SN75ALS197NSRE4 [TI]

QUADRUPLE DIFFERENTIAL LINE RECEIVER; 四路差动线路接收器
SN75ALS197NSRE4
型号: SN75ALS197NSRE4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

QUADRUPLE DIFFERENTIAL LINE RECEIVER
四路差动线路接收器

线路驱动器或接收器 驱动程序和接口 接口集成电路 光电二极管
文件: 总21页 (文件大小:793K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN75ALS197  
QUADRUPLE DIFFERENTIAL LINE RECEIVER  
SLLS045B – JANUARY 1989 – REVISED MAY 1995  
D OR N PACKAGE  
(TOP VIEW)  
Meets or Exceeds the Requirements of ITU  
Recommendations V.10, V.11, X.26, and  
X.27  
V
1B  
1A  
1
2
3
4
5
6
7
8
16  
15  
14  
CC  
Designed for Multipoint Bus Transmission  
on Long Bus Lines in Noisy Environments  
4B  
4A  
1Y  
Designed to Operate Up to 20 Mbaud  
3-State Outputs  
13 4Y  
G
12  
11  
10  
9
G
2Y  
3Y  
3A  
3B  
2A  
Common-Mode Input Voltage Range  
– 7 V to 7 V  
2B  
GND  
Input Sensitivity . . . ±300 mV  
Input Hysteresis . . . 120 mV Typ  
High-Input Impedance . . . 12 kMin  
Operates from Single 5-V Supply  
Low Supply-Current Requirement  
35 mA Max  
Improved Speed and Power Consumption  
Compared to AM26LS32A  
description  
The SN75ALSI97 is a monolithic, quadruple line receiver with 3-state outputs designed using advanced,  
low-power, Schottky technology. This technology provides combined improvements in bar design, tooling  
production, and wafer fabrication. This, in turn, provides significantly lower power requirements and permits  
much higher data throughput than other designs. The device meets the specifications of ITU Recommendations  
V.10, V.11, X.26, and X.27. It features 3-state outputs that permit direct connection to a bus-organized system  
with a fail-safe design that ensures the outputs will always be high if the inputs are open.  
The device is optimized for balanced, multipoint bus transmission at rates up to 20 megabits per second. The  
input features high-input impedance, input hysteresis for increased noise immunity, and an input sensitivity of  
±300 mV over a common-mode input voltage range of 7 V to 7 V. It also features active-high and active-low  
enablefunctionsthatarecommontothefourchannels. TheSN75ALS197isdesignedforoptimumperformance  
when used with the SN75ALS192 quadruple differential line driver.  
The SN75ALS197 is characterized for operation from 0°C to 70°C.  
FUNCTION TABLE  
(each receiver)  
ENABLES  
DIFFERENTIAL INPUTS  
A–B  
OUTPUT  
Y
G
G
H
X
X
L
H
H
V
ID  
0.3 V  
H
X
X
L
?
?
– 0.3 V < V < 0.3 V  
ID  
H
X
X
L
L
L
V
ID  
– 0.3 V  
X
L
H
Z
H
X
X
L
H
H
Open  
H = high level, L = low level, X = irrelevant, ? = indeterminate,  
Z = high impedance (off)  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 1995, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75ALS197  
QUADRUPLE DIFFERENTIAL LINE RECEIVER  
SLLS045B – JANUARY 1989 – REVISED MAY 1995  
logic symbol  
logic diagram (positive logic)  
4
4
G
1  
G
G
EN  
12  
12  
G
2
2
1
1A  
1A  
1B  
3
3
5
1Y  
2Y  
3Y  
4Y  
1Y  
1
1B  
6
7
6
2A  
2B  
5
11  
13  
2A  
2Y  
3Y  
4Y  
7
10  
9
2B  
3A  
3B  
4A  
4B  
10  
14  
15  
3A  
11  
13  
9
3B  
This symbol is in accordance with ANSI/IEEE Std 91-1984 and  
IEC Publication 617-12.  
14  
4A  
15  
4B  
schematics of inputs and outputs  
EQUIVALENT OF EACH A OR B INPUT  
EQUIVALENT OF G OR G INPUTS  
EQUIVALENT OF ALL OUTPUTS  
V
CC  
V
CC  
V
CC  
3 k  
50 kΩ  
NOM  
NOM  
22 kΩ  
NOM  
18 kΩ  
NOM  
Input  
Output  
300 kΩ  
NOM  
Input  
GND  
2 kΩ  
NOM  
V
(A)  
CC  
or  
GND (B)  
GND  
GND  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75ALS197  
QUADRUPLE DIFFERENTIAL LINE RECEIVER  
SLLS045B – JANUARY 1989 – REVISED MAY 1995  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V  
CC  
Input voltage, V (A or B inputs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±15 V  
I
Differential input voltage, V (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±15 V  
ID  
Enable input voltage, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V  
Low-level output current, I  
Continuous total dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
I
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
OL  
Operating free-air temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C  
stg  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values, except differential input voltage, are with respect to network ground terminal.  
2. Differential input voltage is measured at the noninverting input with respect to the corresponding inverting input.  
DISSIPATION RATING TABLE  
T
25°C  
DERATING  
FACTOR  
T = 70°C  
A
POWER RATING  
A
PACKAGE  
POWER RATING  
D
N
950 mW  
7.6 mW/°C  
9.2 mW/°C  
608 mW  
1150 mW  
736 mW  
recommended operating conditions  
MIN  
NOM MAX  
UNIT  
V
Supply voltage, V  
4.75  
5
5.25  
±7  
CC  
Common-mode input voltage, V  
V
IC  
Differential input voltage, V  
±12  
V
ID  
High-level input voltage, V  
2
0
V
IH  
Low-level input voltage, V  
0.8  
–400  
16  
V
IL  
High-level output current, I  
µA  
mA  
°C  
OH  
OL  
Low-level output current, I  
Operating free-air temperature, T  
70  
A
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75ALS197  
QUADRUPLE DIFFERENTIAL LINE RECEIVER  
SLLS045B – JANUARY 1989 – REVISED MAY 1995  
electrical characteristics over recommended range of common-mode input voltage, supply  
voltage, and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
mV  
mV  
mV  
V
V
V
V
V
V
Positive-going input threshold voltage  
Negative-going input threshold voltage  
300  
IT+  
IT–  
hys  
IK  
300  
Hysteresis voltage (V  
IT+  
– V  
)
See Figure 4  
I = –18 mA  
120  
3.6  
IT–  
Enable-input clamp voltage  
High-level output voltage  
1.5  
I
V
= 300 mV,  
I
I
I
= – 400 µA  
= 8 mA  
2.7  
V
OH  
ID  
ID  
OH  
OL  
OL  
0.45  
0.5  
V
OL  
Low-level output voltage  
V
= – 300 mV  
V
= 16 mA  
= 2.4 V  
V
V
20  
O
I
I
High-impedance-state output current  
Line input current  
V
CC  
= 5.25 V  
µA  
mA  
µA  
OZ  
= 0.4 V  
20  
1.2  
OH  
V = 15 V  
0.7  
Other input at 0 V,  
See Note 3  
I
I
V = –15 V  
I
1.0  
1.7  
20  
V
= 2.7 V  
IH  
IH  
I
I
High-level enable-input current  
H
V
= 5.25 V  
100  
100  
Low-level enable-input current  
Input resistance  
V
V
= 0.4 V  
= 3 V,  
µA  
kΩ  
IL  
IL  
12  
18  
§
I
I
Short-circuit output current  
Supply current  
V
O
= 0  
15  
78 130  
22 35  
mA  
mA  
OS  
ID  
Outputs disabled  
CC  
§
All typical values are at V  
= 5 V, T = 25°C.  
A
CC  
The algebraic convention, in which the less positive limit is designated minimum, is used in this data sheet for threshold voltage levels only.  
Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.  
NOTE 3: Refer to ANSI Standard EIA/TIA-422-B and EIA/TIA-423-B for exact conditions.  
switching characteristics, V  
= 5 V, T = 25°C  
A
CC  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
15  
15  
13  
11  
MAX  
22  
UNIT  
ns  
t
t
t
t
t
t
Propagation delay time, low- to high-level output  
PLH  
PHL  
PZH  
PZL  
PHZ  
PLZ  
V
= – 2.5 V to 2.5 V, = 15 pF,  
C
L
ID  
See Figure 2  
Propagation delay time, high- to low-level output  
Output enable time to high level  
22  
ns  
25  
C
C
= 15 pF,  
= 15 pF,  
See Figure 3  
See Figure 3  
ns  
ns  
L
L
Output enable time to low level  
25  
Output disable time from high level  
Output disable time from low level  
13  
15  
25  
22  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75ALS197  
QUADRUPLE DIFFERENTIAL LINE RECEIVER  
SLLS045B – JANUARY 1989 – REVISED MAY 1995  
PARAMETER MEASUREMENT INFORMATION  
V
ID  
V
OH  
I
OL  
I
OH  
V
OL  
2 V  
Figure 1. V  
and V  
Test Circuit  
OL  
OH  
2.5 V  
Generator  
(see Note A)  
Input  
0 V  
0 V  
Output  
= 15 pF  
50 Ω  
2.5 V  
t
t
PHL  
PLH  
C
L
V
OH  
OL  
(see Note B)  
1.3 V  
1.3 V  
Output  
V
2 V  
TEST CIRCUIT  
VOLTAGE WAVEFORMS  
NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR 1 MHz, duty cycle 50%, Z = 50 ,  
O
t 6 ns, t 6 ns.  
r
f
B.  
C
L
includes probe and jig capacitance.  
Figure 2. t  
and t  
Test Circuit and Voltage Waveforms  
PLH  
PHL  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75ALS197  
QUADRUPLE DIFFERENTIAL LINE RECEIVER  
SLLS045B – JANUARY 1989 – REVISED MAY 1995  
PARAMETER MEASUREMENT INFORMATION  
Test  
V
CC  
Point  
R
= 2 kΩ  
L
S1  
From Output  
Under Test  
See Note B  
C
L
5 kΩ  
(see Note A)  
S2  
LOAD CIRCUIT  
5 ns  
90%  
5 ns  
5 ns  
90%  
5 ns  
3 V  
3 V  
90%  
90%  
Enable  
G
Enable  
G
1.3 V  
1.3 V  
1.3 V  
1.3 V  
10%  
10%  
10%  
10%  
0 V  
3 V  
0 V  
3 V  
See Note C  
See Note C  
90%  
90%  
90%  
90%  
1.3 V  
Enable  
G
Enable  
G
1.3 V  
1.3 V  
1.3 V  
10%  
10%  
PZH  
10%  
10%  
t
PZL  
0 V  
0.5 V  
0 V  
S1 Closed  
S2 Closed  
t
V
OH  
t
PLZ  
1.4 V  
S1 Open  
S2 Closed  
S1 Closed  
S2 Open  
1.3 V  
t
1.3 V  
Output  
1.4 V  
Output  
V
OL  
PHZ  
S1 Closed  
S2 Closed  
0.5 V  
VOLTAGE WAVEFORMS FOR t  
PHZ  
and t  
VOLTAGE WAVEFORMS FOR t and t  
PLZ PZL  
PZH  
NOTES: A.  
C includes probe and jig capacitance.  
L
B. All diodes are 1N3064 or equivalent.  
C. Enable G is tested with G high; G is tested with G low.  
Figure 3. t  
, t  
, t  
, and t  
Load Circuit and Voltage Waveforms  
PHZ PZH PLZ  
PZL  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75ALS197  
QUADRUPLE DIFFERENTIAL LINE RECEIVER  
SLLS045B – JANUARY 1989 – REVISED MAY 1995  
TYPICAL CHARACTERISTICS  
OUTPUT VOLTAGE  
vs  
OUTPUT VOLTAGE  
vs  
ENABLE VOLTAGE  
ENABLE VOLTAGE  
4
3.5  
3
5
V
V
= 300 mV  
= 0  
= 8 kto GND  
= 25°C  
ID  
IC  
L
T
= 70°C  
= 25°C  
= 0°C  
4.5  
4
A
V
CC  
V
CC  
V
CC  
= 5.5 V  
= 5 V  
T
A
R
T
T
A
A
3.5  
3
= 4.5 V  
2.5  
2
2.5  
2
1.5  
1
1.5  
1
V
V
V
= 5 V  
= 300 mV  
= 0  
CC  
ID  
IC  
0.5  
0
0.5  
0
R
= 8 kto GND  
L
0
0.5  
1
1.5  
2
2.5  
3
0
0.5  
1
1.5  
2
2.5  
3
Enable Voltage – V  
Enable Voltage – V  
Figure 4  
Figure 5  
OUTPUT VOLTAGE  
vs  
OUTPUT VOLTAGE  
vs  
ENABLE VOLTAGE  
ENABLE VOLTAGE  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
V
V
= 5.5 V  
CC  
V
V
R
= – 300 mV  
= 0  
ID  
IC  
L
= 5 V  
CC  
= 1 kto V  
= 25°C  
CC  
V
CC  
= 4.5 V  
T
A
T
= 0°C  
A
T
A
= 25°C  
= 70°C  
T
A
V
V
V
= 5 V  
= – 300 mV  
= 0  
CC  
ID  
IC  
L
R
= 1 kto V  
CC  
0
0.5  
1
1.5  
2
2.5  
3
0
0.5  
1
1.5  
2
2.5  
3
Enable Voltage – V  
Enable Voltage – V  
Figure 6  
Figure 7  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75ALS197  
QUADRUPLE DIFFERENTIAL LINE RECEIVER  
SLLS045B – JANUARY 1989 – REVISED MAY 1995  
TYPICAL CHARACTERISTICS  
OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
DIFFERENTIAL INPUT VOLTAGE  
FREE-AIR TEMPERATURE  
5
4.5  
4
4
3.5  
3
V
V
= 5 V  
CC  
= –12 V to 12 V  
I
I
= 0  
OH  
IC  
= 0  
= 25°C  
I
T
O
= – 400 µA  
A
OH  
3.5  
3
2.5  
2.5  
2
2
V
IT –  
V
IT +  
1.5  
1.5  
1
1
V
V
V
= 5 V  
= 300 mV  
= 0  
CC  
ID  
IC  
0.5  
0.5  
0
0
– 200 – 150 – 100 – 50  
0
50  
100 150 200  
0
10  
20  
30  
40  
50  
60  
70  
80  
V
ID  
– Differential Input Voltage – mV  
T
A
– Free-Air Temperature – °C  
Figure 8  
Figure 9  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
HIGH-LEVEL OUTPUT CURRENT  
5
4.5  
4
5
4.5  
4
V
V
V
= 5 V  
= 300 mV  
= 0  
V
V
T
= 300 mV  
= 0  
= 25°C  
CC  
ID  
IC  
ID  
IC  
A
3.5  
3
3.5  
3
V
CC  
V
CC  
V
CC  
= 5.5 V  
= 5 V  
T
= 0°C  
A
2.5  
2
2.5  
2
T
A
= 25°C  
= 70°C  
= 4.5 V  
T
A
1.5  
1
1.5  
1
0.5  
0
0.5  
0
0 – 10 – 20 – 30 – 40 – 50 – 60 – 70 – 8090 – 100  
0 – 10 – 20 – 30 –40 – 50 –60 – 70 – 80 – 90100  
I
– High-Level Output Current – mA  
I
– High-Level Output Current – mA  
OH  
OH  
Figure 10  
Figure 11  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75ALS197  
QUADRUPLE DIFFERENTIAL LINE RECEIVER  
SLLS045B – JANUARY 1989 – REVISED MAY 1995  
TYPICAL CHARACTERISTICS  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
0.4  
0.35  
0.3  
V
V
V
= 5 V  
= – 300 mV  
= 0  
CC  
ID  
IC  
0.25  
I
O
= 8 mA  
0.2  
0.15  
0.1  
I
O
= 0  
0.05  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
T
A
– Free-Air Temperature – °C  
Figure 12  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT CURRENT  
0.8  
0.7  
0.6  
0.5  
0.8  
0.7  
0.6  
0.5  
T
= 70°C  
A
V
V
= 4.5 V  
= 5 V  
CC  
CC  
T
A
= 25°C  
V
= 5.5 V  
CC  
T
= 0°C  
A
0.4  
0.3  
0.2  
0.1  
0.4  
0.3  
0.2  
0.1  
V
V
T
= – 300 mV  
= 0  
= 25°C  
V
V
V
= 5 V  
= – 300 mV  
= 0  
ID  
IC  
A
CC  
ID  
IC  
0
0
0
10  
20  
30  
40  
50  
60  
70  
80  
0
10  
20  
30  
40  
50  
60  
70  
80  
I
– Low-Level Output Current – mA  
I
OL  
– Low-Level Output Current – mA  
OL  
Figure 13  
Figure 14  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75ALS197  
QUADRUPLE DIFFERENTIAL LINE RECEIVER  
SLLS045B – JANUARY 1989 – REVISED MAY 1995  
TYPICAL CHARACTERISTICS  
SUPPLY CURRENT  
vs  
SUPPLY VOLTAGE  
SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
50  
45  
40  
35  
30  
V
V
= – 300 mV  
= 0  
= 0  
= 25°C  
30  
25  
20  
15  
10  
5
ID  
IC  
I
T
O
V
V
V
= 5.5 V  
= 5 V  
CC  
CC  
CC  
A
= 4.5 V  
Disabled  
25  
20  
15  
10  
5
Enabled  
V
= – 300 mV  
ID  
Outputs Enabled  
I
O
= 0  
0
0
0
1
2
3
4
5
6
7
8
0
10  
20  
30  
40  
50  
60  
70  
80  
V
CC  
– Supply Voltage – V  
T
A
– Free-Air Temperature – °C  
Figure 15  
Figure 16  
SUPPLY CURRENT  
vs  
SUPPLY CURRENT  
vs  
DIFFERENTIAL INPUT VOLTAGE  
FREQUENCY  
40  
30  
25  
20  
15  
10  
5
V
= 5 V  
CC  
V = ± 1.5-V Square Wave  
I
C
35  
30  
25  
20  
15  
10  
5
= 15 pF  
V
CC  
V
CC  
V
CC  
= 5.5 V  
= 5 V  
L
Four Channels Driven  
= 25°C  
T
A
= 4.5 V  
I
= 0  
O
Outputs Enabled  
= 0  
V
T
IC  
= 25°C  
A
0
0
– 200  
– 100  
0
100  
200  
10 k  
100 k  
1 M  
10 M  
100 M  
f – Frequency – Hz  
V
ID  
– Differential Input Voltage – mV  
Figure 17  
Figure 18  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75ALS197  
QUADRUPLE DIFFERENTIAL LINE RECEIVER  
SLLS045B – JANUARY 1989 – REVISED MAY 1995  
TYPICAL CHARACTERISTICS  
INPUT CURRENT  
vs  
INPUT RESISTANCE  
vs  
INPUT VOLTAGE TO GND  
FREE-AIR TEMPERATURE  
3
2
30  
25  
T
A
= 25°C  
1
0
20  
15  
10  
–1  
–2  
–3  
5
0
20 15 10  
–5  
0
5
10  
15  
20  
0
10  
20  
30  
40  
50  
60  
70  
80  
V – Input Voltage to GND – V  
I
T
A
– Free-Air Temperature – °C  
Figure 19  
Figure 20  
PROPAGATION DELAY TIME  
SWITCHING TIME  
vs  
FREE-AIR TEMPERATURE  
vs  
SUPPLY VOLTAGE  
20  
18  
16  
14  
12  
10  
8
30  
C
= 15 pF  
L
V
C
= 5 V  
CC  
T
A
= 25°C  
= 15 pF  
t
L
PLH  
25  
20  
15  
10  
t
PHL  
t
PLZ  
t
PLH  
t
PHZ  
t
PZH  
t
PHL  
6
t
PZL  
t
PZH  
t
PHZ  
4
5
0
2
0
4.5 4.6 4.7 4.8 4.9  
5
5.1 5.2 5.3 5.4 5.5  
0
10  
20  
30  
40  
50  
60  
70  
80  
V
CC  
– Supply Voltage – V  
T
A
– Free-Air Temperature – °C  
Figure 21  
Figure 22  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Jun-2007  
PACKAGING INFORMATION  
Orderable Device  
SN75ALS197D  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
D
16  
16  
16  
16  
16  
16  
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN75ALS197DE4  
SN75ALS197DG4  
SN75ALS197DR  
SN75ALS197DRE4  
SN75ALS197DRG4  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
D
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN75ALS197J  
SN75ALS197N  
OBSOLETE  
ACTIVE  
CDIP  
PDIP  
J
16  
16  
TBD  
Call TI  
Call TI  
N
25  
25  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
SN75ALS197NE4  
SN75ALS197NSR  
SN75ALS197NSRE4  
SN75ALS197NSRG4  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
PDIP  
SO  
N
16  
16  
16  
16  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
NS  
NS  
NS  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SO  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SO  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Jun-2007  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jul-2012  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
SN75ALS197DR  
SN75ALS197NSR  
SOIC  
SO  
D
16  
16  
2500  
2000  
330.0  
330.0  
16.4  
16.4  
6.5  
8.2  
10.3  
10.5  
2.1  
2.5  
8.0  
16.0  
16.0  
Q1  
Q1  
NS  
12.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jul-2012  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
SN75ALS197DR  
SN75ALS197NSR  
SOIC  
SO  
D
16  
16  
2500  
2000  
333.2  
367.0  
345.9  
367.0  
28.6  
38.0  
NS  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which  
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such  
components to meet such requirements.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2012, Texas Instruments Incorporated  

相关型号:

SN75ALS197NSRG4

QUADRUPLE DIFFERENTIAL LINE RECEIVER
TI

SN75ALS199

QUADRUPLE DIFFERENTIAL LINE RECEIVER
TI

SN75ALS199D

QUADRUPLE DIFFERENTIAL LINE RECEIVER
TI

SN75ALS199D-00

DUAL LINE RECEIVER, PDSO16
TI

SN75ALS199DR

Quadruple Differential Line Receiver 16-SOIC 0 to 70
TI

SN75ALS199N

QUADRUPLE DIFFERENTIAL LINE RECEIVER
TI

SN75ALS199N-10

DUAL LINE RECEIVER, PDIP16
TI

SN75ALS199NE4

QUAD LINE RECEIVER, PDIP16, ROHS COMPLIANT, PLASTIC, DIP-16
TI

SN75ALS199_14

QUADRUPLE DIFFERENTIAL LINE RECEIVER
TI

SN75C08

SCSI INPUT/OUTPUT BUFFER
TI

SN75C091A

SCSI Bus Controller
TI

SN75C091AFN

SCSI Bus Controller
TI