SN74V3670-10PEU [TI]

3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES; 3.3 V的CMOS先入先出MEMORIES
SN74V3670-10PEU
型号: SN74V3670-10PEU
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES
3.3 V的CMOS先入先出MEMORIES

存储 内存集成电路 先进先出芯片 时钟
文件: 总50页 (文件大小:725K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, SN74V3690  
1024 × 36, 2048 × 36, 4096 × 36, 8192 × 36, 16384 × 36, 32768 × 36  
3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES  
SCAS668A – NOVEMBER 2001 – REVISED MARCH 2003  
Choice of Memory Organizations  
Empty, Full, and Half-Full Flags Signal FIFO  
Status  
– SN74V3640 – 1024 × 36 Bit  
– SN74V3650 – 2048 × 36 Bit  
– SN74V3660 – 4096 × 36 Bit  
– SN74V3670 – 8192 × 36 Bit  
– SN74V3680 – 16384 × 36 Bit  
– SN74V3690 – 32768 × 36 Bit  
Programmable Almost-Empty and  
Almost-Full Flags; Each Flag Can Default to  
One of Eight Preselected Offsets  
Selectable Synchronous/Asynchronous  
Timing Modes for Almost-Empty and  
Almost-Full Flags  
166-MHz Operation (6-ns Read/Write Cycle  
Time)  
Program Programmable Flags by Either  
Serial or Parallel Means  
User-Selectable Input- and Output-Port Bus  
Sizing  
×36 in to ×36 out  
×36 in to ×18 out  
×36 in to ×9 out  
Select Standard Timing (Using EF and FF  
Flags) or First-Word Fall-Through (FWFT)  
Timing (Using OR and IR Flags)  
Output Enable Puts Data Outputs in  
High-Impedance State  
×18 in to ×36 out  
×9 in to ×36 out  
Easily Expandable in Depth and Width  
Big-Endian/Little-Endian User-Selectable  
Byte Representation  
Independent Read and Write Clocks Permit  
Reading and Writing Simultaneously  
5-V-Tolerant Inputs  
High-Performance Submicron CMOS  
Technology  
Fixed, Low, First-Word Latency  
Zero-Latency Retransmit  
Master Reset Clears Entire FIFO  
Available in 128-Pin Thin Quad Flat Pack  
(TQFP)  
Partial Reset Clears Data, But Retains  
Programmable Settings  
description  
The SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, and SN74V3690 are exceptionally  
deep, high-speed CMOS, first-in first-out (FIFO) memories, with clocked read and write controls and a flexible  
bus-matching ×36/×18/×9 data flow. These FIFOs offer several key user benefits:  
Flexible ×36/×18/×9 bus matching on both read and write ports  
The period required by the retransmit operation is fixed and short.  
The first-word data-latency period, from the time the first word is written to an empty FIFO to the time it can  
be read, is fixed and short.  
High-density offerings up to 1 Mbit  
Bus-matching synchronous FIFOs are particularly appropriate for network, video, signal processing,  
telecommunications, data communications, and other applications that need to buffer large amounts of data  
and match buses of unequal sizes.  
Each FIFO has a data input port (Dn) and a data output port (Qn), both of which can assume 36-bit, 18-bit, or  
9-bit width, as determined by the state of external control pins’ input width (IW), output width (OW), and bus  
matching (BM) during the master-reset cycle.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 2003, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, SN74V3690  
1024 × 36, 2048 × 36, 4096 × 36, 8192 × 36, 16384 × 36, 32768 × 36  
3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES  
SCAS668A NOVEMBER 2001 REVISED MARCH 2003  
PEU PACKAGE  
(TOP VIEW)  
WEN  
SEN  
DNC  
1
2
3
4
5
6
7
8
102  
101  
100  
99  
98  
97  
OE  
V
V
CC  
CC  
V
CC  
Q35  
Q34  
Q33  
Q32  
GND  
GND  
Q31  
Q30  
Q29  
Q28  
Q27  
Q26  
DNC  
IW  
D35  
D34  
D33  
D32  
96  
95  
9
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
V
CC  
D31  
D30  
GND  
D29  
D28  
D27  
D26  
D25  
D24  
D23  
GND  
D22  
V
CC  
Q25  
Q24  
GND  
GND  
Q23  
Q22  
Q21  
Q20  
Q19  
Q18  
GND  
Q17  
Q16  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
V
CC  
D21  
D20  
D19  
D18  
GND  
D17  
D16  
D15  
D14  
D13  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
V
V
CC  
CC  
Q15  
Q14  
Q13  
Q12  
GND  
Q11  
Q10  
V
CC  
D12  
GND  
D11  
36  
37  
38  
DNC = Do not connect  
description (continued)  
The input port is controlled by write-clock (WCLK) and write-enable (WEN) inputs. Data is written into the FIFO  
on every rising edge of WCLK when WEN is asserted. The output port is controlled by read-clock (RCLK) and  
read-enable (REN) inputs. Data is read from the FIFO on every rising edge of RCLK when REN is asserted.  
An output-enable (OE) input is provided for 3-state control of the outputs.  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, SN74V3690  
1024 × 36, 2048 × 36, 4096 × 36, 8192 × 36, 16384 × 36, 32768 × 36  
3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES  
SCAS668A NOVEMBER 2001 REVISED MARCH 2003  
functional block diagram  
D0Dn (×36, ×18, or ×9)  
LD SEN  
125  
2
128  
1
Offset  
Register  
WCLK  
WEN  
Input  
Register  
Write-Control  
Logic  
123  
121  
108  
110  
117  
124  
FF/IR  
PAF  
EF/OR  
PAE  
HF  
Flag  
Logic  
Write  
Pointer  
RAM Array  
FWFT/SI  
1024 × 36, 2048 × 36,  
4096 × 36, 8192 × 36,  
16384 × 36, 32768 × 36  
109  
118  
115  
PFM  
FSEL0  
FSEL1  
114  
113  
BE  
IP  
Control  
Logic  
Read  
Pointer  
112  
6
BM  
IW  
Bus  
Configuration  
103  
107  
Output  
Register  
119  
Read-Control  
Logic  
RT  
RM  
OW  
126  
127  
MRS  
PRS  
Reset  
Logic  
102  
OE  
Q0Qn (×36, ×18, or ×9)  
105  
104  
REN  
RCLK  
description (continued)  
The frequencies of the RCLK and WCLK signals can vary from 0 to f  
are no restrictions on the frequency of one clock input with respect to the other.  
, with complete independence. There  
MAX  
There are two possible timing modes of operation with these devices: first-word fall-through (FWFT) mode and  
standard mode.  
In FWFT mode, the first word written to an empty FIFO is clocked directly to the data output lines after three  
transitions of the RCLK signal. REN need not be asserted for accessing the first word. However, subsequent  
words written to the FIFO do require a low on REN for access. The state of the FWFT/SI input during master  
reset determines the timing mode.  
For applications requiring more data-storage capacity than a single FIFO can provide, the FWFT timing mode  
permits depth expansion by chaining FIFOs in series (i.e., the data outputs of one FIFO are connected to the  
corresponding data inputs of the next). No external logic is required.  
In standard mode, the first word written to an empty FIFO does not appear on the data output lines unless a  
specific read operation is performed. A read operation, which consists of activating REN and enabling a rising  
RCLK edge, shifts the word from internal memory to the data output lines.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, SN74V3690  
1024 × 36, 2048 × 36, 4096 × 36, 8192 × 36, 16384 × 36, 32768 × 36  
3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES  
SCAS668A NOVEMBER 2001 REVISED MARCH 2003  
Partial Reset (PRS)  
Master Reset (MRS)  
Write Clock (WCLK)  
Read Clock (RCLK)  
Write Enable (WEN)  
Load (LD)  
Read Enable (REN)  
Output Enable (OE)  
SN74V3640  
SN74V3650  
SN74V3660  
SN74V3670  
SN74V3680  
SN74V3690  
(×36, ×18, ×9) Data In (D0Dn)  
Serial Enable (SEN)  
(×36, ×18, ×9) Data Out (Q0Qn)  
Retransmit (RT)  
Empty Flag or Output Ready (EF/OR)  
Programmable Almost-Empty Flag (PAE)  
Half-Full Flag (HF)  
First-Word Fall-Through or Serial Input  
(FWFT/SI)  
Full Flag or Input Ready (FF/IR)  
Big Endian/Little Endian (BE)  
Programmable Almost-Full Flag (PAF)  
Interspersed/  
Noninterspersed Parity (IP)  
Output Width (OW)  
Input Width (IW)  
Bus  
Matching  
(BM)  
Figure 1. Single-Device-Configuration Signal Flow  
description (continued)  
These FIFOs have five flag pins: empty flag or output ready (EF/OR), full flag or input ready (FF/IR), half-full  
flag (HF), programmable almost-empty flag (PAE), and programmable almost-full flag (PAF). The EF and FF  
functions are selected in standard mode. The IR and OR functions are selected in FWFT mode. HF, PAE, and  
PAF always are available for use, regardless of timing mode.  
PAE and PAF can be programmed independently to switch at any point in memory. Programmable offsets  
determine the flag-switching threshold and can be loaded by parallel or serial methods. Eight default offset  
settings also are provided, so that PAE can be set to switch at a predefined number of locations from the empty  
boundary. The PAF threshold also can be set at similar predefined values from the full boundary. The default  
offset values are set during master reset by the state of the FSEL0, FSEL1, and LD.  
For serial programming, SEN, together with LD, loads the offset registers via the serial input (SI) on each rising  
edge of WCLK. For parallel programming, WEN, together with LD, loads the offset registers via Dn on each  
rising edge of WCLK. REN, together with LD, can read the offsets in parallel from Qn on each rising edge of  
RCLK, regardless of whether serial parallel offset loading has been selected.  
During master reset (MRS), the read and write pointers are set to the first location of the FIFO. The FWFT pin  
selects standard mode or FWFT mode.  
Partial reset (PRS) also sets the read and write pointers to the first location of the memory. However, the timing  
mode, programmable-flag programming method, and default or programmed offset settings existing before  
partial reset remain unchanged. The flags are updated according to the timing mode and offsets in effect. PRS  
is useful for resetting a device in mid-operation, when reprogramming programmable flags would be  
undesirable.  
Also, the timing modes of PAE and PAF outputs can be selected. Timing modes can be set as either  
asynchronous or synchronous for PAE and PAF.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, SN74V3690  
1024 × 36, 2048 × 36, 4096 × 36, 8192 × 36, 16384 × 36, 32768 × 36  
3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES  
SCAS668A NOVEMBER 2001 REVISED MARCH 2003  
description (continued)  
If the asynchronous PAE/PAF configuration is selected, PAE is asserted low on the low-to-high transition of  
RCLK. PAE is reset to high on the low-to-high transition of WCLK. Similarly, PAF is asserted low on the  
low-to-high transition of WCLK, and PAF is reset to high on the low-to-high transition of RCLK.  
If the synchronous PAE/PAF configuration is selected , the PAE is asserted and updated on the rising edge of  
RCLK only, and not WCLK. Similarly, PAF is asserted and updated on the rising edge of WCLK only, and not  
RCLK. The mode desired is configured during master reset by the state of the programmable flag mode (PFM).  
The retransmit function allows data to be reread from the FIFO more than once. A low on the retransmit (RT)  
input during a rising RCLK edge initiates a retransmit operation by setting the read pointer to the first location  
of the memory array. Zero-latency retransmit timing mode can be selected using the retransmit timing mode  
(RM). During master reset, a low on RM selects zero-latency retransmit. A high on RM during master reset  
selects normal latency.  
If zero-latency retransmit operation is selected, the first data word to be retransmitted is placed on the output  
register, with respect to the same RCLK edge that initiated the retransmit, if RT is low.  
See Figures 11 and 12 for normal latency retransmit timing. See Figures 13 and 14 for zero-latency retransmit  
timing.  
The devices can be configured with different input and output bus widths (see Table 1).  
Table 1. Bus-Matching Configuration Modes  
WRITE-PORT  
WIDTH  
READ-PORT  
WIDTH  
BM  
IW  
OW  
L
L
L
L
L
×36  
×36  
×36  
×18  
×9  
×36  
×18  
×9  
H
H
H
H
L
H
L
H
H
×36  
×36  
H
Logic levels during master reset  
A big-endian/little-endian data word format is provided. This function is useful when data is written into the FIFO  
in long-word (×36/×18) format and read out of the FIFO in small-word (×18/×9) format. If big-endian mode is  
selected, the most-significant byte (MSB) (word) of the long word written into the FIFO is read out of the FIFO  
first, followed by the least-significant byte (LSB). If little-endian format is selected, the LSB of the long word  
written into the FIFO is read out first, followed by the MSB. The mode desired is configured during master reset  
by the state of the big-endian/little-endian (BE) pin (see Figure 4 for the bus-matching byte arrangement).  
Theinterspersed/noninterspersedparity(IP)bitfunctionallowstheusertoselecttheparitybitinthewordloaded  
into the parallel port (D0Dn) when programming the flag offsets. If interspersed-parity mode is selected, the  
FIFO assumes that the parity bit is located in bit positions D8, D17, D26, and D35 during the parallel  
programming of the flag offsets. If noninterspersed-parity mode is selected, D8, D17, and D26 are assumed  
to be valid bits, and D32, D33, D34, and D35 are ignored. Interspersed parity mode is selected during master  
reset by the state of the IP input. Interspersed parity control has an effect only during parallel programming of  
the offset registers. It does not affect data written to and read from the FIFO.  
The SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, and SN74V3690 are fabricated using  
high-speed submicron CMOS technology, and are characterized for operation from 0°C to 70°C.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, SN74V3690  
1024 × 36, 2048 × 36, 4096 × 36, 8192 × 36, 16384 × 36, 32768 × 36  
3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES  
SCAS668A NOVEMBER 2001 REVISED MARCH 2003  
Terminal Functions  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
Big endian/little endian. During master reset, a low on BE selects big-endian operation. A high on BE during master  
reset selects little-endian format.  
BE  
I
I
Bus matching. BM works with IW and OW to select the bus sizes for both write and read ports (see Table 1 for bus-size  
configuration).  
BM  
Data inputs. Data inputs for a 36-, 18-, or 9-bit bus. When in 18- or 9-bit mode, the unused input pins are in a  
dont-care state.  
D0D36  
EF/OR  
FF/IR  
I
Empty flag/output ready. In standard mode, the EF function is selected. EF indicates whether the FIFO memory is  
empty. In FWFT mode, the OR function is selected. OR indicates whether there is valid data available at the outputs.  
O
O
I
Full flag/input ready. In standard mode, the FF function is selected. FF indicates whether the FIFO memory is full. In  
FWFT mode, the IR function is selected. IR indicates whether there is space available for writing to the FIFO memory.  
Flag-select bit 0. During master reset, FSEL0, along with FSEL1 and LD, selects the default offset values for PAE and  
PAF. Up to eight possible settings are available.  
FSEL0  
FSEL1  
Flag-select bit 1. During master reset, FSEL1, along with FSEL0 and LD, selects the default offset values for PAE and  
PAF. Up to eight possible settings are available.  
I
First-word fall-through/serial in. During master reset, FWFT/SI selects FWFT or standard mode. After master reset,  
FWFT/SI functions as a serial input for loading offset registers.  
FWFT/SI  
HF  
I
O
Half-full flag. HF indicates whether the FIFO memory is more or less than half full.  
Interspersed parity. During master reset, a low on IP selects noninterspersed-parity mode. A high selects  
interspersed-parity mode. Interspersed-parity control has an effect only during parallel programming of the offset  
registers. It does not effect data written to and read from the FIFO.  
IP  
I
I
IW  
Input width. IW, along with OW and BM, selects the bus width of the write port (see Table 1 for bus-size configuration).  
Load. This is a dual-purpose pin. During master reset, the state of LD, along with FSEL0 and FSEL1, determines one  
of eight default offset values for PAE and PAF, along with the method by which these offset registers can be  
programmed, parallel or serial (see Table 2). After master reset, LD enables writing to and reading from the offset  
registers.  
LD  
I
Master reset. MRS initializes the read and write pointers to zero and sets the output register to all zeroes. During  
master reset, the FIFO is configured for either FWFT or standard mode, bus-matching configurations, one of eight  
programmable-flag default settings, serial or parallel programming of the offset settings, big-endian/little-endian  
format, zero-latency timing mode, interspersed parity, and synchronous versus asynchronous programmable-flag  
timing modes.  
MRS  
OE  
I
I
I
Output enable. OE controls the output impedance of Qn.  
OW  
Outputwidth. OW, alongwithIWandBM, selectsthebuswidthofthereadport(seeTable1forbus-sizeconfiguration).  
Programmablealmost-emptyflag.PAEgoeslowifthenumberofwordsintheFIFOmemoryislessthanoffsetn, which  
is stored in the empty offset register. PAE goes high if the number of words in the FIFO memory is greater than, or  
equal to, offset n.  
PAE  
O
Programmable almost-full flag. PAF goes high if the number of free locations in the FIFO memory is more than  
offset m, which is stored in the full offset register. PAF goes low if the number of free locations in the FIFO memory  
is less than, or equal to, m.  
PAF  
PFM  
PRS  
O
I
Programmable-flagmode. During master reset, a lowonPFMselectsasynchronousprogrammable-flagtimingmode.  
A high on PFM selects synchronous programmable-flag timing mode.  
Partial reset. PRS initializes the read and write pointers to zero and sets the output register to all zeroes. During partial  
reset, the existing mode (standard or FWFT), programming method (serial or parallel), and programmable-flag  
settings are all retained.  
I
Data outputs. Data outputs for a 36-, 18-, or 9-bit bus. When in 18- or 9-bit mode, the unused output pins are in a  
dont-care state. Outputs are not 5-V tolerant, regardless of the state of OE.  
Q0Q35  
O
I
Read clock. When enabled by REN, the rising edge of RCLK reads data from the FIFO memory and offsets from the  
programmable registers.  
RCLK  
Inputs should not change state after master reset.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, SN74V3690  
1024 × 36, 2048 × 36, 4096 × 36, 8192 × 36, 16384 × 36, 32768 × 36  
3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES  
SCAS668A NOVEMBER 2001 REVISED MARCH 2003  
Terminal Functions (Continued)  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
REN  
I
I
Read enable. REN enables RCLK for reading data from the FIFO memory and offset registers.  
Retransmit latency mode. During master reset, a low on RM selects zero-latency retransmit timing mode. A high on  
RM selects normal-latency mode.  
RM  
Retransmit. RT asserted on the rising edge of RCLK initializes the READ pointer to zero, sets the EF flag to low (OR  
to high in FWFT mode) and does not disturb the write pointer, programming method, existing timing mode, or  
programmable-flag settings. RT is useful to reread data from the first physical location of the FIFO.  
RT  
I
I
I
I
SEN  
Serial enable. SEN enables serial loading of programmable flag offsets.  
Write clock. When enabled by WEN, the rising edge of WCLK writes data into the FIFO and offsets into the  
programmable registers for parallel programming and, when enabled by SEN, the rising edge of WCLK writes one bit  
of data into the programmable register for serial programming.  
WCLK  
WEN  
Write enable. WEN enables WCLK for writing data into the FIFO memory and offset registers.  
Inputs should not change state after master reset.  
detailed description  
inputs  
data in (D0–Dn)  
D0D35 are data inputs for 36-bit-wide data. D0D17 are data inputs for 18-bit-wide data. D0D8 are data  
inputs for 9-bit-wide data.  
controls  
master reset (MRS)  
A master reset is accomplished when MRS is taken low. This operation sets the internal read and write pointers  
to the first location of the RAM array. PAE goes low, PAF goes high, and HF goes high.  
If FWFT/SI is low during master reset, the standard mode, EF, and FF are selected. EF goes low and FF goes  
high. If FWFT/SI is high, the FWFT mode, IR, and OR are selected. OR goes high and IR goes low.  
All control settings, such as OW, IW, BM, BE, RM, PFM, and IP are defined during the master reset cycle.  
During a master reset, the output register is initialized to all zeroes. A master reset is required after power up,  
before a write operation can take place. MRS is asynchronous.  
See Figure 5 for timing information.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, SN74V3690  
1024 × 36, 2048 × 36, 4096 × 36, 8192 × 36, 16384 × 36, 32768 × 36  
3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES  
SCAS668A NOVEMBER 2001 REVISED MARCH 2003  
partial reset (PRS)  
A partial reset is accomplished when the PRS input is taken to a low state. As in the case of the master reset,  
the internal read and write pointers are set to the first location of the RAM array, PAE goes low, PAF goes high,  
and HF goes high.  
Whichever mode is active at the time of partial reset remains selected (standard or FWFT mode). If standard  
mode is active, FF goes high and EF goes low. If the FWFT mode is active, OR goes high and IR goes low.  
Following partial reset, all values held in the offset registers remain unchanged. The programming method  
(parallel or serial) active at the time of partial reset also is retained. The output register is initialized to all zeroes.  
PRS is asynchronous.  
A partial reset is useful for resetting the device during operation when reprogramming programmable-flag  
offsets might not be convenient.  
See Figure 6 for timing information.  
retransmit (RT)  
The retransmit operation allows previously read data to be accessed again. There are two modes of retransmit  
operation: normal latency and zero latency. There are two stages to retransmit. The first stage is a setup  
procedure that resets the read pointer to the first location of memory. The second stage is the actual retransmit,  
which consists of reading out the memory contents, starting at the beginning of the memory.  
Retransmit setup is initiated by holding RT low during a rising RCLK edge. REN and WEN must be high before  
bringing RT low. When zero latency is utilized, REN need not be high before bringing RT low.  
If standard mode is selected, the FIFO marks the beginning of the retransmit setup by setting EF low. The  
change in level is noticeable only if EF was high before setup. During this period, the internal read pointer is  
initialized to the first location of the RAM array.  
When EF goes high, retransmit setup is complete and read operations can begin, starting with the first location  
in memory. Because standard mode is selected, every word read, including the first word following retransmit  
setup, requires a low on REN to enable the rising edge of RCLK.  
See Figure 11 for timing information.  
If FWFT mode is selected, the FIFO marks the beginning of the retransmit setup by setting OR high. During this  
period, the internal read pointer is set to the first location of the RAM array.  
When OR goes low, retransmit setup is complete. At the same time, the contents of the first location appear on  
the outputs. Because FWFT mode is selected, the first word appears on the outputs and no low on REN is  
necessary. Reading all subsequent words requires a low on REN to enable the rising edge of RCLK.  
See Figure 12 for timing information.  
In retransmit operation, zero-latency mode can be selected using the retransmit latency mode (RM) pin during  
a master reset. This can be applied to the standard mode and the FWFT mode.  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, SN74V3690  
1024 × 36, 2048 × 36, 4096 × 36, 8192 × 36, 16384 × 36, 32768 × 36  
3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES  
SCAS668A NOVEMBER 2001 REVISED MARCH 2003  
first-word fall-through/serial in (FWFT/SI)  
FWFT/SI is a dual-purpose pin. During master reset, the state of the FWFT/SI input determines whether the  
device operates in standard or FWFT mode.  
If, atthetimeofmasterreset, FWFT/SIislow, standardmodeisselected. ThismodeusesEFtoindicatewhether  
any words are present in the FIFO memory. It also uses FF to indicate whether the FIFO memory has free space  
for writing. In standard mode, every word read from the FIFO, including the first, must be requested using REN  
and RCLK.  
If, at the time of master reset, FWFT/SI is high, FWFT mode is selected. This mode uses OR to indicate whether  
there is valid data at the data outputs (Qn). It also uses IR to indicate whether the FIFO memory has free space  
for writing. In the FWFT mode, the first word written to an empty FIFO goes directly to Qn after three RCLK rising  
edges, therefore, REN = low is not necessary. Subsequent words must be accessed using REN and RCLK.  
After master reset, FWFT/SI acts as a serial input for loading PAE and PAF offsets into the programmable  
registers. The serial input function can be used only when the serial loading method is selected during master  
reset. Serial programming using the FWFT/SI pin functions the same way in both standard and FWFT modes.  
write clock (WCLK)  
A write cycle is initiated on the rising edge of the WCLK input. Data setup and hold times must be met, with  
respect to the low-to-high transition of the WCLK. It is permissible to stop WCLK. Note that while WCLK is idle,  
the FF/IR, PAF, and HF flags are not updated. WCLK is capable only of updating HF flag to low. The write and  
read clocks can be independent or coincident.  
write enable (WEN)  
When WEN is low, data may be loaded into the FIFO RAM array on the rising edge of every WCLK cycle if the  
device is not full. Data is stored in the RAM array sequentially and independently of any ongoing read operation.  
When WEN is high, no new data is written in the RAM array on each WCLK cycle.  
To prevent data overflow in the standard mode, FF goes low, inhibiting further write operations. After completion  
of a valid read cycle, FF goes high, allowing a write to occur. FF is updated by two WCLK cycles + t after the  
sk  
RCLK cycle.  
To prevent data overflow in the FWFT mode, IR goes high, inhibiting further write operations. After completion  
of a valid read cycle, IR goes low, allowing a write to occur. The IR flag is updated by two WCLK cycles + t  
after the valid RCLK cycle.  
sk  
WEN is ignored when the FIFO is full in either FWFT or standard mode.  
read clock (RCLK)  
A read cycle is initiated on the rising edge of the RCLK input. Data can be read on the outputs, on the rising edge  
of the RCLK input. It is permissible to stop RCLK. While RCLK is idle, the EF/OR, PAE, and HF flags are not  
updated. RCLK is capable only of updating the HF flag to high. The write and read clocks can be independent  
or coincident.  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, SN74V3690  
1024 × 36, 2048 × 36, 4096 × 36, 8192 × 36, 16384 × 36, 32768 × 36  
3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES  
SCAS668A NOVEMBER 2001 REVISED MARCH 2003  
read enable (REN)  
When REN is low, data is loaded from the RAM array into the output register on the rising edge of every RCLK  
cycle, if the device is not empty.  
When REN is high, the output register holds the previous data and no new data is loaded into the output register.  
The data outputs Q0Qn maintain the previous data value.  
In standard mode, every word accessed at Qn, including the first word written to an empty FIFO, must be  
requested using REN. When the last word has been read from the FIFO, the empty flag (EF) goes low, inhibiting  
further read operations. REN is ignored when the FIFO is empty. Once a write is performed, EF goes high,  
allowing a read to occur. The EF flag is updated by two RCLK cycles + t after the valid WCLK cycle.  
sk  
In FWFT mode, the first word written to an empty FIFO automatically goes to the outputs Qn, on the third valid  
low-to-high transition of RCLK + t after the first write. REN need not be asserted low. In order to access all  
sk  
other words, a read must be executed using REN. The RCLK low-to-high transition after the last word has been  
read from the FIFO and OR goes high with a true read (RCLK with REN = low), inhibiting further read operations.  
REN is ignored when the FIFO is empty.  
serial enable (SEN)  
The SEN input is an enable used only for serial programming of the offset registers. The serial programming  
method must be selected during master reset. SEN always is used with LD. When these lines are both low, data  
at the SI input can be loaded into the program register, with one bit for each low-to-high transition of WCLK.  
When SEN is high, the programmable registers retain the previous settings and no offsets are loaded. SEN  
functions the same way in standard and FWFT modes.  
output enable (OE)  
When output enable is asserted (low), the parallel output buffers receive data from the output register. When  
OE is high, the output data bus (Qn) goes into the high-impedance state.  
load (LD)  
LD is a dual-purpose pin. During master reset, the state of the LD input, along with FSEL0 and FSEL1,  
determines one of eight default offset values for the PAE and PAF flags, along with the method by which these  
offset registers can be programmed, parallel or serial (see Table 2). After master reset, LD enables write  
operations to, and read operations from, the offset registers. Only the offset loading method currently selected  
can be used to write to the registers. Offset registers can be read only in parallel.  
After master reset, LD activates the programming process of the flag offset values PAE and PAF. Pulling LD low  
begins a serial loading, or a parallel load, or a read of these offset values.  
bus matching (BM, IW, OW)  
BM, IW, and OW define the input and output bus widths. During master reset, the state of these pins is used  
to configure the device bus sizes (see Table 1 for control settings). All flags operate on the word/byte-size  
boundary, as defined by the selection of bus width (see Figure 4 for the bus-matching byte arrangement).  
big endian/little endian (BE)  
During master reset, a low on BE selects big-endian operation. A high on BE during master reset selects  
little-endian format. This function is useful when the following input-to-output bus widths are implemented: ×36  
to ×18, ×36 to ×9, ×18 to ×36, and ×9 to ×36. If big-endian mode is selected, the MSB (word) of the long word  
written into the FIFO is read out of the FIFO first, followed by the LSB. If little-endian format is selected, the LSB  
of the long word written into the FIFO is read out first, followed by the MSB. The desired mode is configured  
during master reset by the state of BE (see Figure 4 for bus-matching byte arrangement).  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, SN74V3690  
1024 × 36, 2048 × 36, 4096 × 36, 8192 × 36, 16384 × 36, 32768 × 36  
3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES  
SCAS668A NOVEMBER 2001 REVISED MARCH 2003  
programmable-flag mode (PFM)  
During master reset, a low on PFM selects asynchronous programmable-flag timing mode. A high on PFM  
selects synchronous programmable-flag timing mode. If asynchronous PAF/PAE configuration is selected  
(PFM low during MRS), PAE is asserted low on the low-to-high transition of RCLK. PAE is reset to high on the  
low-to-high transition of WCLK. Similarly, PAF is asserted low on the low-to-high transition of WCLK, and PAF  
is reset to high on the low-to-high transition of RCLK.  
If synchronous PAE/PAF configuration is selected (PFM high during MRS), PAE is asserted and updated on the  
rising edge of RCLK only, and not WCLK. Similarly, PAF is asserted and updated on the rising edge of WCLK  
only and not RCLK. The mode desired is configured during master reset by the state of the PFM.  
interspersed parity (IP)  
During master reset, a low on IP selects noninterspersed-parity mode. A high selects interspersed-parity mode.  
The IP bit function allows the user to select the parity bit in the word loaded into the parallel port (D0Dn) when  
programming the flag offsets. If interspersed-parity mode is selected, the FIFO assumes that the parity bits are  
located in bit positions D8, D17, D26, and D35 during the parallel programming of the flag offsets. If  
noninterspersed-parity mode is selected, D8, D17, and D28 are assumed to be valid bits and D32, D33, D34,  
and D35 are ignored. IP mode is selected during master reset by the state of the IP input pin. Interspersed-parity  
control has an effect only during parallel programming of the offset registers. It does not affect the data written  
to, and read from, the FIFO.  
outputs  
full flag/input ready (FF/IR)  
FF/IR is a dual-purpose pin. In standard mode, the FF function is selected. When the FIFO is full, FF goes low,  
inhibiting further write operations. When FF is high, the FIFO is not full. If no reads are performed after a reset  
(either MRS or PRS), FF goes low after D writes to the FIFO (D = 1024 for the SN74V3640, D = 2048 for the  
SN74V3650, D = 4096 for the SN74V3660, D = 8192 for the SN74V3670, D = 16384 for the SN74V3680, and  
D = 32768 for the SN74V3690).  
See Figure 7 for timing information.  
In FWFT mode, the IR function is selected. IR goes low when memory space is available for writing in data.  
When there is no longer any free space left, IR goes high, inhibiting further write operations. If no reads are  
performed after a reset (either MRS or PRS), IR goes high after D writes to the FIFO (D = 1025 for the  
SN74V3640, D = 2049 for the SN74V3650, D = 4097 for the SN74V3660, D = 8193 for the  
SN74V3670, D = 16385 for the SN74V3680, and D = 32769 for the SN74V3690).  
See Figure 9 for timing information.  
The IR status not only measures the contents of the FIFO memory, but also counts the presence of a word in  
the output register. Thus, in FWFT mode, the total number of writes necessary to deassert IR is one greater than  
needed to assert FF in standard mode.  
FF/IR is synchronous and updated on the rising edge of WCLK. FF/IR are double register-buffered outputs.  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, SN74V3690  
1024 × 36, 2048 × 36, 4096 × 36, 8192 × 36, 16384 × 36, 32768 × 36  
3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES  
SCAS668A NOVEMBER 2001 REVISED MARCH 2003  
empty flag/output ready (EF/OR)  
EF/OR is a dual-purpose pin. In the standard mode, the EF function is selected. When the FIFO is empty, EF  
goes low, inhibiting further read operations. When EF is high, the FIFO is not empty.  
See Figure 8 for timing information.  
In FWFT mode, the OR function is selected. OR goes low at the same time the first word written to an empty  
FIFO appears valid on the outputs. OR stays low after the RCLK low-to-high transition that shifts the last word  
from the FIFO memory to the outputs. OR goes high only with a true read (RCLK with REN = low). The previous  
data stays at the outputs, indicating the last word was read. Further data reads are inhibited until OR goes low  
again.  
See Figure 10 for timing information.  
EF/OR is synchronous and updated on the rising edge of RCLK.  
In standard mode, EF is a double register-buffered output. In FWFT mode, OR is a triple register-buffered  
output.  
programmable almost-full flag (PAF)  
PAF goes low when the FIFO reaches the almost-full condition. In standard mode, if no reads are performed  
after reset (MRS), PAF goes low after (D m) words are written to the FIFO. The PAF goes low after (1024 m)  
writes for the SN74V3640, (2048 m) writes for the SN74V3650, (4096 m) writes for the SN74V3660,  
(8192 m) writes for the SN74V3670, (16384 m) writes for the SN74V3680, and (32768 m) writes for the  
SN74V3690. The offset m is the full offset value. The default setting for this value is shown in Table 2.  
In FWFT mode, PAF goes low after (1025 m) writes for the SN74V3640, (2049 m) writes for the SN74V3650,  
(4097 m) writes for the SN74V3660, (8193 m) writes for the SN74V3670, (16385 m) writes for the  
SN74V3680, and (32769 m) writes for the SN74V3690. The offset m is the full offset value. The default setting  
for this value is shown in Table 2.  
See Figure 18 for timing information.  
If the asynchronous PAF configuration is selected, PAF is asserted low on the low-to-high transition of WCLK.  
PAF is reset to high on the low-to-high transition of RCLK. If the synchronous PAF configuration is selected, PAF  
is updated on the rising edge of WCLK.  
See Figure 20 for timing information.  
programmable almost-empty flag (PAE)  
PAE goes low when the FIFO reaches the almost-empty condition. In standard mode, PAE goes low when there  
are n words, or fewer, in the FIFO. The offset n is the empty offset value. The default setting for this value is  
shown in Table 2.  
In FWFT mode, PAE goes low when there are n + 1 words, or fewer, in the FIFO. The default setting for this  
value is shown in Table 2.  
See Figure 19 for timing information.  
If the asynchronous PAE configuration is selected, PAE is asserted low on the low-to-high transition of RCLK.  
PAE is reset to high on the low-to-high transition of WCLK. If the synchronous PAE configuration is selected,  
PAE is updated on the rising edge of RCLK.  
See Figure 21 for timing information.  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, SN74V3690  
1024 × 36, 2048 × 36, 4096 × 36, 8192 × 36, 16384 × 36, 32768 × 36  
3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES  
SCAS668A NOVEMBER 2001 REVISED MARCH 2003  
half-full flag (HF)  
HF indicates a half-full FIFO. The rising WCLK edge that fills the FIFO beyond half-full sets HF low. The flag  
remains low until the difference between the write and read pointers becomes less than, or equal to, one-half  
of the total depth of the device. The rising RCLK edge that accomplishes this condition sets HF high.  
In standard mode, if no reads are performed after reset (MRS or PRS), HF goes low after (D/2 + 1) writes to  
the FIFO, where D = 1024 for the SN74V3640, D = 2048 for the SN74V3650, D = 4096 for the SN74V3660,  
D = 8192 for the SN74V3670, D = 16384 for the SN74V3680, and D = 32768 for the SN74V3690.  
In FWFT mode, if no reads are performed after reset (MRS or PRS), HF goes low after [(D 1)/2] + 2 writes  
to the FIFO, where D = 1025 for the SN74V3640, D = 2049 for the SN74V3650, D = 4097 for the SN74V3660,  
D = 8193 for the SN74V3670, D = 16385 for the SN74V3680, and D = 32769 for the SN74V3690.  
See Figure 22 for timing information. Because HF is updated by both RCLK WCLK, it is considered  
asynchronous.  
data outputs (Q0-Qn)  
Q0Q35 are data outputs for 36-bit-wide data. Q0Q17 are data outputs for 18-bit-wide data. Q0Q8 are data  
outputs for 9-bit-wide data.  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, SN74V3690  
1024 × 36, 2048 × 36, 4096 × 36, 8192 × 36, 16384 × 36, 32768 × 36  
3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES  
SCAS668A NOVEMBER 2001 REVISED MARCH 2003  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage range, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to 4.5 V  
CC  
Continuous output current, I (V = 0 to V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA  
Storage temperature range, T  
O
O
CC  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55°C to 125°C  
stg  
Stresses beyond those listed under absolute maximum ratingsmay cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditionsis not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
recommended operating conditions  
MIN  
3.15  
0
TYP  
3.3  
0
MAX  
3.45  
0
UNIT  
V
V
Supply voltage (see Note 1)  
CC  
GND Supply voltage  
V
V
V
High-level input voltage (see Note 2)  
Low-level input voltage (see Note 3)  
Operating free-air temperature  
2
5.5  
0.8  
70  
V
IH  
V
IL  
T
A
0
°C  
NOTES: 1. V  
CC  
= 3.3 V ± 0.15 V, JEDEC JESD8-A compliant  
2. Outputs are not 5-V tolerant.  
3. 1.5-V undershoots are allowed for 10 ns once per cycle.  
electrical characteristics over recommended operating conditions, t  
15 ns (unless otherwise noted)  
= 6 ns, 7.5 ns, 10 ns, and  
CLK  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
I
I
= 2 mA  
2.4  
OH  
OL  
OH  
V
0.4  
±1  
V
= 8 mA  
OL  
I
I
I
I
V = V  
to 0.4 V  
µA  
µA  
mA  
mA  
pF  
pF  
I
I
CC  
OE V  
,
V
= V to 0.4 V  
CC  
±10  
40  
OZ  
IH  
O
See Notes 4, 5, and 6  
See Notes 4 and 7  
CC1  
CC2  
15  
C
C
V = 0,  
T
A
= 25°C,  
= 25°C,  
f = 1 MHz  
f = 1 MHz,  
10  
IN  
I
V
= 0,  
T
A
Output deselected (OE V )  
IH  
10  
OUT  
O
NOTES: 4. Tested with outputs open (I  
OUT  
= 0)  
5. RCLK and WCLK switch at 20 MHz and data inputs switch at 10 MHz.  
6. Typical I = 4.2 + 1.4 × f + 0.02 × C × f (in mA), with V = 3.3 V, T = 25°C, f = WCLK frequency = RCLK frequency (in MHz,  
CC1 CC  
S
L
S
A
S
using TTL levels), data switching at f /2, C = capacitive load (in pF)  
S
L
7. All inputs = (V  
0.2 V) or (GND + 0.2 V), except RCLK and WCLK, T = 25°C, which switch at 20 MHz.  
CC  
A
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, SN74V3690  
1024 × 36, 2048 × 36, 4096 × 36, 8192 × 36, 16384 × 36, 32768 × 36  
3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES  
SCAS668A NOVEMBER 2001 REVISED MARCH 2003  
timing requirements over recommended ranges of supply voltage and operating free-air  
temperature (see Figure 2 through Figure 22)  
SN74V3640-6  
SN74V3650-6  
SN74V3660-6  
SN74V3670-6  
SN74V3680-6  
SN74V3690-6  
SN74V3640-7  
SN74V3650-7  
SN74V3660-7  
SN74V3670-7  
SN74V3680-7  
SN74V3690-7  
SN74V3640-10 SN74V3640-15  
SN74V3650-10 SN74V3650-15  
SN74V3660-10 SN74V3660-15  
SN74V3670-10 SN74V3670-15  
SN74V3680-10 SN74V3680-15  
SN74V3690-10 SN74V3690-15  
UNIT  
MIN  
MAX  
166  
4.5  
MIN  
MAX  
133.3  
5
MIN  
MAX  
100  
6.5  
MIN  
MAX  
66.7  
10  
f
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Clock cycle frequency  
Data access time  
Clock cycle time  
Clock high time  
Clock low time  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
clock  
2
6
2
7.5  
3.5  
3.5  
2.5  
0.5  
2.5  
0.5  
3.5  
0.5  
10  
2
10  
2
15  
6
A
CLK  
CLKH  
CLKL  
DS  
2.5  
2.5  
1.5  
0.5  
1.5  
0.5  
2
4.5  
4.5  
3.5  
0.5  
3.5  
0.5  
3.5  
0.5  
10  
6
Data setup time  
Data hold time  
4
1
DH  
Enable setup time  
Enable hold time  
Load setup time  
Load hold time  
4
ENS  
ENH  
LDS  
LDH  
RS  
1
4
0
1
Reset pulse duration  
10  
15  
10  
15  
15  
15  
Reset setup time  
15  
15  
RSS  
RSR  
RSF  
RTS  
OLZ  
OE  
Reset recovery time  
10  
10  
Reset to flag and output time  
Retransmit setup time  
15  
15  
15  
15  
2
0
2
2
3.5  
0
3.5  
0
4
0
2
2
Output enable to output in low impedance  
Output enable to output valid  
Output enable to output in high impedance  
Write clock to FF or IR  
4.5  
4.5  
4.5  
4.5  
8.5  
4.5  
8.5  
4.5  
9
2
6
6
2
6
6
8
8
2
2
OHZ  
WFF  
REF  
PAFA  
PAFS  
PAEA  
PAES  
HF  
5
6.5  
6.5  
16  
6.5  
16  
6.5  
16  
10  
10  
20  
10  
20  
10  
20  
Read clock to EF or OR  
5
Clock to asynchronous PAF  
Write clock to synchronous PAF  
Clock to asynchronous PAE  
Read clock to synchronous PAE  
Clock to HF  
12.5  
5
12.5  
5
12.5  
Skew time between read clock and  
write clock for EF/OR and FF/IR  
t
4.5  
4.5  
5
7
7
9
ns  
ns  
sk1  
sk2  
Skew time between read clock and  
write clock for PAE and PAF  
t
10  
14  
All ac timings apply to standard mode and FWFT mode.  
Pulse durations less than minimum values are not allowed.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, SN74V3690  
1024 × 36, 2048 × 36, 4096 × 36, 8192 × 36, 16384 × 36, 32768 × 36  
3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES  
SCAS668A NOVEMBER 2001 REVISED MARCH 2003  
PARAMETER MEASUREMENT INFORMATION  
1.5 V  
AC TEST CONDITIONS  
50 Ω  
GND to 3.0 V  
3 ns (see Note A)  
1.5 V  
Input Pulse Levels  
Input Rise/Fall Times  
Z
O
= 50 Ω  
I/O  
Input Timing Reference Levels  
Output Reference Levels  
1.5 V  
See B  
Output Load for t  
Output Load for t  
= 10 ns, 15 ns  
= 6 ns, 7.5 ns  
CLK  
CLK  
See A and C  
A. AC TEST LOAD  
FOR 6-ns AND 7.5-ns SPEED GRADES  
3.3 V  
6
5
4
3
2
1
0
330 Ω  
From Output  
Under Test  
30 pF  
(see Note B)  
510 Ω  
0
20 40 60 80 100 120 140 160 180 200  
Capacitance pF  
B. OUTPUT LOAD CIRCUIT  
C. LUMPED CAPACITIVE LOAD, TYPICAL DERATING  
FOR 10-ns AND 15-ns SPEED GRADES  
NOTES: A. For 133-MHz operation, input rise/fall times are 1.5 ns.  
B. Includes probe and jig capacitance  
Figure 2. Load Circuits  
functional description  
timing modes: FWFT mode vs standard mode  
The SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, and SN74V3690 support two different  
timing modes of operation: standard mode or FWFT mode. The mode is selected during master reset by the  
state of the FWFT/SI input.  
If, atthetimeofmasterreset, FWFT/SIislow, standardmodeisselected. ThismodeusesEFtoindicatewhether  
any words are present in the FIFO. It also uses FF to indicate whether the FIFO has any free space for writing.  
In standard mode, every word read from the FIFO, including the first word, must be requested using REN and  
RCLK.  
If, at the time of master reset, FWFT/SI is high, FWFT mode is selected. This mode uses OR to indicate whether  
valid data is at the data outputs (Qn). It also uses IR to indicate whether the FIFO has any free space for writing.  
In the FWFT mode, the first word written to an empty FIFO goes directly to Qn after three RCLK rising edges;  
REN = low is not necessary. Subsequent words must be accessed using REN and RCLK.  
Various signals (both input and output) operate differently, depending on which timing mode is in effect.  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, SN74V3690  
1024 × 36, 2048 × 36, 4096 × 36, 8192 × 36, 16384 × 36, 32768 × 36  
3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES  
SCAS668A NOVEMBER 2001 REVISED MARCH 2003  
FWFT mode  
In FWFT mode, status flags IR, PAF, HF, PAE, and OR operate as outlined in Table 4. To write data into the FIFO,  
WEN must be low. Data presented to the DATA IN lines is clocked into the FIFO on subsequent transitions of  
WCLK. After the first write is performed, the OR flag goes low. Subsequent writes continue to fill the FIFO. PAE  
goes high after n + 2 words have been loaded into the FIFO, where n is the empty offset value. The default  
settings for these values are shown in Table 2, and are user programmable.  
If one continues to write data into the FIFO and assumes no read operations are taking place, HF switches to  
low once the 514th word for the SN74V3640, 1026th word for the SN74V3650, 2050th word for the SN74V3660,  
4098th word for the SN74V3670, 8194th word for the SN74V3680, and 16386th word for the SN74V3690, are  
written into the FIFO. Continuing to write data into the FIFO causes PAF to go low. If no reads are performed,  
PAF goes low after (1025 m) writes for the SN74V3640, (2049 m) writes for the SN74V3650, (4097 m)  
writes for the SN74V3660, (8193 m) writes for the SN74V3670, (16385 m) writes for the SN74V3680, and  
(32769 m) writes for the SN74V3690, where m is the full offset value. The default setting for these values is  
shown in Table 2.  
When the FIFO is full, the IR flag goes high, inhibiting further write operations. If no reads are performed after  
a reset, IR goes high after D writes to the FIFO. D = 1025 writes for the SN74V3640, D = 2049 writes for the  
SN74V3650, D = 4097 writes for the SN74V3660, D = 8193 writes for the SN74V3670, D = 16385 writes for  
the SN74V3680, and D = 32769 writes for the SN74V3690. Note that the additional word in FWFT mode is due  
to the capacity of the memory plus output register.  
If the FIFO is full, the first read operation causes the IR flag to go low. Subsequent read operations cause PAF  
andHFtogohighattheconditionsdescribedinTable4. Iffurtherreadoperationsoccurwithoutwriteoperations,  
PAE goes low when there are n + 1 words in the FIFO, where n is the empty offset value. Continuing read  
operations causes the FIFO to become empty. When the last word has been read from the FIFO, OR goes high,  
inhibiting further read operations. REN is ignored when the FIFO is empty.  
When configured in FWFT mode, the OR flag output is triple register buffered, and the IR flag output is double  
register buffered.  
See Figures 9, 10, 12, and 14 for timing information.  
standard mode  
In standard mode, status flags FF, PAF, HF, PAE, and EF operate as outlined in Table 3. To write data into the  
FIFO, WEN must be low. Data presented to the DATA IN lines is clocked into the FIFO on subsequent transitions  
of WCLK. After the first write is performed, EF goes high. Subsequent writes continue to fill the FIFO. PAE goes  
high after n + 1 words have been loaded into the FIFO, where n is the empty offset value. The default setting  
for these values is shown in Table 2. This parameter is also user programmable.  
If one continues to write data into the FIFO and assumes no read operations are taking place, HF switches to  
low after the 513rd word for SN74V3640, 1025th word for SN74V3650, 2049th word for SN74V3660,  
4097th word for SN74V3670, 8193th word for the SN74V3680, and 16385th word for the SN74V3690 are  
written into the FIFO. Continuing to write data into the FIFO causes PAF to go low. If no reads are performed,  
PAF goes low after (1024 m) writes for the SN74V3640, (2048 m) writes for the SN74V3650, (4096 m)  
writes for the SN74V3660, (8192 m) writes for the SN74V3670, (16384 m) writes for the SN74V3680, and  
(32768 m) writes for the SN74V3690. Offset m is the full offset value. The default setting for these values is  
in the footnote of Table 2. This parameter is also user programmable.  
When the FIFO is full, FF goes low, inhibiting further write operations. If no reads are performed after a reset,  
FF goes low after D writes to the FIFO. D = 1024 writes for the SN74V3640, D = 2048 writes for the SN74V3650,  
D = 4096 writes for the SN74V3660, D = 8192 writes for the SN74V3670, D = 16384 writes for the SN74V3680,  
and D = 32768 writes for the SN74V3690.  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, SN74V3690  
1024 × 36, 2048 × 36, 4096 × 36, 8192 × 36, 16384 × 36, 32768 × 36  
3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES  
SCAS668A NOVEMBER 2001 REVISED MARCH 2003  
standard mode (continued)  
If the FIFO is full, the first read operation causes FF to go high. Subsequent read operations cause PAF and  
HF to go high at the conditions described in Table 3. If further read operations occur without write operations,  
PAE goes low when there are n words in the FIFO, where n is the empty offset value. Continuing read operations  
causes the FIFO to become empty. When the last word has been read from the FIFO, EF goes low, inhibiting  
further read operations. REN is ignored when the FIFO is empty.  
When configured in standard mode, the EF and FF outputs are register-buffered outputs.  
See Figures 7, 8, 11, and 13 for timing information.  
Table 2. Default Programmable Flag Offsets  
SN74V3640, SN74V3650  
FSEL1 FSEL0 OFFSETS (n, m)  
SN74V3660, SN74V3670, SN74V3680, SN74V3690  
LD  
L
LD  
H
L
FSEL1 FSEL0  
OFFSETS (n, m)  
H
L
L
H
L
511  
255  
127  
63  
31  
15  
7
L
H
L
L
L
1,023  
511  
255  
127  
63  
L
L
L
L
H
L
L
H
L
H
L
L
L
H
H
H
H
L
H
H
L
H
L
H
L
L
H
H
H
31  
H
H
H
H
15  
H
3
H
7
PROGRAM MODE  
PROGRAM MODE  
Serial  
H
L
X
X
X
X
Serial  
H
L
X
X
X
X
§
§
Parallel  
Parallel  
n = empty offset for PAE, m = full offset for PAF  
As well as selecting serial programming mode, one of the default values also is loaded, depending on the state  
of FSEL0 and FSEL1.  
§
As well as selecting parallel programming mode, one of the default values also is loaded, depending on the state  
of FSEL0 and FSEL1.  
programming flag offsets  
Full and empty flag offset values are user programmable. The SN74V3640, SN74V3650, SN74V3660,  
SN74V3670, SN74V3680, and SN74V3690 have internal registers for these offsets. Eight default offset values  
are selectable during master reset. These offset values are shown in Table 2. Offset values can also be  
programmed into the FIFO by serial or parallel loading. The loading method is selected using LD. During master  
reset, the state of the LD input determines whether serial or parallel flag offset programming is enabled. A high  
on LD during master reset selects serial loading of offset values. A low on LD during master reset selects parallel  
loading of offset values.  
InadditiontoloadingoffsetvaluesintotheFIFO, itisalsopossibletoreadthecurrentoffsetvalues. Offsetvalues  
canbereadviatheparalleloutputportQ0Qn, regardlessoftheprogrammingmodeselected(serialorparallel).  
It is not possible to read the offset values in serial fashion.  
Figure 3 summarizes the control pins and sequence for both serial and parallel programming modes. A more  
detailed description is given in the following paragraphs.  
The offset registers may be programmed (and reprogrammed) any time after master reset, regardless of  
whether serial or parallel programming has been selected. Valid programming ranges are from 0 to D 1.  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, SN74V3690  
1024 × 36, 2048 × 36, 4096 × 36, 8192 × 36, 16384 × 36, 32768 × 36  
3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES  
SCAS668A NOVEMBER 2001 REVISED MARCH 2003  
synchronous vs asynchronous programmable flag timing selection  
The SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, and SN74V3690 can be configured  
during the master reset cycle, with either synchronous or asynchronous timing for PAF and PAE, by use of the  
PFM pin.  
If synchronous PAF/PAE configuration is selected (PFM high during MRS), PAF is asserted and updated on the  
rising edge of WCLK only and not RCLK. Similarly, PAE is asserted and updated on the rising edge of RCLK  
only, and not WCLK (see Figure 17 for synchronous PAF timing and Figure 18 for synchronous PAE timing).  
If asynchronous PAF/PAE configuration is selected (PFM low during MRS), PAF is asserted low on the  
low-to-high transition of WCLK, and PAF is reset to high on the low-to-high transition of RCLK. Similarly, PAE  
is asserted low on the low-to-high transition of RCLK. PAE is reset to high on the low-to-high transition of WCLK.  
See Figure 19 for asynchronous PAF timing and Figure 20 for asynchronous PAE timing.  
Table 3. Status Flags for Standard Mode  
SN74V3640  
0
SN74V3650  
0
SN74V3660  
0
SN74V3670  
0
FF PAF HF PAE EF  
H
H
H
H
H
H
H
H
H
L
L
L
H
H
1 to n  
1 to n  
1 to n  
1 to n  
Number of  
Words in  
FIFO (see  
Note 8)  
(n + 1) to 512  
(n + 1) to 1024  
(n + 1) to 2048  
(n + 1) to 4096  
H
513 to  
[1024 (m + 1)]  
1025 to  
[2048 (m + 1)]  
2049 to  
[4096 (m + 1)]  
4097 to  
[8192 (m + 1)]  
H
H
L
H
H
(1024 m) to 1023  
(2048 m) to 2047  
(4096 m) to 4095  
(8192 m) to 8191  
H
L
L
L
L
L
H
H
H
H
1024  
2048  
4096  
8192  
SN74V3680  
0
SN74V3690  
FF PAF HF PAE EF  
0
H
H
H
H
H
L
H
H
H
H
L
H
H
H
L
L
L
L
Number of  
Words in  
FIFO (see  
Note 8)  
1 to n  
1 to n  
H
H
H
H
H
(n + 1) to 8192  
(n + 1) to 16384  
H
H
H
H
8193 to [16384 (m + 1)] 16385 to [32768 (m + 1)]  
(16384 m) to 16383  
(32768 m) to 32767  
L
16384  
32768  
L
L
NOTE 8: See Table 2 for values for n, m.  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, SN74V3690  
1024 × 36, 2048 × 36, 4096 × 36, 8192 × 36, 16384 × 36, 32768 × 36  
3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES  
SCAS668A NOVEMBER 2001 REVISED MARCH 2003  
Table 4. Status Flags for FWFT Mode  
SN74V3640  
0
SN74V3650  
0
SN74V3660  
0
SN74V3670  
0
IR  
L
PAF HF PAE OR  
H
H
H
H
H
H
L
L
H
L
L
1 to (n + 1)  
(n + 2) to 513  
1 to (n + 1)  
(n + 2) to 1025  
1 to (n + 1)  
(n + 2) to 2049  
1 to (n + 1)  
(n + 2) to 4097  
L
Number of  
Words in  
FIFO (see  
Note 8)  
L
H
514 to  
[1025 (m + 1)]  
1026 to  
[2049 (m + 1)]  
2050 to  
[4097 (m + 1)]  
4098 to  
[8193 (m + 1)]  
L
H
L
H
L
(1025 m) to 1024  
(2049 m) to 2048  
(4097 m) to 4096  
(8193 m) to 8192  
L
L
L
L
L
H
H
L
L
1025  
2049  
4097  
8193  
H
SN74V3680  
0
SN74V3690  
0
IR  
L
PAF HF PAE OR  
H
H
H
H
H
H
L
L
H
L
L
1 to (n + 1)  
(n + 2) to 8193  
1 to (n + 1)  
(n + 2) to 16385  
L
Number of  
Words in  
FIFO (see  
Note 8)  
L
H
16386 to  
[32769 (m + 1)]  
8194 to [16385 (m + 1)]  
L
H
L
H
L
(16385 m) to 16384  
(32769 m) to 32768  
L
L
L
L
L
H
H
L
L
16385  
32769  
H
NOTE 8: See Table 2 for values for n, m.  
SN74V3640, SN74V3650, SN74V3660,  
SN74V3670, SN74V3680, SN74V3690  
LD  
WEN  
REN  
SEN WCLK RCLK  
Parallel write to registers:  
Empty offset (LSB)  
Empty offset (MSB)  
Full offset (LSB)  
0
0
1
1
1
X
Full offset (MSB)  
Parallel read from registers:  
Empty offset (LSB)  
Empty offset (MSB)  
Full offset (LSB)  
0
0
1
1
0
1
X
Full offset (MSB)  
Serial shift into registers:  
20 bits for the SN74V3640  
22 bits for the SN74V3650  
24 bits for the SN74V3660  
26 bits for the SN74V3670  
28 bits for the SN74V3680  
30 bits for the SN74V3690  
1 bit for each rising WCLK edge,  
starting with empty offset (LSB)  
ending with full offset (MSB)  
0
X
X
1
1
1
1
0
X
1
1
X
0
1
1
X
X
X
X
X
X
No operation  
Write memory  
Read memory  
No operation  
X
X
X
NOTES: A. The programming method can be selected only at master reset.  
B. Parallel reading of the offset registers is always permitted, regardless of which programming method has been selected.  
C. The programming sequence applies to FWFT and standard modes.  
Figure 3. Programmable Flag Offset Programming Sequence  
Figure 1Figure 2  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, SN74V3690  
1024 × 36, 2048 × 36, 4096 × 36, 8192 × 36, 16384 × 36, 32768 × 36  
3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES  
SCAS668A NOVEMBER 2001 REVISED MARCH 2003  
1st Parallel Offset Write/Read Cycle  
Data Inputs/Outputs  
D/Q8  
EMPTY OFFSET REGISTER (PAE) BIT LOCATIONS  
D/Q35  
D/Q15  
D/Q0  
X
X
X
X
X
X
X
X
X
15 14 13 12 11 10  
9
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
Noninterspersed Parity  
Interspersed Parity  
X
X
15 14 13 12 11 10  
9
X
2nd Parallel Offset Write/Read Cycle  
Data Inputs/Outputs  
D/Q35  
D/Q17  
D/Q8  
FULL OFFSET REGISTER (PAF) BIT LOCATIONS  
D/Q0  
X
X
X
X
X
X
X
16 15 14 13 12 11 10  
9
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
Noninterspersed Parity  
Interspersed Parity  
X
X
16 15 14 13 12 11 10  
9
X
×36 Bus Width  
1st Parallel Offset Write/Read Cycle  
D/Q17  
D/Q15  
Data Inputs/Outputs  
EMPTY OFFSET (LSB) REGISTER (PAE) BIT LOCATIONS  
D/Q0  
X
X
X
15 14 13 12 11 10  
9
X
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
Noninterspersed Parity  
Interspersed Parity  
X
15 14 13 12 11 10  
9
D/Q8  
2nd Parallel Offset Write/Read Cycle  
D/Q17  
D/Q15  
Data Inputs/Outputs  
FULL OFFSET (LSB) REGISTER (PAF) BIT LOCATIONS  
D/Q0  
X
X
X
15 14 13 12 11 10  
9
X
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
Noninterspersed Parity  
Interspersed Parity  
X
15 14 13 12 11 10  
9
D/Q8  
×18 Bus Width  
Number of bits used:  
10 bits for the SN74V3640  
11 bits for the SN74V3650  
12 bits for the SN74V3660  
13 bits for the SN74V3670  
14 bits for the SN74V3680  
15 bits for the SN74V3690  
Note: All unused bits of the  
LSB and MSB are dont care.  
Figure 3. Programmable Flag Offset Programming Sequence (Continued)  
Figure 1Figure 2  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, SN74V3690  
1024 × 36, 2048 × 36, 4096 × 36, 8192 × 36, 16384 × 36, 32768 × 36  
3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES  
SCAS668A NOVEMBER 2001 REVISED MARCH 2003  
1st Parallel Offset Write/Read Cycle  
D/Q8  
D/Q0  
EMPTY OFFSET REGISTER (PAE) BIT LOCATIONS  
X
8
7
6
5
4
3
2
1
2nd Parallel Offset Write/Read Cycle  
D/Q8  
D/Q0  
EMPTY OFFSET REGISTER (PAE) BIT LOCATIONS  
X
16  
15  
14  
13  
12  
11  
10  
9
3rd Parallel Offset Write/Read Cycle  
D/Q8  
D/Q0  
FULL OFFSET REGISTER (PAF) BIT LOCATIONS  
X
8
7
6
5
4
3
2
1
4th Parallel Offset Write/Read Cycle  
D/Q8  
D/Q0  
FULL OFFSET REGISTER (PAF) BIT LOCATIONS  
16 15 14 13 12 11 10  
X
9
×9 Bus Width  
Number of bits used:  
10 bits for the SN74V3640  
11 bits for the SN74V3650  
12 bits for the SN74V3660  
13 bits for the SN74V3670  
14 bits for the SN74V3680  
15 bits for the SN74V3690  
Note: All unused bits of the  
LSB and MSB are dont care.  
Figure 3. Programmable Flag Offset Programming Sequence (Continued)  
serial programming mode  
If the serial programming mode has been selected as described previously, programming of PAE and PAF  
values can be achieved by using a combination of the LD, SEN, WCLK, and SI inputs. Programming PAE and  
PAF proceeds as follows. When LD and SEN are set low, data on the SI input are written, one bit for each WCLK  
rising edge, starting with the empty offset LSB and ending with the full offset MSB. This makes a total of 20 bits  
for the SN74V3640, 22 bits for the SN74V3650, 24 bits for the SN74V3660, 26 bits for the SN74V3670, 28 bits  
for the SN74V3680, and 30 bits for the SN74V3690.  
See Figure 15 for the timing information.  
Using the serial method, individual registers cannot be programmed selectively. PAE and PAF can show a valid  
status only after the complete set of bits (for all offset registers) has been entered. The registers can be  
reprogrammed, as long as the complete set of new offset bits is entered. When LD is low and SEN is high, no  
serial write to the registers can occur.  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, SN74V3690  
1024 × 36, 2048 × 36, 4096 × 36, 8192 × 36, 16384 × 36, 32768 × 36  
3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES  
SCAS668A NOVEMBER 2001 REVISED MARCH 2003  
serial programming mode (continued)  
Write operations to the FIFO are allowed before and during the serial programming sequence. In this case, the  
programming of all offset bits need not occur at once. A select number of bits can be written to the SI input and  
then, by bringing LD and SEN high, data can be written to FIFO memory via Dn by switching WEN. When WEN  
is brought high with LD and SEN restored to a low, the next offset bit in sequence is written to the registers via  
SI. If an interruption of serial programming is desired, it is sufficient either to set LD low and deactivate SEN,  
or to set SEN low and deactivate LD. When LD and SEN are restored to a low level, serial offset programming  
continues.  
From the time serial programming begins, neither programmable flag is valid until the full set of bits required  
to fill all the offset registers is written. Measuring from the rising WCLK edge that achieves the previous criteria,  
PAF is valid after two more rising WCLK edges + t  
. PAE is valid after the next two rising RCLK edges  
PAF  
+ t  
+ t  
.
PAE  
sk2  
Flag offset values can be read only via parallel output port Qn.  
parallel programming mode  
If the parallel programming mode has been selected as described previously, programming of PAE and PAF  
values can be achieved by using a combination of the LD, WCLK , WEN and Dn inputs. Programming PAE and  
PAF proceeds as follows. LD and WEN must be set low. For ×36-bit input bus width, data on the inputs Dn are  
written into the Empty Offset register on the first low-to-high transition of WCLK. On the second low-to-high  
transition of WCLK, data are written into the Full Offset register. The third transition of WCLK writes, once again,  
to the Empty Offset register. For ×18-bit input bus width, data on the inputs Dn are written into the Empty Offset  
register (LSB) on the first low-to-high transition of WCLK. On the second low-to-high transition of WCLK, data  
are written into the Empty Offset (MSB) register. The third transition of WCLK writes to the Full Offset register  
(LSB). The fourth transition of WCLK writes to the Full Offset register (MSB). The fifth transition of WCLK writes,  
once again, to the Empty Offset register (LSB). A total of four writes to the offset registers is required to load  
values using a ×18 input bus width. For an input bus width of ×9 bits, a total of six write cycles to the offset  
registers is required to load values.  
See Figures 3 and 16 for timing information.  
Writing offsets in parallel employs a dedicated Write Offset register pointer. Reading offsets employs a  
dedicated Read Offset register pointer. The two pointers operate independently; however, a read and a write  
should not be performed simultaneously to the offset registers. A master reset initializes both pointers to the  
Empty Offset register (LSB). A partial reset has no effect on the position of these pointers.  
Write operations to the FIFO are allowed before and during the parallel programming sequence. In this case,  
the programming of all offset registers need not occur at one time. One, two, or more offset registers can be  
written to and then, by bringing LD high, write operations can be redirected to the FIFO memory. When LD is  
set low again and WEN is low, the next offset register in sequence is written to. As an alternative to holding WEN  
low and switching LD, parallel programming can also be interrupted by setting LD low and switching WEN.  
Note that the status of a programmable-flag (PAE or PAF) output is invalid during the programming process.  
From the time parallel programming has begun, a programmable-flag output is not valid until the appropriate  
offset word has been written to the register(s) pertaining to that flag. Measuring from the rising WCLK edge that  
achieves the previous criteria, PAF is valid after two more rising WCLK edges + t  
. PAE is valid after the next  
PAF  
two rising RCLK edges + t  
+ t  
.
PAE  
sk2  
Reading the offset registers employs a dedicated read offset register pointer. The contents of the offset registers  
can be read on the Q0Qn pins when LD is set low and REN is set low. For ×36 output bus width, data are read  
via Qn from the Empty Offset register on the first low-to-high transition of RCLK. On the second low-to-high  
transition of RCLK, data are read from the Full Offset register. The third transition of RCLK reads, once again,  
from the Empty Offset register. For ×18 output bus width, a total of four read cycles is required to obtain the  
values of the offset registers, starting with the Empty Offset register (LSB) and finishing with the Full Offset  
register (MSB). For ×9 output bus width, a total of six read cycles must be performed on the offset registers.  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, SN74V3690  
1024 × 36, 2048 × 36, 4096 × 36, 8192 × 36, 16384 × 36, 32768 × 36  
3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES  
SCAS668A NOVEMBER 2001 REVISED MARCH 2003  
parallel programming mode (continued)  
See Figures 3 and 17 for timing information.  
It is permissible to interrupt the offset register read sequence with reads or writes to the FIFO. The interruption  
is accomplished by deasserting REN, LD, or both together. When REN and LD are restored to a low level,  
reading of the offset registers continues where it left off. It should be noted (and care should be taken from the  
fact) that when a parallel read of the flag offsets is performed, the data word that was present on output lines  
Qn is overwritten.  
Parallel reading of the offset registers always is permitted, regardless of which timing mode (Standard or FWFT  
modes) has been selected.  
retransmit operation  
The retransmit operation allows data that has been read to be accessed again. There are two modes of  
retransmit operation: normal latency and zero latency. There are two stages to retransmit. The first stage is a  
setup procedure that resets the read pointer to the first location of memory. The second stage is the actual  
retransmit, which consists of reading out the memory contents, starting at the beginning of memory.  
Retransmit setup is initiated by holding RT low during a rising RCLK edge. REN and WEN must be high before  
bringing RT low. When zero latency is utilized, REN need not be high before bringing RT low. At least two words,  
but no more than D 2 words should have been written into the FIFO, and read from the FIFO, between reset  
(master or partial) and the time of retransmit setup, D = 1024 for the SN74V3640, D = 2048 for the SN74V3650,  
D = 4096 for the SN74V3660, D = 8192 for the SN74V3670, D = 16384 for the SN74V3680, and D = 32768 for  
the SN74V3690. In FWFT mode, D = 1025 for the SN74V3640, D = 2049 for the SN74V3650, D = 4097 for the  
SN74V3660, D = 8193 for the SN74V3670, D = 16385 for the SN74V3680, and D = 32769 for the SN74V3690.  
If standard mode is selected, the FIFO marks the beginning of the retransmit setup by setting EF low. The  
change in level is noticeable only if EF was high before setup. During this period, the internal read pointer is  
initialized to the first location of the RAM array.  
When EF goes high, retransmit setup is complete and read operations can begin, starting with the first location  
in memory. Because standard mode is selected, every word read, including the first word following retransmit  
setup, requires a low on REN to enable the rising edge of RCLK.  
See Figure 11 for timing information.  
If FWFT mode is selected, the FIFO marks the beginning of the retransmit setup by setting OR high. During this  
period, the internal read pointer is set to the first location of the RAM array.  
When OR goes low, retransmit setup is complete. At the same time, the contents of the first location appear on  
the outputs. Because FWFT mode is selected, the first word appears on the outputs and no low on REN is  
necessary. Reading all subsequent words requires a low on REN to enable the rising edge of RCLK.  
See Figure 12 for timing information.  
For either standard mode or FWFT mode, updating of PAE, HF, and PAF begins with the rising edge of RCLK  
that RT is set up on. PAE is synchronized to RCLK, thus, on the second rising edge of RCLK after RT is set up,  
PAE is updated. HF is asynchronous, thus, the rising edge of RCLK that RT is set up on updates HF. PAF is  
synchronized to WCLK, thus, the second rising edge of WCLK that occurs t after the rising edge of RCLK that  
sk  
RT is set up on updates PAF. RT is synchronized to RCLK.  
The retransmit function has the option of two modes of operation, either normal latency or zero latency.  
Figures 11 and 12 show normal latency. Figures 13 and 14 show the zero-latency retransmit operation. Zero  
latency means, basically, that the first data word to be retransmitted is placed in the output register, with respect  
to the RCLK pulse that initiated the retransmit.  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, SN74V3690  
1024 × 36, 2048 × 36, 4096 × 36, 8192 × 36, 16384 × 36, 32768 × 36  
3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES  
SCAS668A NOVEMBER 2001 REVISED MARCH 2003  
D35-D27  
D26-D18  
D17-D9  
D8-D0  
BYTE ORDER ON INPUT PORT:  
BYTE ORDER ON OUTPUT PORT:  
A
B
C
D
Write to FIFO  
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
BE  
BM  
IW  
OW  
A
B
C
D
Read from FIFO  
X
L
L
L
(a) ×36 INPUT TO ×36 OUTPUT  
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
BE  
BM  
IW  
OW  
X
Q35-Q27  
X
X
Q26-Q18  
X
A
Q17-Q9  
C
B
Q8-Q0  
D
1st: Read from FIFO  
2nd: Read from FIFO  
L
H
L
L
(b) ×36 INPUT TO ×18 OUTPUT BIG ENDIAN  
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
BE  
BM  
IW  
OW  
X
Q35-Q27  
X
X
Q26-Q18  
X
C
Q17-Q9  
A
D
Q8-Q0  
B
1st: Read from FIFO  
2nd: Read from FIFO  
H
H
L
L
(c) ×36 INPUT TO ×18 OUTPUT LITTLE ENDIAN  
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
BE  
BM  
IW  
OW  
X
X
X
A
1st: Read from FIFO  
2nd: Read from FIFO  
3rd: Read from FIFO  
4th: Read from FIFO  
L
H
L
H
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
X
X
X
B
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
X
Q35-Q27  
X
X
Q26-Q18  
X
X
Q17-Q9  
X
C
Q8-Q0  
D
(d) ×36 INPUT TO ×9 OUTPUT BIG ENDIAN  
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
BE  
BM  
IW  
OW  
X
X
X
D
1st: Read from FIFO  
2nd: Read from FIFO  
3rd: Read from FIFO  
4th: Read from FIFO  
H
H
L
H
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
X
X
X
C
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
X
Q35-Q27  
X
X
Q26-Q18  
X
X
Q17-Q9  
X
B
Q8-Q0  
A
(e) ×36 INPUT TO ×9 OUTPUT LITTLE ENDIAN  
Figure 4. Bus-Matching Byte Arrangement  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, SN74V3690  
1024 × 36, 2048 × 36, 4096 × 36, 8192 × 36, 16384 × 36, 32768 × 36  
3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES  
SCAS668A NOVEMBER 2001 REVISED MARCH 2003  
D35-D27  
D26-D18  
D17-D9  
D8-D0  
BYTE ORDER ON INPUT PORT:  
X
Q35-Q27  
X
X
Q26-Q18  
X
A
Q17-Q9  
C
B
Q8-Q0  
D
1st: Write to FIFO  
2nd: Write to FIFO  
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
BYTE ORDER ON OUTPUT PORT:  
BE  
BM  
IW  
OW  
A
B
C
D
Read from FIFO  
Read from FIFO  
L
H
H
L
(a) ×18 INPUT TO ×36 OUTPUT BIG ENDIAN  
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
BE  
BM  
IW  
OW  
C
D
A
B
H
H
H
L
(b) ×18 INPUT TO ×36 OUTPUT LITTLE ENDIAN  
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
BYTE ORDER ON INPUT PORT:  
X
X
X
A
1st: Write to FIFO  
2nd: Write to FIFO  
3rd: Write to FIFO  
4th: Write to FIFO  
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
X
X
X
B
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
X
Q35-Q27  
X
X
Q26-Q18  
X
X
Q17-Q9  
X
C
Q8-Q0  
D
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
BYTE ORDER ON OUTPUT PORT:  
BE  
BM  
IW  
OW  
A
B
C
D
Read from FIFO  
Read from FIFO  
L
H
H
H
(a) ×9 INPUT TO ×36 OUTPUT BIG ENDIAN  
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
BE  
BM  
IW  
OW  
D
C
B
A
H
H
H
H
(b) ×9 INPUT TO ×36 OUTPUT LITTLE ENDIAN  
Figure 1. Bus-Matching Byte Arrangement (Continued)  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, SN74V3690  
1024 × 36, 2048 × 36, 4096 × 36, 8192 × 36, 16384 × 36, 32768 × 36  
3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES  
SCAS668A NOVEMBER 2001 REVISED MARCH 2003  
t
RS  
MRS  
REN  
t
t
t
t
RSS  
RSS  
RSS  
RSR  
t
RSR  
RSR  
WEN  
t
FWFT/SI  
t
t
RSS  
RSS  
RSS  
RSR  
LD  
t
FSEL0,  
FSEL1  
t
BM,  
OW,  
IW  
t
RSS  
BE  
t
t
t
RSS  
RSS  
RSS  
RM  
PFM  
IP  
t
RSS  
RT  
t
RSS  
SEN  
EF/OR  
FF/IR  
PAE  
t
t
t
t
t
RSF  
RSF  
RSF  
RSF  
RSF  
If FWFT = High, OR = High  
If FWFT = Low, EF = Low  
If FWFT = Low, FF = High  
If FWFT = High, IR = Low  
PAF,  
HF  
OE = High  
OE = Low  
Q0Qn  
Figure 2. Master Reset Timing  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, SN74V3690  
1024 × 36, 2048 × 36, 4096 × 36, 8192 × 36, 16384 × 36, 32768 × 36  
3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES  
SCAS668A NOVEMBER 2001 REVISED MARCH 2003  
t
RS  
PRS  
REN  
t
t
t
RSR  
RSS  
RSR  
t
t
RSS  
RSS  
WEN  
RT  
t
RSS  
SEN  
t
t
t
t
t
If FWFT = High, OR = High  
If FWFT = Low, EF = Low  
RSF  
RSF  
RSF  
RSF  
RSF  
EF/OR  
FF/IR  
If FWFT = Low, FF = High  
If FWFT = High, IR = Low  
PAE  
PAF,  
HF  
OE = High  
OE = Low  
Q0Qn  
Figure 3. Partial Reset Timing  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, SN74V3690  
1024 × 36, 2048 × 36, 4096 × 36, 8192 × 36, 16384 × 36, 32768 × 36  
3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES  
SCAS668A NOVEMBER 2001 REVISED MARCH 2003  
t
No Write  
1
No Write  
CLK  
t
CLKH  
t
CLKH  
WCLK  
2
1
t
2
t
sk1  
t
DS  
sk1  
(see Note A)  
t
DS  
t
DH  
(see Note A)  
t
DH  
D0Dn  
Dx  
Dx + 1  
t
t
t
t
WFF  
WFF  
WFF  
WFF  
FF  
WEN  
RCLK  
t
t
t
ENS  
t
ENS  
ENH  
ENH  
REN  
t
A
t
A
Q0Qn Data in Output Register  
Data Read  
Next Data Read  
NOTES: A.  
t
is the minimum time between a rising RCLK edge and a rising WCLK edge to ensure that FF goes high (after one  
sk1  
WCLK cycle + t  
). If the time between the rising edge of the RCLK and the rising edge of the WCLK is less than t  
, FF  
WFF sk1  
deassertion can be delayed one additional WCLK cycle.  
B. LD = high, OE = low, EF = high  
Figure 4. Write Cycle and Full Flag Timing (Standard Mode)  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, SN74V3690  
1024 × 36, 2048 × 36, 4096 × 36, 8192 × 36, 16384 × 36, 32768 × 36  
3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES  
SCAS668A NOVEMBER 2001 REVISED MARCH 2003  
t
CLK  
t
CLKH  
t
CLKL  
RCLK  
1
2
t
ENS  
t
t
ENS  
ENS  
t
t
t
ENH  
ENH  
ENH  
No Operation  
No Operation  
REN  
EF  
t
ref  
t
ref  
t
ref  
t
A
t
A
t
A
Last Word  
Last Word  
D0  
D1  
Q0Qn  
OE  
t
t
t
OLZ  
OLZ  
OHZ  
t
OE  
t
sk1  
(see Note A)  
WCLK  
WEN  
t
ENS  
t
ENS  
t
t
ENH  
ENH  
t
t
DS  
DS  
t
t
DH  
DH  
D0  
D1  
D0Dn  
NOTES: A.  
t
is the minimum time between a rising WCLK edge and a rising RCLK edge to ensure that EF goes high (after one  
sk1  
RCLK cycle + t ). If the time between the rising edge of WCLK and the rising edge of RCLK is less than t  
be delayed one additional RCLK cycle.  
, EF deassertion can  
sk1  
ref  
B. LD = high  
C. First-data-word latency: t  
+ 1T  
+ t  
RCLK REF  
sk1  
Figure 5. Read Cycle, Empty Flag, and First-Data-Word Latency Timing (Standard Mode)  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
WCLK  
1
1
2
t
ENS  
t
WEN  
t
DH  
t
t
t
DS  
DS  
DS  
t
ENH  
DS  
D1  
D1  
D1  
1
2
3
W(D)  
W(D-m-2)  
W(D-m-1)  
W(D-m)  
W(D-m+1)  
W(D-m+2)  
W(D-1)  
W(n+2)  
W(n+3)  
W(n+4)  
W
W
W
W1  
D0D17  
W2  
t
W3  
W4  
2
2
2
(see Note A)  
t
(see Note B)  
2
sk1  
sk2  
RCLK  
REN  
1
2
3
1
t
A
W1  
Q0Q17  
Data in Output Register  
t
×
×
×
×
REF  
OR  
t
PAES  
PAE  
t
HF  
HF  
t
PAFS  
PAF  
IR  
t
WFF  
NOTES: A.  
B.  
t
is the minimum time between a rising WCLK edge and a rising RCLK edge to ensure that OR goes low after two RCLK cycles + t  
sk1  
edge of WLCK and the rising edge of RCLK is less than t  
is the minimum time between a rising WCLK edge and a rising RCLK edge to ensure that PAE goes high after one RCLK cycle + t . If the time between the  
sk2  
rising edge of WCLK and the rising edge of RCLK is less than t  
. If the time between the rising  
REF  
, OR assertion can be delayed one additional RCLK cycle.  
sk1  
t
PAES  
, PAE deassertion can be delayed one additional RCLK cycle.  
sk2  
C. LD = high, OE = low  
D. n = PAE offset, m = PAF offset, D = maximum FIFO depth  
E. D = 1025 for the SN74V3640, D = 2049 for the SN74V3650, D = 4097 for the SN74V3660, D = 8193 for the SN74V3670, D = 16385 for the SN74V3680, and D = 32769  
for the SN74V3690  
×
×
F. First-data-word latency: t  
+ 2t  
+ t  
sk1  
RCLK REF  
Figure 6. Write Timing (FWFT Mode)  
PRODUCT PREVIEW  
WCLK  
1
2
t
ENH  
t
t
sk2  
(see Note B)  
sk1  
(see Note A)  
t
ENS  
×
×
×
×
WEN  
t
DH  
t
DS  
WD  
D0D17  
RCLK  
1
2
t
t
ENS  
ENS  
REN  
OE  
t
OE  
t
t
t
t
t
A
A
A
A
A
t
t
A
OHZ  
D1  
D1  
1
2
W(D-n-1)  
W(D-n)  
W(D-n+1)  
W(D-n+2)  
W(D-1)  
Wm+2  
W(m+3)  
W(m+4)  
W
W
Q0Q17  
W1  
W3  
WD  
W1  
W2  
2
2
t
REF  
OR  
t
×
×
PAES  
PAE  
HF  
t
HF  
t
PAFS  
PAF  
IR  
t
t
WFF  
WFF  
NOTES: A.  
B.  
t
is the minimum time between a rising RCLK edge and a rising WCLK edge to ensure that IR goes low after one WCLK cycle + t  
, IR assertion may be delayed an additional WCLK cycle.  
sk1  
is the minimum time between a rising RCLK edge and a rising WCLK edge to ensure that PAF to goes high after one WCLK cycle + t  
. If the time between the rising  
. If the time between the  
sk1  
WFF  
edge of RLCK and the rising edge of WCLK is less than t  
t
sk2  
rising edge of RCLK and the rising edge of WCLK is less than t  
PAFS  
, PAF deassertion may be delayed an additional WCLK cycle.  
sk2  
C. LD = high  
D. n = PAE offset, m = PAF offset, D = maximum FIFO depth  
E. D = 1025 for the SN74V3640, D = 2049 for the SN74V3650, D = 8193 for the SN74V3670, D = 16385 for the SN74V3680, and D = 32769 for the SN74V3690  
Figure 7. Read Timing (FWFT Mode)  
SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, SN74V3690  
1024 × 36, 2048 × 36, 4096 × 36, 8192 × 36, 16384 × 36, 32768 × 36  
3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES  
SCAS668A NOVEMBER 2001 REVISED MARCH 2003  
RCLK  
1
2
t
t
RTS  
ENS  
t
t
ENH  
t
ENH  
ENS  
REN  
t
A
t
A
t
A
Q0Qn  
Wx  
Wx + 1  
sk2  
W1 (see Note C)  
W2  
(see  
Note C)  
t
1
2
WCLK  
WEN  
RT  
t
RTS  
t
ENS  
t
ENH  
t
REF  
t
REF  
EF  
PAE  
HF  
t
PAES  
t
HF  
t
PAFS  
PAF  
NOTES: A. Retransmit setup is complete after EF returns high; only then can a read operation begin.  
B. OE = low  
C. W1 = first word written to the FIFO after master reset, W2 = second word written to the FIFO after master reset  
D. No more than (D 2) words may be written to the FIFO between reset (master or partial) and retransmit setup. Therefore, FF is  
high throughout the retransmit setup procedure.  
D = 1024 for the SN74V3640, D = 2048 for the SN74V3650, D = 4096 for the SN74V3660, D = 8192 for the SN74V3670, D = 16384  
for the SN74V3680, and D = 32768 for the SN74V3690.  
E. There must be at least two words written to and two words read from the FIFO before a retransmit operation can be invoked.  
F. RM is set high during MRS.  
Figure 8. Retransmit Timing (Standard Mode)  
33  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, SN74V3690  
1024 × 36, 2048 × 36, 4096 × 36, 8192 × 36, 16384 × 36, 32768 × 36  
3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES  
SCAS668A NOVEMBER 2001 REVISED MARCH 2003  
3
1
2
4
RCLK  
t
ENS  
t
RTS  
t
ENH  
t
ENS  
t
ENH  
REN  
t
A
t
A
t
A
t
A
Wx  
Wx + 1  
W1 (see Note D)  
W2 (see Note D)  
W3 (see Note D)  
W4  
Q0Qn  
t
sk2  
1
2
WCLK  
WEN  
t
RTS  
t
ENS  
t
ENH  
RT  
OR  
t
REF  
t
REF  
t
PAES  
PAE  
HF  
t
HF  
t
PAFS  
PAF  
NOTES: A. Retransmit setup is complete after OR returns low.  
B. No more than (D 2) words can be written to the FIFO between reset (master or partial) and retransmit setup. Therefore, IR is  
low throughout the retransmit setup procedure.  
D = 1025 for the SN74V3640, D = 2049 for the SN74V3650, D = 4097 for the SN74V3660, D = 8193 for the SN74V3670, D = 16385  
for the SN74V3680, and D = 32769 for the SN74V3690.  
C. OE = low  
D. W1, W2, W3 = first, second, and third words written to the FIFO after master reset  
E. There must be at least two words written to the FIFO before a retransmit operation can be invoked.  
F. RM is set high during MRS.  
Figure 9. Retransmit Timing (FWFT Mode)  
34  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, SN74V3690  
1024 × 36, 2048 × 36, 4096 × 36, 8192 × 36, 16384 × 36, 32768 × 36  
3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES  
SCAS668A NOVEMBER 2001 REVISED MARCH 2003  
1
2
3
RCLK  
t
ENS  
t
ENH  
REN  
t
A
t
A
t
A
t
A
t
A
Wx  
Wx + 1  
W0  
W1 (see Note C)  
W2 (see Note C)  
W3  
Q0Qn  
t
sk2  
1
2
WCLK  
WEN  
t
RTS  
t
ENH  
t
ENS  
RT  
EF  
(see Note A)  
t
PAES  
PAE  
t
HF  
HF  
t
PAFS  
PAF  
NOTES: A. If the FIFO is empty at the point of retransmit, EF is updated, based on RCLK (retransmit clock cycle). Valid data appears on the  
output.  
B. OE = low, enables data to be read on outputs Q0Qn  
C. W1 = first word written to the FIFO after master reset, W2 = second word written to the FIFO after master reset  
D. No more than (D 2) words may be written to the FIFO between reset (master or partial) and retransmit setup. Therefore, FF is  
high throughout the retransmit setup procedure.  
D = 1024 for the SN74V3640, D = 2048 for the SN74V3650, D = 4096 for the SN74V3660, D = 8192 for the SN74V3670,  
D = 16384 for the SN74V3680, D = 32768 for the SN74V3690.  
E. At least two words must be written to and read from the FIFO before a retransmit operation can be invoked.  
F. RM is set low during MRS.  
Figure 10. Zero-Latency Retransmit Timing (Standard Mode)  
35  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, SN74V3690  
1024 × 36, 2048 × 36, 4096 × 36, 8192 × 36, 16384 × 36, 32768 × 36  
3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES  
SCAS668A NOVEMBER 2001 REVISED MARCH 2003  
4
1
2
5
3
RCLK  
t
ENH  
t
ENS  
REN  
t
A
t
A
t
A
t
A
t
A
Wx  
Wx + 1  
W1  
W2 (see Note D)  
W3 (see Note D)  
W4 (see Note D)  
W5  
Q0Qn  
t
sk2  
1
2
WCLK  
WEN  
t
RTS  
t
ENS  
t
ENH  
RT  
OR  
t
PAES  
PAE  
HF  
t
HF  
t
PAFS  
PAF  
NOTES: A. If the FIFO is empty at the point of retransmit, OR is updated, based on RCLK (retransmit clock cycle). Valid data also appears  
on the output.  
B. No more than (D 2) words may be written to the FIFO between reset (master or partial) and retransmit setup. Therefore, IR is  
low throughout the retransmit setup procedure.  
D = 1025 for the SN74V3640, D = 2049 for the SN74V3650, D = 4097 for the SN74V3660, and D = 8193 for the SN74V3670,  
D = 16385 for the SN74V3680, and D = 32769 for the SN74V3690.  
C. OE = low  
D. W1, W2, W3 = first, second, and third words written to the FIFO after master reset.  
E. There must be at least two words written to the FIFO before a retransmit operation can be invoked.  
F. RM is set low during MRS.  
Figure 11. Zero-Latency Retransmit Timing (FWFT Mode)  
36  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, SN74V3690  
1024 × 36, 2048 × 36, 4096 × 36, 8192 × 36, 16384 × 36, 32768 × 36  
3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES  
SCAS668A NOVEMBER 2001 REVISED MARCH 2003  
WCLK  
SEN  
t
ENS  
t
t
ENH  
LDH  
ENH  
t
LDS  
t
t
LDH  
LD  
SI  
t
t
DH  
DS  
Bit 0  
Bit x  
(see Note A)  
Bit 0  
Bit x  
(see Note A)  
Empty Offset  
Full Offset  
NOTE A: x = 9 for the SN74V3640, x = 10 for the SN74V3650, x = 11 for the SN74V3660, x = 12 for the SN74V3670, x = 13 for the SN74V3680,  
x = 14 for the SN74V3690.  
Figure 12. Serial Loading of Programmable Flag Registers (FWFT Mode)  
t
CLK  
t
CLKH  
t
CLKL  
WCLK  
LD  
t
LDS  
t
t
LDH  
t
LDH  
t
ENS  
ENH  
t
t
ENH  
WEN  
t
DS  
t
DH  
DH  
PAF  
Offset  
PAE  
Offset  
D0D16  
NOTE A: This diagram shows programming with an input bus width of 36 bits.  
Figure 13. Parallel Loading of Programmable Flag Registers (Standard and FWFT Modes)  
37  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, SN74V3690  
1024 × 36, 2048 × 36, 4096 × 36, 8192 × 36, 16384 × 36, 32768 × 36  
3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES  
SCAS668A NOVEMBER 2001 REVISED MARCH 2003  
t
CLK  
t
CLKH  
t
CLKL  
RCLK  
t
LDS  
t
LDH  
t
LDH  
LD  
t
ENS  
t
t
ENH  
ENH  
REN  
t
A
t
A
PAE Offset  
PAF Offset  
Data in Output Register  
Q0Qn  
NOTES: A. OE = low  
B. This diagram shows reading of offset registers with an output bus width of 36 bits.  
Figure 14. Parallel Read of Programmable Flag Registers (Standard and FWFT Modes)  
38  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, SN74V3690  
1024 × 36, 2048 × 36, 4096 × 36, 8192 × 36, 16384 × 36, 32768 × 36  
3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES  
SCAS668A NOVEMBER 2001 REVISED MARCH 2003  
t
CLKH  
t
CLKL  
WCLK  
1
2
2
1
t
ENS  
t
ENH  
WEN  
PAF  
t
t
PAES  
PAFS  
D m Words in FIFO  
(see Note B)  
D (m + 1) Words in FIFO  
(see Note B)  
D (m + 1)  
Words in  
FIFO (see  
Note B)  
t
sk2  
(see Note C)  
RCLK  
REN  
t
ENS  
t
ENH  
NOTES: A. m = PAF offset  
B. D = maximum FIFO depth  
In FWFT mode: D = 1025 for the SN74V3640, D = 2049 for the SN74V3650, D = 4097 for the SN74V3660, and D = 8193 for the  
SN74V3670, D = 16385 for the SN74V3680, and D = 32769 for the SN74V3690.  
In standard mode: D = 1024 for the SN74V3640, D = 2048 for the SN74V3650, D = 4096 for the SN74V3660, D = 8192 for the  
SN74V3670, D = 16384 for the SN74V3680, D = 32768 for the SN74V3690.  
C.  
t
is the minimum time between a rising RCLK edge and a rising WCLK edge to ensure that PAF goes high (after one  
sk2  
WCLK cycle + t  
PAFS  
time may be delayed one additional WCLK cycle.  
). If the time between the rising edge of RCLK and the rising edge of WCLK is less than t , PAFdeassertion  
sk2  
D. PAF is asserted and updated on the rising edge of WCLK only.  
E. Select this mode by setting PFM high during master reset.  
Figure 15. Synchronous Programmable Almost-Full Flag Timing (Standard and FWFT Modes)  
39  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, SN74V3690  
1024 × 36, 2048 × 36, 4096 × 36, 8192 × 36, 16384 × 36, 32768 × 36  
3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES  
SCAS668A NOVEMBER 2001 REVISED MARCH 2003  
t
CLKH  
t
CLKL  
WCLK  
t
ENS  
t
ENH  
WEN  
PAE  
n Words in FIFO (see Note B)  
n + 1 Words in FIFO (see Note C)  
n Words in FIFO (see Note B)  
n + 1 Words in FIFO (see Note C)  
n Words in FIFO (see Note B)  
n + 1 Words in FIFO (see Note C)  
t
sk2  
(see Note D)  
t
t
PAES  
PAES  
1
2
1
2
RCLK  
REN  
t
ENS  
t
ENH  
NOTES: A. n = PAE offset  
B. For standard mode  
C. For FWFT mode  
D.  
t
is the minimum time between a rising WCLK edge and a rising RCLK edge to ensure that PAE goes high (after one  
sk2  
RCLK cycle + t  
PAES  
can be delayed one additional RCLK cycle.  
). If the time between the rising edge of WCLK and the rising edge of RCLK is less than t , PAEdeassertion  
sk2  
E. PAE is asserted and updated on the rising edge of WCLK only.  
F. Select this mode by setting PFM high during master reset.  
Figure 16. Synchronous Programmable Almost-Empty Flag Timing (Standard and FWFT Modes)  
40  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, SN74V3690  
1024 × 36, 2048 × 36, 4096 × 36, 8192 × 36, 16384 × 36, 32768 × 36  
3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES  
SCAS668A NOVEMBER 2001 REVISED MARCH 2003  
t
CLKH  
t
CLKL  
WCLK  
t
ENS  
t
ENH  
WEN  
PAF  
t
PAFA  
D (m + 1) Words in FIFO  
D m Words in FIFO  
D (m + 1) Words in FIFO  
t
PAFA  
RCLK  
t
ENS  
REN  
NOTES: A. m = PAF offset  
B. D = maximum FIFO depth  
In FWFT mode: D = 1025 for the SN74V3640, D = 2049 for the SN74V3650, D = 4097 for the SN74V3660, D = 8193 for the  
SN74V3670, D = 16385 for the SN74V3680, and D = 32769 for the SN74V3690.  
In standard mode: D = 1024 for the SN74V3640, D = 2048 for the SN74V3650, D = 4096 for the SN74V3660, D = 8192 for the  
SN74V3670, D = 16384 for the SN74V3680, and D = 32768 for the SN74V3690.  
C. PAF is asserted to low on WCLK transition and reset to high on RCLK transition.  
D. Select this mode by setting PFM low during master reset.  
Figure 17. Asynchronous Programmable Almost-Full Flag Timing (Standard and FWFT Modes)  
41  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, SN74V3690  
1024 × 36, 2048 × 36, 4096 × 36, 8192 × 36, 16384 × 36, 32768 × 36  
3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES  
SCAS668A NOVEMBER 2001 REVISED MARCH 2003  
t
CLKH  
t
CLKL  
WCLK  
t
ENS  
t
ENH  
WEN  
PAE  
n Words in FIFO  
(see Note B)  
n + 1 Words in FIFO  
(see Note C)  
t
PAEA  
n Words in FIFO (see Note B)  
n + 1 Words in FIFO (see Note C)  
n + 1 Words in FIFO  
(see Note B)  
n + 2 Words in FIFO  
(see Note C)  
t
PAEA  
RCLK  
REN  
t
ENS  
NOTES: A. n = PAE offset  
B. For standard mode  
C. For FWFT mode  
D. PAE is asserted low on RCLK transition and reset to high on WCLK transition.  
E. Select this mode by setting PFM low during master reset.  
Figure 18. Asynchronous Programmable Almost-Empty Flag Timing (Standard and FWFT Modes)  
42  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, SN74V3690  
1024 × 36, 2048 × 36, 4096 × 36, 8192 × 36, 16384 × 36, 32768 × 36  
3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES  
SCAS668A NOVEMBER 2001 REVISED MARCH 2003  
t
CLKH  
t
CLKL  
WCLK  
t
ENS  
t
t
ENH  
D
2
WEN  
HF  
Words in FIFO (see Note A)  
HF  
D
1
+ 1 Words in FIFO (see Note B)  
2
D
2
D
2
Words in FIFO  
(see Note A)  
Words in FIFO (see Note A)  
D
1
+ 1 Words in FIFO (see Note B)  
t
HF  
D
1
2
+ 1 Words in FIFO  
(see Note B)  
2
RCLK  
t
ENS  
REN  
NOTES: A. In standard mode: D = maximum FIFO depth. D = 1024 for the SN74V3640, D = 2048 for the SN74V3650, D = 4096 for the  
SN74V3660, D = 8192 for the SN74V3670, D = 16384 for the SN74V3680, and D = 32768 for the SN74V3690.  
B. In FWFT mode: D = maximum FIFO depth. D = 1025 for the SN74V3640, D = 2049 for the SN74V3650, D = 4097 for the  
SN74V3660, D = 8193 for the SN74V3670, D = 16385 for the SN74V3680, and D = 32769 for the SN74V3690.  
Figure 19. Half-Full Flag Timing (Standard and FWFT Modes)  
43  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, SN74V3690  
1024 × 36, 2048 × 36, 4096 × 36, 8192 × 36, 16384 × 36, 32768 × 36  
3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES  
SCAS668A NOVEMBER 2001 REVISED MARCH 2003  
operating configurations  
width-expansion configuration  
Word width can be increased by connecting the control signals of multiple devices together. Status flags can  
be detected from any one device. The exceptions are the EF and FF functions in standard mode and the IR and  
OR functions in FWFT mode. Because of variations in skew between RCLK and WCLK, it is possible for EF/FF  
deassertion and IR/OR assertion to vary by one cycle between FIFOs. In standard mode, such problems can  
be avoided by creating composite flags, that is, ANDing EF of every FIFO and separately ANDing FF of every  
FIFO. In FWFT mode, composite flags can be created by ORing OR of every FIFO and separately ORing IR  
of every FIFO.  
Figure 23 demonstrates a width expansion using two SN74V3640, SN74V3650, SN74V3660, SN74V3670,  
SN74V3680, and SN74V3690 devices. D0D35 from each device form a 72-bit-wide input bus and Q0Q35  
from each device form a 72-bit-wide output bus. Any word width can be attained by adding additional  
SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, and SN74V3690 devices.  
Partial Reset (PRS)  
Master Reset (MRS)  
First-Word Fall-Through/Serial Input  
(FWFT/SI)  
Retransmit (RT)  
(Dm + 1) Dn  
D0Dm  
m
n
m + n  
Data In  
Read Clock (RCLK)  
Read Enable (REN)  
Output Enable (OE)  
FIFO 1  
FIFO 2  
Write Clock (WCLK)  
Write Enable (WEN)  
Load (LD)  
SN74V3640  
SN74V3650  
SN74V3660  
SN74V3670  
SN74V3680  
SN74V3690  
SN74V3640  
SN74V3650  
SN74V3660  
SN74V3670  
SN74V3680  
SN74V3690  
Programmable  
Almost-Empty Flag (PAE)  
Full Flag/Input Ready 1  
(FF/IR)  
Empty Flag/Output Ready 1  
(EF/OR)  
Full Flag/Input Ready 2  
(FF/IR)  
Gate  
Empty Flag/Output Ready 2  
(EF/OR)  
Gate  
Programmable  
(see Note A)  
Almost-Full Flag (PAF)  
(see Note A)  
Data Out  
n
(Qm + 1) Qn m + n  
Half-Full Flag (HF)  
m
Q0Qm  
NOTES: A. Use an OR gate in FWFT mode and an AND gate in standard mode.  
B. Do not connect any output control signals together directly.  
C. FIFO 1 and FIFO 2 must be the same depth, but can be different word widths.  
Figure 20. 1024 × 72, 2048 × 72, 4096 × 72, 8192 × 72, 16384 × 72, 32768 × 72  
Width-Expansion Block Diagram  
44  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, SN74V3690  
1024 × 36, 2048 × 36, 4096 × 36, 8192 × 36, 16384 × 36, 32768 × 36  
3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES  
SCAS668A NOVEMBER 2001 REVISED MARCH 2003  
depth-expansion configuration (FWFT mode only)  
The SN74V3640 easily can be adapted to applications requiring depths greater than 1024 for the SN74V3640,  
2048 for the SN74V3650, 4096 for the SN74V3660, 8192 for the SN74V3670, 16384 for the SN74V3680, and  
32768 for the SN74V3690, with an 18-bit bus width. In FWFT mode, the FIFOs can be connected in series (the  
data outputs of one FIFO connected to the data inputs of the next), with no external logic necessary. The  
resulting configuration provides a total depth equivalent to the sum of the depths associated with each single  
FIFO. Figure 24 shows a depth expansion using two SN74V3640, SN74V3650, SN74V3660, SN74V3670,  
SN74V3680, and SN74V3690 devices.  
Care should be taken to select FWFT mode during master reset for all FIFOs in the depth-expansion  
configuration. The first word written to an empty configuration passes from one FIFO to the next (ripple down)  
until it finally appears at the outputs of the last FIFO in the chain. No read operation is necessary, but the RCLK  
of each FIFO must be free running. Each time the data word appears at the outputs of one FIFO, that devices  
OR line goes low, enabling a write to the next FIFO in line.  
FWFT/SI  
Transfer Clock  
FWFT/SI  
FWFT/SI  
Write Clock  
Write Enable  
Input Ready  
Read Clock  
WCLK  
RCLK  
WCLK  
RCLK  
Read Enable  
SN74V3640  
SN74V3650  
SN74V3660  
SN74V3670  
SN74V3680  
SN74V3690  
SN74V3640  
SN74V3650  
SN74V3660  
SN74V3670  
SN74V3680  
SN74V3690  
WEN  
IR  
OR  
WEN  
IR  
REN  
Output Ready  
Output Enable  
n
Data Out  
REN  
OE  
OR  
OE  
GND  
n
n
Data In  
Dn  
Qn  
Dn  
Qn  
Figure 21. 2048 × 36, 4096 × 36, 8192 × 36, 16384 × 36, 32768 × 36, 65536 × 36  
Depth-Expansion Block Diagram  
For an empty-expansion configuration, the amount of time it takes for OR of the last FIFO in the chain to go low  
(i.e., valid data to appear on the last FIFOs outputs) after a word has been written to the first FIFO is the sum  
of the delays for each FIFO:  
(n1) (4 transfer clock)  
Where:  
3tRCLK  
(1)  
n
= number of FIFOs in the expansion  
= RCLK period  
t
RCLK  
Note that extra cycles should be added for the possibility that the t  
and the transfer clock, or RCLK and the transfer clock, for the OR flag.  
specification is not met between WCLK  
sk1  
The ripple-down delay is noticeable only for the first word written to an empty-depth-expansion configuration.  
There will be no delay evident for subsequent words written to the configuration.  
The first free location created by reading from a full-depth-expansion configuration will bubble up from the last  
FIFO to the previous one until, finally, it moves into the first FIFO of the chain. Each time a free location is created  
in one FIFO of the chain, that FIFOs IR line goes low, enabling the preceding FIFO to write a word to fill it.  
45  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, SN74V3690  
1024 × 36, 2048 × 36, 4096 × 36, 8192 × 36, 16384 × 36, 32768 × 36  
3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES  
SCAS668A NOVEMBER 2001 REVISED MARCH 2003  
depth-expansion configuration (FWFT mode only) (continued)  
For a full expansion configuration, the amount of time it takes for IR of the first FIFO in the chain to go low after  
a word has been read from the last FIFO is the sum of the delays for each individual FIFO:  
(n1) (3 transfer clock)  
2tWCLK  
(2)  
Where:  
n
= number of FIFOs in the expansion  
= WCLK period  
t
WCLK  
Note that extra cycles should be added for the possibility that the t  
and the transfer clock, or WCLK and the transfer clock, for the IR flag.  
specification is not met between RCLK  
sk1  
The transfer-clock line should be tied to either WCLK or RCLK, whichever is faster. Both these actions result  
in data moving as quickly as possible to the end of the chain and moving free locations to the beginning of the  
chain.  
46  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Mar-2005  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
Drawing  
PEU  
PEU  
PEU  
PEU  
PEU  
PEU  
PEU  
PEU  
PEU  
PEU  
PEU  
PEU  
PEU  
PEU  
PEU  
PEU  
PEU  
PEU  
PEU  
PEU  
PEU  
PEU  
PEU  
PEU  
SN74V3640-10PEU  
SN74V3640-15PEU  
SN74V3640-6PEU  
SN74V3640-7PEU  
SN74V3650-10PEU  
SN74V3650-15PEU  
SN74V3650-6PEU  
SN74V3650-7PEU  
SN74V3660-10PEU  
SN74V3660-15PEU  
SN74V3660-6PEU  
SN74V3660-7PEU  
SN74V3670-10PEU  
SN74V3670-15PEU  
SN74V3670-6PEU  
SN74V3670-7PEU  
SN74V3680-10PEU  
SN74V3680-15PEU  
SN74V3680-6PEU  
SN74V3680-7PEU  
SN74V3690-10PEU  
SN74V3690-15PEU  
SN74V3690-6PEU  
SN74V3690-7PEU  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
72  
72  
72  
72  
72  
72  
72  
72  
72  
72  
72  
72  
72  
72  
72  
72  
72  
72  
72  
72  
72  
72  
72  
72  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Level-3-220C-168 HR  
Level-3-220C-168 HR  
Level-3-220C-168 HR  
Level-3-220C-168 HR  
Level-3-220C-168 HR  
Level-3-220C-168 HR  
Level-3-220C-168 HR  
Level-3-220C-168 HR  
Level-3-220C-168 HR  
Level-3-220C-168 HR  
Level-3-220C-168 HR  
Level-3-220C-168 HR  
Level-3-220C-168 HR  
Level-3-220C-168 HR  
Level-3-220C-168 HR  
Level-3-220C-168 HR  
Level-3-220C-168 HR  
Level-3-220C-168 HR  
Level-3-220C-168 HR  
Level-3-220C-168 HR  
Level-3-220C-168 HR  
Level-3-220C-168 HR  
Level-3-220C-168 HR  
Level-3-220C-168 HR  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan  
-
The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS  
&
no Sb/Br)  
-
please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Mar-2005  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 2  
MECHANICAL DATA  
MPQF058A – JANUARY 1998 – REVISED JUNE 1999  
PEU (R-PQFP-G128)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
M
0,08  
65  
0,50  
102  
103  
64  
16,20  
15,80  
14,20  
13,80  
12,50 TYP  
128  
39  
1
38  
0,13 NOM  
18,50 TYP  
20,20  
19,80  
22,20  
21,80  
Gage Plane  
0,25  
0,05 MIN  
0°7°  
1,45  
1,35  
0,75  
0,45  
Seating Plane  
0,08  
1,60 MAX  
4087743/B 10/98  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

SN74V3670-15PEU

3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES
TI

SN74V3670-6PEU

3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES
TI

SN74V3670-7.5PEU

8KX36 OTHER FIFO, 5ns, PQFP128, TQFP-128
TI

SN74V3670-7PEU

3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES
TI

SN74V3680

1024 】 36, 2048 】 36, 4096 】 36, 8192 】 36, 16384 】 36, 32768 】 36 3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES
TI

SN74V3680-10PEU

3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES
TI

SN74V3680-15PEU

3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES
TI

SN74V3680-6PEU

3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES
TI

SN74V3680-7PEU

3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES
TI

SN74V3690

1024 】 36, 2048 】 36, 4096 】 36, 8192 】 36, 16384 】 36, 32768 】 36 3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES
TI

SN74V3690-10PEU

3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES
TI

SN74V3690-15PEU

3.3-V CMOS FIRST-IN, FIRST-OUT MEMORIES
TI