TAS5782MDCAR [TI]

具有处理功能的 20W 立体声、40W 单声道、4.5V 至 26.4V、数字输入 D 类智能音频放大器 | DCA | 48 | -25 to 85;
TAS5782MDCAR
型号: TAS5782MDCAR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有处理功能的 20W 立体声、40W 单声道、4.5V 至 26.4V、数字输入 D 类智能音频放大器 | DCA | 48 | -25 to 85

放大器 光电二极管 商用集成电路 音频放大器
文件: 总127页 (文件大小:3449K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
TAS5782M 采用 96kHz 处理架构的 30W 立体声 D 类放大器  
1 特性  
2 应用  
1
灵活的音频 I/O 配置  
液晶显示屏 (LCD)、发光二极管 (LED) TV 和多用  
途监视器  
支持 I2STDMLJ RJ 数字输入  
条形音箱、扩展坞和 PC 音频  
支持采样速率  
无线低音炮、蓝牙扬声器和有源扬声器  
BD 放大器调制  
支持三线制数字音频接口(无需 MCLK)  
3 说明  
高性能闭环架构(PVDD = 12VRSPK  
8ΩSPK_GAIN = 20dB)  
=
TAS5782M 器件是一款高性能、立体声闭环 D 类放大  
器,集成采用 96kHz 架构的音频处理器。为实现数模  
转换,该器件采用了应用 Burr-Brown™技术的高性能  
数模转换器 (DAC) 该器件仅需两个电源:一个是用于  
低压电路的 DVDD,另一个是用于高压电路的  
PVDD。它采用标准的 I2C 通信软件控制端口实现控  
制。  
闭环 = 更少的组件数/更小的解决方案尺寸  
空闲声道噪声 = 62μVRMS (A-Wtd)  
总谐波失真 + 噪声 (THD+N) = 0.2% (1W/1kHz)  
信噪比 (SNR) = 100dB A-Wtd(以THD+N =  
1% 为基准)  
灵活处理 特性  
15 BiQuad/SmartEQ  
输出金属氧化物半导体场效应晶体管 (MOSFET) 的  
90mΩ rDS(on) 兼顾散热性能与器件成本,二者相得益  
彰。此外,该器件采用耐热增强型 48 引脚薄型小外形  
尺寸 (TSSOP),在现代消费类电子器件的较高工作环  
境温度下展现出优异的性能。  
适用于 X-Over/EQ 2 x 5 BiQuad  
三波段高级动态范围压缩 (DRC) + 自动增益限  
(AGL)  
动态均衡和 SmartBass  
声场定位技术 (SFS)  
96kHz 处理器采样  
器件信息(1)  
器件型号  
TAS5782M  
封装  
封装尺寸(标称值)  
通信 特性  
TSSOP (48)  
12.50mm x 6.10mm  
通过 I2C 端口实现软件模式控制  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
两个地址选择引脚 多达 4 个器件  
兼具稳定性 和可靠性  
时钟误差、直流和短路保护  
过热和过流保护  
空白  
简化框图  
10% THD+N 时的功率与 PVDD 间的关系 (1)  
TAS5782M  
80  
Control and  
Status  
8 W Load Peak  
6 W Load Peak  
4 W Load Peak  
6 W Load Continous  
4 W Load Continous  
CH1  
System  
mP  
Power  
Bridge  
DAC  
mCDSP  
Digital Audio  
I2C  
CH2  
60  
40  
20  
0
Copyright © 2017, Texas Instruments Incorporated  
5
10  
15  
Supply Voltage (V)  
20  
24  
D002  
(1) TAS5782MEVM 电路板中进行了测试。  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLASEG8  
 
 
 
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
目录  
9.1 Overview ................................................................. 34  
9.2 Functional Block Diagram ....................................... 34  
9.3 Feature Description................................................. 35  
9.4 Device Functional Modes........................................ 56  
10 Application and Implementation........................ 59  
10.1 Application Information.......................................... 59  
10.2 Typical Applications ............................................. 61  
11 Power Supply Recommendations ..................... 70  
11.1 Power Supplies ..................................................... 70  
12 Layout................................................................... 72  
12.1 Layout Guidelines ................................................. 72  
12.2 Layout Example .................................................... 74  
13 Register Maps...................................................... 80  
13.1 Registers - Page 0 ................................................ 80  
13.2 Registers - Page 1 .............................................. 116  
14 器件和文档支持 ................................................... 120  
14.1 器件支持.............................................................. 120  
14.2 接收文档更新通知 ............................................... 120  
14.3 社区资源.............................................................. 121  
14.4 ..................................................................... 121  
14.5 静电放电警告....................................................... 121  
14.6 Glossary.............................................................. 121  
15 机械、封装和可订购信息..................................... 121  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 4  
6.1 Internal Pin Configurations........................................ 6  
Specifications......................................................... 9  
7.1 Absolute Maximum Ratings ...................................... 9  
7.2 ESD Ratings.............................................................. 9  
7.3 Recommended Operating Conditions..................... 10  
7.4 Thermal Information................................................ 10  
7.5 Electrical Characteristics......................................... 11  
7.6 Power Dissipation Characteristics .......................... 15  
7.7 MCLK Timing ......................................................... 20  
7.8 Serial Audio Port Timing – Slave Mode.................. 20  
7.9 Serial Audio Port Timing – Master Mode................ 21  
7.10 I2C Bus Timing – Standard ................................... 21  
7.11 I2C Bus Timing – Fast........................................... 21  
7.12 SPK_MUTE Timing .............................................. 22  
7.13 Typical Characteristics.......................................... 24  
Parametric Measurement Information ............... 33  
Detailed Description ............................................ 34  
7
8
9
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (March 2017) to Revision A  
Page  
Added missing cross references to the Quick Reference Table .......................................................................................... 24  
Changed Changed the Volume Ramp Up/Down Step default value to 11 .......................................................................... 50  
Changed 5th bit of the I2C Slave Address table .................................................................................................................. 54  
Added DSP Book, Page, and Register Update section ....................................................................................................... 56  
Deleted Page 0 Registers 0x0A, 0x50, 0x51, 0x52, and 0x54............................................................................................. 80  
Changed the PLLE bit type of Register 4 from R to R/W..................................................................................................... 81  
Changed Bit configuration of Register 0x14......................................................................................................................... 88  
Changed PJDV bit in Register 21 from 5-4 to 5-0................................................................................................................ 89  
Changed Reset value of Register 0x3D to '00110000'......................................................................................................... 98  
Changed Bit configuration of Register 0x5D ...................................................................................................................... 112  
Deleted Page 1 Registers 0x05 and 0x08.......................................................................................................................... 116  
2
Copyright © 2016–2017, Texas Instruments Incorporated  
 
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
5 Device Comparison Table  
DEVICE NAME  
MODULATION STYLE  
PROCESSING TYPE  
100 MIPs, Flexible Process flow (Uses mixture of RAM and ROM  
components to create several process flows)  
TAS5782MDCA  
BD Modulation  
50 MIPs, HybridFlow (Uses mixture of RAM and ROM components to  
create several process flows)  
TAS5754MDCA  
1SPW (Ternary)  
50 MIPs, HybridFlow (Uses mixture of RAM and ROM components to  
create several process flows)  
TAS5756MDCA  
TAS5766MDCA  
BD Modulation  
BD Modulation  
50 MIPs, Fixed-Function (Uses single ROM image of process flow)  
Copyright © 2016–2017, Texas Instruments Incorporated  
3
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
6 Pin Configuration and Functions  
DCA Package  
48-Pin TSSOP with PowerPAD™  
Top View  
BSTRPA-  
SPK_OUTA-  
PGND  
1
2
3
4
5
6
7
8
9
48  
BSTRPB-  
47 SPK_OUTB-  
46 PGND  
SPK_OUTA+  
BSTRPA+  
45 SPK_OUTB+  
44 BSTRPB+  
43 PVDD  
PVDD  
PVDD  
42 PVDD  
GVDD_REG  
SPK_GAIN/FSW  
41 PVDD  
40  
39  
SPK_FAULT  
PGND  
AGND 10  
11  
12  
13  
14  
38 SPK_INB-  
37 SPK_INB+  
36 DAC_OUTB  
35 CPVSS  
34 CN  
SPK_INA-  
SPK_INA+  
DAC_OUTA  
AVDD  
PowerPADTM  
AGND 15  
SDA 16  
33 GND  
SCL 17  
32  
CP  
GPIO0 18  
RESET 19  
ADR1 20  
GPIO2 21  
MCLK 22  
SCLK 23  
SDIN 24  
31 CPVDD  
30 DVDD  
29 DGND  
28 DVDD_REG  
27 SPK_MUTE  
26 ADR0  
25 LRCLK/FS  
4
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
Pin Functions  
PIN  
NAME  
INTERNAL  
TERMINATION  
TYPE(1)  
DESCRIPTION  
NO.  
26  
20  
10  
15  
14  
Sets the LSB of the I2C address to 0 if pulled to GND, to 1 if pulled to DVDD  
ADR0  
DI  
DI  
Sets the second LSB of the I2C address to 0 if pulled to GND, to 1 if pulled to DVDD  
ADR1  
AGND  
G
Ground reference for analog circuitry(2)  
AVDD  
P
P
Figure 2  
Power supply for internal analog circuitry  
Connection point for the SPK_OUTA– bootstrap capacitor which is used to create a power supply for  
the high-side gate drive for SPK_OUTA–  
BSTRPA–  
1
5
Connection point for the SPK_OUTA+ bootstrap capacitor which is used to create a power supply for  
the high-side gate drive for SPK_OUTA+  
BSTRPA+  
BSTRPB–  
BSTRPB+  
P
P
P
Figure 3  
Connection point for the SPK_OUTB– bootstrap capacitor which is used to create a power supply for  
the high-side gate drive for SPK_OUTB–  
48  
44  
Connection point for the SPK_OUTB+ bootstrap capacitor which is used to create a power supply for  
the high-side gate drive for SPK_OUTB+  
CN  
34  
32  
31  
35  
13  
36  
29  
30  
P
P
Figure 14  
Figure 13  
Figure 2  
Negative pin for capacitor connection used in the line-driver charge pump  
Positive pin for capacitor connection used in the line-driver charge pump  
Power supply for charge pump circuitry  
CP  
CPVDD  
CPVSS  
DAC_OUTA  
DAC_OUTB  
DGND  
P
P
Figure 14  
–3.3-V supply generated by charge pump for the DAC  
Single-ended output for Channel A of the DAC  
AO  
AO  
G
Figure 8  
Single-ended output for Channel B of the DAC  
Ground reference for digital circuitry. Connect this pin to the system ground.  
Power supply for the internal digital circuitry  
DVDD  
P
Figure 2  
Voltage regulator derived from DVDD supply for use for internal digital circuitry. This pin is provided  
as a connection point for filtering capacitors for this supply and must not be used to power any  
external circuitry.  
DVDD_REG  
28  
P
Figure 15  
GND  
33  
18  
21  
G
Ground pin for device. This pin should be connected to the system ground.  
GPIO0  
GPIO2  
DI/O  
General purpose input/output pins (GPIOx). Refer to GPIO registers for configuration.  
Voltage regulator derived from PVDD supply to generate the voltage required for the gate drive of  
output MOSFETs. This pin is provided as a connection point for filtering capacitors for this supply and  
must not be used to power any external circuitry.  
GVDD_REG  
8
P
Figure 5  
Word select clock for the digital signal that is active on the serial port's input data line. In I2S, LJ, and  
RJ, this corresponds to the left channel and right channel boundary. In TDM mode, this corresponds  
to the frame sync boundary.  
LRCK/FS  
MCLK  
25  
DI/O  
DI  
Figure 11  
22  
3
Master clock used for internal clock tree and sub-circuit and state machine clocking  
PGND  
39  
46  
6
G
Ground reference for power device circuitry. Connect this pin to the system ground.  
7
PVDD  
41  
42  
43  
19  
17  
23  
16  
24  
11  
12  
38  
37  
P
Figure 1  
Power supply for internal power circuitry  
RESET  
SCL  
DI  
DI  
Figure 17  
Figure 10  
Figure 11  
Figure 9  
Device reset input. Pull down to reset, pull up to activate device.  
I2C serial control port clock  
SCLK  
DI/O  
DI/O  
D1  
AI  
Bit clock for the digital signal that is active on the input data line of the serial data port  
I2C serial control port data  
SDA  
SDIN  
Figure 11  
Data line to the serial data port  
SPK_INA–  
SPK_INA+  
SPK_INB–  
SPK_INB+  
Negative pin for differential speaker amplifier input A  
Positive pin for differential speaker amplifier input A  
Negative pin for differential speaker amplifier input B  
Positive pin for differential speaker amplifier input B  
AI  
Figure 7  
AI  
AI  
(1) AI = Analog input, AO = Analog output, DI = Digital Input, DO = Digital Output, DI/O = Digital Bi-directional (input and output), P =  
Power, G = Ground (0 V)  
(2) This pin should be connected to the system ground.  
Copyright © 2016–2017, Texas Instruments Incorporated  
5
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
INTERNAL  
TERMINATION  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
SPK_FAULT  
40  
DO  
AI  
Figure 16  
Fault pin which is pulled low when an overcurrent, overtemperature, or DC detect fault occurs  
Sets the gain and switching frequency of the speaker amplifier, latched in upon start-up of the device.  
SPK_GAIN/F  
REQ  
9
Figure 6  
Figure 4  
SPK_OUTA–  
SPK_OUTA+  
SPK_OUTB–  
SPK_OUTB+  
2
4
AO  
AO  
AO  
AO  
Negative pin for differential speaker amplifier output A  
Positive pin for differential speaker amplifier output A  
Negative pin for differential speaker amplifier output B  
Positive pin for differential speaker amplifier output B  
47  
45  
Speaker amplifier mute which must be pulled low (connected to DGND) to mute the device and  
pulled high (connected to DVDD) to unmute the device.  
SPK_MUTE  
PowerPAD  
27  
I
Figure 12  
Provides both electrical and thermal connection from the device to the board. A matching ground pad  
must be provided on the PCB and the device connected to it through solder. For proper electrical  
operation, this ground pad must be connected to the system ground.  
G
6.1 Internal Pin Configurations  
DVDD  
PVDD  
3.3 V ESD  
30 V ESD  
Copyright © 2016, Texas Instruments Incorporated  
Copyright © 2016, Texas Instruments Incorporated  
Figure 1. PVDD Pins  
Figure 2. AVDD, DVDD and CPVDD Pins  
PVDD  
GVDD  
PVDD  
BSTRPxx  
7 V ESD  
SPK_OUTxx  
SPK_OUTxx  
Copyright © 2016, Texas Instruments Incorporated  
Copyright © 2016, Texas Instruments Incorporated  
Figure 3. BSTRPxx Pins  
Figure 4. SPK_OUTxx Pins  
6
Copyright © 2016–2017, Texas Instruments Incorporated  
 
 
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
Internal Pin Configurations (continued)  
GVDD  
PVDD  
10 Ω  
GVDD  
10 kΩ  
SPK_GAIN/FREQ  
7 V ESD  
7 V ESD  
Copyright © 2016, Texas Instruments Incorporated  
Copyright © 2016, Texas Instruments Incorporated  
Figure 5. GVDD_REG Pin  
Figure 6. SPK_GAIN/FREQ Pin  
AVDD  
SPK_INxx  
7 V ESD  
Gain Switch  
CPVSS  
DAC_OUTA  
Copyright © 2016, Texas Instruments Incorporated  
Copyright © 2016, Texas Instruments Incorporated  
Figure 7. SPK_INxx Pins  
Figure 8. DAC_OUTx Pins  
DVDD  
SDA  
DVDD  
SCL  
3.3 V  
ESD  
3.3 V  
ESD  
Copyright © 2016, Texas Instruments Incorporated  
Copyright © 2016, Texas Instruments Incorporated  
Figure 9. SDA Pin  
Figure 10. SCL Pin  
Copyright © 2016–2017, Texas Instruments Incorporated  
7
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
Internal Pin Configurations (continued)  
DVDD  
DVDD  
MCLK  
SCLK  
SPK_MUTE  
3.3 V  
ESD  
SDIN  
3.3 V  
ESD  
LRCK/FS  
Copyright © 2016, Texas Instruments Incorporated  
Copyright © 2016, Texas Instruments Incorporated  
Figure 11. SCLK, MCLK, SDIN, and LRCK/FS Pins  
Figure 12. SPK_MUTE Pin  
CVPDD  
GND  
CN  
3.3 V  
ESD  
CP  
3.3 V  
ESD  
CPVSS  
3.3 V  
ESD  
Copyright © 2016, Texas Instruments Incorporated  
Copyright © 2016, Texas Instruments Incorporated  
Figure 13. CP Pin  
Figure 14. CN and CPVSS Pins  
DVDD  
100 Ω  
SPK_FAULT  
DVDD_REG  
28 V  
ESD  
1.8 V  
ESD  
Copyright © 2016, Texas Instruments Incorporated  
Copyright © 2016, Texas Instruments Incorporated  
Figure 15. DVDD_REG Pin  
Figure 16. SPK_FAULT Pin  
8
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
Internal Pin Configurations (continued)  
DVDD  
RESET  
3.3 V  
ESD  
Copyright © 2016, Texas Instruments Incorporated  
Figure 17. RESET Pin  
7 Specifications  
7.1 Absolute Maximum Ratings  
Free-air room temperature 25°C (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
DVDD, AVDD,  
Low-voltage digital, analog, charge pump supply  
CPVDD  
–0.3  
3.9  
V
PVDD  
PVDD supply  
–0.3  
–0.3  
–0.5  
–0.3  
–0.3  
–25  
–40  
–40  
–40  
30  
V
V
VI(AmpCtrl)  
VI(DigIn)  
VI(SPK_INxx)  
VI(SPK_OUTxx)  
Input voltage for SPK_GAIN/FREQ and SPK_FAULT pins  
DVDD referenced digital inputs(2)  
VGVDD + 0.3  
VDVDD + 0.5  
V
Analog input into speaker amplifier  
Voltage at speaker output pins  
6.3  
32  
V
V
Ambient operating temperature, TA  
Operating junction temperature, digital die  
Operating junction temperature, power die  
Storage temperature  
85  
°C  
°C  
°C  
°C  
125  
165  
125  
TJ  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) DVDD referenced digital pins include: ADR0, ADR1, GPIO0, GPIO2, LRCK/FS, MCLK, RESET, SCL, SCLK, SDA, SDIN, and  
SPK_MUTE.  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 2000-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 500-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2016–2017, Texas Instruments Incorporated  
9
 
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
7.3 Recommended Operating Conditions  
Free-air room temperature 25°C (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
DVDD, AVDD, CPVDD  
2.9  
3.63  
26.4  
V(POWER)  
Power supply inputs  
V
PVDD  
4.5  
BTL Mode  
PBTL Mode  
3
2
Ω
Ω
V
V
RSPK  
Minimum speaker load  
VIH(DigIn)  
VIL(DigIn)  
Input logic high for DVDD referenced digital inputs(1)(2)  
Input logic low for DVDD referenced digital inputs(1)(3)  
0.9 × VDVDD  
VDVDD  
VDVDD  
0
0.1 × VDVDD  
Minimum inductor value in LC filter under short-circuit  
condition  
LOUT  
1
4.7  
µH  
(1) DVDD referenced digital pins include: ADR0, ADR1, GPIO0, GPIO2, LRCK/FS, MCLK, RESET, SCL, SCLK, SDA, SDIN, and  
SPK_MUTE.  
(2) The best practice for driving the input pins of the TAS5782M device is to power the drive circuit or pullup resistor from the same supply  
which provides the DVDD power supply.  
(3) The best practice for driving the input pins of the TAS5782M device low is to pull them down, either actively or through pulldown  
resistors to the system ground.  
7.4 Thermal Information  
TAS5782M  
DCA (TSSOP)  
48 PINS  
THERMAL METRIC(1)  
UNIT  
JEDEC  
STANDARD  
2-LAYER PCB  
JEDEC  
STANDARD  
4-LAYER PCB  
TAS5782MEVM  
4-LAYER PCB  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
41.8  
14.4  
9.4  
27.6  
14.4  
9.4  
19.4  
14.4  
9.4  
2
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.6  
0.6  
ψJB  
8.1  
9.3  
4.8  
N/A  
RθJC(bot)  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
10  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
7.5 Electrical Characteristics  
Free-air room temperature 25°C (unless otherwise noted) Measurements were made using TAS5782MEVM board and Audio  
Precision System 2722 with Analog Analyzer filter set to 40 kHz brickwall filter. The device output PWM frequency was set to  
768 kHz unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DIGITAL I/O  
Input logic high current level  
for DVDD referenced digital  
input pins(1)  
|IIH|1  
VIN(DigIn) = VDVDD  
10  
µA  
µA  
Input logic low current level  
for DVDD referenced digital  
input pins(1)  
|IIL|1  
VIH1  
VIL1  
VIN(DigIn) = 0 V  
–10  
Input logic high threshold for  
DVDD referenced digital  
inputs(1)  
70%  
80%  
VDVDD  
Input logic low threshold for  
DVDD referenced digital  
inputs(1)  
30%  
VDVDD  
Output logic high voltage  
level(1)  
VOH(DigOut)  
VOL(DigOut)  
IOH = 4 mA  
VDVDD  
VDVDD  
Output logic low voltage  
level(1)  
IOH = –4 mA  
22%  
0.8  
Output logic low voltage level  
for SPK_FAULT  
VOL(SPK_FAULT)  
GVDD_REG  
With 100-kΩ pullup resistor  
V
V
GVDD regulator voltage  
7
I2C CONTROL PORT  
Allowable load capacitance  
for each I2C Line  
CL(I2C)  
400  
pF  
fSCL(fast)  
fSCL(slow)  
Support SCL frequency  
Support SCL frequency  
No wait states, fast mode  
No wait states, slow mode  
400  
100  
kHz  
kHz  
Noise margin at High level for  
each connected device  
(including hysteresis)  
VNH  
0.2 × VDD  
V
MCLK AND PLL SPECIFICATIONS  
DMCLK Allowable MCLK duty cycle  
fMCLK Supported MCLK frequencies Up to 50 MHz  
40%  
128  
60%  
512  
(2)  
fS  
Clock divider uses fractional divide  
D > 0, P = 1  
6.7  
1
20  
20  
fPLL  
PLL input frequency  
MHz  
Clock divider uses integer divide  
D = 0, P = 1  
SERIAL AUDIO PORT  
Required LRCK/FS to SCLK  
rising edge delay  
tDLY  
5
ns  
DSCLK  
fS  
fSCLK  
fSCLK  
Allowable SCLK duty cycle  
Supported input sample rates  
Supported SCLK frequencies  
SCLK frequency  
40%  
8
60%  
96  
kHz  
(2)  
32  
64  
fS  
Either master mode or slave mode  
24.576  
MHz  
SPEAKER AMPLIFIER (ALL OUTPUT CONFIGURATIONS)  
SPK_GAIN/FREQ voltage < 3 V,  
see Adjustable Amplifier Gain and Switching  
20  
Frequency Selection  
AV(SPK_AMP)  
Speaker amplifier gain  
dBV  
dBV  
SPK_GAIN/FREQ voltage > 3.3 V,  
see Adjustable Amplifier Gain and Switching  
Frequency Selection  
26  
±1  
Typical variation of speaker  
amplifier gain  
ΔAV(SPK_AMP)  
(1) DVDD referenced digital pins include: ADR0, ADR1, GPIO0, GPIO2, LRCK/FS, MCLK,RESET, SCL, SCLK, SDA, SDIN, and  
SPK_MUTE.  
(2) A unit of fS indicates that the specification is the value listed in the table multiplied by the sample rate of the audio used in the  
TAS5782M device.  
Copyright © 2016–2017, Texas Instruments Incorporated  
11  
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
Free-air room temperature 25°C (unless otherwise noted) Measurements were made using TAS5782MEVM board and Audio  
Precision System 2722 with Analog Analyzer filter set to 40 kHz brickwall filter. The device output PWM frequency was set to  
768 kHz unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Switching frequency depends on voltage  
presented at SPK_GAIN/FREQ pin and the  
clocking arrangement, including the incoming  
sample rate, see Adjustable Amplifier Gain and  
Switching Frequency Selection  
Switching frequency of the  
speaker amplifier  
fSPK_AMP  
176.4  
768  
kHz  
Injected Noise = 50 Hz to 60 Hz, 200 mVP-P, Gain  
= 26 dB, input audio signal = digital zero  
KSVR  
Power supply rejection ratio  
60  
dB  
VPVDD = 24 V, I(SPK_OUT) = 500 mA, TJ = 25°C,  
includes PVDD/PGND pins, leadframe, bondwires  
and metallization layers.  
Drain-to-source on resistance  
of the individual output  
MOSFETs  
120  
rDS(on)  
mΩ  
VPVDD = 24 V, I(SPK_OUT) = 500 mA, TJ = 25°C  
90  
SPK_OUTxx overcurrent  
error threshold  
OCETHRES  
OTETHRES  
7.5  
A
Overtemperature error  
threshold  
165  
1.3  
°C  
Time required to clear  
overcurrent error after error  
condition is removed.  
OCECLRTIME  
s
s
Time required to clear  
overtemperature error after  
error condition is removed.  
OTECLRTIME  
1.3  
PVDD overvoltage error  
threshold  
OVETHRES(PVDD)  
UVETHRES(PVDD)  
27  
V
V
PVDD undervoltage error  
threshold  
4.3  
SPEAKER AMPLIFIER (STEREO BTL)  
Measured differentially with zero input data,  
SPK_GAIN/FREQ pin configured for 20 dB gain,  
VPVDD = 12 V  
2
5
|VOS  
|
Amplifier offset voltage  
mV  
Measured differentially with zero input data,  
SPK_GAIN/FREQ pin configured for 26 dB gain,  
VPVDD = 24 V  
15  
VPVDD = 12 V, SPK_GAIN = 20 dB, RSPK = 8 Ω, A-  
Weighted  
49  
59  
81  
82  
14  
8
VPVDD = 15 V, SPK_GAIN = 20 dB, RSPK = 8 Ω, A-  
Weighted  
ICN(SPK)  
Idle channel noise  
µVRMS  
VPVDD = 19 V, SPK_GAIN = 26 dB, RSPK = 8 Ω, A-  
Weighted  
VPVDD = 24 V, SPK_GAIN = 26 dB, RSPK = 8 Ω, A-  
Weighted  
VPVDD = 12 V, SPK_GAIN = 20 dB, RSPK = 4 Ω,  
THD+N = 0.1%  
VPVDD = 12 V, SPK_GAIN = 20 dB, RSPK = 8 Ω,  
THD+N = 0.1%  
VPVDD = 15 V, SPK_GAIN = 26 dB, RSPK = 4 Ω,  
THD+N = 0.1%  
23  
13  
34  
20  
40  
33  
VPVDD = 15 V, SPK_GAIN = 26 dB, RSPK = 8 Ω,  
THD+N = 0.1%  
PO(SPK)  
Output Power (Per Channel)  
W
VPVDD = 19 V, SPK_GAIN = 26 dB, RSPK = 4 Ω,  
THD+N = 0.1%  
VPVDD = 19 V, SPK_GAIN = 26 dB, RSPK = 8 Ω,  
THD+N = 0.1%  
VPVDD = 24 V, SPK_GAIN = 26 dB, RSPK = 4 Ω,  
THD+N = 0.1%  
VPVDD = 24 V, SPK_GAIN = 26 dB, RSPK = 8 Ω,  
THD+N = 0.1%  
12  
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
Electrical Characteristics (continued)  
Free-air room temperature 25°C (unless otherwise noted) Measurements were made using TAS5782MEVM board and Audio  
Precision System 2722 with Analog Analyzer filter set to 40 kHz brickwall filter. The device output PWM frequency was set to  
768 kHz unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VPVDD = 12 V, SPK_GAIN = 20 dB, RSPK = 8 Ω, A-  
Weighted, –120 dBFS Input  
103  
VPVDD = 15 V, SPK_GAIN = 26 dB, RSPK = 8 Ω, A-  
Weighted, –120 dBFS Input  
102  
103  
Signal-to-noise ratio  
(referenced to 0 dBFS input  
signal)  
SNR  
dB  
VPVDD = 19 V, SPK_GAIN = 26 dB, RSPK = 8 Ω, A-  
Weighted, –120 dBFS Input  
VPVDD = 24 V, SPK_GAIN = 26 dB, RSPK = 8 Ω, A-  
Weighted, –120 dBFS Input  
105  
VPVDD = 12 V, SPK_GAIN = 20 dB, RSPK = 4 Ω,  
PO = 1 W, f = 1kHz  
0.021%  
0.022%  
0.02%  
0.037%  
0021%  
0.028%  
0.027%  
0.038%  
VPVDD = 12 V, SPK_GAIN = 20 dB, RSPK = 8 Ω,  
PO = 1 W, f = 1kHz  
VPVDD = 15 V, SPK_GAIN = 26 dB, RSPK = 4 Ω,  
PO = 1 W, f = 1kHz  
VPVDD = 15 V, SPK_GAIN = 26 dB, RSPK = 8 Ω,  
PO = 1 W, f = 1kHz  
Total harmonic distortion and  
noise  
THD+NSPK  
VPVDD = 19 V, SPK_GAIN = 26 dB, RSPK = 4 Ω,  
PO = 1 W, f = 1kHz  
VPVDD = 19 V, SPK_GAIN = 26 dB, RSPK = 8 Ω,  
PO = 1 W, f = 1kHz  
VPVDD = 24 V, SPK_GAIN = 26 dB, RSPK = 4 Ω,  
PO = 1 W, f = 1kHz  
VPVDD = 24 V, SPK_GAIN = 26 dB, RSPK = 8 Ω,  
PO = 1 W, f = 1kHz  
VPVDD = 12 V, SPK_GAIN = 20 dB, RSPK = 8 Ω,  
Input Signal 250 mVrms,  
1-kHz Sine, across f(S)  
–90  
–102  
–93  
VPVDD = 15 V, SPK_GAIN = 26 dBV, RSPK = 8 Ω,  
Input Signal 250 mVrms,  
1-kHz Sine, across f(S)  
Cross-talk (worst case  
between left-to-right and  
right-to-left coupling)  
X-talkSPK  
dB  
VPVDD = 19 V, SPK_GAIN = 26 dBV, RSPK = 8 Ω,  
Input Signal 250 mVrms,  
1-kHz Sine, across f(S)  
VPVDD = 24 V, SPK_GAIN = 26 dBV, RSPK = 8 Ω,  
Input Signal 250 mVrms,  
–93  
1-kHz Sine, across f(S)  
SPEAKER AMPLIFIER (MONO PBTL)  
Measured differentially with zero input data,  
SPK_GAIN/FREQ pin configured for 20 dB gain,  
VPVDD = 12 V  
0.7  
4
|VOS  
|
Amplifier offset voltage  
mV  
Measured differentially with zero input data,  
SPK_GAIN/FREQ pin configured for 26 dB gain,  
VPVDD = 24 V  
VPVDD = 12 V, SPK_GAIN = 20 dB, RSPK = 8 Ω, A-  
Weighted  
48  
49  
83  
82  
VPVDD = 15 V, SPK_GAIN = 20 dB, RSPK = 8 Ω,  
A-Weighted  
ICN  
Idle channel noise  
µVRMS  
VPVDD = 19 V, SPK_GAIN = 26 dB, RSPK = 8 Ω,  
A-Weighted  
VPVDD = 24 V, SPK_GAIN = 26 dB, RSPK = 8 Ω, A-  
Weighted  
Copyright © 2016–2017, Texas Instruments Incorporated  
13  
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
Free-air room temperature 25°C (unless otherwise noted) Measurements were made using TAS5782MEVM board and Audio  
Precision System 2722 with Analog Analyzer filter set to 40 kHz brickwall filter. The device output PWM frequency was set to  
768 kHz unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VPVDD = 12 V, SPK_GAIN = 20 dB, RSPK = 2 Ω,  
THD+N = 0.1%, Unless otherwise noted  
30  
VPVDD = 12 V, SPK_GAIN = 20 dB, RSPK = 4 Ω,  
THD+N = 0.1%, Unless otherwise noted  
16  
9
VPVDD = 12 V, SPK_GAIN = 20 dB, RSPK = 8 Ω,  
THD+N = 0.1%  
VPVDD = 15 V, SPK_GAIN = 26 dB, RSPK = 2 Ω,  
THD+N = 0.1%, Unless otherwise noted  
44  
VPVDD = 15 V, SPK_GAIN = 26 dB, RSPK = 4 Ω,  
THD+N = 0.1%, Unless otherwise noted  
22  
VPVDD = 15 V, SPK_GAIN = 26 dB, RSPK = 8 Ω,  
THD+N = 0.1%  
13  
PO  
Output power (per channel)  
W
VPVDD = 19 V, SPK_GAIN = 26 dB, RSPK = 2 Ω,  
THD+N = 0.1%, Unless otherwise noted  
50  
VPVDD = 19 V, SPK_GAIN = 26 dB, RSPK = 4 Ω,  
THD+N = 0.1%, Unless otherwise noted  
36  
VPVDD = 19 V, SPK_GAIN = 26 dB, RSPK = 8 Ω,  
THD+N = 0.1%  
20  
VPVDD = 24 V, SPK_GAIN = 26 dB, RSPK = 2 Ω,  
THD+N = 0.1%, Unless otherwise noted  
40  
VPVDD = 24 V, SPK_GAIN = 26 dB, RSPK = 4 Ω,  
THD+N = 0.1%, Unless otherwise noted  
61  
VPVDD = 24 V, SPK_GAIN = 26 dB, RSPK = 8 Ω,  
THD+N = 0.1%  
34  
VPVDD = 12 V, SPK_GAIN = 20 dB, RSPK = 8 Ω, A-  
Weighted, –120 dBFS Input  
105  
VPVDD = 15 V, SPK_GAIN = 26 dB, RSPK = 8 Ω, A-  
Weighted, –120 dBFS Input  
104  
Signal-to-noise ratio  
(referenced to 0 dBFS input  
signal)  
SNR  
dB  
VPVDD = 19 V, SPK_GAIN = 26 dB, RSPK = 8 Ω, A-  
Weighted, –120 dBFS Input  
105  
VPVDD = 24 V, SPK_GAIN = 26 dB, RSPK = 8 Ω, A-  
Weighted, –120 dBFS Input  
107  
VPVDD = 12 V, SPK_GAIN = 20 dB, RSPK = 2 Ω,  
PO = 1 W, f = 1kHz  
0.014%  
0.011%  
0.014%  
0.015%  
0.013%  
0.015%  
VPVDD = 12 V, SPK_GAIN = 20 dB, RSPK = 4 Ω,  
PO = 1 W, f = 1kHz  
VPVDD = 12 V, SPK_GAIN = 20 dB, RSPK = 8 Ω,  
PO = 1 W, f = 1kHz  
VPVDD = 15 V, SPK_GAIN = 26 dB, RSPK = 2 Ω,  
PO = 1 W, f = 1kHz  
VPVDD = 15 V, SPK_GAIN = 26 dB, RSPK = 4 Ω,  
PO = 1 W, f = 1kHz  
VPVDD = 15 V, SPK_GAIN = 26 dB, RSPK = 8 Ω,  
PO = 1 W, f = 1kHz  
Total harmonic distortion and  
noise  
THD+N  
VPVDD = 19 V, SPK_GAIN = 26 dB, RSPK = 2 Ω,  
0.018%  
0.012%  
0.020%  
PO = 1 W, f = 1kHz  
V, RSPK = 4 Ω, PO = 1 W, f = 1kHz  
VPVDD = 19 V, SPK_GAIN = 26 dB, RSPK = 8 Ω,  
PO = 1 W, f = 1kHz  
VPVDD = 24 V, SPK_GAIN = 26 dB, RSPK = 2 Ω,  
PO = 1 W, f = 1kHz  
0.028%  
0.02%  
VPVDD = 24 V, SPK_GAIN = 26 dB, RSPK = 4 Ω,  
PO = 1 W, f = 1kHz  
VPVDD = 24 V, SPK_GAIN = 26 dB, RSPK = 8 Ω,  
PO = 1 W, f = 1kHz  
0.027%  
14  
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
7.6 Power Dissipation Characteristics  
Free-air room temperature 25°C (unless otherwise noted)  
(4)  
(5)  
VPVDD  
(V)  
SPK_GAIN(1)(2)(3)  
(dBV)  
fSPK_AMP  
(kHz)  
STATE OF  
OPERATION  
RSPK  
(Ω)  
IPVDD  
IDVDD  
PDISS  
(W)  
(mA)  
21.30  
21.33  
21.30  
21.33  
21.34  
21.36  
2.08  
(mA)  
59.70  
59.68  
59.70  
58.82  
58.81  
58.81  
12.41  
12.41  
12.41  
0.730  
0.740  
0.740  
59.7  
4
6
8
4
6
8
4
6
8
4
6
8
4
6
8
4
6
8
4
6
8
4
6
8
0.355  
0.355  
0.355  
0.352  
0.352  
0.352  
0.056  
0.057  
0.057  
0.017  
0.018  
0.018  
0.400  
0.401  
0.378  
0.398  
0.398  
0.398  
0.056  
0.056  
0.057  
0.018  
0.018  
0.018  
Idle  
Mute  
384  
Standby  
Powerdown  
Idle  
2.11  
2.17  
2.03  
2.04  
2.06  
7.4  
20  
27.48  
27.49  
24.46  
27.50  
27.51  
27.52  
2.04  
59.73  
59.72  
58.8  
Mute  
58.8  
58.81  
12.41  
12.41  
12.41  
0.73  
768  
Standby  
Powerdown  
2.08  
2.11  
2.06  
2.07  
0.74  
2.08  
0.74  
(1) Mute: B0-P0-R3-D0,D4 = 1  
(2) Standby: B0-P0-R2-D4 = 1  
(3) Power down: B0-P0-R2-D0 = 1  
(4) IPVDD refers to all current that flows through the PVDD supply for the DUT. Any other current sinks not directly related to the DUT current  
draw were removed.  
(5) IDVDD refers to all current that flows through the DVDD (3.3-V) supply for the DUT. Any other current sinks not directly related to the  
DUT current draw were removed.  
Copyright © 2016–2017, Texas Instruments Incorporated  
15  
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
Power Dissipation Characteristics (continued)  
Free-air room temperature 25°C (unless otherwise noted)  
(4)  
(5)  
VPVDD  
(V)  
SPK_GAIN(1)(2)(3)  
(dBV)  
fSPK_AMP  
(kHz)  
STATE OF  
OPERATION  
RSPK  
(Ω)  
IPVDD  
IDVDD  
PDISS  
(W)  
(mA)  
24.33  
24.32  
24.36  
24.36  
24.32  
24.37  
3.58  
(mA)  
59.74  
59.74  
59.70  
58.81  
58.82  
58.84  
12.40  
12.41  
12.42  
0.74  
4
6
8
4
6
8
4
6
8
4
6
8
4
6
8
4
6
8
4
6
8
4
6
8
0.467  
0.467  
0.467  
0.464  
0.464  
0.465  
0.081  
0.081  
0.081  
0.042  
0.042  
0.042  
0.538  
0.537  
0.537  
0.528  
0.535  
0.535  
0.080  
0.080  
0.081  
0.042  
0.042  
0.042  
Idle  
Mute  
384  
Standby  
Powerdown  
Idle  
3.57  
3.58  
3.52  
3.52  
0.74  
3.54  
0.74  
11.1  
20  
30.70  
30.65  
30.67  
3.072  
30.69  
30.69  
3.54  
59.70  
59.72  
59.71  
58.80  
58.81  
58.81  
12.40  
12.41  
12.42  
0.74  
Mute  
768  
Standby  
Powerdown  
3.54  
3.58  
3.53  
3.53  
0.74  
3.55  
0.74  
16  
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
Power Dissipation Characteristics (continued)  
Free-air room temperature 25°C (unless otherwise noted)  
(4)  
(5)  
VPVDD  
(V)  
SPK_GAIN(1)(2)(3)  
(dBV)  
fSPK_AMP  
(kHz)  
STATE OF  
OPERATION  
RSPK  
(Ω)  
IPVDD  
IDVDD  
PDISS  
(W)  
(mA)  
25.07  
25.08  
25.10  
25.12  
25.08  
25.11  
3.92  
(mA)  
59.72  
59.73  
59.71  
58.84  
58.82  
58.82  
12.40  
12.41  
12.41  
0.75  
4
6
8
4
6
8
4
6
8
4
6
8
4
6
8
4
6
8
4
6
8
4
6
8
0.498  
0.498  
0.498  
0.496  
0.495  
0.495  
0.088  
0.088  
0.088  
0.049  
0.049  
0.049  
0.573  
0.573  
0.573  
0.570  
0.570  
0.570  
0.087  
0.088  
0.088  
0.049  
0.049  
0.049  
Idle  
Mute  
384  
Standby  
Powerdown  
Idle  
3.93  
3.94  
3.87  
3.85  
0.74  
3.87  
0.75  
12  
20  
31.31  
31.29  
31.31  
31.31  
31.33  
31.32  
3.88  
59.72  
59.71  
59.74  
58.80  
58.81  
58.81  
12.40  
12.41  
12.41  
0.75  
Mute  
768  
Standby  
Powerdown  
3.90  
3.91  
3.89  
3.91  
0.74  
3.88  
0.75  
Copyright © 2016–2017, Texas Instruments Incorporated  
17  
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
Power Dissipation Characteristics (continued)  
Free-air room temperature 25°C (unless otherwise noted)  
(4)  
(5)  
VPVDD  
(V)  
SPK_GAIN(1)(2)(3)  
(dBV)  
fSPK_AMP  
(kHz)  
STATE OF  
OPERATION  
RSPK  
(Ω)  
IPVDD  
IDVDD  
PDISS  
(W)  
(mA)  
27.94  
27.91  
27.75  
27.98  
27.94  
27.88  
5.09  
(mA)  
59.73  
59.75  
59.69  
58.84  
58.87  
58.85  
12.41  
12.41  
12.41  
0.74  
4
6
8
4
6
8
4
6
8
4
6
8
4
6
8
4
6
8
4
6
8
4
6
8
0.616  
0.616  
0.613  
0.614  
0.613  
0.612  
0.117  
0.118  
0.119  
0.078  
0.078  
0.080  
0.693  
0.693  
0.693  
0.690  
0.690  
0.690  
0.117  
0.117  
0.118  
0.078  
0.078  
0.079  
Idle  
Mute  
384  
Standby  
Powerdown  
Idle  
5.12  
5.19  
5.02  
5.06  
0.74  
5.14  
0.74  
15  
26  
33.05  
33.03  
33.08  
33.03  
33.04  
33.05  
5.07  
59.7  
59.72  
59.68  
58.81  
58.81  
58.80  
12.41  
12.41  
12.41  
0.74  
Mute  
768  
Standby  
Powerdown  
5.09  
5.14  
5.02  
5.04  
0.74  
5.09  
0.74  
18  
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
Power Dissipation Characteristics (continued)  
Free-air room temperature 25°C (unless otherwise noted)  
(4)  
(5)  
VPVDD  
(V)  
SPK_GAIN(1)(2)(3)  
(dBV)  
fSPK_AMP  
(kHz)  
STATE OF  
OPERATION  
RSPK  
(Ω)  
IPVDD  
IDVDD  
PDISS  
(W)  
(mA)  
32.27  
32.19  
32.08  
32.27  
32.24  
32.22  
6.95  
(mA)  
59.77  
59.76  
59.75  
58.85  
58.87  
58.86  
12.40  
12.42  
12.41  
0.74  
4
6
8
4
6
8
4
6
8
4
6
8
4
6
8
4
6
8
4
6
8
4
6
8
0.830  
0.828  
0.826  
0.827  
0.826  
0.826  
0.177  
0.177  
0.178  
0.137  
0.138  
0.139  
0.883  
0.882  
0.882  
0.879  
0.880  
0.879  
0.177  
0.177  
0.178  
0.137  
0.137  
0.138  
Idle  
Mute  
384  
Standby  
Powerdown  
Idle  
6.93  
7.00  
6.89  
6.90  
0.74  
6.96  
0.73  
19.6  
26  
34.99  
34.95  
34.97  
34.96  
34.98  
34.96  
6.93  
59.74  
59.74  
59.71  
58.85  
58.83  
58.81  
12.40  
12.42  
12.41  
0.74  
Mute  
768  
Standby  
Powerdown  
6.93  
6.98  
6.84  
6.89  
0.74  
6.90  
0.73  
Copyright © 2016–2017, Texas Instruments Incorporated  
19  
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
Power Dissipation Characteristics (continued)  
Free-air room temperature 25°C (unless otherwise noted)  
(4)  
(5)  
VPVDD  
(V)  
SPK_GAIN(1)(2)(3)  
(dBV)  
fSPK_AMP  
(kHz)  
STATE OF  
OPERATION  
RSPK  
(Ω)  
IPVDD  
IDVDD  
PDISS  
(W)  
(mA)  
36.93  
36.87  
36.77  
36.94  
36.89  
36.85  
8.73  
(mA)  
59.80  
59.81  
59.76  
58.91  
58.89  
58.90  
12.40  
12.40  
12.40  
0.74  
4
6
8
4
6
8
4
6
8
4
6
8
4
6
8
4
6
8
4
6
8
4
6
8
1.084  
1.082  
1.080  
1.081  
1.080  
1.079  
0.250  
0.250  
0.250  
0.210  
0.210  
0.211  
1.081  
1.082  
1.081  
1.079  
1.078  
1.078  
0.249  
0.249  
0.250  
0.210  
0.210  
0.210  
Idle  
Mute  
384  
Standby  
Powerdown  
Idle  
8.72  
8.71  
8.64  
8.66  
0.74  
8.69  
0.73  
24  
26  
36.84  
36.86  
36.83  
36.85  
36.84  
36.82  
8.66  
59.73  
59.76  
59.78  
58.85  
58.84  
58.83  
12.40  
12.40  
12.40  
0.74  
Mute  
768  
Standby  
Powerdown  
8.68  
8.71  
8.63  
8.64  
0.74  
8.65  
0.73  
7.7 MCLK Timing  
See Figure 18.  
MIN  
20  
9
NOM  
MAX  
UNIT  
ns  
tMCLK  
tMCLKH MCLK pulse width, high  
tMCLKL MCLK pulse width, low  
MCLK period  
1000  
ns  
9
ns  
7.8 Serial Audio Port Timing – Slave Mode  
See Figure 19.  
MIN  
1.024  
40  
16  
16  
8
NOM  
MAX  
UNIT  
MHz  
ns  
fSCLK  
tSCLK  
tSCLKL  
tSCLKH  
tSL  
SCLK frequency  
SCLK period  
SCLK pulse width, low  
ns  
SCLK pulse width, high  
ns  
SCLK rising to LRCK/FS edge  
LRCK/FS Edge to SCLK rising edge  
Data setup time, before SCLK rising edge  
Data hold time, after SCLK rising edge  
Data delay time from SCLK falling edge  
ns  
tLS  
8
ns  
tSU  
8
ns  
tDH  
8
ns  
tDFS  
15  
ns  
20  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
7.9 Serial Audio Port Timing – Master Mode  
See Figure 20.  
MIN NOM  
MAX  
UNIT  
ns  
tSCLK  
tSCLKL  
tSCLKH  
tLRD  
SCLK period  
40  
16  
16  
–10  
8
SCLK pulse width, low  
ns  
SCLK pulse width, high  
ns  
LRCK/FS delay time from to SCLK falling edge  
Data setup time, before SCLK rising edge  
Data hold time, after SCLK rising edge  
Data delay time from SCLK falling edge  
20  
15  
ns  
tSU  
ns  
tDH  
8
ns  
tDFS  
ns  
7.10 I2C Bus Timing – Standard  
MIN  
MAX  
UNIT  
kHz  
µs  
fSCL  
SCL clock frequency  
100  
tBUF  
Bus free time between a STOP and START condition  
Low period of the SCL clock  
4.7  
tLOW  
4.7  
µs  
tHI  
High period of the SCL clock  
4
4.7  
µs  
tRS-SU  
tS-HD  
tD-SU  
tD-HD  
tSCL-R  
tSCL-R1  
tSCL-F  
tSDA-R  
tSDA-F  
tP-SU  
Setup time for (repeated) START condition  
Hold time for (repeated) START condition  
Data setup time  
µs  
4
µs  
250  
ns  
Data hold time  
0
900  
1000  
1000  
1000  
1000  
1000  
ns  
Rise time of SCL signal  
20 + 0.1CB  
20 + 0.1CB  
20 + 0.1CB  
20 + 0.1CB  
20 + 0.1CB  
4
ns  
Rise time of SCL signal after a repeated START condition and after an acknowledge bit  
Fall time of SCL signal  
ns  
ns  
Rise time of SDA signal  
ns  
Fall time of SDA signal  
ns  
Setup time for STOP condition  
µs  
7.11 I2C Bus Timing – Fast  
See Figure 21.  
MIN  
MAX  
UNIT  
kHz  
µs  
µs  
ns  
fSCL  
SCL clock frequency  
400  
tBUF  
Bus free time between a STOP and START condition  
Low period of the SCL clock  
1.3  
1.3  
tLOW  
tHI  
High period of the SCL clock  
600  
tRS-SU  
tRS-HD  
tD-SU  
tD-HD  
tSCL-R  
tSCL-R1  
tSCL-F  
tSDA-R  
tSDA-F  
tP-SU  
tSP  
Setup time for (repeated)START condition  
Hold time for (repeated)START condition  
Data setup time  
600  
ns  
600  
ns  
100  
ns  
Data hold time  
0
900  
300  
300  
300  
300  
300  
ns  
Rise time of SCL signal  
20 + 0.1CB  
20 + 0.1CB  
20 + 0.1CB  
20 + 0.1CB  
20 + 0.1CB  
600  
ns  
Rise time of SCL signal after a repeated START condition and after an acknowledge bit  
Fall time of SCL signal  
ns  
ns  
Rise time of SDA signal  
ns  
Fall time of SDA signal  
ns  
Setup time for STOP condition  
Pulse width of spike suppressed  
ns  
50  
ns  
Copyright © 2016–2017, Texas Instruments Incorporated  
21  
 
 
 
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
7.12 SPK_MUTE Timing  
See Figure 22.  
MIN  
MAX  
UNIT  
ns  
tr  
tf  
Rise time  
Fall time  
20  
20  
ns  
t
MCLKH  
"H"  
0.7 × V  
DVDD  
0.3 × V  
DVDD  
"L"  
t
t
MCLKL  
MCLK  
Figure 18. Timing Requirements for MCLK Input  
LRCK/FS  
(Input)  
0.5 × DVDD  
0.5 × DVDD  
t
t
SCLKL  
SCLKH  
t
LS  
SCLK  
(Input)  
t
t
SL  
SCLK  
DATA  
(Input)  
0.5 × DVDD  
0.5 × DVDD  
t
t
DH  
SU  
t
DFS  
DATA  
(Output)  
Figure 19. Serial Audio Port Timing in Slave Mode  
22  
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
t
BCL  
t
SCLK.  
SCLK  
(Input)  
0.5 × DVDD  
0.5 × DVDD  
t
t
LRD  
SCLK  
LRCK/FS  
(Input)  
t
DFS  
DATA  
(Input)  
0.5 × DVDD  
t
t
DH  
SU  
DATA  
(Output)  
0.5 × DVDD  
Figure 20. Serial Audio Port Timing in Master Mode  
Repeated  
START  
START  
STOP  
t
t
t
t
P-SU  
t
D-SU  
D-HD  
SDA-F  
SDA-R  
t
BUF.  
SDA  
t
t
t
SP  
SCL-R.  
RS-HD  
t
LOW.  
SCL  
t
HI.  
t
RS-SU  
t
t
SCL-F.  
S-HD.  
Figure 21. I2C Communication Port Timing Diagram  
0.9 × DV  
0.1 × DV  
DD  
DD  
SPK_MUTE  
t
r
t
f
< 20 ns  
< 20 ns  
Figure 22. SPK_MUTE Timing Diagram for Soft Mute Operation via Hardware Pin  
Copyright © 2016–2017, Texas Instruments Incorporated  
23  
 
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
7.13 Typical Characteristics  
All performance plots were taken using the TAS5782MEVM Board at room temperature, unless otherwise noted.  
The term "traditional LC filter" refers to the output filter that is present by default on the TAS5782MEVM Board.  
Table 1. Quick Reference Table  
OUTPUT  
CONFIGURATIONS  
PLOT TITLE  
FIGURE NUMBER  
Frequency Response  
Figure 42  
Figure 23  
Figure 24  
Figure 25  
Figure 26  
Figure 27  
Figure 28  
Figure 29  
Figure 30  
Figure 31  
Figure 32  
Figure 33  
Figure 34  
Figure 35  
Figure 36  
Figure 37  
Figure 38  
Figure 39  
Figure 40  
Figure 41  
Figure 43  
Figure 44  
Figure 45  
Figure 46  
Figure 47  
Figure 48  
Figure 49  
Figure 50  
Figure 51  
Figure 52  
Figure 53  
Figure 54  
Figure 55  
Figure 56  
Figure 57  
Figure 60  
Figure 61  
Figure 62  
Figure 63  
Output Power vs PVDD  
THD+N vs Frequency, VPVDD = 12 V  
THD+N vs Frequency, VPVDD = 15 V  
THD+N vs Frequency, VPVDD = 18 V  
THD+N vs Frequency, VPVDD = 24 V  
THD+N vs Power, VPVDD = 12 V  
THD+N vs Power, VPVDD = 15 V  
THD+N vs Power, VPVDD = 18 V  
THD+N vs Power, VPVDD = 24 V  
Idle Channel Noise vs PVDD  
Efficiency vs Output Power  
Bridge Tied Load (BTL)  
Configuration Curves  
Efficiency vs Output Power  
Efficiency vs Output Power  
Idle Current Draw (Filterless) vs PVDD  
Crosstalk vs. Frequency  
PVDD PSRR vs Frequency  
DVDD PSRR vs Frequency  
AVDD PSRR vs Frequency  
CPVDD PSRR vs Frequency  
THD+N vs Frequency, VPVDD = 12 V  
THD+N vs Frequency, VPVDD = 15 V  
THD+N vs Frequency, VPVDD = 18 V  
THD+N vs Frequency, VPVDD = 24 V  
Output Power vs PVDD  
THD+N vs Frequency, VPVDD = 12 V  
THD+N vs Frequency, VPVDD = 15 V  
THD+N vs Frequency, VPVDD = 18 V  
THD+N vs Frequency, VPVDD = 24 V  
THD+N vs Power, VPVDD = 12 V  
THD+N vs Power, VPVDD = 15 V  
THD+N vs Power, VPVDD = 18 V  
THD+N vs Power, VPVDD = 24 V  
Idle Channel Noise vs PVDD  
Parallel Bridge Tied Load  
(PBTL) Configuration  
Efficiency vs Output Power  
THD+N vs Frequency, VPVDD = 12 V  
THD+N vs Frequency, VPVDD = 15 V  
THD+N vs Frequency, VPVDD = 18 V  
THD+N vs Frequency, VPVDD = 24 V  
24  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
7.13.1 Bridge Tied Load (BTL) Configuration Curves  
Free-air room temperature 25°C (unless otherwise noted) Measurements were made using TAS5782MEVM  
board and Audio Precision System 2722 with Analog Analyzer filter set to 40-kHz brickwall filter. All  
measurements taken with audio frequency set to 1 kHz and device PWM frequency set to 768 kHz, unless  
otherwise noted. For both the BTL plots and the PBTL plots, the LC filter used was 4.7 µH / 0.68 µF. Return to  
Quick Reference Table.  
80  
60  
40  
20  
0
10  
8 W Load Peak  
4 W Load  
6 W Load  
8 W Load  
6 W Load Peak  
4 W Load Peak  
6 W Load Continous  
4 W Load Continous  
1
0.1  
0.01  
0.001  
5
10  
15  
20  
24  
20  
100  
1k  
10k  
40k  
Supply Voltage (V)  
Frequency (Hz)  
D002  
D003  
AV(SPK_AMP) = 26 dBV  
AV(SPK_AMP) = 20 dBV  
PO = 1 W  
VPVDD = 12 V  
Figure 23. Output Power vs PVDD – BTL  
Figure 24. THD+N vs Frequency – BTL  
10  
1
10  
1
4 W Load  
6 W Load  
8 W Load  
4 W Load  
6 W Load  
8 W Load  
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
20  
100  
1k  
10k  
40k  
20  
100  
1k  
10k  
40k  
Frequency (Hz)  
Frequency (Hz)  
D004  
D005  
AV(SPK_AMP) = 20 dBV  
PO = 1 W  
VPVDD = 15 V  
AV(SPK_AMP) = 26 dBV  
PO = 1 W  
VPVDD = 18 V  
Figure 25. THD+N vs Frequency – BTL  
Figure 26. THD+N vs Frequency – BTL  
Copyright © 2016–2017, Texas Instruments Incorporated  
25  
 
 
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
10  
10  
1
4 W Load  
6 W Load  
8 W Load  
4 W Load  
6 W Load  
8 W Load  
1
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
20  
100  
1k  
10k  
40k  
10m  
100m  
1
10  
30  
Frequency (Hz)  
Output Power (W)  
D006  
D007  
AV(SPK_AMP) = 26 dBV  
PO = 1 W  
VPVDD = 24 V  
AV(SPK_AMP) = 20 dBV  
VPVDD = 12 V  
Figure 27. THD+N vs Frequency – BTL  
Figure 28. THD+N vs Power – BTL  
10  
1
10  
1
4 W Load  
6 W Load  
8 W Load  
4 W Load  
6 W Load  
8 W Load  
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
10m  
100m  
1
10  
40  
10m  
100m  
1
10  
50  
Output Power (W)  
Output Power (W)  
D008  
D009  
AV(SPK_AMP) = 20  
dBV  
VPVDD = 15 V  
AV(SPK_AMP) = 26  
dBV  
VPVDD =  
18 V  
Figure 29. THD+N vs Power – BTL  
Figure 30. THD+N vs Power – BTL  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
4 W Load  
6 W Load  
8 W Load  
1
0.1  
0.01  
Gain = 20 dB, PWM Freq = 384 kHz  
Gain = 26 dB, PWM Freq = 384 kHz  
Gain = 20 dB, PWM Freq = 768 kHz  
Gain = 26 dB, PWM Freq = 768 kHz  
0.001  
10m  
100m  
1
10  
50  
10  
15  
20  
Output Power (W)  
Supply Voltage (V)  
D010  
D011  
AV(SPK_AMP) = 26 dBV  
VPVDD = 24 V  
RSPK = 4 Ω  
Figure 31. THD+N vs Power – BTL  
Figure 32. Idle Channel Noise vs PVDD – BTL  
26  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
 
 
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PVDD = 12 V  
PVDD = 15 V  
PVDD = 18 V  
PVDD = 24 V  
PVDD = 12 V  
PVDD = 15 V  
PVDD = 18 V  
PVDD = 24 V  
0
0
20  
40  
60  
80  
0
20  
40  
60  
80  
Output Power (W)  
Output Power (W)  
D012  
D013  
RSPK = 4 Ω  
RSPK = 6 Ω  
Figure 33. Efficiency vs Output Power – BTL  
Figure 34. Efficiency vs Output Power – BTL  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
60  
50  
40  
30  
20  
10  
0
PVDD = 12 V  
PVDD = 15 V  
PVDD = 18 V  
PVDD = 24 V  
0
0
20  
40  
60  
80  
5
10  
15  
20  
25  
Output Power (W)  
Supply Voltage (V)  
D014  
D015  
RSPK = 8 Ω  
fSPK_AMP = 768 kHz  
RSPK = 8 Ω  
Figure 35. Efficiency vs Output Power – BTL  
Figure 36. Idle Current Draw (Filterless) vs VPVDD – BTL  
0
-20  
0
Ch 1 to Ch 2  
Ch 2 to Ch 1  
Left Channel  
Right Channel  
-20  
-40  
-60  
-80  
-40  
-60  
-80  
-100  
-120  
20  
-100  
20  
100  
1k  
10k  
40k  
100  
1k  
10k  
40k  
Frequency (Hz)  
Frequency  
D016  
D017  
AV(SPK_AMP) = 26 dBV  
VPVDD = 24 V  
AV(SPK_AMP) = 26 dBV  
VPVDD = 24 V + 250 mVac  
Figure 37. Crosstalk vs Frequency – BTL  
Figure 38. PVDD PSRR vs Frequency – BTL  
Copyright © 2016–2017, Texas Instruments Incorporated  
27  
 
 
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
0
0
-20  
Left Channel  
Right Channel  
Left Channel  
Right Channel  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-100  
20  
100  
1k  
10k  
40k  
20  
100  
1k  
10k  
40k  
Frequency  
Frequency  
D018  
D019  
AV(SPK_AMP) = 26 dBV  
VPVDD = 24 V  
AV(SPK_AMP) = 26 dBV  
VPVDD = 24 V  
VDVDD = 3.3 V + 250 mVac  
VAVDD = 3.3 V + 250 mVac  
Figure 39. DVDD PSRR vs Frequency – BTL  
Figure 40. AVDD PSRR vs Frequency – BTL  
0
-20  
28  
24  
20  
16  
12  
Left Channel  
Right Channel  
-40  
-60  
-80  
-100  
20  
100  
1k  
10k  
40k  
20  
100  
1k  
10k  
40k  
Frequency  
Frequency (Hz)  
D020  
D001  
AV(SPK_AMP) = 26 dBV  
VPVDD = 24 V  
AV(SPK_AMP) = 20 dB  
POUT = 1 W  
PVDD = 12 V  
VCPVDD = 3.3 V + 250 mVac  
Figure 41. CPVDD PSRR vs Frequency – BTL  
Figure 42. Gain vs Frequency – BTL  
10  
1
10  
1
4 W Load  
6 W Load  
8 W Load  
4 W Load  
6 W Load  
8 W Load  
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
D035  
D036  
AV(SPK_AMP) = 20  
dB  
POUT = 1 W  
PVDD = 12 V  
AV(SPK_AMP) = 20  
dB  
POUT = 1 W  
PVDD = 15 V  
Figure 43. THD vs Frequency – BTL  
Figure 44. THD vs Frequency - BTL  
28  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
 
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
10  
10  
1
4 W Load  
6 W Load  
8 W Load  
4 W Load  
6 W Load  
8 W Load  
1
0.1  
0.1  
0.01  
0.01  
0.001  
20  
0.001  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
D037  
D038  
AV(SPK_AMP) = 20  
dB  
POUT = 1 W  
PVDD = 18 V  
AV(SPK_AMP) = 20  
dB  
POUT = 1 W  
PVDD = 24 V  
Figure 45. THD vs Frequency – BTL  
Figure 46. THD vs Frequency – BTL  
Copyright © 2016–2017, Texas Instruments Incorporated  
29  
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
7.13.2 Parallel Bridge Tied Load (PBTL) Configuration  
Return to Quick Reference Table.  
160  
10  
1
4 W Load Peak  
2 W Load  
3 W Load  
4 W Load  
3 W Load Peak  
140  
120  
100  
80  
2 W Load Peak  
3 W Load Continous  
2 W Load Continous  
0.1  
60  
40  
0.01  
20  
0
0.001  
5
10  
15  
Supply Voltage (V)  
20  
24  
20  
100  
1k  
10k  
40k  
Frequency (Hz)  
D021  
D022  
AV(SPK_AMP) = 26 dBV  
AV(SPK_AMP) = 20 dBV  
PO = 1 W  
VPVDD = 12 V  
Figure 47. Output Power vs PVDD – PBTL  
Figure 48. THD+N vs Frequency – PBTL  
10  
1
10  
1
2 W Load  
3 W Load  
4 W Load  
2 W Load  
3 W Load  
4 W Load  
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
20  
100  
1k  
10k  
40k  
20  
100  
1k  
10k  
40k  
Frequency (Hz)  
Frequency (Hz)  
D023  
D024  
AV(SPK_AMP) = 20 dBV  
PO = 1 W  
VPVDD = 15 V  
AV(SPK_AMP) = 26 dBV  
PO = 1 W  
VPVDD = 18 V  
Figure 49. THD+N vs Frequency – PBTL  
Figure 50. THD+N vs Frequency – PBTL  
10  
1
10  
1
2 W Load  
3 W Load  
4 W Load  
2 W Load  
3 W Load  
4 W Load  
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
20  
100  
1k  
10k  
40k  
10m  
100m  
1
10  
50  
Frequency (Hz)  
Output Power (W)  
D025  
D026  
AV(SPK_AMP) = 26 dBV  
PO = 1 W  
VPVDD = 24 V  
AV(SPK_AMP) = 20 dBV  
VPVDD = 12 V  
Figure 51. THD+N vs Frequency – PBTL  
Figure 52. THD+N vs Power – PBTL  
30  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
 
 
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
10  
10  
1
2 W Load  
3 W Load  
4 W Load  
2 W Load  
3 W Load  
4 W Load  
1
0.1  
0.1  
0.01  
0.01  
0.001  
10m  
0.001  
100m  
1
10  
80  
10m  
100m  
1
10  
100  
Output Power (W)  
Output Power (W)  
D027  
D028  
AV(SPK_AMP) = 20 dBV  
VPVDD = 15 V  
AV(SPK_AMP) = 26 dBV  
VPVDD = 18 V  
Figure 53. THD+N vs Power – PBTL  
Figure 54. THD+N vs Power – PBTL  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10  
1
2 W Load  
3 W Load  
4 W Load  
0.1  
0.01  
Gain = 20 dB, PWM Freq = 384 kHz  
Gain = 26 dB, PWM Freq = 384 kHz  
Gain = 20 dB, PWM Freq = 768 kHz  
Gain = 26 dB, PWM Freq = 768 kHz  
0.001  
10m  
100m  
1
10  
150  
5
10  
15  
20  
25  
Output Power (W)  
Supply Voltage (V)  
D029  
D030  
AV(SPK_AMP) = 20 dBV  
VPVDD = 24 V  
RSPK = 4 Ω  
Figure 55. THD+N vs Power – PBTL  
Figure 56. Idle Channel Noise vs PVDD – PBTL  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PVDD = 12 V  
PVDD = 12 V  
PVDD = 15 V  
PVDD = 18 V  
PVDD = 24 V  
PVDD = 15 V  
PVDD = 18 V  
PVDD = 24 V  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
Output Power (W)  
Output Power (W)  
D031  
D032  
AV(SPK_AMP) = 26  
dBV  
RSPK = 2 Ω  
AV(SPK_AMP) = 20  
dBV  
RSPK = 3 Ω  
Figure 57. Efficiency vs Output Power – PBTL  
Figure 58. Efficiency vs Output Power  
Copyright © 2016–2017, Texas Instruments Incorporated  
31  
 
 
 
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10  
1
2 W Load  
3 W Load  
4 W Load  
0.1  
0.01  
PVDD = 12 V  
PVDD = 15 V  
PVDD = 18 V  
PVDD = 24 V  
0.001  
0
20  
40  
60  
80  
20  
100  
1k  
10k 20k  
Output Power (W)  
Frequency (Hz)  
D033  
D039  
AV(SPK_AMP) = 20  
dBV  
RSPK = 4 Ω  
AV(SPK_AMP) = 20  
dB  
POUT = 1 W  
PVDD = 12 V  
Figure 59. Efficiency vs Output Power  
Figure 60. THD vs Frequency – PBTL  
10  
1
10  
1
2 W Load  
3 W Load  
4 W Load  
2 W Load  
3 W Load  
4 W Load  
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
D040  
D041  
AV(SPK_AMP) = 20  
dB  
POUT = 1 W  
PVDD = 15 V  
AV(SPK_AMP) = 20  
dB  
POUT = 1 W  
PVDD = 18 V  
Figure 61. THD vs Frequency – PBTL  
Figure 62. THD vs Frequency – PBTL  
10  
2 W Load  
3 W Load  
4 W Load  
1
0.1  
0.01  
0.001  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
D042  
AV(SPK_AMP) = 20 dB  
POUT = 1 W  
PVDD = 24 V  
Figure 63. THD vs Frequency – PBTL  
32  
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
8 Parametric Measurement Information  
PARAMETER  
Stereo BTL  
Mono PBTL  
FIGURE  
80  
81  
Copyright © 2016–2017, Texas Instruments Incorporated  
33  
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The TAS5782M device integrates 4 main building blocks together into a single cohesive device that maximizes  
sound quality, flexibility, and ease of use. The 4 main building blocks are listed below:  
A stereo audio DAC, boasting a strong Burr-Brown heritage with a highly flexible serial audio port.  
A µCDSP audio processing core, with different RAM and ROM options.  
A flexible closed-loop amplifier capable of operating in stereo or mono, at several different switching  
frequencies, and with a variety of output voltages and loads.  
An I2C control port for communication with the device  
The device requires only two power supplies for proper operation. A DVDD supply is required to power the low-  
voltage digital and analog circuitry. Another supply, called PVDD, is required to provide power to the output stage  
of the audio amplifier. The operating range for these supplies is shown in the Recommended Operating  
Conditions table.  
Communication with the device is accomplished through the I2C control port. A speaker amplifier fault line is also  
provided to notify a system controller of the occurrence of an overtemperature , overcurrent, or DC error in the  
speaker amplifier. Two digital GPIO pins are available for use. In the selectable process flows of the TAS5782M,  
the GPIO2 pin is used as an SDOUT terminal. The other GPIO is unused.  
The µCDSP audio processing core is pre-programmed with a configurable DSP program. The PPC3 provides a  
means by which to manipulate the controls associated with that Process Flow.  
9.2 Functional Block Diagram  
Internal  
Voltage  
Supplies  
Charge  
Pump  
Internal Gate  
Drive Regulator  
1.8-V  
Regulator  
Internal Voltage  
Supplies  
Closed Loop Class D Amplifier  
Gate  
SPK_OUTA+  
SPK_OUTA-  
SPK_OUTB+  
SPK_OUTB-  
Full Bridge  
Power  
Stage A  
µCDSP  
Output  
Current  
Monitoring  
and  
Analog  
to  
Drives  
MCLK  
SCLK  
PWM  
Modulator  
Selectable  
Process  
Flows  
Full Bridge  
Power  
Stage B  
Gate  
Drives  
Protection  
DAC  
Serial  
Audio  
Port  
LRCK/FS  
SDIN  
Clock Monitoring  
and Error Protection  
Die Temperature  
Monitoring and Protection  
Error Reporting  
SDOUT  
Internal Control Registers and State Machines  
GPIO0 RESET GPIO2  
SPK_GAIN/FREQ  
SCL  
SDA  
ADR0  
ADR1  
SPK_MUTE  
SPK_SD SPK_FAULT  
Copyright © 2016, Texas Instruments Incorporated  
34  
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
9.3 Feature Description  
9.3.1 Power-on-Reset (POR) Function  
The TAS5782M device has a power-on reset function. The power-on reset feature resets all of the registers to  
their default configuration as the device is powering up. When the low-voltage power supply used to power  
DVDD, AVDD, and CPVDD exceeds the POR threshold, the device sets all of the internal registers to their  
default values and holds them there until the device receives valid MCLK, SCLK, and LRCK/FS toggling for a  
period of approximately 4 ms. After the toggling period has passed, the internal reset of the registers is removed  
and the registers can be programmed via the I2C Control Port.  
9.3.2 Device Clocking  
The TAS5782M devices have flexible systems for clocking. Internally, the device requires a number of clocks,  
mostly at related clock rates to function correctly. All of these clocks can be derived from the Serial Audio  
Interface in one form or another.  
fS  
16 fS  
128 fS  
Serial Audio  
Interface  
(Input)  
µCDSP  
(including  
interpolator)  
Delta  
Sigma  
Modulator  
I to V  
Line  
Driver  
Current  
Segments  
+
Audio  
Out  
Charge Pump  
CPCK  
DSPCK  
OSRCK  
DACCK  
LRCK/FS  
Figure 64. Audio Flow with Respective Clocks  
Figure 64 shows the basic data flow at basic sample rate (fS). When the data is brought into the serial audio  
interface, the data is processed, interpolated and modulated to 128 × fS before arriving at the current segments  
for the final digital to analog conversion.  
Figure 65 shows the clock tree.  
Copyright © 2016–2017, Texas Instruments Incorporated  
35  
 
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
Feature Description (continued)  
PLLEN  
(P0-R4)  
MCLK  
SREF  
Divider  
(P0-R13)  
DDSP (P0-R27)  
SCLK  
GPIO  
MCLK  
SDAC  
(P0-R14)  
PLL  
K × R/P  
PLLCKIN  
PLLCK  
K = J.D  
J = 1,2,3,..,62,63  
D= 0000,0001,.,9998,9999  
R= 1,2,3,4,.,15,16  
P= 1,2,.,14,15  
DACCK (DAC Clock )  
MCLK  
GPIO  
Divider  
CPCK (Charge Pump Clock )  
DDAC  
(P0-R28)  
Divider  
DNCP (P0-R29)  
OSRCK  
(Oversampling  
Ratio Clock )  
Divider  
MUX  
DOSR  
(P0-R30)  
Divide  
by 2  
I16E (P0-R34)  
Figure 65. TAS5782M Clock Distribution Tree  
The Serial Audio Interface typically has 4 connection pins which are listed as follows:  
MCLK (System Master Clock)  
SCLK (Bit Clock)  
LRCK/FS (Left Right Word Clock and Frame Sync)  
SDIN (Input Data)  
The output data, SDOUT, is presented on one of the GPIO pins.  
See the GPIO Port and Hardware Control Pins section)  
The device has an internal PLL that is used to take either MCLK or SCLK and create the higher rate clocks  
required by the DSP and the DAC clock.  
In situations where the highest audio performance is required, bringing MCLK to the device along with SCLK and  
LRCK/FS is recommended. The device should be configured so that the PLL is only providing a clock source to  
the DSP. All other clocks are then a division of the incoming MCLK. To enable the MCLK as the main source  
clock, with all others being created as divisions of the incoming MCLK, set the DAC CLK source Mux (SDAC in  
Figure 65) to use MCLK as a source, rather than the output of the MCLK/PLL Mux.  
9.3.3 Serial Audio Port  
9.3.3.1 Clock Master Mode from Audio Rate Master Clock  
In Master Mode, the device generates bit clock and left-right and frame sync clock and outputs them on the  
appropriate pins. To configure the device in master mode, first put the device into reset, then use registers  
SCLKO and LRKO (P0-R9). Then reset the LRCK/FS and SCLK divider counters using bits RSCLK and RLRK  
(P0-R12). Finally, exit reset.  
Figure 66 shows a simplified serial port clock tree for the device in master mode.  
36  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
Feature Description (continued)  
Audio Related System Clock (MCLK)  
MCLK  
SCLK  
SCLKO (Bit Clock Output In Master Mode)  
Divider  
Q1 = 1...128  
LRCK/FS (LR Clock or Frame Sync Output In  
Master Mode  
Divider  
LRCK/FS  
Q1 = 1...128  
Figure 66. Simplified Clock Tree for MCLK Sourced Master Mode  
In master mode, MCLK is an input and SCLK and LRCK/FS are outputs. SCLK and LRCK/FS are integer  
divisions of MCLK. Master mode with a non-audio rate master clock source requires external GPIO’s to use the  
PLL in standalone mode. The PLL should be configured to ensure that the on-chip processor can be driven at  
the maximum clock rate. The master mode of operation is described in the Clock Master from a Non-Audio Rate  
Master Clock section.  
When used with audio rate master clocks, the register changes that should be done include switching the device  
into master mode, and setting the divider ratio. An example of the master mode of operations is using 24.576  
MHz MCLK as a master clock source and driving the SCLK and LRCK/FS with integer dividers to create 48 kHz  
sample rate clock output. In master mode, the DAC section of the device is also running from the PLL output.  
The TAS5782M device is able to meet the specified audio performance while using the internal PLL. However,  
using the MCLK CMOS oscillator source will have less jitter than the PLL.  
To switch the DAC clocks (SDAC in the Figure 65) the following registers should be modified  
DAC and OSR Source Clock Register (P0-R14). Set to 0x30 (MCLK input, and OSR is set to whatever the  
DAC source is)  
The DAC clock divider should be 16 fS.  
16 × 48 kHz = 768 kHz  
24.576 MHz (MCLK in) / 768 kHz = 32  
Therefore, the divide ratio for register DDAC (P0-R28) should be set to 32. The register mapping gives  
0x00 = 1, therefore 32 must be converter to 0x1F (31dec).  
9.3.3.2 Clock Master from a Non-Audio Rate Master Clock  
The classic example here is running a 96-kHz sampling system. Given the clock tree for the device (shown in  
Figure 65), a non-audio clock rate cannot be brought into the MCLK to the PLL in master mode. Therefore, the  
PLL source must be configured to be a GPIO pin, and the output brought back into another GPIO pin.  
Copyright © 2016–2017, Texas Instruments Incorporated  
37  
 
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
Feature Description (continued)  
Non-Audio MCLK  
GPOIx  
PLL  
GPOIy  
New  
Audio  
MCLK  
MCLK  
Master Mode  
SLCK Integer  
Divider  
SCLK  
Out  
SCLK  
Master Mode  
LRCK/FS  
Integer Divider  
LRCK/FS  
Out  
LRCK/FS  
Figure 67. Generating Audio Clocks Using Non-Audio Clock Sources  
The clock flow through the system is shown in Figure 67. The newly generated MCLK must be brought out of the  
device on a GPIO pin, then brought into the MCLK pin for integer division to create SCLK and LRCK/FS outputs.  
NOTE  
Pull-up resistors should be used on SCLK and LRCK/FS in master mode to ensure the  
device remains out of sleep mode.  
9.3.3.3 Clock Slave Mode with 4-Wire Operation (SCLK, MCLK, LRCK/FS, SDIN)  
The TAS5782M device requires a system clock to operate the digital interpolation filters and advanced segment  
DAC modulators. The system clock is applied at the MCLK input and supports up to 50 MHz. The TAS5782M  
device system-clock detection circuit automatically senses the system-clock frequency. Common audio sampling  
frequencies in the bands of 32 kHz, (44.1 – 48 kHz), (88.2 – 96 kHz) are supported.  
NOTE  
Values in the parentheses are grouped when detected, for example, 88.2 kHz and 96 kHz  
are detected as double rate, 32 kHz, 44.1 kHz and 48 kHz are detected as single rate and  
so on.  
Also note, there is one process flow which has only a (1/2)X SRC.  
In the presence of a valid bit MCLK, SCLK and LRCK/FS, the device automatically configures the clock tree and  
PLL to drive the µCDSP as required.  
The sampling frequency detector sets the clock for the digital filter, Delta Sigma Modulator (DSM) and the  
Negative Charge Pump (NCP) automatically. Table 2 shows examples of system clock frequencies for common  
audio sampling rates.  
38  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
Feature Description (continued)  
MCLK rates that are not common to standard audio clocks, between 1 MHz and 50 MHz, are supported by  
configuring various PLL and clock-divider registers directly. In slave mode, auto clock mode should be disabled  
using P0-R37. Additionally, the user can be required to ignore clock error detection if external clocks are not  
available for some time during configuration or if the clocks presented on the pins of the device are invalid. The  
extended programmability allows the device to operate in an advanced mode in which the device becomes a  
clock master and drive the host serial port with LRCK/FS and SCLK, from a non-audio related clock (for  
example, using a setting of 12 MHz to generate 44.1 kHz [LRCK/FS] and 2.8224 MHz [SCLK]).  
Table 2 shows the timing requirements for the system clock input. For optimal performance, use a clock source  
with low phase jitter and noise. For MCLK timing requirements, refer to the Serial Audio Port Timing – Master  
Mode section.  
Table 2. System Master Clock Inputs for Audio Related Clocks  
SYSTEM CLOCK FREQUENCY (fMCLK) (MHz)  
SAMPLING  
FREQUENCY  
64 fS  
128 fS  
1.024(2)  
2.048(2)  
4.096(2)  
5.6488(2)  
6.144(2)  
11.2896(2)  
12.288(2)  
192 fS  
1.536(2)  
3.072(2)  
6.144(2)  
8.4672(2)  
9.216(2)  
16.9344  
18.432  
256 fS  
2.048  
384 fS  
3.072  
512 fS  
4.096  
8 kHz  
16 kHz  
32 kHz  
44.1 kHz  
48 kHz  
88.2 kHz  
96 kHz  
4.096  
6.144  
8.192  
8.192  
12.288  
16.9344  
18.432  
33.8688  
36.864  
16.384  
22.5792  
24.576  
45.1584  
49.152  
See(1)  
11.2896  
12.288  
22.5792  
24.576  
(1) This system clock rate is not supported for the given sampling frequency.  
(2) This system clock rate is supported by PLL mode.  
9.3.3.4 Clock Slave Mode with SCLK PLL to Generate Internal Clocks (3-Wire PCM)  
9.3.3.4.1 Clock Generation using the PLL  
The TAS5782M device supports a wide range of options to generate the required clocks as shown in Figure 65.  
The clocks for the PLL require a source reference clock. This clock is sourced as the incoming SCLK or MCLK, a  
GPIO can also be used.  
The source reference clock for the PLL reference clock is selected by programming the SRCREF value on P0-  
R13, D[6:4]. The TAS5782M device provides several programmable clock dividers to achieve a variety of  
sampling rates. See Figure 65.  
If PLL functionality is not required, set the PLLEN value on P0-R4, D[0] to 0. In this situation, an external master  
clock is required.  
Table 3. PLL Configuration Registers  
CLOCK MULTIPLEXER  
REGISTER  
SREF  
FUNCTION  
PLL Reference  
BITS  
B0-P0-R13-D[6:4]  
DDSP  
Clock divider  
B0-P0-R27-D[6:0]  
B0-P0-R32-D[6:0]  
B0-P0-R33-D[7:0]  
DSCLK  
DLRK  
External SCLK Div  
External LRCK/FS Div  
Copyright © 2016–2017, Texas Instruments Incorporated  
39  
 
 
 
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
9.3.3.4.2 PLL Calculation  
The TAS5782M device has an on-chip PLL with fractional multiplication to generate the clock frequency required  
by the Digital Signal Processing blocks. The programmability of the PLL allows operation from a wide variety of  
clocks that may be available in the system. The PLL input (PLLCKIN) supports clock frequencies from 1 MHz to  
50 MHz and is register programmable to enable generation of required sampling rates with fine precision.  
The PLL is enabled by default. The PLL can be enabled by writing to P0-R4, D[0]. When the PLL is enabled, the  
PLL output clock PLLCK is given by Equation 1:  
PLLCKIN x R x J.D  
P
PLLCKIN x R x K  
P
PLLCK =  
or PLLCK =  
where  
R = 1, 2, 3,4, ... , 15, 16  
J = 4,5,6, . . . 63, and D = 0000, 0001, 0002, . . . 9999  
K = [J value].[D value]  
P = 1, 2, 3, ... 15  
(1)  
R, J, D, and P are programmable. J is the integer portion of K (the numbers to the left of the decimal point), while  
D is the fractional portion of K (the numbers to the right of the decimal point, assuming four digits of precision).  
9.3.3.4.2.1 Examples:  
If K = 8.5, then J = 8, D = 5000  
If K = 7.12, then J = 7, D = 1200  
If K = 14.03, then J = 14, D = 0300  
If K = 6.0004, then J = 6, D = 0004  
When the PLL is enabled and D = 0000, the following conditions must be satisfied:  
1 MHz ( PLLCKIN / P ) 20 MHz  
64 MHz (PLLCKIN x K x R / P ) 100 MHz  
1 J 63  
When the PLL is enabled and D 0000, the following conditions must be satisfied:  
6.667 MHz PLLCLKIN / P 20 MHz  
64 MHz (PLLCKIN x K x R / P ) 100 MHz  
4 J 11  
R = 1  
When the PLL is enabled,  
fS = (PLLCLKIN × K × R) / (2048 × P)  
The value of N is selected so that fS × N = PLLCLKIN x K x R / P is in the allowable range.  
Example: MCLK = 12 MHz and fS = 44.1 kHz, (N=2048)  
Select P = 1, R = 1, K = 7.5264, which results in J = 7, D = 5264  
Example: MCLK = 12 MHz and fS = 48.0 kHz, (N=2048)  
Select P = 1, R = 1, K = 8.192, which results in J = 8, D = 1920  
Values are written to the registers in Table 4.  
Table 4. PLL Registers  
DIVIDER  
PLLE  
FUNCTION  
PLL enable  
PLL P  
BITS  
P0-R4, D[0]  
PPDV  
PJDV  
P0-R20, D[3:0]  
P0-R21, D[5:0]  
P0-R22, D[5:0]  
P0-R23, D[7:0]  
P0-R24, D[3:0]  
PLL J  
PDDV  
PRDV  
PLL D  
PLL R  
40  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
 
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
Table 5. PLL Configuration Recommendations  
EQUATIONS  
fS (kHz)  
DESCRIPTION  
Sampling frequency  
RMCLK  
Ratio between sampling frequency and MCLK frequency (MCLK frequency = RMCLK x sampling frequency)  
System master clock frequency at MCLK input (pin 20)  
MCLK (MHz)  
PLL VCO (MHz) PLL VCO frequency as PLLCK in Figure 65  
One of the PLL coefficients in Equation 1  
PLL REF (MHz) Internal reference clock frequency which is produced by MCLK / P  
P
M = K × R  
K = J.D  
R
The final PLL multiplication factor computed from K and R as described in Equation 1  
One of the PLL coefficients in Equation 1  
One of the PLL coefficients in Equation 1  
PLL fS  
DSP fS  
NMAC  
Ratio between fS and PLL VCO frequency (PLL VCO / fS)  
Ratio between operating clock rate and fS (PLL fS / NMAC)  
The clock divider value in Table 3  
DSP CLK (MHz) The operating frequency as DSPCK in Figure 65  
MOD fS  
Ratio between DAC operating clock frequency and fS (PLL fS / NDAC)  
MOD f (kHz)  
NDAC  
DAC operating frequency as DACCK in  
DAC clock divider value in Table 3  
OSR clock divider value in Table 3 for generating OSRCK in Figure 65. DOSR must be chosen so that MOD fS / DOSR =  
16 for correct operation.  
DOSR  
NCP  
CP f  
NCP (negative charge pump) clock divider value in Table 3  
Negative charge pump clock frequency (fS × MOD fS / NCP)  
Percentage of error between PLL VCO / PLL fS and fS (mismatch error).  
% Error  
This value is typically zero but can be non-zero especially when K is not an integer (D is not zero).  
This value can be non-zero only when the TAS5782M device acts as a master.  
The previous equations explain how to calculate all necessary coefficients and controls to configure the PLL.  
Table 6 provides for easy reference to the recommended clock divider settings for the PLL as a Master Clock.  
Copyright © 2016–2017, Texas Instruments Incorporated  
41  
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
Table 6. Recommended Clock Divider Settings for PLL as Master Clock  
fS  
(kHz)  
MCLK  
(MHz)  
PLL VCO  
(MHz)  
PLL REF  
(MHz)  
DSP CLK  
(MHz)  
MOD f  
(kHz)  
CP f  
(kHz)  
RMCLK  
P
M = K×R  
K = J×D  
R
PLL fS  
DSP fS  
NMAC  
MOD fS  
NDAC  
DOSR  
% ERROR  
NCP  
128  
192  
1.024  
1.536  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
1
1
1
3
3
3
3
9
9
9
9
1
3
1
3
3
3
3
9
9
9
9
1
1
1
1
3
3
3
3
3
9
9
9
1.024  
1.536  
2.048  
1.024  
1.365  
2.048  
2.731  
1.024  
1.365  
1.82  
96  
64  
48  
96  
72  
48  
36  
96  
72  
54  
36  
64  
128  
32  
64  
48  
32  
24  
64  
48  
36  
24  
96  
48  
32  
24  
48  
36  
24  
18  
16  
36  
27  
18  
48  
32  
48  
48  
36  
48  
36  
48  
36  
54  
36  
32  
32  
32  
32  
48  
32  
24  
32  
48  
36  
24  
48  
48  
32  
24  
48  
36  
24  
18  
16  
36  
27  
18  
2
2
1
2
2
1
1
2
2
1
1
2
4
1
2
1
1
1
2
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
12288  
12288  
12288  
12288  
12288  
12288  
12288  
12288  
12288  
12288  
12288  
8192  
8192  
8192  
8192  
8192  
8192  
8192  
8192  
8192  
8192  
8192  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
8
8.192  
8.192  
768  
768  
768  
768  
768  
768  
768  
768  
768  
768  
768  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
384  
384  
384  
384  
384  
384  
384  
384  
384  
384  
384  
384  
6144  
6144  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
1536  
1536  
256  
2.048  
8.192  
6144  
1536  
384  
3.072  
8.192  
6144  
1536  
512  
4.096  
8.192  
6144  
1536  
8
768  
6.144  
8.192  
6144  
1536  
1024  
1152  
1536  
2048  
3072  
128  
8.192  
8.192  
6144  
1536  
9.216  
8.192  
6144  
1536  
12.288  
16.384  
24.576  
1.4112  
2.1168  
2.8224  
4.2336  
5.6448  
8.4672  
11.2896  
12.7008  
16.9344  
22.5792  
33.8688  
1.024  
8.192  
6144  
1536  
8.192  
6144  
1536  
2.731  
1.411  
0.706  
2.822  
1.411  
1.882  
2.822  
3.763  
1.411  
1.882  
2.509  
3.763  
1.024  
2.048  
3.072  
4.096  
2.048  
2.731  
4.096  
5.461  
6.144  
2.731  
3.641  
5.461  
8.192  
6144  
1536  
11.2896  
11.2896  
11.2896  
11.2896  
11.2896  
11.2896  
11.2896  
11.2896  
11.2896  
11.2896  
11.2896  
16.384  
16.384  
16.384  
16.384  
16.384  
16.384  
16.384  
16.384  
16.384  
16.384  
16.384  
16.384  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
6144  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1536  
192  
8
256  
8
384  
8
512  
8
11.025  
768  
8
1024  
1152  
1536  
2048  
3072  
64  
8
8
8
8
8
6
128  
2.048  
6
6144  
1536  
192  
3.072  
6
6144  
1536  
256  
4.096  
6
6144  
1536  
384  
6.144  
6
6144  
1536  
512  
8.192  
6
6144  
1536  
16  
768  
12.288  
16.384  
18.432  
24.576  
32.768  
49.152  
6
6144  
1536  
1024  
1152  
1536  
2048  
3072  
6
6144  
1536  
6
6144  
1536  
6
6144  
1536  
6
6144  
1536  
6
6144  
1536  
42  
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
Table 6. Recommended Clock Divider Settings for PLL as Master Clock (continued)  
fS  
MCLK  
(MHz)  
PLL VCO  
(MHz)  
PLL REF  
(MHz)  
DSP CLK  
(MHz)  
MOD f  
(kHz)  
CP f  
(kHz)  
RMCLK  
(kHz)  
P
M = K×R  
K = J×D  
R
PLL fS  
DSP fS  
NMAC  
MOD fS  
NDAC  
DOSR  
% ERROR  
NCP  
64  
1.4112  
2.8224  
4.2336  
5.6448  
8.4672  
11.2896  
16.9344  
22.5792  
25.4016  
33.8688  
45.1584  
1.024  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
98.304  
1
1
3
1
3
3
3
3
9
9
9
1
1
1
1
3
2
3
3
3
3
9
6
1
1
1
3
2
3
3
3
3
1.411  
2.822  
1.411  
5.645  
2.822  
3.763  
5.645  
7.526  
2.822  
3.763  
5.018  
1.024  
1.536  
2.048  
4.096  
2.048  
4.096  
4.096  
5.461  
8.192  
10.923  
4.096  
8.192  
1.411  
2.822  
5.645  
2.822  
5.645  
5.645  
7.526  
11.29  
15.053  
64  
32  
64  
16  
32  
24  
16  
12  
32  
24  
18  
96  
64  
48  
24  
48  
24  
24  
18  
12  
9
32  
32  
32  
16  
32  
24  
16  
12  
32  
24  
18  
48  
16  
24  
24  
48  
24  
24  
18  
12  
9
2
1
2
1
1
1
1
1
1
1
1
2
4
2
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
1
1
4096  
4096  
4096  
4096  
4096  
4096  
4096  
4096  
4096  
4096  
4096  
3072  
3072  
3072  
3072  
3072  
3072  
3072  
3072  
3072  
3072  
3072  
3072  
2048  
2048  
2048  
2048  
2048  
2048  
2048  
2048  
2048  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
4
4
4
4
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
3
3
3
2
2
2
2
2
2
2
2
2
22.5792  
22.5792  
22.5792  
22.5792  
22.5792  
22.5792  
22.5792  
22.5792  
22.5792  
22.5792  
22.5792  
32.768  
256  
256  
256  
256  
256  
256  
256  
256  
256  
256  
256  
192  
192  
192  
192  
192  
192  
192  
192  
192  
192  
192  
192  
128  
128  
128  
128  
128  
128  
128  
128  
128  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
6144  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
8
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1536  
128  
192  
256  
384  
22.05  
512  
768  
1024  
1152  
1536  
2048  
32  
48  
1.536  
98.304  
32.768  
6144  
1536  
64  
2.048  
98.304  
32.768  
6144  
1536  
128  
192  
256  
384  
512  
768  
1024  
1152  
1536  
32  
4.096  
98.304  
32.768  
6144  
1536  
6.144  
98.304  
32.768  
6144  
1536  
8.192  
98.304  
32.768  
6144  
1536  
32  
12.288  
16.384  
24.576  
32.768  
36.864  
49.152  
1.4112  
2.8224  
5.6448  
8.4672  
11.2896  
16.9344  
22.5792  
33.8688  
45.1584  
98.304  
32.768  
6144  
1536  
98.304  
32.768  
6144  
1536  
98.304  
32.768  
6144  
1536  
98.304  
32.768  
6144  
1536  
98.304  
24  
12  
64  
32  
16  
32  
16  
16  
12  
8
24  
12  
32  
16  
16  
32  
16  
16  
12  
8
32.768  
6144  
1536  
98.304  
32.768  
6144  
1536  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
45.1584  
45.1584  
45.1584  
45.1584  
45.1584  
45.1584  
45.1584  
45.1584  
45.1584  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
64  
8
128  
192  
256  
384  
512  
768  
1024  
8
8
44.1  
8
8
8
8
6
6
8
Copyright © 2016–2017, Texas Instruments Incorporated  
43  
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
Table 6. Recommended Clock Divider Settings for PLL as Master Clock (continued)  
fS  
(kHz)  
MCLK  
(MHz)  
PLL VCO  
(MHz)  
PLL REF  
(MHz)  
DSP CLK  
(MHz)  
MOD f  
(kHz)  
CP f  
RMCLK  
P
M = K×R  
K = J×D  
R
PLL fS  
DSP fS  
NMAC  
MOD fS  
NDAC  
DOSR  
% ERROR  
NCP  
(kHz)  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
32  
64  
1.536  
3.072  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
1
1
1
3
2
3
3
3
3
1
3
1
2
3
4
6
8
1.536  
3.072  
6.144  
3.072  
6.144  
6.144  
8.192  
12.288  
16.384  
3.072  
1.536  
6.144  
6.144  
6.144  
6.144  
6.144  
6.144  
64  
32  
16  
32  
16  
16  
12  
8
32  
16  
16  
32  
16  
16  
12  
8
2
2
1
1
1
1
1
1
1
2
2
2
1
1
1
1
1
2048  
2048  
2048  
2048  
2048  
2048  
2048  
2048  
2048  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
512  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
49.152  
49.152  
49.152  
49.152  
49.152  
49.152  
49.152  
49.152  
49.152  
49.152  
49.152  
49.152  
49.152  
49.152  
49.152  
49.152  
49.152  
128  
128  
128  
128  
128  
128  
128  
128  
128  
64  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
8
8
8
8
8
8
8
8
8
4
4
4
4
4
4
4
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
128  
192  
256  
384  
512  
768  
1024  
32  
6.144  
9.216  
48  
12.288  
18.432  
24.576  
36.864  
49.152  
3.072  
6
6
32  
64  
16  
16  
16  
16  
16  
16  
16  
32  
8
48  
4.608  
512  
64  
64  
6.144  
512  
64  
128  
192  
256  
384  
512  
12.288  
18.432  
24.576  
36.864  
49.152  
16  
16  
16  
16  
16  
512  
64  
96  
512  
64  
512  
64  
512  
64  
512  
64  
44  
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
9.3.3.5 Serial Audio Port – Data Formats and Bit Depths  
The serial audio interface port is a 3-wire serial port with the signals LRCK/FS (pin 25), SCLK (pin 23), and SDIN  
(pin 24). SCLK is the serial audio bit clock, used to clock the serial data present on SDIN into the serial shift  
register of the audio interface. Serial data is clocked into the TAS5782M device on the rising edge of SCLK. The  
LRCK/FS pin is the serial audio left/right word clock or frame sync when the device is operated in TDM Mode.  
Table 7. TAS5782M Audio Data Formats, Bit Depths and Clock Rates  
MAXIMUM LRCK/FS  
FREQUENCY (kHz)  
FORMAT  
DATA BITS  
MCLK RATE (fS)  
SCLK RATE (fS)  
I2S/LJ/RJ  
32, 24, 20, 16  
Up to 96  
128 to 3072 (50 MHz)  
128 to 3072  
64, 48, 32  
125, 256  
125, 256  
Up to 48  
TDM  
32, 24, 20, 16  
96  
128 to 512  
The TAS5782M device requires the synchronization of LRCK/FS and system clock, but does not require a  
specific phase relation between LRCK/FS and system clock.  
If the relationship between LRCK/FS and system clock changes more than ±5 MCLK, internal operation is  
initialized within one sample period and analog outputs are forced to the bipolar zero level until re-  
synchronization between LRCK/FS and system clock is completed.  
If the relationship between LRCK/FS and SCLK are invalid more than 4 LRCK/FS periods, internal operation is  
initialized within one sample period and analog outputs are forced to the bipolar zero level until re-  
synchronization between LRCK/FS and SCLK is completed.  
9.3.3.5.1 Data Formats and Master/Slave Modes of Operation  
The TAS5782M device supports industry-standard audio data formats, including standard I2S and left-justified.  
Data formats are selected via Register (P0-R40). All formats require binary two's complement, MSB-first audio  
data; up to 32-bit audio data is accepted. The data formats are detailed in Figure 68 through Figure 73.  
The TAS5782M device also supports right-justified, and TDM data. I2S, LJ, RJ, and TDM are selected using  
Register (P0-R40). All formats require binary 2s complement, MSB-first audio data. Up to 32 bits are accepted.  
Default setting is I2S and 24 bit word length. The I2S slave timing is shown in Figure 20.  
shows a detailed timing diagram for the serial audio interface.  
In addition to acting as a I2S slave, the TAS5782M device can act as an I2S master, by generating SCLK and  
LRCK/FS as outputs from the MCLK input. Table 8 lists the registers used to place the device into Master or  
Slave mode. Please refer to the Serial Audio Port Timing – Master Mode section for serial audio Interface timing  
requirements in Master Mode. For Slave Mode timing, please refer to the Serial Audio Port Timing – Slave Mode  
section.  
Table 8. I2S Master Mode Registers  
REGISTER  
FUNCTION  
P0-R9-B0, B4, and B5  
P0-R32-D[6:0]  
I2S Master mode select  
SCLK divider and LRCK/FS divider  
P0-R33-D[7:0]  
Copyright © 2016–2017, Texas Instruments Incorporated  
45  
 
 
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
1 tS .  
Right-channel  
Left-channel  
LRCK/FS  
SCLK  
Audio data word = 16-bit, SCLK = 32, 48, 64fS  
1
2
15 16  
1
1
2
15 16  
DATA  
LSB  
LSB  
MSB  
MSB  
Audio data word = 24-bit, SCLK = 48, 64fS  
2
1
2
24  
2
23 24  
DATA  
LSB  
LSB  
MSB  
MSB  
Audio data word = 32-bit, SCLK = 64fS  
1
2
31 32  
1
2
31 32  
DATA  
MSB  
LSB  
MSB  
LSB  
Figure 68. Left Justified Audio Data Format  
1 tS .  
LRCK/FS  
SCLK  
Left-channel  
Right-channel  
Audio data word = 16-bit, SCLK = 32, 48, 64fS  
1
2
15 16  
1
1
2
15 16  
DATA  
LSB  
LSB  
MSB  
MSB  
Audio data word = 24-bit, SCLK = 48, 64fS  
2
2
23 24  
1
23 24  
DATA  
LSB  
MSB  
LSB  
MSB  
Audio data word = 32-bit, SCLK = 64fS  
1
2
31 32  
1
2
31 32  
DATA  
MSB  
LSB  
MSB  
LSB  
I2S Data Format; L-channel = LOW, R-channel = HIGH  
Figure 69. I2S Audio Data Format  
46  
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
The following data formats are only available in software mode.  
1 /fS .  
Right-channel  
Left-channel  
LRCK/FS  
SCLK  
Audio data word = 16-bit, SCLK = 32, 48, 64fS  
DATA  
1
2
15 16  
LSB  
1
2
15 16  
LSB  
MSB  
MSB  
Audio data word = 24-bit, SCLK = 48, 64fS  
2
1
2
24  
1
2
23 24  
DATA  
MSB  
LSB  
MSB  
LSB  
Audio data word = 32-bit, SCLK = 64fS  
1
2
31 32  
LSB  
1
2
31 32  
DATA  
MSB  
MSB  
LSB  
Right Justified Data Format; L-channel = HIGH, R-channel = LOW  
Figure 70. Right Justified Audio Data Format  
1 /fS .  
LRCK/FS  
SCLK  
Audio data word = 16-bit, Offset = 0  
1
2
15 16  
1
2
15 16  
1
1
1
DATA  
Data Slot 1  
Data Slot 2  
LSB  
MSB  
LSB  
MSB  
Audio data word = 24-bit, Offset = 0  
-
,
1
2
23 24  
1
2
23 24  
LSB  
DATA  
Data Slot 1  
LSB  
MSB  
MSB  
Audio data word = 32-bit, Offset = 0  
1
2
31 32  
LSB  
1
2
31 32  
LSB  
DATA  
MSB  
TDM Data Format with OFFSET = 0  
In TDM Modes, Duty Cycle of LRCK/FS should be 1x SCLK at minimum. Rising edge is considered frame start.  
Figure 71. TDM 1 Audio Data Format  
Copyright © 2016–2017, Texas Instruments Incorporated  
47  
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
1 /fS .  
OFFSET = 1  
LRCK/FS  
SCLK  
Audio data word = 16-bit, Offset = 1  
1
2
15 16  
1
2
15 16  
1
1
1
DATA  
Data Slot 1  
LSB  
Data Slot 2  
LSB  
MSB  
MSB  
Audio data word = 24-bit, Offset = 1  
1
2
23 24  
1
2
23 24  
LSB  
DATA  
Data Slot 1  
Data Slot 2  
LSB  
MSB  
MSB  
Audio data word = 32-bit, Offset = 1  
1
2
31 32  
LSB  
1
2
31 32  
DATA  
Data Slot 1  
Data Slot 2  
LSB  
MSB  
TDM Data Format with OFFSET = 1  
In TDM Modes, Duty Cycle of LRCK/FS should be 1x SCLK at minimum. Rising edge is considered frame start.  
Figure 72. TDM 2 Audio Data Format  
1 /fS .  
OFFSET = n  
LRCK/FS  
SCLK  
Audio data word = 16-bit, Offset = n  
1
2
15 16  
1
2
15 16  
DATA  
Data Slot 1  
LSB  
Data Slot 2  
LSB  
MSB  
MSB  
Audio data word = 24-bit, Offset = n  
1
2
23 24  
1
2
23 24  
LSB  
DATA  
Data Slot 1  
Data Slot 2  
LSB  
MSB  
MSB  
Audio data word = 32-bit, Offset = n  
1
2
31 32  
LSB  
1
2
31 32  
LSB  
DATA  
Data Slot 1  
Data Slot 2  
MSB  
TDM Data Format with OFFSET = N  
In TDM Modes, Duty Cycle of LRCK/FS should be 1x SCLK at minimum. Rising edge is considered frame start.  
Figure 73. TDM 3 Audio Data Format  
48  
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
9.3.3.6 Input Signal Sensing (Power-Save Mode)  
The TAS5782M device has a zero-detect function. The zero-detect function can be applied to both channels of  
data as an AND function or an OR function, via controls provided in the control port in P0-R65-D[2:1].Continuous  
Zero data cycles are counted by LRCK/FS, and the threshold of decision for analog mute can be set by P0-R59,  
D[6:4] for the data which is clocked in on the left frame of an I2S signal or Slot 1 of a TDM signal and P0-R59,  
D[2:0] for the data which is clocked in on the right frame of an I2S signal or Slot 2 of a TDM signal as shown in  
Table 10. Default values are 0 for both channels.  
Table 9. Zero Detection Mode  
ATMUTECTL  
VALUE  
FUNCTION  
Zero data triggers for the two channels for zero detection are  
ORed together.  
0
Bit : 2  
Zero data triggers for the two channels for zero detection are  
ANDed together.  
1 (Default)  
0
Zero detection and analog mute are disabled for the data  
clocked in on the right frame of an I2S signal or Slot 2 of a  
TDM signal.  
Bit : 1  
Bit : 0  
Zero detection analog mute are enabled for the data clocked in  
on the right frame of an I2S signal or Slot 2 of a TDM signal.  
1 (Default)  
0
Zero detection analog mute are disabled for the data clocked  
in on the left frame of an I2S signal or Slot 1 of a TDM signal.  
Zero detection analog mute are enabled for the data clocked in  
on the left frame of an I2S signal or Slot 1 of a TDM signal.  
1 (Default)  
Table 10. Zero Data Detection Time  
ATMUTETIML OR ATMA  
NUMBER OF LRCK/FS CYCLES  
TIME at 48 kHz  
21 ms  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
1024  
5120  
106 ms  
10240  
25600  
51200  
102400  
256000  
512000  
213 ms  
533 ms  
1.066 secs  
2.133 secs  
5.333 secs  
10.66 secs  
9.3.4 Enable Device  
To play audio after the device is powered up or reset the device must be enabled by writing book 0x00, page  
0x00, register 0x02 to 0x00.  
9.3.4.1 Example  
The following is a sample script for enabling the device:  
#Enable DUT  
w 90 00 00 #Go to page 0  
w 90 7f 00 #Go to book 0  
w 90 02 00 #Enable device  
9.3.5 Volume Control  
For more information regarding the TAS5782 flexible processing system, see the TAS5782M Process Flows  
9.3.5.1 DAC Digital Gain Control  
Ramp-up frequency and ramp-down frequency can be controlled by P0-R63, D[7:6] and D[3:2] as shown in  
Table 11. Also ramp-up step and ramp-down step can be controlled by P0-R63, D[5:4] and D[1:0] as shown in  
Table 12.  
Copyright © 2016–2017, Texas Instruments Incorporated  
49  
 
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
Table 11. Ramp Up or Down Frequency  
RAMP UP  
SPEED  
RAMP DOWN  
FREQUENCY  
EVERY N fS  
COMMENTS  
EVERY N fS  
COMMENTS  
00  
01  
10  
11  
1
Default  
00  
01  
10  
11  
1
Default  
2
2
4
4
Direct change  
Direct change  
Table 12. Ramp Up or Down Step  
RAMP UP  
STEP  
RAMP DOWN  
COMMENTS  
STEP dB  
STEP dB  
COMMENTS  
STEP  
00  
01  
10  
11  
4.0  
2.0  
1.0  
0.5  
00  
01  
10  
–4.0  
–2.0  
–1.0  
–0.5  
Default  
11  
Default  
9.3.5.1.1 Emergency Volume Ramp Down  
Emergency ramp down of the volume is provided for situations such as I2S clock error and power supply failure.  
Ramp-down speed is controlled by P0-R64-D[7:6]. Ramp-down step can be controlled by P0-R64-D[5:4]. Default  
is ramp-down by every fS cycle with –4dB step.  
9.3.6 Adjustable Amplifier Gain and Switching Frequency Selection  
The voltage divider between the GVDD_REG pin and the SPK_GAIN/FREQ pin is used to set the gain and  
switching frequency of the amplifier. Upon start-up of the device, the voltage presented on the SPK_GAIN/FREQ  
pin is digitized and then decoded into a 3-bit word which is interpreted inside the TAS5782M device to  
correspond to a given gain and switching frequency. In order to change the SPK_GAIN or switching frequency of  
the amplifier, the PVDD must be cycled off and on while the new voltage level is present on the  
SPK_GAIN/FREQ pin.  
Because the amplifier adds gain to both the signal and the noise present in the audio signal, the lowest gain  
setting that can meet voltage-limited output power targets should be used. Using the lowest gain setting ensures  
that the power target can be reached while minimizing the idle channel noise of the system. The switching  
frequency selection affects three important operating characteristics of the device. The three affected  
characteristics are the power dissipation in the device, the power dissipation in the inductor, and the target output  
filter for the application.  
Higher switching frequencies typically result in slightly higher power dissipation in the TAS5782M device and  
lower dissipation in the inductor in the system, due to decreased ripple current through the inductor and  
increased charging and discharging current in device and parasitic capacitances. Switching at the higher of the  
available switching frequencies will result in lower overall dissipation in the system and lower operating  
temperature of the inductors. However, the thermally limited power output of the device can be decreased in this  
situation, because some of the TAS5782M device thermal headroom will be absorbed by the higher switching  
frequency. Conversely inductor heating can be reduced by using the higher switching frequency to reduce the  
ripple current.  
Another advantage of increasing the switching frequency is that the higher frequency carrier signal can be filtered  
by an L-C filter with a higher corner frequency, leading to physically smaller components. Use the highest  
switching frequency that continues to meet the thermally limited power targets for the application. If thermal  
constraints require heat reduction in the TAS5782M device, use a lower switching rate.  
The switching frequency of the speaker amplifier is dependent on an internal synchronizing signal, (fSYNC), which  
is synchronous with the sample rate. The rate of the synchronizing signal is also dependent on the sample rate.  
Refer to Table 13 below for details regarding how the sample rates correlate to the synchronizing signal.  
50  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
Table 13. Sample Rates vs Synchronization Signal  
SAMPLE RATE  
[kHz]  
fSYNC  
[kHz]  
8
16  
32  
96  
48  
96  
192  
11.025  
22.05  
44.1  
88.2  
88.2  
Table 14 summarizes the de-code of the voltage presented to the SPK_GAIN/FREQ pin. The voltage presented  
to the SPK_GAIN/FREQ pin is latched in upon startup of the device. Subsequent changes require power cycling  
the device. A gain setting of 20 dB is recommended for nominal supply voltages of 13 V and lower, while a gain  
of 26 dB is recommended for supply voltages up to 26.4 V. Table 14 shows the voltage required at the  
SPK_GAIN/FREQ pin for various gain and switching scenarios as well some example resistor values for meeting  
the voltage range requirements.  
Table 14. Amplifier Switching Mode vs. SPK_GAIN/FREQ Voltage  
VSPK_GAIN/FREQ (V)  
RESISTOR EXAMPLES  
AMPLIFIER  
SWITCHING  
FREQUENCY MODE  
R100 (k): RESISTOR TO  
GROUND  
R101 (k): RESISTOR TO  
GVDD_REG  
GAIN MODE  
MIN  
MAX  
6.61  
5.44  
7
Reserved  
Reserved  
Reserved  
8 × fSYNC  
R100 = 750  
R101 = 150  
6.6  
R100 = 390  
R101 = 150  
4.67  
3.89  
3.11  
2.33  
1.56  
0.78  
0
5.43  
4.66  
3.88  
3.1  
6 × fSYNC  
5 × fSYNC  
4 × fSYNC  
8 × fSYNC  
6 × fSYNC  
5 × fSYNC  
4 × fSYNC  
26 dBV  
R100 = 220  
R101 = 150  
R100 = 150  
R101 = 150  
R100 = 100  
R101 = 150  
R100 = 56  
R101 = 150  
2.32  
1.55  
0.77  
20 dBV  
R100 = 33  
R101 = 150  
R100 = 8.2  
R101 = 150  
9.3.7 Error Handling and Protection Suite  
9.3.7.1 Device Overtemperature Protection  
The TAS5782M device continuously monitors die temperature to ensure the temperature does not exceed the  
OTETHRES level specified in the Recommended Operating Conditions table. If an OTE event occurs, the  
SPK_FAULT line is pulled low and the SPK_OUTxx outputs transition to high impedance, signifying a fault. This  
is a non-latched error and the device will attempt to self clear after OTECLRTIME has passed.  
Copyright © 2016–2017, Texas Instruments Incorporated  
51  
 
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
9.3.7.2 SPK_OUTxx Overcurrent Protection  
The TAS5782M device continuously monitors the output current of each amplifier output to ensure the output  
current does not exceed the OCETHRES level specified in the Recommended Operating Conditions table. If an  
OCE event occurs, the SPK_FAULT line is pulled low and the SPK_OUTxx outputs transition to high impedance,  
signifying a fault. This is a non-latched error and the device will attempt to self clear after OCECLRTIME has  
passed.  
9.3.7.3 DC Offset Protection  
If the TAS5782M device measures a DC offset in the output voltage, the SPK_FAULT line is pulled low and the  
SPK_OUTxx outputs transition to high impedance, signifying a fault. This latched error requires the SPK_MUTE  
line to toggle to reset the error. Alternatively, pulling the MCLK, SCLK, or LRCK low causes a clock error, which  
also resets the device. Normal operation resumes by re-starting the stopped lock.  
9.3.7.4 Internal VAVDD Undervoltage-Error Protection  
The TAS5782M device internally monitors the AVDD net to protect against the AVDD supply dropping  
unexpectedly. To enable this feature, P1-R5-B0 is used.  
9.3.7.5 Internal VPVDD Undervoltage-Error Protection  
If the voltage presented on the PVDD supply drops below the UVETHRES(PVDD) value listed in the Recommended  
Operating Conditions table, the SPK_OUTxx outputs transition to high impedance. This is a self-clearing error,  
which means that once the PVDD level drops below the level listed in the Recommended Operating Conditions  
table, the device resumes normal operation.  
9.3.7.6 Internal VPVDD Overvoltage-Error Protection  
If the voltage presented on the PVDD supply exceeds the OVETHRES(PVDD) value listed in the Recommended  
Operating Conditions table, the SPK_OUTxx outputs will transition to high impedance. This is a self-clearing  
error, which means that once the PVDD level drops below the level listed in the Recommended Operating  
Conditions table, the device will resume normal operation.  
NOTE  
The voltage presented on the PVDD supply only protects up to the level described in the  
Recommended Operating Conditions table for the PVDD voltage. Exceeding the absolute  
maximum rating may cause damage and possible device failure, because the levels  
exceed that which can be protected by the OVE protection circuit.  
9.3.7.7 External Undervoltage-Error Protection  
The SPK_MUTE pin can also be used to monitor a system voltage, such as a LCD TV backlight, a battery pack  
in portable device, by using a voltage divider created with two resistors (see Figure 74).  
If the SPK_MUTE pin makes a transition from 1 to 0 over 6 ms or more, the device switches into external  
undervoltage protection mode, which uses two trigger levels.  
When the SPK_MUTE pin level reaches 2 V, soft mute process begins.  
When the SPK_MUTE pin level reaches 1.2 V, analog output mute engages, regardless of digital audio level,  
and analog output shutdown begins.  
Figure 75 shows a timing diagram for external undervoltage error protection.  
52  
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
NOTE  
The SPK_MUTE input pin voltage range is provided in the Recommended Operating  
Conditions table. The ratio of external resistors must produce a voltage within the provided  
input range. Any increase in power supply (such as power supply positive noise or ripple)  
can pull the SPK_MUTE pin higher than the level specified in the Recommended  
Operating Conditions table, potentially causing damage to or failure of the device.  
Therefore, any monitored voltage (including all ripple, power supply variation, resistor  
divider variation, transient spikes, and others) must be scaled by the resistor divider  
network to never drive the voltage on the SPK_MUTE pin higher than the maximum level  
specified in the Recommended Operating Conditions table.  
When the divider is set correctly, any DC voltage can be monitored. Figure 74 shows a 12-V example of how the  
SPK_MUTE is used for external undervoltage error protection.  
VDD  
12 V  
7.25 kΩ  
SPK_MUTE  
2.75 kΩ  
Figure 74. SPK_MUTE Used in External Undervoltage Error Protection  
Digital attenuation followed by analog mute  
Analog mute  
SPK_MUTE  
0.9 × DV  
DD  
2.0 V  
1.2 V  
0.1 × DV  
DD  
t
f
Figure 75. SPK_MUTE Timing for External Undervoltage Error Protection  
9.3.7.8 Internal Clock Error Notification (CLKE)  
When a clock error is detected on the incoming data clock, the TAS5782M device switches to an internal  
oscillator and continues to the drive the DAC, while attenuating the data from the last known value. Once this  
process is complete, the DAC outputs will be hard muted to the ground and the class D PWM output will stop  
switching. The clock error can be monitored at B0-P0-R94 and R95. The clock error status bits are non-latching,  
except for MCLK halted B0-P0-R95-D[4] and CERF B0-P0-R95-D[0] which are cleared when read.  
Copyright © 2016–2017, Texas Instruments Incorporated  
53  
 
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
9.3.8 GPIO Port and Hardware Control Pins  
Internal Data  
(P0-R83)  
GPIOx Output Enable  
GPIOx Output Inversion  
GPIOx Output Selection  
P0-R83  
P0-R8  
P0-R87  
Off (low)  
DSP GPIOx output  
Register GPIOx output (P0-R86)  
Auto mute flag (Both A and B)  
Auto mute flag (Channel B)  
Auto mute flag (Channel A)  
Clock invalid flag  
Mux  
GPIOx  
Mux  
Serial Audio Data Output  
Analog mute flag for B  
Analog mute flag for A  
PLL lock flag  
Charge Pump Clock  
GPIOx Input State  
Under voltage flag 1  
Under voltage flag 2  
Monitoring  
(P0-R119)  
PLL output/4  
To µCDSP  
To Clock Tree  
Figure 76. GPIO Port  
9.3.9 I2C Communication Port  
The TAS5782M device supports the I2C serial bus and the data transmission protocol for standard and fast mode  
as a slave device. Because the TAS5782M register map spans several books and pages, the user must select  
the correct book and page before writing individual register bits or bytes. Changing from book to book is  
accomplished by first changing to page 0x00 by writing 0x00 to register 0x00 and then writing the book number  
to register 0x7f of page 0. Changing from page to page is accomplished via register 0x00 on each page. The  
register value selects the register page, from 0 to 255.  
9.3.9.1 Slave Address  
Table 15. I2C Slave Address  
MSB  
1
LSB  
0
0
1
0
ADR2  
ADR1  
R/ W  
The TAS5782M device has 7 bits for the slave address. The first five bits (MSBs) of the slave address are  
factory preset to 10010 (0x9x). The next two bits of the address byte are the device select bits which can be  
user-defined by the ADR1 and ADR0 terminals. A maximum of four devices can be connected on the same bus  
at one time, which gives a range of 0x90, 0x92, 0x94 and 0x96, as detailed in Table 16. Each TAS5782M device  
responds when it receives the slave address.  
Table 16. I2C Address Configuration via ADR0 and ADR1 Pins  
ADR1  
ADR0  
I2C SLAVE ADDRESS [R/W]  
0
0
1
1
0
1
0
1
0x90  
0x92  
0x94  
0x96  
54  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
 
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
9.3.9.2 Register Address Auto-Increment Mode  
Auto-increment mode allows multiple sequential register locations to be written to or read back in a single  
operation, and is especially useful for block write and read operations. The TAS5782M device supports auto-  
increment mode automatically. Auto-increment stops at page boundaries.  
9.3.9.3 Packet Protocol  
A master device must control packet protocol, which consists of start condition, slave address, read/write bit,  
data if write or acknowledge if read, and stop condition. The TAS5782M device supports only slave receivers and  
slave transmitters.  
SDA  
SCL  
9
1–7  
8
9
1–8  
9
1–8  
9
Sp  
St  
Slave address  
R/W  
ACK  
DATA  
ACK  
DATA  
ACK  
ACK  
Start  
condition  
Stop  
condition  
R/W: Read operation if 1; otherwise, write operation  
ACK: Acknowledgement of a byte if 0  
DATA: 8 bits (byte)  
Figure 77. Packet Protocol  
Table 17. Write Operation - Basic I2C Framework  
Transmitter  
Data Type  
M
M
M
S
M
S
M
S
S
M
St  
slave address  
R/  
ACK  
DATA  
ACK  
DATA  
ACK  
ACK  
Sp  
Table 18. Read Operation - Basic I2C Framework  
Transmitter  
Data Type  
M
M
M
S
S
M
S
M
M
M
St  
slave address  
R/  
ACK  
DATA  
ACK  
DATA  
ACK  
NACK  
Sp  
M = Master Device; S = Slave Device; St = Start Condition Sp = Stop Condition  
9.3.9.4 Write Register  
A master can write to any TAS5782M device registers using single or multiple accesses. The master sends a  
TAS5782M device slave address with a write bit, a register address, and the data. If auto-increment is enabled,  
the address is that of the starting register, followed by the data to be transferred. When the data is received  
properly, the index register is incremented by 1 automatically. When the index register reaches 0x7F, the next  
value is 0x0. Table 19 shows the write operation.  
Table 19. Write Operation  
Transmitter  
Data Type  
M
M
M
S
M
S
M
S
M
S
S
M
reg  
addr  
write  
data 1  
write  
data 2  
St  
slave addr  
W
ACK  
inc  
ACK  
ACK  
ACK  
ACK  
Sp  
M = Master Device; S = Slave Device; St = Start Condition Sp = Stop Condition; W = Write; ACK = Acknowledge  
9.3.9.5 Read Register  
A master can read the TAS5782M device register. The value of the register address is stored in an indirect index  
register in advance. The master sends a TAS5782M device slave address with a read bit after storing the  
register address. Then the TAS5782M device transfers the data which the index register points to. When auto-  
increment is enabled, the index register is incremented by 1 automatically. When the index register reaches  
0x7F, the next value is 0x0. Table 20 lists the read operation.  
Table 20. Read Operation  
Transmitter  
M
M
M
S
M
S
M
M
M
S
S
M
M
M
Copyright © 2016–2017, Texas Instruments Incorporated  
55  
 
 
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
Table 20. Read Operation (continued)  
slave  
addr  
reg  
addr  
slave  
addr  
Data Type  
St  
W
ACK  
inc  
ACK  
Sr  
R
ACK  
data  
ACK  
NACK  
Sp  
M = Master Device; S = Slave Device; St = Start Condition; Sr = Repeated start condition; Sp = Stop Condition;  
W = Write; R = Read; NACK = Not acknowledge  
9.3.9.6 DSP Book, Page, and Register Update  
The DSP memory is arranged in books, pages, and registers. Each book has several pages and each page has  
several registers.  
9.3.9.6.1 Book and Page Change  
To change the book, the user must be on page 0x00. In register 0x7f on page 0x00 you can change the book.  
On page 0x00 of each book, register 0x7f is used to change the book. Register 0x00 of each page is used to  
change the page. To change a book first write 0x00 to register 0x00 to switch to page 0 then write the book  
number to register 0x7f on page 0. To change between pages in a book, simply write the page number to  
register 0x00.  
9.3.9.6.2 Swap Flag  
The swap flag is used to copy the audio coefficient from the host memory to the DSP memory. The swap flag  
feature is important to maintain the stability of the BQs. A BQ is a closed-loop system with 5 coefficients. To  
avoid instability in the BQ in an update transition between two different filters, update all five parameters within  
one audio sample. The internal swap flag insures all 5 coefficients for each filter are transferred from host  
memory to DSP memory occurs within an audio sample. The swap flag stays high until the full host buffer is  
transferred to DSP memory. Updates to the Host buffer should not be made while the swap flag is high.  
All writes to book 0x8C from page 0x11 and register 0x58 through page 0x21 and register 0x78 require the swap  
flag. The swap flag is located in book 0x8C, page 0x23, and register 0x14 and must be set to 0x00 00 00 01 for  
a swap.  
9.3.9.6.3 Example Use  
The following is a sample script for configuring a device on I2C slave address 0x90 and using the DSP host  
memory to change the fine volume to the default value of 0 dB:  
w 90 00 00 #Go to page 0  
w 90 7f 8c #Change the book to 0x8C  
w 90 00 1e #Go to page 0x1E  
w 90 44 00 80 00 00 #Fine volume Left  
w 90 48 00 80 00 00 #Fine volume Right  
#Run the swap flag for the DSP to work on the new coefficients  
w 90 00 00 #Go to page 0  
w 90 7f 8c #Change the book to 0x8C  
w 90 00 23 #Go to page 0x23  
w 90 14 00 00 00 01 #Swap flag  
9.4 Device Functional Modes  
Because the TAS5782M device is a highly configurable device, numerous modes of operation can exist for the  
device. For the sake of succinct documentation, these modes are divided into two modes:  
Fundamental operating modes  
Secondary usage modes  
Fundamental operating modes are the primary modes of operation that affect the major operational  
characteristics of the device, which are the most basic configurations that are chosen to ensure compatibility with  
the intended application or the other components that interact with the device in the final system. Some  
examples of the operating modes are the communication protocol used by the control port, the output  
configuration of the amplifier, or the Master/Slave clocking configuration.  
The fundamental operating modes are described starting in the Serial Audio Port Operating Modes section.  
56  
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
Device Functional Modes (continued)  
Secondary usage modes are best described as modes of operation that are used after the fundamental operating  
modes are chosen to fine tune how the device operates within a given system. These secondary usage modes  
can include selecting between left justified and right justified Serial Audio Port data formats, or enabling some  
slight gain/attenuation within the DAC path. Secondary usage modes are accomplished through manipulation of  
the registers and controls in the I2C control port. Those modes of operation are described in their respective  
register/bit descriptions and, to avoid redundancy, are not included in this section.  
9.4.1 Serial Audio Port Operating Modes  
The serial audio port in the TAS5782M device supports industry-standard audio data formats, including I2S, Time  
Division Multiplexing (TDM), Left-Justified (LJ), and Right-Justified (RJ) formats. To select the data format that  
will be used with the device, controls are provided on P0-R40. The timing diagrams for the serial audio port are  
shown in the Serial Audio Port Timing – Slave Mode section, and the data formats are shown in the Serial Audio  
Port – Data Formats and Bit Depths section.  
9.4.2 Communication Port Operating Modes  
The TAS5782M device is configured via an I2C communication port. The device does not support a hardware  
only mode of operation, nor Serial Peripheral Interface (SPI) communication. The I2C Communication Protocol is  
detailed in the I2C Communication Port section. The I2C timing requirements are described in the I2C Bus  
Timing – Standard and I2C Bus Timing – Fast sections.  
9.4.3 Speaker Amplifier Operating Modes  
The TAS5782M device can be used in two different amplifier configurations:  
Stereo Mode  
Mono Mode  
9.4.3.1 Stereo Mode  
The familiar stereo mode of operation uses the TAS5782M device to amplify two independent signals, which  
represent the left and right portions of a stereo signal. These amplified left and right audio signals are presented  
on differential output pairs shown as SPK_OUTA± and SPK_OUTB±. The routing of the audio data which is  
presented on the SPK_OUTxx outputs can be changed according to the Audio Process Flow which is used and  
the configuration of registers P0-R42-D[5:4] and P0-R42-D[1:0]. The familiar stereo mode of operation is shown  
in .  
By default, the TAS5782M device is configured to output the Right frame of a I2S input on the Channel A output  
and the left frame on the Channel B output.  
9.4.3.2 Mono Mode  
The mono mode of operation is used to describe operation in which the two outputs of the device are placed in  
parallel with one another to increase the power sourcing capabilities of the audio output channel. This is also  
known as Parallel Bridge Tied Load (PBTL).  
On the output side of the TAS5782M device, the summation of the devices can be done before the filter in a  
configuration called Pre-Filter PBTL. However, the two outputs may be required to merge together after the  
inductor portion of the output filter. Doing so does require two additional inductors, but allows smaller, less  
expensive inductors to be used because the current is divided between the two inductors. This process is called  
Post-Filter PBTL. Both variants of mono operation are shown in Figure 78 and Figure 79.  
Copyright © 2016–2017, Texas Instruments Incorporated  
57  
 
 
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
Device Functional Modes (continued)  
LFILT  
CFILT  
LFILT  
CFILT  
LFILT  
SPK_OUTA+  
SPK_OUTA+  
SPK_OUTA-  
CFILT  
SPK_OUTA-  
SPK_OUTB+  
CFILT  
LFILT  
SPK_OUTB-  
CFILT  
LFILT  
LFILT  
CFILT  
Copyright © 2016, Texas Instruments Incorporated  
SPK_OUTB+  
SPK_OUTB-  
Copyright © 2016, Texas Instruments Incorporated  
Figure 78. Pre-Filter PBTL  
Figure 79. Post-Filter PBTL  
On the input side of the TAS5782M device, the input signal to the mono amplifier can be selected from the any  
slot in a TDM stream or the left or right frame from an I2S, LJ, or RJ signal. The TAS5782M device can also be  
configured to amplify some mixture of two signals, as in the case of a subwoofer channel which mixes the left  
and right channel together and sends the mixture through a low-pass filter to create a mono, low-frequency  
signal.  
The mono mode of operation is shown in the Mono (PBTL) Systems section.  
9.4.3.3 Master and Slave Mode Clocking for Digital Serial Audio Port  
The digital audio serial port in the TAS5782M device can be configured to receive clocks from another device as  
a serial audio slave device. The slave mode of operation is described in the Clock Slave Mode with SCLK PLL to  
Generate Internal Clocks (3-Wire PCM) section. If no system processor is available to provide the audio clocks,  
the TAS5782M device can be placed into Master Mode. In master mode, the TAS5782M device provides the  
clocks to the other audio devices in the system. For more details regarding the Master and Slave mode operation  
within the TAS5782M device, see the Serial Audio Port Operating Modes section.  
58  
版权 © 2016–2017, Texas Instruments Incorporated  
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
10 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
This section details the information required to configure the device for several popular configurations and  
provides guidance on integrating the TAS5782M device into the larger system.  
10.1.1 External Component Selection Criteria  
The Supporting Component Requirements table in each application description section lists the details of the  
supporting required components in each of the System Application Schematics.  
Where possible, the supporting component requirements have been consolidated to minimize the number of  
unique components which are used in the design. Component list consolidation is a method to reduce the  
number of unique part numbers in a design, to ease inventory management, and to reduce the manufacturing  
steps during board assembly. For this reason, some capacitors are specified at a higher voltage than what would  
normally be required. An example of this is a 50-V capacitor may be used for decoupling of a 3.3-V power supply  
net.  
In this example, a higher voltage capacitor can be used even on the lower voltage net to consolidate all caps of  
that value into a single component type. Similarly, several unique resistors that have all the same size and value  
but different power ratings can be consolidated by using the highest rated power resistor for each instance of that  
resistor value.  
While this consolidation can seem excessive, the benefits of having fewer components in the design can far  
outweigh the trivial cost of a higher voltage capacitor. If lower voltage capacitors are already available elsewhere  
in the design, they can be used instead of the higher voltage capacitors. In all situations, the voltage rating of the  
capacitors must be at least 1.45 times the voltage of the voltage which appears across them. The power rating of  
the capacitors should be 1.5 times to 1.75 times the power dissipated in it during normal use case.  
10.1.2 Component Selection Impact on Board Layout, Component Placement, and Trace Routing  
Because the layout is important to the overall performance of the circuit, the package size of the components  
shown in the component list was intentionally chosen to allow for proper board layout, component placement,  
and trace routing. In some cases, traces are passed in between two surface mount pads or ground plane  
extensions from the TAS5782M device and into to the surrounding copper for increased heat-sinking of the  
device. While components may be offered in smaller or larger package sizes, it is highly recommended that the  
package size remain identical to the size used in the application circuit as shown. This consistency ensures that  
the layout and routing can be matched very closely, which optimizes thermal, electromagnetic, and audio  
performance of the TAS5782M device in circuit in the final system.  
10.1.3 Amplifier Output Filtering  
The TAS5782M device is often used with a low-pass filter, which is used to filter out the carrier frequency of the  
PWM modulated output. This filter is frequently referred to as the L-C Filter, due to the presence of an inductive  
element L and a capacitive element C to make up the 2-pole filter.  
The L-C filter removes the carrier frequency, reducing electromagnetic emissions and smoothing the current  
waveform which is drawn from the power supply. The presence and size of the L-C filter is determined by several  
system level constraints. In some low-power use cases that have no other circuits which are sensitive to EMI, a  
simple ferrite bead or a ferrite bead plus a capacitor can replace the traditional large inductor and capacitor that  
are commonly used. In other high-power applications, large toroid inductors are required for maximum power and  
film capacitors can be used due to audio characteristics. Refer to the application report Class-D LC Filter Design  
(SLOA119) for a detailed description on the proper component selection and design of an L-C filter based upon  
the desired load and response.  
版权 © 2016–2017, Texas Instruments Incorporated  
59  
 
 
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
Application Information (接下页)  
10.1.4 Programming the TAS5782M  
The TAS5782M device includes an I2C compatible control port to configure the internal registers of the  
TAS5782M device. The control console software provided by TI is required to configure the device. More details  
regarding programming steps, and a few important notes are available below and also in the design examples  
that follow.  
10.1.4.1 Resetting the TAS5782M Registers and Modules  
The TAS5782M device has several methods by which the device can reset the register, interpolation filters, and  
DAC modules. The registers offer the flexibility to do these in or out of shutdown as well as in or out of standby.  
However, there can be issues if the reset bits are toggled in certain illegal operation modes.  
Any of the following routines can be used with no issue:  
Reset Routine 1  
Place device in Standby  
Reset modules  
Reset Routine 2  
Place device in Standby + Power Down  
Reset registers  
Reset Routine 3  
Place device in Power Down  
Reset registers  
Reset Routine 4  
Place device in Standby  
Reset registers  
Reset Routine 5  
Place device in Standby + Power Down  
Reset modules + Reset registers  
Reset Routine 6  
Place device in Power Down  
Reset modules + Reset registers  
Reset Routine 7  
Place device in Standby  
Reset modules + Reset registers  
Two reset routines are not supported and should be avoided. If used, they can cause the device to become  
unresponsive. These unsupported routines are shown below.  
Unsupported Reset Routine 1 (do not use)  
Place device in Standby + Power Down  
Reset modules  
Unsupported Reset Routine 2 (do not use)  
Place device in Power Down  
Reset modules  
60  
版权 © 2016–2017, Texas Instruments Incorporated  
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
10.2 Typical Applications  
10.2.1 2.0 (Stereo BTL) System  
For the stereo (BTL) PCB layout, see 85.  
A 2.0 system refers to a system in which there are two full range speakers without a separate amplifier path for  
the speakers which reproduce the low-frequency content. In this system, two channels are presented to the  
amplifier via the digital input signal. These two channels are amplified and then sent to two separate speakers. In  
some cases, the amplified signal is further separated based upon frequency by a passive crossover network after  
the L-C filter. Even so, the application is considered 2.0.  
Most commonly, the two channels are a pair of signals called a stereo pair, with one channel containing the  
audio for the left channel and the other channel containing the audio for the right channel. While certainly the two  
channels can contain any two audio channels, such as two surround channels of a multi-channel speaker  
system, the most popular occurrence in two channels systems is a stereo pair.  
80 shows the 2.0 (Stereo BTL) system application.  
PVDD  
R100  
750k  
R101  
150k  
C103  
1µF  
C100  
0.1µF  
C101  
22µF  
C102  
22µF  
GND  
GND  
GND  
GND  
GND  
C104  
To System Processor  
3.3V  
0.22µF  
L100  
L101  
2.0-SDA  
2.0-SCL  
2.0-SPK_OUTA+  
2.0-GPIO0  
2.0-GPIO1  
2.0-SDOUT  
2.0-MCLK  
2.0-SCLK  
2.0-SDIN  
2.0-OUTA+  
2.0-OUTA-  
C105  
1µF  
C106  
2.2µF  
C107  
2.2µF  
3.3V  
2.0-SPK_OUTA-  
C108  
C109  
0.1µF  
C110  
0.1µF  
0.22µF  
GND  
U100  
TAS5782  
GND  
GND  
PAD  
GND  
C111  
2.0-LRCK/FS  
0.22µF  
L102  
L103  
GND  
GND  
GND  
GND  
GND  
2.0-SPK_OUTB-  
2.0-OUTB-  
2.0-OUTB+  
C112  
1µF  
C113  
2.2µF  
C114  
2.2µF  
3.3V  
2.0-SPK_OUTB+  
C115  
C116  
0.1µF  
C117  
0.1µF  
C118  
1µF  
C119  
1µF  
C120  
1µF  
GND  
PVDD  
0.22µF  
GND  
GND  
2.0-SPK_MUTE  
2.0-SPK_FAULT  
GND  
GND  
GND  
C121  
0.1µF  
C122  
22µF  
C123  
22µF  
GND  
GND  
GND  
Copyright © 2016, Texas Instruments Incorporated  
80. 2.0 (Stereo BTL) System Application Schematic  
10.2.1.1 Design Requirements  
Power supplies:  
3.3-V supply  
5-V to 24-V supply  
Communication: host processor serving as I2C compliant master  
External memory (such as EEPROM and flash) used for coefficients  
The requirements for the supporting components for the TAS5782M device in a Stereo 2.0 (BTL) system is  
provided in 21.  
版权 © 2016–2017, Texas Instruments Incorporated  
61  
 
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
21. Supporting Component Requirements for Stereo 2.0 (BTL) Systems  
REFERENCE  
DESIGNATOR  
VALUE  
SIZE  
DETAILED DESCRIPTION  
U100  
TAS5782M  
48 Pin TSSOP  
0402  
Digital-input, closed-loop class-D amplifier  
1%, 0.063 W  
R100  
See the Adjustable  
Amplifier Gain and  
Switching Frequency  
Selection section  
R101  
0402  
1%, 0.063 W  
L100, L101, L102,  
L103  
See the Amplifier Output Filtering section  
Ceramic, 0.1 µF, ±10%, X7R  
Voltage rating must be > 1.45 × VPVDD  
C100, C121  
0.1 µF  
0.22 µF  
0.68 µF  
0402  
0603  
C104, C108, C111,  
C115  
Ceramic, 0.22 µF, ±10%, X7R  
Voltage rating must be > 1.45 × VPVDD  
C109, C110, C116,  
C117  
Ceramic, 0.68 µF, ±10%, X7R  
Voltage rating must be > 1.8 × VPVDD  
0805  
0603  
(this body size  
chosen to aid in trace Voltage rating must be > 16 V  
routing)  
Ceramic, 1 µF, ±10%, X7R  
C103  
1 µF  
1 µF  
C105, C118, C119,  
C120  
0402  
Ceramic, 1 µF, 6.3V, ±10%, X5R  
Ceramic, 2.2 µF, ±10%, X5R  
At a minimum, voltage rating must be > 10V, however higher  
voltage caps have been shown to have better stability under DC  
bias. Refer to the guidance provided in the TAS5782M for  
suggested values.  
C106, C107, C113,  
C114  
2.2 µF  
22 µF  
0402  
0805  
C101, C102, C122,  
C123  
Ceramic, 22 µF, ±20%, X5R  
Voltage rating must be > 1.45 × VPVDD  
10.2.1.2 Detailed Design Procedure  
10.2.1.2.1 Step One: Hardware Integration  
Using the Typical Application Schematic as a guide, integrate the hardware into the system schematic.  
Following the recommended component placement, board layout, and routing given in the example layout  
above, integrate the device and its supporting components into the system PCB file.  
The most critical sections of the circuit are the power supply inputs, the amplifier output signals, and the  
high-frequency signals, all of which go to the serial audio port. Constructing these signals to ensure they  
are given precedent as design trade-offs are made is recommended.  
For questions and support go to the E2E forums (e2e.ti.com). If deviating from the recommended layout is  
necessary, go to the E2E forum to request a layout review.  
10.2.1.2.2 Step Two: System Level Tuning  
Use the TAS5782MEVM evaluation module and the PPC3 app to configure the desired device settings.  
10.2.1.2.3 Step Three: Software Integration  
Use the End System Integration feature of the PPC3 app to generate a baseline configuration file.  
Generate additional configuration files based upon operating modes of the end-equipment and integrate static  
configuration information into initialization files.  
Integrate dynamic controls (such as volume controls, mute commands, and mode-based EQ curves) into the  
main system program.  
62  
版权 © 2016–2017, Texas Instruments Incorporated  
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
10.2.1.3 Application Curves  
22 shows the application specific performance plots for Stereo 2.0 (BTL) systems.  
22. Relevant Performance Plots  
PLOT TITLE  
Output Power vs PVDD  
FIGURE NUMBER  
Figure 23  
Figure 24  
Figure 25  
Figure 26  
Figure 27  
Figure 28  
Figure 29  
Figure 30  
Figure 31  
Figure 32  
Figure 33  
Figure 39  
Figure 40  
Figure 41  
THD+N vs Frequency, VPVDD = 12 V  
THD+N vs Frequency, VPVDD = 15 V  
THD+N vs Frequency, VPVDD = 18 V  
THD+N vs Frequency, VPVDD = 24 V  
THD+N vs Power, VPVDD = 12 V  
THD+N vs Power, VPVDD = 15 V  
THD+N vs Power, VPVDD = 18 V  
THD+N vs Power, VPVDD = 24 V  
Idle Channel Noise vs PVDD  
Efficiency vs Output Power  
DVDD PSRR vs. Frequency  
AVDD PSRR vs. Frequency  
CPVDD PSRR vs. Frequency  
10.2.2 Mono (PBTL) Systems  
For the mono (PBTL) PCB layout, see 87.  
A mono system refers to a system in which the amplifier is used to drive a single loudspeaker. Parallel Bridge  
Tied Load (PBTL) indicates that the two full-bridge channels of the device are placed in parallel and drive the  
loudspeaker simultaneously using an identical audio signal. The primary benefit of operating the TAS5782M  
device in PBTL operation is to reduce the power dissipation and increase the current sourcing capabilities of the  
amplifier output. In this mode of operation, the current limit of the audio amplifier is approximately doubled while  
the on-resistance is approximately halved.  
The loudspeaker can be a full-range transducer or one that only reproduces the low-frequency content of an  
audio signal, as in the case of a powered subwoofer. Often in this use case, two stereo signals are mixed  
together and sent through a low-pass filter to create a single audio signal which contains the low frequency  
information of the two channels. Conversely, advanced digital signal processing can create a low-frequency  
signal for a multichannel system, with audio processing which is specifically targeted on low-frequency effects.  
Because low-frequency signals are not perceived as having a direction (at least to the extent of high-frequency  
signals) it is common to reproduce the low-frequency content of a stereo signal that is sent to two separate  
channels. This configuration pairs one device in Mono PBTL configuration and another device in Stereo BTL  
configuration in a single system called a 2.1 system. The Mono PBTL configuration is detailed in the 2.1 (Stereo  
BTL + External Mono Amplifier) Systems section. shows the Mono (PBTL) system application  
版权 © 2016–2017, Texas Instruments Incorporated  
63  
 
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
PVDD  
R200  
750k  
R201  
150k  
C204  
390µF  
C200  
1µF  
C201  
0.1µF  
C202  
1µF  
C203  
22µF  
GND  
GND  
GND  
GND  
GND  
GND  
To System Processor  
3.3V  
MONO-SDA  
MONO-SCL  
C208  
MONO-GPIO0  
MONO-GPIO1  
MONO-SDOUT  
MONO-MCLK  
MONO-SCLK  
MONO-SDIN  
0.22µF  
L200  
C205  
1µF  
C206  
2.2µF  
C207  
2.2µF  
MONO-SPK_OUTA  
C209  
MONO_OUT+  
C220  
0.1µF  
0.22µF  
GND  
U200  
TAS5782  
GND  
PAD  
GND  
C214  
MONO-LRCK/FS  
0.22µF  
L201  
GND  
GND  
GND  
GND  
GND  
MONO-SPK_OUTB  
C215  
MONO_OUT-  
C210  
1µF  
R202  
49.9k  
C221  
0.1µF  
3.3V  
0.22µF PVDD  
C211  
1µF  
C212  
1µF  
C213  
1µF  
GND  
C219  
390µF  
C216  
0.1µF  
C217  
1µF  
C218  
22µF  
MONO-SPK_MUTE  
MONO-SPK_FAULT  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
Copyright © 2016, Texas Instruments Incorporated  
81. Mono (PBTL) System Application Schematic  
10.2.2.1 Design Requirements  
Power supplies:  
3.3-V supply  
5-V to 24-V supply  
Communication: Host processor serving as I2C compliant master  
External memory (EEPROM, flash, and others) used for coefficients.  
The requirements for the supporting components for the TAS5782M device in a Mono (PBTL) system is provided  
in 23.  
23. Supporting Component Requirements for Mono (PBTL) Systems  
REFERENCE  
DESIGNATOR  
VALUE  
SIZE  
DETAILED DESCRIPTION  
U200  
TAS5782M  
48 Pin TSSOP  
0402  
Digital-input, closed-loop class-D amplifier with 96kHz processing  
R200  
See the Adjustable  
Amplifier Gain and  
Switching Frequency  
Selection section  
1%, 0.063 W  
1%, 0.063 W  
1%, 0.063 W  
R201  
0402  
R202  
0402  
L200, L201  
See theAmplifier Output Filtering section  
Ceramic, 0.1 µF, ±10%, X7R  
Voltage rating must be > 1.45 × VPVDD  
C216, C201  
0.1 µF  
0.22 µF  
0.68 µF  
0402  
0603  
0805  
C208, C209, C214,  
C215  
Ceramic, 0.22 µF, ±10%, X7R  
Voltage rating must be > 1.45 × VPVDD  
Ceramic, 0.68 µF, ±10%, X7R  
Voltage rating must be > 1.8 × VPVDD  
C220, C221  
64  
版权 © 2016–2017, Texas Instruments Incorporated  
 
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
23. Supporting Component Requirements for Mono (PBTL) Systems (接下页)  
REFERENCE  
DESIGNATOR  
VALUE  
SIZE  
DETAILED DESCRIPTION  
0603  
(this body size  
chosen to aid in trace Voltage rating must be > 16 V  
routing)  
Ceramic, 1 µF, ±10%, X7R  
C200  
1 µF  
C205, C211, C213,  
C212  
1 µF  
0402  
Ceramic, 1 µF, 6.3 V, ±10%, X5R  
0805  
C202, C217, C352,  
C367  
(this body size  
Ceramic, 1 µF, ±10%, X5R  
1 µF  
chosen to aid in trace Voltage rating must be > 1.45 × VPVDD  
routing)  
Ceramic, 2.2 µF, ±10%, X5R  
At a minimum, voltage rating must be > 10V, however higher  
C206, C207  
C203, C218  
2.2 µF  
0402  
voltage caps have been shown to have better stability under DC  
bias please follow the guidance provided in the TAS5782M for  
suggested values.  
22 µF  
0805  
Ceramic, 22 µF, ±20%, X5R  
Voltage rating must be > 1.45 × VPVDD  
390 µF  
10 × 10  
Aluminum, 390 µF, ±20%, 0.08-Ω  
Voltage rating must be > 1.45 × VPVDD Anticipating that this  
application circuit would be followed for higher power subwoofer  
applications, these capacitors are added to provide local current  
sources for low-frequency content. These capacitors can be  
reduced or even removed based upon final system testing, including  
critical listening tests when evaluating low-frequency designs.  
C204, C219  
10.2.2.2 Detailed Design Procedure  
10.2.2.2.1 Step One: Hardware Integration  
Using the Typical Application Schematic as a guide, integrate the hardware into the system schematic.  
Following the recommended component placement, board layout, and routing given in the example layout  
above, integrate the device and its supporting components into the system PCB file.  
The most critical sections of the circuit are the power supply inputs, the amplifier output signals, and the  
high-frequency signals, all of which go to the serial audio port. Constructing these signals to ensure they  
are given precedent as design trade-offs are made is recommended.  
For questions and support go to the E2E forums (e2e.ti.com). If deviating from the recommended layout is  
necessary, go to the E2E forum to request a layout review.  
10.2.2.2.2 Step Two: System Level Tuning  
Use the TAS5782MEVM evaluation module and the PPC3 app to configure the desired device settings.  
10.2.2.2.3 Step Three: Software Integration  
Use the End System Integration feature of the PPC3 app to generate a baseline configuration file.  
Generate additional configuration files based upon operating modes of the end-equipment and integrate static  
configuration information into initialization files.  
Integrate dynamic controls (such as volume controls, mute commands, and mode-based EQ curves) into the  
main system program.  
版权 © 2016–2017, Texas Instruments Incorporated  
65  
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
10.2.2.3 Application Specific Performance Plots for Mono (PBTL) Systems  
24 shows the application specific performance plots for Mono (PBTL) Systems  
24. Relevant Performance Plots  
PLOT TITLE  
Output Power vs PVDD  
FIGURE NUMBER  
Figure 47  
Figure 48  
Figure 49  
Figure 50  
Figure 51  
Figure 52  
Figure 53  
Figure 54  
Figure 55  
Figure 56  
Figure 57  
THD+N vs Frequency, VPVDD = 12 V  
THD+N vs Frequency, VPVDD = 15 V  
THD+N vs Frequency, VPVDD = 18 V  
THD+N vs Frequency, VPVDD = 24 V  
THD+N vs Power, VPVDD = 12 V  
THD+N vs Power, VPVDD = 15 V  
THD+N vs Power, VPVDD = 18 V  
THD+N vs Power, VPVDD = 24 V  
Idle Channel Noise vs PVDD  
Efficiency vs Output Power  
10.2.3 2.1 (Stereo BTL + External Mono Amplifier) Systems  
89 shows the PCB Layout for the 2.1 System.  
To increase the low-frequency output capabilities of an audio system, a single subwoofer can be added to the  
system. Because the spatial clues for audio are predominately higher frequency than that reproduced by the  
subwoofer, often a single subwoofer can be used to reproduce the low frequency content of several other  
channels in the system. This is frequently referred to as a dot one system. A stereo system with a subwoofer is  
referred to as a 2.1 (two-dot-one), a 3 channel system with subwoofer is referred to as a 3.1 (three-dot-one), a  
popular surround system with five speakers and one subwoofer is referred to as a 5.1, and so on.  
10.2.3.1 Advanced 2.1 System (Two TAS5782M devices)  
In higher performance systems, the subwoofer output can be enhanced using digital audio processing as was  
done in the high-frequency channels. To accomplish this, two TAS5782M devices are used — one for the high  
frequency left and right speakers and one for the mono subwoofer speaker. In this system, the audio signal can  
be sent from the TAS5782M device through the SDOUT pin. Alternatively, the subwoofer amplifier can accept  
the same digital input as the stereo, which might come from a central systems processor. 82 shows the 2.1  
(Stereo BTL + External Mono Amplifier) system application.  
66  
版权 © 2016–2017, Texas Instruments Incorporated  
 
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
PVDD  
R300  
750k  
R301  
150k  
C303  
1µF  
C300  
0.1µF  
C301  
22µF  
C302  
22µF  
GND  
GND  
GND  
GND  
GND  
C304  
To System Processor  
3.3V  
0.22µF  
L300  
L301  
2.1-SDA  
2.1-SCL  
2.1-SPK_OUT1A+  
2.1-GPIO0_HF  
2.1-GPIO1_HF  
2.1-HF_OUTA+  
2.1-HF_OUTA-  
C305  
1µF  
C306  
2.2µF  
C307  
2.2µF  
2.1-MCLK  
2.1-SCLK  
2.1-SDIN  
3.3V  
2.1-SPK_OUT1A-  
C308  
C309  
0.1µF  
C310  
0.1µF  
0.22µF  
GND  
U300  
TAS5782  
GND  
GND  
PAD  
GND  
C311  
2.1-LRCK/FS  
0.22µF  
L302  
GND  
GND  
GND  
GND  
GND  
2.1-SPK_OUT1B-  
2.1-HF_OUTB-  
2.1-HF_OUTB+  
L303  
C312  
1µF  
C313  
2.2µF  
C314  
2.2µF  
3.3V  
2.1-SPK_OUT1B+  
C315  
C316  
0.1µF  
C317  
0.1µF  
C318  
1µF  
C319  
1µF  
C320  
1µF  
GND  
PVDD  
0.22µF  
GND  
GND  
2.1-SPK_MUTE  
2.1-SPK_FAULT  
GND  
GND  
GND  
C321  
0.1µF  
C322  
22µF  
C323  
22µF  
GND  
GND  
GND  
PVDD  
R350  
750k  
R351  
150k  
C354  
390µF  
C350  
1µF  
C351  
0.1µF  
C352  
1µF  
C353  
22µF  
GND  
GND  
GND  
GND  
GND  
GND  
3.3V  
C358  
2.1-GPIO0_LF  
2.1-GPIO1  
2.1-SDOUT_LF  
0.22µF  
L350  
C355  
1µF  
C356  
2.2µF  
C357  
2.2µF  
2.1-SPK_OUT2A  
C359  
2.1_LF+  
C370  
0.1µF  
0.22µF  
GND  
U301  
TAS5782  
GND  
PAD  
GND  
C364  
0.22µF  
2.1-SPK_OUT2B  
C365  
L351  
GND  
GND  
GND  
GND  
GND  
2.1_LF-  
C360  
1µF  
R352  
49.9k  
C371  
0.1µF  
3.3V  
0.22µF PVDD  
C361  
1µF  
C362  
1µF  
C363  
1µF  
GND  
C369  
390µF  
C366  
0.1µF  
C367  
1µF  
C368  
22µF  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
Copyright © 2016, Texas Instruments Incorporated  
82. 2.1 (Stereo BTL + External Mono Amplifier) Application Schematic  
10.2.3.2 Design Requirements  
Power supplies:  
3.3-V supply  
5-V to 24-V supply  
Communication: Host processor serving as I2C compliant master  
External memory (EEPROM, flash, and others) used for coefficients.  
The requirements for the supporting components for the TAS5782M device in a 2.1 (Stereo BTL + External Mono  
Amplifier) system is provided in 25.  
版权 © 2016–2017, Texas Instruments Incorporated  
67  
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
25. Supporting Component Requirements for 2.1 (Stereo BTL + External Mono Amplifier) Systems  
REFERENCE  
DESIGNATOR  
VALUE  
SIZE  
DETAILED DESCRIPTION  
U300  
TAS5782M  
48 Pin TSSOP  
0402  
Digital-input, closed-loop class-D amplifier 96kHz Processing  
R300, R350  
R301, R351  
R352  
See the Adjustable  
Amplifier Gain and  
Switching Frequency  
Selection section  
1%, 0.063 W  
1%, 0.063 W  
1%, 0.063 W  
0402  
0402  
L300, L301, L302,  
L303  
See the Amplifier Output Filtering section  
L350, L351  
C394, C395, C396,  
C397, C398, C399  
0.01 µF  
0.1 µF  
0603  
0402  
Ceramic, 0.01 µF, 50 V, +/-10%, X7R  
C300, C321, C351,  
C366  
Ceramic, 0.1 µF, ±10%, X7R  
Voltage rating must be > 1.45 × VPVDD  
C304, C308, C311,  
C315, C358, C359,  
C364, C365  
Ceramic, 0.22 µF, ±10%, X7R  
Voltage rating must be > 1.45 × VPVDD  
0.22 µF  
0603  
C309, C310, C316,  
C317, C370, C371  
Ceramic, 0.68 µF, ±10%, X7R  
Voltage rating must be > 1.8 × VPVDD  
0.68 µF  
1 µF  
0805  
0603  
C303, C350, C312,  
C360  
Ceramic, 1 µF, ±10%, X7R  
Voltage rating must be > 1.45 × VPVDD  
C305, C318, C319,  
C320, C355, C361,  
C363, C312, C362  
1 µF  
0402  
Ceramic, 1 µF, 6.3V, ±10%, X5R  
Ceramic, 1 µF, ±10%, X7R  
Voltage rating must be > 1.45 × VPVDD  
C352, C367  
1 µF  
2.2 µF  
22 µF  
390 µF  
0805  
0402  
0805  
C306, C307, C313,  
C314, C356, C357,  
Ceramic, 2.2 µF, ±10%, X5R  
Voltage rating must be > 1.45 × VPVDD  
C301, C302, C322,  
C323, C353, C368  
Ceramic, 22 µF, ±20%, X5R  
Voltage rating must be > 1.45 × VPVDD  
Aluminum, 390 µF, ±20%, 0.08 Ω  
Voltage rating must be > 1.45 × VPVDD  
C354, C369  
10 × 10  
68  
版权 © 2016–2017, Texas Instruments Incorporated  
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
10.2.3.3 Application Specific Performance Plots for 2.1 (Stereo BTL + External Mono Amplifier) Systems  
26 shows the application specific performance plots for 2.1 (Stereo BTL + External Mono Amplifier) Systems  
26. Relevant Performance Plots  
DEVICE  
PLOT TITLE  
FIGURE NUMBER  
Figure 23  
Figure 24  
Figure 25  
Figure 26  
Figure 27  
Figure 28  
Figure 29  
Figure 30  
Figure 31  
Figure 32  
Figure 33  
Figure 38  
Figure 47  
Figure 48  
Figure 49  
Figure 50  
Figure 51  
Figure 52  
Figure 53  
Figure 54  
Figure 55  
Figure 56  
Figure 57  
Figure 39  
Figure 40  
Figure 41  
Figure 47  
Output Power vs PVDD  
THD+N vs Frequency, VPVDD = 12 V  
THD+N vs Frequency, VPVDD = 15 V  
THD+N vs Frequency, VPVDD = 18 V  
THD+N vs Frequency, VPVDD = 24 V  
THD+N vs Power, VPVDD = 12 V  
THD+N vs Power, VPVDD = 15 V  
THD+N vs Power, VPVDD = 18 V  
THD+N vs Power, VPVDD = 24 V  
Idle Channel Noise vs PVDD  
U300  
Efficiency vs Output Power  
PVDD PSRR vs Frequency  
Output Power vs PVDD  
THD+N vs Frequency, VPVDD = 12 V  
THD+N vs Frequency, VPVDD = 15 V  
THD+N vs Frequency, VPVDD = 18 V  
THD+N vs Frequency, VPVDD = 24 V  
THD+N vs Power, VPVDD = 12 V  
THD+N vs Power, VPVDD = 15 V  
THD+N vs Power, VPVDD = 18 V  
THD+N vs Power, VPVDD = 24 V  
Idle Channel Noise vs PVDD  
U301  
Efficiency vs Output Power  
DVDD PSRR vs. Frequency  
U300  
and  
U301  
AVDD PSRR vs. Frequency  
CPVDD PSRR vs. Frequency  
Powerdown Current Draw vs. PVDD  
版权 © 2016–2017, Texas Instruments Incorporated  
69  
 
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
11 Power Supply Recommendations  
11.1 Power Supplies  
The TAS5782M device requires two power supplies for proper operation. A high-voltage supply called PVDD is  
required to power the output stage of the speaker amplifier and its associated circuitry. Additionally, one low-  
voltage power supply which is called DVDD is required to power the various low-power portions of the device.  
The allowable voltage range for both the PVDD and the DVDD supply are listed in the Recommended Operating  
Conditions table. The two power supplies do not have a required powerup sequence. The power supplies can be  
powered on in any order. TI recommends waiting 100 ms to 240 ms for the DVDD power supplies to stabilize  
before starting I2C communication and providing stable I2S clock before enabling the device outputs.  
AVDD  
Internal Analog Circuitry  
Internal Mixed  
Signal Circuitry  
Internal Digital  
Circuitry  
+
DVDD  
DVDD  
DVDD_REG  
External Filtering/Decoupling  
œ
LDO  
CPVDD  
CPVSS  
External Filtering/Decoupling  
Charge  
Pump  
DAC Output Stage  
(Positive)  
DAC Output Stage  
(Negative)  
Output Stage  
Power Supply  
Gate Drive  
Voltage  
PVDD  
GVDD_REG  
External Filtering/Decoupling  
Linear  
Regulator  
+
PVDD  
œ
83. Power Supply Functional Block Diagram  
11.1.1 DVDD Supply  
The DVDD supply that is required from the system is used to power several portions of the device. As shown in  
83, it provides power to the DVDD pin, the CPVDD pin, and the AVDD pin. Proper connection, routing, and  
decoupling techniques are highlighted in the Application and Implementation section and the Layout Example  
section) and must be followed as closely as possible for proper operation and performance. Deviation from the  
guidance offered in the TAS5782M device Application and Implementation section can result in reduced  
performance, errant functionality, or even damage to the TAS5782M device.  
Some portions of the device also require a separate power supply that is a lower voltage than the DVDD supply.  
To simplify the power supply requirements for the system, the TAS5782M device includes an integrated low-  
dropout (LDO) linear regulator to create this supply. This linear regulator is internally connected to the DVDD  
supply and its output is presented on the DVDD_REG pin, providing a connection point for an external bypass  
capacitor. It is important to note that the linear regulator integrated in the device has only been designed to  
support the current requirements of the internal circuitry, and should not be used to power any additional external  
circuitry. Additional loading on this pin could cause the voltage to sag, negatively affecting the performance and  
operation of the device.  
70  
版权 © 2016–2017, Texas Instruments Incorporated  
 
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
Power Supplies (接下页)  
The outputs of the high-performance DACs used in the TAS5782M device are ground centered, requiring both a  
positive low-voltage supply and a negative low-voltage supply. The positive power supply for the DAC output  
stage is taken from the AVDD pin, which is connected to the DVDD supply provided by the system. A charge  
pump is integrated in the TAS5782M device to generate the negative low-voltage supply. The power supply input  
for the charge pump is the CPVDD pin. The CPVSS pin is provided to allow the connection of a filter capacitor  
on the negative low-voltage supply. As is the case with the other supplies, the component selection, placement,  
and routing of the external components for these low voltage supplies are shown in the TAS5782M and should  
be followed as closely as possible to ensure proper operation of the device.  
11.1.2 PVDD Supply  
The output stage of the speaker amplifier drives the load using the PVDD supply. This is the power supply which  
provides the drive current to the load during playback. Proper connection, routing, and decoupling techniques are  
highlighted in the TAS5782MEVM and must be followed as closely as possible for proper operation and  
performance. Due to the high-voltage switching of the output stage, it is particularly important to properly  
decouple the output power stages in the manner described in the TAS5782M deviceApplication and  
Implementation . Lack of proper decoupling, like that shown in the Application and Implementation , results in  
voltage spikes which can damage the device.  
A separate power supply is required to drive the gates of the MOSFETs used in the output stage of the speaker  
amplifier. This power supply is derived from the PVDD supply via an integrated linear regulator. A GVDD_REG  
pin is provided for the attachment of decoupling capacitor for the gate drive voltage regulator. It is important to  
note that the linear regulator integrated in the device has only been designed to support the current requirements  
of the internal circuitry, and should not be used to power any additional external circuitry. Additional loading on  
this pin could cause the voltage to sag, negatively affecting the performance and operation of the device.  
版权 © 2016–2017, Texas Instruments Incorporated  
71  
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
12 Layout  
12.1 Layout Guidelines  
12.1.1 General Guidelines for Audio Amplifiers  
Audio amplifiers which incorporate switching output stages must have special attention paid to their layout and  
the layout of the supporting components used around them. The system level performance metrics, including  
thermal performance, electromagnetic compliance (EMC), device reliability, and audio performance are all  
affected by the device and supporting component layout.  
Ideally, the guidance provided in the applications section with regard to device and component selection can be  
followed by precise adherence to the layout guidance shown in Layout Example. These examples represent  
exemplary baseline balance of the engineering trade-offs involved with laying out the device. These designs can  
be modified slightly as needed to meet the needs of a given application. In some applications, for instance,  
solution size can be compromised to improve thermal performance through the use of additional contiguous  
copper near the device. Conversely, EMI performance can be prioritized over thermal performance by routing on  
internal traces and incorporating a via picket-fence and additional filtering components. In all cases, it is  
recommended to start from the guidance shown in the Layout Example section and work with TI field application  
engineers or through the E2E community to modify it based upon the application specific goals.  
12.1.2 Importance of PVDD Bypass Capacitor Placement on PVDD Network  
Placing the bypassing and decoupling capacitors close to supply has long been understood in the industry. This  
applies to DVDD, AVDD, CPVDD, and PVDD. However, the capacitors on the PVDD net for the TAS5782M  
device deserve special attention.  
The small bypass capacitors on the PVDD lines of the DUT must be placed as close to the PVDD pins as  
possible. Not only does placing these devices far away from the pins increase the electromagnetic interference in  
the system, but doing so can also negatively affect the reliability of the device. Placement of these components  
too far from the TAS5782M device can cause ringing on the output pins that can cause the voltage on the output  
pin to exceed the maximum allowable ratings shown in the Absolute Maximum Ratings table, damaging the  
device. For that reason, the capacitors on the PVDD net must be no further away from their associated PVDD  
pins than what is shown in the example layouts in the Layout Example section  
12.1.3 Optimizing Thermal Performance  
Follow the layout examples shown in the Layout Example section of this document to achieve the best balance  
of solution size, thermal, audio, and electromagnetic performance. In some cases, deviation from this guidance  
can be required due to design constraints which cannot be avoided. In these instances, the system designer  
should ensure that the heat can get out of the device and into the ambient air surrounding the device.  
Fortunately, the heat created in the device naturally travels away from the device and into the lower temperature  
structures around the device.  
12.1.3.1 Device, Copper, and Component Layout  
Primarily, the goal of the PCB design is to minimize the thermal impedance in the path to those cooler structures.  
These tips should be followed to achieve that goal:  
Avoid placing other heat producing components or structures near the amplifier (including above or below in  
the end equipment).  
If possible, use a higher layer count PCB to provide more heat sinking capability for the TAS5782M device  
and to prevent traces and copper signal and power planes from breaking up the contiguous copper on the top  
and bottom layer.  
Place the TAS5782M device away from the edge of the PCB when possible to ensure that heat can travel  
away from the device on all four sides.  
Avoid cutting off the flow of heat from the TAS5782M device to the surrounding areas with traces or via  
strings. Instead, route traces perpendicular to the device and line up vias in columns which are perpendicular  
to the device.  
Unless the area between two pads of a passive component is large enough to allow copper to flow in  
between the two pads, orient it so that the narrow end of the passive component is facing the TAS5782M  
device.  
72  
版权 © 2016–2017, Texas Instruments Incorporated  
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
Layout Guidelines (接下页)  
Because the ground pins are the best conductors of heat in the package, maintain a contiguous ground plane  
from the ground pins to the PCB area surrounding the device for as many of the ground pins as possible.  
12.1.3.2 Stencil Pattern  
The recommended drawings for the TAS5782M device PCB foot print and associated stencil pattern are shown  
at the end of this document in the package addendum. Additionally, baseline recommendations for the via  
arrangement under and around the device are given as a starting point for the PCB design. This guidance is  
provided to suit the majority of manufacturing capabilities in the industry and prioritizes manufacturability over all  
other performance criteria. In elevated ambient temperatures or under high-power dissipation use-cases, this  
guidance may be too conservative and advanced PCB design techniques may be used to improve thermal  
performance of the system.  
The customer must verify that deviation from the guidance shown in the package  
addendum, including the deviation explained in this section, meets the customer’s quality,  
reliability, and manufacturability goals.  
12.1.3.2.1 PCB footprint and Via Arrangement  
The PCB footprint (also known as a symbol or land pattern) communicates to the PCB fabrication vendor the  
shape and position of the copper patterns to which the TAS5782M device will be soldered. This footprint can be  
followed directly from the guidance in the package addendum at the end of this data sheet. It is important to  
make sure that the thermal pad, which connects electrically and thermally to the PowerPAD of the TAS5782M  
device, be made no smaller than what is specified in the package addendum. This ensures that the TAS5782M  
device has the largest interface possible to move heat from the device to the board.  
The via pattern shown in the package addendum provides an improved interface to carry the heat from the  
device through to the layers of the PCB, because small diameter plated vias (with minimally-sized annular rings)  
present a low thermal-impedance path from the device into the PCB. Once into the PCB, the heat travels away  
from the device and into the surrounding structures and air. By increasing the number of vias, as shown in the  
Layout Example section, this interface can benefit from improved thermal performance.  
Vias can obstruct heat flow if they are not constructed properly.  
More notes on the construction and placement of vias as as follows:  
Remove thermal reliefs on thermal vias, because they impede the flow of heat through the via.  
Vias filled with thermally conductive material are best, but a simple plated via can be used to avoid the  
additional cost of filled vias.  
The diameter of the drull must be 8 mm or less. Also, the distance between the via barrel and the surrounding  
planes should be minimized to help heat flow from the via into the surrounding copper material. In all cases,  
minimum spacing should be determined by the voltages present on the planes surrounding the via and  
minimized wherever possible.  
Vias should be arranged in columns, which extend in a line radially from the heat source to the surrounding  
area. This arrangement is shown in the Layout Example section.  
Ensure that vias do not cut off power current flow from the power supply through the planes on internal  
layers. If needed, remove some vias that are farthest from the TAS5782M device to open up the current path  
to and from the device.  
12.1.3.2.1.1 Solder Stencil  
During the PCB assembly process, a piece of metal called a stencil on top of the PCB and deposits solder paste  
on the PCB wherever there is an opening (called an aperture) in the stencil. The stencil determines the quantity  
and the location of solder paste that is applied to the PCB in the electronic manufacturing process. In most  
cases, the aperture for each of the component pads is almost the same size as the pad itself.  
版权 © 2016–2017, Texas Instruments Incorporated  
73  
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
Layout Guidelines (接下页)  
However, the thermal pad on the PCB is large and depositing a large, single deposition of solder paste would  
lead to manufacturing issues. Instead, the solder is applied to the board in multiple apertures, to allow the solder  
paste to outgas during the assembly process and reduce the risk of solder bridging under the device. This  
structure is called an aperture array, and is shown in the Layout Example section. It is important that the total  
area of the aperture array (the area of all of the small apertures combined) covers between 70% and 80% of the  
area of the thermal pad itself.  
12.2 Layout Example  
12.2.1 2.0 (Stereo BTL) System  
84. 2.0 (Stereo BTL) 3-D View  
74  
版权 © 2016–2017, Texas Instruments Incorporated  
 
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
Layout Example (接下页)  
85. 2.0 (Stereo BTL) Top Copper View  
版权 © 2016–2017, Texas Instruments Incorporated  
75  
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
Layout Example (接下页)  
12.2.2 Mono (PBTL) System  
86. Mono (PBTL) 3-D View  
76  
版权 © 2016–2017, Texas Instruments Incorporated  
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
Layout Example (接下页)  
87. Mono (PBTL) Top Copper View  
版权 © 2016–2017, Texas Instruments Incorporated  
77  
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
Layout Example (接下页)  
12.2.3 2.1 (Stereo BTL + Mono PBTL) Systems  
88. 2.1 (Stereo BTL + Mono PBTL) 3-D View  
78  
版权 © 2016–2017, Texas Instruments Incorporated  
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
Layout Example (接下页)  
89. 2.1 (Stereo BTL + Mono PBTL) Top Copper View  
版权 © 2016–2017, Texas Instruments Incorporated  
79  
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
13 Register Maps  
13.1 Registers - Page 0  
13.1.1 Register 1 (0x01)  
Figure 90. Register 1 (0x01)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
RSTM  
R/W  
Reserved  
R/W  
RSTR  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 27. Register 1 (0x01) Field Descriptions  
Bit  
7-5  
4
Field  
Type  
Reset  
Description  
Reserved  
RSTM  
Reserved  
R/W  
0
Reset Modules – This bit resets the interpolation filter and the DAC modules. Since the  
DSP is also reset, the coeffient RAM content will also be cleared by the DSP. This bit  
is auto cleared and can be set only in standby mode.  
0: Normal  
1: Reset modules  
3-1  
0
Reserved  
RSTR  
Reserved  
R/W  
0
Reset Registers – This bit resets the mode registers back to their initial values. The  
RAM content is not cleared, but the execution source will be back to ROM. This bit is  
auto cleared and must be set only when the DAC is in standby mode (resetting  
registers when the DAC is running is prohibited and not supported).  
0: Normal  
1: Reset mode registers  
Figure 91. Register 2 (0x02)  
7
6
5
4
3
2
1
0
DSPR  
R/W  
Reserved  
R/W  
RQST  
R/W  
Reserved  
R/W  
RQPD  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 28. Register 2 (0x02) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
DSPR  
R/W  
1
DSP reset – When the bit is made 0, DSP will start powering up and send out data.  
This needs to be made 0 only after all the input clocks are (ASI,MCLK,PLLCLK) are  
settled so that DMA channels do not go out of sync.  
0: Normal operation  
1: Reset the DSP  
6-5  
4
Reserved  
RQST  
R/W  
R/W  
Reserved  
0
0
Standby Request – When this bit is set, the DAC will be forced into a system standby  
mode, which is also the mode the system enters in the case of clock errors. In this  
mode, most subsystems will be powered down but the charge pump and digital power  
supply.  
0: Normal operation  
1: Standby mode  
3-1  
0
Reserved  
RQPD  
R/W  
R/W  
Reserved  
Powerdown Request – When this bit is set, the DAC will be forced into powerdown  
mode, in which the power consumption would be minimum as the charge pump is also  
powered down. However, it will take longer to restart from this mode. This mode has  
higher precedence than the standby mode, i.e. setting this bit along with bit 4 for  
standby mode will result in the DAC going into powerdown mode.  
0: Normal operation  
1: Powerdown mode  
80  
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
Figure 92. Register 3 (0x03)  
7
6
5
4
3
2
1
0
Reserved  
RO  
RQML  
R/W  
Reserved  
R/W  
RQMR  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 29. Register 3 (0x03) Field Descriptions  
Bit  
7-5  
4
Field  
Type  
RO  
Reset  
Description  
Reserved  
RQML  
Reserved  
R/W  
0
Mute Left Channel – This bit issues soft mute request for the left channel. The volume  
will be smoothly ramped down/up to avoid pop/click noise.  
0: Normal volume  
1: Mute  
3-1  
0
Reserved  
RQMR  
R/W  
R/W  
Reserved  
0
Mute Right Channel – This bit issues soft mute request for the right channel. The  
volume will be smoothly ramped down/up to avoid pop/click noise.  
0: Normal volume  
1: Mute  
Figure 93. Register 4 (0x04)  
7
6
5
4
PLCK  
R
3
2
1
0
Reserved  
R/W  
Reserved  
R/W  
PLLE  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 30. Register 4 (0x04) Field Descriptions  
Bit  
7-5  
4
Field  
Type  
R/W  
R
Reset  
Description  
Reserved  
PLCK  
Reserved  
0
PLL Lock Flag – This bit indicates whether the PLL is locked or not. When the PLL is  
disabled this bit always shows that the PLL is not locked.  
0: The PLL is locked  
1: The PLL is not locked  
3-1  
0
Reserved  
PLLE  
R/W  
R/W  
Reserved  
1
PLL Enable – This bit enables or disables the internal PLL. When PLL is disabled, the  
master clock will be switched to the MCLK.  
0: Disable PLL  
1: Enable PLL  
13.1.2 Register 6 (0x06)  
Figure 94. Register 6 (0x06)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
DBPG  
R/W  
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Copyright © 2016–2017, Texas Instruments Incorporated  
81  
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
Table 31. Register 6 (0x06) Field Descriptions  
Bit  
7-4  
3
Field  
Type  
Reset  
Description  
Reserved  
DBPG  
0
0
Reserved  
R/W  
Page auto increment disable – Disable page auto increment mode. for non -zero  
books. When end of page is reached it goes back to 8th address location of next page  
when this bit is 0. When this bit is 1 it goes to 0 th location of current page itself like in  
older part.  
0: Enable Page auto increment  
1: Disable Page auto increment  
2-0  
Reserved  
R/W  
0
Reserved  
13.1.3 Register 7 (0x07)  
Figure 95. Register 7 (0x07)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
DEMP  
R/W  
Reserved  
R/W  
SDSL  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 32. Register 7 (0x07) Field Descriptions  
Bit  
7-5  
4
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
DEMP  
0
0
Reserved  
De-Emphasis Enable – This bit enables or disables the de-emphasis filter. The default  
coefficients are for 44.1 kHz sampling rate, but can be changed by reprogramming the  
appropriate coeffients in RAM.  
0: De-emphasis filter is disabled  
1: De-emphasis filter is enabled  
3-1  
0
Reserved  
SDSL  
R/W  
R/W  
0
1
Reserved  
SDOUT Select – This bit selects what is being output as SDOUT via GPIO pins.  
0: SDOUT is the DSP output (post-processing)  
1: SDOUT is the DSP input (pre-processing)  
13.1.4 Register 8 (0x08)  
Figure 96. Register 8 (0x08)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
G2OE  
R/W  
MUTEOE  
R/W  
G0OE  
R/W  
Reserved  
R/W  
Table 33. Register 8 (0x08) Field Descriptions  
Bit  
7-6  
5
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
G2OE  
Reserved  
0
GPIO2 Output Enable – This bit sets the direction of the GPIO2  
pin  
0: GPIO2 is input  
1: GPIO2 is output  
4
MUTEOE  
R/W  
0
MUTE Control Enable – This bit sets an enable of MUTE control  
from PCM to TPA  
0: MUTE control disable  
1: MUTE control enable  
82  
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
Table 33. Register 8 (0x08) Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3
G0OE  
R/W  
0
GPIO0 Output Enable – This bit sets the direction of the GPIO0  
pin  
0: GPIO0 is input  
1: GPIO0 is output  
Reserved  
2-0  
Reserved  
R/W  
0
13.1.5 Register 9 (0x09)  
Figure 97. Register 9 (0x09)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
SCLKP  
R/W  
SCLKO  
R/W  
Reserved  
R/W  
LRCLKFSO  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 34. Register 9 (0x09) Field Descriptions  
Bit  
7-6  
5
Field  
Type  
Reset  
Description  
Reserved  
SCLKP  
Reserved  
R/W  
0
SCLK Polarity – This bit sets the inverted SCLK mode. In inverted SCLK mode, the  
DAC assumes that the LRCLK and DIN edges are aligned to the rising edge of the  
SCLK. Normally they are assumed to be aligned to the falling edge of the SCLK.  
0: Normal SCLK mode  
1: Inverted SCLK mode  
4
SCLKO  
R/W  
0
SCLK Output Enable – This bit sets the SCLK pin direction to output for I2S master  
mode operation. In I2S master mode the PCM51xx outputs the reference SCLK and  
LRCLK, and the external source device provides the DIN according to these clocks.  
Use P0-R32 to program the division factor of the MCLK to yield the desired SCLK rate  
(normally 64 FS)  
0: SCLK is input (I2S slave mode)  
1: SCLK is output (I2S master mode)  
3-1  
0
Reserved  
LRKO  
Reserved  
R/W  
0
LRCLK Output Enable – This bit sets the LRCLK pin direction to output for I2S master  
mode operation. In I2S master mode the PCM51xx outputs the reference SCLK and  
LRCLK, and the external source device provides the DIN according to these clocks.  
Use P0-R33 to program the division factor of the SCLK to yield 1 FS for LRCLK.  
0: LRCLK is input (I2S slave mode)  
1: LRCLK is output (I2S master mode)  
13.1.6 Register 12 (0x0C)  
Figure 98. Register 12 (0x0C)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
RSCLK  
R/W  
RLRK  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 35. Register 12 (0x0C) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
Reserved  
R/W  
Reserved  
1
RSCLK  
R/W  
0
Master Mode SCLK Divider Reset – This bit, when set to 0, will reset the MCLK divider  
to generate SCLK clock for I2S master mode. To use I2S master mode, the divider  
must be enabled and programmed properly.  
0: Master mode SCLK clock divider is reset  
1: Master mode SCLK clock divider is functional  
Copyright © 2016–2017, Texas Instruments Incorporated  
83  
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
Table 35. Register 12 (0x0C) Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
0
RLRK  
R/W  
1
Master Mode LRCLK Divider Reset – This bit, when set to 0, will reset the SCLK  
divider to generate LRCLK clock for I2S master mode. To use I2S master mode, the  
divider must be enabled and programmed properly.  
0: Master mode LRCLK clock divider is reset  
1: Master mode LRCLK clock divider is functional  
13.1.7 Register 13 (0x0D)  
Figure 99. Register 13 (0x0D)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
SREF  
R/W  
Reserved  
R/W  
SDSP  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 36. Register 13 (0x0D) Field Descriptions  
Bit  
7-5  
4
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
SREF  
Reserved  
0
DSP clock source – This bit select the source clock for internal PLL. This bit is ignored  
and overriden in clock auto set mode.  
0: The PLL reference clock is MCLK  
1: The PLL reference clock is SCLK  
010: The PLL reference clock is oscillator clock  
011: The PLL reference clock is GPIO (selected using P0-R18)  
Others: Reserved (PLL reference is muted)  
3
Reserved  
SDSP  
R/W  
R/W  
Reserved  
2-0  
0
DAC clock source – These bits select the source clock for DSP clock divider.  
000: Master clock (PLL/MCLK and OSC auto-select)  
001: PLL clock  
010: OSC clock  
011: MCLK clock  
100: SCLK clock  
101: GPIO (selected using P0-R16)  
Others: Reserved (muted)  
84  
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
13.1.8 Register 14 (0x0E)  
Figure 100. Register 14 (0x0E)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
SDAC  
R/W  
Reserved  
R/W  
SOSR  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 37. Register 14 (0x0E) Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
SDAC  
0
0
Reserved  
6-4  
DAC clock source – These bits select the source clock for DAC clock divider.  
000: Master clock (PLL/MCLK and OSC auto-select)  
001: PLL clock 010: OSC clock  
011: MCLK clock  
100: SCLK clock  
101: GPIO (selected using P0-R16)  
Others: Reserved (muted)  
3
Reserved  
SOSR  
R/W  
R/W  
0
0
Reserved  
2-0  
OSR clock source – These bits select the source clock for OSR clock divider.  
000: DAC clock  
001: Master clock (PLL/MCLK and OSC auto-select)  
010: PLL clock  
011: OSC clock  
100: MCLK clock  
101: SCLK clock  
110: GPIO (selected using P0-R17)  
Others: Reserved (muted)  
13.1.9 Register 15 (0x0F)  
Figure 101. Register 15 (0x0F)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
SNCP  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 38. Register 15 (0x0F) Field Descriptions  
Bit  
7-3  
2-0  
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
SNCP  
Reserved  
0
NCP clock source – These bits select the source clock for CP clock divider.  
000: DAC clock  
001: Master clock (PLL/MCLK and OSC auto-select)  
010: PLL clock  
011: OSC clock  
100: MCLK clock  
101: SCLK clock  
110: GPIO (selected using P0-R17)  
Others: Reserved (muted)  
Copyright © 2016–2017, Texas Instruments Incorporated  
85  
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
13.1.10 Register 16 (0x10)  
Figure 102. Register 16 (0x10)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
GDSP  
R/W  
Reserved  
R/W  
GDAC  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 39. Register 16 (0x10) Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
GDSP  
0
0
Reserved  
6-4  
GPIO Source for uCDSP clk – These bits select the GPIO pins as clock input source  
when GPIO is selected as DSP clock divider source.  
000: N/A  
001: N/A  
010: N/A  
011: GPIO0  
100: N/A  
101: GPIO2  
Others: Reserved (muted)  
3
Reserved  
GDAC  
R/W  
R/W  
0
0
Reserved  
2-0  
GPIO Source for DAC clk – These bits select the GPIO pins as clock input source  
when GPIO is selected as DAC clock divider source.  
000: N/A  
001: N/A  
010: N/A  
011: GPIO0  
100: N/A  
101: GPIO2  
Others: Reserved (muted)  
86  
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
13.1.11 Register 17 (0x11)  
Figure 103. Register 17 (0x11)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
GNCP  
R/W  
Reserved  
R/W  
GOSR  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 40. Register 17 (0x11) Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
GNCP  
0
0
Reserved  
6-4  
GPIO Source for NCP clk – These bits select the GPIO pins as clock input source  
when GPIO is selected as CP clock divider source  
000: N/A  
001: N/A  
010: Reserved  
011: GPIO0  
100: N/A  
101: GPIO2  
Others: Reserved (muted)  
3
Reserved  
GOSR  
R/W  
R/W  
0
0
Reserved  
2-0  
GPIO Source for OSR clk – These bits select the GPIO pins as clock input source  
when GPIO is selected as OSR clock divider source.  
000: N/A  
001: N/A  
010: Reserved  
011: GPIO0  
100: N/A  
101: GPIO2  
Others: Reserved (muted)  
13.1.12 Register 18 (0x12)  
Figure 104. Register 18 (0x12)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
GREF  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 41. Register 18 (0x12) Field Descriptions  
Bit  
7-3  
2-0  
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
GREF  
0
0
Reserved  
GPIO Source for PLL reference clk – These bits select the GPIO pins as clock input  
source when GPIO is selected as the PLL reference clock source.  
000: N/A  
001: N/A  
010: Reserved  
011: GPIO0  
100: N/A  
101: GPIO2  
Others: Reserved (muted)  
13.1.13 Register 20 (0x14)  
Copyright © 2016–2017, Texas Instruments Incorporated  
87  
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
Figure 105. Register 20 (0x14)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
PPDV  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 42. Register 20 (0x14) Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
PPDV  
0
0
Reserved  
PLL P – These bits set the PLL divider P factor. These bits are ignored in clock auto  
set mode.  
0000: P=1  
0001: P=2  
...  
1110: P=15  
1111: Prohibited (do not set this value)  
88  
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
13.1.14 Register 21 (0x15)  
Figure 106. Register 21 (0x15)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
PJDV  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 43. Register 21 (0x15) Field Descriptions  
Bit  
7-6  
5-0  
Field  
Type  
Reset  
0
Description  
Reserved  
PJDV  
Reserved  
R/W  
001000  
PLL J – These bits set the J part of the overall PLL multiplication factor J.D * R.  
These bits are ignored in clock auto set mode.  
000000: Prohibited (do not set this value)  
000001: J=1  
000010: J=2  
...  
111111: J=63  
13.1.15 Register 22 (0x16)  
Figure 107. Register 22 (0x16)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
PDDV  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 44. Register 22 (0x16) Field Descriptions  
Bit  
7-6  
5-0  
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
PDDV  
Reserved  
0
PLL D (MSB) – These bits set the D part of the overall PLL multiplication factor J.D * R.  
These bits are ignored in clock auto set mode.  
0 (in decimal): D=0000  
1 (in decimal): D=0001  
...  
9999 (in decimal): D=9999  
Others: Prohibited (do not set)  
Copyright © 2016–2017, Texas Instruments Incorporated  
89  
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
13.1.16 Register 23 (0x17)  
Figure 108. Register 23 (0x17)  
7
6
5
4
3
2
1
0
PDDV  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 45. Register 23 (0x17) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
PDDV  
R/W  
0
PLL D (LSB) – These bits set the D part of the overall PLL multiplication factor J.D * R.  
These bits are ignored in clock auto set mode.  
0 (in decimal): D=0000  
1 (in decimal): D=0001  
...  
9999 (in decimal): D=9999  
Others: Prohibited (do not set)  
13.1.17 Register 24 (0x18)  
Figure 109. Register 24 (0x18)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
PRDV  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 46. Register 24 (0x18) Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
PRDV  
Reserved  
0
PLL R – These bits set the R part of the overall PLL multiplication factor J.D * R. These  
bits are ignored in clock auto set mode.  
0000: R=1  
0001: R=2  
...  
1111: R=16  
13.1.18 Register 27 (0x1B)  
Figure 110. Register 27 (0x1B)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
DDSP  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 47. Register 27 (0x1B) Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
DDSP  
Reserved  
6-0  
0
DSP Clock Divider – These bits set the source clock divider value for the DSP clock.  
These bits are ignored in clock auto set mode.  
0000000: Divide by 1  
0000001: Divide by 2  
...  
1111111: Divide by 128  
90  
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
13.1.19 Register 28 (0x1C)  
Figure 111. Register 28 (0x1C)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
DDAC  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 48. Register 28 (0x1C) Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
Reserved  
DDAC  
Reserved  
6-4  
3-0  
R/W  
R/W  
0
1
DAC Clock Divider – These bits set the source clock divider value for the DAC clock.  
These bits are ignored in clock auto set mode.  
0000000: Divide by 1  
0000001: Divide by 2  
...  
1111111: Divide by 128  
13.1.20 Register 29 (0x1D)  
Figure 112. Register 29 (0x1D)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
DNCP  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 49. Register 29 (0x1D) Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
Reserved  
DNCP  
Reserved  
6-2  
1-0  
R/W  
R/W  
0
1
NCP Clock Divider – These bits set the source clock divider value for the CP clock.  
These bits are ignored in clock auto set mode.  
0000000: Divide by 1  
0000001: Divide by 2  
...  
1111111: Divide by 128  
13.1.21 Register 30 (0x1E)  
Figure 113. Register 30 (0x1E)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
DOSR  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 50. Register 30 (0x1E) Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
Reserved  
DOSR  
Reserved  
6-4  
3-0  
R/W  
R/W  
0
1
OSR Clock Divider – These bits set the source clock divider value for the OSR clock.  
These bits are ignored in clock auto set mode.  
0000000: Divide by 1  
0000001: Divide by 2  
...  
1111111: Divide by 128  
Copyright © 2016–2017, Texas Instruments Incorporated  
91  
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
13.1.22 Register 32 (0x20)  
Figure 114. Register 32 (0x20)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
DSCLK  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 51. Register 32 (0x20) Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
DSCLK  
Reserved  
6-0  
0
Master Mode SCLK Divider – These bits set the MCLK divider value to generate I2S  
master SCLK clock.  
0000000: Divide by 1  
0000001: Divide by 2  
...  
1111111: Divide by 128  
13.1.23 Register 33 (0x21)  
Figure 115. Register 33 (0x21)  
7
6
5
4
3
2
1
0
DLRK  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 52. Register 33 (0x21) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DLRK  
R/W  
0
Master Mode LRCLK Divider – These bits set the I2S master SCLK clock divider value  
to generate I2S master LRCLK clock  
00000000: Divide by 1  
00000001: Divide by 2  
...  
11111111: Divide by 256  
92  
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
13.1.24 Register 34 (0x22)  
Figure 116. Register 34 (0x22)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
I16E  
R/W  
Reserved  
R/W  
FSSP  
R/W  
FSSP  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 53. Register 34 (0x22) Field Descriptions  
Bit  
7-5  
4
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
I16E  
Reserved  
0
16x Interpolation – This bit enables or disables the 16x interpolation mode  
0: 8x interpolation  
1: 16x interpolation  
3
2
Reserved  
FSSP  
R/W  
R/W  
R/W  
Reserved  
1
0
FS Speed Mode – These bits select the FS operation mode, which must be set  
according to the current audio sampling rate. These bits are ignored in clock auto set  
mode.  
1-0  
000: Reserved  
001: Reserved  
010: Reserved  
011: 48 kHz  
100: 88.2-96 kHz  
101: Reserved  
110: Reserved  
111: 32kHz  
Copyright © 2016–2017, Texas Instruments Incorporated  
93  
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
13.1.25 Register 37 (0x25)  
Figure 117. Register 37 (0x25)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
IDFS  
R/W  
IDBK  
R/W  
IDSK  
R/W  
IDCH  
R/W  
IDCM  
R/W  
DCAS  
R/W  
IPLK  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 54. Register 37 (0x25) Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
IDFS  
Reserved  
6
0
Ignore FS Detection – This bit controls whether to ignore the FS detection. When  
ignored, FS error will not cause a clock error.  
0: Regard FS detection  
1: Ignore FS detection  
5
4
3
2
IDBK  
IDSK  
IDCH  
IDCM  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
Ignore SCLK Detection – This bit controls whether to ignore the SCLK detection  
against LRCLK. The SCLK must be stable between 32 FS and 256 FS inclusive or an  
error will be reported. When ignored, a SCLK error will not cause a clock error.  
0: Regard SCLK detection  
1: Ignore SCLK detection  
Ignore MCLK Detection – This bit controls whether to ignore the MCLK detection  
against LRCLK. Only some certain MCLK ratios within some error margin are allowed.  
When ignored, an MCLK error will not cause a clock error.  
0: Regard MCLK detection  
1: Ignore MCLK detection  
Ignore Clock Halt Detection – This bit controls whether to ignore the MCLK halt (static  
or frequency is lower than acceptable) detection. When ignored an MCLK halt will not  
cause a clock error.  
0: Regard MCLK halt detection  
1: Ignore MCLK halt detection  
Ignore LRCLK/SCLK Missing Detection – This bit controls whether to ignore the  
LRCLK/SCLK missing detection. The LRCLK/SCLK need to be in low state (not only  
static) to be deemed missing. When ignored an LRCLK/SCLK missing will not cause  
the DAC go into powerdown mode.  
0: Regard LRCLK/SCLK missing detection  
1: Ignore LRCLK/SCLK missing detection  
1
DCAS  
R/W  
0
Disable Clock Divider Autoset – This bit enables or disables the clock auto set mode.  
When dealing with uncommon audio clock configuration, the auto set mode must be  
disabled and all clock dividers must be set manually.  
Addtionally, some clock detectors might also need to be disabled. The clock autoset  
feature will not work with PLL enabled in VCOM mode. In this case this feature has to  
be disabled and the clock dividers must be set manually.  
0: Enable clock auto set  
1: Disable clock auto set  
0
IPLK  
R/W  
0
Ignore PLL Lock Detection – This bit controls whether to ignore the PLL lock detection.  
When ignored, PLL unlocks will not cause a clock error. The PLL lock flag at P0-R4, bit  
4 is always correct regardless of this bit.  
0: PLL unlocks raise clock error  
1: PLL unlocks are ignored  
94  
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
13.1.26 Register 40 (0x28)  
Figure 118. Register 40 (0x28)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
AFMT  
R/W  
Reserved  
R/W  
ALEN  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 55. Register 40 (0x28) Field Descriptions  
Bit  
7-6  
5-4  
Field  
Type  
Reset  
Description  
AFMT  
R/W  
0
I2S Data Format – These bits control both input and output audio interface formats for  
DAC operation.  
00: I2S  
01: DSP  
10: RTJ  
11: LTJ  
3-2  
1
Reserved  
ALEN  
R/W  
R/W  
R/W  
Reserved  
1
0
I2S Word Length – These bits control both input and output audio interface sample  
word lengths for DAC operation.  
0
00: 16 bits  
01: 20 bits  
10: 24 bits  
11: 32 bits  
13.1.27 Register 41 (0x29)  
Figure 119. Register 41 (0x29)  
7
6
5
4
3
2
1
0
AOFS  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 56. Register 41 (0x29) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
AOFS  
R/W  
0
I2S Shift – These bits control the offset of audio data in the audio frame for both input  
and output. The offset is defined as the number of SCLK from the starting (MSB) of  
audio frame to the starting of the desired audio sample.  
00000000: offset = 0 SCLK (no offset)  
00000001: ofsset = 1 SCLK  
00000010: offset = 2 SCLKs  
11111111: offset = 256 SCLKs  
Copyright © 2016–2017, Texas Instruments Incorporated  
95  
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
13.1.28 Register 42 (0x2A)  
Figure 120. Register 42 (0x2A)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
AUPL  
R/W  
Reserved  
R/W  
AUPR  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 57. Register 42 (0x2A) Field Descriptions  
Bit  
7-6  
5
Field  
Type  
R/W  
R/W  
R/W  
Reset  
Description  
Reserved  
AUPL  
Reserved  
0
1
Left DAC Data Path – These bits control the left channel audio data path connection.  
00: Zero data (mute)  
01: Left channel data  
10: Right channel data  
11: Reserved (do not set)  
4
3-2  
1
Reserved  
AUPR  
R/W  
R/W  
R/W  
Reserved  
0
1
Right DAC Data Path – These bits control the right channel audio data path  
connection.  
0
00: Zero data (mute)  
01: Right channel data  
10: Left channel data  
11: Reserved (do not set)  
13.1.29 Register 43 (0x2B)  
Figure 121. Register 43 (0x2B)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
PSEL  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 58. Register 43 (0x2B) Field Descriptions  
Bit  
7-5  
4-1  
0
Field  
Type  
R/W  
R/W  
R/W  
Reset  
Description  
Reserved  
PSEL  
Reserved  
0
1
DSP Program Selection – These bits select the DSP program to use for audio  
processing.  
00000: Reserved  
00001: Rom Mode 1  
00010: Reserved  
00011: Reserved  
96  
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
13.1.30 Register 44 (0x2C)  
Figure 122. Register 44 (0x2C)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
CMDP  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 59. Register 44 (0x2C) Field Descriptions  
Bit  
7-3  
2-0  
Field  
Type  
Reset  
Description  
Reserved  
CMDP  
Reserved  
R/W  
0
Clock Missing Detection Period – These bits set how long both SCLK and LRCLK keep  
low before the audio clocks deemed missing and the DAC transitions to powerdown  
mode.  
000: about 1 second  
001: about 2 seconds  
010: about 3 seconds  
...  
111: about 8 seconds  
13.1.31 Register 59 (0x3B)  
Figure 123. Register 59 (0x3B)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
AMTL  
R/W  
Reserved  
R/W  
AMTR  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 60. Register 59 (0x3B) Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
AMTL  
Reserved  
6-4  
0
Auto Mute Time for Left Channel – These bits specify the length of consecutive zero  
samples at left channel before the channel can be auto muted. The times shown are  
for 96 kHz sampling rate and will scale with other rates.  
000: 11.5 ms  
001: 53 ms  
010: 106.5 ms  
011: 266.5 ms  
100: 0.535 sec  
101: 1.065 sec  
110: 2.665 sec  
111: 5.33 sec  
3
Reserved  
AMTR  
R/W  
R/W  
Reserved  
2-0  
0
Auto Mute Time for Right Channel – These bits specify the length of consecutive zero  
samples at right channel before the channel can be auto muted. The times shown are  
for 96 kHz sampling rate and will scale with other rates.  
000: 11.5 ms  
001: 53 ms  
010: 106.5 ms  
011: 266.5 ms  
100: 0.535 sec  
101: 1.065 sec  
110: 2.665 sec  
111: 5.33 sec  
Copyright © 2016–2017, Texas Instruments Incorporated  
97  
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
13.1.32 Register 60 (0x3C)  
Figure 124. Register 60 (0x3C)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
PCTL  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 61. Register 60 (0x3C) Field Descriptions  
Bit  
7-2  
1-0  
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
PCTL  
0
0
Reserved  
Digital Volume Control – These bits control the behavior of the digital volume.  
00: The volume for Left and right channels are independent  
01: Right channel volume follows left channel setting  
13.1.33 Register 61 (0x3D)  
Figure 125. Register 61 (0x3D)  
7
6
5
4
3
2
1
0
VOLL  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 62. Register 61 (0x3D) Field Descriptions  
Bit  
Field  
Type  
Reset  
00110000  
Description  
7-0  
VOLL  
R/W  
Left Digital Volume – These bits control the left channel digital volume. The  
digital volume is 24 dB to –103 dB in –0.5 dB step.  
00000000: +24.0 dB  
00000001: +23.5 dB  
00101111: +0.5 dB  
00110000: 0.0 dB  
00110001: –0.5 dB  
...  
11111110: –103 dB  
11111111: Mute  
13.1.34 Register 62 (0x3E)  
Figure 126. Register 62 (0x3E)  
7
6
5
4
3
2
1
0
VOLR  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
98  
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
Table 63. Register 62 (0x3E) Field Descriptions  
Bit  
Field  
VOLR  
Type  
Reset  
Description  
7-0  
R/W  
0011000 Right Digital Volume – These bits control the right channel digital volume. The digital  
0
volume is 24 dB to –103 dB in –0.5 dB step.  
00000000: +24.0 dB  
00000001: +23.5 dB  
00101111: +0.5 dB  
00110000: 0.0 dB  
00110001: –0.5 dB  
...  
11111110: –103 dB  
11111111: Mute  
13.1.35 Register 63 (0x3F)  
Figure 127. Register 63 (0x3F)  
7
6
5
4
3
2
1
0
VNDF  
R/W  
VNDS  
R/W  
VNUF  
R/W  
VNUS  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 64. Register 63 (0x3F) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
VNDF  
R/W  
00  
Digital Volume Normal Ramp Down Frequency – These bits control the frequency of  
the digital volume updates when the volume is ramping down. The setting here is  
applied to soft mute request, asserted by XSMUTE pin or P0-R3.  
00: Update every 1 FS period  
01: Update every 2 FS periods  
10: Update every 4 FS periods  
11: Directly set the volume to zero (Instant mute)  
5-4  
3-2  
1-0  
VNDS  
VNUF  
VNUS  
R/W  
R/W  
R/W  
11  
00  
11  
Digital Volume Normal Ramp Down Step – These bits control the step of the digital  
volume updates when the volume is ramping down.  
The setting here is applied to soft mute request, asserted by XSMUTE pin or P0-R3.  
00: Decrement by 4 dB for each update  
01: Decrement by 2 dB for each update  
10: Decrement by 1 dB for each update  
11: Decrement by 0.5 dB for each update  
Digital Volume Normal Ramp Up Frequency – These bits control the frequency of the  
digital volume updates when the volume is ramping up.  
The setting here is applied to soft unmute request, asserted by XSMUTE pin or P0-R3.  
00: Update every 1 FS period  
01: Update every 2 FS periods  
10: Update every 4 FS periods  
11: Directly restore the volume (Instant unmute)  
Digital Volume Normal Ramp Up Step – These bits control the step of the digital  
volume updates when the volume is ramping up.  
The setting here is applied to soft unmute request, asserted by XSMUTE pin or P0-R3.  
00: Increment by 4 dB for each update  
01: Increment by 2 dB for each update  
10: Increment by 1 dB for each update  
11: Increment by 0.5 dB for each update  
Copyright © 2016–2017, Texas Instruments Incorporated  
99  
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
13.1.36 Register 64 (0x40)  
Figure 128. Register 64 (0x40)  
7
6
5
4
3
2
1
0
VEDF  
R/W  
VEDS  
R/W  
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 65. Register 64 (0x40) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
VEDF  
R/W  
0
Digital Volume Emergency Ramp Down Frequency – These bits control the frequency  
of the digital volume updates when the volume is ramping down due to clock error or  
power outage, which usually needs faster ramp down compared to normal soft mute.  
00: Update every 1 FS period  
01: Update every 2 FS periods  
10: Update every 4 FS periods  
11: Directly set the volume to zero (Instant mute)  
5-4  
3-0  
VEDS  
R/W  
R/W  
1
Digital Volume Emergency Ramp Down Step – These bits control the step of the digital  
volume updates when the volume is ramping down due to clock error or power outage,  
which usually needs faster ramp down compared to normal soft mute.  
00: Decrement by 4 dB for each update  
01: Decrement by 2 dB for each update  
10: Decrement by 1 dB for each update  
11: Decrement by 0.5 dB for each update  
Reserved  
Reserved  
13.1.37 Register 65 (0x41)  
Figure 129. Register 65 (0x41)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
ACTL  
R/W  
AMLE  
R/W  
AMRE  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 66. Register 65 (0x41) Field Descriptions  
Bit  
7-3  
2
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
ACTL  
Reserved  
1
Auto Mute Control**NOBUS** – This bit controls the behavior of the auto mute upon  
zero sample detection. The time length for zero detection is set with P0-R59.  
0: Auto mute left channel and right channel independently.  
1: Auto mute left and right channels only when both channels are about to be auto  
muted.  
1
0
AMLE  
AMRE  
R/W  
R/W  
1
1
Auto Mute Left Channel**NOBUS** – This bit enables or disables auto mute on right  
channel. Note that when right channel auto mute is disabled and the P0-R65, bit 2 is  
set to 1, the left channel will also never be auto muted.  
0: Disable right channel auto mute  
1: Enable right channel auto mute  
Auto Mute Right Channel**NOBUS** – This bit enables or disables auto mute on left  
channel. Note that when left channel auto mute is disabled and the P0-R65, bit 2 is set  
to 1, the right channel will also never be auto muted.  
0: Disable left channel auto mute  
1: Enable left channel auto mute  
13.1.38 Register 67 (0x43)  
100  
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
Figure 130. Register 67 (0x43)  
7
6
5
4
3
2
1
0
DLPA  
R/W  
DRPA  
R/W  
DLPM  
R/W  
DRPM  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 67. Register 67 (0x43) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
DLPA  
R/W  
0
Left DAC primary AC dither gain – These bits control the AC dither gain for left channel  
primary DAC modulator.  
00: AC dither gain = 0.125  
01: AC dither gain = 0.25  
5-4  
3-2  
DRPA  
DLPM  
R/W  
R/W  
0
0
Right DAC primary AC dither gain – These bits control the AC dither gain for right  
channel primary DAC modulator.  
00: AC dither gain = 0.125  
01: AC dither gain = 0.25  
Left DAC primary DEM dither gain – These bits control the dither gain for left channel  
primary Galton DEM.  
00: DEM dither gain = 0.5  
01: DEM dither gain = 1.0  
Others: Reserved (do not set)  
1-0  
DRPM  
R/W  
0
Right DAC primary DEM dither gain – These bits control the dither gain for right  
channel primary Galton DEM.  
00: DEM dither gain = 0.5  
01: DEM dither gain = 1.0  
Others: Reserved (do not set)  
13.1.39 Register 68 (0x44)  
Figure 131. Register 68 (0x44)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
DLPD  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 68. Register 68 (0x44) Field Descriptions  
Bit  
7-3  
2-0  
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
DLPD  
Reserved  
0
Left DAC primary DC dither – These bits control the DC dither amount to be added to  
the lower part of the left channel primary DAC modulator. The DC dither is expressed  
is Q0.11 format, with 1.0 equals to 1/32 fullscale modulator input.  
00000000000 : No DC dither  
00000000001 : 2-11 × 1/32 FS  
00000000010 : 2-10 × 1/32 FS  
13.1.40 Register 69 (0x45)  
Figure 132. Register 69 (0x45)  
7
6
5
4
3
2
1
0
DLPD  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Copyright © 2016–2017, Texas Instruments Incorporated  
101  
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
Table 69. Register 69 (0x45) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DLPD  
R/W  
0
Left DAC primary DC dither – These bits control the DC dither amount to be added to  
the lower part of the left channel primary DAC modulator. The DC dither is expressed  
is Q0.11 format, with 1.0 equals to 1/32 fullscale modulator input.  
00000000000 : No DC dither  
00000000001 : 2-11 × 1/32 FS  
00000000010 : 2-10 × 1/32 FS  
102  
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
13.1.41 Register 70 (0x46)  
Figure 133. Register 70 (0x46)  
7
6
5
4
3
2
1
0
DRPD  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 70. Register 70 (0x46) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DRPD  
R/W  
0
Right DAC primary DC dither – These bits control the DC dither amount to be added to  
the lower part of the right channel primary DAC modulator. The DC dither is expressed  
is Q0.11 format, with 1.0 equals to 1/32 fullscale modulator input.  
00000000000 : No DC dither  
00000000001 : 2-11 × 1/32 FS  
00000000010 : 2-10 × 1/32 FS  
13.1.42 Register 71 (0x47)  
Figure 134. Register 71 (0x47)  
7
6
5
4
3
2
1
0
DRPD  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 71. Register 71 (0x47) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DRPD  
R/W  
0
Right DAC primary DC dither – These bits control the DC dither amount to be added to  
the lower part of the right channel primary DAC modulator. The DC dither is expressed  
is Q0.11 format, with 1.0 equals to 1/32 fullscale modulator input.  
00000000000 : No DC dither  
00000000001 : 2-11 × 1/32 FS  
00000000010 : 2-10 × 1/32 FS  
Copyright © 2016–2017, Texas Instruments Incorporated  
103  
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
13.1.43 Register 72 (0x48)  
Figure 135. Register 72 (0x48)  
7
6
5
4
3
2
1
0
DLSA  
R/W  
DRSA  
R/W  
DLSM  
R/W  
RSM  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 72. Register 72 (0x48) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
DLSA  
R/W  
01  
Left DAC secondary AC dither gain – These bits control the AC dither gain for left  
channel secondary DAC.  
00: AC dither gain = 0.125  
01: AC dither gain = 0.25  
5-4  
DRSA  
R/W  
01  
Right DAC secondary AC dither gain – These bits control the AC dither gain for right  
channel secondary DAC modulator.  
00: AC dither gain = 0.125  
01: AC dither gain = 0.25  
10: AC dither gain = 0.5  
11: no AC dither  
3-2  
1-0  
DLSM  
DRSM  
R/W  
R/W  
01  
01  
Left DAC secondary DEM dither gain – These bits control the dither gain for left  
channel secondary Galton DEM.  
00: DEM dither gain = 0.5  
01: DEM dither gain = 1.0  
Others: Reserved (do not set)  
Right DAC secondary DEM dither gain – These bits control the dither gain for right  
channel secondary Galton DEM.  
00: DEM dither gain = 0.5  
01: DEM dither gain = 1.0  
Others: Reserved (do not set)  
104  
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
13.1.44 Register 73 (0x49)  
Figure 136. Register 73 (0x49)  
7
6
5
4
3
2
1
0
DLSD  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 73. Register 73 (0x49) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DLSD  
R/W  
0
Left DAC secondary DC dither – These bits control the DC dither amount to be added  
to the lower part of the left channel secondary DAC modulator. The DC dither is  
expressed is Q0.11 format, with 1.0 equals to 1/32 fullscale modulator input.  
00000000000 : No DC dither  
00000000001 : 2–11 × 1/32 FS  
00000000010 : 2–10 × 1/32 FS  
13.1.45 Register 74 (0x4A)  
Figure 137. Register 74 (0x4A)  
7
6
5
4
3
2
1
0
DLSD  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 74. Register 74 (0x4A) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DLSD  
R/W  
0
Left DAC secondary DC dither – These bits control the DC dither amount to be added  
to the lower part of the left channel secondary DAC modulator. The DC dither is  
expressed is Q0.11 format, with 1.0 equals to 1/32 fullscale modulator input.  
00000000000 : No DC dither  
00000000001 : 2–11 × 1/32 FS  
00000000010 : 2–10 × 1/32 FS  
Copyright © 2016–2017, Texas Instruments Incorporated  
105  
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
13.1.46 Register 75 (0x4B)  
Figure 138. Register 75 (0x4B)  
7
6
5
4
3
2
1
0
DRSD  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 75. Register 75 (0x4B) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DRSD  
R/W  
0000000 Right DAC secondary DC dither – These bits control the DC dither amount to be added  
0
to the lower part of the right channel secondary DAC modulator. The DC dither is  
expressed is Q0.11 format, with 1.0 equals to 1/32 fullscale modulator input.  
00000000000 : No DC dither  
00000000001 : 2–11 × 1/32 FS  
00000000010 : 2–10 × 1/32 FS  
13.1.47 Register 76 (0x4C)  
Figure 139. Register 76 (0x4C)  
7
6
5
4
3
2
1
0
DRSD  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 76. Register 76 (0x4C) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DRSD  
R/W  
0000000 Right DAC secondary DC dither – These bits control the DC dither amount to be added  
0
to the lower part of the right channel secondary DAC modulator. The DC dither is  
expressed is Q0.11 format, with 1.0 equals to 1/32 fullscale modulator input.  
00000000000 : No DC dither  
00000000001 : 2–11 × 1/32 FS  
00000000010 : 2–10 × 1/32 FS  
106  
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
13.1.48 Register 78 (0x4E)  
Figure 140. Register 78 (0x4E)  
7
6
5
4
3
2
1
0
OLOF  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 77. Register 78 (0x4E) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
OLOF  
R/W  
0000000 Left OFSCAL offset – These bits controls the amount of manual DC offset to be added  
0
to the left channel DAC output. The additional offset would be approximately the  
negative of the decimal value of this register divided by 4 in mV.  
01111111 : –31.75 mV  
01111110 : –31.50 mV  
00000010 : –0.50 mV  
00000001 : –0.25 mV  
00000000 : 0.0 mV  
11111111 : +0.25 mV  
11111110 : +0.50 mV  
10000000 : +32.0 mV  
13.1.49 Register 79 (0x4F)  
Figure 141. Register 79 (0x4F)  
7
6
5
4
3
2
1
0
OROF  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 78. Register 79 (0x4F) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
OROF  
R/W  
0
Right OFSCAL offset – These bits controls the amount of manual DC offset to be  
added to the right channel DAC output. The additional offset would be approximately  
the negative of the decimal value of this register divided by 4 in mV.  
01111111 : –31.75 mV  
01111110 : –31.50 mV  
00000010 : –0.50 mV  
00000001 : –0.25 mV  
00000000 : 0.0 mV  
11111111 : +0.25 mV  
11111110 : +0.50 mV  
10000000 : +32.0 mV  
Copyright © 2016–2017, Texas Instruments Incorporated  
107  
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
13.1.50 Register 83 (0x53)  
Figure 142. Register 83 (0x53)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
G0SL  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 79. Register 83 (0x53) Register Field Descriptions  
Bit  
7-5  
4-0  
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
G0SL  
Reserved  
0
GPIO0 Output Selection – These bits select the signal to output to GPIO0. To actually  
output the selected signal, the GPIO0 must be set to output mode at P0-R8.  
0110: Clock invalid flag (clock error or clock changing or clock missing)  
0111: Serial audio interface data output (SDOUT)  
1000: Analog mute flag for left channel (low active)  
1001: Analog mute flag for right channel (low active) 1010: PLL lock flag  
1011: Charge pump clock  
1100: Reserved  
1101: Reserved  
1110: Under voltage flag, asserted when XSMUTE voltage is higher than 0.7 DVDD  
1111: Under voltage flag, asserted when XSMUTE voltage is higher than 0.3 DVDD **  
INTERNAL **  
1100: Short detection flag for left channel  
1101: Short detection flag for right channel  
10000: PLL clock/4  
10001: Oscillator clock/4  
10010: Impedance sense flag for left channel  
10011: Impedance sense flag for right channel  
10100: Internal UVP flag, becomes low when VDD falls below roughly 2.7V  
10101: Offset calibration flag, asserted when the system is offset calibrating itself.  
10110: Clock error flag  
10111: Clock changing flag  
11000: Clock missing flag  
11001: Clock halt detection flag  
11010: DSP boot done flag  
11011: Charge pump voltage output valid flag (low active)  
Others: N/A (zero)  
13.1.51 Register 85 (0x55)  
Figure 143. Register 85 (0x55)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
G2SL  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
108  
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
Table 80. Register 85 (0x55) Register Field Descriptions  
Bit  
7-5  
4-0  
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
G2SL  
0
0
Reserved  
GPIO2 Output Selection – These bits select the signal to output to GPIO2. To actually  
output the selected signal, the GPIO2 must be set to output mode at P0-R8.  
0000: off (low)  
0001: DSP GPIO2 output  
0010: Register GPIO2 output (P0-R86, bit 5)  
0011: Auto mute flag (asserted when both L and R channels are auto muted)  
0100: Auto mute flag for left channel  
0101: Auto mute flag for right channel  
0110: Clock invalid flag (clock error or clock changing or clock missing)  
0111: Serial audio interface data output (SDOUT)  
1000: Analog mute flag for left channel (low active)  
1001: Analog mute flag for right channel (low active)  
1010: PLL lock flag  
1011: Charge pump clock  
1100: Reserved  
1101: Reserved  
1110: Under voltage flag, asserted when XSMUTE voltage is higher than 0.7 DVDD  
1111: Under voltage flag, asserted when XSMUTE voltage is higher than 0.3 DVDD **  
INTERNAL **  
1100: Short detection flag for left channel  
1101: Short detection flag for right channel  
10000: PLL clock/4 10001: Oscillator clock/4  
10010: Impedance sense flag for left channel  
10011: Impedance sense flag for right channel  
10100: Internal UVP flag, becomes low when VDD falls below roughly 2.7V  
10101: Offset calibration flag, asserted when the system is offset calibrating itself.  
10110: Clock error flag  
10111: Clock changing flag  
11000: Clock missing flag  
11001: Clock halt detection flag  
11010: DSP boot done flag  
11011: Charge pump voltage output valid flag (low active)  
Others: N/A (zero)  
Copyright © 2016–2017, Texas Instruments Incorporated  
109  
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
13.1.52 Register 86 (0x56)  
Figure 144. Register 86 (0x56)  
7
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 81. Register 86 (0x56) Register Field Descriptions  
Bit  
7-6  
5
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
GOUT2  
0
0
Reserved  
GPIO Output Control – This bit controls the GPIO2 output when the selection at P0-  
R85 is set to 0010 (register output)  
0: Output low  
1: Output high  
4
3
MUTE  
R/W  
R/W  
R/W  
0
0
0
This bit controls the MUTE output when the selection at P0-R84 is set to 0010 (register  
output).  
0: Output low  
1: Output high  
GOUT0  
Reserved  
This bit controls the GPIO0 output when the selection at P0-R83 is set to 0010 (register  
output)  
0: Output low  
1: Output high  
2-0  
Reserved  
13.1.53 Register 87 (0x57)  
Figure 145. Register 87 (0x57)  
7
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 82. Register 87 (0x57) Field Descriptions  
Bit  
7-6  
5
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
GINV2  
0
0
Reserved  
GPIO Output Inversion – This bit controls the polarity of GPIO2 output. When set to 1,  
the output will be inverted for any signal being selected.  
0: Non-inverted  
1: Inverted  
4
3
MUTE  
R/W  
R/W  
R/W  
0
0
0
This bit controls the polarity of MUTE output. When set to 1, the output will be inverted  
for any signal being selected.  
0: Non-inverted  
1: Inverted  
GINV0  
This bit controls the polarity of GPIO0 output. When set to 1, the output will be inverted  
for any signal being selected.  
0: Non-inverted  
1: Inverted  
2-0  
Reserved  
Reserved  
13.1.54 Register 88 (0x58)  
Figure 146. Register 88 (0x58)  
7
6
5
4
3
2
1
0
DIEI  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
110  
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
Table 83. Register 88 (0x58) Field Descriptions  
Bit  
Field  
DIEI  
Type  
Reset  
Description  
7-0  
RO  
0x84  
Die ID, Device ID = 0x84  
13.1.55 Register 91 (0x5B)  
Figure 147. Register 91 (0x5B)  
7
6
5
DTFS  
R
4
3
2
1
0
Reserved  
R/W  
DTSR  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 84. Register 91 (0x5B) Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R
Reset  
Description  
Reserved  
DTFS  
0
0
Reserved  
6-4  
Detected FS – These bits indicate the currently detected audio sampling rate.  
000: Error (Out of valid range)  
001: 8 kHz  
010: 16 kHz  
011: 32-48 kHz  
100: 88.2-96 kHz  
101: 176.4-192 kHz  
110: 384 kHz  
3-0  
DTSR  
R
0
Detected MCLK Ratio – These bits indicate the currently detected MCLK ratio. Note  
that even if the MCLK ratio is not indicated as error, clock error might still be flagged  
due to incompatible combination with the sampling rate. Specifically the MCLK ratio  
must be high enough to allow enough DSP cycles for minimal audio processing when  
PLL is disabled. The absolute MCLK frequency must also be lower than 50 MHz.  
0000: Ratio error (The MCLK ratio is not allowed)  
0001: MCLK = 32 FS  
0010: MCLK = 48 FS  
0011: MCLK = 64 FS  
0100: MCLK = 128 FS  
0101: MCLK = 192 FS  
0110: MCLK = 256 FS  
0111: MCLK = 384 FS  
1000: MCLK = 512 FS  
1001: MCLK = 768 FS  
1010: MCLK = 1024 FS  
1011: MCLK = 1152 FS  
1100: MCLK = 1536 FS  
1101: MCLK = 2048 FS  
1110: MCLK = 3072 FS  
Copyright © 2016–2017, Texas Instruments Incorporated  
111  
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
13.1.56 Register 92 (0x5C)  
Figure 148. Register 92 (0x5C)  
7
6
5
4
3
2
1
0
DTBR  
R
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 85. Register 92 (0x5C) Field Descriptions  
Bit  
7-1  
0
Field  
Type  
R/W  
R
Reset  
Description  
Reserved  
DTBR  
0
0
Reserved  
Detected SCLK Ratio (MSB)  
13.1.57 Register 93 (0x5D)  
Figure 149. Register 93 (0x5D)  
7
6
5
4
3
2
1
0
DTBR  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 86. Register 93 (0x5D) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DTBR  
R/W  
Detected SCLK Ratio (LSB) – These bits indicate the currently detected SCLK  
ratio, i.e. the number of SCLK clocks in one audio frame. Note that for extreme  
case of SCLK = 1 FS (which is not usable anyway), the detected ratio will be  
unreliable  
112  
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
13.1.58 Register 94 (0x5E)  
Figure 150. Register 94 (0x5E)  
7
6
CDST6  
R
5
CDST5  
R
4
CDST4  
R
3
CDST3  
R
2
CDST2  
R
1
CDST1  
R
0
CDST0  
R
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 87. Register 94 (0x5E) Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R
Reset  
Description  
Reserved  
CDST6  
0
Reserved  
6
Clock Detector Status – This bit indicates whether the MCLK clock is present or not.  
0: MCLK is present  
1: MCLK is missing (halted)  
5
CDST5  
R
This bit indicates whether the PLL is locked or not. The PLL will be reported as  
unlocked when it is disabled.  
0: PLL is locked  
1: PLL is unlocked  
4
3
CDST4  
CDST3  
R
R
This bit indicates whether the both LRCLK and SCLK are missing (tied low) or not.  
0: LRCLK and/or SCLK is present 1: LRCLK and SCLK are missing  
This bit indicates whether the combination of current sampling rate and MCLK ratio is  
valid for clock auto set.  
0: The combination of FS/MCLK ratio is valid  
1: Error (clock auto set is not possible)  
2
CDST2  
R
This bit indicates whether the MCLK is valid or not. The MCLK ratio must be detectable  
to be valid. There is a limitation with this flag, that is, when the low period of LRCLK is  
less than or equal to five SCLKs, this flag will be asserted (MCLK invalid reported).  
0: MCLK is valid  
1: MCLK is invalid  
1
0
CDST1  
CDST0  
R
R
This bit indicates whether the SCLK is valid or not. The SCLK ratio must be stable and  
in the range of 32-256FS to be valid.  
0: SCLK is valid  
1: SCLK is invalid  
This bit indicated whether the audio sampling rate is valid or not. The sampling rate  
must be detectable to be valid. There is a limitation with this flag, that is when this flag  
is asserted and P0-R37 is set to ignore all asserted error flags such that the DAC  
recovers, this flag will be de-asserted (sampling rate invalid not reported anymore).  
0: Sampling rate is valid  
1: Sampling rate is invalid  
Copyright © 2016–2017, Texas Instruments Incorporated  
113  
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
13.1.59 Register 95 (0x5F)  
Figure 151. Register 95 (0x5F)  
7
6
5
4
LTSH  
R
3
2
CKMF  
R
1
CSRF  
R
0
CERF  
R
Reserved  
R/W  
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 88. Register 95 (0x5F) Field Descriptions  
Bit  
7-5  
4
Field  
Type  
R/W  
R
Reset  
Description  
Reserved  
LTSH  
0
Reserved  
Latched Clock Halt – This bit indicates whether MCLK halt has occurred. The bit is  
cleared when read.  
0: MCLK halt has not occurred  
1: MCLK halt has occurred since last read  
3
2
Reserved  
CKMF  
R/W  
R
0
Reserved  
Clock Missing – This bit indicates whether the LRCLK and SCLK are missing (tied low).  
0: LRCLK and/or SCLK is present  
1: LRCLK and SCLK are missing  
1
0
CSRF  
CERF  
R
R
Clock Resync Request – This bit indicates whether the clock resynchronization is in  
progress.  
0: Not resynchronizing  
1: Clock resynchronization is in progress  
Clock Error – This bit indicates whether a clock error has occurred. The bit is cleared  
when read  
0: Clock error has not occurred  
1: Clock error has occurred.  
114  
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
13.1.60 Register 108 (0x6C)  
Figure 152. Register 108 (0x6C)  
7
6
5
4
3
2
1
AMLM  
R
0
AMRM  
R
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 89. Register 108 (0x6C) Field Descriptions  
Bit  
7-2  
1
Field  
Type  
R/W  
R
Reset  
Description  
Reserved  
AMLM  
0
Reserved  
Left Analog Mute Monitor – This bit is a monitor for left channel analog mute status.  
0: Mute  
1: Unmute  
0
AMRM  
R
Right Analog Mute Monitor – This bit is a monitor for right channel analog mute status.  
0: Mute  
1: Unmute  
13.1.61 Register 119 (0x77)  
Figure 153. Register 119 (0x77)  
7
6
5
GPIN2  
R
4
MUTE  
R
3
GPIN0  
R
2
Reserved  
R
1
Reserved  
R
0
Reserved  
R
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 90. Register 119 (0x77) Field Descriptions  
Bit  
7-6  
5
Field  
Type  
R/W  
RO  
Reset  
Description  
Reserved  
GPIN2  
0
Reserved  
GPIO Input States – This bit indicates the logic level at GPIO2 pin.  
0: Low  
1: High  
4
3
2
1
0
MUTE  
GPIN0  
RO  
RO  
RO  
RO  
RO  
This bit indicates the logic level at MUTE pin.  
0: Low  
1: High  
This bit indicates the logic level at GPIO0 pin.  
0: Low  
1: High  
N/A  
0: Low  
1: High  
N/A  
0: Low  
1: High  
N/A  
0: Low  
1: High  
13.1.62 Register 120 (0x78)  
Copyright © 2016–2017, Texas Instruments Incorporated  
115  
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
Figure 154. Register 120 (0x78)  
7
6
5
4
AMFL  
R
3
2
1
0
AMFR  
R
Reserved  
R/W  
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 91. Register 120 (0x78) Field Descriptions  
Bit  
7-5  
4
Field  
Type  
R/W  
R
Reset  
Description  
Reserved  
AMFL  
0
Reserved  
Auto Mute Flag for Left Channel – This bit indicates the auto mute status for left  
channel.  
0: Not auto muted  
1: Auto muted  
3-1  
0
Reserved  
AMFR  
R/W  
R
0
Reserved  
Auto Mute Flag for Right Channel – This bit indicates the auto mute status for right  
channel.  
0: Not auto muted  
1: Auto muted  
13.2 Registers - Page 1  
13.2.1 Register 1 (0x01)  
Figure 155. Register 1 (0x01)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
OSEL  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 92. Register 1 (0x01) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
Reserved  
R/W  
0
Reserved  
Output Amplitude Type - This bit selects the output amplitude type. The clock autoset  
feature will not work with PLL enabled in VCOM mode.  
In this case this feature has to be disabled via P0-R37 and the clock dividers must be  
set manually.  
0
OSEL  
R/W  
0
0: VREF mode (Constant output amplitude against AVDD variation)  
1: VCOM mode (Output amplitude is proportional to AVDD variation)  
13.2.2 Register 2 (0x02)  
Figure 156. Register 2 (0x02)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
LAGN  
R/W  
Reserved  
R/W  
RAGN  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 93. Register 2 (0x02) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
Reserved  
R/W  
0
Reserved  
Analog Gain Control for Left Channel - This bit controls the left channel analog gain.  
4
LAGN  
R/W  
R/W  
0
0
0: 0 dB  
1: -6 dB  
3-1  
Reserved  
Reserved  
116  
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
Table 93. Register 2 (0x02) Field Descriptions (continued)  
Bit  
Field  
RAGN  
Type  
Reset  
Description  
Analog Gain Control for Right Channel - This bit controls the right channel analog gain.  
0: 0 dB  
0
R/W  
0
1: -6 dB  
13.2.3 Register 6 (0x06)  
Figure 157. Register 6 (0x06)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
AMCT  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 94. Register 6 (0x06) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
Reserved  
R/W  
0
Reserved  
Analog Mute Control -This bit enables or disables analog mute following digital mute.  
0
AMCT  
R/W  
1
0: Disabled  
1: Enabled  
Copyright © 2016–2017, Texas Instruments Incorporated  
117  
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
13.2.4 Register 7 (0x07)  
Figure 158. Register 7 (0x07)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
AGBL  
R/W  
Reserved  
R/W  
AGBR  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 95. Register 7 (0x07) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
Reserved  
R/W  
0
Reserved  
Analog +10% Gain for Left Channel - This bit enables or disables amplitude boost  
mode for left channel.  
0: Normal amplitude  
4
3-1  
0
AGBL  
R/W  
R/W  
R/W  
0
0
0
1: +10% (+0.8 dB) boosted amplitude  
Reserved  
AGBR  
Reserved  
Analog +10% Gain for Right Channel - This bit enables or disables amplitude boost  
mode for right channel.  
0: Normal amplitude  
1: +10% (+0.8 dB) boosted amplitude  
118  
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
13.2.5 Register 9 (0x09)  
Figure 159. Register 9 (0x09)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
DEME  
R/W  
VCPD  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 96. Register 9 (0x09) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
Reserved  
R/W  
0
Reserved  
VCOM Pin as De-emphasis Control - This bit controls whether to use the  
DEEMP/VCOM pin as De-emphasis control.  
0: Disabled (DEEMP/VCOM is not used to control De-emphasis)  
1: Enabled (DEEMP/VCOM is used to control De-emphasis)  
1
0
DEME  
VCPD  
R/W  
R/W  
0
1
Power down control for VCOM - This bit controls VCOM powerdown switch.  
0: VCOM is powered on  
1: VCOM is powered down  
版权 © 2016–2017, Texas Instruments Incorporated  
119  
TAS5782M  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
www.ti.com.cn  
14 器件和文档支持  
14.1 器件支持  
14.1.1 器件命名规则  
Glossary部分列出的术语是根据多项德州仪器  
(TI)  
计划定义的通用术语(包括常用的缩写和单词),符合  
JEDECIPCIEEE 等行业标准。本部分提供的术语定义了特定于本产品和文档、附属产品、或本产品使用的支  
持工具和软件的单词、短语和缩写。如对定义和术语有其他疑问,请访问e2e 音频放大器论坛。  
桥接负载 (BTL) 是一种输出配置,其中扬声器的两端分别连接一个半桥。  
DUT 是指被测器件,用于区分其他器件。  
闭环架构是一种拓扑结构,其中放大器监视输出引脚、对比输出信号与输入信号,并尝试修正输出信号的非线性。  
动态控件是指系统或最终用户在正常使用时可更改的控件。  
GPIO 是通用输入/输出引脚。该引脚是一个高度可配置的双向数字引脚,可执行系统所需的多种功能。  
主机处理器(也称系统处理器、标量、主机或系统控制器)是指用作中央系统控制器的器件,可为其连接的器件提  
供控制信息,从其上游器件采集音频源数据后分配给其他器件。该器件通常配置音频路径中音频处理器件(如  
TAS5782M)的控件,从而根据频率响应、时间校准、目标声压级、系统安全工作区域和用户偏好优化扬声器的音  
频输出。  
HybridFlow 通过搭配使用 RAM 内置的元件和 ROM 内置的元件构成一款可配置器件,与完全可编程器件相比更  
加易于使用,而且还能保持足够的灵活性以适应多种 应用  
最大持续输出功率是指放大器在 25°C 工作环境温度下可持续(不关断)提供的最大输出功率。测试该参数时,当  
放大器温度达到热平衡点并且不再升高时停止测试  
并行桥接负载 (PBTL) 是一种输出配置,其中扬声器的两端分别连接一对并行放置的半桥。  
rDS(on) 是指放大器输出级中所用 MOSFET 的导通电阻。  
静态控制/静态配置是指系统正常使用时不发生变化的控件。  
过孔是指 PCB 中的镀铜通孔。  
14.1.2 开发支持  
有关 RDGUI 软件,请咨询当地的现场支持工程师。  
14.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
120  
版权 © 2016–2017, Texas Instruments Incorporated  
TAS5782M  
www.ti.com.cn  
ZHCSGH3A MARCH 2016REVISED JULY 2017  
14.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
14.4 商标  
Burr-Brown, PowerPAD, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
14.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
14.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
15 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请参阅左侧的导航栏。  
版权 © 2016–2017, Texas Instruments Incorporated  
121  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TAS5782MDCA  
ACTIVE  
HTSSOP  
HTSSOP  
DCA  
48  
48  
40  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-25 to 85  
-25 to 85  
BURR-BROWN  
TAS5782M  
TAS5782MDCAR  
ACTIVE  
DCA  
2000 RoHS & Green  
NIPDAU  
BURR-BROWN  
TAS5782M  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
DCA 48  
12.5 x 6.1, 0.5 mm pitch  
HTSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224608/A  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TAS5805M

具有处理功能的 23W 立体声、45W 单声道、4.5V 至 26.4V 电源电压、数字输入 D 类音频放大器
TI

TAS5805MPWP

具有处理功能的 23W 立体声、45W 单声道、4.5V 至 26.4V 电源电压、数字输入 D 类音频放大器 | PWP | 28 | -25 to 85
TI

TAS5805MPWPR

具有处理功能的 23W 立体声、45W 单声道、4.5V 至 26.4V 电源电压、数字输入 D 类音频放大器 | PWP | 28 | -25 to 85
TI

TAS5806M

TAS5822M 35-W, Digital Input, Stereo, Closed-Loop Class-D Audio Amplifier with 96kHz Enhanced Processing
TI

TAS5806MD

具有处理功能和 P2P HP 的 23W 立体声、45W 单声道、4.5V 至 26.4V、数字输入 D 类音频放大器
TI

TAS5806MDCPR

23-W, Inductor-Less, Digital Input, Stereo, Closed-Loop Class-D Audio Amplifier with Enhanced Processing and Low Power Dissipation
TI

TAS5806MDDCPR

具有处理功能和 P2P HP 的 23W 立体声、45W 单声道、4.5V 至 26.4V、数字输入 D 类音频放大器 | DCP | 38 | -25 to 85
TI

TAS5822M

TAS5822M 35-W, Digital Input, Stereo, Closed-Loop Class-D Audio Amplifier with 96kHz Enhanced Processing
TI

TAS5822MDCPR

TAS5822M 35-W, Digital Input, Stereo, Closed-Loop Class-D Audio Amplifier with 96kHz Enhanced Processing
TI

TAS5825M

具有 192kHz 架构的 38W 立体声、65W 单声道、4.5V 至 26V、数字输入 D 类智能音频放大器
TI

TAS5825MRHBR

具有 192kHz 架构的 38W 立体声、65W 单声道、4.5V 至 26V、数字输入 D 类智能音频放大器 | RHB | 32 | -25 to 85
TI

TAS5825MRHBT

具有 192kHz 架构的 38W 立体声、65W 单声道、4.5V 至 26V、数字输入 D 类智能音频放大器 | RHB | 32 | -25 to 85
TI