SN65DSI84ZXHR [TI]

SN65DSI84 MIPI® DSI Bridge To FLATLINK™ LVDS Single Channel DSI to Dual-Link LVDS Bridge;
SN65DSI84ZXHR
型号: SN65DSI84ZXHR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

SN65DSI84 MIPI® DSI Bridge To FLATLINK™ LVDS Single Channel DSI to Dual-Link LVDS Bridge

文件: 总50页 (文件大小:2302K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN65DSI84
SLLSEC2H – SEPTEMBER 2012 – REVISED OCTOBER 2020  
SN65DSI84 MIPI® DSI Bridge To FLATLINK™ LVDS  
Single Channel DSI to Dual-Link LVDS Bridge  
1 Features  
3 Description  
Implements MIPI® D-PHY version 1.00.00 physical  
The SN65DSI84 DSI to FlatLink™ bridge features a  
layer front-end and display serial interface (DSI)  
version 1.02.00  
Single channel DSI receiver configurable for one,  
two, three, or four D-PHY data lanes per channel  
operating up to 1 Gbps per lane  
Supports 18 bpp and 24-bpp DSI video packets  
with RGB666 and RGB888 formats  
Suitable for 60-fps WUXGA 1920 × 1200  
resolution at 18-bpp and 24-bpp color, 60 fps 1366  
× 768 at 18 bpp and 24 bpp  
single-channel MIPI® D-PHY receiver front-end  
configuration with 4 lanes per channel operating at 1  
Gbps per lane; a maximum input bandwidth of 4  
Gbps. The bridge decodes MIPI® DSI 18bpp RGB666  
and 24 bpp RGB888 packets and converts the  
formatted video data stream to  
a
FlatLink™  
compatible LVDS output operating at pixel clocks  
operating from 25 MHz to 154 MHz, offering a Dual-  
Link LVDS, Single-Link LVDS interface with four data  
lanes per link.  
FlatLinkoutput configurable for single-link or  
dual-link LVDS  
Supports single channel DSI to dual-link LVDS  
operating mode  
LVDS output clock range of 25 MHz to 154 MHz in  
dual-link or single-link modes  
LVDS pixel clock may be sourced from free-  
running continuous D-PHY clock or external  
reference clock (REFCLK)  
The SN65DSI84 is well suited for WUXGA 1920 x  
1200 at 60 frames per second, with up to 24 bits-per-  
pixel. Partial line buffering is implemented to  
accommodate the data stream mismatch between the  
DSI and LVDS interfaces.  
Designed  
with  
industry  
compliant  
interface  
technology, the SN65DSI84 is compatible with a wide  
range of micro-processors, and is designed with a  
range of power management features including low-  
swing LVDS outputs, and the MIPI® defined ultra-low  
power state (ULPS) support.  
1.8-V main VCC power supply  
Low power features include shutdown mode,  
reduced LVDS output voltage swing, common  
mode, and MIPI ultra-low power state (ULPS)  
support  
LVDS channel swap, LVDS PIN order reverse  
feature for ease of PCB routing  
ESD rating ±2 kV (HBM)  
Packaged in 64-pin 5-mm × 5-mm nFBGA (ZXH)  
Temperature range: –40°C to 85°C  
The SN65DSI84 is implemented in a small outline  
5x5mm nFBGA at 0.5 mm pitch package, and  
operates across a temperature range from -40°C to  
85°C.  
Device Information (1)  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
SN65DSI84  
nFBGA (64)  
5.00 mm × 5.00 mm  
(1) For all available packages, see the orderable addendum at  
the end of the datasheet.  
2 Applications  
PC & notebooks  
Tablets  
Connected peripherals & printers  
Typical Application  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
SN65DSI84  
www.ti.com  
SLLSEC2H – SEPTEMBER 2012 – REVISED OCTOBER 2020  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................4  
6 Specifications.................................................................. 6  
6.1 Absolute Maximum Ratings........................................ 6  
6.2 EDS Ratings............................................................... 6  
6.3 Recommended Operating Conditions.........................6  
6.4 Thermal Information....................................................6  
6.5 Electrical Characteristics.............................................7  
6.6 Switching Characteristics............................................9  
7 Detailed Description......................................................12  
7.1 Overview...................................................................12  
7.2 Functional Block Diagram.........................................12  
7.3 Feature Description...................................................13  
7.4 Device Functional Modes..........................................14  
7.5 Programming............................................................ 22  
7.6 Register Maps...........................................................23  
8 Application and Implementation..................................33  
8.1 Application Information............................................. 33  
8.2 Typical Application.................................................... 33  
9 Power Supply Recommendations................................40  
9.1 VCC Power Supply.................................................... 40  
9.2 VCORE Power Supply..............................................40  
10 Layout...........................................................................41  
10.1 Layout Guidelines................................................... 41  
10.2 Layout Example...................................................... 42  
11 Device and Documentation Support..........................43  
11.1 Receiving Notification of Documentation Updates..43  
11.2 Community Resources............................................43  
11.3 Trademarks............................................................. 43  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision G (June 2018) to Revision H (October 2020)  
Page  
NOTE: The device in the MicroStar Jr. BGA packaging were redesigned using a laminate nFBGA package.  
This nFBGA package offers datasheet-equivalent electrical performance. It is also footprint equivalent to the  
MicroStar Jr. BGA. The new package designator in place of the discontinued package designator will be  
updated throughout the datasheet......................................................................................................................1  
Changed u*jr ZQE to nFBGA ZXH..................................................................................................................... 1  
Changed u*jr ZQE to nFBGA ZXH..................................................................................................................... 4  
Changed u*jr ZQE to nFBGA ZXH. Updated thermal information......................................................................6  
Changed u*jr ZQE to nFBGA ZXH................................................................................................................... 41  
Changes from Revision F (August 2015) to Revision G (June 2018)  
Page  
Deleted figure Shutdown and Reset Timing Definition While VCC Is High .........................................................9  
Changed the paragraph following Figure 7-3 .................................................................................................. 14  
Changed Recommended Initialization Sequence To: Initialization Sequence .................................................14  
Changed Table 7-2 .......................................................................................................................................... 14  
Changed item 3 in Video Stop and Restart Sequence From: Drive all DSI input lanes including DSI CLK lane  
to LP11. To: Drive all DSI data lanes to LP11, but keep the DSI CLK lanes in HS. .........................................33  
Changes from Revision E (October 2013) to Revision F (August 2015)  
Page  
Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device  
Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout  
section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information  
section ............................................................................................................................................................... 1  
Changed ULPS Itemized List, item 3 from "Wait for the PLL_LOCK bit (CSR 0x0A.7) to be set" to "Wait for a  
minimum of 3 ms."............................................................................................................................................ 13  
Changed Initialization Sequence Description for Init seq7 from "Wait for the PLL_LOCK bit to be set (CSR  
0x0A.7)" to "Wait for a minimum of 3 ms." .......................................................................................................14  
Changed Table 7-6 Address 0x0A, Bit 7 description from "PLL_LOCK" to "PLL_EN_STAT"...........................23  
Changed Address 0x18, Bits 3, 2, 1, and 0 Descriptions in Table 7-8 for clarification......................................23  
Copyright © 2020 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: SN65DSI84  
 
SN65DSI84  
www.ti.com  
SLLSEC2H – SEPTEMBER 2012 – REVISED OCTOBER 2020  
Changed Item 1 of the Video STOP and Restart sequence from "Clear the PLL_EN bit to 0(CSR 0x0A.7)" to  
"Clear the PLL_EN bit to 0 (CSR 0x0D.0)" ......................................................................................................33  
Changes from Revision D (August 2013) to Revision E (October 2013)  
Page  
Added rows for Bits 7, and 6:5 to Table 7-7 CSR Bit Field Definition – DSI Registers.....................................23  
Changes from Revision C (December 2012) to Revision D (August 2013)  
Page  
Aligned package description throughout datasheet............................................................................................1  
Changes from Revision A (December 2012) to Revision B (December 2012)  
Page  
Changed PGBA to PBGA................................................................................................................................... 1  
Changes from Revision * (August 2012) to Revision A (December 2012)  
Page  
Changed the value of VOH From: 1.3 MIN To: 1.25 MIN.....................................................................................7  
Changed the ICC TYP value From: 125 To: 106 and MAX value From: 200 To: 150 .........................................7  
Added a TYP value of 7.7 to IULPS .....................................................................................................................7  
Changed the IRST TYP value From: 0.05 To: 0.04 and MAX value From: 0.2 To: 0.06...................................... 7  
changed the values of |VOD|..............................................................................................................................7  
Changed the values of VOC(SS) for test conditions CSR 0x19.6 = 0 and, or CSR 0x19.4 = 0.............................7  
Changed table note 2......................................................................................................................................... 7  
Added table note 3..............................................................................................................................................7  
Changed the SWITCHING CHARACTERISTICS table......................................................................................9  
Changed the description of CHA_LVDS_VOD_SWING................................................................................... 23  
Changed the description of CHB_LVDS_VOD_SWING................................................................................... 23  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: SN65DSI84  
SN65DSI84  
www.ti.com  
SLLSEC2H – SEPTEMBER 2012 – REVISED OCTOBER 2020  
5 Pin Configuration and Functions  
A
B
C
D
E
F
G
H
J
9
8
7
6
5
4
3
2
1
VCC  
GND  
A_Y0N  
A_Y1N  
A_Y2N  
A_CLKN  
A_Y3N  
GND  
IRQ  
GND  
B_Y3N  
B_CLKN  
B_Y2N  
B_Y1N  
B_Y0N  
GND  
VCC  
B_Y3P  
B_CLKP  
B_Y2P  
B_Y1P  
B_Y0P  
RSVD2  
EN  
A_Y0P  
A_Y1P  
A_Y2P  
A_CLKP  
A_Y3P  
RSVD1  
DA3P  
DA2P  
DACP  
DA1P  
DA0P  
REFCLK  
SCL  
VCORE  
DA3N  
DA2N  
DACN  
DA1N  
DA0N  
VCC  
VCC  
GND  
VCC  
VCC  
GND  
VCC  
GND  
GND  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
ADDR  
SDA  
Not to scale  
To minimize the power supply noise floor, provide good decoupling near the SN65DSI84 power pins. The use of four ceramic capacitors  
(2x 0.1 μF and 2x 0.01 μF) provides good performance. At the least, it is recommended to install one 0.1 μF and one 0.01 μF capacitor  
near the SN65DSI84. To avoid large current loops and trace inductance, the trace length between decoupling capacitor and device  
power inputs pins must be minimized. Placing the capacitor underneath the SN65DSI84 on the bottom of the PCB is often a good  
choice.  
Figure 5-1. ZXH Package 64-Pin nFBGA Top View  
Table 5-1. Pin Functions  
PIN  
DESCRIPTION  
NAME  
NO.  
H3  
J3  
I/O  
DA0P  
DA0N  
DA1P  
DA1N  
DA2P  
DA2N  
DA3P  
DA3N  
DACP  
DACN  
MIPI® D-PHY Channel A Data Lane 0; data rate up to 1 Gbps.  
MIPI® D-PHY Channel A Data Lane 1; data rate up to 1 Gbps.  
MIPI® D-PHY Channel A Data Lane 2; data rate up to 1 Gbps.  
MIPI® D-PHY Channel A Data Lane 3; data rate up to 1 Gbps.  
MIPI® D-PHY Channel A Clock Lane; operates up to 500 MHz.  
H4  
J4  
LVDS Input (HS)  
CMOS Input (LS)  
(Failsafe)  
H6  
J6  
H7  
J7  
H5  
J5  
Copyright © 2020 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: SN65DSI84  
 
SN65DSI84  
www.ti.com  
SLLSEC2H – SEPTEMBER 2012 – REVISED OCTOBER 2020  
Table 5-1. Pin Functions (continued)  
PIN  
NO.  
DESCRIPTION  
NAME  
I/O  
C2, C1, D2, D1, F2,  
F1, G2, G1, E2, E1  
NC  
No connects.  
These pins should not be connected to any signal, power or ground.  
FlatLink™ Channel A LVDS Data Output 0.  
A_Y0P  
A_Y0N  
A_Y1P  
A_Y1N  
A_Y2P  
A_Y2N  
C8  
C9  
D8  
D9  
E8  
E9  
FlatLink™ Channel A LVDS Data Output 1.  
FlatLink™ Channel A LVDS Data Output 2.  
FlatLink™ Channel A LVDS Data Output 3. A_Y3P and A_Y3N shall be left NC for 18 bpp  
panels.  
A_Y3P  
G8  
A_Y3N  
A_CLKP  
A_CLKN  
B_Y0P  
B_Y0N  
B_Y1P  
B_Y1N  
B_Y2P  
B_Y2N  
G9  
F8  
F9  
B3  
A3  
B4  
A4  
B5  
A5  
FlatLink™ Channel A LVDS Clock  
LVDS Output  
FlatLink™ Channel B LVDS Data Output 0.  
FlatLink™ Channel B LVDS Data Output 1.  
FlatLink™ Channel B LVDS Data Output 2.  
FlatLink™ Channel B LVDS Data Output 3. B_Y3P and B_Y3N shall be left NC for 18 bpp  
panels.  
B_Y3P  
B7  
B_Y3N  
A7  
B6  
A6  
B_CLKP  
B_CLKN  
FlatLink™ Channel B LVDS Clock.  
CMOS Input/Output  
with pulldown  
RSVD1  
RSVD2  
H8  
B2  
Reserved. This pin should be left unconnected for normal operation.  
CMOS Input with  
pulldown  
Reserved. This pin should be left unconnected for normal operation.  
Local I2C Interface Target Address Select. See Table 7-4. In normal operation this pin is an  
ADDR  
EN  
A1  
B1  
CMOS Input/Output input. When the ADDR pin is programmed high, it should be tied to the same 1.8 V power  
rails where the SN65DSI84 VCC 1.8 V power rail is connected.  
CMOS Input with  
Chip Enable and Reset. Device is reset (shutdown) when EN is low.  
pullup (Failsafe)  
Optional External Reference Clock for LVDS Pixel Clock. If an External Reference Clock is  
not used, this pin should be pulled to GND with an external resistor. The source of the  
reference clock should be placed as close as possible with a series resistor near the  
REFCLK  
H2  
CMOS Input  
(Failsafe)  
source to reduce EMI.  
SCL  
SDA  
IRQ  
H1  
J1  
J9  
Local I2C Interface Clock.  
Open Drain Input/  
Local I2C Interface Bi-directional Data Signal.  
Output (Failsafe)  
CMOS Output  
Interrupt Signal.  
A2, A8, B9, D5, E4,  
F4, F5, H9  
GND  
Reference Ground.  
A9, B8, D6, E5, E6,  
F6, J2  
VCC  
Power Supply  
1.8 V Power Supply.  
1.1 V Output from Voltage Regulator. This pin must have a 1 µF external capacitor to  
GND.  
VCORE  
J8  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: SN65DSI84  
SN65DSI84  
www.ti.com  
SLLSEC2H – SEPTEMBER 2012 – REVISED OCTOBER 2020  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted) (1)  
MIN  
–0.3  
–0.5  
–0.4  
–65  
MAX  
2.175  
2.175  
1.4  
UNIT  
V
Supply Voltage  
VCC  
CMOS Input Terminals  
V
Input Voltage  
DSI Input Terminals (DA x P/N, DB x P/N)  
V
Storage Temperature Tstg  
105  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 EDS Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
±200  
Electrostatic  
discharge  
V(ESD)  
V
Charged device model (CDM), per JEDEC specification JESD22-C101, all  
pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
165  
NOM  
MAX  
195  
0.05  
85  
UNIT  
V
VCC  
VCC Power supply  
18  
VPSN  
TA  
Supply noise on any VCC pin  
Operating free-air temperature  
Case temperature  
f(noise) > 1MHz  
–40  
V
°C  
TCASE  
VDSI_PIN  
f(I2C)  
fHS_CLK  
tsetup  
thold  
92.2  
1350  
400  
500  
°C  
DSI input pin voltage range  
Local I2C input frequency  
–50  
40  
mV  
kHz  
MHz  
DSI HS clock input frequency  
DSI HS data to clock setup time  
DSI HS data to clock hold time; see Figure 6-4  
LVDS output differential impedance  
0.15  
UI(1)  
Ω
0.15  
90  
ZL  
132  
(1) The unit interval (UI) is one half of the period of the HS clock; at 500 MHz the minimum setup and hold time is 150 ps.  
6.4 Thermal Information  
SN65DSI84  
THERMAL METRIC(1)  
ZXH (nFBGA)  
64 PINS  
55.1  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
30.6  
31.0  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
0.8  
ψJB  
30.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2020 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: SN65DSI84  
 
 
 
 
 
 
 
 
 
 
SN65DSI84  
www.ti.com  
SLLSEC2H – SEPTEMBER 2012 – REVISED OCTOBER 2020  
6.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX  
UNIT  
V
VIL  
VIH  
VOH  
VOL  
ILKG  
IIH  
Low-level control signal input voltage  
High-level control signal input voltage  
High-level output voltage  
Low-level output voltage  
0.3 x VCC  
0.7 x VCC  
1.25  
V
IOH = –4 mA  
V
IOL = 4 mA  
0.4  
±30  
±30  
±30  
±10  
±20  
150  
V
Input failsafe leakage current  
High level input current  
VCC = 0; VCC(PIN) = 1.8 V  
Any input terminal  
Any input terminal  
Any output terminal  
Any output driving GND short  
see (2)  
μA  
μA  
μA  
μA  
mA  
mA  
IIL  
Low level input current  
IOZ  
IOS  
ICC  
High-impedance output current  
Short-circuit output current  
Device active current  
106  
7.7  
All data and clock lanes are in ultra-low  
power state (ULPS)  
IULPS  
Device standby current  
10  
mA  
IRST  
REN  
Shutdown current  
EN = 0  
0.04  
200  
0.06  
mA  
kΩ  
EN control input resistor  
MIPI DSI INTERFACE  
VIH-LP LP receiver input high threshold  
VIL-LP  
|VID  
|VIDT  
See Figure 6-1  
See Figure 6-1  
880  
70  
mV  
mV  
mV  
mV  
LP receiver input low threshold  
HS differential input voltage  
550  
270  
50  
|
|
HS differential input voltage threshold  
LP receiver input low threshold; ultra-low  
power state (ULPS)  
VIL-ULPS  
VCM-HS  
300  
330  
100  
460  
mV  
mV  
mV  
HS common mode voltage; steady-state  
70  
HS common mode peak-to-peak variation  
including symbol delta and interference  
ΔVCM-HS  
VIH-HS  
VIL-HS  
HS single-ended input high voltage  
HS single-ended input low voltage  
See Figure 6-1  
See Figure 6-1  
mV  
mV  
–40  
80  
HS termination enable; single-ended input Termination is switched simultaneous for  
voltage (both Dp AND Dn apply to enable) Dn and Dp  
VTERM-EN  
RDIFF-HS  
450  
125  
mV  
Ω
HS mode differential input impedance  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: SN65DSI84  
 
SN65DSI84  
www.ti.com  
UNIT  
SLLSEC2H – SEPTEMBER 2012 – REVISED OCTOBER 2020  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX  
FLATLINK LVDS OUTPUT  
CSR 0x19.3:2=00 and, or CSR  
0x19.1:0=00;  
100 Ω near end termination  
180  
215  
250  
290  
150  
200  
250  
300  
140  
168  
195  
226  
117  
156  
195  
234  
245  
293  
341  
389  
204  
271  
337  
402  
191  
229  
266  
303  
159  
211  
263  
314  
313  
372  
430  
488  
261  
346  
428  
511  
244  
290  
335  
381  
204  
270  
334  
CSR 0x19.3:2=01 and/or CSR  
0x19.1:0=01;  
100 Ω near end termination  
CSR 0x19.3:2=10 and, or CSR  
0x19.1:0=10;  
100 Ω near end termination  
CSR 0x19.3:2=11 and/or CSR  
0x19.1:0=11;  
100 Ω near end termination  
Steady-state differential output voltage for  
A_Y x P/N and B_Y x P/N  
mV  
CSR 0x19.3:2=00 and, or CSR  
0x19.1:0=00;  
200 Ω near end termination  
CSR 0x19.3:2=01 and, or CSR  
0x19.1:0=01;  
200 Ω near end termination  
CSR 0x19.3:2=10 and, or CSR  
0x19.1:0=10;  
200 Ω near end termination  
CSR 0x19.3:2=11 and, or CSR  
0x19.1:0=11;  
200 Ω near end termination  
|VOD  
|
CSR 0x19.3:2=00 and, or CSR  
0x19.1:0=00  
100 Ω near end termination  
CSR 0x19.3:2=01 and, or CSR  
0x19.1:0=01  
100 Ω near end termination  
CSR 0x19.3:2=10 and, or CSR  
0x19.1:0=10  
100 Ω near end termination  
CSR 0x19.3:2=11 and, or CSR  
0x19.1:0=11  
100 Ω near end termination  
Steady-state differential output voltage for  
A_CLKP/N and B_CLKP/N  
mV  
CSR 0x19.3:2=00 and, or CSR  
0x19.1:0=00  
200 Ω near end termination  
CSR 0x19.3:2=01 and, or CSR  
0x19.1:0=01  
200 Ω near end termination  
CSR 0x19.3:2=10 and, or CSR  
0x19.1:0=10  
200 Ω near end termination  
CSR 0x19.3:2=11 and, or CSR  
0x19.1:0=11  
200 Ω near end termination  
399  
35  
1
Change in steady-state differential output  
voltage between opposite binary states  
Δ|VOD  
|
RL = 100 Ω  
mV  
V
CSR 0x19.6 = 1 and CSR 0x1B.6 = 1;  
and, or CSR 0x19.4 = 1 and  
0.8  
0.9  
Steady state common-mode output  
voltage(3)  
CSR 0x1B.4 = 1; see Figure 6-2  
VOC(SS)  
CSR 0x19.6 = 0 and, or CSR 0x19.4 = 0;  
see Figure 6-2  
1.15  
1.25  
1.35  
35  
Peak-to-peak common-mode output  
voltage  
VOC(PP)  
see Figure 6-2  
mV  
kΩ  
Pull-down resistance for disabled LVDS  
outputs  
RLVDS_DIS  
1
(1) All typical values are at VCC = 1.8 V and TA = 25°C  
(2) SN65DSI84: SINGLE Channel DSI to DUAL Channel LVDS, 1440 x 900  
a. number of LVDS lanes = 2 x (3 data lanes + 1 CLK lane)  
Copyright © 2020 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: SN65DSI84  
 
 
SN65DSI84  
www.ti.com  
b. number of DSI lanes = 2 data lanes + 1 CLK lane  
SLLSEC2H – SEPTEMBER 2012 – REVISED OCTOBER 2020  
c. LVDS CLK OUT = 53.25 M  
d. DSI CLK = 500 M  
e. RGB888, LVDS18bpp  
Maximum values are at VCC = 1.95 V and TA = 85°C  
(3) Tested at VCC = 1.8 V , TA = –40°C for MIN, TA = 25°C for TYP, TA = 85°C for MAX.  
6.6 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
MAX UNIT  
DSI  
tGS  
DSI LP glitch suppression pulse width  
Output clock period  
300  
40  
ps  
LVDS  
tc  
6.49  
ns  
ns  
High-level output clock (CLK) pulse  
duration  
tw  
t0  
t1  
t2  
t3  
t4  
t5  
t6  
4/7 tc  
Delay time, CLK↑ to 1st serial bit  
position  
-0.15  
0.15  
1/7 tc + 0.15  
2/7 tc + 0.15  
3/7 tc + 0.15  
4/7 tc + 0.15  
5/7 tc + 0.15  
ns  
ns  
ns  
ns  
ns  
ns  
Delay time, CLK↑ to 2nd serial bit  
position  
1/7 tc – 0.15  
Delay time, CLK↑ to 3rd serial bit  
position  
2/7 tc – 0.15  
3/7 tc – 0.15  
4/7 tc – 0.15  
5/7 tc – 0.15  
tc = 6.49ns;  
Input clock jitter < 25ps  
(REFCLK)  
Delay time, CLK↑ to 4th serial bit  
position  
Delay time, CLK↑ to 5th serial bit  
position  
Delay time, CLK↑ to 6th serial bit  
position  
Delay time, CLK↑ to 7th serial bit  
position  
6/7 tc – 0.15  
180  
6/7 tc + 0.15  
500  
ns  
ps  
tr  
tf  
Differential output rise-time  
Differential output fall-time  
See Figure 6-5  
tc(o) = 12.9 ns  
EN, ULPS, RESET  
ten  
Enable time from EN or ULPS  
1
ms  
ms  
tdis  
Disable time to standby  
Reset time  
0.1  
treset  
REFCLK  
10  
REFCLK Freqeuncy. Supported  
frequencies: 25 MHz-154 MHz  
FREFCLK  
25  
154 MHz  
tr, tf  
tpj  
REFCLK rise and fall time  
REFCLK Peak-to-Peak Phase Jitter  
REFCLK Duty Cycle  
100 ps  
1ns  
50  
s
ps  
Duty  
40%  
50%  
1%  
60%  
REFCLK or DSI CLK (DACP/N, DBCP/N)  
SSC enabled Input CLK center spread  
0.5%  
30  
2%  
depth (2)  
SSC_CLKIN  
Modulation Frequency Range  
60 KHz  
(1) All typical values are at VCC = 1.8 V and TA = 25°C  
(2) For EMI reduction purpose, SN65DSI84 supports the center spreading of the LVDS CLK output through the REFCLK or DSI CLK  
input. The center spread CLK input to the REFCLK or DSI CLK is passed through to the LVDS CLK output A_CLKP/N and/or  
B_CLKP/N.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: SN65DSI84  
 
 
 
 
SN65DSI84  
www.ti.com  
SLLSEC2H – SEPTEMBER 2012 – REVISED OCTOBER 2020  
1.3V  
LP-RX  
Input HIGH  
VIH-LP  
VIL-LP  
VIH-HS  
VID  
VCM-HS(MAX)  
LP-RX  
Input LOW  
HS-RX  
Common Mode  
Range  
VCM-HS(MIN)  
VIL-HS  
GND  
High Speed (HS) Mode  
Receiver  
Low Power (LP)  
Mode Receiver  
Figure 6-1. DSI Receiver Voltage Definitions  
49.9 ? 1% (2 PLCS)  
A/B_YnP  
VOD  
VOC  
A/B_YnN  
100%  
80%  
VOD(H)  
0 V  
VOD(L)  
20%  
0%  
tf  
tr  
VOC(PP)  
VOC(SS)  
VOC(SS)  
0 V  
Figure 6-2. Test Load and Voltage Definitions for Flatlink Outputs  
ULPS (LP00) State  
DSI lane  
t
ten  
dis  
A_CLKP/N  
(LVDS_CHA_CLK)  
A. See the ULPS section of the data sheet for the ULPS entry and exit sequence.  
10 Submit Document Feedback  
Copyright © 2020 Texas Instruments Incorporated  
Product Folder Links: SN65DSI84  
 
 
SN65DSI84  
www.ti.com  
SLLSEC2H – SEPTEMBER 2012 – REVISED OCTOBER 2020  
B. ULPS entry and exit protocol and timing requirements must be met per MIPI® DPHY specification.  
Figure 6-3. ULPS Timing Definition  
Figure 6-4. DSI HS Mode Receiver Timing Definitions  
CLK  
t6  
t5  
t4  
t3  
t2  
t1  
t0  
Yn  
VOD(H)  
0.00V  
VOD(L)  
t0-6  
Figure 6-5. SN65DSI84 Flatlink Timing Definitions  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: SN65DSI84  
 
 
SN65DSI84  
www.ti.com  
SLLSEC2H – SEPTEMBER 2012 – REVISED OCTOBER 2020  
7 Detailed Description  
7.1 Overview  
The SN65DSI84 DSI to FlatLink bridge features a single0channel MIPI D-PHY receiver front-end configuration  
with 4 lanes per channel operating at 1 Gbps per lane; a maximum input bandwidth of 4 Gbps. The bridge  
decodes MIPI DSI 18bpp RGB666 and 240bpp RG888 packets and converts the formatted video data stream to  
a FlatLink compatible LVDS output operating at pixel clocks operating from 25 MHx to 154 MHz, offering a Dual-  
Link LVDS, Single-Link LVDS interface with four data lanes per link.  
7.2 Functional Block Diagram  
LVDS SERIALIZER  
DSI PACKET  
PROCESSORS  
AVCC  
AGND  
VCC  
A_Y0P  
ERR  
A_Y0N  
A_Y1P  
PACKET  
ULPS  
LPRX  
HEADERS  
ERR  
A_Y1N  
A_Y2P  
A_Y2N  
LANE  
MERGE  
GND  
(ODD )  
18  
8
DA0P  
DA0N  
HSRX  
LONG PACKETS  
A_CLKP  
A_CLKN  
A_Y3P  
(EVEN)  
18  
7-BIT SHIFT  
REGISTER  
DATA LANE 0  
EOT  
SOT  
DA1P  
DA1N  
DA2P  
DA2N  
DA3P  
DA3N  
8
8
8
DATA LANE1  
(Circuit same as DATA LANE 0)  
Timers  
A_Y3N  
32  
BE  
DATA LANE 2  
(Circuit same as DATA LANE 0)  
DE  
VS  
HS  
B_Y0P  
B_Y0N  
B_Y1P  
SHORT PACKETS  
DATA LANE 3  
(Circuit same as DATA LANE 0)  
DSI CHANNEL  
MERGING  
CHANNEL  
B_Y1N  
B_Y2P  
B_Y2N  
B_CLKP  
B_CLKN  
B_Y3P  
B_Y3N  
FORMATTER  
PARTIAL  
LINE BUFFER  
ULPS  
LPRX  
LVDSPLL  
PLL  
DACP  
DACN  
Lock  
CLOCK CIRCUITS  
HSRX  
PIXEL CLOCK  
CLK LANE  
SCL  
CSR  
LOCAL I 2  
C
SDA  
IRQ  
HS Clock Sourced  
M /N Pixel Clock  
PLL  
CSR READ  
CSR WRITE  
ADDR  
Clock Dividers  
REFCLK  
EN  
Reset  
RSVD1  
RSVD2  
SN65DSI84  
Copyright © 2020 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: SN65DSI84  
 
 
 
SN65DSI84  
www.ti.com  
SLLSEC2H – SEPTEMBER 2012 – REVISED OCTOBER 2020  
7.3 Feature Description  
7.3.1 Clock Configurations and Multipliers  
The FlatLink™ LVDS clock may be derived from the DSI channel A clock, or from an external reference clock  
source. When the MIPI® D-PHY channel A HS clock is used as the LVDS clock source, the D-PHY clock lane  
must operate in HS free-running (continuous) mode; this feature eliminates the need for an external reference  
clock reducing system costs  
The reference clock source is selected by HS_CLK_SRC (CSR 0x0A.0) programmed through the local I 2C  
interface. If an external reference clock is selected, it is multiplied by the factor in REFCLK_MULTIPLIER (CSR  
0x0B.1:0) to generate the FlatLink™ LVDS output clock. When an external reference clock is selected, it must be  
between 25 MHz and 154 MHz. If the DSI channel A clock is selected, it is divided by the factor in  
DSI_CLK_DIVIDER (CSR 0x0B.7:3) to generate the FlatLink™ LVDS output clock. Additionally,  
LVDS_CLK_RANGE (CSR 0x0A.3:1) and CH_DSI_CLK_RANGE(CSR 0x12) must be set to the frequency  
range of the FlatLink™ LVDS output clock for and DSI Channel A input clock respectively the internal PLL to  
operate correctly. After these settings are programmed, PLL_EN (CSR 0x0D.0) must be set to enable the  
internal PLL.  
7.3.2 ULPS  
The SN65DSI84 supports the MIPI defined ultra-low power state (ULPS). While the device is in the ULPS, the  
CSR registers are accessible via I2C interface. ULPS sequence should be issued to all active DSI CLK and/or  
DSI data lanes of the enabled DSI Channels for the SN65DSI84 enter the ULPS. The Following sequence  
should be followed to enter and exit the ULPS.  
1. Host issues a ULPS entry sequence to all DSI CLK and data lanes enabled.  
2. When host is ready to exit the ULPS mode, host issues a ULPS exit sequence to all DSI CLK and data lanes  
that need to be active in normal operation.  
3. Wait for a minimum of 3 ms.  
4. Set the SOFT_RESET bit (CSR 0x09.0).  
5. Device resumes normal operation.(i.e video streaming resumes on the panel).  
7.3.3 LVDS Pattern Generation  
The SN65DSI84 supports a pattern generation feature on LVDS Channels. This feature can be used to test the  
LVDS output path and LVDS panels in a system platform. The pattern generation feature can be enabled by  
setting the CHA_TEST_PATTERN bit at address 0x3C. No DSI data is received while the pattern generation  
feature is enabled.  
There are three modes available for LVDS test pattern generation. The mode of test pattern generation is  
determined by register configuration as shown in Table 7-1.  
Table 7-1. Video Registers  
Addr. bit  
0x20.7:0  
0x21.3:0  
0x24.7:0  
0x25.3:0  
0x2C.7:0  
0x2D.1:0  
0x30.7:0  
0x31.1:0  
0x34.7:0  
0x36.7:0  
0x38.7:0  
0x3A.7:0  
Register Name  
CHA_ACTIVE_LINE_LENGTH_LOW  
CHA_ACTIVE_LINE_LENGTH_HIGH  
CHA_VERTICAL_DISPLAY_SIZE_LOW  
CHA_VERTICAL_DISPLAY_SIZE_HIGH  
CHA_HSYNC_PULSE_WIDTH_LOW  
CHA_HSYNC_PULSE_WIDTH_HIGH  
CHA_VSYNC_PULSE_WIDTH_LOW  
CHA_VSYNC_PULSE_WIDTH_HIGH  
CHA_HORIZONTAL_BACK_PORCH  
CHA_VERTICAL_BACK_PORCH  
CHA_HORIZONTAL_FRONT_PORCH  
CHA_VERTICAL_FRONT_PORCH  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: SN65DSI84  
 
 
 
SN65DSI84  
www.ti.com  
SLLSEC2H – SEPTEMBER 2012 – REVISED OCTOBER 2020  
7.4 Device Functional Modes  
7.4.1 Reset Implementation  
When EN is de-asserted (low), the SN65DSI84 is in SHUTDOWN or RESET state. In this state, CMOS inputs  
are ignored, the MIPI® D-PHY inputs are disabled and outputs are high impedance. It is critical to transition the  
EN input from a low to a high level after the VCC supply has reached the minimum operating voltage as shown in  
Figure 7-1. This is achieved by a control signal to the EN input, or by an external capacitor connected between  
EN and GND.  
VCC  
1.65V  
EN  
tVCC  
Figure 7-1. Cold Start VCC Ramp up to EN  
ten  
When implementing the external capacitor, the size of the external capacitor depends on the power up ramp of  
the VCC supply, where a slower ramp-up results in a larger value external capacitor. See the latest reference  
schematic for the SN65DSI84 device and, or consider approximately 200 nF capacitor as a reasonable first  
estimate for the size of the external capacitor.  
Both EN implementations are shown in Figure 7-2 and Figure 7-3.  
VCC  
GPO  
EN  
EN  
C
REN =200 kΩ  
C
SN65DSI84  
controller  
SN65DSI84  
Figure 7-3. EN Input From Active Controller  
Figure 7-2. External Capacitor Controlled EN  
7.4.2  
When the SN65DSI84 is reset while VCC is high, the EN pin must be held low for at least 10 ms before being  
asserted high as described in Table 7-2 to be sure that the device is properly reset. The DSI CLK lane MUST be  
in HS and the DSI data lanes MUST be driven to LP11 while the device is in reset before the EN pin is asserted  
per the timing described in Table 7-2.  
7.4.3 Initialization Sequence  
Use the following initialization sequence to setup the SN65DSI84. This sequence is required for proper operation  
of the device. Steps 9 through 11 in the sequence are optional.  
Also see to Figure 7-1.  
Copyright © 2020 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: SN65DSI84  
 
 
 
 
 
SN65DSI84  
www.ti.com  
SLLSEC2H – SEPTEMBER 2012 – REVISED OCTOBER 2020  
Table 7-2. Initialization Sequence  
INITIALIZATION  
SEQUENCE  
NUMBER  
INITIALIZATION SEQUENCE DESCRIPTION  
Init seq 1  
Power on  
After power is applied and stable, the DSI CLK lanes MUST be in HS state and the DSI data lanes MUST be driven  
to LP11 state  
Init seq 2  
Init seq 3  
Set EN pin to Low  
Wait 10 ms (1)  
Init seq 4  
Tie EN pin to High  
Wait 10 ms (1)  
Init seq 5  
Initialize all CSR registers to their appropriate values based on the implementation (The SN65DSI8x is not  
functional until the CSR registers are initialized)  
Init seq 6  
Set the PLL_EN bit (CSR 0x0D.0)  
Wait 10 ms (1)  
Init seq 7  
Set the SOFT_RESET bit (CSR 0x09.0)  
Wait 10 ms (1)  
Init seq 8  
Change DSI data lanes to HS state and start DSI video stream  
Wait 5 ms (1)  
Init seq 9  
Read back all resisters and confirm they were correctly written  
Write 0xFF to CSR 0xE5 to clear the error registers  
Init seq 10  
Wait 1 ms (1)  
Init seq 11  
Read CSR 0xE5. If CSR 0xE5!= 0x00, then go back to step #2 and re-initialize  
(1) Minimum recommended delay. It is fine to exceed these.  
7.4.4 LVDS Output Formats  
The SN65DSI84 processes DSI packets and produces video data driven to the FlatLink™ LVDS interface in an  
industry standard format. Single-Link LVDS and Dual-Link LVDS are supported by the SN65DSI84; when the  
FlatLink™ output is implemented in a Dual-Link configuration, channel A carries the odd pixel data, and channel  
B carries the even pixel data. During conditions such as the default condition, and some video synchronization  
periods, where no video stream data is passing from the DSI input to the LVDS output, the SN65DSI84 transmits  
zero value pixel data on the LVDS outputs while maintaining transmission of the vertical sync and horizontal  
sync status.  
Figure 7-4 illustrates a Single-Link LVDS 18bpp application.  
Figure 7-5 illustrates a Dual-Link 24 bpp application using Format 2, controlled by CHA_24BPP_FORMAT1  
(CSR 0x18.1) and CHB_24BPP_FORMAT1 (CSR 0x18.0). In data Format 2, the two MSB per color are  
transferred on the Y3P/N LVDS lane.  
Figure 7-6 illustrates a 24 bpp Single-Link application using Format 1. In data Format 1, the two LSB per color  
are transferred on the Y3P/N LVDS lane.  
Figure 7-7 illustrates a Single-Link LVDS application where 24 bpp data is received from DSI and converted to  
18 bpp data for transmission to an 18 bpp panel. This application is configured by setting  
CHA_24BPP_FORMAT1 (CSR 0x18.1) to ‘1’ and CHA_24BPP_MODE (CSR 0x18.3) to ‘0’. In this configuration,  
the SN65DSI84 will not transmit the 2 LSB per color since the Y3P/N LVDS lane is disabled.  
Note  
Note: Figure 7-4, Figure 7-5, Figure 7-6, and Figure 7-7 only illustrate a few example applications for  
the SN65DSI84. Other applications are also supported.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: SN65DSI84  
 
 
SN65DSI84  
www.ti.com  
SLLSEC2H – SEPTEMBER 2012 – REVISED OCTOBER 2020  
A_CLKP/N  
B_CLKP/N  
cycle ‘n-1’  
cycle ‘n’  
G0  
B1  
DE  
R5  
B0  
VS  
R4  
G5  
HS  
R3  
R2  
G3  
B4  
R1  
G2  
B3  
R0  
G1  
B2  
A_Y0P/N  
A_Y1P/N  
A_Y2P/N  
A_Y3P/N  
G4  
B5  
B_YxP/N  
DE = Data Enable; Channel B Clock, Channel B Data, and A_Y3P/N are Output Low  
Figure 7-4. Flatlink Output Data; Single-Link 18 Bpp  
A_CLKP/N  
B_CLKP/N  
cycle ‘n-1’  
cycle ‘n’  
G0  
(o)  
R5  
(o)  
R4  
(o)  
R3  
(o)  
R2  
(o)  
R1  
(o)  
R0  
(o)  
A_Y0P/N  
A_Y1P/N  
A_Y2P/N  
A_Y3P/N  
B1  
(o)  
B0  
(o)  
G5  
(o)  
G4  
(o)  
G3  
(o)  
G2  
(o)  
G1  
(o)  
DE  
(o)  
VS  
(o)  
HS  
(o)  
B5  
(o)  
B4  
(o)  
B3  
(o)  
B2  
(o)  
0
(o)  
B7  
(o)  
B6  
(o)  
G7  
(o)  
G6  
(o)  
R7  
(o)  
R6  
(o)  
G0  
(e)  
R5  
(e)  
R4  
(e)  
R3  
(e)  
R2  
(e)  
R1  
(e)  
R0  
(e)  
B_Y0P/N  
B_Y1P/N  
B_Y2P/N  
B_Y3P/N  
B1  
(e)  
B0  
(e)  
G5  
(e)  
G4  
(e)  
G3  
(e)  
G2  
(e)  
G1  
(e)  
DE  
(e)  
VS  
(e)  
HS  
(e)  
B5  
(e)  
B4  
(e)  
B3  
(e)  
B2  
(e)  
0
(e)  
B7  
(e)  
B6  
(e)  
G7  
(e)  
G6  
(e)  
R7  
(e)  
R6  
(e)  
DE = Data Enable; (o) = Odd Pixels; (e) = Even Pixels  
Figure 7-5. Flatlink Output Data (Format 2); Dual-Link 24 Bpp  
A_CLKP/N  
B_CLKP/N  
cycle ‘n-1’  
cycle ‘n’  
G2  
B3  
DE  
R7  
B2  
VS  
R6  
G7  
HS  
R5  
R4  
G5  
B6  
R3  
G4  
B5  
R2  
G3  
B4  
A_Y0P/N  
A_Y1P/N  
A_Y2P/N  
A_Y3P/N  
G6  
B7  
0
B1  
B0  
G1  
G0  
R1  
R0  
B_YxP/N  
DE = Data Enable; Channel B Clock and Data are Output Low  
Figure 7-6. Flatlink Output Data (Format 1); Single-Link 24 Bpp  
Copyright © 2020 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: SN65DSI84  
 
 
 
SN65DSI84  
www.ti.com  
SLLSEC2H – SEPTEMBER 2012 – REVISED OCTOBER 2020  
A_CLKP/N  
B_CLKP/N  
cycle ‘n-1’  
cycle ‘n’  
G2  
B3  
DE  
R7  
B2  
VS  
R6  
G7  
HS  
R5  
G6  
B7  
R4  
G5  
B6  
R3  
G4  
B5  
R2  
G3  
B4  
A_Y0P/N  
A_Y1P/N  
A_Y2P/N  
A_Y3P/N  
B_YxP/N  
DE = Data Enable; Channel B Clock, Channel B Data, and A_Y3P/N a re Output Low; Channel B Clock, Channel B Data, and A_Y3P/N  
are Output Low  
Figure 7-7. Flatlink Output Data (Format 1); 24-Bpp to Single-Link 18-Bpp Conversion  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: SN65DSI84  
 
SN65DSI84  
www.ti.com  
SLLSEC2H – SEPTEMBER 2012 – REVISED OCTOBER 2020  
7.4.5 DSI Lane Merging  
The SN65DSI84 supports four DSI data lanes per input channel, and may be configured to support one, two, or  
three DSI data lanes per channel. Unused DSI input pins on the SN65DSI84 should be left unconnected or  
driven to LP11 state. The bytes received from the data lanes are merged in HS mode to form packets that carry  
the video stream. DSI data lanes are bit and byte aligned.  
Figure 7-8 illustrates the lane merging function for each channel; 4-Lane, 3-Lane, and 2-Lane modes are  
illustrated  
HS BYTES TRANSMITTED (n) IS INTEGER MULTIPLE OF 4  
HS BYTES TRANSMITTED (n) IS INTEGER MULTIPLE OF 3  
LANE 0  
LANE 1  
LANE 2  
LANE 3  
SOT  
SOT  
SOT  
SOT  
BYTE 0  
BYTE1  
BYTE2  
BYTE 3  
BYTE 4  
BYTE5  
BYTE6  
BYTE 7  
BYTE 8  
BYTE9  
BYTE n-4  
BYTE n-3  
BYTE n-2  
BYTE n-1  
EOT  
EOT  
EOT  
EOT  
SOT  
SOT  
SOT  
BYTE0  
BYTE 1  
BYTE2  
BYTE3  
BYTE 4  
BYTE5  
BYTE6  
BYTE 7  
BYTE8  
BYTE n-3  
BYTE n-2  
BYTE n-1  
EOT  
EOT  
EOT  
LANE 0  
LANE 1  
LANE 2  
BYTE 10  
BYTE 11  
HS BYTES TRANSMITTED (n) IS 1 LESS THAN INTEGER MULTIPLE OF 3  
HS BYTES TRANSMITTED (n) IS 1 LESS THAN INTEGER MULTIPLE OF 4  
SOT  
SOT  
SOT  
BYTE0  
BYTE 1  
BYTE2  
BYTE3  
BYTE 4  
BYTE5  
BYTE6  
BYTE 7  
BYTE8  
BYTE n-2  
BYTE n-1  
EOT  
EOT  
EOT  
LANE 0  
LANE 1  
LANE 2  
LANE 0  
LANE 1  
LANE 2  
LANE 3  
SOT  
SOT  
SOT  
SOT  
BYTE 0  
BYTE1  
BYTE2  
BYTE 3  
BYTE 4  
BYTE5  
BYTE6  
BYTE 7  
BYTE 8  
BYTE9  
BYTE n-3  
BYTE n-2  
BYTE n-1  
EOT  
EOT  
EOT  
EOT  
BYTE 10  
BYTE 11  
HS BYTES TRANSMITTED (n) IS 2 LESS THAN INTEGER MULTIPLE OF 3  
SOT  
SOT  
SOT  
BYTE0  
BYTE 1  
BYTE2  
BYTE3  
BYTE 4  
BYTE5  
BYTE6  
BYTE 7  
BYTE8  
BYTE n-1  
EOT  
EOT  
LANE 0  
LANE 1  
LANE 2  
HS BYTES TRANSMITTED (n) IS 2 LESS THAN INTEGER MULTIPLE OF 4  
LANE 0  
LANE 1  
LANE 2  
LANE 3  
SOT  
SOT  
SOT  
SOT  
BYTE 0  
BYTE1  
BYTE2  
BYTE 3  
BYTE 4  
BYTE5  
BYTE6  
BYTE 7  
BYTE 8  
BYTE9  
BYTE n-2  
BYTE n-1  
EOT  
EOT  
EOT  
EOT  
BYTE 10  
BYTE 11  
3 DSI Data Lane Configuration  
EOT  
HS BYTES TRANSMITTED (n) IS INTEGER MULTIPLE OF 2  
HS BYTES TRANSMITTED (n) IS 3 LESS THAN INTEGER MULTIPLE OF 4  
LANE 0  
LANE 1  
LANE 2  
LANE 3  
SOT  
SOT  
SOT  
SOT  
BYTE 0  
BYTE1  
BYTE2  
BYTE 3  
BYTE 4  
BYTE5  
BYTE6  
BYTE 7  
BYTE 8  
BYTE9  
BYTE n-1  
EOT  
EOT  
LANE 0  
LANE 1  
SOT  
SOT  
BYTE 0  
BYTE1  
BYTE 2  
BYTE 3  
BYTE 4  
BYTE 5  
BYTE n-2  
BYTE n-1  
EOT  
EOT  
BYTE 10  
BYTE 11  
EOT  
HS BYTES TRANSMITTED (n) IS 1 LESS THAN INTEGER MULTIPLE OF 2  
EOT  
LANE 0  
LANE 1  
SOT  
SOT  
BYTE 0  
BYTE1  
BYTE 2  
BYTE 3  
BYTE 4  
BYTE 5  
BYTE n-1  
EOT  
EOT  
4 DSI Data Lane Configuration (default)  
2 DSI Data Lane Configuration  
Figure 7-8. SN65DSI84 DSI Lane Merging Illustration  
7.4.6 DSI Pixel Stream Packets  
The SN65DSI84 processes 18bpp (RGB666) and 24 bpp (RGB888) DSI packets on each channel as shown in  
Figure 7-9, Figure 7-10, andFigure 7-11.  
Copyright © 2020 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: SN65DSI84  
 
SN65DSI84  
www.ti.com  
SLLSEC2H – SEPTEMBER 2012 – REVISED OCTOBER 2020  
1 Byte  
2 Bytes  
1 Byte  
WORD COUNT Bytes  
2 Bytes  
18 bpp Loosely Packed Pixel Stream  
(Variable Size Payload)  
WORD COUNT  
ECC  
CRC CHECKSUM  
Packet Payload  
Packet Footer  
Packet Header  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
0 1  
2
7
2
7
2
7
2
7
2
7
2
7
2
7
2
7
2
7
R0  
R5  
G0  
G5  
B0  
B5  
R0  
R5  
G0  
G5  
B0  
B5  
R0  
R5  
G0  
G5  
B0  
B5  
6-bits  
RED  
6-bits  
GREEN  
6-bits  
BLUE  
6-bits  
RED  
6-bits  
GREEN  
6-bits  
BLUE  
6-bits  
RED  
6-bits  
GREEN  
6-bits  
BLUE  
First Pixel in Packet  
Second Pixel in Packet  
Third Pixel in Packet  
Variable Size Payload (Three Pixels Per Nine Bytes of Payload)  
Figure 7-9. 18 Bpp (Loosely Packed) DSI Packet Structure  
1 Byte  
2 Bytes  
1 Byte  
WORD COUNT Bytes  
2 Bytes  
18 bpp Packed Pixel Stream  
(Variable Size Payload)  
WORD COUNT  
ECC  
CRC CHECKSUM  
Packet Payload  
Packet Footer  
Packet Header  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
0
5
6
7
0
3
4
7
0 1  
2
7
0
5
6
7
0
3
4
7
0 1  
2
7
0
5
6
7
0
3
4
7
0 1  
2
7
R0  
R5 G0  
G5 B0  
B5 R0  
R5 G0  
G5 B0  
B5 R0  
R5 G0  
G5 B0  
B5 R0  
R5 G0  
G5 B0  
B5  
6-bits  
RED  
6-bits  
GREEN  
6-bits  
BLUE  
6-bits  
RED  
6-bits  
GREEN  
6-bits  
BLUE  
6-bits  
RED  
6-bits  
GREEN  
6-bits  
BLUE  
6-bits  
RED  
6-bits  
GREEN  
6-bits  
BLUE  
First Pixel in Packet  
Second Pixel in Packet  
Third Pixel in Packet  
Fourth Pixel in Packet  
Variable Size Payload (Four Pixels Per Nine Bytes of Payload)  
Figure 7-10. 18-Bpp (Tightly Packed) DSI Packet Structure  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: SN65DSI84  
 
 
SN65DSI84  
www.ti.com  
SLLSEC2H – SEPTEMBER 2012 – REVISED OCTOBER 2020  
1 Byte  
2 Bytes  
1 Byte  
WORD COUNT Bytes  
2 Bytes  
24 bpp Packed Pixel Stream  
(Variable Size Payload)  
WORD COUNT  
ECC  
CRC CHECKSUM  
Packet Payload  
Packet Footer  
Packet Header  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
0
7
0
7
0
7
0
7
0
7
0
7
0
7
0
7
0
7
R0  
R7 G0  
G 7 B0  
B7 R0  
R7 G0  
G 7 B0  
B7 R0  
R7 G0  
G7 B0  
B7  
8-bits  
RED  
8-bits  
GREEN  
8-bits  
BLUE  
8-bits  
RED  
8-bits  
GREEN  
8-bits  
BLUE  
8-bits  
RED  
8-bits  
GREEN  
8-bits  
BLUE  
First Pixel in Packet  
Second Pixel in Packet  
Third Pixel in Packet  
Variable Size Payload (Three Pixels Per Nine Bytes of Payload)  
Figure 7-11. 24-Bpp DSI Packet Structure  
7.4.7 DSI Video Transmission Specifications  
The SN65DSI84 supports burst video mode and non-burst video mode with sync events or with sync pulses  
packet transmission as described in the DSI specification. The burst mode supports time-compressed pixel  
stream packets that leave added time per scan line for power savings LP mode. The SN65DSI84 requires a  
transition to LP mode once per frame to enable PHY synchronization with the DSI host processor; however, for a  
robust and low-power implementation, the transition to LP mode is recommended on every video line.  
Figure 7-12 illustrates the DSI video transmission applied to SN65DSI84 applications. In all applications, the  
LVDS output rate must be less than or equal to the DSI input rate. The first line of a video frame shall start with a  
VSS packet, and all other lines start with VSE or HSS. The position of the synchronization packets in time is of  
utmost importance since this has a direct impact on the visual performance of the display panel; that is, these  
packets generate the HS and VS (horizontal and vertical sync) signals on the LVDS interface after the delay  
programmed into CHA_SYNC_DELAY_LOW/HIGH (CSR 0x28.7:0 and 0x29.3:0).  
As required in the DSI specification, the SN65DSI84 requires that pixel stream packets contain an integer  
number of pixels (i.e. end on a pixel boundary); it is recommended to transmit an entire scan line on one pixel  
stream packet. When a scan line is broken in to multiple packets, inter-packet latency shall be considered such  
that the video pipeline (ie. pixel queue or partial line buffer) does not run empty (i.e. under-run); during scan line  
processing, if the pixel queue runs empty, the SN65DSI84 transmits zero data (18’b0 or 24’b0) on the LVDS  
interface.  
Note  
When the HS clock is used as a source for the LVDS pixel clock, the LP mode transitions apply only to  
the data lanes, and the DSI clock lane remains in the HS mode during the entire video transmission.  
The DSI84 does not support the DSI Virtual Channel capability or reverse direction (peripheral to  
processor) transmissions.  
Copyright © 2020 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: SN65DSI84  
 
SN65DSI84  
www.ti.com  
SLLSEC2H – SEPTEMBER 2012 – REVISED OCTOBER 2020  
One Video Frame  
t LINE  
t LINE  
t LINE  
t LINE  
t LINE  
t LINE  
t LINE  
DSI  
Channel A  
NOP/  
LP  
NOP/  
LP  
NOP/  
LP  
NOP/  
RGB  
NOP/  
LP  
NOP/  
LP  
NOP/  
LP  
...  
...  
...  
RGB  
LP  
Vertical sync / blanking  
Active Lines  
Vertical sync / blanking  
* VSS and HSS packets are required for DSI Channel B, although LVDS video sync signals are derived from DSI Channel A VSS and HSS packets  
Vertical Blanking Period LVDS Transfer Function  
Active Video Line LVDS Transfer Function  
t LINE  
t LINE  
tLINE  
DSI  
DSI  
DSI  
NOP/  
LP  
NOP/  
LP  
NOP/  
LP  
...  
RGB  
Channel A  
Channel A  
Channel(s)  
tW (HS )  
t W(HS)  
HS (1)  
HS(1)  
HS (1)  
t PD  
tPD  
VS (2)  
DE (3)  
DATA  
VS (2)  
DE(3)  
DATA  
VS (2)  
DE (3)  
DATA  
0x000  
0x000  
0x000  
PixelStream Data  
0x000 (4)  
LEGEND  
VSS  
(1) The assertion of HS is delayed (tPD) by a programmable number of pixel clocks from the  
last bit of VSS/HSS packet received on DSI. The HS pulse width (tW(HS)) is also programmable.  
The illustration shows HS active low.  
DSI Sync Event Packet: V Sync Start  
DSI Sync Event Packet: H Sync Start  
(2) VS is signaled for a programmable number of lines (tLINE ) and is asserted when HS is  
asserted for the first line of the frame . VS is de -asserted when HS is asserted after the  
number of lines programmed has been reached. The illustration shows VS active low  
HSS  
RGB  
A sequence of DSI Pixel Stream Packets  
and Null Packets  
(3) DE is asserted when active pixel data is transmitted on LVDS , and polarity is set  
independent to HS/VS. The illustration shows DE active high  
NOP/LP  
DSI Null Packet , Blanking Packet , or a  
transition to LP Mode  
(4) After the last pixel in an active line is output to LVDS, the LVDS data is output zero  
Figure 7-12. DSI Channel Transmission and Transfer Function  
7.4.8 Operating Modes  
The SN65DSI84 can be configured for several different operating modes via LVDS_LINK_CFG (CSR 0x18.4),  
LEFT_RIGHT_PIXELS (CSR 0x10.7), and DSI_CHANNEL_MODE (CSR 0x10.6:5). These modes are  
summarized in Table 7-3. In each of the modes, video data can be 18 bpp or 24 bpp.  
Table 7-3. SN65DSI84 Operating Modes  
CSR 0x18.4  
MODE  
DESCRIPTION  
LVDS_LINK_CFG  
Single DSI Input to Single-Link LVDS  
Single DSI Input to Dual-Link LVDS  
1
Single DSI Input on Channel A to Single-Link LVDS output on Channel A.  
Single DSI Input on Channel A to Dual-Link LVDS output with Odd pixels on  
Channel A and Even pixels on Channel B.  
0
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: SN65DSI84  
 
 
SN65DSI84  
www.ti.com  
SLLSEC2H – SEPTEMBER 2012 – REVISED OCTOBER 2020  
7.5 Programming  
7.5.1 Local I2C Interface Overview  
The SN65DSI84 local I2C interface is enabled when EN is input high, access to the CSR registers is supported  
during ultra-low power state (ULPS). The SCL and SDA terminals are used for I 2C clock and I 2C data  
respectively. The SN65DSI84 I2C interface conforms to the two-wire serial interface defined by the I2C Bus  
Specification, Version 2.1 (January 2000), and supports fast mode transfers up to 400 kbps.  
The device address byte is the first byte received following the START condition from the master device. The 7  
bit device address for SN65DSI84 is factory preset to 010110X with the least significant bit being determined by  
the ADDR control input. Table 7-4 clarifies the SN65DSI84 target address.  
Table 7-4. SN65DSI84 I2C Target Address Description (1) (2)  
SN65DSI84 I2C TARGET ADDRESS  
BIT 7 (MSB)  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
ADDR  
BIT 0 (W/R)  
0
1
0
1
1
0
0/1  
(1) When ADDR=1, Address Cycle is 0x5A (Write) and 0x5B (Read)  
(2) When ADDR=0, Address Cycle is 0x58 (Write) and 0x59 (Read)  
The following procedure is followed to write to the SN65DSI84 I2C registers.  
1. The master initiates a write operation by generating a start condition (S), followed by the SN65DSI84 7-bit  
address and a zero-value “W/R” bit to indicate a write cycle.  
2. The SN65DSI84 acknowledges the address cycle.  
3. The master presents the sub-address (I2C register within SN65DSI84) to be written, consisting of one byte of  
data, MSB-first.  
4. The SN65DSI84 acknowledges the sub-address cycle.  
5. The master presents the first byte of data to be written to the I2C register.  
6. The SN65DSI84 acknowledges the byte transfer.  
7. The master may continue presenting additional bytes of data to be written, with each byte transfer completing  
with an acknowledge from the SN65DSI84.  
8. The master terminates the write operation by generating a stop condition (P).  
The following procedure is followed to read the SN65DSI84 I2C registers:  
1. The master initiates a read operation by generating a start condition (S), followed by the SN65DSI84 7-bit  
address and a one-value “W/R” bit to indicate a read cycle.  
2. The SN65DSI84 acknowledges the address cycle.  
3. The SN65DSI84 transmit the contents of the memory registers MSB-first starting at register 00h. If a write to  
the SN65DSI84 I2C register occurred prior to the read, then the SN65DSI84 will start at the sub-address  
specified in the write.  
4. The SN65DSI84 will wait for either an acknowledge (ACK) or a not-acknowledge (NACK) from the master  
after each byte transfer; the I2C master acknowledges reception of each data byte transfer.  
5. If an ACK is received, the SN65DSI84 transmits the next byte of data.  
6. The master terminates the read operation by generating a stop condition (P).  
The following procedure is followed for setting a starting sub-address for I2C reads:  
1. The master initiates a write operation by generating a start condition (S), followed by the SN65DSI84 7-bit  
address and a zero-value “W/R” bit to indicate a write cycle  
2. The SN65DSI84 acknowledges the address cycle.  
3. The master presents the sub-address (I2C register within SN65DSI84) to be written, consisting of one byte of  
data, MSB-first.  
4. The SN65DSI84 acknowledges the sub-address cycle.  
5. The master terminates the write operation by generating a stop condition (P).  
Copyright © 2020 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: SN65DSI84  
 
 
 
 
SN65DSI84  
www.ti.com  
SLLSEC2H – SEPTEMBER 2012 – REVISED OCTOBER 2020  
7.6 Register Maps  
7.6.1 Control and Status Registers Overview  
Many of the SN65DSI84 functions are controlled by the Control and Status Registers (CSR). All CSR registers  
are accessible through the local I2C interface.  
See the following tables for the SN65DSI84 CSR descriptions. Reserved or undefined bit fields should not be  
modified. Otherwise, the device may operate incorrectly.  
Table 7-5. CSR Bit Field Definitions – ID Registers  
ADDRESS  
BIT(S)  
DESCRIPTION  
DEFAULT  
ACCESS(1)  
Reserved  
0x00 – 0x08  
7:0  
Addresses 0x08 - 0x00 = {0x01, 0x20, 0x20, 0x20, 0x44, 0x53, 0x49, 0x38,  
0x35}  
Reserved  
RO  
(1) RO = Read Only; RW = Read/Write; RW1C = Read/Write ‘1’ to Clear; WO = Write Only (reads return undetermined values)  
Table 7-6. CSR Bit Field Definitions – Reset and Clock Registers  
ADDRESS  
BIT(S)  
DESCRIPTION  
DEFAULT  
ACCESS (1)  
SOFT_RESET  
This bit automatically clears when set to ‘1’ and returns zeros when read.  
This bit must be set after the CSR’s are updated. This bit must also be set  
after making any changes to the DIS clock rate or after changing between  
DSI burst and non-burst modes.  
0x09  
0
0
WO  
0 – No action (default)  
1 – Reset device to default condition excluding the CSR bits.  
PLL_EN_STAT  
0 – PLL not enabled (default)  
1 – PLL enabled  
Note: After PLL_EN_STAT = 1, wait at least 3ms for PLL to lock.  
7
3:1  
0
0
101  
0
RO  
RW  
RW  
LVDS_CLK_RANGE  
This field selects the frequency range of the LVDS output clock.  
000 – 25 MHz ≤ LVDS_CLK < 37.5 MHz  
001 – 37.5 MHz ≤ LVDS_CLK < 62.5 MHz  
010 – 62.5 MHz ≤ LVDS_CLK < 87.5 MHz  
011 – 87.5 MHz ≤ LVDS_CLK < 112.5 MHz  
100 – 112.5 MHz ≤ LVDS_CLK < 137.5 MHz  
101 – 137.5 MHz ≤ LVDS_CLK ≤ 154 MHz (default)  
110 – Reserved  
0x0A  
111 – Reserved  
HS_CLK_SRC  
0 – LVDS pixel clock derived from input REFCLK (default)  
1 – LVDS pixel clock derived from MIPI D-PHY channel A HS continuous  
clock  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: SN65DSI84  
 
 
 
 
SN65DSI84  
www.ti.com  
ACCESS (1)  
SLLSEC2H – SEPTEMBER 2012 – REVISED OCTOBER 2020  
Table 7-6. CSR Bit Field Definitions – Reset and Clock Registers (continued)  
BIT(S)  
ADDRESS  
DESCRIPTION  
DEFAULT  
DSI_CLK_DIVIDER  
When CSR 0x0A.0 = ‘1’, this field controls the divider used to generate the  
LVDS output clock from the MIPI D-PHY Channel A HS continuous clock.  
When CSR 0x0A.0 = ‘0’, this field must be programmed to 00000.  
00000 – LVDS clock = source clock (default)  
00001 – Divide by 2  
00010 – Divide by 3  
00011 – Divide by 4  
7:3  
00000  
RW  
0x0B  
10111 – Divide by 24  
11000 – Divide by 25  
11001 through 11111 – Reserved  
REFCLK_MULTIPLIER  
When CSR 0x0A.0 = ‘0’, this field controls the multiplier used to generate the  
LVDS output clock from the input REFCLK. When CSR 0x0A.0 = ‘1’, this field  
must be programmed to 00.  
00 – LVDS clock = source clock (default)  
01 – Multiply by 2  
1:0  
00  
RW  
RW  
10 – Multiply by 3  
11 – Multiply by 4  
PLL_EN  
When this bit is set, the PLL is enabled with the settings programmed into  
CSR 0x0A and CSR 0x0B. The PLL should be disabled before changing any  
of the settings in CSR 0x0A and CSR 0x0B. The input clock source must be  
active and stable before the PLL is enabled.  
0 – PLL disabled (default)  
0x0D  
0
0
1 – PLL enabled  
(1) RO = Read Only; RW = Read/Write; RW1C = Read/Write ‘1’ to Clear; WO = Write Only (reads return undetermined values)  
Table 7-7. CSR Bit Field Definitions – DSI Registers  
ADDRESS  
BIT(S)  
7
DESCRIPTION  
DEFAULT  
ACCESS (1)  
RW  
Reserved - Do not write to this field. Must remain at default.  
Reserved - Do not write to this field. Must remain at default.  
0
6:5  
01  
RW  
CHA_DSI_LANES  
This field controls the number of lanes that are enabled for DSI Channel A.  
00 – Four lanes are enabled  
4:3  
01 – Three lanes are enabled  
10 – Two lanes are enabled  
11  
RW  
0x10  
11 – One lane is enabled (default)  
Note: Unused DSI input pins on the SN65DSI84 should be left unconnected.  
SOT_ERR_TOL_DIS  
0 – Single bit errors are tolerated for the start of transaction SoT leader  
sequence (default)  
1 – No SoT bit errors are tolerated  
0
0
RW  
RW  
CHA_DSI_DATA_EQ  
This field controls the equalization for the DSI Channel A Data Lanes  
00 – No equalization (default)  
01 – 1 dB equalization  
7:6  
00  
10 – Reserved  
11 – 2 dB equalization  
0x11  
CHA_DSI_CLK_EQ  
This field controls the equalization for the DSI Channel A Clock  
00 – No equalization (default)  
01 – 1 dB equalization  
3:2  
00  
RW  
10 – Reserved  
11 – 2 dB equalization  
Copyright © 2020 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: SN65DSI84  
 
 
SN65DSI84  
www.ti.com  
ADDRESS  
SLLSEC2H – SEPTEMBER 2012 – REVISED OCTOBER 2020  
Table 7-7. CSR Bit Field Definitions – DSI Registers (continued)  
BIT(S)  
DESCRIPTION  
DEFAULT  
ACCESS (1)  
CHA_DSI_CLK_RANGE  
This field specifies the DSI Clock frequency range in 5 MHz increments for  
the DSI Channel A Clock  
0x00 through 0x07 – Reserved  
0x08 – 40 ≤ frequency < 45 MHz  
0x09 – 45 ≤ frequency < 50 MHz  
0x12  
7:0  
0
RW  
0x63 – 495 ≤ frequency < 500 MHz  
0x64 – 500 MHz  
0x65 through 0xFF – Reserved  
(1) RO = Read Only; RW = Read/Write; RW1C = Read/Write ‘1’ to Clear; WO = Write Only (reads return undetermined values)  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: SN65DSI84  
 
SN65DSI84  
www.ti.com  
ACCESS (1)  
SLLSEC2H – SEPTEMBER 2012 – REVISED OCTOBER 2020  
Table 7-8. CSR Bit Field Definitions – LVDS Registers  
ADDRESS  
BIT(S)  
DESCRIPTION  
DEFAULT  
DE_NEG_POLARITY  
0 – DE is positive polarity driven ‘1’ during active pixel transmission on LVDS  
7
(default)  
0
RW  
1 – DE is negative polarity driven ‘0’ during active pixel transmission on  
LVDS  
HS_NEG_POLARITY  
6
5
0 – HS is positive polarity driven ‘1’ during corresponding sync conditions  
1 – HS is negative polarity driven ‘0’ during corresponding sync (default)  
1
1
RW  
RW  
VS_NEG_POLARITY  
0 – VS is positive polarity driven ‘1’ during corresponding sync conditions  
1 – VS is negative polarity driven ‘0’ during corresponding sync (default)  
LVDS_LINK_CFG  
0 – LVDS Channel A and Channel B outputs enabled  
When CSR 0x10.6:5 = ’00’ or ‘01’, the LVDS is in Dual-Link  
configuration  
4
1
RW  
When CSR 0x10.6:5 = ‘10’, the LVDS is in two Single-Link  
configuration  
1 – LVDS Single-Link configuration; Channel A output enabled and Channel  
B output disabled (default)  
CHA_24BPP_MODE  
3
2
0 – Force 18bpp; LVDS channel A lane 4 (A_Y3P/N) is disabled (default)  
1 – Force 24bpp; LVDS channel A lane 4 (B_Y3P/N) is enabled  
0
0
RW  
RW  
0x18  
CHB_24BPP_MODE  
0 – Force 18bpp; LVDS channel B lane 4 (A_Y3P/N) is disabled (default)  
1 – Force 24bpp; LVDS channel B lane 4 (B_Y3P/N) is enabled  
CHA_24BPP_FORMAT1  
This field selects the 24bpp data format  
0 – LVDS channel A lane A_Y3P/N transmits the 2 most significant bits  
(MSB) per color; Format 2 (default)  
1 – LVDS channel B lane A_Y3P/N transmits the 2 least significant bits  
(LSB) per color; Format 1  
1
0
RW  
Note1: This field must be ‘0’ when 18bpp data is received from DSI.  
Note2: If this field is set to ‘1’ and CHA_24BPP_MODE is ‘0’, the SN65DSI84  
will convert 24bpp data to 18bpp data for transmission to an 18bpp panel. In  
this configuration, the SN65DSI84 will not transmit the 2 LSB per color on  
LVDS channel A, since LVDS channel A lane A_Y3P/N is disabled.  
CHB_24BPP_FORMAT1  
This field selects the 24bpp data format  
0 – LVDS channel B lane B_Y3P/N transmits the 2 most significant bits  
(MSB) per color; Format 2 (default)  
1 – LVDS channel B lane B_Y3P/N transmits the 2 least significant bits  
(LSB) per color; Format 1  
0
0
RW  
Note1: This field must be ‘0’ when 18bpp data is received from DSI.  
Note2: If this field is set to ‘1’ and CHB_24BPP_MODE is ‘0’, the SN65DSI84  
will convert 24bpp data to 18bpp data for transmission to an 18bpp panel. In  
this configuration, the SN65DSI84 will not transmit the 2 LSB per color on  
LVDS channel B, since LVDS channel B lane B_Y3P/Nis disabled.  
Copyright © 2020 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: SN65DSI84  
 
SN65DSI84  
www.ti.com  
ADDRESS  
SLLSEC2H – SEPTEMBER 2012 – REVISED OCTOBER 2020  
Table 7-8. CSR Bit Field Definitions – LVDS Registers (continued)  
BIT(S)  
DESCRIPTION  
DEFAULT  
ACCESS (1)  
CHA_LVDS_VOCM  
This field controls the common mode output voltage for LVDS Channel A  
0 – 1.2V (default)  
6
0
RW  
1 – 0.9V (CSR 0x1B.5:4 CHA_LVDS_CM_ADJUST must be set to ‘01b’)  
CHB_LVDS_VOCM  
This field controls the common mode output voltage for LVDS Channel B  
0 – 1.2V (default)  
1 – 0.9V (CSR 0x1B.1:0 CHB_LVDS_CM_ADJUST must be set to ‘01b’)  
4
0
RW  
RW  
RW  
0x19  
CHA_LVDS_VOD_SWING  
This field controls the differential output voltage for LVDS Channel A. See  
the Electrical Characteristics table for |VOD| for each setting:  
00, 01 (default), 10, 11.  
3:2  
1:0  
01  
01  
CHB_LVDS_VOD_SWING  
This field controls the differential output voltage for LVDS Channel B. See  
the Electrical Characteristics table for |VOD| for each setting:  
00, 01 (default), 10, 11.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: SN65DSI84  
SN65DSI84  
www.ti.com  
ACCESS (1)  
SLLSEC2H – SEPTEMBER 2012 – REVISED OCTOBER 2020  
Table 7-8. CSR Bit Field Definitions – LVDS Registers (continued)  
ADDRESS  
BIT(S)  
DESCRIPTION  
DEFAULT  
EVEN_ODD_SWAP  
0 – Odd pixels routed to LVDS Channel A and Even pixels routed to LVDS  
Channel B (default)  
1 – Odd pixels routed to LVDS Channel B and Even pixels routed to LVDS  
Channel A  
6
0
RW  
Note: When the SN65DSI84 is in two stream mode (CSR 0x10.6:5 = ‘10’),  
setting this bit to ‘1’ will cause the video stream from DSI Channel A to be  
routed to LVDS Channel B and the video stream from DSI Channel B to be  
routed to LVDS Channel A.  
CHA_REVERSE_LVDS  
This bit controls the order of the LVDS pins for Channel A.  
0 – Normal LVDS Channel A pin order. LVDS Channel A pin order is the  
same as listed in the Terminal Assignments Section. (default)  
1 – Reversed LVDS Channel A pin order. LVDS Channel A  
pin order is remapped as follows:  
A_Y0P → A_Y3P  
A_Y0N → A_Y3N  
A_Y1P → A_CLKP  
A_Y1N → A_CLKN  
A_Y2P → A_Y2P  
A_Y2N → A_Y2N  
A_CLKP → A_Y1P  
A_CLKN → A_Y1N  
A_Y3P → A_Y0P  
A_Y3N → A_Y0N  
5
0
RW  
CHB_REVERSE_LVDS  
0x1A  
This bit controls the order of the LVDS pins for Channel B.  
0 – Normal LVDS Channel B pin order. LVDS Channel B pin order is the  
same as listed in the Terminal Assignments Section. (default)  
1 – Reversed LVDS Channel B pin order. LVDS Channel B  
pin order is remapped as follows:  
B_Y0P → B_Y3P  
B_Y0N → B_Y3N  
4
0
RW  
B_Y1P → B_CLKP  
B_Y1N → B_CLKN  
B_Y2P → B_Y2P  
B_Y2N → B_Y2N  
B_CLKP → B_Y1P  
B_CLKN → B_Y1N  
B_Y3P → B_Y0P  
B_Y3N → B_Y0N  
CHA_LVDS_TERM  
This bit controls the near end differential termination for LVDS Channel A.  
This bit also affects the output voltage for LVDS Channel A.  
0 – 100Ω differential termination  
1
0
1
1
RW  
RW  
1 – 200Ω differential termination (default)  
CHB_LVDS_TERM  
This bit controls the near end differential termination for LVDS Channel B.  
This bit also affects the output voltage for LVDS Channel B.  
0 – 100Ω differential termination  
1 – 200Ω differential termination (default)  
Copyright © 2020 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: SN65DSI84  
SN65DSI84  
www.ti.com  
ADDRESS  
SLLSEC2H – SEPTEMBER 2012 – REVISED OCTOBER 2020  
Table 7-8. CSR Bit Field Definitions – LVDS Registers (continued)  
BIT(S)  
DESCRIPTION  
DEFAULT  
ACCESS (1)  
CHA_LVDS_CM_ADJUST  
This field can be used to adjust the common mode output voltage for LVDS  
Channel A.  
5:4  
00 – No change to common mode voltage (default)  
01 – Adjust common mode voltage down 3%  
10 – Adjust common mode voltage up 3%  
11 – Adjust common mode voltage up 6%  
00  
RW  
0x1B  
CHB_LVDS_CM_ADJUST  
This field can be used to adjust the common mode output voltage for LVDS  
Channel B.  
1:0  
00 – No change to common mode voltage (default)  
01 – Adjust common mode voltage down 3%  
10 – Adjust common mode voltage up 3%  
11 – Adjust common mode voltage up 6%  
00  
RW  
(1) RO = Read Only; RW = Read/Write; RW1C = Read/Write ‘1’ to Clear; WO = Write Only (reads return undetermined values)  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: SN65DSI84  
 
SN65DSI84  
www.ti.com  
SLLSEC2H – SEPTEMBER 2012 – REVISED OCTOBER 2020  
Note for all video registers:  
1. TEST PATTERN GENERATION PURPOSE ONLY registers are for test pattern generation use only. Others  
are for normal operation unless the test pattern generation feature is enabled.  
Table 7-9. CSR Bit Field Definitions – Video Registers  
DESCRIPTION  
ADDRESS  
BIT(S)  
DEFAULT  
ACCESS(1)  
CHA_ACTIVE_LINE_LENGTH_LOW  
This field controls the length in pixels of the active horizontal line line that are  
received on DSI Channel A and output to LVDS Channel A in single LVDS  
Channel mode(CSR 0x18.4=1), Channel A and B in dual LVDS Channel  
mode(CSR 0x18.4=0). The value in this field is the lower 8 bits of the 12-bit  
value for the horizontal line length.  
0x20  
7:0  
0
RW  
CHA_ACTIVE_LINE_LENGTH_HIGH  
This field controls the length in pixels of the active horizontal line that are  
received on DSI Channel A and output to LVDS Channel A in single LVDS  
Channel mode(CSR 0x18.4=1), Channel A and B in dual LVDS Channel  
mode(CSR 0x18.4=0). The value in this field is the upper 4 bits of the 12-bit  
value for the horizontal line length.  
0x21  
0x24  
0x25  
3:0  
7:0  
3:0  
0
0
0
RW  
RW  
RW  
CHA_VERTICAL_DISPLAY_SIZE_LOW  
TEST PATTERN GENERATION PURPOSE ONLY. This field controls the  
vertical display size in lines for LVDS Channel A in single LVDS Channel  
mode(CSR 0x18.4=1), Channel A and B in dual LVDS Channel mode(CSR  
0x18.4=0. The value in this field is the lower 8 bits of the 12-bit value for the  
vertical display size.  
CHA_VERTICAL_DISPLAY_SIZE_HIGH  
TEST PATTERN GENERATION PURPOSE ONLY. This field controls the  
vertical display size in lines for LVDS Channel A in single LVDS Channel  
mode(CSR 0x18.4=1), Channel A and B in dual LVDS Channel mode(CSR  
0x18.4=0). The value in this field is the upper 4 bits of the 12-bit value for the  
vertical display size  
CHA_SYNC_DELAY_LOW  
This field controls the delay in pixel clocks from when an HSync or VSync is  
received on the DSI to when it is transmitted on the LVDS interface for  
Channel A in single LVDS Channel mode(CSR 0x18.4=1), Channel A and B  
in dual LVDS Channel mode(CSR 0x18.4=0). The delay specified by this  
field is in addition to the pipeline and synchronization delays in the  
SN65DSI84. The additional delay is approximately 10 pixel clocks. The Sync  
delay must be programmed to at least 32 pixel clocks to ensure proper  
operation. The value in this field is the lower 8 bits of the 12-bit value for the  
Sync delay.  
0x28  
7:0  
0
RW  
CHA_SYNC_DELAY_HIGH  
This field controls the delay in pixel clocks from when an HSync or VSync is  
received on the DSI to when it is transmitted on the LVDS interface for  
Channel A in single LVDS Channel mode(CSR 0x18.4=1), Channel A and B  
in dual LVDS Channel mode(CSR 0x18.4=0). The delay specified by this  
field is in addition to the pipeline and synchronization delays in the  
SN65DSI84. The additional delay is approximately 10 pixel clocks. The Sync  
delay must be programmed to at least 32 pixel clocks to ensure proper  
operation. The value in this field is the upper 4 bits of the 12-bit value for the  
Sync delay.  
0x29  
3:0  
0
RW  
CHA_HSYNC_PULSE_WIDTH_LOW  
This field controls the width in pixel clocks of the HSync Pulse Width for  
LVDS Channel A in single LVDS Channel mode(CSR 0x18.4=1), Channel A  
and B in dual LVDS Channel mode(CSR 0x18.4=0). The value in this field is  
the lower 8 bits of the 10-bit value for the HSync Pulse Width.  
0x2C  
0x2D  
7:0  
1:0  
0
0
RW  
RW  
CHA_HSYNC_PULSE_WIDTH_HIGH  
This field controls the width in pixel clocks of the HSync Pulse Width for  
LVDS Channel A in single LVDS Channel mode(CSR 0x18.4=1), Channel A  
and B in dual LVDS Channel mode(CSR 0x18.4=0). The value in this field is  
the upper 2 bits of the 10-bit value for the HSync Pulse Width.  
Copyright © 2020 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: SN65DSI84  
SN65DSI84  
www.ti.com  
ADDRESS  
SLLSEC2H – SEPTEMBER 2012 – REVISED OCTOBER 2020  
Table 7-9. CSR Bit Field Definitions – Video Registers (continued)  
BIT(S)  
DESCRIPTION  
DEFAULT  
ACCESS(1)  
CHA_VSYNC_PULSE_WIDTH_LOW  
This field controls the length in lines of the VSync Pulse Width for LVDS  
Channel A in single LVDS Channel mode(CSR 0x18.4=1), Channel A and B  
in dual LVDS Channel mode(CSR 0x18.4=0). The value in this field is the  
lower 8 bits of the 10-bit value for the VSync Pulse Width.  
0x30  
0x31  
0x34  
0x36  
0x38  
0x3A  
7:0  
0
RW  
CHA_VSYNC_PULSE_WIDTH_HIGH  
This field controls the length in lines of the VSync Pulse Width for LVDS  
Channel A in single LVDS Channel mode(CSR 0x18.4=1), Channel A and B  
in dual LVDS Channel mode(CSR 0x18.4=0). The value in this field is the  
upper 2 bits of the 10-bit value for the VSync Pulse Width.  
1:0  
7:0  
7:0  
7:0  
7:0  
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
CHA_HORIZONTAL_BACK_PORCH  
This field controls the time in pixel clocks between the end of the HSync  
Pulse and the start of the active video data for LVDS Channel A in single  
LVDS Channel mode(CSR 0x18.4=1), Channel A and B in dual LVDS  
Channel mode(CSR 0x18.4=0).  
CHA_VERTICAL_BACK_PORCH  
TEST PATTERN GENERATION PURPOSE ONLY. This field controls the  
number of lines between the end of the VSync Pulse and the start of the  
active video data for LVDS Channel A in single LVDS Channel mode(CSR  
0x18.4=1), Channel A and B in dual LVDS Channel mode(CSR 0x18.4=0).  
CHA_HORIZONTAL_FRONT_PORCH  
TEST PATTERN GENERATION PURPOSE ONLY. This field controls the  
time in pixel clocks between the end of the active video data and the start of  
the HSync Pulse for LVDS Channel A in single LVDS Channel mode(CSR  
0x18.4=1), Channel A and B in dual LVDS Channel mode(CSR 0x18.4=0).  
CHA_VERTICAL_FRONT_PORCH  
TEST PATTERN GENERATION PURPOSE ONLY. This field controls the  
number of lines between the end of the active video data and the start of the  
VSync Pulse for LVDS Channel A in single LVDS Channel mode(CSR  
0x18.4=1), Channel A and B in dual LVDS Channel mode(CSR 0x18.4=0).  
CHA_TEST_PATTERN  
TEST PATTERN GENERATION PURPOSE ONLY. When this bit is set, the  
SN65DSI84 will generate a video test pattern based on the values  
programmed into the Video Registers for LDS Channel A in single LVDS  
Channel mode(CSR 0x18.4=1), Channel A and B in dual LVDS Channel  
mode(CSR 0x18.4=0).  
0x3C  
4
0
RW  
(1) RO = Read Only; RW = Read/Write; RW1C = Read/Write ‘1’ to Clear; WO = Write Only (reads return undetermined values)  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: SN65DSI84  
 
SN65DSI84  
www.ti.com  
ACCESS (1)  
SLLSEC2H – SEPTEMBER 2012 – REVISED OCTOBER 2020  
Table 7-10. CSR Bit Field Definitions – IRQ Registers  
ADDRESS  
BIT(S)  
DESCRIPTION  
DEFAULT  
IRQ_EN  
When enabled by this field, the IRQ output is driven high to communicate  
IRQ events.  
0 – IRQ output is high-impedance (default)  
0xE0  
0
0
RW  
1 – IRQ output is driven high when a bit is set in registers 0xE5 that also has  
the corresponding IRQ_EN bit set to enable the interrupt condition  
CHA_SYNCH_ERR_EN  
7
6
5
4
3
2
0
0 – CHA_SYNCH_ERR is masked  
1 – CHA_SYNCH_ERR is enabled to generate IRQ events  
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
CHA_CRC_ERR_EN  
0 – CHA_CRC_ERR is masked  
1 – CHA_CRC_ERR is enabled to generate IRQ events  
CHA_UNC_ECC_ERR_EN  
0 – CHA_UNC_ECC_ERR is masked  
1 – CHA_UNC_ECC_ERR is enabled to generate IRQ events  
CHA_COR_ECC_ERR_EN  
0 – CHA_COR_ECC_ERR is masked  
1 – CHA_COR_ECC_ERR is enabled to generate IRQ events  
0xE1  
CHA_LLP_ERR_EN  
0 – CHA_LLP_ERR is masked  
1 – CHA_ LLP_ERR is enabled to generate IRQ events  
CHA_SOT_BIT_ERR_EN  
0 – CHA_SOT_BIT_ERR is masked  
1 – CHA_SOT_BIT_ERR is enabled to generate IRQ events  
PLL_UNLOCK_EN  
0 – PLL_UNLOCK is masked  
1 – PLL_UNLOCK is enabled to generate IRQ events  
CHA_SYNCH_ERR  
When the DSI channel A packet processor detects an HS or VS  
synchronization error, that is, an unexpected sync packet; this bit is set; this  
bit is cleared by writing a ‘1’ value.  
7
0
RW1C  
CHA_CRC_ERR  
6
5
4
When the DSI channel A packet processor detects a data stream CRC error,  
this bit is set; this bit is cleared by writing a ‘1’ value.  
0
0
0
RW1C  
RW1C  
RW1C  
CHA_UNC_ECC_ERR  
When the DSI channel A packet processor detects an uncorrectable ECC  
error, this bit is set; this bit is cleared by writing a ‘1’ value.  
CHA_COR_ECC_ERR  
When the DSI channel A packet processor detects a correctable ECC error,  
this bit is set; this bit is cleared by writing a ‘1’ value.  
0xE5  
CHA_LLP_ERR  
When the DSI channel A packet processor detects a low level protocol error,  
this bit is set; this bit is cleared by writing a ‘1’ value.  
Low level protocol errors include SoT and EoT sync errors, Escape Mode  
entry command errors, LP transmission sync errors, and false control errors.  
Lane merge errors are reported by this status condition.  
3
0
RW1C  
CHA_SOT_BIT_ERR  
2
0
When the DSI channel A packet processor detects an SoT leader sequence  
bit error, this bit is set; this bit is cleared by writing a ‘1’ value.  
0
1
RW1C  
RW1C  
PLL_UNLOCK  
This bit is set whenever the PLL Lock status transitions from LOCK to  
UNLOCK.  
(1) RO = Read Only; RW = Read/Write; RW1C = Read/Write ‘1’ to Clear; WO = Write Only (reads return undetermined values)  
Copyright © 2020 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: SN65DSI84  
 
SN65DSI84  
www.ti.com  
SLLSEC2H – SEPTEMBER 2012 – REVISED OCTOBER 2020  
8 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TI’s customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
8.1 Application Information  
The SN65DSI84 device is primarily targeted for portable applications such as tablets and smart phones that  
utilize the MIPI DSI video format. The SN65DSI84 device can be used between a GPU with DSI output and a  
video panel with LVDS inputs  
8.1.1 Video Stop and Restart Sequence  
When the system requires to stop outputting video to the display, it is recommended to use the following  
sequence for the SN65DSI84:  
1. Clear the PLL_EN bit to 0 (CSR 0x0D.0)  
2. Stop video streaming on DSI inputs  
3. Drive all DSI data lanes to LP11, but keep the DSI CLK lanes in HS.  
When the system is ready to restart the video streaming.  
1. Start video streaming on DSI inputs.  
2. Set the PLL_EN bit to 1(CSR 0x0D.0).  
3. Wait for a minimum of 3 ms.  
4. Set the SOFT_RESET bit(0x09.0).  
8.1.2 Reverse LVDS Pin Order Option  
For ease of PCB routing, the SN65DSI84 supports swapping/reversing the channel or pin order via configuration  
register programming. The order of the LVDS pin for LVDS Channel A or Channel B can be reversed by setting  
the address 0x1A bit 5 CHA_REVERSE_LVDS or bit 4 CHB_REVERSE_LVDS. The LVDS Channel A and  
Channel B can be swapped by setting the 0x1A.6 EVEN_ODD_SWAP bit. See the corresponding register bit  
definition for details.  
8.1.3 IRQ Usage  
The SN65DSI84 provides an IRQ pin that can be used to indicate when certain errors occur on DSI. The IRQ  
output is enabled through the IRQ_EN bit (CSR 0xE0.0). The IRQ pin will be asserted when an error occurs on  
DSI, the corresponding error enable bit is set, and the IRQ_EN bit is set. An error is cleared by writing a ‘1’ to the  
corresponding error status bit.  
Note  
If the SOFT_RESET bit is set while the DSI video stream is active, some of the error status bits may  
be set.  
If the DSI video stream is stopped, some of the error status bits may be set. These error status bits  
should be cleared before restarting the video stream.  
If the DSI video stream starts before the device is configured, some of the error status bits may be set.  
It is recommended to start streaming after the device is correctly configured as recommended in the  
initialization sequence in the Section 7.4.3 section.  
8.2 Typical Application  
Figure 8-1 illustrates a typical application using the SN65DSI84 for a single channel DSI receiver to interface a  
single-channel DSI application processor to an LVDS Dual-Link 18 bit-per-pixel panel supporting 1920 x 1200  
WUXGA resolutions at 60 frames per second.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: SN65DSI84  
 
 
 
 
SN65DSI84  
www.ti.com  
SLLSEC2H – SEPTEMBER 2012 – REVISED OCTOBER 2020  
SN65DSI84  
A_Y0N  
A_Y0P  
100Ω  
100Ω  
100Ω  
100Ω  
DA0P  
A_Y1N  
A_Y1P  
Application  
Processor  
DA0N  
to odd pixel  
row and column  
drivers  
DA1P  
DA1N  
A_Y2N  
A_Y2P  
DA2P  
DA2N  
A_CLKN  
A_CLKP  
DA3P  
DA3N  
A_Y3N  
A_Y3P  
DACP  
DACN  
B_Y0N  
B_Y0P  
SCL  
SDA  
100Ω  
100Ω  
100Ω  
100Ω  
IRQ  
EN  
B_Y1N  
B_Y1P  
to even pixel  
row and column  
drivers  
ADDR  
REFCLK  
GND  
B_Y2N  
B_Y2P  
B_CLKN  
B_CLKP  
1.8V  
B_Y3N  
B_Y3P  
VCC  
C1  
Figure 8-1. Typical 1920 x 1200 WUXGA 18-bpp Panel Application  
8.2.1 Design Requirements  
For the 1920 x 1200 WUXGA 18-bpp Panel typical application design parameters, see Table 8-1.  
Table 8-1. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
1.8V (±5%)  
DSIA_CLK  
N/A  
VCC  
CLOCK  
REFCKL Frequency  
DSIA Clock Frequency  
PANEL INFORMATION  
490 MHz  
LVDS Output Clock Frequency  
Resolution  
81 MHz  
1920 x 1200  
Horizontal Active (pixels)  
Horizontal Blanking (pixels)  
Vertical Active (lines)  
960  
144  
1200  
Vertical Blanking (lines)  
20  
Horizontal Sync Offset (pixels)  
Horizontal Sync Pulse Width (pixels)  
Vertical Sync Offset (lines)  
Vertical Sync Pulse Width (lines)  
Horizontal Sync Pulse Polarity  
Vertical Sync Pulse Polarity  
Color Bit Depth (6bpc or 8bpc)  
Number of LVDS Lanes  
50  
50  
1
5
Negative  
Negative  
6-bit  
2 X [3 Data Lanes + 1 Clock Lane]  
DSI INFORMATION  
Number of DSI Lanes  
1 X [4 Data Lanes + 1 Clock Lane]  
Copyright © 2020 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: SN65DSI84  
 
 
SN65DSI84  
www.ti.com  
SLLSEC2H – SEPTEMBER 2012 – REVISED OCTOBER 2020  
Table 8-1. Design Parameters (continued)  
DESIGN PARAMETER  
EXAMPLE VALUE  
490MHz  
DSI Input Clock Frequency  
Dual DSI Configuration(Odd/Even or Left/Right)  
N/A  
8.2.2 Detailed Design Procedure  
The video resolution parameters required by the panel need to be programmed into the SN65DSI84. For this  
example, the parameters programmed would be the following:  
Horizontal active = 1920 or 0x780  
CHA_ACTIVE_LINE_LENGTH_LOW = 0X80  
CHA_ACTIVE_LINE_LENGTH_HIGH = 0x07  
Horizontal pulse Width = 50 or 0x32  
CHA_HSYNC_PULSE_WIDTH_LOW = 0x32  
CHA_HSYNC_PULSE_WIDTH_HIGH= 0x00  
Horizontal back porch = Horizontal blanking – (Horizontal sync offset + Horizontal sync pulse width)  
Horizontal back porch = 144– (50 + 50)  
Horizontal back porch = 44 or 0x2C  
CHA_HORIZONTAL_BACK_PORCH = 0x2C  
Vertical pulse width = 5  
CHA_VSYNC_PULSE_WIDTH_LOW = 0x05  
CHA_VSYNC_PULSE_WIDTH_HIGH= 0x00  
The pattern generation feature can be enabled by setting the CHA_TEST_PATTERN bit at address 0x3C and  
configuring the following TEST PATTERN GENERATION PURPOSE ONLY registers.  
Vertical active = 1200 or 0x4B0  
CHA_VERTICAL_DISPLAY_SIZE_LOW = 0xB0  
CHA_VERTICAL_DISPLAY_SIZE_HIGH = 0x04  
Vertical back porch = Vertical blanking – (Vertical sync offset +Vertical sync pulse width)  
Vertical back porch = 20 – (1 + 5)  
Vertical back porch = 14 or 0x0E  
CHA_VERTICAL_BACK_PORCH = 0x0E  
Horizontal front porch = Horizontal sync offset  
Horizontal front porch = 50 or 0x32  
CHA_HORIZONTAL_FRONT_PORCH = 0x32  
Vertical front porch = Vertical sync offset  
Vertical front porch =1  
CHA_VERTICAL_FRONT_PORCH = 0x01  
In this example, the clock source for the SN65DSI84 is the DSI clock. When the MIPI D-PHY clock is used as  
the LVDS clock source, it is divided by the factor in DSI_CLK_DIVIDER (CSR 0x0B.7:3) to generate the FlatLink  
LVDS output clock. Additionally, LVDS_CLK_RANGE (CSR 0x0A.3:1) and CH_DSI_CLK_RANGE(CSR 0x12)  
must be set to the frequency range of the FlatLink LVDS output clock and DSI Channel A input clock respectively  
for the internal PLL to operate correctly. After these settings are programmed, PLL_EN (CSR 0x0D.0) should be  
set to enable the internal PLL.  
LVDS_CLK_RANGE = 010b-62.5 MHz ≤ LVDS_CLK < 87.5 MHz  
HS_CLK_SRC = 1 – LVDS pixel clock derived from MIPI D-PHY channel A HS continuous clock  
DSI_CLK_DIVIDER = 0010b – Divide by 6  
CHA_DSI_LANES = 00 – Four lanes are enabled  
CHA_DSI_CLK_RANGE = 0x62 – 490 MHz ≤ frequency < 495 MHz  
8.2.2.1 Example Script  
This example configures the SN65DSI84 for the following configuration:  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: SN65DSI84  
SN65DSI84  
www.ti.com  
SLLSEC2H – SEPTEMBER 2012 – REVISED OCTOBER 2020  
<aardvark>  
<configure i2c="1" spi="1" gpio="0" tpower="1" pullups="1"/>  
<i2c_bitrate khz="100"/>  
=====SOFTRESET=======  
<i2c_write addr="0x2D" count="1" radix="16"glt;09 01</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 0D=======  
======PLL_EN(bit 0) - Enable LAST after addr 0A and 0B configured======  
<i2c_write addr="0x2D" count="1" radix="16"glt;0D 00</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 0A=======  
======HS_CLK_SRC bit0===  
======LVDS_CLK_Range bit 3:1======  
<i2c_write addr="0x2D" count="1" radix="16"glt;0A 05</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 0B=======  
======DSI_CLK_DIVIDER bit7:3=====  
======RefCLK multiplier(bit1:0)====== ======00 - LVDSclk=source clk, 01 - x2, 10 -x3, 11 - x4======  
<i2c_write addr="0x2D" count="1" radix="16"glt;0B 28</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 10=======  
======DSI Ch Confg Left_Right Pixels(bit7 - 0 for A ODD, B EVEN, 1 for the other config)======  
======DSI Ch Mode(bit6:5) 00 - Dual, 01 - single, 10 - two single =======  
======CHA_DSI_Lanes(bit4:3), CHB_DSI_Lanes(bit2:1), 00 - 4, 01 - 3, 10 - 2, 11 - 1  
======SOT_ERR_TOL_DIS(bit0)=======  
<i2c_write addr="0x2D" count="1" radix="16"glt;10 26</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 12=======  
<i2c_write addr="0x2D" count="1" radix="16"glt;12 62</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 18=======  
======bit7: DE_Pol, bit6:HS_Pol, bit5:VS_Pol, bit4: LVDS Link Cfg, bit3:CHA 24bpp, bit2: CHB 24bpp,  
bit1: CHA 24bpp fmt1, bit0: CHB 24bpp fmt1======  
<i2c_write addr="0x2D" count="1" radix="16"glt;18 63</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 19=======  
<i2c_write addr="0x2D" count="1" radix="16"glt;19 00</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 1A=======  
<i2c_write addr="0x2D" count="1" radix="16"glt;1A 03</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 20=======  
======CHA_LINE_LENGTH_LOW========  
<i2c_write addr="0x2D" count="1" radix="16"glt;20 80</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 21=======  
======CHA_LINE_LENGTH_HIGH========  
<i2c_write addr="0x2D" count="1" radix="16"glt;21 07</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 22=======  
======CHB_LINE_LENGTH_LOW========  
Copyright © 2020 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: SN65DSI84  
SN65DSI84  
www.ti.com  
SLLSEC2H – SEPTEMBER 2012 – REVISED OCTOBER 2020  
<i2c_write addr="0x2D" count="1" radix="16"glt;22 00</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 23=======  
======CHB_LINE_LENGTH_HIGH========  
<i2c_write addr="0x2D" count="1" radix="16"glt;23 00</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 24=======  
======CHA_VERTICAL_DISPLAY_SIZE_LOW========  
<i2c_write addr="0x2D" count="1" radix="16"glt;24 00</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 25=======  
======CHA_VERTICAL_DISPLAY_SIZE_HIGH========  
<i2c_write addr="0x2D" count="1" radix="16"glt;25 00</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 26=======  
======CHB_VERTICAL_DISPLAY_SIZE_LOW========  
<i2c_write addr="0x2D" count="1" radix="16"glt;26 00</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 27=======  
======CHB_VERTICAL_DISPLAY_SIZE_HIGH========  
<i2c_write addr="0x2D" count="1" radix="16"glt;27 00</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 28=======  
======CHA_SYNC_DELAY_LOW========  
<i2c_write addr="0x2D" count="1" radix="16"glt;28 20</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 29=======  
======CHA_SYNC_DELAY_HIGH========  
<i2c_write addr="0x2D" count="1" radix="16"glt;29 00</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 2A=======  
======CHB_SYNC_DELAY_LOW========  
<i2c_write addr="0x2D" count="1" radix="16"glt;2A 00</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 2B=======  
======CHB_SYNC_DELAY_HIGH========  
<i2c_write addr="0x2D" count="1" radix="16"glt;2B 00</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 2C=======  
======CHA_HSYNC_PULSE_WIDTH_LOW========  
<i2c_write addr="0x2D" count="1" radix="16"glt;2C 32</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 2D=======  
======CHA_HSYNC_PULSE_WIDTH_HIGH========  
<i2c_write addr="0x2D" count="1" radix="16"glt;2D 00</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 2E=======  
======CHB_HSYNC_PULSE_WIDTH_LOW========  
<i2c_write addr="0x2D" count="1" radix="16"glt;2E 00</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 2F=======  
======CHB_HSYNC_PULSE_WIDTH_HIGH========  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: SN65DSI84  
SN65DSI84  
www.ti.com  
SLLSEC2H – SEPTEMBER 2012 – REVISED OCTOBER 2020  
<i2c_write addr="0x2D" count="1" radix="16"glt;2F 00</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 30=======  
======CHA_VSYNC_PULSE_WIDTH_LOW========  
<i2c_write addr="0x2D" count="1" radix="16"glt;30 05</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 31=======  
======CHA_VSYNC_PULSE_WIDTH_HIGH========  
<i2c_write addr="0x2D" count="1" radix="16"glt;31 00</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 32=======  
======CHB_VSYNC_PULSE_WIDTH_LOW========  
<i2c_write addr="0x2D" count="1" radix="16"glt;32 00</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 33=======  
======CHB_VSYNC_PULSE_WIDTH_HIGH========  
<i2c_write addr="0x2D" count="1" radix="16"glt;33 00</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 34=======  
======CHA_HOR_BACK_PORCH========  
<i2c_write addr="0x2D" count="1" radix="16"glt;34 2C</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 35=======  
======CHB_HOR_BACK_PORCH========  
<i2c_write addr="0x2D" count="1" radix="16"glt;35 00</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 36=======  
======CHA_VER_BACK_PORCH========  
<i2c_write addr="0x2D" count="1" radix="16"glt;36 00</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 37=======  
======CHB_VER_BACK_PORCH========  
<i2c_write addr="0x2D" count="1" radix="16"glt;37 00</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 38=======  
======CHA_HOR_FRONT_PORCH========  
<i2c_write addr="0x2D" count="1" radix="16"glt;38 00</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 39=======  
======CHB_HOR_FRONT_PORCH========  
<i2c_write addr="0x2D" count="1" radix="16"glt;39 00</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 3A=======  
======CHA_VER_FRONT_PORCH========  
<i2c_write addr="0x2D" count="1" radix="16"glt;3A 00</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 3B=======  
======CHB_VER_FRONT_PORCH========  
<i2c_write addr="0x2D" count="1" radix="16"glt;3B 00</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 3C=======  
======CHA/CHB TEST PATTERN(bit4 CHA, bit0 CHB)========  
Copyright © 2020 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: SN65DSI84  
SN65DSI84  
www.ti.com  
SLLSEC2H – SEPTEMBER 2012 – REVISED OCTOBER 2020  
<i2c_write addr="0x2D" count="1" radix="16"glt;3C 00</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 0D=======  
======PLL_EN(bit 0) - Enable LAST after addr 0A and 0B configured======  
<i2c_write addr="0x2D" count="1" radix="16"glt;0D 01</i2c_writeglt;  
<sleep ms="10"/>  
=====SOFTRESET=======  
<i2c_write addr="0x2D" count="1" radix="16"glt;09 00</i2c_writeglt;  
<sleep ms="10"/>  
======write======  
<i2c_write addr="0x2D" count="196" radix="16"glt;00</i2c_writeglt;  
<sleep ms="10"/>  
======Read======  
<i2c_read addr="0x2D" count="256" radix="16"glt;00</i2c_readglt;  
<sleep ms="10"/>  
</aardvark>  
8.2.3 Application Curve  
SN65DSI84: SINGLE Channel DSI to DUAL Channel LVDS, 1440 x 900  
111.0  
Unit 1  
110.0  
Unit 2  
109.0  
Unit 3  
108.0  
107.0  
106.0  
105.0  
104.0  
103.0  
102.0  
0.0  
20.0  
40.0  
60.0  
80.0  
œ40.0  
œ20.0  
Temperature (°C)  
C001  
Figure 8-2. Supply Current vs Temperature  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: SN65DSI84  
SN65DSI84  
www.ti.com  
SLLSEC2H – SEPTEMBER 2012 – REVISED OCTOBER 2020  
9 Power Supply Recommendations  
9.1 VCC Power Supply  
Each VCC power supply pin must have a 100-nF capacitor to ground connected as close as possible to the  
SN65DSI83 device. It is recommended to have one bulk capacitor (1 µF to 10 µF) on it. It is also recommended  
to have the pins connected to a solid power plane.  
9.2 VCORE Power Supply  
This pin must have a 100-nF capacitor to ground connected as close as possible to the SN65DSI83 device. It is  
recommended to have one bulk capacitor (1 µF to 10 µF) on it. It is also recommended to have the pins  
connected to a solid power plane.  
Copyright © 2020 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: SN65DSI84  
 
 
 
SN65DSI84  
www.ti.com  
SLLSEC2H – SEPTEMBER 2012 – REVISED OCTOBER 2020  
10 Layout  
10.1 Layout Guidelines  
10.1.1 Package Specific  
For the ZXH package, to minimize the power supply noise floor, provide good decoupling near the SN65DSI83  
device power pins. The use of four ceramic capacitors (2 × 0.1 μF and 2 × 0.01 μF) provides good performance.  
At the least, TI recommends to install one 0.1-μF and one 0.01-μF capacitor near the SN65DSI83 device. To  
avoid large current loops and trace inductance, the trace length between decoupling capacitor and device power  
inputs pins must be minimized. Placing the capacitor underneath the SN65DSI83 device on the bottom of the  
PCB is often a good choice.  
10.1.2 Differential Pairs  
Differential pairs must be routed with controlled 100-Ω differential impedance (± 20%) or 50-Ω single-ended  
impedance (±15%).  
Keep away from other high speed signals  
Keep lengths to within 5 mils of each other.  
Length matching must be near the location of mismatch.  
Each pair must be separated at least by 3 times the signal trace width.  
The use of bends in differential traces must be kept to a minimum. When bends are used, the number of left  
and right bends must be as equal as possible and the angle of the bend must be ≥ 135 degrees. This  
arrangement minimizes any length mismatch caused by the bends and therefore minimizes the impact that  
bends have on EMI.  
Route all differential pairs on the same of layer.  
The number of vias must be kept to a minimum. It is recommended to keep the via count to 2 or less.  
Keep traces on layers adjacent to ground plane.  
Do NOT route differential pairs over any plane split.  
Adding Test points will cause impedance discontinuity and will therefore negatively impact signal  
performance. If test points are used, they must be placed in series and symmetrically. They must not be  
placed in a manner that causes a stub on the differential pair.  
10.1.3 Ground  
TI recommends that only one board ground plane be used in the design. This provides the best image plane for  
signal traces running above the plane. The thermal pad of the SN65DSI83 must be connected to this plane with  
vias.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: SN65DSI84  
 
 
 
SN65DSI84  
www.ti.com  
SLLSEC2H – SEPTEMBER 2012 – REVISED OCTOBER 2020  
10.2 Layout Example  
Purple traces on  
this side are LVDS  
ChB signals.  
Purple traces on  
this side are DSI  
ChA signals.  
Green traces on  
this side are LVDS  
ChA signals.  
Green traces on  
this side are LVDS  
ChB signals.  
Figure 10-1. SN65DSI8x Layout Example  
Copyright © 2020 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: SN65DSI84  
 
SN65DSI84  
www.ti.com  
SLLSEC2H – SEPTEMBER 2012 – REVISED OCTOBER 2020  
11 Device and Documentation Support  
11.1 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
11.2 Community Resources  
11.3 Trademarks  
FlatLinkis a trademark of Texas Instruments.  
MIPI® is a registered trademark of Arasan Chip Systems, Inc.  
All trademarks are the property of their respective owners.  
Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: SN65DSI84  
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Nov-2020  
PACKAGING INFORMATION  
Orderable Device  
SN65DSI84ZQER  
SN65DSI84ZXHR  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
-40 to 85  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ACTIVE  
BGA  
MICROSTAR  
JUNIOR  
ZQE  
64  
64  
2500  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
DSI84  
DSI84  
ACTIVE  
NFBGA  
ZXH  
2500  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
-40 to 85  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Nov-2020  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF SN65DSI84 :  
Automotive: SN65DSI84-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE OUTLINE  
ZXH0064A  
NFBGA - 1 mm max height  
SCALE 2.500  
PLASTIC BALL GRID ARRAY  
5.1  
4.9  
B
A
BALL A1 CORNER  
INDEX AREA  
5.1  
4.9  
(0.65)  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.25  
TYP  
0.15  
BALL TYP  
4 TYP  
SYMM  
(0.5) TYP  
J
H
G
F
(0.5) TYP  
SYMM  
64X  
4
E
D
C
TYP  
0.35  
0.25  
0.15  
0.05  
B
A
C A  
C
B
0.5 TYP  
1
2
3
4
5
6
7
8
9
0.5 TYP  
4222101/A 06/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
ZXH0064A  
NFBGA - 1 mm max height  
PLASTIC BALL GRID ARRAY  
64X ( 0.25)  
(0.5) TYP  
3
4
5
6
7
8
9
1
2
A
B
C
(0.5) TYP  
D
E
F
G
H
J
SYMM  
SYMM  
LAND PATTERN EXAMPLE  
SCALE:15X  
0.05 MAX  
METAL UNDER  
SOLDER MASK  
0.05 MIN  
(
0.25)  
METAL  
SOLDER MASK  
OPENING  
(
0.25)  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4222101/A 06/2015  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For information, see Texas Instruments literature number SPRAA99 (www.ti.com/lit/spraa99).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
ZXH0064A  
NFBGA - 1 mm max height  
PLASTIC BALL GRID ARRAY  
64X ( 0.25)  
(R0.05) TYP  
(0.5) TYP  
1
2
4
5
6
8
9
3
7
A
(0.5) TYP  
B
C
D
E
F
G
H
J
METAL  
TYP  
SYMM  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:20X  
4222101/A 06/2015  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

SN65DSI84_V01

SN65DSI84 MIPI® DSI Bridge To FLATLINK™ LVDS Single Channel DSI to Dual-Link LVDS Bridge
TI

SN65DSI85

MIPI DSI BRIDGE TO FLATLINK LVDS Dual Channel DSI to Dual-Link LVDS Bridge
TI

SN65DSI85-Q1

汽车类双通道 MIPI DSI 转双链路 FlatLink™ LVDS 桥接器
TI

SN65DSI85TPAPRQ1

汽车类双通道 MIPI DSI 转双链路 FlatLink™ LVDS 桥接器 | PAP | 64 | -40 to 105
TI

SN65DSI85ZQE

MIPI DSI BRIDGE TO FLATLINK LVDS Dual Channel DSI to Dual-Link LVDS Bridge
TI

SN65DSI85ZQER

MIPI DSI BRIDGE TO FLATLINK LVDS Dual Channel DSI to Dual-Link LVDS Bridge
TI

SN65DSI85ZQET

IC SPECIALTY TELECOM CIRCUIT, Telecom IC:Other
TI

SN65DSI85ZXHR

双通道 MIPI® DSI 转双链路 FlatLink™ LVDS 桥接器 | ZXH | 64 | -40 to 85
TI

SN65DSI86

Embedded DisplayPort (eDP) 1.4 Compliant Supporting 1, 2, or 4 Lanes at 1.62Gbps (RBR)
TI

SN65DSI86-Q1

汽车类 MIPI® DSI 桥接转 eDP
TI

SN65DSI86IPAPQ1

汽车类 MIPI® DSI 桥接转 eDP | PAP | 64 | -40 to 85
TI

SN65DSI86IPAPRQ1

汽车类 MIPI® DSI 桥接转 eDP | PAP | 64 | -40 to 85
TI