperature (èC)  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
Temperature (èC)  
D029  
D030  
10 devices, channels A and B, line-termination low-power bias  
(mode Z0)  
10 devices, channels A and B, power-down (mode ZZ)  
6-30. Quiescent Current vs Temperature  
6-29. Quiescent Current vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: THS6302  
THS6302  
www.ti.com.cn  
ZHCSNF4A JUNE 2016 REVISED FEBRUARY 2021  
6.7 Typical Characteristics (continued)  
At TA = 25 °C, VS pin = 12 V, GND = 0 V, gain = 11 V/V, 100 Ω Load, RSERIES = 47.5 Ω, PAR = 15 dB, and output power  
measured at input of transformer (1:1) with no assumed transformer insertion losses (unless otherwise noted).  
1250  
1000  
750  
500  
250  
0
0
10  
20  
30  
40  
50  
60  
D032  
Differential Output Offset (mV)  
6-31. Output Offset Voltage  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: THS6302  
THS6302  
www.ti.com.cn  
ZHCSNF4A JUNE 2016 REVISED FEBRUARY 2021  
7 Detailed Description  
7.1 Overview  
The THS6302 is a dual-port, current-feedback architecture, differential line driver designed for G.Fast and xDSL  
systems. The device is targeted for use in G.Fast digital subscriber line (DSL) systems that enable native  
discrete multitone modulation (DMT) signals and supports an 8-dBm line power up to 212 MHz with good  
linearity.  
The device consists of a unique architecture consisting of two amplifiers per channel in a noninverting  
configuration with an internally-fixed gain of 11 V/V. The THS6302 is designed to drive the high-performance  
G.Fast 212-MHz DSL profile, but is also backwards-comparable to drive lower frequency profiles. The device  
features selectable bias modes for the G.Fast 106-MHz profile, VDSL profiles, and ADSL profiles. These modes  
reduce the quiescent current of the device based on the frequency requirements of the various DSL profiles to  
maximize power efficiency. Along with adjustable bias modes, the device features two line-termination modes  
that maintain an output impedance match with low power consumption. The line-termination modes allow for the  
device to be in a low-power state without causing distortion on a shared signal line.  
For further flexibility, the THS6302 features an IREF pin that is used to further adjust the quiescent current of the  
device. A resistor connected to this pin can be changed to increase or decrease the device current to meet  
performance requirements and uses the lowest amount of power possible.  
7.2 Functional Block Diagram  
THS6302  
VINA+  
VOUTA+  
Channel A  
VOUTA-  
VINA-  
M11, M12  
IREF  
M21, M22  
Bias, Control  
VINB+  
VOUTB+  
Channel B  
VOUTB-  
VINB-  
Copyright © 2016, Texas Instruments Incorporated  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: THS6302  
 
 
 
THS6302  
www.ti.com.cn  
ZHCSNF4A JUNE 2016 REVISED FEBRUARY 2021  
7.3 Feature Description  
The THS6302 is a dual-channel line driver that has a high current drive and a differential input and output  
amplifier in each channel. 7-1 shows an example circuit for channel A of the THS6302 configured to drive the  
G.Fast 212-MHz DSL profile. The bias control pins (M12 and M11) are set to ground and 3.3 V, respectively, to  
put the device in the G.Fast 212-MHz bias mode. This bias optimizes the internal power consumption of the  
device to meet performance specifications of the G.Fast 212-MHz profile and can be changed to meet several  
different DSL profiles and other modes listed in 7-1. The IREF pin is biased with a 75-kΩ (RIREF) resistor that  
adjusts the device quiescent current to a nominal state. RIREF can be increased to lower the quiescent current or  
deceased to raise the quiescent current of the device for fine-tuning. CIREF provides decoupling for the IREF pin  
and is typically 100 pF.  
The THS6302 has a 10-kΩ, internally-set differential input impedance and low output impedance. In 7-1 the  
input impedance is matched to 100 Ω by using a 100-Ω resistor connected differentially across the inputs. This  
value can easily be changed by using a different resistor to create the desired impedance at the input.  
Remember that the impedance in the device is actually the parallel combination of 10 kΩ and the external input  
resistor. For low impedances, this effect is minimal, but must be considered if the matched input impedance is  
increased. The output impedance of the THS6302 in 7-1 is set by the two RSERIES resistors to match 100 Ω.  
The internal output resistance is very low (< 2 Ω per output), so the output impedance is primarily set by the  
RSERIES resistors. These resistors can be adjusted to match various output impedance values.  
12 V  
3.3 V  
0.1 mF  
½ THS6302  
Rseries  
47.5  
VINA+  
VOUTA+  
1:1  
100-ꢀ  
Differential 100 ꢀ  
Input  
100-ꢀ  
Differential  
to Line  
Channel A  
Rseries  
47.5 ꢀ  
VINA-  
IREF  
VOUTA-  
GND  
CIREF  
100  
pF  
(Thermal  
Pad)  
RIREF  
75 kꢀ  
Copyright © 2016, Texas Instruments Incorporated  
7-1. G.Fast 212-MHz Driving Mode Example Circuit  
7.4 Device Functional Modes  
The THS6302 features nine different device operational modes to accommodate the G.Fast, xDSL, line  
termination, and power-down scenarios, as listed in 7-1. Each channel of the device is controlled by a 2-pin  
parallel interface that uses three-level logic to control the device state. The G.Fast and xDSL modes change the  
quiescent current of the device to meet signal performance requirements and maintain the lowest power  
possible, which allows for legacy DSL compatibility with maximum power efficiency. The two line-termination  
modes maintain a low impedance at the output when placing the device in a low-power state. The line-  
termination modes allow for the muxing of multiple devices to one output line by putting the non-driving devices  
in a state that does not add distortion to the line. A power-down mode is also included to digitally shut down the  
device for the highest level of power savings. 7-1 lists the device power modes and the typical quiescent  
currents for each mode.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: THS6302  
 
 
 
THS6302  
www.ti.com.cn  
ZHCSNF4A JUNE 2016 REVISED FEBRUARY 2021  
7.5 Programming  
The THS6302 programming is controlled by two pins for each channel. These pins use three-level logic to create  
nine different combinations for each pair of pins. The pins have a high state (1) when the pin voltage is greater  
than 2.3 V, a low state (0) when the pin voltage is less than 0.6 V, and an open state (Z) where the pin floats at  
approximately 1.4 V or can be driven between 1.2 V and 1.6 V. The pins are labeled Mxy where x is the channel  
number that the pin is associated with and y is the pin number. 7-1 shows the logic combinations for the two  
pins and the corresponding power modes.  
7-1. Bias Modes Truth Table  
BIAS CONTROL PINS  
BIAS MODE DESCRIPTION  
TYPICAL QUIESCENT CURRENT  
Mx1  
0
Mx2  
0
Line termination, high power  
Line termination, low power  
G.Fast 212 MHz  
9.5 mA  
6.3 mA  
Z
0
1
0
39 mA  
0
Z
ADSL2+  
14.5 mA  
1.35 mA  
28.0 mA  
17.8 mA  
19.5 mA  
23.0 mA  
Z
Z
Power down  
1
Z
Alternate VDSL (high power)  
Alternate G.Fast 106 MHz (low power)  
VDSL  
0
1
Z
1
1
1
G.Fast 106 MHz  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: THS6302  
 
 
THS6302  
www.ti.com.cn  
ZHCSNF4A JUNE 2016 REVISED FEBRUARY 2021  
8 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
THS6302 is a dual-port, very-high-bit-rate linear xDSL, G.Fast, and G.mgFast differential line driver where the  
device drives a twisted pair cable. The signal is typically generated by a DAC in the DSL ASIC at low signal  
swings that is amplified by the G.Fast line driver.  
The G.Fast system is ac-coupled when transmitting information above the audio band. On the input of the line  
driver, this ac-coupling translates into the series capacitors to isolate the dc voltage coming from the DAC output  
common-mode voltage. On the output, a transformer is used to help isolate the 48 V present between the tip and  
ring of the telephone line.  
The transformer can be set to any useful ratio. In practice, the transformer-turn ratio is set between 1:1 and 1:1.4  
for the device. Synthetic impedance at the output of the line driver is common in many xDSL applications.  
However, to support high AC performance needed for typical G.Fast and G.mgFast applications, THS6302 is an  
internally fixed-gain device and often synthetic impedance configuration is not recommeded to maintain the AC  
performance.  
Note: the resulting load detected by the amplifier may affect the amplifier linearity or output voltage swing  
capabilities.  
8.2 Typical Application  
8-1 shows a typical application circuit for THS6302. Only one channel circuit of THS6302 is shown; the other  
channel is often a duplicate of this channel in most applications.  
12 V  
Digital  
Interface  
0.1 mF  
½ THS6302  
Rseries  
47.5  
VINA+  
VOUTA+  
1:n  
Passive  
matching &  
filter network  
AWG or  
DSL ASIC  
Secondary  
Protection  
To Line  
Load  
100 ꢀ  
Channel A  
Rseries  
47.5 ꢀ  
VINA-  
IREF  
VOUTA-  
GND  
(Thermal  
Pad)  
RIREF  
75 kꢀ  
CIREF  
100 pF  
8-1. Typical G.Fast Line Driver Configuration  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: THS6302  
 
 
 
 
THS6302  
www.ti.com.cn  
ZHCSNF4A JUNE 2016 REVISED FEBRUARY 2021  
8.2.1 Design Requirements  
8-1 provides design requirements for a G.Fast line driver, which is met by the THS6302 device.  
8-1. Design Requirements  
PARAMETER  
G.Fast, 212-MHz and 106-MHz transmit profile  
CONDITION  
MTPR information using bias control for line power = 8 dBm and  
PAR = 15 dB  
Legacy DSL profile support  
Supply voltage  
Yes  
12 V  
Input interface  
AC coupled  
1:1  
Output transformer ratio  
Surge protection  
External as needed  
8.2.2 Detailed Design Procedure  
The G.Fast signal input to the THS6302 comes from a high-speed DAC in the DSL ASIC whose interleaving  
spurs are filtered out using either a 3rd- or 5th-order filter. Digital pre-emphasis can be employed in the DAC  
output such that the differential line driver compensates for the transmission line cable losses at long distance  
and high frequency. The THS6302 is operated on a 12-V single supply. Resulting from the single-supply  
operation, the device input is AC-coupled using a capacitor that blocks any DC current flowing out of the inputs  
to the adjacent circuitry. The AC-coupling capacitor forms a high-pass filter with the device input impedance.  
This pole must be set at a frequency low enough to not interfere with the desired xDSL or G.Fast signal.  
The THS6302 differential outputs usually drive a 1:n output transformer with a transformer turns ratio that can be  
changed depending upon the application. The output transformer selected must have low insertion loss in the  
desired frequency band in order to maintain good multi-tone power rejection (MTPR) for a given line power. The  
load is expected to be a transmission line with 100-Ω characteristic impedance on the primary side (line load  
side) of the transformer. Referred to the transformer secondary, the load seen by the amplifier is 1/n2 with 1:n  
being the transformer turn ratio. Practical limitations force the transformer-turn ratio to be between 1:1 and 1:1.6.  
At the lighter load seen by the amplifier (1:1), the voltage swing is limited by the class AB output stage and the  
maximum achievable swing of the amplifier. At the heaviest load (1:1.6), the voltage swing is limited by the  
current drive capability of the amplifier.  
For surge protection, consider adding a gas discharge tube (GDT) on the primary side of the output transformer.  
The gas discharge tube is required to shunt the large current that could flow through the cables during lightning  
surge, and protect the device outputs. The secondary protection is also normally added after the series  
resistance on the secondary transformer side. The secondary protection could be in the form of back to back  
switching diodes, which also help limit the residual surge current flowing into the device outputs.  
For the power-supply bypass, consider using X7R or X5R because of the better stability of these materials over  
temperature.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: THS6302  
 
THS6302  
www.ti.com.cn  
ZHCSNF4A JUNE 2016 REVISED FEBRUARY 2021  
8.2.3 Application Performance Plots  
8-2 and 8-3 show the MTPR results for 212-MHz and 106-MHz G.Fast profiles, respectivley.  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
Channel A  
Channel B  
Bias10 Ch. A  
Bias10 Ch. B  
Bias11 Ch. A  
Bias11 Ch. B  
1M 25M 50M 75M 100M 125M 150M 175M 200M 225M  
Frequency (Hz)  
1M  
20M  
40M  
60M  
Frequency (Hz)  
80M  
100M  
120M  
D001  
D002  
1-in-64 missing tones  
1-in-64 missing tones  
8-2. MTPR G.Fast 212-MHz  
8-3. MTPR G.Fast 106-MHz  
9 Power Supply Recommendations  
The THS6302 is recommended to operate using a total supply voltage of 12 V. If a lower or higher supply  
voltage is required, select one that is between 11.4 V and 12.6 V for optimal performance. Use supply  
decoupling capacitors on the power-supply pins to minimize distortion caused by parasitic signals on the power  
supply. This usage is especially important in applications where many devices share a single power-supply bus.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: THS6302  
 
 
 
THS6302  
www.ti.com.cn  
ZHCSNF4A JUNE 2016 REVISED FEBRUARY 2021  
10 Layout  
10.1 Layout Guidelines  
Achieving optimum performance with a high-frequency amplifier such as the THS6302 requires careful attention  
to board layout parasitics and external component types. Recommendations that optimize performance include:  
1. Minimize parasitic capacitance to any ac ground for all signal I/O pins. Excessive parasitic capacitance on  
the input pin can cause instability. In the line driver application, the parasitic capacitance forms a pole with  
the load detected by the amplifier and can reduce the effective bandwidth of the application circuit, thus  
leading to degraded performance. To reduce unwanted capacitance, open a window around the signal I/O  
pins in all ground and power planes around those pins. Otherwise, make sure that ground and power planes  
are unbroken elsewhere on the board.  
2. Minimize the distance (< 0.25 in.) from the power-supply pins to high-frequency 0.1-µF decoupling  
capacitors. At the device pins, make sure that the ground and power-plane layout are not in close proximity  
to the signal I/O pins. Avoid narrow power and ground traces to minimize inductance between the pins and  
decoupling capacitors. Always decouple the power-supply connections with these capacitors.  
3. Careful selection and placement of external components preserves the high-frequency performance of the  
device. Use very-low reactance-type resistors. Surface-mount resistors function best and allow a tighter  
overall layout. Metal-film or carbon composition, axially-leaded resistors also provide good high-frequency  
performance. Again, keep the leads and printed circuit board traces as short as possible. Never use wire-  
wound type resistors in a high-frequency application.  
4. Connections to other wideband devices on the board can be made with short, direct traces or through  
onboard transmission lines. For short connections, consider the trace and the input to the next device as a  
lumped capacitive load. Use relatively wide traces (50 mils to 100 mils), preferably with ground and power  
planes opened up around them.  
5. Do not socket a high-speed part such as the THS6302. The additional lead length and pin-to-pin capacitance  
introduced by the socket can create an extremely troublesome parasitic network that makes achieving a  
smooth, stable frequency response almost impossible. Best results are obtained by soldering the device  
onto the board.  
10.2 Layout Example  
Channel A  
Outputs  
Thermal  
Pad  
Differential  
Inputs  
Decoupling  
Capacitors  
Channel B  
Outputs  
10-1. Example Layout  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: THS6302  
 
 
 
THS6302  
www.ti.com.cn  
ZHCSNF4A JUNE 2016 REVISED FEBRUARY 2021  
11 Device and Documentation Support  
11.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.4 静电放电警告  
静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: THS6302  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Mar-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
THS6302IRHFR  
ACTIVE  
VQFN  
RHF  
28  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 85  
THS6302  
IRHF  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
THS6302IRHFR  
VQFN  
RHF  
28  
3000  
330.0  
12.4  
4.3  
5.3  
1.3  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
VQFN RHF 28  
SPQ  
Length (mm) Width (mm) Height (mm)  
346.0 346.0 33.0  
THS6302IRHFR  
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RHF0028A  
VQFN - 1.0 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
4.1  
3.9  
B
A
PIN 1 INDEX AREA  
0.5  
0.3  
5.1  
4.9  
0.30  
0.18  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2.55 0.1  
2X 2.5  
(0.2) TYP  
9
EXPOSED  
14  
THERMAL PAD  
24X 0.5  
15  
8
3.55 0.1  
2X  
29  
SYMM  
3.5  
SEE TERMINAL  
DETAIL  
1
22  
0.30  
0.18  
28X  
0.1  
C A B  
PIN 1 ID  
(OPTIONAL)  
28  
23  
SYMM  
0.05  
0.5  
0.3  
28X  
4220383/A 11/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHF0028A  
VQFN - 1.0 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(2.55)  
SYMM  
28  
23  
28X (0.6)  
22  
1
28X (0.24)  
(3.55)  
(1.525)  
24X (0.5)  
29  
SYMM  
(4.8)  
(
0.2) TYP  
VIA  
8
15  
(R0.05)  
TYP  
9
14  
(1.025)  
(3.8)  
LAND PATTERN EXAMPLE  
SCALE:18X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4220383/A 11/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHF0028A  
VQFN - 1.0 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X (1.13)  
(0.665) TYP  
23  
28  
28X (0.6)  
1
22  
28X (0.24)  
(0.865)  
TYP  
24X (0.5)  
SYMM  
(4.8)  
29  
4X (1.53)  
(R0.05) TYP  
8
15  
METAL  
TYP  
14  
9
SYMM  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 29  
76% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4220383/A 11/2016  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

THS6302IRHFR

Dual port G.Fast and G.mgFast DSL line driver | RHF | 28 | -40 to 85
TI

THS6832DR

LOW-POWER DISSIPATION ADSL LINE DRIVER
TI

THS7

EURO TERMINAL BLOCKS
ETC

THS7001

70-MHz PROGRAMMABLE-GAIN AMPLIFIERS
TI

THS7001CPWP

70-MHz PROGRAMMABLE-GAIN AMPLIFIERS
TI

THS7001CPWPG4

70-MHz High-Speed Programmable-Gain Amplifier 20-HTSSOP 0 to 70
TI

THS7001CPWPR

70-MHz High-Speed Programmable-Gain Amplifier 20-HTSSOP 0 to 70
TI

THS7001CPWPRG4

70-MHz High-Speed Programmable-Gain Amplifier 20-HTSSOP
TI

THS7001EVM

70-MHz PROGRAMMABLE-GAIN AMPLIFIERS
TI

THS7001IPWP

70-MHz PROGRAMMABLE-GAIN AMPLIFIERS
TI

THS7001IPWPR

SPECIALTY ANALOG CIRCUIT, PDSO20, GREEN, PLASTIC, HTSSOP-20
TI

THS7001IPWPRG4

SPECIALTY ANALOG CIRCUIT, PDSO20, GREEN, PLASTIC, HTSSOP-20
TI