TDP142RNQR [TI]

8.1Gbps DP1.4 线性转接驱动器 | RNQ | 40 | 0 to 70;
TDP142RNQR
型号: TDP142RNQR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

8.1Gbps DP1.4 线性转接驱动器 | RNQ | 40 | 0 to 70

驱动 驱动器
文件: 总36页 (文件大小:1249K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TDP142  
ZHCSGQ7C SEPTEMBER 2017REVISED MAY 2019  
TDP142 DisplayPortTM 8.1Gbps 线性转接驱动器  
1 特性  
3 说明  
1
DisplayPort™1.4 高达 8.1Gbps (HBR3)  
超低功耗架构  
TDP142 是一款能够嗅探 AUX HPD 信号的  
DisplayPortTM(DP) 线性转接驱动器。该器件符合  
VESA DisplayPort 标准版本 1.4,支持 1-4 通道主链  
路接口,以符合 HBR3 标准的速率(每个通道  
8.1Gbps)发送信号。此外,该器件与位置无关。它可  
置于源设备、电缆或接收设备内,从而为总体链路预算  
有效提供负损耗分量。  
具有高达 14dB 均衡功能的线性转接驱动器  
透明呈现 DisplayPort 链路训练  
可通过 GPIO I2C 进行配置  
支持热插拔  
支持 DisplayPort 双模标准版本 1.1(交流耦合  
HDMI)  
TDP142 提供多个接收线性均衡级别,用于补偿线缆或  
电路板走线中因码间串扰 (ISI) 而产生的损耗。该器件  
3.3V 单电源供电,支持商业级温度范围 (TDP142)  
和工业级温度范围 (TDP142I)。  
工业级温度范围:-40ºC 85ºC (TDP142I)  
商业级温度范围:0ºC 70ºC (TDP142)  
4mm x 6mm0.4mm 间距 WQFN 封装  
2 应用  
器件信息(1)  
平板电脑、笔记本电脑、台式电脑、PC  
器件型号  
TDP142  
TDP142I  
封装  
WQFN (40)  
WQFN (40)  
封装尺寸(标称值)  
4.00mm x 6.00mm  
4.00mm x 6.00mm  
有源电缆  
监视器  
扩展坞  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
空白  
简化电路原理图  
显示屏  
ML0_IN  
ML0_OUT  
ML1_OUT  
ML1_IN  
ML2_IN  
ML3_IN  
ML2_OUT  
ML3_OUT  
TDP142  
x
DP  
Receptacle  
GPU  
TDP142  
Scaler  
GPU  
TDP142  
AUX  
HPD  
Copyright © 2017, Texas Instruments Incorporated  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLLSEZ1  
 
 
 
TDP142  
ZHCSGQ7C SEPTEMBER 2017REVISED MAY 2019  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 12  
8.4 Device Functional Modes........................................ 13  
8.5 Programming........................................................... 15  
8.6 Register Maps......................................................... 17  
Application and Implementation ........................ 20  
9.1 Application Information............................................ 20  
9.2 Typical Application .................................................. 22  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Power Supply Characteristics ................................... 6  
6.6 DC Electrical Characteristics .................................... 6  
6.7 AC Electrical Characteristics..................................... 7  
6.8 Timing Requirements................................................ 8  
6.9 Switching Characteristics.......................................... 8  
6.10 Typical Characteristics............................................ 9  
Parameter Measurement Information ................ 10  
Detailed Description ............................................ 11  
8.1 Overview ................................................................. 11  
8.2 Functional Block Diagram ....................................... 11  
9
10 Power Supply Recommendations ..................... 25  
11 Layout................................................................... 26  
11.1 Layout Guidelines ................................................. 26  
11.2 Layout Example .................................................... 26  
12 器件和文档支持 ..................................................... 28  
12.1 相关链接................................................................ 28  
12.2 接收文档更新通知 ................................................. 28  
12.3 社区资源................................................................ 28  
12.4 ....................................................................... 28  
12.5 静电放电警告......................................................... 28  
12.6 Glossary................................................................ 28  
13 机械、封装和可订购信息....................................... 28  
7
8
4 修订历史记录  
Changes from Revision B (August 2018) to Revision C  
Page  
Added following to pin 11 description: If I2C_EN = “F”, then this pin must be set to “F” or “0”. ........................................... 3  
Changes from Revision A (October 2017) to Revision B  
Page  
Changed the appearance of the pinout image in the Pin Configuration and Function section.............................................. 3  
Added Note 2 To pins 29 and 32 in the Pin Functions table.................................................................................................. 4  
Changes from Original (September 2017) to Revision A  
Page  
Changed the Human-body model (HBM) value From: ±6000 To: ±5000 in the ESD Ratings............................................... 5  
2
Copyright © 2017–2019, Texas Instruments Incorporated  
 
TDP142  
www.ti.com.cn  
ZHCSGQ7C SEPTEMBER 2017REVISED MAY 2019  
5 Pin Configuration and Functions  
RNQ Package  
40-Pin (WQFN)  
Top View  
VCC  
1
28  
27  
26  
25  
24  
23  
22  
21  
VCC  
DPEQ1  
RSVD1  
2
3
RSVD7  
RSVD6  
RSVD2  
RSVD3  
VCC  
4
5
6
7
8
AUXn  
Thermal  
Pad  
AUXp  
DPEN/HPDIN  
TEST2/SDA  
TEST1/SCL  
RSVD4  
RSVD5  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
VCC  
1, 6, 20, 28  
2
P
3.3-V Power Supply.  
DisplayPort Receiver EQ control. This along with DPEQ0 will select the DisplayPort receiver  
equalization gain. Refer to 2 for equalization settings.  
DPEQ1  
4 Level I  
RSVD1  
RSVD2  
RSVD3  
RSVD4  
RSVD5  
INDP0p  
INDP0n  
3
4
I
O
O
I
Reserved.(1)  
Reserved.(1)  
Reserved.(1)  
Reserved.(1)  
5
7
8
I
Reserved.(1)  
9
I
DP Differential positive input for DisplayPort Lane 0.  
DP Differential negative input for DisplayPort Lane 0.  
10  
I
When I2C_EN = 0, leave the pin unconnected. When I2C_EN is not ‘0’, this pin will also set the  
TDP142 I2C address. See 4. If I2C_EN = “F”, then this pin must be set to “F” or “0”.  
A0  
11  
4 Level I  
INDP1p  
INDP1n  
12  
13  
Diff I  
Diff I  
DP Differential positive input for DisplayPort Lane 1.  
DP Differential negative input for DisplayPort Lane 1.  
DisplayPort Receiver EQ control. This along with DPEQ1 will select the DisplayPort receiver  
equalization gain. Refer to 2 for equalization settings. When I2C_EN is not ‘0’, this pin will also  
set the TDP142 I2C address. See 4.  
DPEQ0/A1  
14  
4 Level I  
INDP2p  
INDP2n  
15  
16  
Diff I  
Diff I  
DP Differential positive input for DisplayPort Lane 2.  
DP Differential negative input for DisplayPort Lane 2.  
(1) Leave unconnected on PCB.  
Copyright © 2017–2019, Texas Instruments Incorporated  
3
TDP142  
ZHCSGQ7C SEPTEMBER 2017REVISED MAY 2019  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
I2C Programming Mode or GPIO Programming Select. I2C is only disabled when this pin is ‘0".  
0 = GPIO mode (I2C disabled).  
R = TI Test Mode (I2C enabled at 3.3 V).  
F = I2C enabled at 1.8 V.  
1 = I2C enabled at 3.3 V.  
I2C_EN  
17  
4 Level I  
INDP3p  
INDP3n  
18  
19  
Diff I  
Diff I  
DP Differential positive input for DisplayPort Lane 3.  
DP Differential negative input for DisplayPort Lane 3.  
When I2C_EN=’0’, pull down with 10k or directly connect to ground. Otherwise this pin is I2C  
clock. . When used for I2C clock pullup to I2C master's VCC I2C supply.  
TEST1/SCL  
TEST2/SDA  
21  
22  
2 Level I  
2 Level I  
When I2C_EN=’0’ , pull down with 10k or directly connect to ground. Otherwise this pin is I2C data.  
When used for I2C data pullup to I2C master's VCC I2C supply.  
DP Enable Pin. When I2C_EN = ‘0’, this pin will enable or disable DisplayPort functionality.  
Otherwise, when I2C_EN is not "0", DisplayPort functionality is enabled and disabled through I2C  
registers.  
L = DisplayPort Disabled. (Pull-down with 10k resistor)  
H = DisplayPort Enabled. (Pull-up with10k resistor)  
2 Level I  
(Failsafe)  
(PD)  
DPEN/HPDIN  
23  
When I2C_EN is not "0" this pin is an input for Hot Plug Detect (HPD) received from DisplayPort  
sink. When this HPDIN is low for greater than 2 ms, all DisplayPort lanes are disabled.  
This pin along with AUXN is used by the TDP142 for AUX snooping. See the Application and  
Implementation section for more detail.  
AUXp  
AUXn  
24  
25  
I/O, CMOS  
I/O, CMOS  
This pin along with AUXP is used by the TDP142 for AUX snooping. See the Application and  
Implementation section for more detail.  
RSVD6  
RSVD7  
26  
27  
I/O, CMOS  
I/O, CMOS  
Reserved.(1)  
Reserved.(1)  
I/O  
(PD)  
When I2C_EN ! = 0, this pin is reserved. When I2C_EN = 0 , this pin is SNOOPENZ (L = AUX  
snoop enabled and H = AUX snoop disabled with all lanes active).  
SNOOPENZ/RSVD8  
29(2)  
OUTDP3p  
OUTDP3n  
30  
31  
Diff O  
Diff O  
DP Differential positive output for DisplayPort Lane 3.  
DP Differential negative output for DisplayPort Lane 3.  
When I2C_EN ! = 0, this pin is reserved. When I2C_EN = 0, this pin is an input for Hot Plug Detect  
received from DisplayPort sink. When HPDIN is low for greater than 2ms, all DisplayPort lanes are  
disabled.  
I/O  
(PD)  
HPDIN/RSVD9  
32(2)  
OUTDP2p  
OUTDP2n  
RSVD10  
OUTDP1n  
OUTDP1p  
RSVD11  
OUTDP0n  
OUTDP0p  
GND  
33  
Diff O  
Diff O  
I
DP Differential positive output for DisplayPort Lane 2.  
DP Differential negative output for DisplayPort Lane 2.  
Reserved.(1)  
34  
35  
36  
Diff O  
Diff O  
I
DP Differential negative output for DisplayPort Lane 1.  
DP Differential positive output for DisplayPort Lane 1.  
Reserved.(1)  
37  
38  
39  
40  
Diff O  
Diff O  
G
DP Differential negative output for DisplayPort Lane 0.  
DP Differential positive output for DisplayPort Lane 0.  
Ground.  
Thermal Pad  
(2) Not a fail-safe I/O. Actively driving pin high while VCC is removed results in leakage voltage on VCC pins.  
4
Copyright © 2017–2019, Texas Instruments Incorporated  
TDP142  
www.ti.com.cn  
ZHCSGQ7C SEPTEMBER 2017REVISED MAY 2019  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
Supply Voltage Range(2), VCC  
–0.3  
4
V
Differential voltage between positive and  
negative inputs  
–2.5  
2.5  
V
Voltage Range at any input or output pin  
Voltage at differential inputs  
CMOS Inputs  
–0.5  
–0.5  
VCC + 0.5  
VCC + 0.5  
125  
V
V
Maximum junction temperature, TJ  
Storage temperature, Tstg  
°C  
°C  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to the GND terminals.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±5000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±1500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
3.6  
100  
3.6  
100  
70  
UNIT  
V
Main power supply  
3
3.3  
VCC  
Supply Ramp Requirement  
ms  
V
V(12C)  
V(PSN)  
Supply that external resistors are pulled up to on SDA and SCL  
Supply Noise on VCC pins  
1.7  
mV  
°C  
TDP142  
Operating free-air temperature  
0
TA  
TDP142I  
–40  
85  
°C  
6.4 Thermal Information  
TDP142  
THERMAL METRIC(1)  
RNQ (WQFN)  
UNIT  
40 PINS  
37.6  
20.7  
9.5  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
9.4  
RθJC(bot)  
2.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2017–2019, Texas Instruments Incorporated  
5
 
TDP142  
ZHCSGQ7C SEPTEMBER 2017REVISED MAY 2019  
www.ti.com.cn  
6.5 Power Supply Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Four active DP lanes operating at  
8.1 Gbps;  
DPEN = H; TEST2 = L;  
Average active power  
4 Lane DP Only  
PCC(ACTIVE--DP)  
660  
mW  
PCC(NC)  
Average power with no connection  
Device Shutdown  
No device is connected  
2.4  
mW  
mW  
PCC(SHUTDOWN)  
DPEN = L; TEST2 = L; I2C_EN = 0;  
0.85  
6.6 DC Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
4-State CMOS Inputs(DPEQ[1:0], I2C_EN)  
IIH  
IIL  
High level input current  
Low level input current  
Threshold 0 / R  
VCC = 3.6 V; VIN = 3.6 V  
VCC = 3.6 V; VIN = 0 V  
VCC = 3.3 V  
20  
80  
µA  
µA  
V
–160  
-40  
0.55  
1.65  
2.7  
35  
4-Level VTH  
Threshold R/ Float  
VCC = 3.3 V  
V
Threshold Float / 1  
VCC = 3.3 V  
V
RPU  
RPD  
Internal pull-up resistance  
Internal pull-down resistance  
kΩ  
kΩ  
95  
2-State CMOS Input (DPEN, Test1, Test2, SNOOPENZ, HPDIN) DPEN, TEST1 and TEST2 are Failsafe.  
VIH  
VIL  
High-level input voltage  
2
0
3.6  
0.8  
V
V
Low-level input voltage  
RPD  
Internal pull-down resistance for DPEN  
500  
150  
k  
Internal pull-down resistance for  
SNOOPENZ (pin 29), and HPDIN (pin  
32)  
R(ENPD)  
kΩ  
IIH  
IIL  
High-level input current  
Low-level input current  
VIN = 3.6 V  
–25  
–25  
25  
25  
µA  
µA  
VIN = GND, VCC = 3.6 V  
I2C Control Pins SCL, SDA  
VIH  
High-level input voltage  
I2C_EN = 0  
0.7 x V(I2C)  
3.6  
0.3 x V(I2C)  
0.4  
V
V
VIL  
Low-level input voltage  
Low-level output voltage  
Low-level output current  
Input current on SDA pin  
Input capacitance  
I2C_EN = 0  
0
0
VOL  
IOL  
I2C_EN = 0; IOL = 3 mA  
I2C_EN = 0; VOL = 0.4 V  
0.1 x V(I2C) < Input voltage < 3.3 V  
V
20  
mA  
µA  
pF  
pF  
pF  
II(I2C)  
CI(I2C)  
–10  
10  
10  
C(I2C_FM+_BUS) I2C bus capacitance for FM+ (1MHz)  
150  
150  
C(I2C_FM_BUS)  
R(EXT_I2C_FM+)  
I2C bus capacitance for FM (400kHz)  
External resistors on both SDA and SCL  
when operating at FM+ (1MHz)  
C(I2C_FM+_BUS) = 150 pF  
C(I2C_FM_BUS) = 150 pF  
620  
620  
820  
910  
External resistors on both SDA and SCL  
when operating at FM (400kHz)  
R(EXT_I2C_FM)  
1500  
2200  
6
Copyright © 2017–2019, Texas Instruments Incorporated  
TDP142  
www.ti.com.cn  
ZHCSGQ7C SEPTEMBER 2017REVISED MAY 2019  
6.7 AC Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DisplayPort Transmitter (OUTDP[3:0]p or OUTDP[3:0]n)  
VTX(DIFF-PP)  
Transmitter dynamic differential voltage swing range.  
Amount of voltage change allowed during receiver detection  
1500  
mVPP  
mV  
VTX(RCV-DETECT)  
600  
100  
Max mismatch from Txp + Txn for both  
time and amplitude  
VTX(CM-AC-PP-ACTIVE)  
VTX(IDLE-DIFF-AC-PP)  
VTX(IDLE-DIFF-DC)  
Tx AC common-mode voltage active  
mVPP  
mV  
AC electrical idle differential peak-to-  
peak output voltage  
At package pins  
0
0
10  
14  
DC electrical idle differential output  
voltage  
At package pins after low pass filter to  
remove AC component  
mV  
RTX(DIFF)  
Differential impedance of the driver  
AC coupling capacitor  
75  
75  
120  
265  
Ω
CAC(COUPLING)  
nF  
Measured with respect to AC ground  
over  
0–500 mV  
Common-mode impedance of the  
driver  
RTX(CM)  
18  
30  
Ω
CTX(PARASITIC)  
RLTX(DIFF)  
TX input capacitance for return loss  
Differential return loss  
At package pins, at 2.5GHz  
50 MHz – 1.25 GHz at 90 Ω  
2.5 GHz at 90 Ω  
1.25  
pF  
dB  
dB  
dB  
mA  
V
-15  
-12  
-13  
RLTX(CM)  
Common-mode return loss  
TX short circuit current  
50 MHz – 2.5 GHz at 90 Ω  
TX± shorted to GND  
ITX(SHORT)  
67  
0
VTX(DC-CM)  
Common-mode voltage bias in the transmitter (DC)  
0
AC Characteristics  
Differential crosstalk between TX and  
at 2.5 GHz  
Crosstalk  
C(P1dB-LF)  
–30  
dB  
RX signal pairs  
Low frequency 1-dB compression  
point  
at 100 MHz, 200 mVPP < VID  
< 2000 mVPP  
1300  
mVPP  
High frequency 1-dB compression  
point  
at 2.5 GHz, 200 mVPP < VID  
< 2000 mVPP  
C(P1dB-HF)  
fLF  
1300  
20  
mVPP  
kHz  
Low frequency cutoff  
200 mVPP< VID < 2000 mVPP  
50  
200 mVPP < VID < 2000 mVPP, PRBS7,  
5 Gbps  
0.05  
UIpp  
TX output deterministic jitter  
200 mVPP < VID < 2000 mVPP, PRBS7,  
8.1 Gbps  
0.08  
0.08  
UIpp  
UIpp  
UIpp  
200 mVPP < VID < 2000 mVPP, PRBS7,  
5 Gbps  
TX output total jitter  
200 mVPP < VID < 2000 mVPP, PRBS7,  
8.1 Gbps  
0.135  
DisplayPort Receiver (INDP[3:0]p or INDP[3:0]n)  
VID(PP)  
Peak-to-peak input differential dynamic voltage range  
2000  
V
V
VIC  
Input common mode voltage  
AC coupling capacitance  
Receiver equalization  
Data rate  
0
2
200  
14  
C(AC)  
75  
nF  
EQ(DP)  
DPEQ[1:0] at 4.05 GHz  
HBR3  
dB  
Gbps  
Ω
dR  
8.1  
120  
R(ti)  
Input termination resistance  
80  
100  
AUXp or AUXn  
AUX Channel DC common mode  
voltage for AUXp  
V(AUXP_DC_CM)  
V(AUXN_DC_CM)  
VCC = 3.3 V  
VCC = 3.3 V  
0
0.4  
3.6  
V
V
AUX Channel DC common mode  
voltage for AUXn  
2.7  
Copyright © 2017–2019, Texas Instruments Incorporated  
7
TDP142  
ZHCSGQ7C SEPTEMBER 2017REVISED MAY 2019  
www.ti.com.cn  
6.8 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
tDIFF_DLY  
tR, tF  
Differential Propagation Delay  
See 7  
300  
2.6  
ps  
20%-80% of differential  
voltage measured 1 inch  
from the output pin  
Output Rise/Fall time (see 9)  
40  
ps  
ps  
20%-80% of differential  
voltage measured 1 inch  
from the output pin  
tRF_MM  
Output Rise/Fall time mismatch  
6.9 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
10  
UNIT  
DPEN and HPDIN  
tDPEN_DEBOUNCE DPEN and HPDIN debounce time when transitioning from H to L.  
2
ms  
I2C (Refer to 6)  
fSCL  
tBUF  
I2C clock frequency  
1
MHz  
µs  
Bus free time between START and STOP conditions  
0.5  
Hold time after repeated START condition. After this period, the first  
clock pulse is generated  
tHDSTA  
0.26  
µs  
tLOW  
Low period of the I2C clock  
High period of the I2C clock  
Setup time for a repeated START condition  
Data hold time  
0.5  
0.26  
0.26  
0
µs  
µs  
µs  
μs  
ns  
ns  
tHIGH  
tSUSTA  
tHDDAT  
tSUDAT  
tR  
Data setup time  
50  
Rise time of both SDA and SCL signals  
120  
120  
20 × (V(I2C)/5.5  
V)  
tF  
Fall time of both SDA and SCL signals  
ns  
tSUSTO  
Cb  
Setup time for STOP condition  
Capacitive load for each bus line  
0.26  
μs  
150  
pF  
8
版权 © 2017–2019, Texas Instruments Incorporated  
TDP142  
www.ti.com.cn  
ZHCSGQ7C SEPTEMBER 2017REVISED MAY 2019  
6.10 Typical Characteristics  
15  
10  
5
1.6  
1.4  
1.2  
1
0
0.8  
0.6  
0.4  
0.2  
0
-5  
EQ0  
EQ1  
EQ2  
EQ3  
EQ4  
EQ5  
EQ6  
EQ7  
EQ8  
EQ9  
EQ10  
EQ11  
EQ12  
EQ13  
EQ14  
EQ15  
EQ0  
EQ1  
EQ2  
EQ3  
EQ4  
EQ5  
EQ6  
EQ7  
EQ8  
EQ9  
EQ10  
EQ11  
EQ12  
EQ13  
EQ14  
EQ15  
-10  
-15  
0.01  
0.1  
1
10  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
Frequency (GHz)  
Differential Input Voltage (V)  
D001  
D004  
1. DisplayPort EQ Settings Curves  
2. DisplayPort Linearity Curves at 4.05 GHz  
5
0
0
-5  
OUT DP0  
OUT DP1  
OUT DP2  
OUT DP3  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-10  
-15  
-20  
-25  
-30  
DP0  
DP1  
DP2  
DP3  
0.01  
0.1  
1
10 20  
0.01  
0.1  
1
10 20  
Frequency (GHz)  
Frequency (GHz)  
D003  
D004  
3. Input Return Loss Performance  
4. Output Return Loss Performance  
Time (20.57 ps/Div)  
5. DisplayPort HBR3 Eye-Pattern Performance with 12-inch Input PCB Trace at 8.1 Gbps  
版权 © 2017–2019, Texas Instruments Incorporated  
9
TDP142  
ZHCSGQ7C SEPTEMBER 2017REVISED MAY 2019  
www.ti.com.cn  
7 Parameter Measurement Information  
70%  
SDA  
30%  
t
t
t
F
HDSTA  
R
tHIGH  
t
t
LOW  
BUF  
70%  
30%  
SCL  
S
P
P
S
t
t
SUSTO  
t
t
SUDAT  
HDDAT  
HDSTA  
t
SUSTA  
6. I2C Timing Diagram Definitions  
IN  
T
T
DIFF_DLY  
DIFF_DLY  
OUT  
7. Propagation Delay  
IN+  
V
Vcm  
RX-LFPS-DET-DIFF-PP  
IN-  
T
T
IDLEEntry  
IDLEExit  
OUT+  
Vcm  
OUT-  
8. Electrical Idle Mode Exit and Entry Delay  
80%  
20%  
t
r
t
f
9. Output Rise and Fall Times  
10  
版权 © 2017–2019, Texas Instruments Incorporated  
TDP142  
www.ti.com.cn  
ZHCSGQ7C SEPTEMBER 2017REVISED MAY 2019  
8 Detailed Description  
8.1 Overview  
The TDP142 is a DisplayPortTM linear re-driver that supports up to 8.1 Gbps for each lane. Additionally, its  
transparency to the DP link training makes TDP142 a position independent device, suitable for source/sink or  
cable application.  
The TDP142 helps the system to pass compliance of both transmitter and receiver for DisplayPort version 1.4  
HBR3. The re-driver recovers incoming data by applying equalization that compensates for channel loss, and  
drives out signals with a high differential voltage. Each channel has a receiver equalizer with selectable gain  
settings. The equalization should be set based on the amount of insertion loss before the TDP142 receivers. The  
equalization control can be controlled by DPEQ[1:0] pins or I2C registers.  
The device ultra-low-power architecture operates at a 3.3-V power supply and achieves enhanced performance.  
Also, it comes in a commercial temperature range and industrial temperature range.  
8.2 Functional Block Diagram  
INDP0p  
INDP0n  
OUTDP0p  
OUTDP0n  
Driver  
EQ  
DPEQ_SEL  
INDP1p  
INDP1n  
OUTDP1p  
OUTDP1n  
Driver  
EQ  
EQ  
DPEQ_SEL  
OUTDP2p  
OUTDP2n  
INDP2p  
INDP2n  
Driver  
DPEQ_SEL  
INDP3p  
INDP3n  
OUTDP3p  
OUTDP3n  
Driver  
EQ  
DPEQ_SEL  
DPEQ_SEL  
DPEQ0/A1  
DPEQ1  
A0  
Control Logic and Registers  
I2C_EN  
TEST1/SCL  
I2C  
Slave  
HPDIN/RSVD9  
TEST2/SDA  
DPEN/HPDIN  
SNOOPENZ/RSVD8  
AUXp  
AUXn  
AUX  
Snooping  
VREG  
VCC  
Copyright © 2017, Texas Instruments Incorporated  
版权 © 2017–2019, Texas Instruments Incorporated  
11  
TDP142  
ZHCSGQ7C SEPTEMBER 2017REVISED MAY 2019  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 DisplayPort  
The TDP142 supports up to 4 DisplayPort lanes at data rates up to 8.1Gbps (HBR3). The TDP142 monitors the  
native AUX traffic as it traverses between DisplayPort source and DisplayPort sink. For the purposes of reducing  
power, the TDP142 manages the number of active DisplayPort lanes based on the content of the AUX  
transactions. The TDP142 snoops native AUX writes to DisplayPort sink’s DPCD registers 0x00101  
(LANE_COUNT_SET) and 0x00600 (SET_POWER_STATE). TDP142 disables/enables lanes based on value  
written to LANE_COUNT_SET. The TDP142 disables all lanes when SET_POWER_STATE is in the D3.  
Otherwise active lanes will be based on value of LANE_COUNT_SET.  
DisplayPort AUX snooping is enabled by default but can be disabled by changing the AUX_SNOOP_DISABLE  
register. Once AUX snoop is disabled, management of TDP142 DisplayPort lanes are controlled through various  
configuration registers. When TDP142 is enabled for GPIO mode (I2C_EN = "0"), the SNOOPENZ pin can be  
used to disable AUX snooping. When SNOOPENZ pin is high, the AUX snooping functionality is disabled and all  
four DisplayPort lanes will be active.  
8.3.2 4-level Inputs  
The TDP142 has (I2C_EN, A0, and DPEQ[1:0]) 4-level inputs pins that are used to control the equalization gain  
and place TDP142 into different modes of operation. These 4-level inputs utilize a resistor divider to help set the  
4 valid levels and provide a wider range of control settings. There are internal pull-up and pull-down and combine  
with the external resistor connection to achieve the desired voltage level.  
1. 4-Level Control Pin Settings  
LEVEL  
SETTINGS  
Option 1: Tie 1 k5% to GND.  
Option 2: Tie directly to GND.  
0
R
F
Tie 20 k5% to GND.  
Float (leave pin open)  
Option 1: Tie 1 k5% to VCC  
.
1
Option 2: Tie directly to VCC  
.
spacer  
All four-level inputs are latched on rising edge of internal reset. After tcfg_hd, the internal  
pull-up and pull-down resistors will be isolated in order to save power.  
8.3.3 Receiver Linear Equalization  
The purpose of receiver equalization is to compensate for channel insertion loss and inter-symbol interference in  
the system before the input of the TDP142. The receiver overcomes these losses by attenuating the low  
frequency components of the signals with respect to the high frequency components. The proper gain setting  
should be selected to match the channel insertion loss before the input of the TDP142 receivers. Two 4-level  
inputs pins enable up to 16 possible equalization settings. The TDP142 also provides the flexibility of adjusting  
settings through I2C registers.  
12  
版权 © 2017–2019, Texas Instruments Incorporated  
TDP142  
www.ti.com.cn  
ZHCSGQ7C SEPTEMBER 2017REVISED MAY 2019  
8.4 Device Functional Modes  
8.4.1 Device Configuration in GPIO Mode  
The TDP142 is in GPIO configuration when I2C_EN = “0”. The DPEN pin controls whether DisplayPort is  
enabled and SNOOPENZ pin controls whether AUX snoop mode is enabled.  
8.4.2 Device Configuration In I2C Mode  
The TDP142 is in I2C mode when I2C_EN is not equal to “0”. The same configurations defined in GPIO mode  
are also available in I2C mode. The TDP142 DisplayPort configuration is programmed based on the  
Programming section .  
8.4.3 Linear EQ Configuration  
The receiver equalization gain value can be controlled either through I2C registers or through GPIOs. 2 details  
the gain value for each available combination when TDP142 is in GPIO mode. The I2C mode can do the same  
option or even individual lane EQ setting by updating registers DP0EQ_SEL, DP1EQ_SEL, DP2EQ_SEL, and  
DP3EQ_SEL.  
2. TDP142 Receiver Equalization GPIO Control  
ALL DISPLAYPORT LANES  
Equalization Setting #  
DPEQ1 PIN LEVEL  
DPEQ0 PIN LEVEL  
EQ GAIN at 4.05 GHz (dB)  
0
1
0
0
0
R
F
1
1.0  
3.3  
2
0
4.9  
3
0
6.5  
4
R
R
R
R
F
F
F
F
1
0
7.5  
5
R
F
1
8.6  
6
9.5  
7
10.4  
11.1  
11.7  
12.3  
12.8  
13.2  
13.6  
14.0  
14.4  
8
0
9
R
F
1
10  
11  
12  
13  
14  
15  
0
1
R
F
1
1
1
版权 © 2017–2019, Texas Instruments Incorporated  
13  
 
TDP142  
ZHCSGQ7C SEPTEMBER 2017REVISED MAY 2019  
www.ti.com.cn  
8.4.4 Operation Timing – Power Up  
TDP142  
VCC  
t
d_pg  
Internal  
Power Good  
t
cfg_su  
t
cfg_hd  
CFG pins  
10. Power-Up Timing  
3. Power-Up Timing(1)(2)  
PARAMETER  
MIN  
MAX  
UNIT  
µs  
td_pg  
VCC (minimum) to Internal Power Good asserted high  
CFG(1) pins setup(2)  
500  
tcfg_su  
50  
10  
µs  
tcfg_hd  
CFG(1) pins hold  
µs  
tVCC_RAMP  
VCC supply ramp requirement  
100  
ms  
(1) Following pins comprise CFG pins: I2C_EN, DPEQ[1:0].  
(2) Recommend CFG pins are stable when VCC is at min.  
14  
版权 © 2017–2019, Texas Instruments Incorporated  
TDP142  
www.ti.com.cn  
ZHCSGQ7C SEPTEMBER 2017REVISED MAY 2019  
8.5 Programming  
For further programmability, the TDP142 can be controlled using I2C. When I2C_EN !=0, the SCL and SDA pins  
are used for I2C clock and I2C data respectively.  
4. TDP142 I2C Target Address  
DPEQ0/A1  
PIN LEVEL  
A0  
Bit 7 (MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (W/R)  
PIN LEVEL  
0
0
0
R
F
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0
0
R
R
R
R
F
F
F
F
1
0
R
F
1
0
R
F
1
0
1
R
F
1
1
1
The following procedure should be followed to write to TDP142 I2C registers:  
1. The master initiates a write operation by generating a start condition (S), followed by the TDP142 7-bit  
address and a zero-value “W/R” bit to indicate a write cycle.  
2. The TDP142 acknowledges the address cycle.  
3. The master presents the sub-address (I2C register within TDP142) to be written, consisting of one byte of  
data, MSB-first.  
4. The TDP142 acknowledges the sub-address cycle.  
5. The master presents the first byte of data to be written to the I2C register.  
6. The TDP142 acknowledges the byte transfer.  
7. The master may continue presenting additional bytes of data to be written, with each byte transfer completing  
with an acknowledge from the TDP142.  
8. The master terminates the write operation by generating a stop condition (P).  
The following procedure should be followed to read the TDP142 I2C registers:  
1. The master initiates a read operation by generating a start condition (S), followed by the TDP142 7-bit  
address and a one-value “W/R” bit to indicate a read cycle.  
2. The TDP142 acknowledges the address cycle.  
3. The TDP142 transmit the contents of the memory registers MSB-first starting at register 00h or last read sub-  
address+1. If a write to the T I2C register occurred prior to the read, then the TDP142 shall start at the sub-  
address specified in the write.  
4. The TDP142 shall wait for either an acknowledge (ACK) or a not-acknowledge (NACK) from the master after  
each byte transfer; the I2C master acknowledges reception of each data byte transfer.  
5. If an ACK is received, the TDP142 transmits the next byte of data.  
6. The master terminates the read operation by generating a stop condition (P).  
版权 © 2017–2019, Texas Instruments Incorporated  
15  
 
TDP142  
ZHCSGQ7C SEPTEMBER 2017REVISED MAY 2019  
www.ti.com.cn  
The following procedure should be followed for setting a starting sub-address for I2C reads:  
1. The master initiates a write operation by generating a start condition (S), followed by the TDP142 7-bit  
address and a zero-value “W/R” bit to indicate a write cycle.  
2. The TDP142 acknowledges the address cycle.  
3. The master presents the sub-address (I2C register within TDP142) to be written, consisting of one byte of  
data, MSB-first.  
4. The TDP142 acknowledges the sub-address cycle.  
5. The master terminates the write operation by generating a stop condition (P).  
If no sub-addressing is included for the read procedure, and reads start at register offset  
00h and continue byte by byte through the registers until the I2C master terminates the  
read operation. If a I2C address write occurred prior to the read, then the reads start at the  
sub-address specified by the address write.  
5. Register Legend  
ACCESS TAG  
NAME  
Read  
MEANING  
R
W
S
The field may be read by software  
The field may be written by software  
Write  
Set  
The field may be set by a write of one. Writes of zeros to the field have no effect.  
The field may be cleared by a write of one. Write of zero to the field have no effect.  
Hardware may autonomously update this field.  
C
Clear  
U
Update  
No Access  
NA  
Not accessible or not applicable  
16  
版权 © 2017–2019, Texas Instruments Incorporated  
TDP142  
www.ti.com.cn  
ZHCSGQ7C SEPTEMBER 2017REVISED MAY 2019  
8.6 Register Maps  
8.6.1 General Register (address = 0x0A) [reset = 00000001]  
11. General Registers  
7
6
5
4
3
2
1
0
Reserved  
R
SWAP_HPDIN EQ_OVERRID HPDIN_OVRRI  
Reserved.  
CTLSEL[1:0].  
R/W  
E
DE  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
6. General Registers  
Bit  
Field  
Type  
Reset  
Description  
7:6  
Reserved  
R
00  
Reserved.  
0 – HPDIN is in default location (Default)  
5
4
SWAP_HPDIN  
EQ_OVERRIDE  
R/W  
R/W  
0
0
1 – HPDIN location is swapped (PIN 23 to PIN 32, or PIN 32 to  
PIN 23).  
Setting of this field will allow software to use EQ settings from  
registers instead of value sample from pins.  
0 – EQ settings based on sampled state of the EQ pins  
(DPEQ[1:0]).  
1 – EQ settings based on programmed value of each of the EQ  
registers  
0 – HPD based on state of HPDIN pin (Default)  
1 – HPD high.  
3
2
HPDIN_OVRRIDE  
Reserved  
R/W  
R/W  
0
0
Reserved.  
Upon power-on, software must write 2'b10 to enable DisplayPort  
functionality. If DisplayPort functionality is not required, then  
software must write 2'b00 to disable DisplayPort.  
00 - Shutdown. DP disabled and lowest power state.  
01 - DP disabled but not in lowest power state.  
10 - DP enabled  
1:0  
CTLSEL[1:0]  
R/W  
01  
11 - Reserved.  
8.6.2 DisplayPort Control/Status Registers (address = 0x10) [reset = 00000000]  
12. DisplayPort Control/Status Registers (0x10)  
7
6
5
4
3
2
1
0
DP1EQ_SEL  
R/W/U  
DP0EQ_SEL  
R/W/U  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7. DisplayPort Control/Status Registers (0x10)  
Bit  
Field  
Type  
Reset  
Description  
Field selects between 0 to 14dB of EQ for DP lane 1. When  
EQ_OVERRIDE = 1’b0, this field reflects the sampled state of  
DPEQ[1:0] pins. When EQ_OVERRIDE = 1’b1, software can  
change the EQ setting for DP lane 1 based on value written to  
this field.  
7:4  
DP1EQ_SEL  
R/W/U  
0000  
Field selects between 0 to 14dB of EQ for DP lane 0. When  
EQ_OVERRIDE = 1’b0, this field reflects the sampled state of  
DPEQ[1:0] pins. When EQ_OVERRIDE = 1’b1, software can  
change the EQ setting for DP lane 0 based on value written to  
this field.  
3:0  
DP0EQ_SEL  
R/W/U  
0000  
版权 © 2017–2019, Texas Instruments Incorporated  
17  
 
TDP142  
ZHCSGQ7C SEPTEMBER 2017REVISED MAY 2019  
www.ti.com.cn  
8.6.3 DisplayPort Control/Status Registers (address = 0x11) [reset = 00000000]  
13. DisplayPort Control/Status Registers (0x11)  
7
6
5
4
3
2
1
0
DP3EQ_SEL  
R/W/U  
DP2EQ_SEL  
R/W/U  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8. DisplayPort Control/Status Registers (0x11)  
Bit  
Field  
Type  
Reset  
Description  
Field selects between 0 to 14dB of EQ for DP lane 3. When  
EQ_OVERRIDE = 1’b0, this field reflects the sampled state of  
DPEQ[1:0] pins. When EQ_OVERRIDE = 1’b1, software can  
change the EQ setting for DP lane 3 based on value written to  
this field.  
7:4  
DP3EQ_SEL  
R/W/U  
0000  
Field selects between 0 to 14dB of EQ for DP lane 2. When  
EQ_OVERRIDE = 1’b0, this field reflects the sampled state of  
DPEQ[1:0] pins. When EQ_OVERRIDE = 1’b1, software can  
change the EQ setting for DP lane 2 based on value written to  
this field.  
3:0  
DP2EQ_SEL  
R/W/U  
0000  
8.6.4 DisplayPort Control/Status Registers (address = 0x12) [reset = 00000000]  
14. DisplayPort Control/Status Registers (0x12)  
7
Reserved  
R
6
5
4
3
2
LANE_COUNT_SET  
RU  
1
0
SET_POWER_STATE  
RU  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9. DisplayPort Control/Status Registers (0x12)  
Bit  
Field  
Type  
Reset  
Description  
7
Reserved  
R
0
Reserved.  
This field represents the snooped value of the AUX write to  
DPCD address 0x00600. When AUX_SNOOP_DISABLE = 1’b0,  
the TDP142 will enable/disable DP lanes based on the snooped  
value. When AUX_SNOOP_DISABLE = 1’b1, then DP lane  
enable/disable are determined by state of DPx_DISABLE  
registers, where x = 0, 1, 2, or 3. This field is reset to 2’b00 by  
hardware when CTLSEL1 registers changes from a 1’b1 to a  
1’b0.  
6:5  
4:0  
SET_POWER_STATE  
LANE_COUNT_SET  
R/U  
R/U  
00  
This field represents the snooped value of AUX write to DPCD  
address 0x00101 register. When AUX_SNOOP_DISABLE =  
1’b0, TDP142 will enable DP lanes specified by the snoop value.  
Unused DP lanes will be disabled to save power. When  
AUX_SNOOP_DISABLE = 1’b1, then DP lanes enable/disable  
are determined by DPx_DISABLE registers, where x = 0, 1, 2, or  
3. This field is reset to 0x0 by hardware when CTLSEL1 register  
changes from a 1’b1 to a 1’b0.  
00000  
18  
版权 © 2017–2019, Texas Instruments Incorporated  
TDP142  
www.ti.com.cn  
ZHCSGQ7C SEPTEMBER 2017REVISED MAY 2019  
8.6.5 DisplayPort Control/Status Registers (address = 0x13) [reset = 00000000]  
15. DisplayPort Control/Status Registers (0x13)  
7
6
5
4
3
2
1
0
AUX_SNOOP_  
DISABLE  
Reserved  
AUX_SBU_OVR  
DP3_DISABLE DP2_DISABLE DP1_DISABLE DP0_DISABLE  
R/W  
R
R/W  
R/W R/W R/W R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
10. DisplayPort Control/Status Registers (0x13)  
Bit  
Field  
Type  
Reset  
Description  
0 – AUX snoop enabled. (Default)  
1 – AUX snoop disabled.  
7
AUX_SNOOP_DISABLE  
R/W  
0
6
Reserved  
Reserved  
R
0
Reserved.  
Reserved.  
5:4  
R/W  
00  
When AUX_SNOOP_DISABLE = 1’b1, this field can be used to  
enable or disable DP lane 3. When AUX_SNOOP_DISABLE =  
1’b0, changes to this field will have no effect on lane 3  
functionality.  
0 – DP Lane 3 Enabled (default)  
1 – DP Lane 3 Disabled.  
3
2
1
0
DP3_DISABLE  
DP2_DISABLE  
DP1_DISABLE  
DP0_DISABLE  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
When AUX_SNOOP_DISABLE = 1’b1, this field can be used to  
enable or disable DP lane 2. When AUX_SNOOP_DISABLE =  
1’b0, changes to this field will have no effect on lane 2  
functionality.  
0 – DP Lane 2 Enabled (default)  
1 – DP Lane 2 Disabled.  
When AUX_SNOOP_DISABLE = 1’b1, this field can be used to  
enable or disable DP lane 1. When AUX_SNOOP_DISABLE =  
1’b0, changes to this field will have no effect on lane 1  
functionality.  
0 – DP Lane 1 Enabled (default)  
1 – DP Lane 1 Disabled.  
DISABLE. When AUX_SNOOP_DISABLE = 1’b1, this field can  
be used to enable or disable DP lane 0. When  
AUX_SNOOP_DISABLE = 1’b0, changes to this field will have  
no effect on lane 0 functionality.  
0 – DP Lane 0 Enabled (default)  
1 – DP Lane 0 Disabled.  
版权 © 2017–2019, Texas Instruments Incorporated  
19  
TDP142  
ZHCSGQ7C SEPTEMBER 2017REVISED MAY 2019  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TDP142 is a linear redriver designed specifically to compensate the inter-symbol interference (ISI) jitter  
caused by signal attenuation through a passive medium like PCB traces and cable. It can be used in Source,  
Sink, and cable applications, where the device is transparent to the link training. For illustrating purposes, this  
section shows the implementations of Source application and Sink application. 16 and 17 are the high level  
block diagram for DisplayPort Source side application and DisplayPort Sink side application respectively, where  
the TDP142 is snooping both channels of AUX signal and HPD signal.  
PCB trace of Length B  
PCB trace of Length A  
ML0_OUT  
ML0_IN  
ML1_OUT  
ML2_OUT  
ML1_IN  
ML2_IN  
TDP142  
ML3_OUT  
ML3_IN  
DP  
Receptacle  
GPU  
3.3 V  
AUX  
HPD  
3.3 V  
Power  
Source  
Copyright © 2017, Texas Instruments Incorporated  
16. Source Application for TDP142  
20  
版权 © 2017–2019, Texas Instruments Incorporated  
 
TDP142  
www.ti.com.cn  
ZHCSGQ7C SEPTEMBER 2017REVISED MAY 2019  
Application Information (接下页)  
PCB trace of Length D  
PCB trace of Length C  
ML0_OUT  
ML0_IN  
ML1_OUT  
ML2_OUT  
ML1_IN  
ML2_IN  
TDP142  
ML3_OUT  
ML3_IN  
DP  
Receptacle  
Scaler  
3.3 V  
AUX  
HPD  
3.3 V  
Power  
Source  
Copyright © 2017, Texas Instruments Incorporated  
17. The Implementation of Sink Application  
版权 © 2017–2019, Texas Instruments Incorporated  
21  
TDP142  
ZHCSGQ7C SEPTEMBER 2017REVISED MAY 2019  
www.ti.com.cn  
9.2 Typical Application  
9.2.1 Source Application Implementation  
18 shows the schematic for the Source side application. The TDP142 is placed between the DisplayPort  
Graphics Processor Unit (GPU) and the DisplayPort receptacle. The TDP142 monitors AUX traffic for power  
management purposes when SNOOPENZ is low.  
3P3V  
C1  
10uF  
C2  
0.1uF  
C3  
0.1uF  
C4  
0.1uF  
C5  
0.1uF  
3V3P  
Board_3P3V  
FB  
220 ohm  
U1  
GPU with Dual mode support  
AUX_P  
25 AUX_N  
1
6
24  
VCC  
VCC  
VCC  
VCC  
AUXP  
AUXN  
20  
28  
ML0_P  
ML0_N  
C6  
0.1uF  
0.1uF  
0.1uF  
0.1uF  
0.1uF  
0.1uF  
0.1uF  
0.1uF  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
0.1uF OUTDP0P  
0.1uF OUTDP0N  
0.1uF OUTDP1P  
0.1uF OUTDP1N  
0.1uF OUTDP2P  
0.1uF OUTDP2N 3.3V  
0.1uF OUTDP3P  
0.1uF OUTDP3N  
OUTDP1P  
OUTDP1N  
4
6
ML1_P  
ML1_N  
9
40  
39  
13 CAD R9  
14  
1M  
5M  
INDP0P  
INDP0N  
OUTDP0P  
OUTDP0N  
CONFIG1  
CONFIG2  
ML1_P  
ML1_N  
C7  
10  
R10  
OUTDP0P  
OUTDP0N  
1
3
ML0_P  
ML0_N  
C8  
12  
13  
37  
36  
19  
INDP1P  
INDP1N  
OUTDP1P  
OUTDP1N  
RTN  
ML2_P  
ML2_N  
C9  
OUTDP3P10  
OUTDP3N12  
ML3_P  
ML3_N  
15  
16  
33  
34  
2
INDP2P  
INDP2N  
OUTDP2P  
OUTDP2N  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
ML3_P  
ML3_N  
C10  
C11  
C12  
C23  
5
3P3V  
OUTDP2P  
OUTDP2N  
7
9
8
ML2_P  
ML2_N  
18  
19  
30  
31  
11  
16  
21  
22  
23  
24  
INDP3P  
INDP3N  
OUTDP3P  
OUTDP3N  
R1  
100k  
20  
DP_PWR  
I2C_EN  
17  
I2C_EN  
C21  
C22  
0.1uF  
0.1uF  
AUX_N  
3
AUX_P  
AUX_N  
15  
17  
RSVD1  
RSVD2  
RSVD3  
RSVD4  
RSVD5  
RSVD6  
RSVD7  
RSVD10  
RSVD11  
AUX_P  
AUX_N  
AUX_N  
AUX_P  
21  
22  
4
TEST1/SCL  
TEST2/SDA  
AUX_P  
3P3V  
R5  
R6  
R7  
10k  
10k  
1k  
5
7
HPDIN  
18  
HPD  
R2  
100k  
A0  
DPEQ2  
DPEQ1  
11  
14  
2
8
A0  
R3  
2k  
R4  
2k  
DDC_EN  
DDC_EN  
26  
27  
35  
38  
DPEQ0/A1  
DPEQ1  
DDC_EN  
SDA  
3V3P  
DisplayPort Receptacle  
GND  
GND  
AUX_N  
AUX_P  
R8  
10k  
23  
32  
DPEN/HPDIN  
HPDIN  
HPDIN/RSVD9  
SNOOPENZ/RSVD8  
SCL  
SNOOPENZ 29  
41  
TPAD  
CAD  
CAD  
HPDIN  
GND  
TDP142RNQ  
HPD  
GND  
3P3V  
3P3V  
R12  
1k  
R15  
1k  
GND  
SN74AHC1G125DBVR  
U2  
I2C_EN  
DPEQ0  
DPEQ1  
SNOOPENZ  
CAD  
4
2
1
R11  
1k  
R13  
1k  
R14  
20k  
R16  
1k  
R17  
20k  
3V3P  
GND  
GND  
GND  
Copyright © 2017, Texas Instruments Incorporated  
18. The Block Diagram of DisplayPort Source Application  
9.2.1.1 Design Requirement  
The TDP142 can be designed into many types of applications. All applications have certain requirements for the  
system to work properly. For example, source application uses different hardware configuration on the HPD  
channel and AUX channel from a sink application. The device can be configured by using I2C. However, the  
GPIO configuration is provided as I2C is not available in all cases. Additionally, because sources may have  
different naming conventions, please confirm the link between source and receptacle is correctly mapped through  
the TDP142.  
11. Design Parameters  
PARAMETER  
VALUE  
Maximum Operating data rate  
(RBR, HBR, HBR2, or HBR3)  
HBR3 (8.1 Gbps)  
Supply voltage  
3.3V  
Trace length/width of A  
Trace length/width of B  
12 inch /6 mil width  
2 inch/ 6 mil width  
Main link AC decoupling capacitor  
(75 nF to 265 nF)  
Recommend 100nF  
Control mode (I2C or GPIO)  
GPIO (I2C_EN = 0)  
Dual Mode DisplayPort Support (Yes/No)  
Yes. SNOOPENZ must be connected to CONFIG1 thru a buffer.  
22  
版权 © 2017–2019, Texas Instruments Incorporated  
 
TDP142  
www.ti.com.cn  
ZHCSGQ7C SEPTEMBER 2017REVISED MAY 2019  
9.2.1.2 Detail Design Procedure  
Designing in the TDP142 requires the following:  
Determine the loss profile on the DisplayPort input (A) and output (B) channels. See 20 for 6 mil trace  
insertion loss.  
Based upon the loss profile, determine the optimal configuration for the TDP142, to pass electrical  
compliance. DPEQ[1:0] must be set to appropriate value. For this case, 12-in of FR4 trace approximately  
equates to 8 dB loss at 4.05 GHz. Therefore, DPEQ1 should be tied 20k ohms to ground and DPEQ0 should  
be tied 1 kΩ to ground.  
See 18 for information of Source application on using the AC coupling capacitors, control pin resistors, and  
for recommended decouple capacitors from VCC pins to ground.  
AUX: AUXP should have a 100 kΩ pull-down resistor and AUXN should have a 100 kΩ pull-up resistor.  
These 100 kΩ resistors must be on the TDP142 side of the 100 nF capacitors.  
HPDIN is used to enable or disable DisplayPort functionality for power saving. The HPD signal should be  
routed to either pin 23 or pin 32 based on the GPIO/I2C mode.  
12. HPD GPIO/I2C Selection  
MODE  
HPD  
Pin 32  
Pin 23  
GPIO (I2C_EN = 0)  
I2C (I2C_EN != 0)  
spacer  
For the application supporting Dual mode DisplayPort: SNOOPENZ pin must be connected to the  
CONFIG1 on DisplayPort Receptacle through a buffer like the SN74AHC125. The buffer is needed  
because the internal pulldown on SNOOPENZ pin is too strong to register a valid VIH when a Dual mode  
adapter is plugged into the DisplayPort receptacle.  
Configure the TDP142 using the GPIO terminals or the I2C interface:  
GPIO – Using the terminals DPEQ0 and DPEQ1.  
I2C - Refer to the I2C Register Maps and the Programming section for a detail configuration procedures.  
The thermal pad must be connected to ground.  
版权 © 2017–2019, Texas Instruments Incorporated  
23  
TDP142  
ZHCSGQ7C SEPTEMBER 2017REVISED MAY 2019  
www.ti.com.cn  
9.2.2 Sink Application Implementation  
19 is the schematic for the Sink application, and the left side of TDP142 is connected to DisplayPort  
receptacle and the right side of TDP142 is connected to Scaler or DisplayPort sink.  
3P3V  
C1  
10uF  
C2  
0.1uF  
C3  
0.1uF  
C4  
0.1uF  
C5  
0.1uF  
3V3P  
Board_3P3V  
DisplayPort Sink  
FB  
220 ohm  
U1  
ML0_P  
ML0_N  
AUX_P  
AUX_N  
1
24  
25  
VCC  
AUXP  
AUXN  
Note:  
AC-coupled is needed if there is no  
ac-coupled on the other end of source side.  
6
VCC  
20  
VCC  
VCC  
28  
24  
23  
22  
21  
16  
11  
8
1
3
ML3_N  
ML3_P  
ML0_P  
C6  
0.1uF OUTDP0P  
0.1uF OUTDP0N  
0.1uF OUTDP1P  
0.1uF OUTDP1N  
0.1uF OUTDP2P  
0.1uF OUTDP2N  
0.1uF OUTDP3P  
0.1uF OUTDP3N  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
ML3_N  
ML3_P  
ML1_P  
ML1_N  
9
40  
39  
INDP0P  
INDP0N  
OUTDP0P  
OUTDP0N  
ML0_N  
ML1_P  
ML1_N  
ML2_P  
ML2_N  
ML3_P  
ML3_N  
10  
C7  
4
6
ML2_N  
ML2_P  
ML2_N  
ML2_P  
C8  
12  
13  
37  
36  
INDP1P  
INDP1N  
OUTDP1P  
OUTDP1N  
ML2_P  
ML2_N  
ML1_N  
ML1_P  
C9  
7
9
ML1_N  
ML1_P  
5
15  
16  
33  
34  
INDP2P  
INDP2N  
OUTDP2P  
OUTDP2N  
2
C10  
C11  
C12  
C13  
10 ML0_N  
12 ML0_P  
ML0_N  
ML0_P  
18  
19  
30  
31  
INDP3P  
INDP3N  
OUTDP3P  
OUTDP3N  
ML3_P  
ML3_N  
19  
20  
RTN  
CAD R1  
R2  
1M  
5M  
13  
14  
CONFIG1  
CONFIG2  
I2C_EN  
3P3V  
17  
I2C_EN  
3
DP_PWR  
RSVD1  
RSVD2  
RSVD3  
RSVD4  
RSVD5  
RSVD6  
RSVD7  
RSVD10  
RSVD11  
R6  
1M  
15  
17  
AUX_N  
AUX_P  
21  
22  
4
AUX_P  
AUX_N  
TEST1/SCL  
TEST2/SDA  
R3  
R4  
R5  
10k  
10k  
1k  
5
7
AUX_P  
AUX_N  
C14  
C15  
0.1uF  
0.1uF  
AUX_P  
AUX_N  
18  
HPDIN  
A0  
11  
8
HPD  
A0  
DPEQ2 14  
DPEQ1  
26  
27  
35  
38  
DPEQ0/A1  
DPEQ1  
DisplayPort Recepticle Sink  
3V3P  
2
R7  
1M  
GND  
R15  
10k  
HPDIN  
23  
32  
29  
DPEN/HPDIN  
HPD  
HPDIN  
CAD  
HPDIN/RSVD9  
SNOOPENZ/RSVD8  
41  
TPAD  
GND  
GND  
TDP142RNQ  
GND  
GND  
3P3V  
3P3V  
R9  
1k  
R12  
1k  
I2C_EN  
DPEQ0  
DPEQ1  
R8  
1k  
R10  
1k  
R11  
20k  
R13  
1k  
R14  
20k  
GND  
GND  
GND  
Copyright © 2017, Texas Instruments Incorporated  
19. The Block diagram of DisplayPort Sink Application  
9.2.2.1 Design Requirements  
For this design example, the parameters listed in 13 are used.  
13. Design Parameters  
PARAMETER  
VALUE  
Maximum Operating data rate  
(RBR, HBR, HBR2, or HBR3)  
HBR3 (8.1Gbps)  
Supply voltage  
3.3V  
Trace length/width of C  
Trace length/width of D  
12 inch/ 6 mil  
2 inch/ 6 mil  
Main link AC decoupling capacitor  
(75 nF to 265 nF)  
Recommend 100 nF  
GPIO (I2C_EN = 0)  
Control mode (I2C or GPIO)  
24  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
TDP142  
www.ti.com.cn  
ZHCSGQ7C SEPTEMBER 2017REVISED MAY 2019  
9.2.2.2 Detailed Design Procedure  
The design procedure for Sink application is listed as follows:  
Determine the loss profile on the DP input (C) and output (D) channels and cables. See 20 for 6 mil trace  
insertion loss.  
Based upon the loss profile, determine the optimal configuration for the TDP142, to pass electrical  
compliance.  
See 19 for information of Sink application on using the AC coupling capacitors, control pin resistors, and  
for recommended decouple capacitors from VCC pins to ground.  
AUX: AUXP has a 1 MΩ pull-up resistor and AUXN should have a 1 MΩ pull-down resistor. Theses 1 MΩ  
resistors must be on the TDP142 side of the 100 nF capacitors.  
HPDIN: The HPD signal should be routed to either pin 23 or pin 32 based on the GPIO/I2C mode. In that  
way, the TDP142 will always be able to conserve power when a source is not connected.  
14. HPD GPIO/I2C Selection  
MODE  
HPD  
Pin 32  
Pin 23  
GPIO (I2C_EN = 0)  
I2C (I2C_EN != 0)  
spacer  
Configure the TDP142 using the GPIO terminals or the I2C interface:  
GPIO – Using the terminals DPEQ0 and DPEQ1.  
It is recommended to start a higher equalization value like 13 dB and 15 dB first and adjust the value if  
necessary.  
I2C - Refer to the I2C Register Maps and the Programming section for a detail configuration procedures.  
The thermal pad must be connected to ground.  
9.2.3 Application Curve  
0
-5  
-10  
-15  
-20  
-25  
-30  
6 mil Loss at 2.7 GHz  
4 mil Loss at 2.7 GHz  
6 mil Loss at 4.05 GHz  
4 mil Loss at 4.05 GHz  
0
5
10  
15  
20  
25  
30  
35  
40  
Length of Trace (inch)  
D009  
20. Insertion Loss of FR4 PCB Traces  
10 Power Supply Recommendations  
The TDP142 is designed to operate with a 3.3-V power supply. Levels above those listed in the Absolute  
Maximum Ratings table should not be used. If using a higher voltage system power supply, a voltage regulator  
can be used to step down to 3.3 V. Decoupling capacitors should be used to reduce noise and improve power  
supply integrity. A 0.1-µF capacitor should be used on each power pin.  
版权 © 2017–2019, Texas Instruments Incorporated  
25  
 
TDP142  
ZHCSGQ7C SEPTEMBER 2017REVISED MAY 2019  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
1. INDP[3:0]P/N and OUTDP[3:0]P/N pairs should be routed with controlled 100-Ω differential impedance  
(±10%).  
2. Keep away from other high speed signals.  
3. Intra-pair routing should be kept to within 5 mils.  
4. Inter-pair skew should be kept within 2 UI according to the DisaplyPort Design Guide  
5. Length matching should be near the location of mismatch.  
6. Each pair should be separated at least by 3 times the signal trace width.  
7. The use of bends in differential traces should be kept to a minimum. When bends are used, the number of  
left and right bends should be as equal as possible and the angle of the bend should be 135 degrees. This  
will minimize any length mismatch causes by the bends and therefore minimize the impact bends have on  
EMI.  
8. Route all differential pairs on the same of layer.  
9. The number of VIAS should be kept to a minimum. It is recommended to keep the VIAS count to 2 or less.  
10. Refer to figure 28, the layout might face signal crossing on OUTDP2 and OUTDP3 due to mismatched  
order between the output pins of the device and the connector. One of the solutions is to do polarity swap on  
the input of the device when GPU is BGA package. It can minimize the number of VIAS being used.  
11. Keep traces on layers adjacent to ground plane.  
12. Do NOT route differential pairs over any plane split.  
13. Adding Test points will cause impedance discontinuity, and therefore, negatively impact signal performance.  
If test points are used, they should be placed in series and symmetrically. They must not be placed in a  
manner that causes a stub on the differential pair.  
11.2 Layout Example  
DPEQ1  
INDP0  
A0  
OUTDP0  
OUTDP1  
INDP1  
DPEQ0/A1  
OUTDP2  
HPDIN  
INDP2  
I2CEN  
OUTDP3  
SNOOPENZ  
INDP3  
SCL SDA DPEN  
AUX  
21. Layout Example  
26  
版权 © 2017–2019, Texas Instruments Incorporated  
TDP142  
www.ti.com.cn  
ZHCSGQ7C SEPTEMBER 2017REVISED MAY 2019  
Layout Example (接下页)  
Figure 22 demonstrates the solution of mismatched order between the output of the device and the DisplayPort  
connector for the source using BGA package. Top image of Figure 22 shows the crossing section between  
TDP142 and connector. Usually, Vias would be applied to avoid the cross, but using Via can attenuate the signal  
integrity. Therefore, the polarity swap would be implemented at the input of TDP142. The bottom image shows  
there is no more crossing section between the TDP142 and connector, which can minimize the number of Vias  
being used. Note that, the solution is only useful for the source using BGA package.  
TDP142  
GPU-BGA package  
Connector  
DP0P  
DP0P  
DP0P  
P
DP0  
N
DP0N  
DP1P  
DP0N  
DP1P  
DP0N  
DP1P  
P
DP1  
N
DP1N  
DP2P  
DP1N  
DP2N  
DP1N  
DP2P  
P
DP2  
N
DP2N  
DP3P  
DP3N  
DP2P  
DP2N  
DP3N  
DP3P  
DP3P  
DP3N  
P
DP3  
N
TDP142  
Connector  
GPU-BGA package  
DP0P  
DP0P  
DP0P  
P
DP0  
N
DP0N  
DP1P  
DP0N  
DP1P  
DP0N  
DP1P  
P
DP1  
N
DP1N  
DP2P  
DP1N  
DP2N  
DP1N  
DP2P  
P
DP2N  
DP3P  
DP3N  
DP2P  
DP2N  
N
P
N
DP2  
DP3  
DP3N  
DP3P  
DP3P  
DP3N  
22. Layout Example, Top: signal crossing on the output. Bottom: INDP2 and INDP3 Polarity Swap  
版权 © 2017–2019, Texas Instruments Incorporated  
27  
TDP142  
ZHCSGQ7C SEPTEMBER 2017REVISED MAY 2019  
www.ti.com.cn  
12 器件和文档支持  
12.1 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。  
15. 相关链接  
器件  
产品文件夹  
单击此处  
单击此处  
立即订购  
单击此处  
单击此处  
技术文档  
单击此处  
单击此处  
工具与软件  
单击此处  
单击此处  
支持和社区  
单击此处  
单击此处  
TDP142  
TDP142I  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.4 商标  
E2E is a trademark of Texas Instruments.  
DisplayPort is a trademark of VESA.  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
28  
版权 © 2017–2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Jun-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TDP142IRNQR  
TDP142IRNQT  
TDP142RNQR  
TDP142RNQT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
WQFN  
WQFN  
RNQ  
RNQ  
RNQ  
RNQ  
40  
40  
40  
40  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
0 to 70  
TDP142  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
NIPDAU  
TDP142  
TDP142  
TDP142  
0 to 70  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Jun-2022  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TDP142IRNQR  
TDP142IRNQT  
TDP142RNQR  
TDP142RNQT  
WQFN  
WQFN  
WQFN  
WQFN  
RNQ  
RNQ  
RNQ  
RNQ  
40  
40  
40  
40  
3000  
250  
330.0  
180.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
4.3  
4.3  
4.3  
4.3  
6.3  
6.3  
6.3  
6.3  
1.1  
1.1  
1.1  
1.1  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TDP142IRNQR  
TDP142IRNQT  
TDP142RNQR  
TDP142RNQT  
WQFN  
WQFN  
WQFN  
WQFN  
RNQ  
RNQ  
RNQ  
RNQ  
40  
40  
40  
40  
3000  
250  
367.0  
210.0  
367.0  
210.0  
367.0  
185.0  
367.0  
185.0  
35.0  
35.0  
35.0  
35.0  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RNQ0040A  
WQFN - 0.8 mm max height  
S
C
A
L
E
2
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
6.1  
5.9  
B
A
PIN 1 INDEX AREA  
4.1  
3.9  
C
0.8 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
4.7±0.1  
2X 4.4  
(0.2) TYP  
9
20  
EXPOSED  
THERMAL PAD  
36X 0.4  
8
21  
2X  
2.8  
2.7±0.1  
1
28  
0.25  
40X  
0.15  
29  
40  
PIN 1 ID  
0.1  
C A  
B
0.5  
0.3  
(OPTIONAL)  
40X  
0.05  
4222125/B 01/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RNQ0040A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(4.7)  
2X (2.1)  
6X (0.75)  
40  
29  
40X (0.6)  
1
28  
40X (0.2)  
SYMM  
4X  
(1.1)  
(3.8)  
(2.7)  
36X (0.4)  
8
21  
(R0.05) TYP  
9
20  
SYMM  
(5.8)  
(
0.2) TYP  
VIA  
LAND PATTERN EXAMPLE  
SCALE:15X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222125/B 01/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RNQ0040A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
4X (1.5)  
40  
29  
40X (0.6)  
1
28  
40X (0.2)  
SYMM  
6X  
(0.695)  
(3.8)  
6X  
(1.19)  
36X (0.4)  
8
21  
(R0.05) TYP  
METAL  
TYP  
9
20  
6X (1.3)  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD  
73% PRINTED SOLDER COVERAGE BY AREA  
SCALE:18X  
4222125/B 01/2016  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TDP142RNQT

8.1Gbps DP1.4 线性转接驱动器 | RNQ | 40 | 0 to 70
TI

TDP158

6Gbps DP++ 1.1 至 HDMI 2.0 转接驱动器
TI

TDP158RSBR

6Gbps DP++ 1.1 至 HDMI 2.0 转接驱动器 | RSB | 40 | 0 to 85
TI

TDP158RSBT

6Gbps DP++ 1.1 至 HDMI 2.0 转接驱动器 | RSB | 40 | 0 to 85
TI

TDP16011001AUF

Molded, Dual-In-Line Resistor Networks
VISHAY

TDP16011001BUF

Molded, Dual-In-Line Resistor Networks
VISHAY

TDP16011001CUF

Molded, Dual-In-Line Resistor Networks
VISHAY

TDP16011001DUF

Molded, Dual-In-Line Resistor Networks
VISHAY

TDP16011001EUF

Molded, Dual-In-Line Resistor Networks
VISHAY

TDP16011001FUF

Molded, Dual-In-Line Resistor Networks
VISHAY

TDP16011002AUF

Molded, Dual-In-Line Resistor Networks
VISHAY

TDP16011002BUF

Molded, Dual-In-Line Resistor Networks
VISHAY