TCA9534ADWT [TI]

具有中断和配置寄存器的 8 位 1.65V 至 5.5V I2C/SMBus I/O 扩展器 | DW | 16 | -40 to 85;
TCA9534ADWT
型号: TCA9534ADWT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有中断和配置寄存器的 8 位 1.65V 至 5.5V I2C/SMBus I/O 扩展器 | DW | 16 | -40 to 85

时钟 光电二极管 外围集成电路
文件: 总42页 (文件大小:1743K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TCA9534A  
ZHCSCR9C SEPTEMBER 2014REVISED FEBRUARY 2017  
TCA9534A 具有中断输出和配置寄存器的低压 8 I2C 和系统管理总线  
(SMBUS) 低功耗输入输出 (I/O) 扩展器  
1 特性  
2 应用  
1
低待机电流消耗  
I2C 至并行端口扩展器  
服务器  
路由器(电信交换设备)  
个人计算机  
开漏电路低电平有效中断输出  
1.65V 5.5V 的工作电源电压范围  
可耐受 5V 电压的 I/O 端口  
400kHz 快速 I2C 总线  
3 个硬件地址引脚可在 I2C/SMBus 上支持最多 8  
个器件  
个人电子产品(例如:游戏机)  
工业自动化  
采用 GPIO 受限处理器的产品  
3 说明  
TCA9534A 是一款 16 引脚器件,可为两线双向 I2C 总  
线(或 SMBus)协议提供 8 位通用并行输入和输出  
(I/O) 扩展。该器件可在 1.65V 5.5V 的电源电压范  
围内运行,从而允许使用各种器件。该器件支持  
100kHz(标准模式)和 400kHz(快速模式)时钟频  
率。当开关、传感器、按钮、LED、风扇和其它类似器  
件需要额外的 I/O 时,I/O 扩展器(如 TCA9534A)可  
提供简单解决方案。  
输入和输出配置寄存器  
极性反转寄存器  
内部加电复位  
所用通道在加电时被配置为输入  
加电时无毛刺脉冲  
SCL/SDA 输入端上的噪声滤波器  
具有最大高电流驱动能力的锁存输出,适用于直接  
驱动 LED  
锁断性能超过 100mA,符合 JESD 78 II 类规范的  
要求)  
TCA9534A 的 功能 包括在 INT 引脚上生成中断。这  
样,主设备就知道输入端口状态何时发生了变化。硬件  
可选地址引脚 A0A1 A2 最多允许 8 个  
TCA9534A 器件位于同一 I2C 总线上。该器件还可通  
过电源循环供电以生成加电复位,从而复位到默认状  
态 。  
静电放电 (ESD) 保护性能超过 JESD 22 规范的要  
2000V 人体放电模型 (A114-A)  
1000V 充电器件模型 (C101)  
器件信息(1)  
器件型号  
TCA9534A  
封装  
TSSOP (16)  
SOIC (16)  
封装尺寸(标称值)  
5.00mm x 4.40mm  
10.30mm x 7.50mm  
(1) 要了解所有可用封装,请参见数据表末尾的可订购产品附录。  
简化的原理图  
VCC  
SDA  
SCL  
Peripheral  
Devices  
I2C or SMBus  
Master  
(e.g. Processor)  
P0  
P1  
P2  
P3  
INT  
• RESET,  
ENABLE, or  
control  
inputs  
• INT or  
status  
TCA9534A  
P4  
P5  
P6  
P7  
A0  
A1  
A2  
outputs  
• LEDs  
GND  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SCPS198  
 
 
 
 
 
 
TCA9534A  
ZHCSCR9C SEPTEMBER 2014REVISED FEBRUARY 2017  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 17  
8.5 Programming........................................................... 17  
8.6 Register Maps......................................................... 19  
Application and Implementation ........................ 24  
9.1 Application Information............................................ 24  
9.2 Typical Application ................................................. 24  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ..................................... 5  
6.2 Handling Ratings....................................................... 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 6  
6.5 Electrical Characteristics........................................... 6  
6.6 I2C Interface Timing Requirements........................... 7  
6.7 Switching Characteristics.......................................... 8  
6.8 Typical Characteristics.............................................. 9  
Parameter Measurement Information ................ 12  
Detailed Description ............................................ 15  
8.1 Overview ................................................................. 15  
8.2 Functional Block Diagram ....................................... 16  
8.3 Feature Description................................................. 17  
9
10 Power Supply Recommendations ..................... 27  
10.1 Power-On Reset Requirements ........................... 27  
11 Layout................................................................... 29  
11.1 Layout Guidelines ................................................. 29  
11.2 Layout Example .................................................... 29  
12 器件和文档支持 ..................................................... 30  
12.1 相关文档ꢀ ........................................................... 30  
12.2 接收文档更新通知 ................................................. 30  
12.3 社区资源................................................................ 30  
12.4 ....................................................................... 30  
12.5 静电放电警告......................................................... 30  
12.6 Glossary................................................................ 30  
13 机械、封装和可订购信息....................................... 30  
7
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (December 2016) to Revision C  
Page  
Updated Figure 20 ............................................................................................................................................................... 13  
Updated address in Table 1 ................................................................................................................................................. 18  
Changes from Revision A (September 2014) to Revision B  
Page  
更新了 说明 部分 .................................................................................................................................................................... 1  
已添加 DW 封装...................................................................................................................................................................... 1  
Corrected ESD ratings to reflect ± ratings.............................................................................................................................. 5  
VIH values, improved performance ........................................................................................................................................ 5  
Made changes to IOL in the Recommended Operating Conditions table................................................................................ 5  
Changed VPORR limits.............................................................................................................................................................. 6  
Changed VOH at VCC = 1.65 V................................................................................................................................................. 6  
Updated IOL in the Electrical Characteristics table.................................................................................................................. 6  
Changed ICC in the Electrical Characteristics table ................................................................................................................ 7  
Deleted ΔICC parameter from the Electrical Characteristics table .......................................................................................... 7  
Increased the pin capacitance maximum, decreased typical................................................................................................. 7  
Updated graphs in Typical Characteristics section ................................................................................................................ 9  
Updated Interrupt Output (INT) section ................................................................................................................................ 17  
Added the Calculating Junction Temperature and Power Dissipation section..................................................................... 25  
Updated parameter values in Table 8 ................................................................................................................................. 27  
Added VCC_MV to Table 8 ..................................................................................................................................................... 27  
Updated Figure 39 ............................................................................................................................................................... 27  
2
版权 © 2014–2017, Texas Instruments Incorporated  
 
TCA9534A  
www.ti.com.cn  
ZHCSCR9C SEPTEMBER 2014REVISED FEBRUARY 2017  
Changes from Original (August 2014) to Revision A  
Page  
最初发布的完整版本 ............................................................................................................................................................... 1  
Copyright © 2014–2017, Texas Instruments Incorporated  
3
TCA9534A  
ZHCSCR9C SEPTEMBER 2014REVISED FEBRUARY 2017  
www.ti.com.cn  
5 Pin Configuration and Functions  
PW and DW Package  
16-Pin TSSOP and SOIC  
Top View  
16  
15  
14  
13  
12  
11  
10  
9
A0  
A1  
1
2
3
4
5
6
7
8
VCC  
SDA  
SCL  
INT  
P7  
A2  
P0  
P1  
P2  
P6  
P3  
P5  
GND  
P4  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
NAME  
A0  
1
2
3
I
I
I
Address input. Connect directly to VCC or ground  
Address input. Connect directly to VCC or ground  
Address input. Connect directly to VCC or ground  
A1  
A2  
P-port input-output. Push-pull design structure. At power on,  
P0 is configured as an input  
4
5
6
P0  
P1  
P2  
I/O  
I/O  
I/O  
P-port input-output. Push-pull design structure. At power on,  
P1 is configured as an input  
P-port input-output. Push-pull design structure. At power on,  
P2 is configured as an input  
P-port input-output. Push-pull design structure. At power on,  
P3 is configured as an input  
7
8
9
P3  
GND  
P4  
I/O  
Ground  
P-port input-output. Push-pull design structure. At power on,  
P4 is configured as an input  
I/O  
P-port input-output. Push-pull design structure. At power on,  
P5 is configured as an input  
10  
11  
12  
P5  
P6  
P7  
I/O  
I/O  
I/O  
P-port input-output. Push-pull design structure. At power on,  
P6 is configured as an input  
P-port input-output. Push-pull design structure. At power on,  
P7 is configured as an input  
13  
14  
15  
16  
INT  
SCL  
SDA  
VCC  
O
I
Interrupt output. Connect to VCC through a pull-up resistor  
Serial clock bus. Connect to VCC through a pull-up resistor  
Serial data bus. Connect to VCC through a pull-up resistor  
Supply voltage  
I/O  
4
Copyright © 2014–2017, Texas Instruments Incorporated  
TCA9534A  
www.ti.com.cn  
ZHCSCR9C SEPTEMBER 2014REVISED FEBRUARY 2017  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–0.5  
–0.5  
–0.5  
MAX  
6
UNIT  
V
VCC  
VI  
Supply voltage  
(2)  
Input voltage  
6
V
(2)  
VO  
IIK  
Output voltage  
6
V
Input clamp current  
VI < 0  
–20  
–20  
±20  
50  
mA  
mA  
mA  
mA  
mA  
IOK  
IIOK  
IOL  
IOH  
Output clamp current  
VO < 0  
Input-output clamp current  
VO < 0 or VO > VCC  
VO = 0 to VCC  
VO = 0 to VCC  
Continuous output low current through a single P-port  
Continuous output high current through a single P-port  
–50  
250  
–160  
100  
150  
Continuous current through GND by all P-ports, INT, and SDA  
Continuous current through VCC by all P-ports  
ICC  
mA  
TJ(MAX) Maximum junction temperature  
Tstg Storage temperature  
°C  
°C  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.  
6.2 Handling Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
±2000  
Electrostatic  
discharge  
V(ESD)  
V
Charged device model (CDM), per JEDEC specification JESD22-C101, all  
pins(2)  
±1000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
MIN  
MAX UNIT  
VCC  
VIH  
Supply voltage  
1.65  
0.7 × VCC  
0.7 × VCC  
–0.5  
5.5  
V
(1)  
SCL, SDA  
VCC = 1.65 V to 5.5 V  
VCC = 1.65 V to 2.7 V  
VCC = 1.65 V to 5.5 V  
VCC = 1.65 V to 2.7 V  
VCC = 3 V to 5.5 V  
VCC  
High-level input voltage  
V
A0, A1, A2, P7–P0  
SCL, SDA  
5.5  
0.3 × VCC  
VIL  
Low-level input voltage  
High-level output current  
–0.5  
0.3 × VCC  
V
A0, A1, A2, P7–P0  
Any P-port, P7–P0  
–0.5  
0.2 × VCC  
IOH  
–10  
25  
18  
9
mA  
Tj 65°C  
Tj 85°C  
Tj 100°C  
Tj 85°C  
Tj 100°C  
P00-P07, P10-P17  
INT, SDA  
IOL  
Low-level output current(2)  
mA  
6
3
Continuous current through  
GND  
All P-ports P7-P0, INT, and SDA  
200  
ICC  
TA  
mA  
°C  
Continuous current through VCC All P-ports P7-P0  
Operating free-air temperature  
–80  
85  
–40  
(1) The SCL and SDA pins shall not be at a higher potential than the supply voltage VCC in the application, or an increase in leakage  
current, II, will result.  
(2) The values shown apply to specific junction temperatures. See the Calculating Junction Temperature and Power Dissipation section on  
how to calculate the junction temperature.  
Copyright © 2014–2017, Texas Instruments Incorporated  
5
 
TCA9534A  
ZHCSCR9C SEPTEMBER 2014REVISED FEBRUARY 2017  
www.ti.com.cn  
6.4 Thermal Information  
TCA9534A  
PW (TSSOP)  
THERMAL METRIC(1)  
DW (SOIC)  
16 PINS  
92.2  
UNIT  
16 PINS  
122  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
56.4  
53.8  
67.1  
56.9  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
10.8  
26.4  
ψJB  
66.5  
56.4  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN TYP(1) MAX UNIT  
VIK  
Input diode clamp voltage  
II = –18 mA  
1.65 V to 5.5 V  
–1.2  
V
VPOR Power-on reset voltage, VCC  
VI = VCC or GND, IO = 0  
VI = VCC or GND, IO = 0  
1.2  
1
1.5  
V
rising  
R
VPOR Power-on reset voltage, VCC  
0.75  
V
V
falling  
F
1.65 V  
2.3 V  
1.2  
1.8  
2.6  
4.1  
1
IOH = –8 mA  
3 V  
4.5 V  
P-port high-level output  
VOH  
voltage(2)  
1.65 V  
2.3 V  
1.7  
2.5  
4
IOH = –10 mA  
3 V  
4.5 V  
SDA(3)  
VOL = 0.4 V  
VOL = 0.5 V  
VOL = 0.7 V  
VOL = 0.4 V  
1.65 V to 5.5 V  
1.65 V to 5.5 V  
1.65 V to 5.5 V  
1.65 V to 5.5 V  
3
8
IOL  
P port(4)  
mA  
10  
3
(5)  
INT  
SCL, SDA  
A2–A0  
P port  
±1  
±1  
1
II  
VI = VCC or GND  
1.65 V to 5.5 V  
μA  
IIH  
IIL  
VI = VCC  
1.65 V to 5.5 V  
1.65 V to 5.5 V  
μA  
μA  
P port  
VI = GND  
–1  
(1) All typical values are at nominal supply voltage (1.8-, 2.5-, 3.3-, or 5-V VCC) and TA = 25°C.  
(2) Each P-port I/O configured as a high output must be externally limited to a maximum of 10 mA, and the total current sourced by all I/Os  
(P-ports P7-P0) through VCC must be limited to a maximum current of 80 mA.  
(3) The SDA pin must be externally limited to a maximum of 12 mA, and the total current sunk by all I/Os (P-ports P7-P0, INT, and SDA)  
through GND must be limited to a maximum current of 200 mA.  
(4) Each P-port I/O configured as a low output must be externally limited to a maximum of 25 mA, and the total current sunk by all I/Os (P-  
ports P7-P0, INT, and SDA) through GND must be limited to a maximum current of 200 mA.  
(5) The INT pin must be externally limited to a maximum of 7 mA, and the total current sunk by all I/Os (P-ports P7-P0, INT, and SDA)  
through GND must be limited to a maximum current of 200 mA.  
6
Copyright © 2014–2017, Texas Instruments Incorporated  
 
TCA9534A  
www.ti.com.cn  
ZHCSCR9C SEPTEMBER 2014REVISED FEBRUARY 2017  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
5.5 V  
MIN TYP(1) MAX UNIT  
22  
11  
8
40  
30  
19  
11  
3.9  
2.2  
1.8  
1.5  
8.7  
4
3.6 V  
VI = VCC or GND, IO = 0,  
I/O = inputs, fscl = 400 kHz, no load  
Operating mode  
2.7 V  
1.65  
5
5.5 V  
1.5  
0.9  
0.6  
0.4  
1.5  
0.9  
0.6  
0.4  
3
3.6 V  
ICC  
VI = VCC  
μA  
2.7 V  
VI = GND, IO = 0,  
I/O = inputs, fscl = 0 kHz, no  
load  
1.95 V  
5.5 V  
Standby mode  
3.6 V  
VI = GND  
2.7 V  
3
1.95 V  
1.65 V to 5.5 V  
2.2  
8
Ci  
SCL  
VI = VCC or GND  
VIO = VCC or GND  
pF  
pF  
SDA  
P port  
3
9.5  
9.5  
Cio  
1.65 V to 5.5 V  
3.7  
6.6 I2C Interface Timing Requirements  
over operating free-air temperature range (unless otherwise noted) (see Figure 19)  
MIN  
MAX  
UNIT  
STANDARD MODE  
fscl  
I2C clock frequency  
I2C clock high time  
I2C clock low time  
I2C spike time  
I2C serial-data setup time  
I2C serial-data hold time  
I2C input rise time  
I2C input fall time  
I2C output fall time  
I2C bus free time between stop and start  
I2C start or repeated start condition setup  
I2C start or repeated start condition hold  
I2C stop condition setup  
Valid data time  
0
4
100  
50  
kHz  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
µs  
µs  
ns  
tsch  
tscl  
4.7  
tsp  
tsds  
tsdh  
ticr  
250  
0
1000  
300  
ticf  
tocf  
tbuf  
tsts  
10-pF to 400-pF bus  
300  
4.7  
4.7  
4
tsth  
tsps  
tvd(data)  
4
SCL low to SDA output valid  
3.45  
3.45  
400  
ACK signal from SCL low to  
SDA (out) low  
tvd(ack)  
Valid data time of ACK condition  
I2C bus capacitive load  
µs  
pF  
Cb  
FAST MODE  
fscl  
tsch  
tscl  
tsp  
I2C clock frequency  
0
0.6  
1.3  
400  
50  
kHz  
µs  
µs  
ns  
ns  
ns  
ns  
I2C clock high time  
I2C clock low time  
I2C spike time  
I2C serial-data setup time  
I2C serial-data hold time  
I2C input rise time  
tsds  
tsdh  
ticr  
100  
0
20  
300  
Copyright © 2014–2017, Texas Instruments Incorporated  
7
TCA9534A  
ZHCSCR9C SEPTEMBER 2014REVISED FEBRUARY 2017  
www.ti.com.cn  
I2C Interface Timing Requirements (continued)  
over operating free-air temperature range (unless otherwise noted) (see Figure 19)  
MIN  
MAX  
UNIT  
20 × (VDD  
/
ticf  
I2C input fall time  
I2C output fall time  
300  
300  
ns  
5.5 V)  
20 × (VDD  
/
tocf  
10-pF to 400-pF bus  
ns  
5.5 V)  
tbuf  
I2C bus free time between stop and start  
I2C start or repeated start condition setup  
I2C start or repeated start condition hold  
I2C stop condition setup  
1.3  
µs  
µs  
µs  
µs  
ns  
tsts  
0.6  
tsth  
0.6  
tsps  
0.6  
tvd(data)  
Valid data time  
SCL low to SDA output valid  
0.9  
0.9  
ACK signal from SCL low to  
SDA (out) low  
tvd(ack)  
Cb  
Valid data time of ACK condition  
I2C bus capacitive load  
µs  
pF  
400  
6.7 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted) (see Figure 20 and Figure 21)  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
MIN  
MAX  
UNIT  
STANDARD and FAST MODE  
tiv  
Interrupt valid time  
Interrupt reset delay time  
Output data valid  
P port  
SCL  
INT  
INT  
4
4
µs  
µs  
ns  
ns  
μs  
tir  
tpv  
tps  
tph  
SCL  
P7–P0  
SCL  
350  
Input data setup time  
Input data hold time  
P port  
P port  
100  
1
SCL  
8
Copyright © 2014–2017, Texas Instruments Incorporated  
TCA9534A  
www.ti.com.cn  
ZHCSCR9C SEPTEMBER 2014REVISED FEBRUARY 2017  
6.8 Typical Characteristics  
TA = 25°C (unless otherwise noted)  
40  
2.2  
2
Vcc = 1.65 V  
Vcc = 1.8 V  
Vcc = 2.5 V  
Vcc = 3.3 V  
Vcc = 3.6 V  
Vcc = 5 V  
Vcc = 5.5V  
Vcc = 1.65 V  
Vcc = 1.8 V  
Vcc = 2.5 V  
Vcc = 3.3 V  
Vcc = 3.6 V  
Vcc = 5 V  
Vcc = 5.5V  
36  
32  
28  
24  
20  
16  
12  
8
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
4
0
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TA - Temperature (°C)  
TA - Temperature (°C)  
D001  
D002  
Figure 1. Supply Current vs Temperature for Different  
Figure 2. Standby Supply Current vs Temperature for  
Different Supply Voltage (VCC  
Supply Voltage (VCC  
)
)
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
-40èC  
25èC  
85èC  
-40èC  
25èC  
85èC  
VCC = 1.65 V  
0
1.5  
0
2
2.5  
3
3.5  
4
4.5  
5
5.5  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
VCC - Supply Voltage (V)  
VOL - Output Low Voltage (V)  
D003  
D004  
Figure 3. Supply Current vs Supply Voltage for Different  
Temperature (TA)  
Figure 4. I/O Sink Current vs Output Low Voltage for  
Different Temperature (TA) for VCC = 1.65 V  
35  
60  
50  
40  
30  
20  
10  
0
-40èC  
-40èC  
25èC  
85èC  
25èC  
30  
85èC  
25  
VCC = 1.8 V  
VCC = 2.5 V  
20  
15  
10  
5
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
VOL - Output Low Voltage (V)  
VOL - Output Low Voltage (V)  
D005  
D006  
Figure 5. I/O Sink Current vs Output Low Voltage for  
Different Temperature (TA) for VCC = 1.8 V  
Figure 6. I/O Sink Current vs Output Low Voltage for  
Different Temperature (TA) for VCC = 2.5 V  
Copyright © 2014–2017, Texas Instruments Incorporated  
9
TCA9534A  
ZHCSCR9C SEPTEMBER 2014REVISED FEBRUARY 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
TA = 25°C (unless otherwise noted)  
70  
80  
70  
60  
50  
40  
30  
20  
10  
0
-40èC  
-40èC  
25èC  
85èC  
25èC  
60  
85èC  
50  
VCC = 3.3 V  
VCC = 5 V  
40  
30  
20  
10  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
VOL - Output Low Voltage (V)  
VOL - Output Low Voltage (V)  
D007  
D009  
Figure 7. I/O Sink Current vs Output Low Voltage for  
Different Temperature (TA) for VCC = 3.3 V  
Figure 8. I/O Sink Current vs Output Low Voltage for  
Different Temperature (TA) for VCC = 5 V  
300  
250  
200  
150  
100  
50  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.8 V, 1 mA  
1.8 V, 10 mA  
3.3 V, 1mA  
3.3 V, 10 mA  
5 V, 1 mA  
5 V, 10 mA  
-40èC  
25èC  
85èC  
VCC = 5.5 V  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
-40  
-15  
10  
35  
60  
85  
VOL - Output Low Voltage (V)  
TA - Temperature (°C)  
D010  
D011  
Figure 9. I/O Sink Current vs Output Low Voltage for  
Different Temperature (TA) for VCC = 5.5 V  
Figure 10. II/O Low Voltage vs Temperature for Different VCC  
and IOL  
20  
15  
10  
5
25  
-40èC  
25èC  
85èC  
-40èC  
25èC  
85èC  
20  
VCC = 1.65 V  
VCC = 1.8 V  
15  
10  
5
0
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
VCC-VOH - Output High Voltage (V)  
VCC-VOH - Output High Voltage (V)  
D012  
D013  
Figure 11. I/O Source Current vs Output High Voltage for  
Different Temperature (TA) for VCC = 1.65 V  
Figure 12. I/O Source Current vs Output High Voltage for  
Different Temperature (TA) for VCC = 1.8 V  
10  
Copyright © 2014–2017, Texas Instruments Incorporated  
TCA9534A  
www.ti.com.cn  
ZHCSCR9C SEPTEMBER 2014REVISED FEBRUARY 2017  
Typical Characteristics (continued)  
TA = 25°C (unless otherwise noted)  
40  
60  
50  
40  
30  
20  
10  
0
-40èC  
25èC  
85èC  
-40èC  
25èC  
85èC  
35  
30  
25  
20  
15  
10  
5
VCC = 2.5 V  
VCC = 3.3 V  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
VCC-VOH - Output High Voltage (V)  
VCC-VOH - Output High Voltage (V)  
D014  
D015  
Figure 13. I/O Source Current vs Output High Voltage for  
Different Temperature (TA) for VCC = 2.5 V  
Figure 14. I/O Source Current vs Output High Voltage for  
Different Temperature (TA) for VCC = 3.3 V  
70  
80  
-40èC  
-40èC  
25èC  
85èC  
25èC  
70  
60  
50  
40  
30  
20  
10  
0
60  
85èC  
50  
VCC = 5 V  
VCC = 5.5 V  
40  
30  
20  
10  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
VCC-VOH - Output High Voltage (V)  
VCC-VOH - Output High Voltage (V)  
D016  
D017  
Figure 15. I/O Source Current vs Output High Voltage for  
Different Temperature (TA) for VCC = 5 V  
Figure 16. I/O Source Current vs Output High Voltage for  
Different Temperature (TA) for VCC = 5.5 V  
400  
18  
1.65 V, 10 mA  
2.5 V, 10 mA  
3.6 V, 10 mA  
5 V, 10 mA  
5.5 V, 10 mA  
1.65 V  
1.8 V  
2.5 V  
3.3 V  
5 V  
5.5 V  
350  
300  
250  
200  
150  
100  
50  
15  
12  
9
6
3
0
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TA - Temperature (°C)  
TA - Temperature (°C)  
D018  
D019  
Figure 17. VCC – VOH Voltage vs Temperature for Different  
VCC  
Figure 18. Δ ICC vs Temperature for Different VCC (VI = VCC  
0.6 V)  
Copyright © 2014–2017, Texas Instruments Incorporated  
11  
TCA9534A  
ZHCSCR9C SEPTEMBER 2014REVISED FEBRUARY 2017  
www.ti.com.cn  
7 Parameter Measurement Information  
VCC  
RL = 1 kW  
SDA  
DUT  
CL = 50 pF  
(see Note A)  
SDA LOAD CONFIGURATION  
Three Bytes for Complete  
Device Programming  
Data  
Bit 07  
(MSB)  
Stop  
Condition Condition  
(P) (S)  
Start  
Address  
Bit 7  
Data  
Stop  
R/W  
Bit 0  
(LSB)  
Address  
Bit 6  
Address  
Bit 1  
ACK  
(A)  
Bit 10 Condition  
(MSB)  
(LSB)  
(P)  
tscl  
tsch  
0.7 ´ VCC  
0.3 ´ VCC  
SCL  
ticr  
tsts  
tPHL  
ticf  
tbuf  
tsp  
tPLH  
0.7 ´ VCC  
0.3 ´ VCC  
SDA  
ticf  
ticr  
tsdh  
tsps  
tsth  
tsds  
Repeat  
Stop  
Condition  
Start  
Start or  
Repeat  
Start  
Condition  
Condition  
VOLTAGE WAVEFORMS  
BYTE  
1
DESCRIPTION  
I2C address  
P-port data  
2, 3  
A. CL includes probe and jig capacitance.  
B. All inputs are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr/tf 30 ns.  
C. All parameters and waveforms are not applicable to all devices.  
Figure 19. I2C Interface Load Circuit and Voltage Waveforms  
12  
Copyright © 2014–2017, Texas Instruments Incorporated  
TCA9534A  
www.ti.com.cn  
ZHCSCR9C SEPTEMBER 2014REVISED FEBRUARY 2017  
Parameter Measurement Information (continued)  
V
CC  
R
L
= 4.7 kΩ  
INT  
DUT  
C
L
= 100 pF  
(see Note A)  
INTERRUPT LOAD CONFIGURATION  
ACK  
From Slave  
ACK  
Start  
8 Bits  
From Slave  
Condition  
R/W  
(One Data Byte)  
From Port  
Slave Address  
Data From Port  
Data 2  
Data 1  
A
1
P
S
0
1
1
1
A2 A1 A0  
1
A
1
2
3
4
5
6
7
8
A
A
t
ir  
B
B
t
ir  
INT  
A
t
iv  
t
sps  
A
Data  
Into  
Port  
Address  
Data 1  
Data 2  
0.7 × V  
0.3 × V  
CC  
0.7 × V  
0.3 × V  
CC  
SCL  
INT  
R/W  
A
CC  
CC  
t
iv  
t
ir  
0.7 × V  
0.3 × V  
0.7 × V  
0.3 × V  
CC  
CC  
INT  
P
n
CC  
CC  
View A−A  
A. CL includes probe and jig capacitance.  
View B−B  
B. All inputs are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr/tf 30 ns.  
C. All parameters and waveforms are not applicable to all devices.  
Figure 20. Interrupt Load Circuit and Voltage Waveforms  
Copyright © 2014–2017, Texas Instruments Incorporated  
13  
TCA9534A  
ZHCSCR9C SEPTEMBER 2014REVISED FEBRUARY 2017  
www.ti.com.cn  
Parameter Measurement Information (continued)  
Pn  
500 Ω  
DUT  
2 x VCC  
CL = 50 pF  
(see Note A)  
500 Ω  
P-PORT LOAD CONFIGURATION  
0.7 x VCC  
0.3 x VCC  
SCL  
SDA  
P0  
A
P3  
Slave  
ACK  
tpv  
(see Note B)  
Last Stable Bit  
Unstable Data  
WRITE MODE (R/W = 0)  
0.7 x VCC  
0.3 x VCC  
P0  
A
P3  
SCL  
tph  
tps  
0.7 x VCC  
0.3 x VCC  
Pn  
READ MODE (R/W = 1)  
A. CL includes probe and jig capacitance.  
B. tpv is measured from 0.7 × VCC on SCL to 50% I/O (Pn) output.  
C. All inputs are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr/tf 30 ns.  
D. The outputs are measured one at a time, with one transition per measurement.  
E. All parameters and waveforms are not applicable to all devices.  
Figure 21. P-Port Load Circuit and Voltage Waveforms  
14  
Copyright © 2014–2017, Texas Instruments Incorporated  
TCA9534A  
www.ti.com.cn  
ZHCSCR9C SEPTEMBER 2014REVISED FEBRUARY 2017  
8 Detailed Description  
8.1 Overview  
The TCA9534A is an 8-bit I/O expander for the two-line bidirectional bus (I2C) is designed for 1.65-V to 5.5-V VCC  
operation. It provides general-purpose remote I/O expansion for most micro-controller families via the I2C  
interface (serial clock, SCL, and serial data, SDA, pins).  
The TCA9534A open-drain interrupt (INT) output is activated when any input state differs from its corresponding  
Input Port register state and is used to indicate to the system master that an input state has changed. The INT  
pin can be connected to the interrupt input of a micro-controller. By sending an interrupt signal on this line, the  
remote I/O can inform the micro-controller if there is incoming data on its ports without having to communicate  
via the I2C bus. Thus, the TCA9534A can remain a simple slave device. The device outputs (latched) have high-  
current drive capability for directly driving LEDs.  
Three hardware pins (A0, A1, and A2) are used to program and vary the fixed I2C slave address and allow up to  
eight devices to share the same I2C bus or SMBus.  
The system master can reset the TCA9534A in the event of a timeout or other improper operation by cycling the  
power supply and causing a power-on reset (POR). A reset puts the registers in their default state and initializes  
the I2C /SMBus state machine.  
The TCA9534A consists of one 8-bit Configuration (input or output selection), Input Port, Output Port, and  
Polarity Inversion (active high or active low) registers. At power on, the I/Os are configured as inputs. However,  
the system master can enable the I/Os as either inputs or outputs by writing to the I/O configuration bits. The  
data for each input or output is kept in the corresponding Input Port or Output Port register. The polarity of the  
Input Port register can be inverted with the Polarity Inversion register. All registers can be read by the system  
master.  
The TCA9534A is identical to the TCA9554 except for the removal of the internal I/O pull-up resistors, which  
greatly reduces power consumption when the I/Os are held LOW.  
Copyright © 2014–2017, Texas Instruments Incorporated  
15  
TCA9534A  
ZHCSCR9C SEPTEMBER 2014REVISED FEBRUARY 2017  
www.ti.com.cn  
8.2 Functional Block Diagram  
13  
Interrupt  
Logic  
INT  
LP Filter  
1
A0  
2
3
A1  
A2  
P7−P0  
14  
15  
SCL  
SDA  
2
Input  
Filter  
I C Bus  
Control  
Shift  
I/O  
8 Bits  
Register  
Port  
Write Pulse  
Read Pulse  
Power-On  
Reset  
16  
8
VCC  
GND  
Pin numbers shown are for the PW package.  
Figure 22. Functional Block Diagram  
Data From  
Shift Register  
Output Port  
Register Data  
Configuration  
Register  
VCC  
Data From  
Shift Register  
Q1  
Q
D
FF  
CK Q  
Write Configuration  
Pulse  
Q
D
FF  
P0 to P7  
Write Pulse  
CK Q  
Q2  
ESD Protection  
Diode  
Output Port  
Register  
Input Port  
Register  
GND  
Input Port  
Register Data  
D
Q
FF  
Read Pulse  
CK  
Q
To INT  
Polarity  
Register Data  
Data From Shift  
Register  
D
FF  
Q
Q
Write Polarity  
Pulse  
CK  
Polarity Inversion  
Register  
At power-on reset, all registers return to default values.  
Figure 23. Simplified Schematic Of P0 To P7  
16  
Copyright © 2014–2017, Texas Instruments Incorporated  
TCA9534A  
www.ti.com.cn  
ZHCSCR9C SEPTEMBER 2014REVISED FEBRUARY 2017  
8.3 Feature Description  
8.3.1 I/O Port  
When an I/O is configured as an input, FETs Q1 and Q2 are off, creating a high-impedance input. The input  
voltage may be raised above VCC to a maximum of 5.5 V.  
If the I/O is configured as an output, Q1 or Q2 is enabled depending on the state of the output port register. In  
this case, there are low impedance paths between the I/O pin and either VCC or GND. The external voltage  
applied to this I/O pin must not exceed the recommended levels for proper operation.  
8.3.2 Interrupt Output (INT)  
An interrupt is generated by any rising or falling edge of the port inputs in the input mode. After time, tiv, the  
signal INT is valid. Resetting the interrupt circuit is achieved when data on the port is changed to the original  
setting or data is read from the port that generated the interrupt. Resetting occurs in the read mode at the  
acknowledge (ACK) bit after the rising edge of the SCL signal. Note that the INT is reset at the ACK just before  
the byte of changed data is sent. Interrupts that occur during the ACK clock pulse can be lost (or be very short)  
because of the resetting of the interrupt during this pulse. Each change of the I/Os after resetting is detected and  
is transmitted as INT.  
Reading from or writing to another device does not affect the interrupt circuit, and a pin configured as an output  
cannot cause an interrupt. Changing an I/O from an output to an input may cause a false interrupt to occur if the  
state of the pin does not match the contents of the Input Port register.  
The INT output has an open-drain structure and requires pull-up resistor to VCC  
8.4 Device Functional Modes  
.
8.4.1 Power-On Reset  
When power (from 0 V) is applied to VCC, an internal power-on reset holds the TCA9534A in a reset condition  
until VCC has reached VPORR. At that point, the reset condition is released and the TCA9534A registers and  
SMBus/I2C state machine initialize to their default states. After that, VCC must be lowered to below VPORF and  
then back up to the operating voltage for a power-on reset cycle.  
8.5 Programming  
8.5.1 I2C Interface  
The TCA9534A has a standard bidirectional I2C interface that is controlled by a master device in order to be  
configured or read the status of this device. Each slave on the I2C bus has a specific device address to  
differentiate between other slave devices that are on the same I2C bus. Many slave devices require configuration  
upon startup to set the behavior of the device. This is typically done when the master accesses internal register  
maps of the slave, which have unique register addresses. A device can have one or multiple registers where  
data is stored, written, or read. For more information see the Understanding the I2C Bus application report.  
The physical I2C interface consists of the serial clock (SCL) and serial data (SDA) lines. Both SDA and SCL lines  
must be connected to VCC through a pull-up resistor. The size of the pull-up resistor is determined by the amount  
of capacitance on the I2C lines. For further details, see the I2C Pull-up Resistor Calculation application report.  
Data transfer may be initiated only when the bus is idle. A bus is considered idle if both SDA and SCL lines are  
high after a STOP condition.  
Figure 24 and Figure 25 show the general procedure for a master to access a slave device:  
1. If a master wants to send data to a slave:  
Master-transmitter sends a START condition and addresses the slave-receiver.  
Master-transmitter sends data to slave-receiver.  
Master-transmitter terminates the transfer with a STOP condition.  
2. If a master wants to receive or read data from a slave:  
Master-receiver sends a START condition and addresses the slave-transmitter.  
Master-receiver sends the requested register to read to slave-transmitter.  
Master-receiver receives data from the slave-transmitter.  
Copyright © 2014–2017, Texas Instruments Incorporated  
17  
TCA9534A  
ZHCSCR9C SEPTEMBER 2014REVISED FEBRUARY 2017  
www.ti.com.cn  
Programming (continued)  
Master-receiver terminates the transfer with a STOP condition.  
{/[  
{5!  
5ata Çransfer  
{Ç!wÇ  
/ondition  
{Çhꢀ  
/ondition  
Figure 24. Definition of Start and Stop Conditions  
{5! line stꢀble while {/[ line is high  
{/[  
1
0
1
1
1
!/Y  
0
0
0
{5!  
a{.  
.it  
.it  
.it  
.it  
.it  
.it  
[{.  
!/Y  
.yte: 1010 1010 ( 0x!!h )  
Figure 25. Bit Transfer  
Table 1 shows the TCA9534A interface definition.  
Table 1. Interface Definition Table  
BIT  
BYTE  
7 (MSB)  
6
H
5
H
4
H
3
2
1
0 (LSB)  
R/W  
I2C slave address  
Px I/O data bus  
L
A2  
P3  
A1  
P2  
A0  
P1  
P7  
P6  
P5  
P4  
P0  
18  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
TCA9534A  
www.ti.com.cn  
ZHCSCR9C SEPTEMBER 2014REVISED FEBRUARY 2017  
8.6 Register Maps  
8.6.1 Device Address  
Figure 26 shows the address byte of the TCA9534A.  
Slave Address  
0
1
1
1
A2 A1 A0 R/W  
Hardware  
Selectable  
Fixed  
Figure 26. TCA9534A Address  
Table 2 shows the TCA9534A address reference.  
Table 2. Address Reference  
INPUTS  
I2C BUS SLAVE ADDRESS  
A2  
L
A1  
L
A0  
L
56 (decimal), 38 (hexadecimal)  
57 (decimal), 39 (hexadecimal)  
58 (decimal), 3A (hexadecimal)  
59 (decimal), 3B (hexadecimal)  
60 (decimal), 3C (hexadecimal)  
61 (decimal), 3D (hexadecimal)  
62 (decimal), 3E (hexadecimal)  
63 (decimal), 3F (hexadecimal)  
L
L
H
L
L
H
H
L
L
H
L
H
H
H
H
L
H
L
H
H
H
The last bit of the slave address defines the operation (read or write) to be performed. When it is high (1), a read  
is selected, while a low (0) selects a write operation.  
8.6.2 Control Register and Command Byte  
Following the successful Acknowledgment of the address byte, the bus master sends a command byte that is  
stored in the control register in the TCA9534A (see Figure 27). Two bits of this command byte state the operation  
(read or write) and the internal register (input, output, polarity inversion or configuration) that is affected. This  
register can be written or read through the I2C bus. The command byte is sent only during a write transmission.  
Once a command byte has been sent, the register that was addressed continues to be accessed by reads until a  
new command byte has been sent.  
0
0
0
0
0
B2 B1 B0  
Figure 27. Control Register Bits  
Table 3 shows the TCA9534A command byte.  
Table 3. Command Byte Table  
CONTROL REGISTER BITS  
COMMAND BYTE  
REGISTER  
PROTOCOL  
POWER-UP DEFAULT  
(HEX)  
B1  
0
B0  
0
0×00  
0×01  
0×02  
0×03  
Input Port  
Output Port  
Read byte  
XXXX XXXX  
1111 1111  
0000 0000  
1111 1111  
0
1
Read/write byte  
Read/write byte  
Read/write byte  
1
0
Polarity Inversion  
Configuration  
1
1
Copyright © 2014–2017, Texas Instruments Incorporated  
19  
 
 
 
 
TCA9534A  
ZHCSCR9C SEPTEMBER 2014REVISED FEBRUARY 2017  
www.ti.com.cn  
8.6.3 Register Descriptions  
The Input Port register (register 0) reflects the incoming logic levels of the pins, regardless of whether the pin is  
defined as an input or an output by the Configuration register. It only acts on read operation. Writes to these  
registers have no effect. The default value, X, is determined by the externally applied logic level. See Table 4.  
Before a read operation, a write transmission is sent with the command byte to indicate to the I2C device that the  
Input Port register is accessed next.  
Table 4. Register 0 (Input Port Register) Table  
BIT  
I7  
X
I6  
X
I5  
X
I4  
X
I3  
X
I2  
X
I1  
X
I0  
X
DEFAULT  
The Output Port register (register 1) shows the outgoing logic levels of the pins defined as outputs by the  
Configuration register. Bit values in this register have no effect on pins defined as inputs. In turn, reads from this  
register reflect the value that is in the flip-flop controlling the output selection, not the actual pin value. See  
Table 5.  
Table 5. Register 1 (Output Port Register) Table  
BIT  
O7  
1
O6  
1
O5  
1
O4  
1
O3  
1
O2  
1
O1  
1
O0  
1
DEFAULT  
The Polarity Inversion register (register 2) allows polarity inversion of pins defined as inputs by the Configuration  
register. If a bit in this register is set (written with 1), the corresponding port pin polarity is inverted. If a bit in this  
register is cleared (written with a 0), the corresponding port pin original polarity is retained. See Table 6.  
Table 6. Register 2 (Polarity Inversion Register) Table  
BIT  
N7  
0
N6  
0
N5  
0
N4  
0
N3  
0
N2  
0
N1  
0
N0  
0
DEFAULT  
The Configuration register (register 3) configures the directions of the I/O pins. If a bit in this register is set to 1,  
the corresponding port pin is enabled as an input with a high-impedance output driver. If a bit in this register is  
cleared to 0, the corresponding port pin is enabled as an output. See Table 7.  
Table 7. Register 3 (Configuration Register) Table  
BIT  
C7  
1
C6  
1
C5  
1
C4  
1
C3  
1
C2  
1
C1  
1
C0  
1
DEFAULT  
20  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
 
 
TCA9534A  
www.ti.com.cn  
ZHCSCR9C SEPTEMBER 2014REVISED FEBRUARY 2017  
8.6.3.1 Bus Transactions  
Data is exchanged between the master and the TCA9534A through write and read commands.  
8.6.3.1.1 Writes  
To write on the I2C bus, the master sends a START condition on the bus with the address of the slave, as well  
as the last bit (the R/W bit) set to 0, which signifies a write. After the slave sends the acknowledge bit, the master  
then sends the register address of the register to which it wishes to write. The slave acknowledges again, letting  
the master know it is ready. After this, the master starts sending the register data to the slave until the master  
has sent all the data necessary (which is sometimes only a single byte), and the master terminates the  
transmission with a STOP condition.  
See Table 3 to see list of the internal registers and a description of each one.  
Figure 28 shows an example of writing a single byte to a slave register.  
ꢄaster controls {5! line  
{lave controls {5! line  
írite to one register in a device  
wegister !ddress ꢁ (8 bits)  
5ata .yte to wegister ꢁ (8 bits)  
5evice ({lave) !ddress (7 bits)  
{
0
1
1
1
!2 !1 !0  
0
!
.7 .6 .ꢀ .4 .3 .2 .1 .0  
!
57 56 5ꢀ 54 53 52 51 50  
!
{Ç!wÇ  
w/í=0 !ꢃY  
!ꢃY  
!ꢃY {Çhꢂ  
Figure 28. Write to Register  
Figure 29 shows an example of writing to the output port register.  
SCL  
1
2
3
4
5
6
7
8
9
Slave Address  
Command Byte  
Data to Port  
S
0
1
1
1
A2 A1 A  
0
A
0
0
0
0
0
0
0
1
A
Data 1  
A
P
SDA  
ACK From Slave  
ACK From Slave  
R/W ACK From Slave  
Start Condition  
Write to Port  
Data Out  
Data 1 Valid  
From Port  
t
pv  
Figure 29. Write to Output Port Register  
Figure 30 shows an example of writing to the configuration or polarity inversion registers.  
Copyright © 2014–2017, Texas Instruments Incorporated  
21  
 
 
TCA9534A  
ZHCSCR9C SEPTEMBER 2014REVISED FEBRUARY 2017  
www.ti.com.cn  
SCL  
1
2
3
4
5
6
7
8
9
Slave Address  
Command Byte  
Data to Register  
Data  
SDA  
S
0
1
1
1
A2 A1 A0  
0
A
0
0
0
0
0
1
0
1/0  
A
A
P
Start Condition  
R/W  
ACK From Slave  
ACK From Slave  
ACK From Slave  
Data to  
Register  
Figure 30. Write to Configuration or Polarity Inversion Registers  
8.6.3.1.2 Reads  
Reading from a slave is very similar to writing, but requires some additional steps. In order to read from a slave,  
the master must first instruct the slave which register it wishes to read from. This is done by the master starting  
off the transmission in a similar fashion as the write, by sending the address with the R/W bit equal to 0  
(signifying a write), followed by the register address it wishes to read from. When the slave acknowledges this  
register address, the master sends a START condition again, followed by the slave address with the R/W bit set  
to 1 (signifying a read). This time, the slave acknowledges the read request, and the master releases the SDA  
bus but continues supplying the clock to the slave. During this part of the transaction, the master becomes the  
master-receiver, and the slave becomes the slave-transmitter.  
The master continues to send out the clock pulses, but releases the SDA line so that the slave can transmit data.  
At the end of every byte of data, the master sends an ACK to the slave, letting the slave know that it is ready for  
more data. When the master has received the number of bytes it is expecting, it sends a NACK, signaling to the  
slave to halt communications and release the bus. The master follows this up with a STOP condition.  
See Table 3 for the list of the internal registers and a description of each one.  
If a read is requested by the master after a POR without first setting the command byte via a write, the device will  
NACK until a command byte-register address is set as described above.  
Figure 31 shows an example of reading a single byte from a slave register.  
ꢃaster controls {5! line  
{lave controls {5! line  
wead from one register in a device  
5evice ({lave) !ddress (7 bits)  
wegister !ddress ꢁ (8 bits)  
5evice ({lave) !ddress (7 bits)  
5ata .yte from wegister ꢁ (8 bits)  
57 56 5ꢀ 54 53 52 51 50 ꢁ!  
{
0
1
1
1
!2 !1 !0  
0
!
.7 .6 .ꢀ .4  
.2 .1 .0  
!
{r  
0
1
1
1
!2 !1 !0  
1
!
.3  
wꢄí=1  
{Ç!wÇ  
!/Y  
!/Y wepeated {Ç!wÇ  
!/Y  
ꢁ!/Y {Çhꢂ  
wꢄí=0  
Figure 31. Read From Register  
Data is clocked into the register on the rising edge of the ACK clock pulse. There is no limitation on the number  
of data bytes received in one read transmission, but when the final byte is received, the bus master must not  
acknowledge the data. See Figure 32.  
22  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
TCA9534A  
www.ti.com.cn  
ZHCSCR9C SEPTEMBER 2014REVISED FEBRUARY 2017  
1
2
3
4
5
6
7
8
9
SCL  
Data From Port  
Data 1  
Slave Address  
Data From Port  
Data 4  
S
0
1
1
1
A2 A1 A0  
R/W  
1
A
P
NA  
A
SDA  
Start  
Condition  
NACK From  
Master  
ACK From  
Slave  
ACK From  
Master  
Stop  
Condition  
Read From  
Port  
Data Into  
Port  
Data 2  
Data 3  
Data 4  
Data 5  
t
ph  
t
ps  
INT  
t
iv  
t
ir  
A. This figure assumes the command byte has previously been programmed with 00h.  
B. Transfer of data can be stopped at any moment by a Stop condition.  
C. This figure eliminates the command byte transfer, a restart, and slave address call between the initial slave address  
call and actual data transfer from the P port. See the Reads section for these details.  
Figure 32. Read From Input Port Register  
Copyright © 2014–2017, Texas Instruments Incorporated  
23  
TCA9534A  
ZHCSCR9C SEPTEMBER 2014REVISED FEBRUARY 2017  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
Figure 33 shows an application in which the TCA9534A can be used.  
IO Expanders such as the TCA9534A are commonly used to obtain more general purpose I/Os. There are many  
common uses for these additionial I/Os:  
Inputs from other ICs, such as interrupt signals from sensors  
Inputs from physical buttons (for detecting button presses)  
Outputs to control RESET or ENABLE signals on other ICs  
Outputs for controlling LEDs for visual feedback to a user  
9.2 Typical Application  
V
CC  
100 kΩ  
2 kΩ  
16  
10 kΩ(1) 10 kΩ(1)  
(x 3)  
10 kΩ  
V
CC  
VCC  
15  
14  
4
Subsystem 1  
SDA  
SCL  
INT  
SDA  
P0  
P1  
(e.g., temperature sensor)  
Master  
Controller  
SCL  
INT  
5
INT  
13  
6
7
P2  
P3  
RESET  
GND  
Subsystem 2  
(e.g., counter)  
TCA9534A  
9
P4  
10  
A
P5  
P6  
P7  
3
2
A2  
Controlled Device  
(e.g., CBT device)  
11  
12  
ENABLE  
A1  
A0  
1
B
GND  
ALARM  
8
Subsystem 3  
(e.g., alarm system)  
V
CC  
P6 and P7 are not used and must be configured as outputs.  
Figure 33. Application Schematic  
24  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
TCA9534A  
www.ti.com.cn  
ZHCSCR9C SEPTEMBER 2014REVISED FEBRUARY 2017  
Typical Application (continued)  
9.2.1 Design Requirements  
9.2.1.1 Calculating Junction Temperature and Power Dissipation  
When designing with the TCA9534A, it is important that the Recommended Operating Conditions not be violated.  
Many of the parameters of this device are rated based on junction temperature. So junction temperature must be  
calculated in order to verify that safe operation of the device is met. The basic equation for junction temperature  
is shown in Equation 1.  
Tj = TA + q ´ P  
(
)
JA  
d
(1)  
θJA is the standard junction to ambient thermal resistance measurement of the package, as seen in Thermal  
Information table. Pd is the total power dissipation of the device, and the approximation is shown in Equation 2.  
P » ICC_STATIC ´ VCC  
(
+
Pd_PORT _L  
+
Pd_PORT _H  
)
d
å
å
(2)  
Equation 2 is the approximation of power dissipation in the device. The equation is the static power plus the  
summation of power dissipated by each port (with a different equation based on if the port is outputting high, or  
outputting low. If the port is set as an input, then power dissipation is the input leakage of the pin multiplied by  
the voltage on the pin). Note that this ignores power dissipation in the INT and SDA pins, assuming these  
transients to be small. They can easily be included in the power dissipation calculation by using Equation 3 to  
calculate the power dissipation in INT or SDA while they are pulling low, and this gives maximum power  
dissipation.  
Pd_PORT _L = I ´ VOL  
(
OL  
)
(3)  
Equation 3 shows the power dissipation for a single port which is set to output low. The power dissipated by the  
port is the VOL of the port multiplied by the current it is sinking.  
Pd_PORT _H = I  
(
´ V - VOH  
(
CC  
)
)
OH  
(4)  
Equation 4 shows the power dissipation for a single port which is set to output high. The power dissipated by the  
port is the current sourced by the port multiplied by the voltage drop across the device (difference between VCC  
and the output voltage).  
9.2.1.2 Minimizing ICC When I/Os Control LEDs  
When the I/Os are used to control LEDs, normally they are connected to VCC through a resistor as shown in  
Figure 33. For a P-port configured as an input, ICC increases as VI becomes lower than VCC. The LED is a diode,  
with threshold voltage VT, and when a P-port is configured as an input the LED is off but VI is a VT drop below  
VCC  
.
For battery-powered applications, it is essential that the voltage of P-ports controlling LEDs is greater than or  
equal to VCC when the P-ports are configured as input to minimize current consumption. Figure 34 shows a high-  
value resistor in parallel with the LED. Figure 35 shows VCC less than the LED supply voltage by at least VT.  
Both of these methods maintain the I/O VI at or above VCC and prevents additional supply current consumption  
when the P-port is configured as an input and the LED is off.  
V
CC  
LED  
100 k  
V
CC  
LEDx  
Figure 34. High-Value Resistor in Parallel With LED  
Copyright © 2014–2017, Texas Instruments Incorporated  
25  
 
 
 
 
 
TCA9534A  
ZHCSCR9C SEPTEMBER 2014REVISED FEBRUARY 2017  
www.ti.com.cn  
Typical Application (continued)  
5 V  
3.3 V  
LED  
V
CC  
LEDx  
Figure 35. Device Supplied by a Lower Voltage  
9.2.2 Detailed Design Procedure  
The pull-up resistors, RP, for the SCL and SDA lines need to be selected appropriately and take into  
consideration the total capacitance of all slaves on the I2C bus. The minimum pull-up resistance is a function of  
VCC, VOL,(max), and IOL as shown in Equation 5.  
VCC - VOL(max)  
=
Rp(min)  
IOL  
(5)  
The maximum pull-up resistance is a function of the maximum rise time, tr (300 ns for fast-mode operation, fSCL  
400 kHz) and bus capacitance, Cb as shown in Equation 6.  
=
tr  
Rp(max)  
=
0.8473´Cb  
(6)  
The maximum bus capacitance for an I2C bus must not exceed 400 pF for standard-mode or fast-mode  
operation. The bus capacitance can be approximated by adding the capacitance of the TCA9534A, Ci for SCL or  
Cio for SDA, the capacitance of wires, connections, traces, and the capacitance of additional slaves on the bus.  
9.2.3 Application Curves  
25  
20  
15  
10  
5
1.8  
1.6  
1.4  
1.2  
1
Standard-mode  
Fast-mode  
0.8  
0.6  
0.4  
0.2  
0
VCC > 2V  
VCC <= 2  
0
0
50  
100 150 200 250 300 350 400 450  
Cb (pF)  
0
0.5  
1
1.5  
2
2.5  
VCC (V)  
3
3.5  
4
4.5  
5
5.5  
D008  
D009  
Standard-mode  
Fast-mode  
VOL = 0.2*VCC, IOL = 2 mA when VCC 2 V  
(fSCL = 100 kHz, tr = 1 µs)  
(fSCL = 400 kHz, tr = 300 ns)  
VOL = 0.4 V, IOL = 3 mA when VCC > 2 V  
Figure 36. Maximum Pull-Up resistance (Rp(max)) vs Bus  
Capacitance (Cb)  
Figure 37. Minimum Pull-Up Resistance (Rp(min)) vs Pull-Up  
Reference Voltage (VCC  
)
26  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
TCA9534A  
www.ti.com.cn  
ZHCSCR9C SEPTEMBER 2014REVISED FEBRUARY 2017  
10 Power Supply Recommendations  
10.1 Power-On Reset Requirements  
In the event of a glitch or data corruption, the TCA9534A can be reset to its default conditions by using the  
power-on reset feature. Power-on reset requires that the device go through a power cycle to be completely reset.  
This reset also happens when the device is powered on for the first time in an application.  
The two types of power-on reset are shown in and Figure 38.  
V
CC  
Ramp-Down  
Ramp-Up  
V
CC_TRR  
V
drops below VPORF – 50 mV  
CC  
Time  
Time to Re-Ramp  
V
V
CC_FT  
CC_RT  
Figure 38. VCC is Lowered Below the POR Threshold, then Ramped Back Up to VCC  
Table 8 specifies the performance of the power-on reset feature for the TCA9534A for both types of power-on  
reset.  
Table 8. Recommended Supply Sequencing and Ramp Rates(1)  
PARAMETER  
MIN  
1
MAX UNIT  
VCC_FT  
VCC_RT  
Fall rate  
See Figure 38  
See Figure 38  
2000  
2000  
ms  
ms  
Rise rate  
0.1  
Time to re-ramp (when VCC drops to VPOR_MIN – 50 mV or when  
VCC drops to GND)  
VCC_TRR  
VCC_GH  
VCC_MV  
VCC_GW  
See Figure 38  
See Figure 39  
See Figure 39  
See Figure 39  
1
μs  
V
Level that VCCP can glitch down to, but not cause a functional  
disruption when VCCX_GW = 1 μs  
1.2  
10  
The minimum voltage that VCC can glitch down to without causing  
a reset (VCC_GH must not be violated)  
1.5  
V
Glitch width that does not cause a functional disruption when  
VCCX_GH = 0.5 × VCCx  
μs  
(1) All supply sequencing and ramp rate values are measured at TA = 25°C  
Glitches in the power supply can also affect the power-on reset performance of this device. The glitch width  
(VCC_GW) and height (VCC_GH) are dependent on each other. The bypass capacitance, source impedance, and  
device impedance are factors that affect power-on reset performance. Figure 39 and Table 8 provide more  
information on how to measure these specifications.  
V
CC  
V
CC_GH  
V
CC_MV  
Time  
V
CC_GW  
Figure 39. Glitch Width and Glitch Height  
Copyright © 2014–2017, Texas Instruments Incorporated  
27  
 
 
 
TCA9534A  
ZHCSCR9C SEPTEMBER 2014REVISED FEBRUARY 2017  
www.ti.com.cn  
VPOR is critical to the power-on reset. VPOR is the voltage level at which the reset condition is released and all the  
registers and the I2C/SMBus state machine are initialized to their default states. The value of VPOR differs based  
on the VCC being lowered to or from 0. Figure 40 and Table 8 provide more details on this specification.  
VCC  
VPORR  
VPORF  
Time  
POR  
Time  
Figure 40. VPOR  
28  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
TCA9534A  
www.ti.com.cn  
ZHCSCR9C SEPTEMBER 2014REVISED FEBRUARY 2017  
11 Layout  
11.1 Layout Guidelines  
For printed circuit board (PCB) layout of the TCA9534A, common PCB layout practices must be followed but  
additional concerns related to high-speed data transfer such as matched impedances and differential pairs are  
not a concern for I2C signal speeds.  
In all PCB layouts, it is a best practice to avoid right angles in signal traces, to fan out signal traces away from  
each other upon leaving the vicinity of an integrated circuit (IC), and to use thicker trace widths to carry higher  
amounts of current that commonly pass through power and ground traces. By-pass and de-coupling capacitors  
are commonly used to control the voltage on the VCC pin, using a larger capacitor to provide additional power in  
the event of a short power supply glitch and a smaller capacitor to filter out high-frequency ripple. These  
capacitors must be placed as close to the TCA9534A as possible. These best practices are shown in Figure 41.  
For the layout example provided in Figure 41, it is possible to fabricate a PCB with only 2 layers by using the top  
layer for signal routing and the bottom layer as a split plane for power (VCC) and ground (GND). However, a 4  
layer board is preferable for boards with higher density signal routing. On a 4 layer PCB, it is common to route  
signals on the top and bottom layer, dedicate one internal layer to a ground plane, and dedicate the other internal  
layer to a power plane. In a board layout using planes or split planes for power and ground, vias are placed  
directly next to the surface mount component pad which needs to attach to VCC or GND and the via is connected  
electrically to the internal layer or the other side of the board. Vias are also used when a signal trace needs to be  
routed to the opposite side of the board, but this technique is not demonstrated in Figure 41.  
11.2 Layout Example  
LEGEND  
Power or GND Plane  
To I2C Master  
VIA to Power Plane  
VCC  
VIA to GND Plane  
By-pass/De-coupling  
capacitors  
1
2
3
4
5
6
7
8
A0  
VCC  
SDA  
SCL  
INT  
P7  
16  
15  
14  
13  
12  
11  
10  
9
A1  
A2  
P0  
P1  
P2  
P6  
P3  
P5  
GND  
P4  
GND  
Figure 41. TCA9534A Layout  
版权 © 2014–2017, Texas Instruments Incorporated  
29  
 
TCA9534A  
ZHCSCR9C SEPTEMBER 2014REVISED FEBRUARY 2017  
www.ti.com.cn  
12 器件和文档支持  
12.1 相关文档ꢀ  
请参阅如下相关文档:  
I2C 总线上拉电阻器计算》  
I2C 总线在采用中继器时的最高时钟频率》  
《逻辑器件简介》  
《理解 I2C 总线》  
IO 扩展器 EVM 用户指南》  
《为新设计挑选合适的 I2C 器件》  
12.2 接收文档更新通知  
如需接收文档更新通知,请访问 ti.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知和修  
订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航。  
30  
版权 © 2014–2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TCA9534ADWR  
TCA9534ADWT  
TCA9534APWR  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
DW  
DW  
PW  
16  
16  
16  
2000 RoHS & Green  
250 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
-40 to 85  
TCA9534A  
NIPDAU  
NIPDAU  
TCA9534A  
PW534A  
TSSOP  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-May-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TCA9534ADWR  
TCA9534APWR  
SOIC  
DW  
PW  
16  
16  
2000  
2000  
330.0  
330.0  
16.4  
12.4  
10.75 10.7  
6.9 5.6  
2.7  
1.6  
12.0  
8.0  
16.0  
12.0  
Q1  
Q1  
TSSOP  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-May-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TCA9534ADWR  
TCA9534APWR  
SOIC  
DW  
PW  
16  
16  
2000  
2000  
350.0  
356.0  
350.0  
356.0  
43.0  
35.0  
TSSOP  
Pack Materials-Page 2  
PACKAGE OUTLINE  
PW0016A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
4.5  
4.3  
NOTE 4  
1.2 MAX  
0.19  
B
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
A
20  
0 -8  
DETAIL A  
TYPICAL  
4220204/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
16X (1.5)  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220204/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
16X (1.5)  
SYMM  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220204/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
GENERIC PACKAGE VIEW  
DW 16  
7.5 x 10.3, 1.27 mm pitch  
SOIC - 2.65 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224780/A  
www.ti.com  
PACKAGE OUTLINE  
DW0016A  
SOIC - 2.65 mm max height  
S
C
A
L
E
1
.
5
0
0
SOIC  
C
10.63  
9.97  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
14X 1.27  
16  
1
2X  
10.5  
10.1  
NOTE 3  
8.89  
8
9
0.51  
0.31  
16X  
7.6  
7.4  
B
2.65 MAX  
0.25  
C A B  
NOTE 4  
0.33  
0.10  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.3  
0.1  
0 - 8  
1.27  
0.40  
DETAIL A  
TYPICAL  
(1.4)  
4220721/A 07/2016  
NOTES:  
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm, per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.  
5. Reference JEDEC registration MS-013.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DW0016A  
SOIC - 2.65 mm max height  
SOIC  
16X (2)  
SEE  
DETAILS  
SYMM  
1
16  
16X (0.6)  
SYMM  
14X (1.27)  
R0.05 TYP  
9
8
(9.3)  
LAND PATTERN EXAMPLE  
SCALE:7X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4220721/A 07/2016  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DW0016A  
SOIC - 2.65 mm max height  
SOIC  
16X (2)  
SYMM  
1
16  
16X (0.6)  
SYMM  
14X (1.27)  
R0.05 TYP  
8
9
(9.3)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:7X  
4220721/A 07/2016  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TCA9534APWR

具有中断和配置寄存器的 8 位 1.65V 至 5.5V I2C/SMBus I/O 扩展器 | PW | 16 | -40 to 85
TI

TCA9534DWR

具有中断和配置寄存器的 8 位 1.65V 至 5.5V I2C/SMBus I/O 扩展器 | DW | 16 | -40 to 85
TI

TCA9534DWT

具有中断和配置寄存器的 8 位 1.65V 至 5.5V I2C/SMBus I/O 扩展器 | DW | 16 | -40 to 85
TI

TCA9534PWR

具有中断和配置寄存器的 8 位 1.65V 至 5.5V I2C/SMBus I/O 扩展器 | PW | 16 | -40 to 85
TI

TCA9535

LOW VOLTAGE 16-BIT I2C AND SMBus LOW-POWER I/O EXPANDER WITH INTERRUPT OUTPUT AND CONFIGURATION REGISTERS
TI

TCA9535DBR

Remote 16-Bit I<sup>2</sup>C and SMBus, Low-Power I/O Expander With Interrupt Output and Config Registers 24-SSOP -40 to 85
TI

TCA9535DBT

Remote 16-Bit I<sup>2</sup>C and SMBus, Low-Power I/O Expander With Interrupt Output and Config Registers 24-SSOP -40 to 85
TI

TCA9535MRGER

Remote 16-Bit I<sup>2</sup>C and SMBus, Low-Power I/O Expander With Interrupt Output and Config Registers 24-VQFN -40 to 85
TI

TCA9535PWR

LOW VOLTAGE 16-BIT I2C AND SMBus LOW-POWER I/O EXPANDER WITH INTERRUPT OUTPUT AND CONFIGURATION REGISTERS
TI

TCA9535RGER

Remote 16-Bit I<sup>2</sup>C and SMBus, Low-Power I/O Expander With Interrupt Output and Config Registers 24-VQFN -40 to 85
TI

TCA9535RTWR

LOW VOLTAGE 16-BIT I2C AND SMBus LOW-POWER I/O EXPANDER WITH INTERRUPT OUTPUT AND CONFIGURATION REGISTERS
TI

TCA9535_16

Low-Voltage 16-Bit I2C and SMBus Low-Power I/O Expander with Interrupt Output and Configuration Registers
TI