SN65DP141 [TI]

12Gbps DP 1.4/eDP1.4 线性转接驱动器;
SN65DP141
型号: SN65DP141
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

12Gbps DP 1.4/eDP1.4 线性转接驱动器

驱动 驱动器
文件: 总35页 (文件大小:1681K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN65DP141  
ZHCSEQ7C FEBRUARY 2016 REVISED DECEMBER 2021  
SN65DP141 DisplayPort 线性转接驱动器  
1 特性  
3 说明  
• 支VESA DisplayPort 1.4a、  
2.0 eDP 1.4  
• 四通道线性转接驱动器支持高12Gbps 的数据  
速率DisplayPort RBRHBRHBR2、  
HBR3 UHBR10  
• 与协议无关  
• 透明呈DP 链路训练  
• 与在链路上的位置无关适用于源端、接收端和电  
缆应用  
6GHz 时模拟均衡15dB  
• 输出线性动态范围1200mV  
• 带宽>20 GHz  
6GHz 时的回波损耗优16dB  
2.5V 3.3V ±5% 单电源选项  
• 低功耗2.5V VCC 时每通80mW  
GPIO I2C 控制  
SN65DP141 是一款与协议无关的异步、低延迟、四通  
道线性均衡器该器件经过优化适用于高达 12Gbps  
的数据速率并且可对电路板走线和电缆所产生的损耗进  
行补偿。  
该器件透明呈现 DisplayPort (DP) 链路训练这使得  
DP 发送设备和接收设备能够执行有效的链路训练克  
服了传统 aux snooping 转接驱动器的缺点。此外该  
器件与位置无关。它可置于源设备、电缆或接收设备  
而为总体链路预算有效提供损耗 量。  
SN65DP141 内的线性均衡在与接收器搭配使用时还可  
提高链路裕度从而实现判决反馈均(DFE)。  
SN65DP141 支持采用 I2C GPIO 配置对均衡、增  
益、动态范围进行独立通道控制。  
器件信息(1)  
封装尺寸标称值)  
器件型号  
SN65DP141  
封装  
WQFN (38)  
7.00mm × 5.00mm  
2 应用  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
平板电脑  
笔记本电脑  
台式机  
.
.
扩展坞  
DP141  
DP0  
OUTP0  
OUTP1  
ML0  
ML1  
DP1  
DP2  
OUTP2  
OUTP3  
x
ML2  
GPU  
x
x
DP3  
ML3  
DP141  
AUXp  
AUXn  
GPU  
DP141  
AUXp  
AUXn  
HPD  
HPD  
Copyright © 2016, Texas Instruments Incorporated  
简化版原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLLSES6  
 
 
 
 
SN65DP141  
www.ti.com.cn  
ZHCSEQ7C FEBRUARY 2016 REVISED DECEMBER 2021  
Table of Contents  
8.3 Feature Description...................................................16  
8.4 Device Functional Modes..........................................17  
8.5 Register Maps...........................................................18  
9 Application and Implementation..................................24  
9.1 Application Information............................................. 24  
9.2 Typical Application.................................................... 24  
10 Power Supply Recommendations..............................26  
11 Layout...........................................................................27  
11.1 Layout Guidelines................................................... 27  
11.2 Layout Example...................................................... 28  
12 Device and Documentation Support..........................29  
12.1 接收文档更新通知................................................... 29  
12.2 支持资源..................................................................29  
12.3 Trademarks.............................................................29  
12.4 Electrostatic Discharge Caution..............................29  
12.5 术语表..................................................................... 29  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................6  
6.5 Electrical Characteristics.............................................6  
6.6 Switching Characteristics............................................8  
6.7 Switching Characteristics, I2C Interface......................9  
6.8 Typical Characteristics..............................................10  
7 Parameter Measurement Information.......................... 11  
8 Detailed Description......................................................15  
8.1 Overview...................................................................15  
8.2 Functional Block Diagram.........................................15  
Information.................................................................... 29  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision B (September 2021) to Revision C (December 2021)  
Page  
Changed the I2C_EN pin Type from internal pull-up to internal pull-down ........................................................3  
Changes from Revision A (October 2016) to Revision B (September 2021)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
• 将特性从“支VESA DisplayPort 1.3 eDP 1.4”更新为“支VESA DisplayPort 1.4a2.0 eDP  
1.4................................................................................................................................................................... 1  
• 将特性从“包DisplayPort RBRHBRHBR2 HBR3”更新为“包DisplayPort RBRHBRHBR2、  
HBR3 UHBR10...........................................................................................................................................1  
Updated the DP bit rates from: RBR to HBR3 (1.6 Gbps, 2.7 Gbps, 5.4 Gbps and 8.1 Gbps ... to: RBR to  
UHBR10 (1.6 Gbps, 2.7 Gbps, 5.4 Gbps, 8.1 Gbps and 10.0 Gbps in the Overview section......................15  
Updated Operating data rate from HBR3 (8.1 Gbps) to UHBR10 (10 Gbps)................................................... 24  
Changes from Revision * (February 2016) to Revision A (October 2016)  
Page  
Replaced 9-2 ...............................................................................................................................................25  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: SN65DP141  
 
SN65DP141  
www.ti.com.cn  
ZHCSEQ7C FEBRUARY 2016 REVISED DECEMBER 2021  
5 Pin Configuration and Functions  
38  
37  
36  
35  
34  
33  
32  
OUT0_P  
OUT0_N  
VCC  
IN0_P  
1
31  
30  
29  
28  
27  
IN0_N  
2
VCC  
IN1_P  
IN1_N  
3
OUT1_P  
4
5
OUT1_N  
VCC  
6
VCC  
VCC  
26  
25  
24  
Thermal  
Pad  
7
VCC  
OUT2_P  
IN2_P  
IN2_N  
8
23  
22  
21  
20  
OUT2_N  
9
10  
11  
12  
VCC  
VCC  
OUT3_P  
IN3_P  
IN3_N  
OUT3_N  
13  
14  
15  
16  
17  
18  
19  
It is required for the thermal pad to be soldered to ground for better thermal performance.  
5-1. RLJ Package 38 Pins (WQFN) Top View  
5-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
DIFFERENTIAL HIGH-SPEED I/O  
IN0_P  
1
2
I
I
Differential input, lane 0 (with 50 Ωtermination to input common mode)  
Differential input, lane 1 (with 50 Ωtermination to input common mode)  
Differential input, lane 2 (with 50 Ωtermination to input common mode)  
Differential input, lane 3 (with 50 Ωtermination to input common mode)  
Differential output, lane 0  
IN0_N  
IN1_P  
4
I
IN1_N  
5
I
IN2_P  
8
I
IN2_N  
9
I
IN3_P  
11  
12  
31  
30  
28  
27  
24  
23  
21  
20  
I
IN3_N  
I
OUT0_P  
OUT0_N  
OUT1_P  
OUT1_N  
OUT2_P  
OUT2_N  
OUT3_P  
OUT3_N  
O
O
O
O
O
O
O
O
Differential output, lane 1  
Differential output, lane 2  
Differential output, lane 3  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: SN65DP141  
 
 
SN65DP141  
www.ti.com.cn  
ZHCSEQ7C FEBRUARY 2016 REVISED DECEMBER 2021  
5-1. Pin Functions (continued)  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
15  
CONTROL SIGNALS  
I
I2C mode:  
GPIO mode:  
HIGH: disable Driver peaking  
LOW: enables Driver 6-dB AC peaking  
(with 200-kinternal  
pull-up)  
I2C CLK. Connect a 10-kΩpull-up resistor  
DRV_PK#/SCL  
externally.  
I2C mode:  
ADD2 along with pins ADD1 and ADD0  
comprise the three bits of I2C slave  
address. ADD2:ADD1:ADD0:XXX  
I
GPIO mode:  
HIGH: Trace mode  
LOW: Cable mode  
(with 200-kInternal  
pull-down, 2.5 V/3.3  
V CMOS )  
EQ_MODE/ ADD2  
EQ0/ADD0  
35  
I2C mode:  
ADD0 along with pins ADD1 and ADD2  
comprise the three bits of I2C slave  
address. ADD2:ADD1:ADD0:XXX  
I
GPIO mode:  
33  
(2.5 V/3.3 V CMOS - Working with RX_GAIN and EQ1 to determine the  
3-state)  
receiver DC and AC gain.  
I2C mode:  
I
GPIO mode:  
ADD1 along with pins ADD0 and ADD2  
comprise the three bits of I2C slave  
address ADD2:ADD1:ADD0:XXX  
EQ1/ADD1  
I2C_EN  
PWD#  
34  
16  
37  
(2.5 V/3.3 V CMOS - Working with RX_GAIN and EQ0 to determine the  
3-state)  
receiver DC and AC gain.  
Configures the device operation for I2C or GPIO mode:  
HIGH: enables I2C mode  
I
(with 200-kinternal  
pull-down)  
LOW: enables GPIO mode  
I
HIGH: Normal Operation  
(with 200-kInternal  
pull-up, 2.5 V/3.3 V  
CMOS)  
LOW: Power downs the device, inputs off and outputs disabled, resets I2C  
REXT  
18  
36  
I (analog)  
External Bias Resistor: 1,200 Ωto GND  
I
GPIO mode:  
I2C mode:  
RX_GAIN  
(2.5 V/3.3 V CMOS - Working with EQ0 and EQ1 to determine the  
No action needed  
3-state)  
receiver DC and AC gain.  
I2C mode:  
GPIO mode:  
No action needed.  
I2C data. Connect a 10-kΩpull-up resistor  
SDA  
14  
17  
I/O (open drain)  
externally.  
I
GPIO mode:  
I2C mode:  
(with 200-kInternal  
pull-down, 2.5 V/3.3  
V CMOS)  
TX_DC_GAIN/CS  
HIGH: 6 dB DC gain for transmitter  
LOW: 0 dB DC gain for transmitter  
HIGH: acts as Chip Select  
LOW: disables I2C interface  
POWER SUPPLY  
The ground center pad is the metal contact at the bottom of the package. This pad must be  
connected to the GND plane. At least 15 PCB vias are recommended to minimize inductance  
and provide a solid ground. Refer to the package drawing (RLJ-package) for the via placement.  
GND Center Pad  
Ground  
Power  
3, 6, 7, 10, 13,  
19, 22, 25, 26,  
29, 32, 38  
VCC  
Power supply 2.5 V ±5%, 3.3 V ±5%  
(1) I = input, O = output  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: SN65DP141  
 
SN65DP141  
www.ti.com.cn  
ZHCSEQ7C FEBRUARY 2016 REVISED DECEMBER 2021  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1) (2)  
MIN  
MAX  
4
UNIT  
Supply voltage range  
VCC  
V
V
V
V
0.3  
2.5  
0.5  
0.5  
Differential voltage between INx_P and INx_N  
Voltage at INx_P and INx_N,  
Voltage on control IO pins,VIO  
VIN, DIFF  
VIN+, IN–  
2.5  
VCC + 0.5  
VCC + 0.5  
Continuous current at high speed differential data  
inputs(differential)  
25  
25  
mA  
mA  
IN+, IN–  
25  
25  
Continuous current at high speed differential data  
outputs  
IOUT+, IOUT–  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. .  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
12  
UNIT  
Gbps  
V
DR  
VCC  
TC  
Operating data rate  
Supply voltage  
2.375  
10  
40  
2.5/3.3  
3.465  
125  
85  
Junction temperature  
Operating free-air temperature  
°C  
TA  
°C  
CMOS DC SPECIFICATIONS  
VIH  
Input high voltage  
Input middle voltage  
Input low voltage  
0.8 x VCC  
VCC x 0.4  
0.5  
V
V
V
V(MID)  
VIL  
VCC x 0.6  
0.2 x VCC  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: SN65DP141  
 
 
 
 
 
 
 
 
SN65DP141  
www.ti.com.cn  
ZHCSEQ7C FEBRUARY 2016 REVISED DECEMBER 2021  
6.4 Thermal Information  
SN65DP141  
RLJ (WQFN)  
38 PINS  
36.9  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
22.3  
10.7  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ψJT  
10.6  
ψJB  
RθJC(bot)  
1.9  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER CONSUMPTION  
PDL  
Device Power dissipation  
Device Power dissipation  
VOD = Low, VCC = 3.3 V and all 4 channels  
active  
450  
317  
697  
485  
10  
625  
475  
925  
675  
mW  
mW  
mW  
mW  
mW  
VOD = Low, VCC = 2.5 V and all 4 channels  
active  
PDH  
VOD = High, VCC = 3.3 V and all 4 channels  
active  
VOD = High, VCC = 2.5 V and all 4 channels  
active  
PDOFF  
Device power with all 4 channels Refer to I2C section for device configuration  
switched off  
CMOS DC SPECIFICATIONS  
IIH  
IIL  
High level input current  
Low level input current  
VIN = 0.9 × VCC  
VIN = 0.1 × VCC  
-40  
-40  
17  
17  
40  
40  
µA  
µA  
CML INPUTS (IN[3:0]_P, IN[3:0]_N)  
RIN  
Differential input resistance  
Input linear dynamic range  
Input common mode voltage  
INx_P to INx_N  
Gain = 0.5  
100  
Ω
mVpp  
V
VIN  
1200  
VICM  
Internally biased  
VCC  
0.8  
SCD11  
SDD11  
Input differential to common  
mode conversion  
100 MHz to 6 GHz  
100 MHz to 6 GHz  
-20  
dB  
dB  
Differential input return loss  
-15  
CML OUTPUTS (OUT[3:0]_P, OUT[3:0]_N)  
VOD  
Output linear dynamic range  
1200  
600  
10  
mVpp  
mVpp  
mVpp  
V
RL = 100 Ω, VOD = HIGH  
RL = 100 Ω, VOD = LOW  
VOS  
Output offset voltage  
RL = 100 Ω, 0 V applied at inputs  
VOCM  
Output common mode voltage  
VCC  
0.4  
VCM(RIP)  
VOD(RIP)  
Common mode output ripple  
Differential path output ripple  
K28.5 pattern at 12 Gbps on all 4 channels,  
No interconnect loss, VOD = HIGH  
10  
20 mVRMS  
20 mVpp  
K28.5 pattern at 12 Gbps on all channels, No  
interconnect loss, VIN = 1200 mVpp.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: SN65DP141  
 
 
 
SN65DP141  
www.ti.com.cn  
ZHCSEQ7C FEBRUARY 2016 REVISED DECEMBER 2021  
6.5 Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VOC(SS)  
Change in steady-state common  
mode output voltage between  
logic states  
±10  
mV  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: SN65DP141  
SN65DP141  
www.ti.com.cn  
ZHCSEQ7C FEBRUARY 2016 REVISED DECEMBER 2021  
6.6 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CML OUTPUTS (OUT[3:0]_P, OUT[3:0]_N)  
tR  
Rise time (1)  
Input signal with 30 ps rise time, 20% to 80%,  
See 7-3  
31  
32  
ps  
ps  
tF  
Fall time (1)  
Input signal with 30 ps fall time, 20% to 80%,  
See 7-3  
SDD22  
Differential output return loss  
6 GHz (12 Gbps)  
-14  
9.33  
6.35  
3.5  
65  
dB  
dB  
dB  
dB  
ps  
ps  
ps  
4.05 GHz (HBR3, 8.1 Gbps)  
4.05 GHz (HBR3, 8.1 Gbps)  
1.35 GHz (HBR, 2.7Gbps)  
tPLH  
Low-to-high propagation delay  
High-to-low propagation delay  
Inter-Pair (lane to lane) output skew (2)  
See 7-2  
tPHL  
65  
tSK(O)  
8
All outputs terminated with 100 ,  
See 7-4  
tSK(PP)  
rOT  
Part-to-part skew (3)  
50  
ps  
All outputs terminated with 100 Ω  
Single ended output resistance  
Single ended on-chip termination to VCC  
,
50  
Ω
Outputs are AC coupled  
rOM  
Output termination mismatch at 1 MHz  
5%  
«
÷
rp - rn  
Dr  
= 2 x  
x 100  
OM  
rn + rp  
Channel-to-channel isolation  
Output referred noise(4)  
Frequency at 6 GHz  
35  
45  
dB  
10 MHz to 6 GHz, No other noise source present,  
VOD = LOW  
400  
µVRMS  
10 MHz to 6 GHz, No other noise source present,  
VOD = HIGH  
500  
µVRMS  
EQUALIZATION  
G
At 6 GHz input signal  
Equalization Gain, EQ = MAX  
15  
dB  
dB  
V(pre)  
Output pre-cursor pre-emphasis  
Output post-cursor pre-emphasis  
Input signal with 3.75 pre-cursor and measure it on  
the output signal,  
See 7-5  
3.75  
V(pst)  
Input signal with 12 dB post-cursor and measure it  
on the output signal,  
12  
dB  
See 7-5  
(1) Rise and Fall measurements include board and channel effects of the test environment, refer to 7-1 and 7-3.  
(2) tSK(O) is the magnitude of the time difference between the channels.  
(3) tSK(PP) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices  
operate with the same  
(4) All noise sources added.  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: SN65DP141  
 
 
 
 
 
 
SN65DP141  
www.ti.com.cn  
ZHCSEQ7C FEBRUARY 2016 REVISED DECEMBER 2021  
6.7 Switching Characteristics, I2C Interface  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
KHz  
µs  
fSCL  
SCL clock frequency  
400  
tBUF  
Bus free time between START and STOP conditions  
1.3  
0.6  
tHDSTA  
"Hold time after repeated START condition.  
µs  
After this period, the first clock pulse is generated  
tLOW  
tHIGH  
tSUSTA  
tHDDAT  
tSUDAT  
tR  
Low period of the SCL clock  
High period of the SCL clock  
Setup time for a repeated START condition  
Data HOLD time  
1.3  
0.6  
0.6  
0
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
Data setup time  
100  
Rise time of both SDA and SCL signals  
Fall time of both SDA and SCL signals  
Setup time for STOP condition  
300  
300  
tF  
tSUSTO  
0.6  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: SN65DP141  
 
SN65DP141  
www.ti.com.cn  
ZHCSEQ7C FEBRUARY 2016 REVISED DECEMBER 2021  
6.8 Typical Characteristics  
0
0
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−5  
−10  
−15  
−20  
−25  
−30  
−35  
−40  
−45  
0
2
4
6
Frequency (GHz)  
8
10  
12  
14  
0
2
4
6
Frequency (GHz)  
8
10  
12  
14  
G002  
G003  
6-1. Differential Input Return Loss  
6-2. Differential to Common Mode Conversion  
0
0
−5  
−5  
−10  
−15  
−20  
−25  
−30  
−35  
−40  
−10  
−15  
−20  
−25  
−30  
−35  
−40  
−45  
0
2
4
6
Frequency (GHz)  
8
10  
12  
14  
0
2
4
6
Frequency (GHz)  
8
10  
12  
14  
G004  
G005  
6-3. Differential Output Return Loss  
6-4. Common Mode Output Return Loss  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: SN65DP141  
 
SN65DP141  
www.ti.com.cn  
ZHCSEQ7C FEBRUARY 2016 REVISED DECEMBER 2021  
7 Parameter Measurement Information  
50  
50ꢀ  
OUT+  
VOCM  
OUT-  
1pF  
Copyright © 2016, Texas Instruments Incorporated  
7-1. Common Mode Output Voltage Test Circuit  
SPACE  
V
= 0 V  
IN  
ID  
t
t
PHL  
PLH  
V
= 0 V  
OUT  
OD  
7-2. Propagation Delay Input to Output  
SPACE  
80%  
80%  
VOD  
20%  
20%  
tr  
tf  
7-3. Output Rise and Fall Times  
SPACE  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: SN65DP141  
 
 
 
 
SN65DP141  
www.ti.com.cn  
ZHCSEQ7C FEBRUARY 2016 REVISED DECEMBER 2021  
OUTx  
t
SK(0)  
OUTy  
7-4. Output Inter-Pair Skew  
SPACE  
V
1
V
3
V
2
0V  
V
5
Not drawn to scale  
V
6
V
4
7-5. V(pre) and V(post) (test pattern is 1111111100000000 (8-1s, 8-0s))  
SPACE  
CHARACTERIZATION  
TEST CHANNEL  
BOARD  
SN65DP141  
PATTERN  
GENERATOR  
OSCILLOSCOPE  
L= 2"  
RX+EQ  
OUT  
L= 2"  
7-6. Receive Side Performance Test Circuit  
SPACE  
CHARACTERIZATION BOARD  
TEST CHANNEL  
SN65DP141  
PATTERN  
GENERATOR  
OSCILLOSCOPE  
L= 2"  
L= 2"  
OUT  
7-7. Transmit Side Performance Test Circuit  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: SN65DP141  
 
 
SN65DP141  
www.ti.com.cn  
ZHCSEQ7C FEBRUARY 2016 REVISED DECEMBER 2021  
VCC  
IN+  
R = 50  
T(SE)  
Gain  
Stage  
+EQ  
VCC  
RBBDC  
VBB  
R = 50ꢀ  
T(SE)  
IN-  
Line End Termination  
ESD  
Self-Biasing Network  
Copyright © 2016, Texas Instruments Incorporated  
7-8. Equivalent Input Circuit  
SPACE  
VCC  
VCC  
48 k  
ESD  
IN  
ESD  
48 kꢀ  
Copyright © 2016, Texas Instruments Incorporated  
7-9. 3-Level Input Biasing Network  
7-10. Two Wire Serial Interface Data Transfer  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: SN65DP141  
 
SN65DP141  
www.ti.com.cn  
ZHCSEQ7C FEBRUARY 2016 REVISED DECEMBER 2021  
7-11. Two Wire Serial Interface Timing Diagram  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: SN65DP141  
 
SN65DP141  
www.ti.com.cn  
ZHCSEQ7C FEBRUARY 2016 REVISED DECEMBER 2021  
8 Detailed Description  
8.1 Overview  
The SN65DP141 is an asynchronous, protocol-agnostic, low latency, four-channel linear equalizer optimized for  
use up to 12 Gbps. The characteristics of this device make it transparent to DisplayPort (DP) link training. It  
supports all the available DP bit rates from RBR to UHBR10 (1.6 Gbps, 2.7 Gbps, 5.4 Gbps, 8.1 Gbps, and 10.0  
Gbps respectively). Additionally, the SN65DP141 is configurable to a trace or cable mode, and hence improves  
its performance depending on the type of channel it is being used. Its transparency to the DP link training makes  
the SN65DP141 a position independent device, suitable for source/sink or cable applications, effectively  
providing a negative loss component to the overall link budget, in order to compensate the signal degradation  
over the channel.  
The SN65DP141 is configurable by means of I2C and GPIOs, allowing independent channel control for  
activation, equalization, gain, and dynamic range.  
8.2 Functional Block Diagram  
VCC  
GND  
VBB  
VCC  
Input Buffer with  
Selectable Equalizer  
50  
50 ꢀ  
50 ꢀ  
50 ꢀ  
Output Driver  
IN[3:0]_P  
IN[3:0]_N  
OUT[3:0]_P  
OUT[3:0]_P  
Band-Gap Voltage  
Reference and Bias  
Current Generation  
Power-OnReset  
Power-On  
Reset  
1.2Kꢀ  
200Kꢀ  
200Kꢀ  
6 Bit Register  
General Setting  
DRV_PK#/SCL  
DRV_PK#/SCL  
EQ Control  
3 Bit Register  
4 Bit Register  
1 Bit Register  
1 Bit Register  
Channel Enable  
VOD Swing  
DC Gain  
SDA  
2 Bit Register  
AC Gain  
SDA  
I2C_EN  
I2C_EN  
PWD#  
EQ0/ADD0  
PWD#  
EQ0/ADD0  
EQ1/ADD1  
VOD/CS  
GAIN  
VOD/CS  
GAIN  
EQ1/ADD1  
EQ_MODE/ADD2  
2-Wire Interface and Control Logic  
EQ_MODE/ADD2  
200Kꢀ  
200Kꢀ  
200Kꢀ  
Copyright © 2016, Texas Instruments Incorporated  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: SN65DP141  
 
 
 
 
SN65DP141  
www.ti.com.cn  
ZHCSEQ7C FEBRUARY 2016 REVISED DECEMBER 2021  
8.3 Feature Description  
8.3.1 DC and AC Independent Gain Control  
Besides the functional block diagram, the behavior of the SN65DP141 can be described as it is shown in 8-1;  
where the input stage first applies a DC gain (0 dB or 6 dB) and then equalizes the signal, which is driven to  
the output stage where the SN65DP141 applies an output DC gain (0 dB or 6 dB).  
RX_GAIN(EQ_DC_GAIN)  
TX_GAIN(TX_DC_GAIN)  
EQUALIZATION(EQ_AC_GAIN)  
INx_P  
INx_N  
OUTx_P  
OUTx_N  
Up to 15dB  
0dB or -6dB  
0dB or 6dB  
8-1. DP141 Signal Chain Gain Control  
8.3.2 Two-Wire Serial Interface and Control Logic  
The SN65DP141 uses a 2-wire serial interface for digital control. The two circuit inputs, SDA and SCL, are  
driven, respectively, by the serial data and serial clock from a microcontroller, for example. The SDA and SCK  
pins require external 10 kpull-ups to VCC.  
The 2-wire interface allows write access to the internal memory map to modify control registers and read access  
to read out control and status signals. The SN65DP141 is a slave device only which means that it cannot initiate  
a transmission itself; it always relies on the availability of the SCK signal for the duration of the transmission. The  
master device provides the clock signal as well as the START and STOP commands. The protocol for a data  
transmission is as follows:  
1. START command  
2. 7 bit slave address (0000ADD [2:0]) followed by an eighth bit which is the data direction bit (R/W). A zero  
indicates a WRITE and a 1 indicates a READ. The ADD [2:0] address bits change with the status of the  
ADD2, ADD1, and ADD0 device pins, respectively. If the pins are left floating or pulled down, the 7 bit slave  
address is 0000000.  
3. 8-bit register address  
4. 8-bit register data word  
5. STOP command  
Regarding timing, the SN65DP141 is I2C compatible. The typical timing is shown in 7-11 and a complete data  
transfer is shown in 7-10. Parameters for these figures are defined in the I2C Interface section of the  
Switching Characteristics.  
8.3.3 Bus Idle  
Both SDA and SCL lines remain HIGH  
8.3.4 Start Data Transfer  
A change in the state of the SDA line, from HIGH to LOW, while the SCL line is HIGH, defines a START  
condition (S). Each data transfer is initiated with a START condition.  
8.3.5 Stop Data Transfer  
A change in the state of the SDA line from LOW to HIGH while the SCL line is HIGH defines a STOP condition  
(P). Each data transfer is terminated with a STOP condition; however, if the master still wishes to communicate  
on the bus, it can generate a repeated START condition and address another slave without first generating a  
STOP condition.  
8.3.6 Data Transfer  
The number of data bytes transferred between a START and a STOP condition is not limited and is determined  
by the master device. The receiver acknowledges the transfer of data.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: SN65DP141  
 
 
 
SN65DP141  
www.ti.com.cn  
ZHCSEQ7C FEBRUARY 2016 REVISED DECEMBER 2021  
8.3.7 Acknowledge  
Each receiving device, when addressed, is obliged to generate an acknowledge bit. The transmitter releases the  
SDA line and a device that acknowledges must pull down the SDA line during the acknowledge clock pulse in  
such a way that the SDA line is stable LOW during the HIGH period of the acknowledge clock pulse. Setup and  
hold times must be taken into account. When a slave-receiver doesnt acknowledge the slave address, the  
data line must be left HIGH by the slave. The master can then generate a STOP condition to abort the transfer. If  
the slave-receiver does acknowledge the slave address but some time later in the transfer cannot receive any  
more data bytes, the master must abort the transfer. This is indicated by the slave generating the not  
acknowledge on the first byte to follow. The slave leaves the data line HIGH and the master generates the STOP  
condition.  
8.4 Device Functional Modes  
8.4.1 TRACE and CABLE Equalization Modes  
The SN65DP141 is optimized for both trace and cable application at its input. The device pin EQ_MODE sets  
the EQ gain curve profile suitable for these two use cases.  
8.4.2 Control Modes  
The SN65DP141 features two control modes: GPIO and I2C, and the selection between these two modes is by  
means of the I2C_EN terminal, which activates the GPIO when tied to LOW; otherwise, the I2C mode is active  
due to its internal pull-up resistance.  
8.4.3 GPIO MODE  
Device Pins RX_GAIN, EQ1 and EQ0 determines receiver DC and AC gain as shown in 8-1 and 8-2.  
8-1. EQ Pin Settings  
EQ1  
GND  
GND  
GND  
HiZ  
EQ0  
GND  
HiZ  
EQ Setting  
000  
000  
VCC  
GND  
HiZ  
001  
010  
HiZ  
011  
HiZ  
VCC  
GND  
HiZ  
100  
VCC  
VCC  
VCC  
101  
110  
VCC  
111  
8-2. RX DC and AC GAIN Settings  
EQ Configuration  
EQ Gain  
EQ Setting  
000 - 111  
000 - 111  
000 - 111  
RX_GAIN  
LOW  
EQ_DC_GAIN (dB)  
EQ_AC_GAIN (dB)  
1 - 9  
7 - 17  
1 - 9  
6  
6  
0
HiZ  
HIGH  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: SN65DP141  
 
 
 
SN65DP141  
www.ti.com.cn  
ZHCSEQ7C FEBRUARY 2016 REVISED DECEMBER 2021  
8.4.4 I2C Mode  
8-3. I2C Control Settings Description for RX DC and AC GAIN  
EQ_MODE  
EQ_DC GAIN  
RX_GAIN<1:0>  
EQ_Setting<2:0>  
000 to 111  
000 to 111  
000 to 111  
000 to 111  
000 to 111  
000 to 111  
000 to 111  
000 to 111  
DC GAIN (dB)  
AC GAIN (dB)  
APPLICATION  
00  
11  
01  
11  
00  
11  
01  
11  
1 to 9  
Short Input Cable; Large Input Swing  
Long Input Cable; Large Input Swing  
Short Input Cable; Small Input Swing  
Short Input Cable, Small Input Swing  
Short Input Trace; Large Input Swing  
Long Input Trace; Large Input Swing  
Short Input Trace; Small Input Swing  
Short Input Trace, Small Input Swing  
6  
6  
0
0
7 to 17  
1 to 9  
0
1
0
1
0
2 to 10  
1 to 9  
6  
6  
0
7 to 17  
1 to 9  
1
0
2 to 10  
8.5 Register Maps  
8.5.1 Register 0x00 (General Device Settings) (offset = 00000000) [reset = 00000000]  
8-2. Register 0x00 (General Device Settings)  
7
6
5
4
3
2
1
0
SW_GPIO  
R/W  
PWRDOWN  
R/W  
SYNC_01  
R/W  
SYNC_23  
R/W  
SYNC_ALL  
R/W  
EQ_MODE  
R/W  
RSVD  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8-4. Register 0x00 (General Device Settings)  
Bit  
7
Field  
Type  
Reset  
Description  
SW_GPIO  
R/W  
0
Switching logic is controlled by GPIO or I2C:  
0 = I2C control  
1 = GPIO control  
6
PWRDOWN  
SYNC_01  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
Power down the device:  
0 = Normal operation  
1 = Powerdown  
5
4
3
All settings from channel 1 will be used for channel 0 and 1:  
0 = Channel 0 tracking channel 1 settings  
1 = No tracking tracking  
SYNC_ 23  
SYNC_ALL  
All settings from channel 2 will be used for channel 2 and 3:  
0 = Channel 3 tracking channel 2 settings  
1 = No channel tracking  
All settings from channel 1 will be used on all channels:  
0 = All channels tracking channel 1  
1 = No channel tracking  
Overwrites SYNC_01 and SYNC_23  
2
EQ_MODE  
RSVD  
R/W  
0
Set EQ mode:  
0 = Cable mode  
1 = Trace mode  
1
0
R/W  
R/W  
0
0
For TI use only  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: SN65DP141  
 
 
SN65DP141  
www.ti.com.cn  
ZHCSEQ7C FEBRUARY 2016 REVISED DECEMBER 2021  
8.5.2 Register 0x01 (Channel Enable) (offset = 00000000) [reset = 00000000]  
8-3. Register 0x01 (Channel Enable)  
7
6
5
4
3
2
1
0
LN_EN_CH3  
R/W  
LN_EN_CH2  
R/W  
LN_EN_CH1  
R/W  
LN_EN_CH0  
R/W  
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8-5. Register 0x01 (Channel Enable)  
Bit  
7
Field  
Type  
Reset  
Description  
R
0
0
0
0
0
6
R
5
R
4
R
3
LN_EN_CH3  
LN_EN_CH2  
LN_EN_CH1  
LN_EN_CH0  
R/W  
Channel 3 enable:  
0 = Enable  
1 = Disable  
2
1
0
R/W  
R/W  
R/W  
0
0
0
Channel 3 enable:  
0 = Enable  
1 = Disable  
Channel 1 enable:  
0 = Enable  
1 = Disable  
Channel 0 enable:  
0 = Enable  
1 = Disable  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: SN65DP141  
SN65DP141  
www.ti.com.cn  
ZHCSEQ7C FEBRUARY 2016 REVISED DECEMBER 2021  
8.5.3 Register 0x02 (Channel 0 Control Settings) (offset = 00000000) [reset = 00000000]  
8-4. Register 0x02 (Channel 0 Control Settings)  
7
6
5
4
3
2
1
0
RSVD  
R/W  
EQ Setting<2> EQ Setting<1> EQ Setting<0>  
R/W R/W R/W  
TX_GAIN  
R/W  
EQ_DC_GAIN  
R/W  
RX_GAIN<1>  
R/W  
RX_GAIN<0>  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8-6. Register 0x02 (Channel 0 Control Settings)  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
RSVD  
0
0
0
0
0
6
EQ Setting<2>  
EQ Setting<1>  
EQ Setting<0>  
TX GAIN  
Equalizer adjustment setting:  
000 = Minimum equalization setting  
111 = Maximum equalization setting  
5
4
3
Channel [0] TX_DC_GAIN control:  
0 = Set 0 dB DC gain for transmitter  
1 = Set 6 dB DC gain for transmitter  
2
EQ_DC_GAIN  
R/W  
0
Channel [0] EQ DC gain:  
0 = Set EQ DC gain to -6 dB  
1 = Set EQ DC gain to -0 dB  
1
0
RX_GAIN<1>  
RX_GAIN<0>  
R/W  
R/W  
0
0
Equivalent to RX_GAIN control pin for channel [0].  
00: RX_GAIN = Low  
01: RX_GAIN = HiZ  
11: RX_GAIN = High  
8.5.4 Register 0x03 (Channel 0 Enable Settings) (offset = 00000000) [reset = 00000000]  
8-5. Register 0x03 (Channel 0 Enable Settings)  
7
6
5
4
3
2
1
0
DRV_PEAK  
R/W  
EQ_EN  
R/W  
DRV_EN  
R/W  
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8-7. Register 0x03 (Channel 0 Enable Settings)  
Bit  
7
Field  
Type  
Reset  
Description  
R
0
0
0
0
0
0
6
R
5
R
4
R
3
R
2
DRV_PEAK  
EQ_EN  
R/W  
Channel [0] driver peaking:  
0 = Disables driver Peaking  
1 = Enables driver 6 db AC Peaking"  
1
0
R/W  
R/W  
0
0
Channel [0] EQ stage enable:  
0 = Enable  
1 = Disable  
RSVDRV_EN  
Channel [0] driver stage enable:  
0 = Enable  
1 = Disable  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: SN65DP141  
SN65DP141  
www.ti.com.cn  
ZHCSEQ7C FEBRUARY 2016 REVISED DECEMBER 2021  
8.5.5 Register 0x05 (Channel 1 Control Settings) (offset = 00000000) [reset = 00000000]  
8-6. Register 0x05 (Channel 1 Control Settings)  
7
6
5
4
3
2
1
0
RSVD  
R/W  
EQ Setting<2> EQ Setting<1> EQ Setting<0>  
R/W R/W R/W  
TX_GAIN  
R/W  
EQ_DC_GAIN  
R/W  
RX_GAIN<1>  
R/W  
RX_GAIN<0>  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8-8. Register 0x05 (Channel 1 Control Settings)  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
RSVD  
0
0
0
0
0
6
EQ Setting<2>  
EQ Setting<1>  
EQ Setting<0>  
TX_GAIN  
Equalizer adjustment setting:  
000 = Minimum equalization setting  
111 = Maximum equalization setting  
5
4
3
Channel [1] TX_DC_GAIN control:  
0 = Set 0 dB DC gain for transmitter  
1 = Set 6 dB DC gain for transmitter  
2
EQ_DC_GAIN  
R/W  
0
Channel [1] EQ DC gain:  
0 = Set EQ DC gain to -6 dB  
1 = Set EQ DC gain to -0 dB  
1
0
RX_GAIN<1>  
RX_GAIN<0>  
R/W  
R/W  
0
0
Equivalent to RX_GAIN control pin for channel [1].  
00: RX_GAIN = Low  
01: RX_GAIN = HiZ  
11: RX_GAIN = High  
8.5.6 Register 0x06 (Channel 1 Enable Settings) (offset = 00000000) [reset = 00000000]  
8-7. Register 0x06 (Channel 1 Enable Settings)  
7
6
5
4
3
2
1
0
DRV_PEAK  
R/W  
EQ_EN  
R/W  
DRV_EN  
R/W  
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8-9. Register 0x06 (Channel 1 Enable Settings)  
Bit  
7
Field  
Type  
Reset  
Description  
R
0
0
0
0
0
0
6
R
5
R
4
R
3
R
2
DRV_PEAK  
EQ_EN  
R/W  
Channel [1] driver peaking:  
0 = Disables driver Peaking  
1 = Enables driver 6 db AC Peaking  
1
0
R/W  
R/W  
0
0
Channel [1] EQ stage enable:  
0 = Enable  
1 = Disable  
DRV_EN  
Channel [1] driver stage enable:  
0 = Enable  
1 = Disable  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: SN65DP141  
SN65DP141  
www.ti.com.cn  
ZHCSEQ7C FEBRUARY 2016 REVISED DECEMBER 2021  
8.5.7 Register 0x08 (Channel 2 Control Settings) (offset = 00000000) [reset = 00000000]  
8-8. Register 0x08 (Channel 2 Control Settings)  
7
6
5
4
3
2
1
0
RSVD  
R/W  
EQ Setting<2> EQ Setting<1> EQ Setting<0>  
R/W R/W R/W  
TX_GAIN  
R/W  
EQ_DC_GAIN  
R/W  
RX_GAIN<1>  
R/W  
RX_GAIN<0>  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8-10. Register 0x08 (Channel 2 Control Settings)  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
RSVD  
0
0
0
0
0
6
EQ Setting<2>  
EQ Setting<1>  
EQ Setting<0>  
TX_GAIN  
Equalizer adjustment setting:  
000 = Minimum equalization setting  
111 = Maximum equalization setting  
5
4
3
Channel [2] TX_DC_GAIN control:  
0 = Set 0 dB DC gain for transmitter  
1 = Set 6 dB DC gain for transmitter  
2
EQ_DC_GAIN  
R/W  
0
Channel [2] EQ DC gain:  
0 = Set EQ DC gain to -6 dB  
1 = Set EQ DC gain to -0 dB  
1
0
RX_GAIN<1>  
RX_GAIN<0>  
R/W  
R/W  
0
0
Equivalent to RX_GAIN control pin for channel [2].  
00: RX_GAIN = Low  
01: RX_GAIN = HiZ  
11: RX_GAIN = High  
8.5.8 Register 0x09 (Channel 2 Enable Settings) (offset = 00000000) [reset = 00000000]  
8-9. Register 0x09 (Channel 2 Enable Settings)  
7
6
5
4
3
2
1
0
DRV_PEAK  
R/W  
EQ_EN  
R/W  
DRV_EN  
R/W  
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8-11. Register 0x09 (Channel 2 Enable Settings)  
Bit  
7
Field  
Type  
Reset  
Description  
R
0
0
0
0
0
0
6
R
5
R
4
R
3
R
2
DRV_PEAK  
EQ_EN  
R/W  
Channel [2] driver peaking:  
0 = Disables driver Peaking  
1 = Enables driver 6 db AC Peaking  
1
0
R/W  
R/W  
0
0
Channel [2] driver stage enable:  
0 = Enable  
1 = Disable  
DRV_EN  
Channel [2] driver stage enable:  
0 = Enable  
1 = Disable  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: SN65DP141  
SN65DP141  
www.ti.com.cn  
ZHCSEQ7C FEBRUARY 2016 REVISED DECEMBER 2021  
8.5.9 Register 0x0B (Channel 3 Control Settings) (offset = 00000000) [reset = 00000000]  
8-10. Register 0x0B (Channel 3 Control Settings)  
7
6
5
4
3
2
1
0
RSVD  
R/W  
EQ Setting<2> EQ Setting<1> EQ Setting<0>  
R/W R/W R/W  
TX_GAIN  
R/W  
EQ_DC_GAIN  
R/W  
RX_GAIN<1>  
R/W  
RX_GAIN<0>  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8-12. Register 0x0B (Channel 3 Control Settings)  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
RSVD  
0
0
0
0
0
6
EQ Setting<2>  
EQ Setting<1>  
EQ Setting<0>  
TX_GAIN  
Equalizer adjustment setting:  
000 = Minimum equalization setting  
111 = Maximum equalization setting  
5
4
3
Channel [3] TX_DC_GAIN control:  
0 = Set 0 dB DC gain for transmitter  
1 = Set 6 dB DC gain for transmitter  
2
EQ_DC_GAIN  
R/W  
0
Channel [3] EQ DC gain:  
0 = Set EQ DC gain to -6 dB  
1 = Set EQ DC gain to -0 dB  
1
0
RX_GAIN<1>  
RX_GAIN<0>  
R/W  
R/W  
0
0
Equivalent to RX_GAIN control pin for channel [3].  
00: RX_GAIN = Low  
01: RX_GAIN = HiZ  
11: RX_GAIN = High  
8.5.10 Register 0x0C (Channel 3 Control Settings) (offset = 00000000) [reset = 00000000]  
8-11. Register 0x0C (Channel 3 Enable Settings)  
7
6
5
4
3
2
1
0
DRV_PEAK  
R/W  
EQ_EN  
R/W  
DRV_EN  
R/W  
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8-13. Register 0x0C (Channel 3 Enable Settings)  
Bit  
7
Field  
Type  
Reset  
Description  
R
0
0
0
0
0
0
6
R
5
R
4
R
3
R
2
DRV_PEAK  
EQ_EN  
R/W  
Channel [3] driver peaking:  
0 = Disables driver Peaking  
1 = Enables driver 6db AC Peaking  
1
0
R/W  
R/W  
0
0
Channel [3] EQ stage enable:  
0 = Enable  
1 = Disable  
RSVDRV_EN  
Channel [3] driver stage enable:  
0 = Enable  
1 = Disable  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: SN65DP141  
SN65DP141  
www.ti.com.cn  
ZHCSEQ7C FEBRUARY 2016 REVISED DECEMBER 2021  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The SN65DP141 can be used in Source, Sink, cable, and dongle applications, where the device is transparent  
to the DisplayPort link layer. For illustrating purposes, this section shows the implementation of a DisplayPort  
dongle, 9-1 shows an example of the SN65DP141 on a dongle board, where the AUX channel is directly  
connected from source to sink, meanwhile the power can be provided either way from the DP source or an  
external power source.  
9.2 Typical Application  
3P3V  
POWER SOURCE  
DP SOURCE  
DP SINK  
ML0_IN  
ML1_IN  
ML2_IN  
ML3_IN  
ML0_OUT  
ML1_OUT  
ML2_OUT  
ML3_OUT  
DP141  
3P3V  
AUX  
HPD  
Copyright © 2016, Texas Instruments Incorporated  
9-1. SN65DP141 Application Diagram  
9.2.1 Design Requirements  
The SN65DP141 can be designed into many types of applications. All applications have certain requirements for  
the system to work properly. The voltage rails are required to support the lowest possible power consumption.  
Configure the device by using I2C. The GPIO configuration is provided as I2C is not available in all cases.  
Because sources may have different naming conventions, confirm the link between source and sink is correctly  
mapped through the SN65DP141.  
9-1. Design Parameters  
PARAMETER  
Operating data rate  
Supply voltage  
VALUE  
UHBR10 (10 Gbps)  
3.3 V  
Main link input voltage  
Control pin Low  
VID = 75 mVpp to 1.2 Vpp  
1 Kpulled to GND  
No Connect  
Control pin Mid  
Control pin Low  
1 Kpulled to High  
75 to 200 nF, recommend 100 nF  
Main link AC decoupling capacitor  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: SN65DP141  
 
 
 
 
 
SN65DP141  
www.ti.com.cn  
ZHCSEQ7C FEBRUARY 2016 REVISED DECEMBER 2021  
First approach for GAIN configuration: It is highly recommend that DC GAIN be set to 1, this leads the output to  
preserve the input amplitude (GAIN = 1):  
For GPIO implementation: Use a pull-up resistor on the GAIN terminal (pin 36), refer to the schematic in 图  
9-2.  
For I2C implementation: write a 1 to the bit 2 of the registers 0x02, 0x05, 0x08 and 0x0B. Refer to 8.3.2 for  
a detailed description of the I2C interface  
9.2.2 Detailed Design Procedure  
Designing in the SN65DP141 requires the following:  
Determine the loss profile on the DP input and output channels and cables.  
Based upon the loss profile and signal swing, determine the optimal configuration for the SN65DP141, to  
pass electrical compliance (Equalization mode, EQ Gain, DC gain, and AC Gain).  
See 9-2 for information on using the AC coupling capacitors and control pin resistors, as well as for  
recommended decouple capacitors from VCC pins to ground.  
Configure the TheSN65DP141 using the GPIO terminals or the I2C interface:  
GPIO Using the terminals EQ_MODE, EQ1, EQ1, and gain.  
I2C Refer to the I2C Register Maps and the Two-Wire Serial Interface and Control Logic sections for a  
detailed configuration procedures.  
The thermal pad must be connected to ground.  
3P3V  
Place near DP141  
C1  
C2  
0.1uF  
C3  
0.1uF  
C4  
0.1uF  
C5  
0.1uF  
C6  
0.1uF  
C7  
C8  
0.1uF  
C9  
0.1uF  
C10  
0.1uF  
C11  
0.1uF  
BOARD_3P3V  
10uF  
0.1uF  
3P3V  
LP1  
LP2  
FB1  
220  
@
100MHZ  
Connecting to DP Receiver  
U1  
0201  
0.1uF  
0201  
0.1uF  
SNK_DP_ML0P  
SNK_DP_ML0N  
C12  
C14  
C13  
C16  
SRC_DP_ML0P  
SRC_DP_ML0N  
SNK_DP_ML0P  
SNK_DP_ML0N  
141_DP_IN0P  
141_DP_IN0N  
141_DP_OUT0P  
141_DP_OUT0N  
0.1uF  
0201  
0201  
0.1uF  
1
2
31  
30  
0.1uF  
0201  
0201  
0.1uF  
IN0_P  
IN0_N  
OUT0_P  
OUT0_N  
141_DP_IN1P  
141_DP_IN1N  
141_DP_OUT1P  
141_DP_OUT1N  
SNK_DP_ML1P  
SNK_DP_ML1N  
C15  
C18  
4
5
28  
27  
C17  
C19  
SRC_DP_ML1P  
SRC_DP_ML1N  
SNK_DP_ML1P  
SNK_DP_ML1N  
IN1_P  
IN1_N  
OUT1_P  
OUT1_N  
0.1uF  
0201  
0201  
0.1uF  
0.1uF  
0201  
0201  
0.1uF  
141_DP_IN2P  
141_DP_IN2N  
141_DP_OUT2P  
141_DP_OUT2N  
8
9
24  
23  
IN2_P  
IN2_N  
OUT2_P  
OUT2_N  
SNK_DP_ML2P  
SNK_DP_ML2N  
C20  
C22  
C21  
C23  
SRC_DP_ML2P  
SRC_DP_ML2N  
SNK_DP_ML2P  
SNK_DP_ML2N  
141_DP_IN3P  
141_DP_IN3N  
141_DP_OUT3P  
141_DP_OUT3N  
11  
12  
21  
20  
IN3_P  
IN3_N  
OUT3_P  
OUT3_N  
0.1uF  
0201  
0201  
0.1uF  
0.1uF  
0201  
0201  
0.1uF  
SDA  
14  
15  
16  
17  
BOARD_3P3V  
SDA  
DRV_PK#/SCL  
I2C_EN  
VOD/CS  
SNK_DP_ML3P  
SNK_DP_ML3N  
C24  
C26  
C25  
C27  
SRC_DP_ML3P  
SRC_DP_ML3N  
SNK_DP_ML3P  
SNK_DP_ML3N  
DRV_PK#/SCL  
I2C_EN  
VOD/CS  
18  
REXT  
0.1uF  
0201  
0.1uF  
0201  
R1  
R10  
1K  
EQ0/ADD0  
EQ1/ADD1  
EQ_MODE/ADD2  
33  
34  
35  
36  
EQ0/ADD0  
EQ1/ADD1  
EQ_MODE/ADD2  
GAIN  
37  
39  
PWD#  
1.2K  
PWD#  
PwPd  
NOTE: ALL DIFF PAIRS ARE  
ROUTEDTO 90 OHMS  
DIFFERENTIAL AND 50 OHMS  
COMMON MODE. ALL OTHER  
TRACES ARE 50 OHM.  
NOTE:Min of 15 Vias  
recommended for GND Pad  
connection  
DP141  
3P3V  
3P3V  
BOARD_3P3V  
BOARD_3P3V  
BOARD_3P3V  
BOARD_3P3V  
BOARD_3P3V  
BOARD_3P3V  
R3  
1K  
R4  
DNI, 1K  
R5  
DNI, 1K  
R6  
DNI, 1K  
R7  
DNI, 1K  
R8  
DNI, 1K  
R9  
DNI, 1K  
R2  
1K  
SILKSCREEN:  
J0  
J1  
J2  
1
2
3
J3  
J4  
1
2
3
J5  
1
2
3
J6  
1
2
3
1
2
3
1
2
3
1
2
3
EN  
SDA  
DRV_PK#/SCL  
I2C_EN  
EQ_MODE/ADD2  
VOD/CS  
EQ0/ADD0  
EQ1/ADD1  
PWD#  
1
4
3
Device disable/I2C Reset if asserted low  
HDR3X1  
M
.1  
HDR3X1  
R11  
DNI, 1K  
M
.1  
HDR3X1  
M
.1  
HDR3X1  
R13  
DNI, 1K  
M
.1  
HDR3X1  
R14  
DNI, 1K  
M
.1  
HDR3X1  
R15  
DNI, 1K  
M
.1  
HDR3X1  
R16  
DNI, 1K  
M .1  
SW1  
B3SN-3012  
R12  
DNI, 1K  
2
C28  
1uF  
BOARD_3P3V  
R18  
0R  
Value of the cap to vary  
depending on power rail  
ramp-up time  
5V  
R28  
175K  
BOARD_3P3V  
5V  
J13  
VBUS Shield1  
1
2
3
4
5
6
7
8
9
10  
11  
L1  
U2  
J8  
D-  
D+  
ID  
Shield2  
Shield3  
Shield4  
8
1
3
2
7
VIN  
SW  
DRV_PK#/SCL  
SDA  
1
3
5
7
9
2
4
6
8
10  
1uH  
GND Shield5  
Shield6  
EN  
J12  
C29  
1
2
3
5
4
MODE  
GND  
VOS  
FB  
USB2_micAB_Recept  
DP_PWR  
DP_PWR_SRC  
10uF  
C30  
22uF  
HDR3X1  
M .1  
Header 5x2 0.1" Shroud RA thru-hole  
TPS62082DSGT  
9-2. SN65DP141 Application Schematic  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: SN65DP141  
 
 
SN65DP141  
www.ti.com.cn  
ZHCSEQ7C FEBRUARY 2016 REVISED DECEMBER 2021  
9.2.3 Application Curves  
0.25  
0
−5  
3 meter  
6 meter  
6 meter (See Note A)  
3 meter  
6 meter  
6 meter (See Note A)  
0.2  
0.15  
0.1  
−10  
−15  
−20  
−25  
−30  
−35  
−40  
−45  
0.05  
0
0
200 400 600 800 1k 1.2k 1.4k 1.6k 1.8k 2k  
Time (ps)  
0
2
4 6  
Frequency (GHz)  
8
10  
G006  
G007  
With SN65DP141 -> EQ = 4, VOD = High, ACGain = HiZ,  
DCGain = Low  
With SN65DP141 -> EQ = 4, VOD = High, ACGain = HiZ,  
DCGain = Low  
9-3. Cable Mode Symbol Response  
9-4. Cable Mode Frequency Domain  
0.35  
0
3 meter  
6 meter  
3 meter  
6 meter  
6 meter (See Note A)  
−5  
−10  
6 meter (See Note A)  
0.3  
0.25  
0.2  
0.15  
0.1  
0.05  
0
−15  
−20  
−25  
−30  
−35  
−40  
−45  
−50  
0
200 400 600 800 1k  
Time (ps)  
1k  
1k  
2k  
2k  
2k  
0
2
4
Frequency (GHz)  
6
8
10  
G008  
G009  
With SN65DP141 -> EQ = 7, VOD = High, ACGain = High,  
DCGain = Low  
With SN65DP141 -> EQ = 7, VOD = High, ACGain = High,  
DCGain = Low  
9-5. Trace Mode Symbol Response  
9-6. Trace Mode Frequency Domain  
10 Power Supply Recommendations  
To minimize the power supply noise floor, provide good decoupling near the SN65DP141 power pins. It is  
recommended to place one 0.01-μF ceramic capacitor at each power pin, and two 0.1-μF ceramic capacitors  
on each power node. The distance between the SN65DP141 and capacitors should be minimized to reduce loop  
inductance and provide optimal noise filtering. Placing the capacitor underneath the SN65DP141 on the bottom  
of the PCB is often a good choice. A 100-pF ceramic capacitor can be put at each power pin to optimize the EMI  
performance.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: SN65DP141  
 
SN65DP141  
www.ti.com.cn  
ZHCSEQ7C FEBRUARY 2016 REVISED DECEMBER 2021  
11 Layout  
11.1 Layout Guidelines  
Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for  
transmission line interconnects and provides an excellent low-inductance path for the return current flow.  
Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance.  
Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links  
usually have margin to tolerate discontinuities such as vias.  
If an additional supply voltage plane or signal layer is needed, add a second power/ground plane system to  
the stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping. Also  
the power and ground plane of each power system can be placed closer together, thus increasing the high  
frequency bypass capacitance significantly.  
The control pin pull-up and pull-down resistors are shown in application section for reference. If a high level is  
needed then only uses the pull up. If a low level is needed only use the pull down.  
Place passive components within the signal path, such as source-matching resistors or ac-coupling  
capacitors, next to each other. Routing as in case a) creates wider trace spacing than in b); the resulting  
discontinuity, however, is limited to a far narrower area.  
When routing traces next to a via or between an array of vias, make sure that the via clearance section does  
not interrupt the path of the return current on the ground plane below.  
Avoid metal layers and traces underneath or between the pads off the DisplayPort connectors for better  
impedance matching. Otherwise they will cause the differential impedance to drop below 75 and fail the  
board during TDR testing.  
Use solid power and ground planes for 100 impedance control and minimum power noise.  
For a multi-layer PCB, it is recommended to keep one common GND layer underneath the device and  
connect all ground terminals directly to this plane. For 100 differential impedance, use the smallest trace  
spacing possible, which is usually specified by the PCB vendor.  
Keep the trace length as short as possible to minimize attenuation.  
Place bulk capacitors (that is, 10 μF) close to power sources, such as voltage regulators or where the power  
is supplied to the PCB.  
Layer 1:DP Signal layer  
5 to 10 mils  
Layer 2: Ground plane  
20 to 40 mils  
Layer 3: Power plane  
5 to 10 mils  
Layer 4: Control signal layer  
11-1. PCB Stack  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: SN65DP141  
 
 
SN65DP141  
www.ti.com.cn  
ZHCSEQ7C FEBRUARY 2016 REVISED DECEMBER 2021  
11.2 Layout Example  
11-2. Example Layout (Top)  
11-3. Example Layout (Top)  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: SN65DP141  
 
SN65DP141  
www.ti.com.cn  
ZHCSEQ7C FEBRUARY 2016 REVISED DECEMBER 2021  
12 Device and Documentation Support  
12.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: SN65DP141  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Dec-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
SN65DP141RLJR  
SN65DP141RLJT  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
RLJ  
RLJ  
38  
38  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
DP141  
DP141  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Dec-2021  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Dec-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
SN65DP141RLJR  
SN65DP141RLJT  
WQFN  
WQFN  
RLJ  
RLJ  
38  
38  
3000  
250  
330.0  
330.0  
16.4  
16.4  
5.25  
5.25  
7.25  
7.25  
1.45  
1.45  
8.0  
8.0  
16.0  
16.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Dec-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
SN65DP141RLJR  
SN65DP141RLJT  
WQFN  
WQFN  
RLJ  
RLJ  
38  
38  
3000  
250  
367.0  
367.0  
367.0  
367.0  
38.0  
38.0  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SN65DP141RLJR

12Gbps DP 1.4/eDP1.4 线性转接驱动器 | RLJ | 38 | -40 to 85
TI

SN65DP141RLJT

12Gbps DP 1.4/eDP1.4 线性转接驱动器 | RLJ | 38 | -40 to 85
TI

SN65DP149

工作温度为 -40°C 至 85°C 的 3.4Gbps DP++ 1.1 至 HDMI 1.4b 重定时器
TI

SN65DP149RSBR

工作温度为 -40°C 至 85°C 的 3.4Gbps DP++ 1.1 至 HDMI 1.4b 重定时器 | RSB | 40 | -40 to 85
TI

SN65DP149RSBT

工作温度为 -40°C 至 85°C 的 3.4Gbps DP++ 1.1 至 HDMI 1.4b 重定时器 | RSB | 40 | -40 to 85
TI

SN65DP159

工作温度为 0°C 至 85°C 的 6Gbps DP++ 1.1 至 HDMI 2.0 重定时器
TI

SN65DP159RGZR

工作温度为 0°C 至 85°C 的 6Gbps DP++ 1.1 至 HDMI 2.0 重定时器 | RGZ | 48 | -40 to 85
TI

SN65DP159RGZT

工作温度为 0°C 至 85°C 的 6Gbps DP++ 1.1 至 HDMI 2.0 重定时器 | RGZ | 48 | -40 to 85
TI

SN65DP159RSBR

工作温度为 0°C 至 85°C 的 6Gbps DP++ 1.1 至 HDMI 2.0 重定时器 | RSB | 40 | -40 to 85
TI

SN65DP159RSBT

工作温度为 0°C 至 85°C 的 6Gbps DP++ 1.1 至 HDMI 2.0 重定时器 | RSB | 40 | -40 to 85
TI

SN65DPHY440SS

工作温度为 -40°C 至 85°C 的 MIPI® CSI-2/DSI DPHY 重定时器
TI

SN65DPHY440SSRHRR

工作温度为 -40°C 至 85°C 的 MIPI® CSI-2/DSI DPHY 重定时器 | RHR | 28 | -40 to 85
TI