TAS2553YFFT [TI]

具有 I/V 感应扬声器保护和集成 7.5V 升压的 2.8W 数字/模拟输入智能放大器 | YFF | 30 | -40 to 85;
TAS2553YFFT
型号: TAS2553YFFT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 I/V 感应扬声器保护和集成 7.5V 升压的 2.8W 数字/模拟输入智能放大器 | YFF | 30 | -40 to 85

放大器
文件: 总60页 (文件大小:1934K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TAS2553  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
TAS2553 2.8W D 类单声道音频放大器,支持 G 类升压和扬声器感测  
1 特性  
3 说明  
1
模拟或数字输入单声道升压 D 类放大器  
TAS2553 是一款高效 D 类音频功率放大器,此放大器  
具有高级电池电流管理功能和集成 G 类升压转换器。  
此器件持续测量负载上的电流和电压,并且提供此类信  
息的数字流。  
8Ω 负载提供 2.8 W 功率,供电方式为 3.6 V 电  
源(1% 总谐波失真 (THD) + N)  
额定功率下,效率达到 86%  
I2S,左侧对齐,右侧对齐,数字信号处理器  
(DSP),脉冲密度调制 (PDM),以及时分复用  
(TDM) 输入和输出接口  
G 类升压转换器生成 D 类放大器电源轨。 低 D 类输  
出功率期间,此升压转换器通过使 VBAT 无效并将其  
直接接至 D 类放大器电源来提升效率。 当需要高功率  
音频时,升压转换器快速激活,以提供比直接接至电池  
的单独放大器高很多的音频。  
输入采样速率从 8kHz 192kHz  
高效 G 类升压转换器  
自动调节 D 类电源  
内置扬声器感测  
AGC 自动调节 D 类增益,以减少充电结束电压上的电  
池电流,从而防止输出削波、失真和早期系统关断。  
通过 I2C 调节固定增益。 增益范围介于 -7dB 至  
+24dB 之间(步长 1dB)。  
测量扬声器电流和电压  
测量 VBAT VBOOST 电压  
内置自动增益控制 (AGC)  
限制电池流耗  
除了差分单声道模拟输入,TAS2553 具有使用数字输  
入的内置 16 位数模 (D/A) 转换器。 将 D/A 转换器从  
数字主机处理器移至集成放大器的工艺能够以更低的系  
统成本提供更佳的动态性能。 此外,由于印刷电路板  
(PCB) 传输的是数字信号而非模拟信号,所以系统级  
上对于外部干扰(例如 GSM 帧速率噪声)的敏感度被  
减少。  
可调 D 类开关边缘速率控制  
电源  
升压输入:3.0V 5.5V  
模拟:1.65V 1.95V  
数字 I/O1.5V 3.6V  
过热和短路保护  
用于寄存器控制的 I2C 接口  
使用两个 TAS2553 的立体声配置  
器件信息  
I2C 地址选择端子 (ADDR)  
订货编号  
封装  
封装尺寸  
2.855mm x 2.575mm0.4mm 焊球间距,30 焊球  
晶圆级芯片封装 (WCSP)  
TAS2553YFF  
WCSP (30)  
2.855mm x 2.575mm  
2.2 uH  
2 应用范围  
VBAT  
2
SW  
10 nF  
移动电话  
VREG  
+
-
便携式导航设备 (PND)  
便携式音频底座  
平板电脑  
Audio  
Input  
VBOOST  
PVDD  
22 uF  
PDM CLK  
游戏设备  
TAS2553  
Ferrite bead  
(opt.)  
MCLK  
I2S  
OUT+  
+
To  
OUT-  
Speaker  
-
4
Ferrite bead  
(opt.)  
I2C  
VSENSE+  
VSENSE-  
3
Enable  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SLAS978  
 
 
TAS2553  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
www.ti.com.cn  
目录  
7.5 Register Map........................................................... 31  
Applications and Implementation ...................... 42  
8.1 Application Information............................................ 42  
8.2 Typical Applications ................................................ 42  
8.3 Initialization ............................................................. 46  
Power Supply Recommendations...................... 47  
9.1 Power Supplies ....................................................... 47  
9.2 Power Supply Sequencing...................................... 47  
9.3 Boost Supply Details............................................... 47  
1
2
3
4
5
6
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Terminal Configuration and Functions................ 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 Handling Ratings....................................................... 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Timing Requirements/Timing Diagrams.................... 8  
6.7 Typical Characteristics.............................................. 9  
Detailed Description ............................................ 13  
7.1 Overview ................................................................. 13  
7.2 Functional Block Diagram ....................................... 13  
7.3 Feature Description................................................. 14  
7.4 Device Functional Modes........................................ 20  
8
9
10 Layout................................................................... 48  
10.1 Layout Guidelines ................................................. 48  
10.2 Layout Example .................................................... 49  
10.3 Package Dimensions ............................................ 50  
11 器件和文档支持 ..................................................... 51  
11.1 Trademarks........................................................... 51  
11.2 Electrostatic Discharge Caution............................ 51  
11.3 Glossary................................................................ 51  
12 机械封装和可订购信息 .......................................... 52  
7
4 修订历史记录  
Changes from Revision A (October 2013) to Revision B  
Page  
已更改 数据表格.................................................................................................................................................................. 1  
Changes from Original (September 2013) to Revision A  
Page  
Changed Register 0x16[3:0] from 0111 to 1000 ................................................................................................................. 40  
2
Copyright © 2013–2014, Texas Instruments Incorporated  
 
TAS2553  
www.ti.com.cn  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
5 Terminal Configuration and Functions  
30-Ball WCSP  
YFF Package  
(Top View)  
F5  
F4  
F3  
F2  
EN  
F1  
MCLK  
BCLK  
WCLK  
IOVDD  
E5  
E4  
E3  
E2  
E1  
SCL  
IVCLKIN  
DOUT  
AIN+  
AVDD  
D5  
D4  
D3  
D2  
D1  
SDA  
ADDR  
DIN  
AIN-  
VBAT  
C5  
C4  
C3  
C2  
C1  
PGND  
PGND  
VREG  
AGND  
AGND  
B5  
B4  
B3  
B2  
B1  
SW  
SW  
VSENSE+ VSENSE-  
BIAS  
A5  
A4  
A3  
A2  
A1  
VBOOST  
PVDD  
OUT+  
OUT-  
PGND  
Terminal Functions  
TERMINAL  
BALL WCSP  
INPUT/OUTPUT/  
DESCRIPTION  
POWER  
NAME  
PGND  
OUT–  
OUT+  
PVDD  
A1  
A2  
A3  
A4  
P
O
O
P
Power ground. Connect to high current ground plane.  
Inverting Class D output.  
Non-inverting Class D output.  
Class-D power supply. Connected internally to VBOOST – do not drive this terminal  
externally.  
VBOOST  
A5  
P
7.5 V boost output. Connected internally to PVDD – do not drive this terminal  
externally.  
BIAS  
B1  
B2  
O
I
Mid-rail reference for Class D channel.  
Inverting voltage sense input.  
VSENSE–  
VSENSE+  
SW  
B3  
I
Non-inverting voltage sense input.  
B4,B5  
C1,C2  
C3  
I/O  
P
O
P
P
I
Boost switch terminal.  
AGND  
VREG  
PGND  
VBAT  
AIN–  
Analog ground. Connect to low noise ground plane.  
High-side FET gate drive boost converter.  
Power ground. Connect to high current ground plane.  
Battery power supply. Connect to 3.0 V to 5.5 V battery supply.  
Inverting analog input.  
C4,C5  
D1  
D2  
DIN  
D3  
I
Audio serial data input. Format is I2S, LJF, RJF, or TDM data.  
I2C address select terminal. Set ADDR = GND for device 7-bit address 0x40; set  
ADDR = IOVDD for 7-bit address 0x41.  
ADDR  
D4  
I
SDA  
D5  
E1  
E2  
E3  
E4  
E5  
F2  
F3  
I/O  
I2C control bus data.  
AVDD  
AIN+  
P
I
Analog low voltage supply terminal. Connect to 1.65 V to 1.95 V supply.  
Non-inverting analog input.  
DOUT  
IVCLKIN  
SCL  
O
I
Serial I/V digital output. Format is I2S, LJF, RJF, TDM, or undecimated PDM data.  
Serial clock input for undecimated PDM I/V data.  
I2C control bus clock.  
I
EN  
I
Device enable (HIGH = Normal Operation, LOW = Standby)  
Audio serial word clock.  
WCLK  
I
Copyright © 2013–2014, Texas Instruments Incorporated  
3
TAS2553  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
www.ti.com.cn  
Terminal Functions (continued)  
TERMINAL  
BALL WCSP  
INPUT/OUTPUT/  
POWER  
DESCRIPTION  
NAME  
BCLK  
F4  
F5  
F1  
I
I
Audio serial bit clock.  
External master clock.  
MCLK  
IOVDD  
P
Supply for digital input and output levels. Voltage range is 1.5 V to 3.6 V.  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range, TA = 25°C (unless otherwise noted)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
MAX UNIT  
VBAT  
AVDD  
IOVDD  
Battery voltage  
6.0  
2.5  
V
V
Analog supply voltage  
I/O Supply voltage  
3.9  
V
AIN+, AIN– Analog input voltage  
Digital input voltage  
AVDD + 0.3  
IOVDD + 0.3  
V
V
Output continuous total power dissipation  
See Thermal Information  
NA  
6.2 Handling Ratings  
PARAMETER  
DEFINITION  
MIN  
MAX UNIT  
Tstg  
Storage temperature range  
–65  
150  
3000  
1500  
°C  
HBM  
CDM  
ESD  
V
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX UNIT  
VBAT  
AVDD  
Battery voltage  
3.0  
1.65  
1.5  
5.5  
1.95  
3.6  
V
V
Analog supply voltage  
1.8  
1.8  
IOVDD I/O supply voltage  
V
TA  
TJ  
Operating free-air temperature  
Operating junction temperature  
–40  
–40  
85  
°C  
°C  
150  
6.4 Thermal Information  
TAS2553  
THERMAL METRIC(1)  
UNIT  
YFF (30 TERMINALS)  
θJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
76.5  
0.2  
θJCtop  
θJB  
44.0  
1.6  
°C/W  
ψJT  
ψJB  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
43.4  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Copyright © 2013–2014, Texas Instruments Incorporated  
 
TAS2553  
www.ti.com.cn  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
6.5 Electrical Characteristics  
VBAT = 3.6 V, AVDD = IOVDD = 1.8 V, EN = IOVDD, SWS = 0, Gain = 15 dB, ERC = 14 ns, RL = 8 Ω + 33 µH, 48 kHz  
sample rate for digital input (unless otherwise noted)  
PARAMETER  
BOOST CONVERTER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Average voltage (w/o including ripple).  
Includes load regulation (0-0.6A) and line  
regulation (VBAT = 3.0 – 4.8V).  
Boost Output Voltage  
7.5  
1.8  
V
Boost Converter Switching Frequency  
MHz  
CLASS-D CHANNEL  
Max Analog Input  
For THD+N < 1%  
1
1
VRMS  
VRMS  
Full-Scale DAC Output  
All digital interface modes  
Load Resistance (Load Spec  
Reisistance)  
6
8
764  
Ω
Class-D Frequency  
kHz  
VBAT = 3.0 – 4.8 V, Pout = 1 W  
(sinewave)  
Class-D + Boost Efficiency  
67%  
Class-D Output Current Limit (Short  
Circuit Protection)  
VBOOST = 7.5 V, OUT– shorted to VBAT  
or VBOOST  
3.7  
A
VBAT = 3.6 V, AV = 15 dB, RL = 8 Ω,  
input shorted to ground through single  
capacitor  
Class-D Output Offset Voltage in  
Analog Input Mode  
-7.4  
-9.8  
4.6  
5.6  
mV  
Class-D Output Offset Voltage in  
Digital Input Mode  
VBAT = 3.6 V, AV = 15 dB, RL =8 Ω, 0's  
data  
mV  
dB  
dB  
Programmable Channel Gain Range  
(PGA + class-D), minimum  
Typical value, analog and digital input  
Typical value, analog and digital input  
-7  
Programmable Channel Gain Range  
(PGA + class-D), maximum  
24  
Programmable Channel Gain Step  
(PGA + class-D)  
Typical value, analog and digital input  
Device in shutdown, digital input only  
1
103  
63  
dB  
dB  
Mute Attenuation  
Ripple of 200mVpp @ 217 Hz, Gain = 15  
dB, analog and digital input  
VBAT Power Supply Rejection Ratio  
(PSRR)  
Ripple of 200mVpp @ 1 kHz, Gain = 15  
dB, analog and digital input  
60  
60  
dB  
Ripple of 200mVpp @ 4 kHz, Gain = 15  
dB, analog and digital input  
Ripple of 200mVpp @ 217 Hz, Gain = 15  
dB, analog and digital input  
69  
AVDD Power Supply Rejection Ratio  
(PSRR)  
Ripple of 200mVpp @ 1 kHz, Gain = 15  
dB, analog and digital input  
67  
dB  
dB  
Ripple of 200mVpp @ 4 kHz, Gain = 15  
dB, analog and digital input  
62  
Ripple of 200mVpp @ 217 Hz, Gain = 15  
dB, analog input  
Common Mode Rejection Ratio  
59  
1 kHz, Po = 0.1W, VBAT = 3.6 V,  
RL = 8 Ω  
0.6%  
0.7%  
1 kHz, Po = 0.5W, VBAT = 3.6 V,  
RL = 8 Ω  
THD+N  
1 kHz, Po = 1 W, VBAT = 3.6 V, RL = 8 Ω  
1 kHz, Po = 2 W, VBAT = 3.6 V, RL = 8 Ω  
0.9%  
1.3%  
A-wt Filter, Gain = 15 dB, DAC modulator  
switching  
131%  
173%  
Output Integrated Noise (20Hz-20kHz)  
- 8Ω  
µV  
A-wt Filter, Gain = 15 dB, Analog In,  
Inputs shorted  
Copyright © 2013–2014, Texas Instruments Incorporated  
5
TAS2553  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
www.ti.com.cn  
Electrical Characteristics (continued)  
VBAT = 3.6 V, AVDD = IOVDD = 1.8 V, EN = IOVDD, SWS = 0, Gain = 15 dB, ERC = 14 ns, RL = 8 Ω + 33 µH, 48 kHz  
sample rate for digital input (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
THD+N = 1%, VBAT = 3.0 V  
THD+N = 1%, VBAT = 3.6 V  
EN = 0 V  
MIN  
TYP  
2.8  
2.8  
10  
MAX  
UNIT  
W
Max Output Power, 8-Ω Load  
Output Impedance in Shutdown  
kΩ  
Analog/digital input measured from time  
when device is taken out of software  
shutdown  
Startup Time  
8
1
mS  
µS  
Measured from time when device is  
programmed in software shutdown mode  
Shutdown Time  
INPUT SECTION  
Full-scale DAC output  
All digital interface modes  
1.0  
1.0  
10  
VRMS  
VRMS  
Maximum analog input voltage  
EN = IOVDD, Amplifier active  
EN = 0 V, In shutdown  
Input impedance (terminals AIN+,  
AIN-)  
RIN  
kΩ  
19  
CURRENT SENSE  
Current Sense Full Scale  
Peak current which will give full scale  
digital output  
1.4  
APEAK  
Current Sense Accuracy  
Current Sense Offset  
Current Sense Gain Error  
Distortion + Noise  
IOUT = 354 mARMS (1 W)  
Input referred  
1%  
0.0029  
0.09  
mA  
dB  
THD+N  
Po = 1.0W (Load = 8Ω + 33 µH)  
0.17%  
VOLTAGE SENSE  
Peak voltage which will give full scale  
digital output  
Voltage Sense Full Scale  
8.5  
VPEAK  
Voltage Sense Accuracy  
Voltage Sense Offset  
Voltage Sense Gain Error  
Distortion + Noise  
VOUT = 2.83 Vrms (1W)  
Input referred  
2.2%  
1.45  
mV  
dB  
-0.20  
0.08%  
THD+N  
INTERFACE  
FMCLK MCLK frequency  
FPDM  
Po = 1.0 W (Load = 8Ω + 33μH)  
0.512  
1.636  
49.15  
3.25  
MHz  
MHz  
PDM Clock (IVCLK) Frequency Range  
PDM Clock (IVCLK) Duty Cycle  
Range  
PDMDC  
40%  
60%  
6
Copyright © 2013–2014, Texas Instruments Incorporated  
TAS2553  
www.ti.com.cn  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
Electrical Characteristics (continued)  
VBAT = 3.6 V, AVDD = IOVDD = 1.8 V, EN = IOVDD, SWS = 0, Gain = 15 dB, ERC = 14 ns, RL = 8 Ω + 33 µH, 48 kHz  
sample rate for digital input (unless otherwise noted)  
PARAMETER  
POWER CONSUMPTION  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
From VBAT, PLL off, no signal  
From AVDD, PLL off, no signal  
From IOVDD, PLL off, no signal  
From VBAT, PLL off, no signal  
From AVDD, PLL off, no signal  
From IOVDD, PLL off, no signal  
From VBAT, PLL on, no signal  
From AVDD, PLL on, no signal  
From IOVDD, PLL on, no signal  
From VBAT, PLL on, no signal  
From AVDD, PLL on, no signal  
From IOVDD, PLL on, no signal  
From VBAT, EN = 0  
7.10  
3.73  
0.04  
7.31  
4.05  
0.32  
5.84  
7.10  
0.32  
7.32  
8.03  
0.32  
0.1  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
Power Consumption with Analog Input  
and IV Sense Disabled  
Power Consumption with Digital Input  
and IV Sense Disabled  
Power Consumption with Analog Input  
and IV Sense Enabled  
Power Consumption with Digital Input  
and IV Sense Enabled  
Power Consumption in Hardware  
Shutdown  
From AVDD, EN = 0  
0.2  
µA  
From IOVDD, EN = 0  
0.0  
µA  
From VBAT  
11.4  
9.1  
µA  
Power Consumption in Software  
Shutdown  
From AVDD  
µA  
From IOVDD  
130  
µA  
DIGITAL INPUT / OUTPUT  
0.7 x  
IOVDD  
VIH  
VIL  
High-level digital input voltage  
Low-level digital input voltage  
High-level digital output voltage  
Low-level digital output voltage  
V
V
V
V
0.3 x  
IOVDD  
0.9 x  
IOVDD  
VOH  
VOL  
0.1 x  
IOVDD  
MISCELLANEOUS  
AVDD Supply Under-voltage  
Device is in reset state  
0.9  
1.8  
V
V
Threshold  
Device comes out of reset state  
Device is in reset state  
1.4  
2.5  
VBAT Supply Under-voltage  
Threshold  
Device comes out of reset state  
Copyright © 2013–2014, Texas Instruments Incorporated  
7
TAS2553  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
www.ti.com.cn  
6.6 Timing Requirements/Timing Diagrams  
For I2C interface signals over recommended operating conditions (unless otherwise noted). Note: All timing specifications are  
measured at characterization but not tested at final test.  
PARAMETER  
Frequency, SCL  
TEST CONDITIONS  
No wait states  
MIN  
TYP  
MAX  
UNIT  
kHz  
µs  
fSCL  
tW(H)  
tW(L)  
tsu1  
400  
Pulse duration, SCL high  
Pulse duration, SCL low  
Setup time, SDA to SCL  
Hold time, SCL to SDA  
0.6  
1.3  
100  
10  
µs  
ns  
th1  
ns  
Bus free time between stop and start  
condition  
t(buf)  
1.3  
µs  
tsu2  
th2  
Setup time, SCL to start condition  
Hold time, start condition to SCL  
Setup time, SCL to stop condition  
0.6  
0.6  
0.6  
µs  
µs  
µs  
tsu3  
t
t
w(L)  
w(H)  
SCL  
t
h1  
t
su1  
SDA  
Figure 1. SCL and SDA Timing  
SCL  
th2  
t(buf)  
tsu2  
tsu3  
SDA  
Start Condition  
Stop Condition  
Figure 2. Start and Stop Conditions Timing  
8
Copyright © 2013–2014, Texas Instruments Incorporated  
TAS2553  
www.ti.com.cn  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
6.7 Typical Characteristics  
VBAT = 3.6 V, AVDD = IOVDD = 1.8 V, EN = IOVDD, SWS = 0, RL = 8 Ω + 33 µH (unless otherwise noted).  
100  
10  
100  
10  
VBAT = 3.0 V  
VBAT = 3.6 V  
VBAT = 4.2 V  
VBAT = 5.0 V  
VBAT = 5.5 V  
VBAT = 3.0 V  
VBAT = 3.6 V  
VBAT = 4.2 V  
VBAT = 5.0 V  
VBAT = 5.5 V  
1
1
0.1  
0.01  
0.1  
0.01  
0.0001  
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
PO - Output Power - W  
PO - Output Power - W  
C004  
C024  
AGC = OFF, Gain = 15 dB  
AGC = OFF, Gain = 15 dB  
Figure 3. THD+N vs Output Power (8Ω) for Digital Input  
Figure 4. THD+N vs Output Power (6Ω) for Digital Input  
1
100  
VBAT = 5.5 V  
VBAT = 5.5 V  
VBAT = 5.0 V  
VBAT = 4.2 V  
VBAT = 3.6 V  
VBAT = 3.0 V  
VBAT = 5.0 V  
10  
1
VBAT = 4.2 V  
VBAT = 3.6 V  
VBAT = 3.0 V  
0.1  
0.1  
0.01  
0.01  
20  
200  
2000  
20000  
0.001  
0.01  
0.1  
1
f - Frequency - Hz  
PO - Output Power - W  
C005  
C006  
AGC = OFF, Gain = 15 dB, Pout = 1 W  
AGC = OFF, Gain = 15 dB, f = 1 kHz  
Figure 5. THD+N vs Frequency (8Ω) for Digital Input  
Figure 6. THD+N vs Output Power (8Ω) for Analog Input  
1
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.1  
VBAT = 5.5 V  
VBAT = 5.0 V  
VBAT = 4.2 V  
VBAT = 3.6 V  
VBAT = 3.0 V  
0.01  
THD + N = 1%  
THD + N = 10%  
0.5  
0.0  
0.001  
20  
200  
2000  
f - Frequency - Hz  
20000  
2.5  
3
3.5  
4
4.5  
5
5.5  
VBAT - Supply Voltage - V  
C007  
C008  
AGC = OFF, Gain = 15 dB  
AGC = OFF, Gain = 15 dB, f = 1 kHz  
Figure 7. THD+N vs Frequency (8Ω) for Analog Input  
Figure 8. Output Power for 1% and 10% THD+N vs Supply  
Voltage (8Ω)  
Copyright © 2013–2014, Texas Instruments Incorporated  
9
TAS2553  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
www.ti.com.cn  
Typical Characteristics (continued)  
VBAT = 3.6 V, AVDD = IOVDD = 1.8 V, EN = IOVDD, SWS = 0, RL = 8 Ω + 33 µH (unless otherwise noted).  
100  
80  
60  
40  
20  
0
10.000  
1.000  
0.100  
0.010  
0.001  
APT Transition  
VBAT = 5.5 V  
VBAT = 5.0V  
VBAT = 4.2 V  
VBAT = 3.6 V  
VBAT = 3.0 V  
VBAT = 5.5 V  
VBAT = 5.0 V  
VBAT = 4.2 V  
VBAT = 3.6 V  
VBAT = 3.0 V  
0.01  
0.1  
1
0.001  
0.010  
0.100  
1.000  
PO - Total Output Power - W  
PO - Total Output Power - W  
C010  
C009  
AGC = OFF, Gain = 15 dB, f = 1 kHz  
AGC = OFF, Gain = 15 dB, f = 1 kHz  
Figure 10. Total Efficiency vs Output Power (8Ω)  
Figure 9. VBAT Average Supply Current vs Class-D Output  
Power (8Ω)  
0.010  
0.008  
0.006  
0.004  
0
±20  
VBAT = 5.5 V  
VBAT = 5.0 V  
VBAT = 4.2 V  
VBAT = 3.6 V  
VBAT = 3.0 V  
±40  
±60  
0.002  
±80  
AGC = ON  
AGC = OFF  
0.000  
±100  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
20  
200  
2000  
20000  
VBAT - Supply Voltage - V  
f - Frequency - Hz  
C011  
C012  
VBAT = 3.0, 3.6, 4.2, 5.0, 5.5 V  
20 Hz to 20 kHz, Analog Input, Gain = 15 dB  
Figure 11. VBAT Quiescent Supply Current vs Supply  
Voltage  
Figure 12. Common Mode Rejection vs Frequency  
0
0
VBAT = 5.5 V  
VBAT = 5.0 V  
VBAT = 4.2 V  
VBAT = 3.6 V  
VBAT = 3.0 V  
-20  
-40  
-60  
-80  
±20  
±40  
±60  
±80  
AVDD = 1.8 V  
2000 20000  
20  
200  
f - Frequency - Hz  
20  
200  
2000  
20000  
f - Frequency - Hz  
C014  
C013  
20 Hz to 20 kHz, Digital Input, AVDD = 1.8 V  
20 Hz to 20 kHz, Digital Input, Gain = 15 dB  
Figure 14. AVDD Supply Ripple Rejection vs Frequency  
Figure 13. VBAT Supply Ripple Rejection vs Frequency  
10  
Copyright © 2013–2014, Texas Instruments Incorporated  
TAS2553  
www.ti.com.cn  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
Typical Characteristics (continued)  
VBAT = 3.6 V, AVDD = IOVDD = 1.8 V, EN = IOVDD, SWS = 0, RL = 8 Ω + 33 µH (unless otherwise noted).  
100  
100  
10  
10  
1
1
VBAT = 5.5 V  
VBAT = 4.2 V  
VBAT = 3.6 V  
VBAT = 3.0 V  
VBAT = 5.5 V  
VBAT = 4.2 V  
VBAT = 3.6 V  
VBAT = 3.0 V  
0.1  
0.01  
0.1  
0.01  
0.001  
0.01  
0.1  
PO - Output Power - W  
1
10  
0.001  
0.01  
0.1  
PO - Output Power - W  
1
10  
C015  
C025  
AGC = OFF, Gain = 15 dB  
AGC = OFF, Gain = 15 dB  
Figure 15. I-Sense THD+N vs Output Power (8Ω)  
Figure 16. I-Sense THD+N vs Output Power (6Ω)  
100.000  
±15  
±20  
±25  
±30  
10.000  
1.000  
0.100  
0.010  
0.001  
VBAT = 5.5 V  
VBAT = 5.0 V  
VBAT = 4.2 V  
VBAT = 3.6 V  
VBAT = 3.0 V  
VBAT = 5.5 V  
VBAT = 5.0 V  
VBAT = 4.2 V  
VBAT = 3.6 V  
VBAT = 3.0 V  
0.001  
0.010  
0.100  
PO - Output Power - W  
1.000  
10.000  
20  
200  
2000  
20000  
f - Frequency - Hz  
C017  
C016  
AGC = OFF, Input Level = -20 dBFS, Gain = 15 dB  
8 Ω Load, AGC = OFF, Gain = 15 dB  
Figure 18. V-Sense THD+N vs. Output Power (8Ω)  
Figure 17. I-Sense THD+N vs Frequency (8Ω)  
100.000  
10.000  
1.000  
±15  
±20  
VBAT = 5.5 V  
VBAT = 5.0 V  
VBAT = 4.2 V  
VBAT = 3.6 V  
VBAT = 3.0 V  
VBAT = 5.5 V  
VBAT = 5.0 V  
VBAT = 4.2 V  
VBAT = 3.6 V  
VBAT = 3.0 V  
0.100  
0.010  
0.001  
±25  
0.001  
0.010  
0.100  
1.000  
10.000  
20  
200  
2000  
20000  
PO - Output Power - W  
f - Frequency - Hz  
C017  
C018  
AGC = OFF, Input Level = -20 dBFS, Gain = 15 dB  
8 Ω Load, AGC = OFF, Input Level = -20 dBFS, Gain = 15 dB  
Figure 20. V-Sense THD+N vs Frequency (8Ω)  
Figure 19. V-Sense THD+N vs. Output Power (6Ω)  
Copyright © 2013–2014, Texas Instruments Incorporated  
11  
TAS2553  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
www.ti.com.cn  
Typical Characteristics (continued)  
VBAT = 3.6 V, AVDD = IOVDD = 1.8 V, EN = IOVDD, SWS = 0, RL = 8 Ω + 33 µH (unless otherwise noted).  
16  
14  
12  
10  
8
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
AGC Inflection Point  
6
4
Battery Tracking = OFF  
Battery Tracking = ON  
AGC = OFF  
AGC = ON  
2
0
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VBAT - V  
VBAT - Voltage - V  
C023  
C021  
AGC = ON, Gain = 15 dB, f = 1 kHz, Inflection point = 3.6 V  
Limiter value = 7.87 V, Slope = 4.5 V  
f = 1 kHz, 0 dBFS Gain = 15 dB,  
Inflection point = 3.6 V, Slope = 4.5 V/V, No Load  
Figure 22. Gain vs Supply Voltage  
Figure 21. Maximum Peak Output Voltage vs. Supply  
Voltage (8Ω)  
12  
Copyright © 2013–2014, Texas Instruments Incorporated  
TAS2553  
www.ti.com.cn  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
7 Detailed Description  
7.1 Overview  
The TAS2553 is a high efficiency Class-D audio power amplifier with advanced battery current management and  
an integrated Class-G boost converter. The TAS2553 provides real-time output current and voltage information to  
the host processor via the I2S, LJF, RJF, TDM, DSP, or PDM interface. This output current and voltage  
information is useful for speaker protection and sound enhancement algorithms, allowing the host to track the  
speaker impedance and to enable usage of lower-cost, wider tolerance speakers reliably pushed to their rated  
output power and beyond.  
When auto-passthrough mode is enabled, the Class-G boost converter generates the Class-D amplifier supply  
rail. During low Class-D output power, the boost improves efficiency by deactivating and connecting VBAT  
directly to the Class-D amplifier supply. When high power audio is required, the boost quickly activates to provide  
significantly louder audio than a stand-alone amplifier connected directly to the battery.  
The battery monitor and AGC work together in the Battery Tracking AGC to automatically adjust the Class-D gain  
to reduce battery current at end-of-charge voltage levels, preventing output clipping, distortion and early system  
shutdown. The fixed gain is adjustable via I2C. The gain range is -7 dB to +24 dB in 1 dB steps.  
In addition to a differential mono analog input, the TAS2553 has built-in a 16-bit D/A converter used with a digital  
input. The digital audio interface supports I2S, Left-Justified, Right-Justified, DSP, PDM and TDM modes. Moving  
the D/A converter from the digital host processor into the integrated amplifier process provides better dynamic  
performance at lower system cost. Additionally, since the PCB routing is digital rather than analog, sensitivity to  
external perturbations such as GSM frame-rate noise is decreased at the system level.  
Stereo configuration can be achieved with two TAS2553s by using the ADDR terminal to address each TAS2553  
seperately. Set ADDR to ground to configure the device for I2C address 0x40 (7-bit). Set ADDR to IOVDD for I2C  
address 0x41 (7-bit). Refer to the General I2C Operation section for more details.  
7.2 Functional Block Diagram  
2.2 PH  
VBAT  
SW  
2
10 nF  
VREG  
Battery  
Monitor  
Boost  
Converter  
1 PF  
VBOOST  
IN+  
IN-  
+
-
Audio  
Input  
22 PF  
Oscillator  
PWM  
1 PF  
PVDD  
Ferrite bead  
(opt.)  
AVDD  
OUT+  
OUT-  
+
-
+
H-  
Bridge  
To  
Speaker  
MUX  
AGC  
AVDD  
EN  
¦
DAC  
Ferrite bead  
(opt.)  
IOVDD  
AGND  
IVCLKIN  
SDA  
Digital I/O  
& Control  
VBAT  
VBOOST  
PLL  
SCL  
ADC  
MCLK  
BCLK  
WCLK  
DIN  
VSENSE+  
VSENSE-  
I / V  
Sense  
DOUT  
Bias  
Control  
ADDR  
BIAS  
2
3
AGND  
PGND  
1 PF  
Copyright © 2013–2014, Texas Instruments Incorporated  
13  
TAS2553  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 General I2C Operation  
The TAS2553 operates as an I2C slave over the IOVDD voltage range. It is adjustable to one of two I2C  
addresses. This allows two TAS2553 devices in a system to connect to the same I2C bus.  
Set the ADDR terminal to ground to assign the device I2C address to 0x40 (7-bit). This is equivalent to 0x80 (8-  
bit) for writing and 0x81 (8-bit) for reading.  
Set ADDR to IOVDD for I2C address 0x41 (7-bit). This is equivalent to 0x82 (8-bit) for writing and 0x83 (8-bit) for  
reading.  
The I2C bus employs two signals, SDA (data) and SCL (clock), to communicate between integrated circuits in a  
system. The bus transfers data serially, one bit at a time. The address and data 8-bit bytes are transferred most-  
significant bit (MSB) first. In addition, each byte transferred on the bus is acknowledged by the receiving device  
with an acknowledge bit. Each transfer operation begins with the master device driving a start condition on the  
bus and ends with the master device driving a stop condition on the bus. The bus uses transitions on the data  
terminal (SDA) while the clock is at logic high to indicate start and stop conditions. A high-to-low transition on  
SDA indicates a start, and a low-to-high transition indicates a stop. Normal data-bit transitions must occur within  
the low time of the clock period. Figure 23 shows a typical sequence.  
The master generates the 7-bit slave address and the read/write (R/W) bit to open communication with another  
device and then waits for an acknowledge condition. The TAS2553 holds SDA low during the acknowledge clock  
period to indicate acknowledgment. When this occurs, the master transmits the next byte of the sequence. Each  
device is addressed by a unique 7-bit slave address plus R/W bit (1 byte). All compatible devices share the same  
signals via a bi-directional bus using a wired-AND connection.  
Use external pull-up resistors for the SDA and SCL signals to set the logic-high level for the bus. Use pull-up  
resistors between 660 Ω and 4.7 kΩ. Do not allow the SDA and SCL voltages to exceed the TAS2553 supply  
voltage, IOVDD.  
8- Bit Data for  
Register (N)  
8- Bit Data for  
Register (N+1)  
Figure 23. Typical I2C Sequence  
There is no limit on the number of bytes that can be transmitted between start and stop conditions. When the last  
word transfers, the master generates a stop condition to release the bus. Figure 23 shows a generic data  
transfer sequence.  
7.3.2 Single-Byte and Multiple-Byte Transfers  
The serial control interface supports both single-byte and multiple-byte read/write operations for all registers.  
During multiple-byte read operations, the TAS2553 responds with data, a byte at a time, starting at the register  
assigned, as long as the master device continues to respond with acknowledges.  
The TAS2553 supports sequential I2C addressing. For write transactions, if a register is issued followed by data  
for that register and all the remaining registers that follow, a sequential I2C write transaction has taken place. For  
I2C sequential write transactions, the register issued then serves as the starting point, and the amount of data  
subsequently transmitted, before a stop or start is transmitted, determines to how many registers are written.  
14  
Copyright © 2013–2014, Texas Instruments Incorporated  
 
 
TAS2553  
www.ti.com.cn  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
Feature Description (continued)  
7.3.3 Single-Byte Write  
As shown in Figure 24, a single-byte data-write transfer begins with the master device transmitting a start  
condition followed by the I2C device address and the read/write bit. The read/write bit determines the direction of  
the data transfer. For a write-data transfer, the read/write bit must be set to 0. After receiving the correct I2C  
device address and the read/write bit, the TAS2553 responds with an acknowledge bit. Next, the master  
transmits the register byte corresponding to the TAS2553 internal memory address being accessed. After  
receiving the register byte, the TAS2553 again responds with an acknowledge bit. Finally, the master device  
transmits a stop condition to complete the single-byte data-write transfer.  
Start  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
R/W  
ACK A7 A6 A5 A4 A3 A2 A1 A0 ACK D7 D6 D5 D4 D3 D2 D1 D0 ACK  
A6 A5 A4  
A3 A2 A1 A0  
Stop  
2
I C Device Address and  
Read/Write Bit  
Register  
Data Byte  
Condition  
Figure 24. Single-Byte Write Transfer  
7.3.4 Multiple-Byte Write and Incremental Multiple-Byte Write  
A multiple-byte data write transfer is identical to a single-byte data write transfer except that multiple data bytes  
are transmitted by the master device to the TAS2553 as shown in Figure 25. After receiving each data byte, the  
TAS2553 responds with an acknowledge bit.  
Register  
Figure 25. Multiple-Byte Write Transfer  
7.3.5 Single-Byte Read  
As shown in Figure 26, a single-byte data-read transfer begins with the master device transmitting a start  
condition followed by the I2C device address and the read/write bit. For the data-read transfer, both a write  
followed by a read are actually done. Initially, a write is done to transfer the address byte of the internal memory  
address to be read. As a result, the read/write bit is set to a 0.  
After receiving the TAS2553 address and the read/write bit, the TAS2553 responds with an acknowledge bit. The  
master then sends the internal memory address byte, after which the TAS2553 issues an acknowledge bit. The  
master device transmits another start condition followed by the TAS2553 address and the read/write bit again.  
This time, the read/write bit is set to 1, indicating a read transfer. Next, the TAS2553 transmits the data byte from  
the memory address being read. After receiving the data byte, the master device transmits a not-acknowledge  
followed by a stop condition to complete the single-byte data read transfer.  
The device address is 0x40 (7-bit). This is equivalent to 0x81 (8-bit) for reading.  
Repeat Start  
Condition  
Not  
Start  
Acknowledge  
Condition  
Acknowledge  
Acknowledge  
A0 ACK  
Acknowledge  
A6 A5  
A1 A0 R/W ACK A7 A6 A5 A4  
A6 A5  
A1 A0 R/W ACK D7 D6  
D1 D0 ACK  
2
2
Stop  
Condition  
I C Device Address and  
Read/Write Bit  
Register  
I C Device Address and  
Read/Write Bit  
Data Byte  
Figure 26. Single-Byte Read Transfer  
Copyright © 2013–2014, Texas Instruments Incorporated  
15  
 
 
 
TAS2553  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
www.ti.com.cn  
Feature Description (continued)  
7.3.6 Multiple-Byte Read  
A multiple-byte data-read transfer is identical to a single-byte data-read transfer except that multiple data bytes  
are transmitted by the TAS2553 to the master device as shown in Figure 27. With the exception of the last data  
byte, the master device responds with an acknowledge bit after receiving each data byte.  
Repeat Start  
Condition  
Not  
Start  
Acknowledge  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
D0 ACK D7  
A6  
A0 R/W ACK A7 A6 A5  
A0 ACK  
A6  
A0 R/W ACK D7  
D0 ACK D7  
D0 ACK  
2
2
Register  
Stop  
Condition  
I C Device Address and  
Read/Write Bit  
I C Device Address and  
Read/Write Bit  
First Data Byte  
Other Data Bytes  
Last Data Byte  
Figure 27. Multiple-Byte Read Transfer  
7.3.7 PLL  
The TAS2553 has an on-chip PLL to generate the clock frequency for the audio DAC and I-V sensing ADCs. The  
programmability of the PLL allows operation from a wide variety of clocks that may be available in the system.  
The PLL input supports clocks varying from 512 kHz to 24.576 MHz and is register programmable to enable  
generation of required sampling rates with fine resolution. Set Register 0x02, D(3) = 1 to activate the PLL. When  
the PLL is enabled, the PLL output clock PLL_CLK is:  
0.5´PLL _CLKIN´ J.D  
PLL _CLK =  
2
P  
(1)  
J = 4, 5, 6, … 96  
D = 0, 1, 2, ... 9999  
P = 0,1  
Choose J, D, P such that PLL_CLK = 22.5792 MHz (44.1ksps sampling rate) or 24.5760 MHz (48ksps sampling  
rate). Program variable J in Register 0x08, D(6:0). Program variable D in Register 0x09, D(5:0) and Register  
0x0A, D(7:0). The default value for D is 0. Program variable P in Register 0x08, D(7). The default value for P is  
0.  
Register 0x01, D(5:4) sets the PLL_CLKIN input to MCLK, BCLK, or IVCLKIN. Set Register 0x01, D(5:4) = 00 to  
use MCLK, 01 to use BCLK, and 10 to use IVCLKIN.  
There is also an option to use a 1.8 MHz internal oscillator for PLL_CLKIN. This is useful for systems using the  
analog inputs and the I-V sense data returning to a host processor via PDM mode interface. Set Register 0x01,  
D(5:4) = 11 to use the 1.8 MHz internal oscillator.  
To bypass the PLL, set Register 0x09, D(7) = 1. Deactivate the PLL by setting Register 0x02, D(3) = 0.  
When the PLL is enabled, the following conditions must be satisfied:  
If D = 0, the PLL clock input (PLL_CLKIN) must satisfy:  
PLL_CLKIN  
512 kHz £  
£ 12.288 MHz  
2P  
If D 0, the PLL clock input (PLL_CLKIN) must satisfy:  
PLL_CLKIN  
1.1 MHz £  
£ 9.2 MHz  
2P  
Figure 28 shows the clock distribution tree and the registers required to set the audio input DAC and the I-V  
sense ADC.  
16  
Copyright © 2013–2014, Texas Instruments Incorporated  
 
TAS2553  
www.ti.com.cn  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
Feature Description (continued)  
1.8 MHz  
Internal  
IVCLKIN  
MCLK BCLK  
00 10  
01 11  
Register 0x01, D(5:4)  
PLL_CLKIN  
0.5 u J.D  
Registers 0x08 - 0x0A  
u
2P  
PLL_CLK  
1
0
Register 0x09, D(7)  
PLL_BYPASS  
24.5760 MHz (for 16-bit, FS = 48 kHz)  
22.5792 MHz (for 16-bit, FS = 44.1 kHz)  
÷ 8  
IVCLKIN  
BCLK  
MCLK  
To DAC clock input  
00 01  
10 11  
Register 0x11, D(1:0)  
Register 0x11, D(2)  
PDM_CLK  
0 = falling edge  
1 = rising edge  
1
0
I2S_OUT_SEL  
Register 0x03, D(6)  
0 = PDM  
1 = I2S / LJF / RJF / DSP  
I-V sense  
ADC clock generation  
Figure 28. Clock Distribution Tree  
7.3.8 Gain Settings  
The TAS2553 has one gain register for both analog input and digital input (DAC output) gain. A mux selects only  
one of these inputs for the Class-D speaker amplifier. The analog and digital inputs cannot be mixed together.  
The full-scale DAC output voltage is the same as the maximum analog input voltage (for less than 1% THD): 1  
VRMS, or 1.4 VPEAK  
.
Copyright © 2013–2014, Texas Instruments Incorporated  
17  
TAS2553  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
www.ti.com.cn  
Table 1. TAS2553 Gain Table  
GAIN BYTE:  
GAIN[4:0]  
GAIN BYTE:  
GAIN[4:0]  
NOMINAL GAIN  
NOMINAL GAIN  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
–7 dB  
–6 dB  
–5 dB  
–4 dB  
–3 dB  
–2 dB  
–1 dB  
0 dB  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
9 dB  
10 dB  
11 dB  
12 dB  
13 dB  
14 dB  
15 dB  
16 dB  
17 dB  
18 dB  
19 dB  
20 dB  
21 dB  
22 dB  
23 dB  
24 dB  
1 dB  
2 dB  
3 dB  
4 dB  
5 dB  
6 dB  
7 dB  
8 dB  
7.3.9 Class-D Edge Rate Control  
The edge rate of the Class-D output is controllable via an I2C register. This allows users the ability to adjust the  
switching edge rate of the Class-D amplifier, trading off some efficiency for lower EMI. Table 2 lists the typical  
edge rates.  
Table 2. Class-D Edge Rate Control  
ERC BYTE:  
EDGE[2:0]  
TR AND TF  
(TYPICAL)  
000  
001  
010  
011  
100  
101  
110  
111  
50 ns  
40 ns  
30 ns  
25 ns  
14 ns  
13 ns  
12 ns  
11 ns  
18  
Copyright © 2013–2014, Texas Instruments Incorporated  
 
TAS2553  
www.ti.com.cn  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
7.3.10 Battery Tracking AGC  
The TAS2553 monitors battery voltage and the audio signal to automatically decrease gain when the battery  
voltage is low and audio output power is high. This finds the optimal gain to maximize loudness and minimize  
battery current, providing louder audio and preventing early shutdown at end-of-charge battery voltage levels.  
This does not mean the battery tracking AGC automatically decreases amplifier gain when VBAT is below the  
inflection point. Rather, gain is decreased only when the Class-D output voltage exceeds the limiter level.  
VLIM |  
VLIM | 7 V  
'VLIM  
7 V ꢂ  
InflPt VBAT  
'VBAT  
InflPt  
VBAT  
Figure 29. VLIM versus Supply Voltage (VBAT)  
When VBAT is greater than the inflection point, VLIM - the peak allowed output voltage - is set by the boost  
voltage. The inflection point is set in Register 0x0B, Bits 7-0. The inflection point range is 3.0 V to 5.5 V,  
adjustable in 17.33 mV steps.  
When VBAT is less than the inflection point, the peak output voltage is controlled by the slope. Set the VLIM vs.  
VBAT slope in Register 0x0C, Bits 7-0. This ΔVLIM / ΔVBAT range is 1.2 V/V to 10.75 V/V and is adjustable in  
37.3 mV/V steps.  
If the audio signal is higher than VLIM, then the gain decreases until the audio signal is just below VLIM. The  
gain decrease rate (attack time) is set via the I2C interface. If the audio signal is below VLIM and the gain is  
below the fixed gain, the gain will increase. The gain increase rate (release time) is set via the I2C interface. The  
attack and release times are selected via I2C interface. Eight attack times are available in 350 µs / dB steps.  
Sixteen release times are in 105 ms / dB steps. ATK_TIME[2:0] is Register 0x0E, Bits 0-2. REL_TIM[3:0] is  
Register 0x0F, Bits 3-0.  
Table 3. Attack Time Selection  
ATTACK TIME REGISTER  
BYTE: ATK_TIME[2:0]  
ATTACK TIME  
( µS / STEP)  
000  
001  
010  
011  
100  
20  
370  
720  
1070  
1420  
Copyright © 2013–2014, Texas Instruments Incorporated  
19  
 
TAS2553  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
www.ti.com.cn  
Table 3. Attack Time Selection (continued)  
ATTACK TIME REGISTER  
BYTE: ATK_TIME[2:0]  
ATTACK TIME  
( µS / STEP)  
101  
110  
111  
1770  
2120  
2470  
Table 4. Release Time Selection  
RELEASE TIME REGISTER  
BYTE: REL_TIME[3:0]  
RELEASE TIME  
( MS / STEP)  
RELEASE TIME REGISTER  
BYTE: REL_TIME[4:0]  
RELEASE TIME  
(MS / STEP)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
50  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
890  
155  
260  
365  
470  
575  
680  
785  
995  
1100  
1205  
1310  
1415  
1520  
1625  
7.4 Device Functional Modes  
7.4.1 Audio Digital I/O Interface  
Audio data is transferred between the host processor and the TAS2553 via the digital audio data serial interface,  
or audio bus. The audio bus on this device is very flexible, including left or right-justified data options, support for  
I2S or PCM protocols, programmable data length options, a TDM mode for multichannel operation, very flexible  
master/slave configurability for each bus clock line, and the ability to communicate with multiple devices within a  
system directly.  
The audio bus of the TAS2553 can be configured for left or right-justified, I2S, DSP, or TDM modes of operation,  
where communication with standard telephony PCM interfaces is supported within the TDM mode. These modes  
are all MSB-first, with data width programmable as 16, 20, 24, or 32 bits by configuring Register 0x05, D(1:0). In  
addition, the word clock and bit clock can be independently configured in either Master or Slave mode, for  
flexible connectivity to a wide variety of processors. The word clock is used to define the beginning of a frame,  
and may be programmed as either a pulse or a square-wave signal. The frequency of this clock corresponds to  
the maximum of the selected ADC and DAC sampling frequencies.  
The bit clock is used to clock in and clock out the digital audio data across the serial bus. This signal can be  
programmed to generate variable clock pulses by controlling the bit-clock multiply-divide factor in Registers 0x08  
through 0x10. The number of bit-clock pulses in a frame may need adjustment to accommodate various word-  
lengths as well as to support the case when multiple TAS2553 devices may share the same audio bus.  
The TAS2553 also includes a feature to offset the position of start of data transfer with respect to the word-clock.  
This offset is in number of bit-clocks and is programmed in Register 0x06.  
To place the DOUT line into a Hi-Z (3-state) condition during all bit clocks when valid data is not being sent, set  
Register 0x04, D(2) = 1. By combining this capability with the ability to program what bit clock in a frame the  
audio data begins, time-division multiplexing (TDM) can be accomplished. This enables the use of multiple  
devices on a single audio serial data bus. When the audio serial data bus is powered down while configured in  
master mode, the terminals associated with the interface are put into a Hi-Z output state.  
7.4.1.1 Right-Justified Mode  
Set Register 0x03, D(6) = 0 and Register 0x05, D(3:2) = 10 to place the TAS2553 audio interface into right-  
justified mode. In right-justified mode, the LSB of the left channel is valid on the rising edge of the bit clock  
preceding the falling edge of the word clock. Similarly, the LSB of the right channel is valid on the rising edge of  
the bit clock preceding the rising edge of the word clock.  
20  
Copyright © 2013–2014, Texas Instruments Incorporated  
TAS2553  
www.ti.com.cn  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
Device Functional Modes (continued)  
1/fs  
WCLK  
BCLK  
Left Channel  
Right Channel  
DIN/  
DOUT  
0
n-1 n-2 n-3  
MSB  
2
1
0
n-1 n-2 n-3  
MSB  
2
1
0
LSB  
LSB  
Figure 30. Timing Diagram for Right-Justified Mode  
For right-justified mode, the number of bit-clocks per frame should be greater than twice the programmed word-  
length of the data.  
7.4.1.2 Left-Justified Mode  
Set Register 0x03, D(7:6) = 01 and Register 0x05, D(3:2) = 11 to place the TAS2553 audio interface into left-  
justified mode. In left-justified mode, the MSB of the right channel is valid on the rising edge of the bit clock  
following the falling edge of the word clock. Similarly the MSB of the left channel is valid on the rising edge of the  
bit clock following the rising edge of the word clock.  
WORD  
CLOCK  
LEFT CHANNEL  
RIGHT CHANNEL  
BIT  
CLOCK  
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
3
2
1
0
3
2
1
0
DATA  
1
2
3
1
2
3
1
2
3
LD(n)  
RD(n)  
LD(n+1)  
LD(n) = n'th sample of left channel data  
RD(n) = n'th sample of right channel data  
Figure 31. Timing Diagram for Left-Justified Mode  
WORD  
CLOCK  
LEFT CHANNEL  
RIGHT CHANNEL  
BIT  
CLOCK  
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
3
2
1
0
3
2
1
0
DATA  
1
2
3
1
2
3
1
2
3
LD(n)  
RD(n)  
LD(n+1)  
LD(n) = n'th sample of left channel data  
RD(n) = n'th sample of right channel data  
Figure 32. Timing Diagram for Light-Left Mode with Offset=1  
Copyright © 2013–2014, Texas Instruments Incorporated  
21  
TAS2553  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
www.ti.com.cn  
Device Functional Modes (continued)  
WORD  
CLOCK  
LEFT CHANNEL  
RIGHT CHANNEL  
BIT  
CLOCK  
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
3
2
1
0
3
2
1
0
3
DATA  
1
2
3
1
2
3
1
2
3
LD(n)  
RD(n)  
LD(n+1)  
LD(n) = n'th sample of left channel data  
RD(n) = n'th sample of right channel data  
Figure 33. Timing Diagram for Left-Justified Mode with Offset=0 and Inverted Bit Clock  
For left-justified mode, the number of bit-clocks per frame should be greater than twice the programmed word-  
length of the data. Also, the programmed offset value should be less than the number of bit-clocks per frame by  
at least the programmed word-length of the data.  
7.4.1.3 I2S Mode  
Set Register 0x03, D(7:6) = 01 and Register 0x05, D(3:2) = 00 to place the TAS2553 audio interface into I2S  
mode. In I2S mode, the MSB of the left channel is valid on the second rising edge of the bit clock after the falling  
edge of the word clock. Similarly the MSB of the right channel is valid on the second rising edge of the bit clock  
after the rising edge of the word clock.  
WORD  
CLOCK  
LEFT CHANNEL  
RIGHT CHANNEL  
BIT  
CLOCK  
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
3
2
1
0
3
2
1
0
3
DATA  
1
2
3
1
2
3
1
2
3
LD(n)  
RD(n)  
LD(n+1)  
LD(n) = n'th sample of left channel data  
RD(n) = n'th sample of right channel data  
Figure 34. Timing Diagram for I2S Mode  
WORD  
CLOCK  
LEFT CHANNEL  
RIGHT CHANNEL  
BIT  
CLOCK  
N
-
N
-
N
-
DATA  
5
4
3
2
1
0
5
4
3
2
1
0
5
1
1
1
LD(n)  
LD(n) = n'th sample of left channel data  
RD(n)  
RD(n) = n'th sample of right channel data  
LD(n+1)  
Figure 35. Timing Diagram for I2S Mode with Offset=2  
22  
Copyright © 2013–2014, Texas Instruments Incorporated  
TAS2553  
www.ti.com.cn  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
Device Functional Modes (continued)  
WORD  
LEFT CHANNEL  
CLOCK  
RIGHT CHANNEL  
BIT  
CLOCK  
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
3
2
1
0
3
2
1
0
3
DATA  
1
2
3
1
2
3
1
2
3
LD(n)  
RD(n)  
LD(n+1)  
LD(n) = n'th sample of left channel data  
RD(n) = n'th sample of right channel data  
Figure 36. Timing Diagram for I2S Mode with Offset=0 and Inverted Bit Clock  
For I2S mode, the number of bit-clocks per channel should be greater than or equal to the programmed word-  
length of the data. Also the programmed offset value should be less than the number of bit-clocks per frame by  
at least the programmed word-length of the data.  
7.4.1.4 Audio Data Serial Interface Timing (I2S, Left-Justified, Right-Justified Modes)  
All specifications at 25°C, IOVDD = 1.8 V  
NOTE  
All timing specifications are measured at characterization but not tested at final test.  
WCLK  
t
d(WS)  
BCLK  
t
d(DO-BCLK)  
t
d(DO-WS)  
DOUT  
t
t
h(DI)  
S(DI)  
DIN  
Figure 37. I2S/LJF/RJF Timing in Master Mode  
Table 5. I2S/LJF/RJF Timing in Master Mode (see Figure 37)  
IOVDD=1.8V  
PARAMETER  
IOVDD=3.3V  
UNIT  
MIN  
MAX  
MIN  
MAX  
20  
td(WS)  
WCLK delay  
30  
50  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
td(DO-WS)  
WCLK to DOUT delay (For LJF Mode only)  
25  
td(DO-BCLK)  
BCLK to DOUT delay  
DIN setup  
25  
ts(DI)  
th(DI)  
tr  
8
8
8
8
DIN hold  
Rise time  
24  
24  
12  
15  
tf  
Fall time  
Copyright © 2013–2014, Texas Instruments Incorporated  
23  
 
TAS2553  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
www.ti.com.cn  
WCLK  
th(WS)  
ts(WS)  
tL(BCLK)  
td(DO-WS)  
tH(BCLK)  
td(DO-BCLK)  
BCLK  
DOUT  
DIN  
th(DI)  
ts(DI)  
Figure 38. I2S/LJF/RJF Timing in Slave Mode  
Table 6. I2S/LJF/RJF Timing in Slave Mode (see Figure 38)  
IOVDD=1.8V  
PARAMETER  
IOVDD=3.3V  
UNIT  
MIN  
35  
35  
8
MAX  
MIN  
35  
35  
8
MAX  
tH(BCLK)  
tL(BCLK)  
ts(WS)  
th(WS)  
td(DO-WS)  
td(DO-BCLK)  
ts(DI)  
BCLK high period  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BCLK low period  
(WS)  
WCLK hold  
8
8
WCLK to DOUT delay (For LJF Mode only)  
50  
50  
25  
25  
BCLK to DOUT delay  
DIN setup  
8
8
8
8
th(DI)  
DIN hold  
tr  
Rise time  
4
4
4
4
tf  
Fall time  
24  
Copyright © 2013–2014, Texas Instruments Incorporated  
 
TAS2553  
www.ti.com.cn  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
7.4.1.5 DSP Mode  
Set Register 0x03, D(7:6) = 01 and Register 0x05, D(3:2) = 01 to place the TAS2553 audio interface into DSP  
mode. In DSP mode, the rising edge of the word clock starts the data transfer with the left channel data first and  
immediately followed by the right channel data. Each data bit is valid on the falling edge of the bit clock.  
WORD  
CLOCK  
LEFT CHANNEL  
RIGHT CHANNEL  
BIT  
CLOCK  
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
3
2
1
0
3
2
1
0
3
DATA  
1
2
3
1
2
3
1
2
3
LD(n)  
RD(n)  
LD(n+1)  
LD(n) = n'th sample of left channel data  
RD(n) = n'th sample of right channel data  
Figure 39. Timing Diagram for DSP Mode  
WORD  
CLOCK  
LEFT CHANNEL  
RIGHT CHANNEL  
BIT  
CLOCK  
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
3
2
1
0
3
2
1
0
DATA  
1
2
3
1
2
3
1
2
3
LD(n)  
RD(n)  
LD(n+1)  
LD(n) = n'th sample of left channel data  
RD(n) = n'th sample of right channel data  
Figure 40. Timing Diagram for DSP Mode with Offset=1  
WORD  
CLOCK  
LEFT CHANNEL  
RIGHT CHANNEL  
BIT  
CLOCK  
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
3
2
1
0
3
2
1
0
3
DATA  
1
2
3
1
2
3
1
2
3
LD(n)  
RD(n)  
LD(n+1)  
Figure 41. Timing Diagram for DSP Mode with Offset=0 and Inverted Bit Clock  
For DSP mode, the number of bit-clocks per frame should be greater than twice the programmed word-length of  
the data. Also the programmed offset value should be less than the number of bit-clocks per frame by at least  
the programmed word-length of the data.  
Copyright © 2013–2014, Texas Instruments Incorporated  
25  
TAS2553  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
www.ti.com.cn  
7.4.1.6 DSP Timing  
All specifications at 25°C, IOVDD = 1.8 V  
NOTE  
All timing specifications are measured at characterization but not tested at final test.  
WCLK  
t
d(WS)  
t
d(WS)  
BCLK  
DOUT  
DIN  
t
d(DO-BCLK)  
t
t
h(DI)  
s(DI)  
Figure 42. DSP Timing in Master Mode  
Table 7. DSP Timing in Master Mode (see Figure 42)  
IOVDD=1.8V  
IOVDD=3.3V  
PARAMETER  
UNIT  
MIN  
MAX  
30  
MIN  
MAX  
20  
td(WS)  
WCLK delay  
BCLK to DOUT delay  
DIN setup  
ns  
ns  
ns  
ns  
ns  
ns  
td(DO-BCLK)  
40  
20  
ts(DI)  
th(DI)  
tr  
8
8
8
8
DIN hold  
Rise time  
4
4
4
4
tf  
Fall time  
WCLK  
t
t
h(ws)  
t
h(ws)  
t
s(ws)  
h(ws)  
t
BCLK  
DOUT  
DIN  
L(BCLK)  
t
H(BCLK)  
t
d(DO-BCLK)  
t
t
h(DI)  
s(DI)  
Figure 43. DSP Timing in Slave Mode  
26  
Copyright © 2013–2014, Texas Instruments Incorporated  
 
 
TAS2553  
www.ti.com.cn  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
Table 8. DSP Timing in Slave Mode (see Figure 43)  
IOVDD=1.8V  
IOVDD=3.3V  
PARAMETER  
UNIT  
MIN  
35  
35  
8
MAX  
MIN  
35  
35  
8
MAX  
tH(BCLK)  
tL(BCLK)  
ts(WS)  
th(WS)  
td(DO-WS)  
ts(DI)  
BCLK high period  
BCLK low period  
(WS)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
WCLK hold  
8
8
WCLK to DOUT delay (For LJF Mode only)  
40  
22  
DIN setup  
DIN hold  
Rise time  
Fall time  
8
8
8
8
th(DI)  
tr  
4
4
4
4
tf  
7.4.2 TDM Mode  
Time-division multiplexing (TDM) allows two or more devices to share a common DIN connection and a common  
DOUT connection. Using TDM mode, all devices transmit their DOUT data in user-specified sub-frames within  
one WCLK period. When one device transmits its DOUT information, the other devices place their DOUT  
terminals in a high impedance tri-state mode.  
TDM mode is useable with I2S, LJF, RJF, and DSP interface modes. Refer to the respective sections for a  
description of how to set the TAS2553 into those modes. TDM cannot be used with PDM mode. This is because  
the PDM requires a continuous stream of samples from one data source.  
Use Register 0x06 to set the clock cycle offset from WCLK to the MSB. Each data bit is valid on the falling edge  
of the bit clock. Set Register 0x04, D(2) = 1 to force DOUT into tri-state when it is not transmitting data. This  
allows DOUT terminals from multiple TAS2553 devices to share a common wire to the host.  
WORD  
CLOCK  
LEFT CHANNEL  
RIGHT CHANNEL  
BIT  
CLOCK  
N
-
N
-
N
-
DATA  
5
4
3
2
1
0
5
4
3
2
1
0
5
1
1
1
LD(n)  
LD(n) = n'th sample of left channel data  
RD(n)  
RD(n) = n'th sample of right channel data  
LD(n+1)  
Figure 44. Timing Diagram for I2S in TDM Mode with Offset=2  
For TDM mode, the number of bit-clocks per frame should be less than the programmed word-length of the data.  
Also the programmed offset value should be less than the number of bit-clocks per frame by at least the  
programmed word-length of the data.  
Figure 45 shows how to configure the TAS2553 with the TI codec, AIC3254, with both devices sharing DIN and  
DOUT  
Copyright © 2013–2014, Texas Instruments Incorporated  
27  
TAS2553  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
www.ti.com.cn  
Host (Baseband /  
Apps Processor)  
AIC3254  
MCLK  
BCLK  
WCLK  
DOUT  
SDA  
MCLK  
BCLK  
WCLK  
DIN  
HPR  
HPL  
Headphone  
Output  
LOL  
LOR  
SDA  
SCL  
SCL  
Line  
Output  
DOUT  
DIN  
7-Bit I2C Address:  
0x18  
IOVDD  
DOUT ADDR  
MCLK  
BCLK  
WCLK  
DIN  
OUT+  
OUT-  
Speaker  
Output  
VSENSE+  
VSENSE-  
SDA  
SCL  
7-Bit I2C Address:  
0x40 or 0x41  
TAS2553  
Figure 45. Configuration with TAS2553 and AIC3254 Muxed in TDM Mode  
28  
Copyright © 2013–2014, Texas Instruments Incorporated  
TAS2553  
www.ti.com.cn  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
Host (Baseband /  
Apps Processor)  
TAS2553  
MCLK  
MCLK  
BCLK  
WCLK  
DIN  
OUT+  
OUT-  
BCLK  
WCLK  
DOUT  
SDA  
Speaker  
Output  
VSENSE+  
VSENSE-  
SDA  
SCL  
SCL  
DOUT ADDR  
7-Bit I2C Address:  
DIN  
0x40  
IOVDD  
7-Bit I2C Address:  
0x41  
DOUT ADDR  
OUT+  
MCLK  
BCLK  
WCLK  
DIN  
OUT-  
VSENSE+  
VSENSE-  
Speaker  
Output  
SDA  
SCL  
TAS2553  
Figure 46. Stereo Configuration with Two TAS2553 DOUT Muxed in TDM Mode  
7.4.3 PDM Mode  
Set Register 0x03, D(7:6) = 00 to place the TAS2553 audio interface into PDM mode. In PDM mode, the data  
stream is a continuous stream of undecimated pulse-modulated data that is 64x the sample rate. Because it is a  
continuous stream, frame synchronization is not required and WCLK is not used. Specifying clocks-per-frame is  
not required for PDM mode. The PDM input bit clock is IVCLKIN as set in Register 0x11, D(1:0).  
The TAS2553 can be configured for I2S input mode and PDM output mode. Figure 47 shows the timing diagram  
for PDM input mode. Timing specifications are listed in Table 9 and Table 10.  
The TAS2553 clocks PDM input data on either the rising edge or falling edge of IVCLKIN as set in Register  
0x11, D(2). The device does not read concurrent data on both edges. Set the I2C register to read either rising  
clock edge or falling clock edge data.  
Copyright © 2013–2014, Texas Instruments Incorporated  
29  
TAS2553  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
www.ti.com.cn  
tH  
tS  
tr  
tf  
IVCLKIN  
DIN  
DATA  
DATA  
Figure 47. DIN Timing Diagram in PDM Mode, Register 0x11, D(2) = 0  
tH  
tS  
tr  
tf  
IVCLKIN  
DIN  
DATA  
DATA  
Figure 48. DIN Timing Diagram in PDM Mode, Register 0x11, D(2) = 1  
Table 9. PDM Input Timing(1)  
IOVDD=1.8V(2)  
IOVDD=3.3V  
PARAMETER  
UNIT  
MIN  
20  
3
MAX  
MIN  
20  
3
MAX  
ts  
th  
tr  
DIN setup  
ns  
ns  
ns  
ns  
DIN hold  
Rise time  
Fall time  
4
4
4
4
tf  
(1) All timing specifications are measured at characterization but not tested at final test.  
(2) All specifications at 25°C, IOVDD = 1.8 V  
7.4.3.1 DOUT Timing – PDM Output Mode  
Set Register 0x03, D(6) = 0 to transmit PDM data on the DOUT terminal. Register 0x07, D(7:6) selects either I  
Data, V Data, or both for PDM transmission. Register 0x07, D(5) selects whether the data transmits on either the  
rising edge or the falling edge of IVCLKIN. The DOUT terminal becomes high-impedance on the opposing clock  
cycle.  
td(DATA)  
td(HI-Z)  
td(DATA)  
IVCLKIN  
DOUT  
HI-Z  
DATA  
HI-Z  
DATA  
HI-Z  
Figure 49. DOUT Timing in PDM Mode (Data on IVCLKIN High)  
30  
Copyright © 2013–2014, Texas Instruments Incorporated  
TAS2553  
www.ti.com.cn  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
td(DATA)  
td(HI-Z)  
IVCLKIN  
DOUT  
DATA  
HI-Z  
DATA  
HI-Z  
DATA  
Figure 50. DOUT Timing in PDM Mode (Data on IVCLKIN Low)  
Table 10. DOUT Timing in PDM Mode(1)  
IOVDD=1.8V(2)  
IOVDD=3.3V  
PARAMETER  
UNIT  
MIN  
MAX  
30  
MIN  
MAX  
td(DATA)  
td(HI-Z)  
IVCLKIN to DOUT delay  
IVCLKIN to high impedance state delay  
30  
6
ns  
ns  
6
(1) All timing specifications are measured at characterization but not tested at final test.  
(2) All specifications at 25°C, IOVDD = 1.8 V  
7.5 Register Map  
The TAS2553 I2C address is 0x40 (7-bit) when ADDR = 0 and 0x41 (7-bit) when ADDR = 1. See the General I2C  
Operation section for more details.  
7.5.1 Register Map Summary  
REGISTER  
READ/WRITE  
DEFAULT  
FUNCTION  
DEC  
0
HEX  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
0x00  
0x22  
0xFF  
0x80  
0x00  
0x00  
0x00  
0xC0  
0x10  
0x00  
0x00  
0x8F  
0x80  
0xBE  
0x08  
0x05  
0x00  
0x01  
0x00  
0x40  
0x00  
0x00  
0x00  
0x00  
Device Status Register  
Configuration Register 1  
Configuration Register 2  
Configuration Register 3  
DOUT Tristate Mode  
1
2
3
4
5
Serial Interface Control Register 1  
Serial Interface Control Register 2  
Output Data Register  
6
7
8
PLL Control Register 1  
PLL Control Register 2  
PLL Control Register 3  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
Battery Tracking Inflection Point Register  
Battery Tracking Slope Control Register  
Limiter Level Control Register  
Limiter Attack Rate and Hysteresis Time  
Limiter Release Rate  
Limiter Integration Count Control  
PDM Configuration Register  
PGA Gain Register  
Class-D Edge Rate Control Register  
Boost Auto-Pass Through Control Register  
Reserved  
Version Number  
R/W  
Reserved  
Copyright © 2013–2014, Texas Instruments Incorporated  
31  
TAS2553  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
www.ti.com.cn  
Register Map (continued)  
REGISTER  
READ/WRITE  
DEFAULT  
FUNCTION  
DEC  
24  
HEX  
0x18  
0x19  
R
R
0x00  
0x00  
Reserved  
25  
VBAT Data Register  
7.5.2 Register 0x00: Device Status Register  
This register uses latched faults. The fault bits are clear on write. Read-only commands retain the latched value  
of the fault bit.  
BIT  
7-6  
5
NAME  
READ/WRITE DEFAULT DESCRIPTION  
R/W  
R/W  
00  
0
Reserved. Write only default values.  
PLL_OUT_OF_LOCK  
PLL lock  
0 = PLL is locked  
1 = PLL is not locked  
4-2  
1
R/W  
R/W  
0
0
Reserved. Write only default values.  
CLASSD_ILIM  
THERMAL  
Class-D over-current  
0 = Normal operation  
1 = Class-D output current limit has been exceeded  
0
R/W  
0
Thermal limit  
0 = Normal operation  
1 = Limit exceeded  
7.5.3 Register 0x01: Configuration Register 1  
BIT NAME  
READ/WRITE  
R/W  
DEFAULT DESCRIPTION  
7-6  
00  
10  
Reserved. Write only default values.  
5-4  
PLL_SRC  
R/W  
PLL Input  
00 = MCLK  
01 = BCLK  
10 = IVCLKIN  
11 = 1.8 MHz fixed internal oscillator  
3
2
R/W  
R/W  
0
0
Reserved. Write only default values.  
MUTE  
Triggers mute of Class-D channel controller.  
0 = Not muted  
1 = Muted  
1
0
SWS  
R/W  
R/W  
1
0
Software shutdown. When high shuts down all blocks and places part in low  
power mode. THIS BIT MUST BE SET TO ZERO ONLY AFTER THE  
DEVICE CONFIGURATION IS COMPLETE.  
DEV_RESET  
Synchronous reset of all digital registers & control circuitry.  
7.5.4 Register 0x02: Configuration Register 2  
BIT  
7
NAME  
READ/WRITE  
R/W  
DEFAULT DESCRIPTION  
CLASSD_EN  
BOOST_EN  
APT_EN  
1
1
Class D Enable  
6
R/W  
Boost Enable  
5
R/W  
1
Auto Pass-Thru Enable  
Reserved. Write only default values.  
PLL Enable  
4
RESERVED  
PLL_EN  
R/W  
0
3
R/W  
1
2
LIM_EN  
R/W  
1
Battery Tracking AGC Enable  
I/V Sense Enable  
1
IVSENSE_EN  
RESERVED  
R/W  
1
1(1)  
0
R/W  
Reserved. MUST BE WRITTEN TO ZERO DURING CONFIGURATION  
SEQUENCE as shown in Initialization.  
(1) Register 0x02, Bit 0 defaults to 1, but must be written to 0 during initialization.  
32  
Copyright © 2013–2014, Texas Instruments Incorporated  
TAS2553  
www.ti.com.cn  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
7.5.5 Register 0x03: Configuration Register 3  
READ /  
WRITE  
BIT  
NAME  
DEFAULT DESCRIPTION  
7
ANALOG_IN_SEL  
R/W  
1
Selects analog in path for data to class-D. When set to zero (digital in), no  
signal should be present on the analog terminals.  
0 = Digital Audio Input  
1 = Analog Audio Input  
6
5
I2S_OUT_SEL  
PDM_IN_SEL  
R/W  
R/W  
0
0
Selects between PDM and I2S for I/V Sense output data format.  
0 = PDM  
1 = I2S  
Selects PDM as input to modulator  
0 = PDM is not selected  
1 = PDM is selected only if Digital Audio Input is selected (Reg 0x03 D[7] =  
0)  
4-3  
2-0  
DIN_SOURCE_SEL  
WCLK_FREQ  
R/W  
R/W  
00  
DIN Source Select  
00 = Modulator input muted  
01 = Use left stream for modulator  
10 = Use right stream for modulator  
11 = Use average of left and right streams for modulator  
000  
WCLK Frequency  
000 = 8 kHz  
001 = 11.025 kHz / 12 kHz  
010 = 16 kHz  
011 = 22.05 kHz / 24 kHz  
100 = 32 kHz  
101 = 44.1 kHz / 48 kHz  
110 = 88.2 kHz / 96 kHz  
111 = 176.4 kHz / 192 kHz  
7.5.6 Register 0x04: DOUT Tristate Mode  
For systems with multiple devices sharing a common DOUT line with a TDM interface mode, set Bit 2 to 1 to  
ensure DOUT stays in high-impedance tri-state mode when it is not transmitting data.  
READ /  
WRITE  
BIT  
NAME  
DEFAULT DESCRIPTION  
7-3  
2
R/W  
0000 0  
0
Reserved. Write only default values.  
SDOUT_TRISTATE  
R/W  
DOUT Tri-state Mode (for I2S mode only, see Reg 0x03, bit 7)  
0 = DOUT set to logic low when not transmitting data  
1 = DOUT in tristate when not transmitting data  
1-0  
R/W  
00  
Reserved. Write only default values.  
Copyright © 2013–2014, Texas Instruments Incorporated  
33  
TAS2553  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
www.ti.com.cn  
7.5.7 Register 0x05: Serial Interface Control Register 1  
BIT  
NAME  
READ/WRITE  
DEFAULT  
DESCRIPTION  
7
WCLKDIR  
R/W  
0
WCLK Direction  
0 = WCLK is an input terminal  
1 = WCLK is an output terminal  
6
BCLKDIR  
R/W  
R/W  
0
BCLK Direction  
0 = BCLK is an input terminal  
1 = BCLK is an output terminal  
5-4  
CLKSPERFRAME  
00  
Clocks per Frame  
00 = 32 clocks  
01 = 64 clocks  
10 = 128 clocks  
11 = 256 clocks  
3-2  
1-0  
DATAFORMAT  
WORDLENGTH  
R/W  
R/W  
00  
00  
Data Format  
00 = I2S format  
01 = DSP (PCM format)  
10 = Right justified format (RJF)  
11 = Left justified format (LJF)  
Word Length  
00 = 16 bits  
01 = 20 bits  
10 = 24 bits  
11 = 32 bits  
7.5.8 Register 0x06: Serial Interface Control Register 2  
This register sets the clock cycle offset between the WCLK edge to the MSB of serial interface patterns. This is  
useful for TDM mode where multiple devices share DIN or DOUT lines.  
READ /  
WRITE  
BIT  
NAME  
DEFAULT DESCRIPTION  
7-0  
I2S_SHIFT_REG  
R/W  
0000 0000 Offset from WCLK to MSB in serial interface patterns.  
0000 0000 = 0 bit offset  
0000 0001 = 1 bit offset  
….  
1111 1111 = 255 bit offset  
34  
Copyright © 2013–2014, Texas Instruments Incorporated  
TAS2553  
www.ti.com.cn  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
7.5.9 Register 0x07: Output Data Register  
This register sets the output data for DOUT. Most systems will simply set L_DATA_OUT to transmit output  
current data and R_DATA_OUT to transmit voltage data. Other data is available, like VBAT voltage, VBOOST  
voltage, and PGA gain.  
Bit 5 is a dual-purpose bit. If I2S_OUT_SEL = 0 (Register 0x03, Bit 6) and the PDM_DATA_SEL bits are set to  
transmit only I-Data or V-Data, then Bit 5 dictates if that data is transmitted on the clock rising edge or falling  
edge. This allows two TAS2553 devices in PDM mode to tie their DOUT lines together and connect to the host  
digital mic input. In this configuration, each device broadcasts its output current or output voltage information –  
one on the rising edge of the clock, the other on the falling edge. This is a simple interface technique that does  
not require programming the host for TDM-interface mode.  
BIT  
NAME  
READ / WRITE  
DEFAULT  
DESCRIPTION  
7-6  
PDM_DATA_SEL  
R/W  
11  
PDM Data Select  
These bits are operative only if I2S_OUT_SEL = 0 for PDM mode (see  
Register 0x03, Bit 6).  
00 - I Data Only - Select Ch1 or Ch2 with bit[5]  
01 - V Data Only - Select Ch1 or Ch2 with bit[5]  
10 - I/V Data (Ch1/2)  
11 - V/I Data (Ch1/2)  
5-3  
R_DATA_OUT  
R/W  
000  
Serial Interface Data, Right Channel  
Bit 5 is a dual-purpose bit, depending on the state of I2S_OUT_SEL  
(Register 0x03, Bit 6).  
If I2S_OUT_SEL = 0 and PDM_DATA_SEL = 00 or 01 (for single-  
channel PDM output mode), then Bit 5 will select whether data is  
transmitted on the rising or falling edge of the clock.  
0xx = Falling Edge (Ch 1)  
1xx = Rising Edge (Ch 2)  
If I2S_OUT_SEL = 1, then Bits 5-3 have the same function as  
L_DATA_OUT. Read the description in L_DATA_OUT for requirements  
on BCLK and WORD_LENGTH.  
000 = I Data (16'b)  
001 = V Data (16'b)  
010 = VBAT Data (8'b)  
011 = VBOOST Data (8'b)  
100 = PGA Gain (5'b)  
101 = I Data, V Data (32'b)  
110 = VBAT, VBOOST, PGA Gain (21'b)  
111 = Disabled (Hi-Z)  
NOTE: For VBAT and VBOOST, the device must be in a mode that uses  
this information, such as Battery Tracking AGC.  
2-0  
L_DATA_OUT  
R/W  
000  
Serial Interface Data, Left Channel  
Users must provide enough BCLK cycles per WCLK frame to shift all the  
data out. If there are additional BCLK cycles per WCLK frame beyond  
the WORD_LENGTH setting, the data line will be HI-Z if  
SDOUT_TRISTATE (Register 0x04, Bit 3) is set to 1; otherwise the data  
line will be held low for the extra BCLK cycles.  
Users must also program a sufficient WORD_LENGTH setting. If  
selected data contains fewer bits than WORD_LENGTH setting, the  
extra bits will be 0's.  
000 = I Data (16'b)  
001 = V Data (16'b)  
010 = VBAT Data (8'b)  
011 = VBOOST Data (8'b)  
100 = PGA Gain (5'b)  
101 = I Data, V Data (32'b)  
110 = VBAT, VBOOST, PGA Gain (21'b)  
111 = Disabled (Hi-Z)  
NOTE: For VBAT and VBOOST, the device must be in a mode that uses  
this information, such as Battery Tracking AGC.  
Copyright © 2013–2014, Texas Instruments Incorporated  
35  
TAS2553  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
www.ti.com.cn  
7.5.10 Register 0x08: PLL Control Register 1  
The equation for the PLL frequency is:  
0.5´PLL _CLKIN´ J.D  
PLL _CLK =  
2P  
(2)  
J = 4, 5, 6, … 96  
D = 0, 1, 2, ... 9999  
P = 0,1  
Registers 0x08 – 0x0A will only update when the PLL is disabled. To update the J, D, and P coefficients, set  
PLL_EN = 0 (Register 0x02, Bit 3) to disable the PLL, update Registers 0x08 – 0x0A, then set PLL_EN = 1 to  
activate the PLL.  
BIT  
NAME  
READ / WRITE DEFAULT DESCRIPTION  
7
PLL_PRESCALE_SEL  
R/W  
R/W  
0
PLL P Pre-Scale Select  
1: P = 1  
0: P = 0  
6-0  
PLL_J  
001 0000 PLL J Characteristic Multiplier Value  
000 0000 … 000 0011: Do not use  
000 0100: J=4  
001 0000: J=16  
101 1111: J=95  
110 0000: J=96  
110 0001 ... 111 1111: Do not use  
7.5.11 Register 0x09: PLL Control Register 2  
READ /  
WRITE  
BIT  
NAME  
DEFAULT DESCRIPTION  
7
PLL_BYPASS  
R/W  
0
1: Bypasses PLL by setting PLL_CLK = PLL_CLKIN  
0: Sets PLL_CLK according to Equation 2  
6
0
Reserved  
5-0  
PLL_D[13:8]  
R/W  
00 0000  
PLL D Mantissa Multiplier Value (LSB)  
The complete PLL D value comprises PLL_D[13:8] (MSB) concatenated  
with PLLD[7:0] (LSB)  
00 0000 0000 0000: D=0000  
00 0000 0000 0001: D=0001  
10 0111 0000 1110: D=9998  
10 0111 0000 1111: D=9999  
10 0111 0001 0000 ... 11 1111 1111 1111: Do not use  
7.5.12 Register 0x0A: PLL Control Register 3  
READ /  
WRITE  
BIT  
NAME  
DEFAULT DESCRIPTION  
7-0  
PLL_D[7:0]  
R/W  
0000 0000 PLL D Mantissa Multiplier Value (LSB)  
The complete PLL D value comprises PLL_D[13:8] (MSB) concatenated  
with PLLD[7:0] (LSB)  
00 0000 0000 0000: D=0000  
00 0000 0000 0001: D=0001  
10 0111 0000 1110: D=9998  
10 0111 0000 1111: D=9999  
10 0111 0001 0000 ... 11 1111 1111 1111: Do not use  
36  
Copyright © 2013–2014, Texas Instruments Incorporated  
 
TAS2553  
www.ti.com.cn  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
7.5.13 Register 0x0B: Battery Tracking Inflection Point Register  
READ /  
WRITE  
BIT  
NAME  
DEFAULT DESCRIPTION  
7-0  
INFLECTION  
R/W  
1000 1111 Battery Inflection Point Value  
0.01733 V per step  
0000 0000 = RESERVED  
0110 1100 = RESERVED  
0110 1101 = 3.00 V  
1111 1101 = 5.49 V  
1111 1110 = 5.50 V  
1111 1111 = RESERVED  
7.5.14 Register 0x0C: Battery Tracking Slope Control Register  
READ /  
WRITE  
BIT  
NAME  
DEFAULT DESCRIPTION  
7-0  
SLOPE  
R/W  
1000 0000 Battery Tracking Slope Value (ΔVLIM / ΔVBAT)  
0.0373 V/V per step  
0000 0000 = 1.2 V/V  
0000 0001 = 1.237 V/V  
1111 1101 = 10.675 V/V  
1111 1110 = 10.713 V/V  
1111 1111 = 10.75 V/V  
7.5.15 Register 0x0D: Reserved Register  
READ /  
WRITE  
BIT  
NAME  
DEFAULT DESCRIPTION  
7-0  
R/W  
1011 1110 Write to 0xA9 during initialization. See Initialization.  
Copyright © 2013–2014, Texas Instruments Incorporated  
37  
TAS2553  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
www.ti.com.cn  
7.5.16 Register 0x0E: Battery Tracking Limiter Attack Rate and Hysteresis Time  
BIT  
NAME  
READ / WRITE  
DEFAULT  
DESCRIPTION  
7-6  
HYSTERESIS  
R/W  
00  
Hysteresis before re-arming release time  
00 = No hysteresis  
01 = 4.36 mV hysteresis  
10 = 13.08 mV hysteresis  
11 = 30.52 mV hysteresis  
5
R/W  
R/W  
0
Write to 1 during initialization. See Initialization.  
4-3  
APT_DIS_VOLTAGE  
ATTACK_TIME  
01  
VBAT threshold below which Boost APT is disabled and the boost  
remains active regardless of Class-D output voltage.  
00 = 2.5 V  
01 = 2.7 V  
10 = 2.9 V  
11 = 3.1 V  
2-0  
R/W  
000  
Attack Time  
350 µs / dB per step  
000 = 20 µs / dB  
001 = 370 µs / dB  
110 = 2120 µs / dB  
111 = 2470 µs / dB  
7.5.17 Register 0x0F: Battery Tracking Limiter Release Rate  
READ /  
WRITE  
BIT  
NAME  
DEFAULT DESCRIPTION  
7-4  
3-0  
R/W  
00  
Reserved. Write only default values.  
REL_TIME  
R/W  
0100  
Release Time  
105 ms / dB per step  
0000 = 50 ms / dB  
0001 = 155 ms / dB  
1110 = 1520 ms / dB  
1111 = 1625 ms / dB  
7.5.18 Register 0x10: Battery Tracking Limiter Integration Count Control  
Limiter integration affects how the AGC state machine interprets the AGC output voltage trigger threshold.  
Increasing the integration count requires more AGC output peaks to exceed the limiter threshold before the  
limiter changes its gain.  
READ /  
WRITE  
BIT  
NAME  
DEFAULT DESCRIPTION  
7-6  
UP_DWN_RATIO  
R/W  
00  
Control Integration Count Up/Down Ratio  
The UP_DWN_RATIO sets the ratio of the addition to and the subtraction  
from the integration count, meaning that the input has to be below the limit  
threshold for 4UP_DWN_RATIO counts before the integration count is reduced.  
5-0  
INT_CNT  
R/W  
00 0000  
Integration Count Control Register  
Larger values increase filtering before the attack and decay time are  
triggered.  
38  
Copyright © 2013–2014, Texas Instruments Incorporated  
TAS2553  
www.ti.com.cn  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
7.5.19 Register 0x11: PDM Configuration Register  
Sets the PDM clock source and whether channel 1 data is transmitted on the rising or falling edge of the clock.  
Channel 2 transmits on the opposite edge.  
READ /  
WRITE  
BIT  
NAME  
DEFAULT DESCRIPTION  
7-3  
2
R/W  
0 0000  
0
Reserved. Write only default values.  
PDM_DATA_ES  
R/W  
PDM Data Edge Select  
0 = falling edge  
1 = rising edge  
1-0  
PDM_CLK_SEL  
R/W  
01  
PDM Clock Select  
00 = PLL / 8  
01 = IVCLKIN  
10 = BCLK  
11 = MCLK  
7.5.20 Register 0x12: PGA Gain Register  
READ /  
WRITE  
BIT  
NAME  
DEFAULT DESCRIPTION  
7-5  
4-0  
R/W  
000  
Reserved. Write only default values.  
PGA_GAIN  
R/W  
0 0000  
PGA Gain Value  
00000 = -7 dB  
00001 = -6 dB  
11110 = +23 dB  
11111 = +24 dB  
7.5.21 Register 0x13: Class-D Edge Rate Control Register  
READ /  
WRITE  
BIT  
NAME  
DEFAULT DESCRIPTION  
7
GAINCOMP_EN  
R/W  
0
I-V Sense Gain Compensation Control  
Enables AGC compensation for current sense feedback. AGC  
compensation increases the gain of the current sense data by the same  
gain the AGC instantaneously attenuates.  
0 = No I-V sense gain compensation  
1 = Gain compensation enabled  
6-4  
ERC_SEL  
R/W  
100  
Class-D Output Edge Rate Control  
000 = 50 ns  
001 = 40 ns  
010 = 29 ns  
011 = 25 ns  
100 = 14 ns (default)  
101 = 13 ns  
110 = 12 ns  
111 = 11 ns  
3-0  
R/W  
0000  
Reserved. Write only default values.  
Copyright © 2013–2014, Texas Instruments Incorporated  
39  
TAS2553  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
www.ti.com.cn  
7.5.22 Register 0x14: Boost Auto-Pass Through Control Register  
Auto-Pass Through deactivates the boost converter when the battery voltage is sufficient for the required Class-  
D output voltage. This register sets the threshold for activating the boost converter and the delay time between  
the Class-D output voltage dropping below the threshold before the boost converter deactivates.  
READ /  
WRITE  
BIT  
NAME  
DEFAULT DESCRIPTION  
7-4  
3-2  
R/W  
0000  
00  
Reserved. Write only default values.  
APT_THRESHOLD  
R/W  
Analog Input – Auto-Pass Through Threshold  
The boost converter activates when the Class-D output voltage exceeds  
this threshold voltage.  
00 = 0.5 V  
01 = 1.0 V  
10 = 1.4 V  
11 = 2.0 V  
Digital Input – Auto-Pass Through Threshold  
The boost converter activates when the Class-D output voltage exceeds  
this threshold voltage.  
00 = 0.2 V  
01 = 0.7 V  
10 = 1.1 V  
11 = 1.7 V  
1-0  
APT_DELAY_SEL  
R/W  
00  
Auto-Pass Thru Delay  
The delay between the Class-D output voltage dropping below the auto-  
pass thru threshold voltage and the boost converter deactivating.  
00 = 50 ms  
01 = 75 ms  
10 = 125 ms  
11 = 200 ms  
7.5.23 Register 0x15: Reserved Register  
READ /  
WRITE  
BIT  
NAME  
DEFAULT DESCRIPTION  
7-0  
R
0000 0000 Reserved  
7.5.24 Register 0x16: Version Number  
READ /  
WRITE  
BIT  
NAME  
DEFAULT DESCRIPTION  
7-4  
3-0  
R
R
0000  
1000  
Reserved  
SILICON_VER  
Silicon version identifier bits  
7.5.25 Register 0x17: Reserved Register  
READ /  
WRITE  
BIT  
NAME  
DEFAULT DESCRIPTION  
0000 0000 Reserved  
7-0  
R
7.5.26 Register 0x18: Reserved Register  
READ /  
WRITE  
BIT  
NAME  
DEFAULT DESCRIPTION  
7-0  
R
0000 0000 Reserved  
40  
Copyright © 2013–2014, Texas Instruments Incorporated  
TAS2553  
www.ti.com.cn  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
7.5.27 Register 0x19: VBAT Data Register  
READ /  
WRITE  
BIT  
NAME  
DEFAULT DESCRIPTION  
7-0  
VBAT  
R
0000 0000 Battery Voltage Data  
VBAT data is only available when the device is in a mode that uses the  
VBAT measurement, such as Battery Tracking AGC.  
1 LSB 17.33 mV  
0000 0000 = RESERVED  
...  
0100 1001 = RESERVED  
0101 0000 = 2.5 V  
1111 1111 = 5.55 V  
Copyright © 2013–2014, Texas Instruments Incorporated  
41  
TAS2553  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
www.ti.com.cn  
8 Applications and Implementation  
8.1 Application Information  
The TAS2553 is a digital or analog input high efficiency Class-D audio power amplifier with advanced battery  
current management and an integrated Class-G boost converter. In auto passthrough mode, the Class-G boost  
converter generates the Class-D amplifier supply rail. During low Class-D output power, the boost improves  
efficiency by deactivating and connecting VBAT directly to the Class-D amplifier supply. When high power audio  
is required, the boost quickly activates to provide louder audio than a stand-alone amplifier connected directly to  
the battery. To enable load monitoring, the TAS2553 constantly measures the current and voltage across the  
load and provides a digital stream of this information back to a processor.  
8.2 Typical Applications  
8.2.1 Typical Application - Digital Audio Input  
1.65 V À 1.95 V  
3.0 V À 5.5 V  
L1  
2.2 PH  
C1  
0.1 PF  
10 PF  
0.1 PF  
2
AVDD  
VBAT  
SW  
1.5 V À  
3.6 V  
VREG  
IOVDD  
10 nF  
0.1 PF  
VBOOST  
PVDD  
C2  
22 PF  
Enable  
EN  
L2 (opt.)  
IN+  
IN-  
+
-
OUT+  
OUT-  
To  
Speaker  
L3 (opt.)  
PDM Clock  
(opt.)  
I2C Address Select  
C3  
1 nF  
(opt.)  
IVCLKIN  
ADDR  
I2C  
C4  
1 nF  
(opt.)  
VSENSE+  
VSENSE-  
I2C Interface  
I2S Interface  
2
5
I2S  
AGND  
BIAS  
PGND  
2
3
1 PF  
Figure 51. Typical Application Schematic  
Table 11. Recommended External Components  
COMPONENT  
DESCRIPTION  
SPECIFICATION  
Inductance, 20% Tolerance  
Saturation Current  
Impedance at 100MHz  
DC Resistance  
MIN  
TYP  
MAX  
UNIT  
µH  
A
L1  
Boost Converter Inductor  
2.2  
2.6  
120  
L2, L3  
EMI Filter Inductors (optional)  
Ω
0.095  
1.5  
Ω
DC Current  
A
Size  
0402  
EIA  
µF  
C1  
Boost Converter Input Capacitor  
Capacitance, 20% Tolerance  
10  
42  
Copyright © 2013–2014, Texas Instruments Incorporated  
 
 
 
TAS2553  
www.ti.com.cn  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
Typical Applications (continued)  
Table 11. Recommended External Components (continued)  
COMPONENT  
DESCRIPTION  
SPECIFICATION  
MIN  
X5R  
22  
TYP  
MAX  
UNIT  
C2  
Boost Converter Output Capacitor  
Type  
Capacitance, 20% Tolerance  
Rated Voltage  
47  
µF  
V
16  
Capacitance at 7.5 V  
derating  
7
µF  
C3, C4  
EMI Filter Capacitors (optional, must Capacitance  
use L2, L3 if C3, C4 used)  
1
nF  
8.2.1.1 Design Requirements  
Table 12. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
Digital Audio, I2S  
Digital Audio, I2S  
Mono  
Audio Input  
Current and Voltage Data Stream  
Mono or Stereo Configuration  
Max Output Power at 1% THD+N  
2.8  
8.2.1.2 Detailed Design Procedure  
8.2.1.2.1 Audio Input/Output  
The choice of digital or analog audio input is driven by system specific considerations. However, since a digital  
audio interface will typically be used to send current and voltage data from the TAS2553 to a system processor,  
using a bidirectional I2S interface is likely to be the best choice.  
If a digital audio input is used, the analog inputs, IN+ and IN-, should be shorted together, and not tied to ground.  
8.2.1.2.2 Mono/Stereo Configuration  
In this application, the device is assumed to be operating in mono mode. See General I2C Operation for  
information on changing the I2C address of the TAS2553 to support stereo operation. Mono or stereo  
configuration does not impact the device performance.  
8.2.1.2.3 Boost Converter Passive Devices  
The boost converter requires three passive devices that are labeled L1, C1 and C2 in Figure 51 and whose  
specifications are provided in Table 11. These specifications are based on the design of TAS2553 and are  
necessary to meet the performance targets of the device. In particular, L1 should not be allowed to enter in the  
current saturation region.  
Specifically, the product of L1 and C2 (derated value at 8.5 V) has to be greater than 10e-12 for boost stability  
after accounting worst case variation of L1 and C2. To satisfy sufficient energy transfer, L1 needs to be > 2 µH at  
the boost switching frequency (~1.75 MHz). Minimum C2 (derated value at 8.5 V) should be > 4 µF for Class-D  
power delivery specification. The saturation current for L1 should be > ILIM to deliver Class-D peak power.  
8.2.1.2.4 EMI Passive Devices  
The TAS2553 supports edge-rate control to minimize EMI, but the system designer may want to include passive  
devices on the Class-D output devices. These passive devices that are labeled L2, L3, C3 and C4 in Figure 51  
and their recommended specifications are provided in Table 11. If C3 and C4 are used, they must be placed  
after L2 and L3 respectively to maintain the stability of the output stage.  
8.2.1.2.5 Miscellaneous Passive Devices  
VREG Capacitor: Needs to be 10 nF to meet boost and class-D power delivery and efficiency specs.  
BIAS Capacitor: Needs to be 1 µF to meet PSSR and noise performance.  
Copyright © 2013–2014, Texas Instruments Incorporated  
43  
TAS2553  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
www.ti.com.cn  
8.2.1.3 Application Performance Plots  
100  
1
VBAT = 5.5 V  
VBAT = 5.0 V  
VBAT = 4.2 V  
VBAT = 3.6 V  
VBAT = 3.0 V  
VBAT = 3.0 V  
VBAT = 3.6 V  
10  
1
VBAT = 4.2 V  
VBAT = 5.0 V  
VBAT = 5.5 V  
0.1  
0.1  
0.01  
0.01  
0.0001  
0.001  
0.01  
0.1  
1
20  
200  
2000  
20000  
PO - Output Power - W  
f - Frequency - Hz  
C004  
C005  
AGC=OFF, Gain = 15 dB  
Figure 52. THD+N vs Output Power (8Ω) for Digital Input  
AGC=OFF, Gain = 15 dB, Pout = 1W  
Figure 53. THD+N vs Frequency (8Ω) for Digital Input  
5.0  
0.04  
0.02  
0
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
-1.0  
0.06  
I2C to Enable Class-D  
Class-D Output  
ENABLE  
Class-D Output  
0.04  
0.02  
0
4.0  
3.0  
2.0  
1.0  
0.0  
-1.0  
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
-0.001  
0.001  
0.003  
0.005  
Time - s  
0.007  
0.009  
-0.0015  
-0.0005  
0.0005  
0.0015  
Time - s  
C019  
C020  
Class D output and EN pulled low  
Figure 54. Startup Timing  
Figure 55. Shutdown Timing  
44  
Copyright © 2013–2014, Texas Instruments Incorporated  
TAS2553  
www.ti.com.cn  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
8.2.2 Typical Application - Analog Audio Input  
Using the analog audio input is very similar to the digital audio input case in Typical Application - Digital Audio  
Input, and this section will only discuss the differences from the digital input configuration.  
1.65 V À 1.95 V  
3.0 V À 5.5 V  
L1  
2.2 PH  
C1  
0.1 PF  
10 PF  
0.1 PF  
2
AVDD  
VBAT  
SW  
1.5 V À  
3.6 V  
VREG  
IOVDD  
10 nF  
0.1 PF  
VBOOST  
PVDD  
C2  
22 PF  
Enable  
EN  
1 PF  
L2 (opt.)  
+
IN+  
IN-  
Audio  
Input  
+
-
OUT+  
OUT-  
To  
Speaker  
-
1 PF  
L3 (opt.)  
PDM Clock  
(opt.)  
I2C Address Select  
C3  
1 nF  
(opt.)  
IVCLKIN  
ADDR  
I2C  
C4  
1 nF  
(opt.)  
VSENSE+  
VSENSE-  
I2C Interface  
2
I2S Interface  
I2S  
5
AGND  
BIAS  
PGND  
2
3
1 PF  
Figure 56. Typical Application Schematic  
8.2.2.1 Design Requirements  
Table 13. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
Analog  
Audio Input  
Current and Voltage Data Stream  
Mono or Stereo Configuration  
Max Output Power at 1% THD+N  
Digital Audio, I2S  
Mono  
2.8  
8.2.2.2 Detailed Design Procedure  
8.2.2.2.1 Audio Input/Output  
In this application, system considerations require the use of an analog audio input. Note that a digital audio  
interface, such as I2S, still needs to be connected to send current and voltage data from the TAS2553 to a  
system processor.  
The analog inputs to TAS2553 should be ac-coupled to the device terminals to allow decoupling of signal  
source's common mode voltage with that of TAS2553's common mode voltage. The input coupling capacitor in  
combination with the selected input impedance of TAS2553 forms a high-pass filter.  
Fc = 1/(2*π*RinCc)  
Cc = 1/(2*π*RinFc)  
(3)  
(4)  
Copyright © 2013–2014, Texas Instruments Incorporated  
45  
 
TAS2553  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
www.ti.com.cn  
Signal Connector  
Device Analog Input  
C
c
Rin  
Figure 57. Analog Input Connection  
For high fidelity audio playback, it is desirable to keep the cutoff frequency of the high pass filter below the  
minimum reproducible frequency of the speaker. For example, a 1 µF capacitor connected to the differential  
analog inputs with input resistance 10 kΩ results in a cutoff frequency of 16 Hz.  
8.2.2.3 Application Performance Plots  
100  
1
0.1  
VBAT = 5.5 V  
VBAT = 5.0 V  
VBAT = 4.2 V  
VBAT = 3.6 V  
VBAT = 3.0 V  
10  
1
VBAT = 5.5 V  
VBAT = 5.0 V  
VBAT = 4.2 V  
VBAT = 3.6 V  
VBAT = 3.0 V  
0.01  
0.001  
0.1  
0.01  
0.001  
0.01  
0.1  
1
20  
200  
2000  
f - Frequency - Hz  
20000  
PO - Output Power - W  
C006  
C007  
AGC=OFF, Gain = 15 dB, f = 1 kHz  
Figure 58. THD+N vs Output Power (8Ω) for Analog Input  
AGC=OFF, Gain = 15 dB  
Figure 59. THD+N vs Frequency (8Ω) for Analog Input  
8.3 Initialization  
To configure the TAS2553, follow these steps.  
1. Bring-up the power supplies as in Power Supply Sequencing.  
2. Set the EN terminal to HIGH.  
3. Configure the registers in the sequence below. Do not set the bits in the final two steps to zero anytime  
before the end of the sequence.  
Configure device register  
...  
...  
...  
Configure device register  
Set Register 0x0D D[7:0] = 0xA9  
Set Register 0x0E D[5] = 1  
Set Register 0x02 D[0] = 0  
Set Register 0x01 D[1] = 0  
46  
Copyright © 2013–2014, Texas Instruments Incorporated  
TAS2553  
www.ti.com.cn  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
9 Power Supply Recommendations  
9.1 Power Supplies  
The TAS2553 requires three power supplies:  
Boost Input (terminal: VBAT)  
Voltage: 3.0 V to 5.5 V  
Max Current: 2.6 A  
Analog Supply (terminal: AVDD)  
Voltage: 1.65 V to 1.95 V  
Max Current: 30 mA  
Digital I/O Supply (terminal: IOVDD)  
Voltage: 1.5 V to 3.6 V  
Max Current: 5 mA  
The decoupling capacitors for the power supplies should be placed close to the device terminals. For VBAT,  
IOVDD and AVDD, a small decoupling capacitor of 0.1 µF should be placed close to the device terminals. Refer  
to Figure 56 for the schematic.  
9.2 Power Supply Sequencing  
The power supplies should be started in the following order:  
1. VBAT,  
2. IOVDD,  
3. AVDD.  
When the supplies have settled, the EN terminal can be set HIGH to operate the device. The above sequence  
should be completed before any I2C operation.  
9.3 Boost Supply Details  
The boost supply (VBAT) and associated passives need to be able to support the current requirements of the  
device. The peak current limit of the boost is 2.5 A. A minimum of a 10 µF capacitor is recommended on the  
boost supply to quickly support changes in required current. Refer to Figure 56 for the schematic.  
The current requirements can also be reduced by lowering the gain of the amplifier, or in response to decreasing  
battery through the use of the battery-tracking AGC feature of the TAS2553 described in Battery Tracking AGC.  
Copyright © 2013–2014, Texas Instruments Incorporated  
47  
 
TAS2553  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
Place the boost inductor between VBAT and SW close to device terminals with no VIAS between the device  
terminals and the inductor.  
Place the capacitor between VREG and VBOOST close to device terminals with no VIAS between the device  
terminals and capacitor.  
Place the capacitor between VBOOST/PVDD and GND close to device terminals with no VIAS between the  
device terminals and capacitor.  
Do not use VIAS for traces that carry high current. These include the traces for VBOOST, SW, PVDD and the  
speaker OUT+, OUT-.  
Use epoxy filled vias for the interior pads.  
Connect VSENSE+, VSENSE- as close as possible to the speaker.  
VSENSE+, VSENSE- should be connected between the EMI ferrite and the speaker if EMI ferrites are  
used on OUT+, OUT-.  
VSENSE+, VSENSE- should be connected between the EMI ferrite and the EMI capacitor if EMI  
capacitors are used. EMI ferrites must be used if EMI capacitors are used on OUT+, OUT-.  
If the analog inputs, IN+ and IN-, are:  
used, analog input traces should be routed symmetrically for true differential performance.  
used, do not run analog input traces parallel to digital lines.  
used, they should be ac coupled.  
not used, they should be shorted together.  
Use a ground plane with multiple vias for each terminal to create a low-impedance connection to GND for  
minimum ground noise.  
Use supply decoupling capacitors as shown in Figure 51 and Figure 56 and described in Power Supply  
Recommendations.  
Place EMI ferrites, if used, close to the device.  
48  
Copyright © 2013–2014, Texas Instruments Incorporated  
TAS2553  
www.ti.com.cn  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
10.2 Layout Example  
GROUND PLANE  
5
4
3
2
1
F
E
D
C
B
A
VBAT  
BOOST  
INDUCTOR  
GND  
VBAT  
PVDD  
BOOST  
CAPACITOR  
FB  
FB  
GND  
SPK+  
SPK-  
= VIA in PAD, filled  
Figure 60. TAS2553 Board Layout  
Copyright © 2013–2014, Texas Instruments Incorporated  
49  
TAS2553  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
www.ti.com.cn  
10.3 Package Dimensions  
The TAS2553 uses a 30-ball, 0.4 mm pitch WCSP package. The die length (D) and width (E) correspond to the  
package mechanical drawing at the end of the datasheet.  
DIMENSION  
Max  
D
E
2885 μm  
2855 μm  
2825 μm  
2605 μm  
2575 μm  
2545 μm  
Typ  
Min  
50  
Copyright © 2013–2014, Texas Instruments Incorporated  
TAS2553  
www.ti.com.cn  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
11 器件和文档支持  
11.1 Trademarks  
All trademarks are the property of their respective owners.  
11.2 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
11.3 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms and definitions.  
Copyright © 2013–2014, Texas Instruments Incorporated  
51  
TAS2553  
ZHCSC44B SEPTEMBER 2013REVISED FEBRUARY 2014  
www.ti.com.cn  
12 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
52  
Copyright © 2013–2014, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TAS2553YFFR  
TAS2553YFFT  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
YFF  
YFF  
30  
30  
3000 RoHS & Green  
250 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
TAS2553  
TAS2553  
SNAGCU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jun-2015  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TAS2553YFFR  
TAS2553YFFT  
DSBGA  
DSBGA  
YFF  
YFF  
30  
30  
3000  
250  
180.0  
180.0  
8.4  
8.4  
2.76  
2.76  
3.02  
3.02  
0.83  
0.83  
4.0  
4.0  
8.0  
8.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jun-2015  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TAS2553YFFR  
TAS2553YFFT  
DSBGA  
DSBGA  
YFF  
YFF  
30  
30  
3000  
250  
182.0  
182.0  
182.0  
182.0  
20.0  
20.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
YFF0030  
DSBGA - 0.625 mm max height  
S
C
A
L
E
4
.
5
0
0
DIE SIZE BALL GRID ARRAY  
B
E
A
BUMP A1  
CORNER  
D
C
0.625 MAX  
SEATING PLANE  
0.05 C  
BALL TYP  
0.30  
0.12  
1.6 TYP  
SYMM  
F
E
D: Max = 2.885 mm, Min =2.825 mm  
E: Max = 2.605 mm, Min =2.545 mm  
D
C
SYMM  
2
TYP  
B
A
0.4 TYP  
1
2
4
5
3
0.3  
30X  
0.4 TYP  
0.2  
0.015  
C A B  
4219433/A 03/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YFF0030  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
3
30X ( 0.23)  
(0.4) TYP  
2
4
5
1
A
B
C
SYMM  
D
E
F
SYMM  
LAND PATTERN EXAMPLE  
SCALE:25X  
0.05 MAX  
0.05 MIN  
(
0.23)  
(
0.23)  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4219433/A 03/2016  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YFF0030  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
30X ( 0.25)  
(R0.05) TYP  
1
3
2
4
5
A
B
(0.4)  
TYP  
METAL  
TYP  
C
D
E
F
SYMM  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4219433/A 03/2016  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TAS2555

具有集成扬声器保护、高级 EQ 和 8.5V H 类升压的 5.7W 数字输入智能音频放大器
TI

TAS2555YZR

具有集成扬声器保护、高级 EQ 和 8.5V H 类升压的 5.7W 数字输入智能音频放大器 | YZ | 42 | -40 to 85
TI

TAS2555YZT

具有集成扬声器保护、高级 EQ 和 8.5V H 类升压的 5.7W 数字输入智能音频放大器 | YZ | 42 | -40 to 85
TI

TAS2557

具有集成扬声器保护、高级 EQ 和 8.5V H 类升压的 5.7W 数字输入智能音频放大器
TI

TAS2557YZR

具有集成扬声器保护、高级 EQ 和 8.5V H 类升压的 5.7W 数字输入智能音频放大器 | YZ | 42 | -40 to 85
TI

TAS2557YZT

具有集成扬声器保护、高级 EQ 和 8.5V H 类升压的 5.7W 数字输入智能音频放大器 | YZ | 42 | -40 to 85
TI

TAS2559

具有集成扬声器保护和立体声处理功能的 5.7W 数字输入智能放大器
TI

TAS2559YZR

具有集成扬声器保护和立体声处理功能的 5.7W 数字输入智能放大器 | YZ | 42 | -40 to 85
TI

TAS2559YZT

具有集成扬声器保护和立体声处理功能的 5.7W 数字输入智能放大器 | YZ | 42 | -40 to 85
TI

TAS2560

具有 I/V 感应扬声器保护和集成 8.5V H 类升压的 5.6W 数字输入智能放大器
TI

TAS2560YFFR

具有 I/V 感应扬声器保护和集成 8.5V H 类升压的 5.6W 数字输入智能放大器 | YFF | 30 | -40 to 85
TI

TAS2560YFFT

具有 I/V 感应扬声器保护和集成 8.5V H 类升压的 5.6W 数字输入智能放大器 | YFF | 30 | -40 to 85
TI