SN65LVDS17 [TI]

2.5-V/3.3-V OSCILLATOR GAIN STAGE/BUFFERS; 2.5 V / 3.3 V振荡器增益级/缓冲区
SN65LVDS17
型号: SN65LVDS17
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

2.5-V/3.3-V OSCILLATOR GAIN STAGE/BUFFERS
2.5 V / 3.3 V振荡器增益级/缓冲区

振荡器
文件: 总15页 (文件大小:314K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN65LVDS16, SN65LVP16  
SN65LVDS17, SN65LVP17  
www.ti.com  
SLLS625BSEPTEMBER 2004REVISED NOVEMBER 2005  
2.5-V/3.3-V OSCILLATOR GAIN STAGE/BUFFERS  
FEATURES  
2-mm × 2-mm Small-Outline  
No-Lead Package  
Low-Voltage PECL Input and Low-Voltage  
PECL or LVDS Outputs  
APPLICATIONS  
Clock Rates to 2 GHz  
PECL-to-LVDS Translation  
Clock Signal Amplification  
– 140-ps Output Transition Times  
– 0.11 ps Typical Intrinsic Phase Jitter  
– Less than 630 ps Propagation Delay Times  
2.5-V or 3.3-V Supply Operation  
DESCRIPTION  
These four devices are high-frequency oscillator gain stages supporting both LVPECL or LVDS on the high gain  
outputs in 3.3-V or 2.5-V systems. Additionally, provides the option of both single-ended input (PECL levels on  
the SN65LVx16) and fully differential inputs on the SN65LVx17.  
The SN65LVx16 provides the user a Gain Control (GC) for controlling the Q output from 300 mV to 860 mV  
either by leaving it open (NC), grounded, or tied to VCC. (When left open, the Q output defaults to 575 mV.) The  
Q on the SN65LVx17 defaults to 575 mV as well.  
Both devices provide a voltage reference (VBB) of typically 1.35 V below VCC for use in receiving single-ended  
PECL input signals. When not used, VBB should be unconnected or open.  
All devices are characterized for operation from –40°C to 85°C.  
SN65LVDS17, SN65LVP17  
4 mA  
SN65LVDS16, SN65LVP16  
4 mA  
Q
Q
A
Y
Z
A
B
Y
Z
V
BB  
V
V
REF  
V
CC  
V
BB  
V
CC  
REF  
EN  
EN  
GC  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2004–2005, Texas Instruments Incorporated  
SN65LVDS16, SN65LVP16  
SN65LVDS17, SN65LVP17  
www.ti.com  
SLLS625BSEPTEMBER 2004REVISED NOVEMBER 2005  
These devices have limited built-in ESD protection. The leads should be shorted together or the device  
placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.  
AVAILABLE OPTIONS(1)  
INPUT  
OUTPUT  
LVDS  
GAIN CONTROL  
BASE PART NUMBER  
SN65LVDS16  
SN65LVP16  
PART MARKING  
Single-ended  
Single-ended  
Differential  
Differential  
Yes  
Yes  
No  
EL  
EK  
EN  
EM  
LVPECL  
LVDS  
SN65LVDS17  
SN65LVP17  
LVPECL  
No  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
website at www.ti.com.  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)  
(1)  
UNIT  
VCC  
VI  
Supply voltage(2)  
–0.5 V to 4 V  
–0.5 V to VCC + 0.5 V  
–0.5 V to VCC + 0.5 V  
±0.5 mA  
Input voltage  
VO  
IO  
Output voltage  
VBB output current  
HBM electrostatic discharge(3)  
CDM electrostatic discharge(4)  
Continuous power dissipation  
±3 kV  
±1500 V  
See Power Dissipation Ratings Table  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values, except differential voltages, are with respect to network ground see Figure 1).  
(3) Tested in accordance with JEDEC Standard 22, Test Method A114-A-7  
(4) Tested in accordance with JEDEC Standard 22, Test Method C101  
DISSIPATION RATINGS  
TA25°C  
POWER RATING  
DERATING FACTOR  
ABOVE TA = 25°C(1)  
TA = 85°C  
POWER RATING  
PACKAGE  
CIRCUIT BOARD MODEL  
Low-K(2)  
High-K(3)  
403 mW  
834 mW  
4.0 mW/°C  
8.3 mW/°C  
161 mW  
333 mW  
DRF  
(1) This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.  
(2) In accordance with the Low-K thermal metric definitions of EIA/JESD51-3.  
(3) In accordance with the High-K thermal metric definitions of EIA/JESD51-7.  
THERMAL CHARACTERISTICS  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VALUE  
93.3  
101.7  
132  
UNIT  
θJB  
θJC  
Junction-to-board thermal resistance  
Junction-to-case thermal resistance  
°C/W  
VCC = 3.3 V, TA = 25°C, 2 GHz, LVDS  
VCC = 3.3 V, TA = 25°C, 2 GHz, LVPECL  
VCC = 3.6 V, TA = 85°C, 2 GHz, LVDS  
VCC = 3.6 V, TA = 85°C, 2 GHz, LVPECL  
Typical  
83  
PD  
Device power dissipation  
mW  
173  
Maximum  
108  
2
SN65LVDS16, SN65LVP16  
SN65LVDS17, SN65LVP17  
www.ti.com  
SLLS625BSEPTEMBER 2004REVISED NOVEMBER 2005  
RECOMMENDED OPERATING CONDITIONS  
MIN  
NOM  
MAX UNIT  
VCC Supply voltage  
2.375 2.5 or 3.3  
3.6  
V
V
V
VIC  
Common-mode input voltage (VIA + VIB)/2  
Differential input voltage magnitude |VIA - VIB  
SN65LVDS17 or SN65LVP17  
SN65LVDS17 or SN65LVP17  
EN  
1.2  
0.08  
2
VCC – (VID/2)  
|VID  
|
|
1
VCC  
VIH  
VIL  
High-level input voltage to EN  
Low-level input voltage to EN  
V
V
SN65LVDS16 or SN65LVP16  
EN  
VCC– 1.17  
VCC– 0.44  
0.8  
0
VCC– 2.25  
–400(1)  
90  
SN65LVDS16 or SN65LVP16  
VCC– 1.52  
400  
IO  
Output current to VBB  
µA  
RL  
TA  
Differential load resistance,  
Operating free-air temperature  
132  
-40  
85  
°C  
(1) The algebraic convention, where the least positive (more negative) value is designated minimum, is used in this data sheet.  
ELECTRICAL CHARACTERISTICS  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX UNIT  
RL = 100 , EN at 0 V,  
Other inputs open  
40  
48  
ICC  
Supply current  
mA  
30  
Outputs unloaded,  
EN at 0 V, Other inputs open  
25  
VBB  
Reference voltage(2)  
IBB = –400 µA  
VI = 2 V  
VCC– 1.44  
–20  
VCC– 1.35  
VCC– 1.25  
V
IIH  
High-level input current, EN  
High-level input current, A or B  
Low-level input current, EN  
Low-level input current, A or B  
20  
20  
20  
20  
IIAH or IIBH  
IIL  
VI = VCC  
–20  
µA  
VI = 0.8 V  
VI = GND  
–20  
IIAL or IIBL  
–20  
SN65LVDS16/17 Y AND Z OUTPUT CHARACTERISTICS  
Differential output voltage magnitude,  
|VOD  
|
247  
340  
454  
50  
|VOY– VOZ  
|
mV  
V
Change in differential output voltage  
magnitude between logic states  
|VOD  
|
See Figure 1 and Figure 2  
Steady-state common-mode output  
voltage (see Figure 3)  
VOC(SS)  
VOC(SS)  
VOC(PP)  
1.125  
-50  
1.375  
Change in steady-state common-  
mode output voltage between logic  
states  
50  
See Figure 3  
mV  
Peak-to-peak common-mode output  
voltage  
50  
100  
IOYZ or IOZZ High-impedance output current  
IOYS or IOZS Short-circuit output current  
EN at VCC, VO = 0 V or VCC  
EN at 0 V, VOY or VOZ = 0 V  
–1  
1
µA  
–62  
62  
mA  
Differential short-circuit  
IOS(D)  
EN at 0 V, VOY = VOZ  
–12  
12  
output current, |IOY– IOZ  
|
(1) Typical values are at room temperature and with a VCC of 3.3 V.  
(2) Single-ended input operation is limited to VCC3.0 V.  
3
SN65LVDS16, SN65LVP16  
SN65LVDS17, SN65LVP17  
www.ti.com  
SLLS625BSEPTEMBER 2004REVISED NOVEMBER 2005  
ELECTRICAL CHARACTERISTICS (continued)  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX UNIT  
SN65LVP16/17 Y AND Z OUTPUT CHARACTERISTICS  
VOYH or  
VOZH  
High-level output voltage  
VCC– 1.05  
VCC– 1.83  
VCC– 1.88  
VCC– 0.82  
3.3 V; 50 from Y and Z  
to VCC– 2 V  
VOYL or  
VOZL  
Low-level output voltage  
VCC– 1.57  
VCC– 1.57  
V
VOYL or  
VOZL  
2.5 V; 50 from Y and Z  
to VCC– 2 V  
Low-level output voltage  
Differential output voltage magnitude,  
|VOD  
|
0.6  
–1  
0.8  
1
1
|VOH– VOL  
|
IOYZ or IOZZ High-impedance output current  
EN at VCC, VO = 0 V or VCC  
µA  
V
Q OUTPUT CHARACTERISTICS (see Figure 1)  
VOH  
High-level output voltage  
No load  
VCC– 0.94  
VCC– 1.22  
VCC– 1.52  
VCC– 1.82  
300  
GC Tied to GND, No load  
GC Open, No load  
GC Tied to VCC, No load  
GC Tied to GND  
GC Open  
VOL  
Low-level output voltage  
V
VO(pp)  
Peak-to-peak output voltage  
575  
mV  
GC Tied to VCC  
860  
SWITCHING CHARACTERISTICS  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1) MAX UNIT  
A to Q  
340  
460  
460  
630  
20  
tPD  
Propagation delay time, tPLH or tPHL  
D to Y or Z  
See Figure 4  
ps  
tSK(P)  
Pulse skew, |tPLH– tPHL|  
VCC = 3.3 V  
VCC = 2.5 V  
80  
tSK(PP) Part-to-part skew(2)  
ps  
130  
140  
140  
3
tr  
tf  
20%-to-80% differential signal rise time  
20%-to-80% differential signal fall time  
85  
85  
ps  
ps  
See Figure 4  
tjit(per) RMS period jitter(3)  
tjit(cc)  
Peak cycle-to-cycle jitter(4)  
tjit(ph)  
2
2-GHz 50%-duty-cycle square-wave input,  
See Figure 5  
ps  
ps  
15  
23  
Intrinsic phase jitter  
2 GHz  
0.11  
Propagation delay time,  
high-level-to-high-impedance output  
tPHZ  
tPLZ  
tPZH  
tPZL  
30  
30  
30  
30  
Propagation delay time,  
low-level-to-high-impedance output  
See Figure 6  
ns  
Propagation delay time,  
high-impedance-to-high-level output  
Propagation delay time,  
high-impedance-to-low-level output  
(1) Typical values are at room temperature and with a VCC of 3.3 V.  
(2) Part-to-part skew is the magnitude of the difference in propagation delay times between any specified terminals of two devices when  
both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.  
(3) Period jitter is the deviation in cycle time of a signal with respect to the ideal period over a random sample of 100,000 cycles.  
(4) Cycle-to-cycle jitter is the variation in cycle time of a signal between adjacent cycles, over a random sample of 1,000 adjacent cycle  
pairs.  
4
SN65LVDS16, SN65LVP16  
SN65LVDS17, SN65LVP17  
www.ti.com  
SLLS625BSEPTEMBER 2004REVISED NOVEMBER 2005  
PARAMETER MEASUREMENT INFORMATION  
V
CC  
I
CC  
8
V
1
3
6
7
CC  
Q
2
4
5
A
V
BB  
50 W  
50 W  
I
IA  
D.U.T.  
I
BB  
GC  
EN  
Z
S1  
I
OZ  
I
IGC  
Y
GND  
9
+
V
CC  
− 2 V  
I
I
_
I
OY  
C
L
V
IA  
V
I
V
I
+
OY  
+
+
BB  
+
+
+
+
+
_
_
_
V
V
OZ  
V
V
O
V
OC  
(1) CL is the instrumentation and test fixture capacitance.  
(2) S1 is open for the SN65LVDS16 and closed for the SN65LVP16.  
Figure 1. Output Voltage Test Circuit and Voltage and Current Definitions for LVDS/LVP16  
V
CC  
I
CC  
8
V
1
4
6
7
CC  
Q
2
3
5
A
B
V
BB  
50 W  
50 W  
I
IA  
D.U.T.  
I
BB  
Z
S1  
I
OZ  
I
IB  
Y
EN  
GND  
9
+
V
CC  
− 2 V  
I
I
_
I
OY  
C
L
V
IA  
V
IB  
V
I
+
OY  
+
+
BB  
+
+
+
+
+
_
_
_
V
V
OZ  
V
V
O
V
OC  
(1) CL is the instrumentation and test fixture capacitance.  
(2) S1 is open for the SN65LVDS17 and closed for the SN65LVP17.  
Figure 2. Output Voltage Test Circuit and Voltage and Current Definitions for LVDS/LVP17  
INPUT  
V
dV  
OC(SS) OC(PP)  
V
OC  
Figure 3. VOC Definitions  
5
SN65LVDS16, SN65LVP16  
SN65LVDS17, SN65LVP17  
www.ti.com  
SLLS625BSEPTEMBER 2004REVISED NOVEMBER 2005  
PARAMETER MEASUREMENT INFORMATION (continued)  
V
CC  
1.2 V  
1.125 V  
V
V
IA  
1.5 V  
IB  
t
t
PLH  
PHL  
V
− V  
OZ  
OY  
100%  
80%  
50%  
t
f
t
r
20%  
Figure 4. Propagation Delay and Transition Time Test Waveforms  
50 W Cable, X + Y cm, SMA Coax  
Connectors, 4 Places  
TDS Oscilloscope with  
TJIT3 Analysis Pack  
Device Under Test  
HP3104 Pattern  
Generator  
50 W  
50 W  
DC  
Figure 5. Jitter Measurement Setup  
6
SN65LVDS16, SN65LVP16  
SN65LVDS17, SN65LVP17  
www.ti.com  
SLLS625BSEPTEMBER 2004REVISED NOVEMBER 2005  
PARAMETER MEASUREMENT INFORMATION (continued)  
V
CC  
1.2 V  
V
IA  
1.5 V  
V
IB  
V to EN  
I
2 V  
1.4 V  
t
t
0.8 V  
PZH  
PZL  
t
t
0 V  
PHZ  
PLZ  
V
− V  
OZ  
100%  
OY  
80%  
50%  
20%  
Figure 6. Enable and Disable Time Test Waveforms  
7
SN65LVDS16, SN65LVP16  
SN65LVDS17, SN65LVP17  
www.ti.com  
SLLS625BSEPTEMBER 2004REVISED NOVEMBER 2005  
DEVICE INFORMATION  
FUNCTION TABLE  
SN65LVDS16, SN65LVP16(1)  
SN65LVDS17, SN65LVP17(1)  
A
H
EN  
Q
L
Y
H
L
Z
L
H
Z
?
?
A
H
B
H
EN  
Q
?
H
L
?
?
?
?
Y
?
L
H
?
Z
?
?
Z
?
H
L
?
Z
?
?
L
L
L
L
H
?
L
H
L
X
H
Z
?
H
L
L
L
Open  
X
L
?
L
L
Open  
?
?
X
X
H
Open  
X
Open  
X
L
Open  
(1) H = high, L = low, Z = high impedance, ? = indeterminate  
DRF PACKAGE  
TOP VIEW  
1
8
4
9
5
BOTTOM VIEW  
Package Pin Assignments - Numerical Listing  
SN65LVDS16, SN65LVP16  
PIN SIGNAL  
SN65LVDS17, SN65LVP17  
PIN SIGNAL  
1
Q
1
Q
2
3
4
5
6
7
8
9
A
VBB  
GC  
EN  
Z
2
3
4
5
6
7
8
9
A
B
VBB  
EN  
Z
Y
Y
VCC  
GND  
VCC  
GND  
8
SN65LVDS16, SN65LVP16  
SN65LVDS17, SN65LVP17  
www.ti.com  
SLLS625BSEPTEMBER 2004REVISED NOVEMBER 2005  
TYPICAL CHARACTERISTICS  
SUPPLY CURRENT  
vs  
SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
FREQUENCY  
65  
55  
45  
35  
65  
55  
45  
35  
25  
15  
LVP16/17 = Load  
LVDS16/17  
LVP16/17 = Load  
LVDS16/17  
25  
15  
−40 −20  
0
20  
40  
60  
80  
100  
0
400  
800  
1200  
1600  
2000  
T
A
− Free−Air Temperature − C  
f − Frequency − MHz  
Figure 7.  
Figure 8.  
LVDS16/17 RISE/FALL TIME  
vs  
FREE-AIR TEMPERATURE  
LVP16/17 RISE/FALL TIME  
vs  
FREE-AIR TEMPERATURE  
105  
97  
89  
81  
73  
65  
105  
97  
89  
81  
73  
65  
t
f
t
r
t
r
t
f
−40 −20  
0
20  
40  
60  
80  
100  
−40 −20  
0
20  
40  
60  
80  
100  
T
A
− Free−Air Temperature − C  
T
A
− Free−Air Temperature − C  
Figure 9.  
Figure 10.  
LVDS16/17  
PERIOD JITTER  
vs  
FREQUENCY  
CYCLE-TO-CYCLE JITTER  
PROPAGATION DELAY TIME  
vs  
vs  
FREQUENCY  
FREE-AIR TEMPERATURE  
25  
20  
15  
10  
5
524  
500  
476  
452  
428  
404  
5
4
3
2
1
t
PLH  
t
PHL  
0
0
0
400  
800  
1200  
1600  
2000  
0
400  
800  
1200  
1600  
2000  
−40 −20  
0
20  
40  
60  
80  
100  
f − Frequency − MHz  
T
A
− Free−Air Temperature − C  
f − Frequency − MHz  
Figure 11.  
Figure 12.  
Figure 13.  
9
SN65LVDS16, SN65LVP16  
SN65LVDS17, SN65LVP17  
www.ti.com  
SLLS625BSEPTEMBER 2004REVISED NOVEMBER 2005  
EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS  
OUTPUT LVP16/17  
OUTPUT LVDS16/17  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
R
R
Y
V
CC  
Y
Z
7 V  
Z
7 V  
7 V  
7 V  
V
CC  
ENABLE  
400  
300 kΩ  
7 V  
INPUT  
V
CC  
OUTPUT  
V
BB  
V
CC  
V
CC  
V
CC  
A
B
V
BB  
V
BB  
10  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Nov-2005  
PACKAGING INFORMATION  
Orderable Device  
SN65LVDS16DRFR  
SN65LVDS16DRFRG4  
SN65LVDS16DRFT  
SN65LVDS16DRFTG4  
SN65LVDS17DRFR  
SN65LVDS17DRFRG4  
SN65LVDS17DRFT  
SN65LVDS17DRFTG4  
SN65LVP16DRFR  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SON  
DRF  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SON  
SON  
SON  
SON  
SON  
SON  
SON  
SON  
SON  
SON  
SON  
SON  
SON  
SON  
SON  
DRF  
DRF  
DRF  
DRF  
DRF  
DRF  
DRF  
DRF  
DRF  
DRF  
DRF  
DRF  
DRF  
DRF  
DRF  
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65LVP16DRFRG4  
SN65LVP16DRFT  
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65LVP16DRFTG4  
SN65LVP17DRFR  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65LVP17DRFRG4  
SN65LVP17DRFT  
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65LVP17DRFTG4  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan  
-
The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS  
&
no Sb/Br)  
-
please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Nov-2005  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

SN65LVDS179

HIGH-SPEED DIFFERENTIAL LINE DRIVERS AND RECEIVERS
TI

SN65LVDS179-EP

HIGH-SPEED DIFFERENTIAL LINE DRIVERS AND RECEIVERS
TI

SN65LVDS179D

HIGH-SPEED DIFFERENTIAL LINE DRIVERS AND RECEIVERS
TI

SN65LVDS179DG4

HIGH-SPEED DIFFERENTIAL LINE DRIVERS AND RECEIVERS
TI

SN65LVDS179DGK

HIGH-SPEED DIFFERENTIAL LINE DRIVERS AND RECEIVERS
TI

SN65LVDS179DGKG4

HIGH-SPEED DIFFERENTIAL LINE DRIVERS AND RECEIVERS
TI

SN65LVDS179DGKR

HIGH-SPEED DIFFERENTIAL LINE DRIVERS AND RECEIVERS
TI

SN65LVDS179DGKRG4

HIGH-SPEED DIFFERENTIAL LINE DRIVERS AND RECEIVERS
TI

SN65LVDS179DR

HIGH-SPEED DIFFERENTIAL LINE DRIVERS AND RECEIVERS
TI

SN65LVDS179DRG4

HIGH-SPEED DIFFERENTIAL LINE DRIVERS AND RECEIVERS
TI

SN65LVDS179ID

暂无描述
TI

SN65LVDS179IDGK

LINE TRANSCEIVER, PDSO8
TI