SN75LBC171DB [TI]

TRIPLE DIFFERENTIAL TRANSCEIVERS; 三重微分收发器
SN75LBC171DB
型号: SN75LBC171DB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TRIPLE DIFFERENTIAL TRANSCEIVERS
三重微分收发器

文件: 总18页 (文件大小:289K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN65LBC171, SN75LBC171  
TRIPLE DIFFERENTIAL TRANSCEIVERS  
SLLS460A – NOVEMBER 2000 – REVISED FEBRUARY 2001  
SN65LBC171DB (Marked as BL171)  
SN75LBC171DB (Marked as LB171)  
SN65LBC171DW (Marked as 65LBC171)  
SN75LBC171DW (Marked as 75LBC171)  
Three Differential Transceivers in One  
Package  
1
Signaling Rates Up to 30 Mbps  
(TOP VIEW)  
Low Power and High Speed  
Designed for TIA/EIA-485, TIA/EIA-422, ISO  
8482, and ANSI X3.277 (HVD SCSI Fast–20)  
Applications  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
1R  
1DE  
1D  
1B  
1A  
RE  
CDE  
Common-Mode Bus Voltage Range  
–7 V to 12 V  
GND  
GND  
2R  
V
CC  
2B  
2A  
3B  
3A  
3D  
ESD Protection on Bus Terminals  
Exceeds 12 kV  
2DE  
2D  
Driver Output Current up to ±60 mA  
3R  
Thermal Shutdown Protection  
3DE  
Driver Positive and Negative Current  
Limiting  
logic diagram  
Power-Up, Power-Down Glitch-Free  
Operation  
CDE  
Pin-Compatible With the SN75ALS171  
1DE  
1D  
1A  
1B  
Available in Shrink Small-Outline Package  
RE  
1R  
description  
The SN65LBC171 and SN75LBC171 are  
monolithic integrated circuits designed for  
bidirectional data communication on multipoint  
bus-transmission lines. Potential applications  
include serial or paralleldatatransmission, cabled  
peripheral buses with twin axial, ribbon, or  
twisted-pair cabling. These devices are suitable  
for FAST–20 SCSI and can transmit or receive  
data pulses as short as 25 ns, with skew less than  
3 ns.  
2DE  
2D  
2A  
2B  
2R  
3DE  
3D  
3A  
3B  
These devices combine three 3-state differential  
line drivers and three differential input line  
receivers, all of which operate from a single 5-V  
power supply.  
3R  
The driver differential outputs and the receiver differential inputs are connected internally to form three  
differentialinput/output(I/O)busportsthataredesignedtoofferminimumloadingtothebuswheneverthedriver  
is disabled or V  
party-line applications over long cable runs.  
= 0. These ports feature a wide common-mode voltage range making the device suitable for  
CC  
The SN75LBC171 is characterized for operation over the temperature range of 0°C to 70°C. The SN65LBC171  
is characterized for operation over the temperature range of –40°C to 85°C.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
1
The signaling rate of a line is the number of voltage transitions that are made per second expressed in the units bps (bits per second).  
Copyright 2001, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LBC171, SN75LBC171  
TRIPLE DIFFERENTIAL TRANSCEIVERS  
SLLS460A NOVEMBER 2000 REVISED FEBRUARY 2001  
AVAILABLE OPTIONS  
PACKAGE  
PLASTIC SHRINK SMALL-OUTLINE  
T
PLASTIC SMALL-OUTLINE  
(JEDEC MS-013)  
A
(JEDEC MO-150)  
SN75LBC171DB  
SN65LBC171DB  
0°C to 70°C  
SN75LBC171DW  
SN65LBC171DW  
40°C to 85°C  
Add R suffix for taped and reel  
Function Tables  
EACH DRIVER  
EACH RECEIVER  
INPUT  
D
ENABLE  
DE CDE  
OUTPUTS  
DIFFERENTIAL INPUT ENABLE OUTPUT  
(V V )  
RE  
R
A
B
A
B
H
L
OPEN  
X
X
X
X
H
H
H
L
X
H
H
H
X
L
H
L
V
0.2 V  
L
L
L
H
L
H
?
ID  
0.2 V < V < 0.2 V  
L
L
Z
Z
Z
Z
H
H
Z
Z
Z
Z
ID  
0.2 V  
V
ID  
L
X
Z
H
OPEN  
OPEN  
X
X
OPEN  
H = high level, L = low level, X = irrelevant,  
Z = high impedance (off), ? = indeterminate  
equivalent input and output schematic diagrams  
D, DE,CDE INPUTS  
RE INPUT  
R OUTPUT  
V
V
CC  
CC  
V
CC  
100 k  
1 kΩ  
40 Ω  
1 kΩ  
Output  
Input  
Input  
8 V  
100 kΩ  
8 V  
A INPUT  
B INPUT  
A AND B OUTPUT  
V
V
V
CC  
CC  
CC  
4 kΩ  
4 kΩ  
100 kΩ  
18 kΩ  
16 V  
16 V  
16 V  
4 kΩ  
4 kΩ  
18 kΩ  
18 kΩ  
Input  
Input  
Output  
100 kΩ  
4 kΩ  
16 V  
16 V  
4 kΩ  
16 V  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LBC171, SN75LBC171  
TRIPLE DIFFERENTIAL TRANSCEIVERS  
SLLS460A NOVEMBER 2000 REVISED FEBRUARY 2001  
absolute maximum ratings  
Supply voltage, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 6 V  
CC  
Voltage range at any bus I/O terminal (steady state) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 V to 15 V  
Voltage input range, A and B, (transient pulse through 100 , see Figure 12) . . . . . . . . . . . . . . 30 V to 30 V  
Voltage range at any DE, RE, or CDE terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to V  
+ 0.5 V  
CC  
Electrostatic discharge: Human body model (A, B, GND) (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . 12 kV  
All pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 kV  
Charged-device model (all pins) (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 kV  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Power Dissipation Rating Table  
Storage temperature range, T  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Stresses beyond those listed under absolute maximum ratingsmay cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditionsis not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.  
2. Tested in accordance with JEDEC Standard 22, Test Method A114A.  
3. Tested in accordance with JEDEC Standard 22, Test Method C101.  
POWER DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T
= 70°C  
T = 85°C  
A
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING POWER RATING  
A
DB  
995 mW  
8.0 mW/°C  
11.8 mW/°C  
635 mW  
950 mW  
515 mW  
770 mW  
DW  
1480 mW  
This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.  
recommended operating conditions  
MIN NOM  
MAX  
5.25  
12  
UNIT  
V
Supply voltage, V  
CC  
4.75  
7  
2
5
Voltage at any bus I/O terminal  
A, B  
V
High-level input voltage, V  
V
CC  
0.8  
IH  
DE, CDE, RE  
V
V
Low-level input voltage, V  
0
IL  
Differential input voltage, V  
A with respect to B  
Driver  
12  
60  
8  
0
12  
60  
8
ID  
Output current  
mA  
Receiver  
SN75LBC171  
SN65LBC171  
70  
85  
Operating free-air temperature, T  
°C  
A
40  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LBC171, SN75LBC171  
TRIPLE DIFFERENTIAL TRANSCEIVERS  
SLLS460A NOVEMBER 2000 REVISED FEBRUARY 2001  
DRIVER SECTION  
electrical characteristics over recommended operating conditions  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
V
V
Input clamp voltage  
D, DE, CDE  
I = 18 mA  
1.5  
0
0.7  
V
V
V
V
V
IK  
I
Open-circuit output voltage (single-ended)  
A or B, No load  
No load  
V
V
O
CC  
3.8  
1
4.3  
1.6  
1.6  
CC  
2.4  
Steady-state differential output voltage  
|V  
|
R
= 54 ,  
See Figure 1  
OD(SS)  
L
magnitude  
With common-mode loading, See Figure 2  
1
2.4  
0.2  
2.8  
0.2  
Change in differential output voltage  
magnitude, | V | |V  
V  
0.2  
2
V
V
V
OD  
|
OD(H) OD(L)  
R
C
= 54 ,  
= 50 pF  
L
L
V
Steady-state common-mode output voltage  
See Figure 1  
2.4  
OC(SS)  
Change in steady-state common-mode  
V  
0.2  
OC(SS)  
output voltage (V  
Input current  
V )  
OC(L)  
OC(H)  
I
I
I
D, DE, CDE  
100  
700  
250  
100  
900  
250  
µA  
µA  
I
Output current with power off  
Short-circuit output current  
V
V
= 0 V,  
V
O
= 7 V to 12 V  
O
CC  
= 7 V to 12 V, See Figure 7  
O
mA  
OS  
CDE, DE, RE at  
I
Supply current (driver enabled)  
D at 0 V or V  
CC  
,
14  
20  
mA  
CC  
V
CC  
, No load  
All typical values are at V  
= 5 V and T = 25°C.  
A
CC  
The minimum V  
may not fully comply with TIA/EIA-485-A at operating temperatures below 0°C. System designers should take the possibly  
lower output signal into account in determining the maximum signal-transmission distance.  
OD  
switching characteristics over recommended operating conditions  
PARAMETER  
TEST CONDITIONS  
MIN  
4
TYP  
8.5  
8.5  
7.5  
7.5  
MAX  
12  
11  
11  
11  
2
UNIT  
t
Differential output propagation delay, low-to high  
Differential output propagation delay, high-to-low  
Differential output rise time  
PLH  
t
4
PHL  
t
r
t
f
3
R
= 54 ,  
C = 50 pF,  
L
L
ns  
Differential output fall time  
3
See Figure 3  
t
Pulse skew | (t ) |  
t  
sk(p)  
PLH PHL  
§
t
Output skew  
Part-to-part skew  
1.5  
2
sk(o)  
t
sk(pp)  
t
Differential output propagation delay, low-to high  
Differential output propagation delay, high-to-low  
Differential output rise time  
3
3
3
3
7
7.5  
7.5  
7.5  
10  
10  
12  
12  
3
PLH  
t
PHL  
t
r
t
f
See Figure 4,  
(HVD SCSI double-terminated load)  
ns  
Differential output fall time  
t
Pulse skew | (t ) |  
t  
sk(p)  
PLH PHL  
§
t
Output skew  
Part-to-part skew  
1.5  
2.5  
25  
25  
25  
25  
sk(o)  
t
sk(pp)  
t
Output enable time to high level  
Output disable time from high level  
Output enable time to low level  
Output disable time from low level  
15  
18  
10  
17  
PZH  
See Figure 5  
See Figure 6  
ns  
ns  
t
PHZ  
t
PZL  
t
PLZ  
§
Output skew (t  
sk(o)  
) is the magnitude of the time delay difference between the outputs of a single device with all of the inputs connected together.  
) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when  
Part-to-part skew (t  
sk(pp)  
both devices operate with the same input signals, the same supply voltages, at the same temperature, and have identical packages and test  
circuits.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LBC171, SN75LBC171  
TRIPLE DIFFERENTIAL TRANSCEIVERS  
SLLS460A NOVEMBER 2000 REVISED FEBRUARY 2001  
RECEIVER SECTION  
electrical characteristics over recommended operating conditions  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
V
V
V
V
V
V
Positive-going differential input voltage threshold  
Negative-going differential input voltage threshold  
0.2  
IT+  
IT–  
hys  
OH  
OL  
0.2  
Hysteresis voltage (V  
IT+  
V  
)
40  
4.7  
0.2  
mV  
V
IT–  
High-level output voltage  
Low-level output voltage  
V
V
= 200 mV, I  
OH  
= 8 mA, see Figure 10  
= 8 mA, see Figure 10  
V = 12 V  
4
0
V
ID  
CC  
0.4  
= 200 mV, I  
OL  
ID  
0.9  
I
I
Line input current  
Other input = 0 V  
mA  
I
I
V = 7 V  
I
0.7  
100  
12  
I
Input current  
RE  
100  
16  
µA  
kΩ  
mA  
R
Input resistance  
A, B  
I
I
Supply current (receiver enabled)  
= 5 V and T = 25°C.  
A, B, D open, RE, DE, and CDE at 0 V  
CC  
All typical values are at V  
CC  
A
switching characteristics over recommended operating conditions  
PARAMETER  
TEST CONDITIONS  
MIN  
7
TYP  
MAX  
16  
16  
3
UNIT  
ns  
t
Propagation delay time, low-to-high level output  
Propagation delay time, high-to-low level output  
Receiver output rise time  
PLH  
t
7
ns  
PHL  
V
ID  
= 3 V to 3 V, See Figure 9  
t
r
1.3  
1.3  
26  
ns  
t
f
Receiver output fall time  
3
ns  
t
Receiver output enable time to high level  
Receiver output disable time from high level  
Receiver output enable time to low level  
Receiver output enable time to high level  
40  
40  
40  
40  
2
PZH  
See Figure 10  
See Figure 11  
ns  
ns  
t
PHZ  
t
29  
PZL  
t
PLZ  
t
Pulse skew (| ( t  
t  
PLH PHL  
|)  
ns  
ns  
ns  
sk(p)  
t
Output skew  
1.5  
3
sk(o)  
t
Part-to-part skew  
sk(pp)  
§
Output skew (t  
sk(o)  
Part-to-part skew (t  
) is the magnitude of the time delay difference between the outputs of a single device with all of the inputs connected together.  
) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when  
sk(pp)  
both devices operate with the same input signals, the same supply voltages, at the same temperature, and have identical packages and test  
circuits.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LBC171, SN75LBC171  
TRIPLE DIFFERENTIAL TRANSCEIVERS  
SLLS460A NOVEMBER 2000 REVISED FEBRUARY 2001  
PARAMETER MEASUREMENT INFORMATION  
I
O
27 Ω  
27 Ω  
I
I
V
OD  
50 pF  
0 V or 3 V  
I
O
V
O
V
OC  
V
O
Includes probe and jig capacitance  
Figure 1. Driver Test Circuit, V  
and V  
Without Common-Mode Loading  
OC  
OD  
375 Ω  
V
OD  
V
TEST  
= 7 V to 12 V  
Input  
60 Ω  
375 Ω  
V
TEST  
Figure 2. Driver Test Circuit, V  
With Common-Mode Loading  
OD  
R
= 54 Ω  
L
C
= 50 pF  
V
OD  
L
Signal  
50 Ω  
Generator  
PRR = 1 MHz, 50% Duty Cycle, t < 6 ns, t < 6 ns, Z = 50 Ω  
r
f
o
Includes Probe and Jig Capacitance  
3 V  
0 V  
Input  
1.5 V  
1.5 V  
t
t
PHL  
PLH  
V
OD(H)  
90% 90%  
Output  
0 V  
10%  
10%  
V
OD(L)  
t
t
f
r
Figure 3. Driver Switching Test Circuit and Waveforms, 485-Loading  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LBC171, SN75LBC171  
TRIPLE DIFFERENTIAL TRANSCEIVERS  
SLLS460A NOVEMBER 2000 REVISED FEBRUARY 2001  
PARAMETER MEASUREMENT INFORMATION  
5 V  
0 V  
S1  
375 Ω  
75 Ω  
60 pF  
3 V  
0 V  
165 Ω  
165 Ω  
Input  
1.5 V  
10%  
1.5 V  
t
t
PHL  
PLH  
V
OD  
V
OD(H)  
Signal  
Generator  
90% 90%  
Output  
50 Ω  
0 V  
V
10%  
OD(L)  
60 pF  
375 Ω  
t
t
f
r
5 V  
0 V  
S2  
PRR = 1 MHz, 50% Duty Cycle, t < 6 ns, t < 6 ns, Z = 50 Ω  
r
f
o
Includes Probe and Jig Capacitance  
Figure 4. Driver Switching Test Circuit and Waveforms, HVD SCSI-Loading (double terminated)  
A
S1  
Output  
0 V or 3 V  
B
R
= 110 Ω  
C
= 50 pF  
L
L
Input  
Generator  
50 Ω  
3 V if testing A output, 0 V if testing B output  
PRR = 1 MHz, 50% Duty Cycle, t < 6 ns, t < 6 ns, Z = 50 Ω  
r
f
o
Includes Probe and Jig Capacitance  
3 V  
0 V  
Input  
1.5 V  
1.5 V  
0.5 V  
t
PZH  
V
OH  
Output  
2.3 V  
0 V  
t
PHZ  
Figure 5. Driver Enable/Disable Test, High Output  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LBC171, SN75LBC171  
TRIPLE DIFFERENTIAL TRANSCEIVERS  
SLLS460A NOVEMBER 2000 REVISED FEBRUARY 2001  
PARAMETER MEASUREMENT INFORMATION  
5 V  
R
= 110 Ω  
A
B
L
S1  
3 V  
0 V  
Input  
t
0 V or 3 V  
1.5 V  
1.5 V  
Output  
C
= 50 pF  
L
t
PZH  
PHZ  
Input  
5 V  
Output  
2.3 V  
Generator  
50 Ω  
V
OL  
0.5 V  
0 V if testing A output, 3 V if testing B output  
PRR = 1 MHz, 50% Duty Cycle, t < 6 ns, t < 6 ns, Z = 50 Ω  
r
f
o
Includes Probe and Jig Capacitance  
Figure 6. Driver Enable/Disable Test, Low Output  
I
OS  
I
O
V
O
V
ID  
Voltage  
Source  
V
O
Figure 7. Driver Short-Circuit Test  
Figure 8. Receiver DC Parameters  
Generator  
Input B  
50 Ω  
50 Ω  
3 V  
0 V  
A
B
1.5 V  
I
O
Input A  
R
V
ID  
t
t
PHL  
PLH  
V
O
V
OH  
C
= 15 pF  
Generator  
90% 90%  
L
Output  
1.5 V  
10%  
1.5 V  
10%  
V
OL  
t
t
f
r
PRR = 1 MHz, 50% Duty Cycle, t < 6 ns, t < 6 ns, Z = 50 Ω  
r
f
o
Includes Probe and Jig Capacitance  
Figure 9. Receiver Switching Test Circuit and Waveforms  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LBC171, SN75LBC171  
TRIPLE DIFFERENTIAL TRANSCEIVERS  
SLLS460A NOVEMBER 2000 REVISED FEBRUARY 2001  
PARAMETER MEASUREMENT INFORMATION  
V
CC  
A
B
3 V  
0 V  
1.5 V  
1 kΩ  
R
1.5 V  
1.5 V  
C
= 15 pF  
L
t
t
PHZ  
PZH  
EN  
V
OH  
V
OH  
0.5 V  
1.5 V  
Generator  
GND  
50 Ω  
PRR = 1 MHz, 50% Duty Cycle, t < 6 ns, t < 6 ns, Z = 50 Ω  
r
f
o
Includes Probe and Jig Capacitance  
Figure 10. Receiver Enable/Disable Test, High Output  
V
CC  
A
B
3 V  
0 V  
1.5 V  
1 kΩ  
1.5 V  
R
1.5 V  
C
= 15 pF  
EN  
L
t
t
PLZ  
PZL  
V
CC  
1.5 V  
V
OL  
+ 0.5 V  
V
Generator  
OL  
50 Ω  
PRR = 1 MHz, 50% Duty Cycle, t < 6 ns, t < 6 ns, Z = 50 Ω  
r
f
o
Includes Probe and Jig Capacitance  
Figure 11. Receiver Enable/Disable Test, Low Output  
100 Ω  
Pulse  
V
TEST  
0 V  
15 µs  
Generator,  
V  
TEST  
1.5 ms  
15-µs Duration,  
1% Duty Cycle  
Figure 12. Test Circuit and Waveform, Transient Over Voltage Test  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LBC171, SN75LBC171  
TRIPLE DIFFERENTIAL TRANSCEIVERS  
SLLS460A NOVEMBER 2000 REVISED FEBRUARY 2001  
TYPICAL CHARACTERISTICS  
DIFFERENTIAL OUTPUT VOLTAGE  
DIFFERENTIAL OUTPUT VOLTAGE  
vs  
vs  
OUTPUT CURRENT  
FREE-AIR TEMPERATURE  
4
2.5  
3.5  
3
V
CC  
= 5.25 V  
2
V
CC  
= 5 V  
V
CC  
= 5.25 V  
2.5  
2
1.5  
V
CC  
= 5 V  
V
CC  
= 4.75 V  
1
0.5  
0
1.5  
1
V
= 4.75 V  
CC  
0.5  
0
0
20  
40  
60  
80  
100  
60 40 20  
0
20  
40  
60  
80  
100  
I
O
Output Current mA  
T
A
Free-Air Temperature °C  
Figure 13  
Figure 14  
DRIVER PROPAGATION DELAY  
vs  
SUPPLY CURRENT  
vs  
SIGNALING RATE  
FREE-AIR TEMPERATURE  
12  
11  
10  
165  
160  
155  
All 3 Channels Driving  
R
C
= 54 ,  
= 50 pF (Each Channel),  
L
L
Pseudorandom NRZ Data  
SCSI Load  
9
8
7
6
5
4
150  
145  
140  
135  
RS485 Load  
40  
20  
0
20  
40  
60  
80  
0.1  
1
10  
100  
T
Free-Air Temperature °C  
A
Signaling Rate Mbps  
Figure 15  
Figure 16  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LBC171, SN75LBC171  
TRIPLE DIFFERENTIAL TRANSCEIVERS  
SLLS460A NOVEMBER 2000 REVISED FEBRUARY 2001  
TYPICAL CHARACTERISTICS  
BUS INPUT CURRENT  
vs  
BUS INPUT VOLTAGE  
RECEIVER PROPAGATION DELAY TIME  
vs  
FREE-AIR TEMPERATURE  
800  
600  
12  
11  
10  
V
= 0 V  
V
CC  
t
t
PHL  
PLH  
400  
200  
0
= 5 V  
CC  
9
8
7
6
5
4
200  
400  
600  
10  
5  
0
5
10  
15  
40  
20  
0
20  
40  
60  
80  
Bus Input Voltage V  
T
A
Free-Air Temperature °C  
Figure 17  
Figure 18  
SN65LBC171  
(as Driver)  
SN65LBC171  
(as Receiver)  
15 Meters, Cat. 5  
Twisted-Pair Cable  
Signal  
Generator  
100 Ω  
15 pF  
Figure 19. Circuit Diagram for Signaling Characteristics  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LBC171, SN75LBC171  
TRIPLE DIFFERENTIAL TRANSCEIVERS  
SLLS460A NOVEMBER 2000 REVISED FEBRUARY 2001  
TYPICAL CHARACTERISTICS  
Driver Input  
(5 V/div)  
Driver Output  
(2 V/div)  
Receiver Input  
(2 V/div)  
25 ns  
Receiver Output  
(5 V/div)  
Figure 20. Signal Waveforms at 30 Mbps  
Driver Input  
(5 V/div)  
Driver Output  
(2 V/div)  
Receiver Input  
(2 V/div)  
12.5 ns  
Receiver Output  
(5 V/div)  
Figure 21. Eye Patterns, Pseudorandom Data at 30 Mbps  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LBC171, SN75LBC171  
TRIPLE DIFFERENTIAL TRANSCEIVERS  
SLLS460A NOVEMBER 2000 REVISED FEBRUARY 2001  
TYPICAL CHARACTERISTICS  
Driver Input  
(5 V/div)  
Driver Output  
(2 V/div)  
Receiver Input  
(2 V/div)  
25 ns  
Receiver Output  
(5 V/div)  
Figure 22. Signal Waveforms at 50 Mbps  
Driver Input  
(5 V/div)  
Driver Output  
(2 V/div)  
Receiver Input  
(2 V/div)  
12.5 ns  
Receiver Output  
(5 V/div)  
Figure 23. Eye Patterns, Pseudorandom Data at 50 Mbps  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LBC171, SN75LBC171  
TRIPLE DIFFERENTIAL TRANSCEIVERS  
SLLS460A NOVEMBER 2000 REVISED FEBRUARY 2001  
MECHANICAL DATA  
DB (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE  
28 PINS SHOWN  
0,38  
0,22  
0,65  
28  
M
0,15  
15  
0,15 NOM  
5,60  
5,00  
8,20  
7,40  
Gage Plane  
1
14  
0,25  
A
0°8°  
0,95  
0,55  
Seating Plane  
0,10  
2,00 MAX  
0,05 MIN  
PINS **  
14  
16  
20  
24  
28  
30  
38  
DIM  
6,50  
5,90  
6,50  
5,90  
7,50  
8,50  
7,90  
10,50  
9,90  
10,50 12,90  
A MAX  
A MIN  
6,90  
9,90  
12,30  
4040065 /D 09/00  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-150  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LBC171, SN75LBC171  
TRIPLE DIFFERENTIAL TRANSCEIVERS  
SLLS460A NOVEMBER 2000 REVISED FEBRUARY 2001  
MECHANICAL DATA  
DW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
16 PINS SHOWN  
0.050 (1,27)  
16  
0.020 (0,51)  
0.014 (0,35)  
0.010 (0,25)  
M
9
0.419 (10,65)  
0.400 (10,15)  
0.010 (0,25) NOM  
0.299 (7,59)  
0.291 (7,39)  
Gage Plane  
0.010 (0,25)  
1
8
0°8°  
0.050 (1,27)  
0.016 (0,40)  
A
Seating Plane  
0.004 (0,10)  
0.012 (0,30)  
0.004 (0,10)  
0.104 (2,65) MAX  
PINS **  
16  
20  
24  
28  
0.710  
DIM  
0.410  
0.510  
0.610  
A MAX  
A MIN  
(10,41) (12,95) (15,49) (18,03)  
0.400  
0.500  
0.600  
0.700  
(10,16) (12,70) (15,24) (17,78)  
4040000/D 01/00  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).  
D. Falls within JEDEC MS-013  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Dec-2006  
PACKAGING INFORMATION  
Orderable Device  
SN65LBC171DB  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SSOP  
DB  
20  
20  
20  
20  
20  
20  
20  
70 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65LBC171DBR  
SN65LBC171DW  
SN65LBC171DWG4  
SN65LBC171DWR  
SN65LBC171DWRG4  
SN75LBC171DB  
SSOP  
SOIC  
SOIC  
SOIC  
SOIC  
SSOP  
DB  
DW  
DW  
DW  
DW  
DB  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
25 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
25 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
70 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN75LBC171DBR  
SN75LBC171DBRG4  
SN75LBC171DW  
ACTIVE  
ACTIVE  
ACTIVE  
SSOP  
SSOP  
SOIC  
DB  
DB  
DW  
20  
20  
20  
2500  
2500  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
25 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN75LBC171DWG4  
ACTIVE  
SOIC  
DW  
20  
25 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN75LBC171DWR  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
DW  
DW  
20  
20  
2500  
2500  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
SN75LBC171DWRG4  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Dec-2006  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Low Power Wireless www.ti.com/lpw  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2006, Texas Instruments Incorporated  

相关型号:

SN75LBC171DBR

TRIPLE DIFFERENTIAL TRANSCEIVERS
TI

SN75LBC171DBRG4

TRIPLE DIFFERENTIAL TRANSCEIVERS
TI

SN75LBC171DW

TRIPLE DIFFERENTIAL TRANSCEIVERS
TI

SN75LBC171DWG4

TRIPLE DIFFERENTIAL TRANSCEIVERS
TI

SN75LBC171DWR

TRIPLE DIFFERENTIAL TRANSCEIVERS
TI

SN75LBC171DWRG4

TRIPLE DIFFERENTIAL TRANSCEIVERS
TI

SN75LBC172

QUADRUPLE LOW-POWER DIFFERENTIAL LINE DRIVER
TI

SN75LBC172A

QUADRUPLE RS-485 DIFFERENTIAL LINE DRIVERS
TI

SN75LBC172A16DW

QUADRUPLE RS-485 DIFFERENTIAL LINE DRIVERS
TI

SN75LBC172A16DWG4

Quad RS-485 Differential Line Drivers 16-SOIC 0 to 70
TI

SN75LBC172A16DWR

暂无描述
TI

SN75LBC172ADW

QUADRUPLE RS-485 DIFFERENTIAL LINE DRIVERS
TI