SN6505BDBVT [TI]

适用于隔离电源的低噪声、1A、420kHz 变压器驱动器 | DBV | 6 | -55 to 125;
SN6505BDBVT
型号: SN6505BDBVT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于隔离电源的低噪声、1A、420kHz 变压器驱动器 | DBV | 6 | -55 to 125

变压器 驱动 光电二极管 接口集成电路 驱动器
文件: 总38页 (文件大小:1359K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
SN6505A, SN6505B  
ZHCSE71G SEPTEMBER 2015REVISED NOVEMBER 2018  
适用于隔离式电源的 SN6505 低噪声 1A 变压器驱动器  
1 特性  
3 说明  
1
用于变压器的推挽式驱动器  
SN6505 是一款低噪声、低 EMI、推挽式变压器驱动  
器,专为小型隔离式电源而设计。该器件通过 2.25V  
5V 的直流电源来驱动薄型、中间抽头的变压器。  
通过输出开关电压的转换速率控制和扩频时钟 (SSC)  
可实现超低噪声和 EMISN6505 包含一个振荡器,之  
后是一个栅极驱动器电路,此电路提供补偿输出信号以  
驱动接地参考 N 通道电源开关。该器件包含两个 1A  
电源 MOSFET 开关,确保在重负载条件下正常启动。  
开关时钟也可由外部提供,这样可确保准确定位开关谐  
波或者与多个互感器驱动器搭配使用。内部保护 功能  
包括一个 1.7A 的电流限制、欠压锁定、热关断且先断  
后通型电路。SN6505 具有软启动特性,可防止大负载  
电容器在上电过程中出现高浪涌电流。SN6505 可采用  
小型 6 引脚 SOT23/DBV 封装。该器件的运行温度范  
围为 –55°C 125°C。  
宽输入电压范围:2.25V 5.5V  
高输出驱动:5V 电源时为 1A  
RON4.5V 电源时的最大值为 0.25Ω  
超低 EMI  
扩频时钟  
精密内部振荡器选项:160kHz (SN6505A) 和  
420kHzSN6505B)  
通过外部时钟输入同步多个器件  
转换率控制  
1.7A 限流  
低关断电流:< 1μA  
热关断  
宽温度范围:–55°C 125°C  
小型 6 引脚 SOT23 (DBV) 封装  
具有软启动,可减小浪涌电流  
器件信息(1)  
器件型号  
SN6505A  
SN6505B  
封装  
封装尺寸(标称值)  
2 应用  
用于控制器局域网 (CAN)RS-485RS-422、  
SOT236 引脚)  
2.90mm × 1.60mm  
RS-232、串行外设接口 (SPI)I2C、低功耗局域  
(LAN) 的隔离电源  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
低噪声隔离式 USB 电源  
过程控制  
电信电源  
无线电电源  
分布式电源  
医疗仪器  
精密仪器  
低噪声灯丝电源  
简化原理图  
SN6505  
GND  
VOUT  
4
3
2
1
D2  
VCC  
Enable  
5
6
EN  
V
CC  
Ext Clock  
CLK  
D1  
10µF 0.1µF  
10µF  
Copyright © 2016, Texas Instruments Incorporated  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLLSEP9  
 
 
 
 
 
SN6505A, SN6505B  
ZHCSE71G SEPTEMBER 2015REVISED NOVEMBER 2018  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 18  
Application and Implementation ........................ 19  
9.1 Application Information............................................ 19  
9.2 Typical Application .................................................. 20  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 6  
6.6 Timing Requirements................................................ 7  
6.7 Typical Characteristics, SN6505A ............................ 8  
6.8 Typical Characteristics, SN6505B .......................... 10  
Parameter Measurement Information ................ 14  
Detailed Description ............................................ 16  
8.1 Overview ................................................................. 16  
8.2 Functional Block Diagram ....................................... 16  
8.3 Feature Description................................................. 16  
9
10 Power Supply Recommendations ..................... 28  
11 Layout................................................................... 28  
11.1 Layout Guidelines ................................................. 28  
11.2 Layout Example .................................................... 28  
12 器件和文档支持 ..................................................... 29  
12.1 器件支持................................................................ 29  
12.2 文档支持................................................................ 29  
12.3 相关链接................................................................ 29  
12.4 接收文档更新通知 ................................................. 29  
12.5 社区资源................................................................ 29  
12.6 ....................................................................... 29  
12.7 静电放电警告......................................................... 29  
12.8 术语表 ................................................................... 29  
13 机械、封装和可订购信息....................................... 30  
7
8
4 修订历史记录  
Changes from Revision F (September 2016) to Revision G  
Page  
通篇进行了编辑性更正和修改 ................................................................................................................................................ 1  
Added Soft-Start description in Device Functional Modes section ...................................................................................... 18  
Changed 3 V to 2.25 V in the description of Drive Capability section ................................................................................. 20  
Changed Schottky diode RB168M-40 to RB168MM-40 in Diode Selection section ............................................................ 21  
Changed fmin to 138 kHz for SN6505A and 363 kHz for SN6505B in V-t Product Calculation section and updated  
Equation 4............................................................................................................................................................................. 22  
Changed load current, VDO-max, VO-max, RDS-max and ID-max values and updated Equation 11 in Turns Ratio Estimate  
Example ............................................................................................................................................................................... 23  
Changed LDO from 'No' to 'Yes' for transformer ORDER NO. 750313638 and 750313626 in Table 3 .............................. 25  
Updated Figure 48................................................................................................................................................................ 26  
已更改 静电放电注意事项.............................................................................................................................................. 29  
Changes from Revision E (August 2016) to Revision F  
Page  
Changed text From: "connected as possible" To: "connected as close as possible" in Power Supply Recommendations 28  
Changes from Revision D (August 2016) to Revision E  
Page  
Changed Table 3, and added Note 1 ................................................................................................................................... 25  
Changes from Revision C (August 2016) to Revision D  
Page  
Typical Characteristics, SN6505A, added Figure 1 and Figure 2 back into the datasheet ................................................... 8  
Typical Characteristics, SN6505A, added Figure 9 to Figure 33 back into the datasheet .................................................... 8  
Typical Characteristics, SN6505B, added Figure 11 and Figure 12 back into the datasheet ............................................. 10  
Typical Characteristics, SN6505B, added Figure 31 and Figure 32 back into the datasheet ............................................. 12  
2
版权 © 2015–2018, Texas Instruments Incorporated  
 
SN6505A, SN6505B  
www.ti.com.cn  
ZHCSE71G SEPTEMBER 2015REVISED NOVEMBER 2018  
Changed Table 3 .................................................................................................................................................................. 25  
Changes from Revision B (February 2016) to Revision C  
Page  
Changed the Typical Characteristics, SN6505A section........................................................................................................ 8  
Added the Typical Characteristics, SN6505B section .......................................................................................................... 10  
Changed Table 3 .................................................................................................................................................................. 25  
Changes from Revision A (October 2015) to Revision B  
Page  
Changed the Thermal Information table From: 16 Pin DW (SOIC) To: 6 Pin DBV (SOT-23) ............................................... 5  
Changes from Original (September 2015) to Revision A  
Page  
量产发布 ................................................................................................................................................................................. 1  
Copyright © 2015–2018, Texas Instruments Incorporated  
3
SN6505A, SN6505B  
ZHCSE71G SEPTEMBER 2015REVISED NOVEMBER 2018  
www.ti.com.cn  
5 Pin Configuration and Functions  
DBV Package  
SOT-23 (6 Pin)  
Top View  
6
D1  
CLK  
EN  
1
VCC  
5
4
2
3
GND  
D2  
Pin Functions  
PIN  
DESCRIPTION  
NAME  
NO.  
TYPE  
Open drain output of the first power MOSFETs. Typically connected to the outer terminals of the  
center tap transformer. Because large currents flow through these pins, their external traces  
should be kept short.  
D1  
1
O
This is the device supply pin. It should be bypassed with a 4.7 μF or greater, low ESR capacitor.  
When VCC 2.25 V, an internal undervoltage lockout circuit trips and turns both outputs off.  
VCC  
D2  
2
3
P
Open drain output of the second power MOSFETs. Typically connected to the outer terminals of  
the center tap transformer. Because large currents flow through these pins, their external traces  
should be kept short.  
O
GND is connected to the source of the power MOSFET switches via an internal sense circuit.  
Because large currents flow through it, the GND terminals must be connected to a low-inductance  
quality ground plane.  
GND  
4
P
The EN pin turns the device on or off. Grounding or leaving this pin floating disables all internal  
EN  
5
6
I
I
circuitry. If unused this pin should be tied directly to VCC  
.
This pin is used to run the device with external clock. Internally it is pulled down to GND. If valid  
clock is not detected on this pin, the device shifts automatically to internal clock.  
CLK  
4
Copyright © 2015–2018, Texas Instruments Incorporated  
SN6505A, SN6505B  
www.ti.com.cn  
ZHCSE71G SEPTEMBER 2015REVISED NOVEMBER 2018  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1). All typical values are at TA = 25°C, VCC = 5 V.  
MIN  
–0.5  
–0.5  
MAX  
UNIT  
(2)  
Supply voltage  
Voltage  
VCC  
6
VCC + 0.5(3)  
16  
V
EN, CLK  
D1, D2  
Output switch voltage  
V
A
Peak output switch current I(D1)Pk, I(D2)Pk  
Junction temperature, TJ  
2.4  
-55  
150  
°C  
°C  
Storage temperature range, Tstg  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings cause permanent damage to the device. These are stress ratings only  
and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods affects device reliability.  
(2) All voltage values except differential I/O bus voltages are with respect to the local ground terminal (GND) and are peak voltage values.  
(3) Maximum voltage of 6V.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
±6000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101,  
all pins(2)  
±1500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
MIN  
TYP  
MAX  
5.5  
UNIT  
VCC  
Supply voltage  
2.25  
V
2.25 V < VCC < 2.8 V  
2.8 V < VCC < 5.5 V  
0.75  
1
ID1, ID2  
TA  
Output switch current - Primary side  
Ambient temperature  
A
–55  
125  
°C  
6.4 Thermal Information  
SN6505  
DBV (SOT-23)  
6 PINS  
137.7  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
57.7  
46.0  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
13.4  
ψJB  
44.9  
RθJC(bottom)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2015–2018, Texas Instruments Incorporated  
5
 
SN6505A, SN6505B  
ZHCSE71G SEPTEMBER 2015REVISED NOVEMBER 2018  
www.ti.com.cn  
6.5 Electrical Characteristics  
over full-range of recommended operating conditions, unless otherwise noted. All typical values are at TA = 25°C, VCC = 5 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VOLTAGE SUPPLY  
Supply Current (2.8 V < VCC < 5.5)  
(SN6505A)  
RL = 50 Ω  
1
1.4  
mA  
mA  
I(Vcc)  
Supply Current (2.8 V < VCC < 5.5)  
(SN6505B)  
RL = 50 Ω  
1.56  
2.3  
20  
IIH  
Leakage Current on EN and CLK pin  
VCC current for EN = 0  
EN / CLK = VCC  
10  
µA  
µA  
IDIS  
0.1  
ILKG(D1)  
ILKG(D2)  
Leakage Current on D1,D2 for EN=0  
Voltage of D1,D2 = VCC  
0.1  
µA  
VCC+ (UVLO) Positive-going UVLO threshold  
VCC- (UVLO) Negative-going UVLO threshold  
VHYS (UVLO1) UVLO threshold hysteresis  
2.25  
0.7  
V
V
1.7  
0.3  
0.3  
0.2  
V
VIN(ON)  
VIN(OFF)  
VIN(HYS)  
CLK  
EN, CLK pin logic high threshold  
EN, CLK pin logic low threshold  
EN, CLK pin threshold hysteresis  
VCC  
VCC  
VCC  
D1, D2 average switching Frequency  
(SN6505A)  
RL = 50 Ω to VCC; Refer to Figure 36  
RL = 50 Ω to VCC; Refer to Figure 36.  
138  
363  
100  
100  
160  
424  
203  
517  
Khz  
kHz  
kHz  
kHz  
FSW  
D1, D2 average switching Frequency  
(SN6505B)  
External clock frequency on CLK pin  
(SN6505A)  
600  
F(EXT)  
External clock frequency on CLK pin  
(SN6505B)  
1600  
OUTPUT STAGE  
Average ON time mismatch between D1  
and D2  
DMM  
RL = 50 Ω  
0%  
VCC = 4.5 V, ID1,ID2 = 1 A  
VCC = 2.8 V, ID1,ID2 = 1 A  
VCC = 2.25 V, ID1,ID2 = 0.5 A  
0.16  
0.19  
0.21  
0.25  
0.31  
0.45  
Ω
Ω
Ω
R(ON)  
Output switch on resistance  
Voltage slew rates on D1 and D2 for  
SN6505A  
V(SLEW)  
I(SLEW)  
V(SLEWHF)  
I(SLEWHF)  
RL = 50 Ω to VCC; Refer to Figure 36  
48  
11  
V/µs  
A/µs  
V/µs  
A/µs  
Current slew rates at D1 and D2 for  
SN6505A  
RL = 5 Ω through transformer;  
Refer to Figure 37  
Voltage slew rates on D1 and D2 for  
SN6505B  
RL = 50 Ω to VCC; Refer to Figure 36  
152  
Current slew rates at D1 and D2 for  
SN6505B  
RL = 5 Ω through transformer;  
Refer to Figure 37  
41  
Current clamp limit (2.8 V < VCC < 5.5V )  
Current clamp limit (2.25 V < VCC < 2.8 V)  
1.42  
0.65  
1.75  
2.15  
1.85  
A
A
ILIM  
THERMAL SHUT DOWN  
TSD+  
TSD-  
TSD-  
TSD turn on temperature  
154  
135  
13  
168  
150  
17  
181  
166  
°C  
°C  
°C  
TSD turn off temperature  
TSD hysteresis  
6
Copyright © 2015–2018, Texas Instruments Incorporated  
SN6505A, SN6505B  
www.ti.com.cn  
ZHCSE71G SEPTEMBER 2015REVISED NOVEMBER 2018  
6.6 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
CLK  
Duration after which device switches to internal clock in case of invalid external  
clock  
10  
25  
µs  
tCLKTIMER  
OUTPUT STAGE  
Break-before-make time  
Measured as voltage with RL = 50 Ω to VCC  
Refer to Figure 36  
,
115  
90  
ns  
ns  
(SN6505A)  
tBBM  
Break-before-make time  
(SN6505B)  
Measured as voltage with RL = 50 Ω to VCC  
,
Refer to Figure 36  
SOFT-START  
10% to 90% transition time on VOUT With  
transformer CLOAD = 40 µF  
RL = 5 Ω  
tSS  
Soft-start time  
1
4.25  
8.5  
8
ms  
ms  
From power up to 90% transition time on  
VOUT With transformer CLOAD = 40 µF  
RL = 5 Ω  
tSSdelay  
Soft-start time delay  
3.5  
18  
Copyright © 2015–2018, Texas Instruments Incorporated  
7
SN6505A, SN6505B  
ZHCSE71G SEPTEMBER 2015REVISED NOVEMBER 2018  
www.ti.com.cn  
6.7 Typical Characteristics, SN6505A  
6
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
5
4
3
2
VCC = 3.3 V  
VCC = 5 V  
VCC = 3.3 V  
VCC = 5 V  
1
25  
125 225 325 425 525 625 725 825 925  
Load Current (mA)  
25  
125 225 325 425 525 625 725 825 925  
Load Current (mA)  
D006  
SN6505A + Wurth 750315240  
SN6505A + Wurth 750315240  
Figure 1. Output Voltage vs Load Current  
Figure 2. Efficiency vs Load Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
7
6.5  
6
5.5  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
D028  
D029  
Load Current (mA)  
Load Current (mA)  
SN6505A + Wurth 750316031  
VCC = 3.3 V  
SN6505A + Wurth 750316031  
VCC = 3.3 V  
Figure 3. Output Voltage vs Load Current  
Figure 4. Efficiency vs Load Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
7
6.5  
6
5.5  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
D030  
D031  
Load Current (mA)  
Load Current (mA)  
SN6505A + Wurth 750316032  
VCC = 3.3 V  
SN6505A + Wurth 750316032  
VCC = 3.3 V  
Figure 5. Output Voltage vs Load Current  
Figure 6. Efficiency vs Load Current  
8
Copyright © 2015–2018, Texas Instruments Incorporated  
 
 
 
 
SN6505A, SN6505B  
www.ti.com.cn  
ZHCSE71G SEPTEMBER 2015REVISED NOVEMBER 2018  
Typical Characteristics, SN6505A (continued)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
7
6.5  
6
5.5  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
D032  
D033  
Load Current (mA)  
Load Current (mA)  
SN6505A + Wurth 750316033  
VCC = 5 V  
SN6505A + Wurth 750316033  
VCC = 5 V  
Figure 7. Output Voltage vs Load Current  
Figure 8. Efficiency vs Load Current  
170  
165  
160  
155  
150  
1.6  
1.4  
1.2  
1
VCC = 2.25 V  
VCC = 5.5 V  
VCC = 2.25 V  
VCC = 5.5 V  
0.8  
0.6  
0.4  
0.2  
0
-75  
-25  
25  
75  
125  
100  
200  
300  
400  
500  
600  
Temperature (èC)  
External Frequency (kHz)  
D003  
D001  
Figure 9. Frequency vs Free-Air Temperature  
Figure 10. Current vs External Frequency  
Copyright © 2015–2018, Texas Instruments Incorporated  
9
 
SN6505A, SN6505B  
ZHCSE71G SEPTEMBER 2015REVISED NOVEMBER 2018  
www.ti.com.cn  
6.8 Typical Characteristics, SN6505B  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
6
5
4
3
2
VCC = 3.3 V  
VCC = 5 V  
VCC = 3.3 V  
VCC = 5 V  
1
25  
125 225 325 425 525 625 725 825 925  
Load Current (mA)  
25  
125 225 325 425 525 625 725 825 925  
Load Current (mA)  
D007  
D008  
SN6505B + Wurth 750315371  
SN6505B + Wurth 750315371  
Figure 11. Output Voltage vs Load Current  
Figure 12. Efficiency vs Load Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
4
3.5  
3
2.5  
2
1.5  
1
0
20  
40  
60  
80 100 120 140 160 180 200  
Load Current (mA)  
0
20  
40  
60  
80 100 120 140 160 180 200  
Load Current (mA)  
D010  
D011  
SN6505B + Wurth 760390011  
VCC = 3.3 V  
SN6505B + Wurth 760390011  
VCC = 3.3 V  
Figure 13. Output Voltage vs Load Current  
Figure 14. Efficiency vs Load Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
6
5.5  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0
20  
40  
60  
80 100 120 140 160 180 200  
Load Current (mA)  
0
20  
40  
60  
80 100 120 140 160 180 200  
Load Current (mA)  
D012  
D013  
SN6505B + Wurth 760390012  
VCC = 5 V  
SN6505B + Wurth 760390012  
VCC = 5 V  
Figure 15. Output Voltage vs Load Current  
Figure 16. Efficiency vs Load Current  
10  
Copyright © 2015–2018, Texas Instruments Incorporated  
 
 
 
 
SN6505A, SN6505B  
www.ti.com.cn  
ZHCSE71G SEPTEMBER 2015REVISED NOVEMBER 2018  
Typical Characteristics, SN6505B (continued)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
6
5.5  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0
0
0
20  
40  
60  
80 100 120 140 160 180 200  
Load Current (mA)  
0
0
0
20  
20  
20  
40  
60  
80 100 120 140 160 180 200  
Load Current (mA)  
D014  
D013  
SN6505B + Wurth 760390013  
VCC = 3.3 V  
SN6505B + Wurth 760390013  
VCC = 3.3 V  
Figure 17. Output Voltage vs Load Current  
Figure 18. Efficiency vs Load Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
20  
40  
60  
80 100 120 140 160 180 200  
Load Current (mA)  
40  
60  
80 100 120 140 160 180 200  
Load Current (mA)  
D016  
D017  
SN6505B + Wurth 760390014  
VCC = 3.3 V  
SN6505B + Wurth 760390014  
VCC = 3.3 V  
Figure 19. Output Voltage vs Load Current  
Figure 20. Efficiency vs Load Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
7
6.5  
6
5.5  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
20  
40  
60  
80 100 120 140 160 180 200  
Load Current (mA)  
40  
60  
80 100 120 140 160 180 200  
Load Current (mA)  
D018  
D019  
SN6505B + Wurth 760390014  
VCC = 5 V  
SN6505B + Wurth 760390014  
VCC = 5 V  
Figure 21. Output Voltage vs Load Current  
Figure 22. Efficiency vs Load Current  
Copyright © 2015–2018, Texas Instruments Incorporated  
11  
 
 
 
SN6505A, SN6505B  
ZHCSE71G SEPTEMBER 2015REVISED NOVEMBER 2018  
www.ti.com.cn  
Typical Characteristics, SN6505B (continued)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
7
6.5  
6
5.5  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0
20  
40  
60  
80 100 120 140 160 180 200  
Load Current (mA)  
0
20  
40  
60  
80 100 120 140 160 180 200  
Load Current (mA)  
D020  
D021  
SN6505B + Wurth 760390015  
VCC = 3.3 V  
SN6505B + Wurth 760390015  
VCC = 3.3 V  
Figure 23. Output Voltage vs Load Current  
Figure 24. Efficiency vs Load Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
7
6.5  
6
5.5  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
D022  
D021  
Load Current (mA)  
Load Current (mA)  
SN6505B + Wurth 750316028  
VCC = 3.3 V  
SN6505B + Wurth 750316028  
VCC = 3.3 V  
Figure 25. Output Voltage vs Load Current  
Figure 26. Efficiency vs Load Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
7
6.5  
6
5.5  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0
100 200 300 400 500 600 700 800 900  
Load Current (mA)  
0
100 200 300 400 500 600 700 800 900  
Load Current (mA)  
D024  
D025  
SN6505B + Wurth 750316029  
VCC = 3.3 V  
SN6505B + Wurth 750316029  
VCC = 3.3 V  
Figure 27. Output Voltage vs Load Current  
Figure 28. Efficiency vs Load Current  
12  
Copyright © 2015–2018, Texas Instruments Incorporated  
 
 
 
SN6505A, SN6505B  
www.ti.com.cn  
ZHCSE71G SEPTEMBER 2015REVISED NOVEMBER 2018  
Typical Characteristics, SN6505B (continued)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
4.5  
4
3.5  
3
2.5  
2
1.5  
1
D026  
D027  
Load Current (mA)  
Load Current (mA)  
SN6505B + Wurth 7503160030  
VCC = 5 V  
SN6505B + Wurth 7503160030  
VCC = 5 V  
Figure 29. Output Voltage vs Load Current  
Figure 30. Efficiency vs Load Current  
450  
440  
430  
420  
410  
400  
3
2.5  
2
VCC = 2.25 V  
VCC = 5.5 V  
VCC = 2.25 V  
VCC = 5.5 V  
1.5  
1
0.5  
0
-75  
-25  
25  
75  
125  
100  
400  
700  
1000  
1300  
1600  
Temperature (èC)  
External Frequency (kHz)  
D004  
D002  
Figure 31. Frequency vs Free-Air Temperature  
Figure 32. Current vs External Frequency  
Time 2.5 ms/div  
Figure 33. Scope Capture of SN6505 Switching from External to Internal Clock  
Copyright © 2015–2018, Texas Instruments Incorporated  
13  
 
SN6505A, SN6505B  
ZHCSE71G SEPTEMBER 2015REVISED NOVEMBER 2018  
www.ti.com.cn  
7 Parameter Measurement Information  
SN6505  
VOUT  
4
3
2
1
GND  
EN  
D2  
VCC  
Enable  
5
6
V
CC  
Ext Clock  
CLK  
D1  
10µF 0.1µF  
10µF  
Copyright © 2016, Texas Instruments Incorporated  
Figure 34. Measurement Circuit for Unregulated Output (TP1)  
Figure 35. Timing Diagram  
VCC  
SN6505  
50  
4
3
2
1
GND  
EN  
D2  
Enable  
5
6
V
CC  
50ꢀ  
Ext Clock  
CLK  
D1  
10µF  
Copyright © 2016, Texas Instruments Incorporated  
Figure 36. Test Circuit for FSW, V(slew), tBBM  
14  
Copyright © 2015–2018, Texas Instruments Incorporated  
SN6505A, SN6505B  
www.ti.com.cn  
ZHCSE71G SEPTEMBER 2015REVISED NOVEMBER 2018  
Parameter Measurement Information (continued)  
VCC  
C1  
V
(Current)  
SN6505  
VCC  
4
5
6
3
2
1
GND  
D 2  
Vcc  
D 1  
EN  
CLK  
Copyright © 2016, Texas Instruments Incorporated  
Figure 37. I(slew) Test Setup  
Copyright © 2015–2018, Texas Instruments Incorporated  
15  
SN6505A, SN6505B  
ZHCSE71G SEPTEMBER 2015REVISED NOVEMBER 2018  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The SN6505 is a transformer driver designed for low-cost, small form-factor, isolated DC/DC converters utilizing  
the push-pull topology. The device includes an oscillator that feeds a gate-drive circuit. The gate-drive,  
comprising a frequency divider and a break-before-make (BBM) logic, provides two complementary output  
signals which alternately turn the two output transistors on and off.  
The output frequency of the oscillator is divided down by two . A subsequent break-before-make logic inserts a  
dead-time between the high-pulses of the two signals. Before either one of the gates can assume logic high, the  
BBM logic ensures a short time period during which both signals are low and both transistors are high-  
impedance. This short period, is required to avoid shorting out both ends of the primary. The resulting output  
signals, present the gate-drive signals for the output transistors.  
8.2 Functional Block Diagram  
EN  
D2 D1  
V
CC  
UVLO  
TEMP  
SSC  
OSC  
÷ 2  
MOSFET  
Driver  
CLK  
I-LIM  
Ext CLK  
Detect  
GND GND  
Copyright © 2016, Texas Instruments Incorporated  
8.3 Feature Description  
8.3.1 Push-Pull Converter  
Push-pull converters require transformers with center-taps to transfer power from the primary to the secondary  
(see Figure 38).  
CR  
CR  
1
1
V
V
OUT  
OUT  
C
C
R
R
L
L
V
V
IN  
IN  
CR  
CR  
2
2
Q
Q
Q
Q
1
2
1
2
Figure 38. Switching Cycles of a Push-Pull Converter  
When Q1 conducts, VIN drives a current through the lower half of the primary to ground, thus creating a negative  
voltage potential at the lower primary end with regards to the VIN potential at the center-tap.  
At the same time the voltage across the upper half of the primary is such that the upper primary end is positive  
with regards to the center-tap in order to maintain the previously established current flow through Q2, which now  
has turned high-impedance. The two voltage sources, each of which equaling VIN, appear in series and cause a  
voltage potential at the open end of the primary of 2×VIN with regards to ground.  
16  
Copyright © 2015–2018, Texas Instruments Incorporated  
 
SN6505A, SN6505B  
www.ti.com.cn  
ZHCSE71G SEPTEMBER 2015REVISED NOVEMBER 2018  
Feature Description (continued)  
Per dot convention the same voltage polarities that occur at the primary also occur at the secondary. The  
positive potential of the upper secondary end therefore forward biases diode CR1. The secondary current starting  
from the upper secondary end flows through CR1, charges capacitor C, and returns through the load impedance  
RL back to the center-tap.  
When Q2 conducts, Q1 goes high-impedance and the voltage polarities at the primary and secondary reverse.  
Now the lower end of the primary presents the open end with a 2×VIN potential against ground. In this case CR2  
is forward biased while CR1 is reverse biased and current flows from the lower secondary end through CR2,  
charging the capacitor and returning through the load to the center-tap.  
8.3.2 Core Magnetization  
Figure 39 shows the ideal magnetizing curve for a push-pull converter with B as the magnetic flux density and H  
as the magnetic field strength. When Q1 conducts the magnetic flux is pushed from A to A’, and when Q2  
conducts the flux is pulled back from A’ to A. The difference in flux and thus in flux density is proportional to the  
product of the primary voltage, VP, and the time, tON, it is applied to the primary: B VP × tON  
.
B
V
V
P
IN  
A’  
H
R
V
DS  
DS  
A
V
= V +V  
P DS  
IN  
Figure 39. Core Magnetization and Self-Regulation Through Positive Temperature Coefficient of RDS(on)  
This volt-seconds (V-t) product is important as it determines the core magnetization during each switching cycle.  
If the V-t products of both phases are not identical, an imbalance in flux density swing results with an offset from  
the origin of the B-H curve. If balance is not restored, the offset increases with each following cycle and the  
transformer slowly creeps toward the saturation region.  
Copyright © 2015–2018, Texas Instruments Incorporated  
17  
 
SN6505A, SN6505B  
ZHCSE71G SEPTEMBER 2015REVISED NOVEMBER 2018  
www.ti.com.cn  
8.4 Device Functional Modes  
The functional modes of the device are divided into start-up, operating, and off-mode.  
8.4.1 Start-Up Mode  
When the supply voltage at VCC ramps up to 2.25 V , the internal oscillator starts operating . The output stage  
begins switching but the amplitude of the drain signals at D1 and D2 has not reached its full maximum yet.  
8.4.1.1 Soft-Start  
SN6505A and SN6505B devices support soft-start feature. Upon power up or when EN pin transitions from Low  
to High, the gate drive of the output power-MOSFET is gradually increased over a period of time from 0 V to VCC  
.
Soft-start prevents high inrush current from VCC while charging large secondary side decoupling capacitors, and  
also prevents overshoot in secondary voltage during power-up.  
8.4.2 Operating Mode  
When the device supply has reached its nominal value ±10% the oscillator is fully operating. However variations  
over supply voltage and operating temperature can vary the switching frequencies at D1 and D2.  
8.4.3 Shutdown-Mode  
The device has a dedicated enable pin to put the device in very low power mode to save power when not in use.  
Enable pin has an internal pull down resistor which keeps device disabled when not driven. When disabled or  
when VCC is < 1.7 V , both drain outputs, D1 and D2, are tri-stated.  
8.4.4 Spread Spectrum Clocking  
Radiated emissions is an important concern in high current switching power supplies. SN6505 addresses this by  
modulating its internal clock in such a way that the emitting energy is spread over multiple frequency bins. This  
Spread Spectrum clocking feature greatly improves the emissions performance of the entire power supply block  
and hence relieves the system designer from one major concern in isolated power supply design.  
8.4.5 External Clock Mode  
The SN6505 has a CLK pin which can be used to synchronize the device with system clock and in turn with  
other SN6505 devices so that the system can control the exact switching frequency of the device. The Rising  
edge of the CLK is used to divide a clock by two and used to drive the gates. Figure 41 shows the timing  
diagram for the same. The device also has external clock fail safe feature which automatically switches the  
device to the internal clock if a valid input clock is not present for long (tCLKTIMER). The in-built emissions  
reduction scheme of Spread Spectrum clocking is disabled when external clock is present.  
18  
Copyright © 2015–2018, Texas Instruments Incorporated  
SN6505A, SN6505B  
www.ti.com.cn  
ZHCSE71G SEPTEMBER 2015REVISED NOVEMBER 2018  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The SN6505 is a transformer driver designed for low-cost, small form-factor, isolated DC/DC converters using  
the push-pull topology. The device includes an oscillator that feeds a gate-drive circuit. The gate-drive,  
comprising a frequency divider and a break-before-make (BBM) logic, provides two complementary output  
signals which alternately turn the two output transistors on and off.  
Vcc  
SN6505  
Q off  
2
Q off  
1
D2  
D1  
S
S
G
G
2
Q
2
Freq.  
Divider  
BBM  
Logic  
fOSC  
OSC  
1
Q
1
Q on  
1
Q on  
2
tBBM  
GND  
GND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 40. Block Diagram and Output Timing With Break-Before-Make Action  
The output frequency of the oscillator is divided down by an asynchronous divider that provides two  
complementary output signals, S and S, with a 50% duty cycle. A subsequent break-before-make logic inserts a  
dead-time between the high-pulses of the two signals. The resulting output signals, G1 and G2, present the gate-  
drive signals for the output transistors Q1 and Q2. As shown in Figure 41, before either one of the gates can  
assume logic high, there must be a short time period during which both signals are low and both transistors are  
high-impedance. This short period, known as break-before-make time, is required to avoid shorting out both ends  
of the primary.  
Figure 41. Detailed Output Signal Waveforms  
Copyright © 2015–2018, Texas Instruments Incorporated  
19  
 
SN6505A, SN6505B  
ZHCSE71G SEPTEMBER 2015REVISED NOVEMBER 2018  
www.ti.com.cn  
9.2 Typical Application  
VIN = 3.3V  
10µF  
SN6505  
TPS76350  
MBR0520L  
VOUT  
1:2.2  
VOUT-REG = 5V  
4
5
6
3
2
1
1
2
3
5
4
GND  
EN  
D2  
Vcc  
D1  
IN  
OUT  
GND  
EN  
ENABLE  
CLOCK  
10µF 0.1µF  
10µF  
NC  
CLK  
MBR0520L  
Copyright © 2016, Texas Instruments Incorporated  
Figure 42. Typical Application Schematic  
9.2.1 Design Requirements  
For this design example, use the parameters listed in Table 1 as design parameters.  
Table 1. Design Parameters  
DESIGN PARAMETER  
Input voltage range  
Output voltage  
EXAMPLE VALUE  
3.3 V ± 3%  
5 V  
Maximum load current  
100 mA  
9.2.2 Detailed Design Procedure  
The following recommendations on components selection focus on the design of an efficient push-pull converter  
with high current drive capability. Contrary to popular belief, the output voltage of the unregulated converter  
output drops significantly over a wide range in load current. The characteristic curve in Figure 1 and Figure 11 for  
example, shows that the difference between VOUT at minimum load and VOUT at maximum load exceeds a  
transceiver’s supply range. Therefore, in order to provide a stable, load independent supply while maintaining  
maximum possible efficiency the implementation of a low dropout regulator (LDO) is strongly advised.  
The final converter circuit is shown in Figure 47. The measured VOUT and efficiency characteristics for the  
regulated and unregulated outputs are shown in Figure 2 and Figure 12.  
9.2.2.1 Drive Capability  
The transformer driver is designed for low-power push-pull converters with input and output voltages in the range  
of 2.25 V to 5.5 V. While converter designs with higher output voltages are possible, care must be taken that  
higher turns ratios don’t lead to primary currents that exceed the specified current limits of the device.  
9.2.2.2 LDO Selection  
The minimum requirements for a suitable low dropout regulator are:  
Its current drive capability should slightly exceed the specified load current of the application to prevent the  
LDO from dropping out of regulation. Therefore, for a load current of 600 mA, choose a 600 mA to 750 mA  
LDO. While regulators with higher drive capabilities are acceptable, they also usually possess higher dropout  
voltages that will reduce overall converter efficiency.  
The internal dropout voltage, VDO, at the specified load current should be as low as possible to maintain  
efficiency. For a low-cost 750 mA LDO, a VDO of 600 mV at 750 mA is common. Be aware; however, that this  
lower value is usually specified at room temperature and can increase by a factor of 2 over temperature,  
which in turn will raise the required minimum input voltage.  
The required minimum input voltage preventing the regulator from dropping out of line regulation is given with:  
VI-min = VDO-max + VO-max  
(1)  
20  
Copyright © 2015–2018, Texas Instruments Incorporated  
 
 
SN6505A, SN6505B  
www.ti.com.cn  
ZHCSE71G SEPTEMBER 2015REVISED NOVEMBER 2018  
This means in order to determine VI for worst-case condition, the user must take the maximum values for VDO and VO  
specified in the LDO data sheet for rated output current (that is, 600 mA) and add them together. Also specify that the  
output voltage of the push-pull rectifier at the specified load current is equal or higher than VI-min. If it is not, the LDO will  
lose line-regulation and any variations at the input passes straight through to the output. Hence, below VI-min the output  
voltage follows the input and the regulator behaves like a simple conductor.  
The maximum regulator input voltage must be higher than the rectifier output under no-load. Under this  
condition there is no secondary current reflected back to the primary, thus making the voltage drop across  
RDS-on negligible and allowing the entire converter input voltage to drop across the primary. At this point, the  
secondary reaches its maximum voltage of  
VS-max = VIN-max × n  
(2)  
with VIN-max as the maximum converter input voltage and n as the transformer turns ratio. Thus to prevent the  
LDO from damage the maximum regulator input voltage must be higher than VS-max. Table 2 lists the maximum  
secondary voltages for various turns ratios commonly applied in push-pull converters.  
Table 2. Required Maximum LDO Input Voltages for Various Push-Pull Configurations  
PUSH-PULL CONVERTER  
LDO  
VI-max [V]  
6 to 10  
10  
CONFIGURATION  
3.3 VIN to 3.3 VOUT  
3.3 VIN to 5 VOUT  
5 VIN to 5 VOUT  
VIN-max [V]  
TURNS-RATIO  
1.5 ± 3%  
VS-max [V]  
5.6  
3.6  
3.6  
5.5  
2.2 ± 3%  
8.2  
1.5 ± 3%  
8.5  
10  
9.2.2.3 Diode Selection  
A rectifier diode should always possess low-forward voltage to provide as much voltage to the converter output  
as possible. When used in high-frequency switching applications, such as the SN6505 however, the diode must  
also possess a short recovery time. Schottky diodes meet both requirements and are therefore strongly  
recommended in push-pull converter designs. A good choice for low-volt applications and ambient temperatures  
of up to 85°C is the low-cost Schottky rectifier MBR0520L with a typical forward voltage of 275 mV at 100-mA  
forward current. For higher output voltages such as ±10 V and above use the MBR0530 which provides a higher  
DC blocking voltage of 30 V.  
Lab measurements have shown that at temperatures higher than 100°C the leakage currents of the above  
Schottky diodes increase significantly. This can cause thermal runaway leading to the collapse of the rectifier  
output voltage. Therefore, for ambient temperatures higher than 85°C use low-leakage Schottky diodes, such as  
RB168MM-40.  
1
1
TJ = 125°C  
25°C  
0°C  
-40°C  
75°C  
-25°C  
TJ = 100°C  
25°C  
75°C  
0.1  
0.1  
0.01  
0.01  
0.2  
0.3  
0.4  
0.5  
0.1  
0.2  
0.3  
0.4  
0.5  
Forward Voltage, VF - V  
Forward Voltage, VF - V  
Figure 44. Diode Forward Characteristics MBR0530  
Figure 43. Diode Forward Characteristics for MBR0520L  
Copyright © 2015–2018, Texas Instruments Incorporated  
21  
 
SN6505A, SN6505B  
ZHCSE71G SEPTEMBER 2015REVISED NOVEMBER 2018  
www.ti.com.cn  
9.2.2.4 Capacitor Selection  
The capacitors in the converter circuit in Figure 47 are multi-layer ceramic chip (MLCC) capacitors.  
As with all high speed CMOS ICs, the device requires a bypass capacitor in the range of 10 nF to 100 nF.  
The input bulk capacitor at the center-tap of the primary supports large currents into the primary during the fast  
switching transients. For minimum ripple make this capacitor 1 μF to 10 μF. In a 2-layer PCB design with a  
dedicated ground plane, place this capacitor close to the primary center-tap to minimize trace inductance. In a 4-  
layer board design with low-inductance reference planes for ground and VIN, the capacitor can be placed at the  
supply entrance of the board. To ensure low-inductance paths use two vias in parallel for each connection to a  
reference plane or to the primary center-tap.  
The bulk capacitor at the rectifier output smooths the output voltage. Make this capacitor 1 μF to 10 μF.  
The small capacitor at the regulator input is not necessarily required. However, good analog design practice  
suggests, using a small value of 47 nF to 100 nF improves the regulator’s transient response and noise rejection.  
The LDO output capacitor buffers the regulated output for the subsequent isolator and transceiver circuitry. The  
choice of output capacitor depends on the LDO stability requirements specified in the data sheet. However, in  
most cases, a low-ESR ceramic capacitor in the range of 4.7 μF to 10 μF will satisfy these requirements.  
9.2.2.5 Transformer Selection  
9.2.2.5.1 V-t Product Calculation  
To prevent a transformer from saturation its V-t product must be greater than the maximum V-t product applied  
by the device. The maximum voltage delivered by the device is the nominal converter input plus 10%. The  
maximum time this voltage is applied to the primary is half the period of the lowest frequency at the specified  
input voltage. Therefore, the transformer’s minimum V-t product is determined through:  
T
V
max  
IN-max  
Vt  
³ V  
´
=
min  
IN-max  
2
2 ´ f  
min  
(3)  
Taking an example of fmin as 138 kHz for SN6505A and 363 kHZ for SN6505B with a 5 V supply, Equation 3  
yields the minimum V-t products of:  
5.5 V  
Vtmin  
³
= 20 Vμs  
for SN6505A, and  
2 ´ 138 kHz  
5.5 V  
Vtmin  
³
= 7.6 Vμs for SN6505B applications.  
2 ´ 363 kHz  
(4)  
Common V-t values for low-power center-tapped transformers range from 22 Vμs to 150 Vμs with typical  
footprints of 10 mm x 12 mm. However, transformers specifically designed for PCMCIA applications provide as  
little as 11 Vμs and come with a significantly reduced footprint of 6 mm x 6 mm only.  
While Vt-wise all of these transformers can be driven by the device, other important factors such as isolation  
voltage, transformer wattage, and turns ratio must be considered before making the final decision.  
9.2.2.5.2 Turns Ratio Estimate  
Assume the rectifier diodes and linear regulator has been selected. Also, it has been determined that the  
transformer chosen must have a V-t product of at least 11 Vμs. However, before searching the manufacturer web  
sites for a suitable transformer, the user still needs to know its minimum turns ratio that allows the push-pull  
converter to operate flawlessly over the specified current and temperature range. This minimum transformation  
ratio is expressed through the ratio of minimum secondary to minimum primary voltage multiplied by a correction  
factor that takes the transformer’s typical efficiency of 97% into account:  
VP-min = VIN-min - VDS-max  
(5)  
VS-min must be large enough to allow for a maximum voltage drop, VF-max, across the rectifier diode and still  
provide sufficient input voltage for the regulator to remain in regulation. From the LDO Selection section, this  
minimum input voltage is known and by adding VF-max gives the minimum secondary voltage with:  
VS-min = VF-max + VDO-max + VO-max  
(6)  
22  
Copyright © 2015–2018, Texas Instruments Incorporated  
 
 
 
SN6505A, SN6505B  
www.ti.com.cn  
ZHCSE71G SEPTEMBER 2015REVISED NOVEMBER 2018  
V
F
V
DO  
V
V
I
O
V
R
L
S
V
V
IN  
P
V
DS  
R
Q
DS  
Figure 45. Establishing the Required Minimum Turns Ratio Through Nmin = 1.031 × VS-min / VP-min  
Then calculating the available minimum primary voltage, VP-min, involves subtracting the maximum possible drain-  
source voltage of the device, VDS-max, from the minimum converter input voltage VIN-min  
:
VP-min = VIN-min – VDS-max  
(7)  
VDS-max however, is the product of the maximum RDS(on) and ID values for a given supply specified in the data  
sheet:  
VDS-max = RDS-max × IDmax  
(8)  
Then inserting Equation 8 into Equation 7 yields:  
VP-min = VIN-min - RDS-max x IDmax  
(9)  
and inserting Equation 9 and Equation 6 into Equation 5 provides the minimum turns ration with:  
VF-max + VDO-max + VO-max  
nmin = 1.031 ´  
VIN-min - RDS-max ´ ID-max  
(10)  
Example:  
For a 3.3 VIN to 5 VOUT converter using the rectifier diode MBR0520L and the 5 V LDO, the data sheet values  
taken for a load current of 600 mA and a maximum temperature of 85°C are VF-max = 0.2 V,  
VDO-max = 0.5 V, and VO-max = 5.1 V.  
Then assuming that the converter input voltage is taken from a 3.3 V controller supply with a maximum ±2%  
accuracy makes VIN-min = 3.234 V. Finally the maximum values for drain-source resistance and drain current at  
3.3 V are taken from the data sheet with RDS-max = 0.31 Ω and ID-max = 1 A.  
Inserting the values above into Equation 10 yields a minimum turns ratio of:  
0.2 V + 0.5 V + 5.1V  
nmin = 1.031 ´  
= 2.05  
3.234 V - 0.31 Ω ´ 1 A  
(11)  
Most commercially available transformers for 3-to-5 V push-pull converters offer turns ratios between 2.0 and 2.3  
with a common tolerance of ±3%.  
Copyright © 2015–2018, Texas Instruments Incorporated  
23  
 
 
 
 
SN6505A, SN6505B  
ZHCSE71G SEPTEMBER 2015REVISED NOVEMBER 2018  
www.ti.com.cn  
9.2.2.5.3 Recommended Transformers  
Depending on the application, use the minimum configuration in Figure 46 or standard configuration in Figure 47.  
Figure 46. Unregulated Output for Low-Current Loads With Wide Supply Range  
Figure 47. Regulated Output for Stable Supplies and High Current Loads  
The Wurth Electronics Midcom isolation transformers in Table 3 are optimized designs for the device, providing  
high efficiency and small form factor at low-cost.  
The 1:1.1 and 1:1.7 turns-ratios are designed for logic applications with wide supply rails and low load currents.  
These applications operate without LDO, thus achieving further cost-reduction.  
24  
Copyright © 2015–2018, Texas Instruments Incorporated  
 
 
SN6505A, SN6505B  
www.ti.com.cn  
ZHCSE71G SEPTEMBER 2015REVISED NOVEMBER 2018  
Table 3. Recommended Isolation Transformers Optimized for the Device  
TURNS  
RATIO  
V × T  
(Vμs)  
ISOLATION  
(VRMS  
DIMENSIONS  
(mm)  
APPLICATION  
LDO(1)  
ORDER NO.  
760390011  
760390012  
760390013  
760390014  
760390014  
MANUFACTURER  
)
3.3 V 3.3 V, 100mA, SN6505B  
Refer to Figure 13 and Figure 14  
1:1.1 ±2%  
1:1.1 ±2%  
1:1.7 ±2%  
1:1.3 ±2%  
1:1.3 ±2%  
7
5 V 5 V, 100mA, SN6505B  
Refer to Figure 15 and Figure 16  
No  
3.3 V 5 V, 100mA, SN6505B  
Refer to Figure 17 and Figure 18  
6.73 x 10.05 x 4.19  
3.3 V 3.3 V, 100mA, SN6505B  
Refer to Figure 19 and Figure 20  
11  
5 V 5 V, 100mA, SN6505B  
Refer to Figure 21 and Figure 22  
3.3 V 5 V, 100mA, SN6505B  
Refer to Figure 23 and Figure 24  
Yes  
1:2.1 ±2%  
1.23:1 ±2%  
1:1.7 ±2%  
2500  
760390015  
750313710  
750316028  
5 V 3.3 V, 100mA, SN6505B  
3.3 V 3.3 V, 1A, SN6505B  
Refer to Figure 25 and Figure 26  
8.9  
3.3 V 5 V, 1A, SN6505B  
Refer to Figure 27 and Figure 28  
1:2.1 ±2%  
1.3:1 ±2%  
750316029  
750316030  
8.3 x 12.6 x 4.1  
5 V 3.3 V, 1A, SN6505B  
Refer to Figure 29 and Figure 30  
10.8  
8.6  
Wurth Electronics /  
Midcom  
3.3 V 3.3 V , 1A , SN6505B  
5 V 5 V , 1A , SN6505B  
No  
1:1.1 ±2%  
750315371  
Refer to Figure 11 and Figure 12  
1:1.1 ±2%  
1:1.1 ±2%  
1:1.7 ±2%  
3.3 V 3.3 V, 100mA, SN6505B  
5 V 5 V, 100mA, SN6505B  
3.3 V 5 V, 100mA, SN6505B  
750313734  
750313734  
750313769  
11  
9.14 x 12.7 x 7.37  
3.3 V 3.3 V, 100mA, SN6505B  
5 V 5 V, 100mA, SN6505B  
1:1.3 ±2%  
750313638  
Yes  
1:2.1 ±2%  
1.3:1 ±2%  
3.3 V 5 V, 100mA, SN6505B  
5 V 3.3 V, 100mA , SN6505B  
750313626  
750313638  
No  
5000  
3.3 V 3.3 V, 1A, SN6505A  
Refer to Figure 3 and Figure 4  
1:1.75 ±2%  
1:2 ±2%  
Yes  
750316031  
750316032  
750316033  
41  
3.3 V 5 V, 1A, SN6505A  
Refer to Figure 5 and Figure 6  
12.32 x 15.41 x 11.05  
14.88 x 12.32 x 11.05  
5.0 V 3.3 V, 1A, SN6505A  
Refer to Figure 7 and Figure 8  
1.3:1 ±2%  
42  
23  
No  
3.3 V 3.3 V, 1A, SN6505A  
5 V 5 V, 1A , SN6505A  
1:1.1 ±2%  
750315240  
Refer to Figure 1 and Figure 2  
(1) For configurations with LDO, a higher voltage than the required output voltage is generated, to allow for LDO drop-out. Figures show the  
voltage and efficiency at the LDO input.  
9.2.3 Application Curves  
See theTypical Characteristics, SN6505A and Typical Characteristics, SN6505B for application curves with  
transformers optimized for the device, providing high efficiency and small form factor at low-cost.  
Copyright © 2015–2018, Texas Instruments Incorporated  
25  
SN6505A, SN6505B  
ZHCSE71G SEPTEMBER 2015REVISED NOVEMBER 2018  
www.ti.com.cn  
9.2.4 System Examples  
9.2.4.1 Higher Output Voltage Designs  
The device can drive push-pull converters that provide high output voltages of up to 30 V, or bipolar outputs of  
up to ±15 V. Using commercially available center-tapped transformers, with their rather low turns ratios of 0.8 to  
5, requires different rectifier topologies to achieve high output voltages. Figure 48 to Figure 50 show some of  
these topologies together with their respective open-circuit output voltages.  
n
n
V
VOUT = +n·VIN  
V =2n·V  
OUT IN  
V
IN  
IN  
VOUT = -n·VIN  
Figure 48. Bridge Rectifier With Center-Tapped  
Secondary Enables Bipolar Outputs  
Figure 49. Bridge Rectifier Without Center-Tapped  
Secondary Performs Voltage Doubling  
V
=4n·V  
IN  
OUT  
n
V
IN  
Figure 50. Half-Wave Rectifier Without Centered Ground and Center-Tapped Secondary Performs Voltage  
Doubling Twice, Hence Quadrupling VIN  
9.2.4.2 Application Circuits  
The following application circuits are shown for a 3.3 V input supply commonly taken from the local, regulated  
microcontroller supply. For 5 V input voltages requiring different turn ratios refer to the transformer manufacturers  
and their web sites listed in Table 4.  
Table 4. Transformer Manufacturers  
MANUFACTURER  
MORE INFORMATION  
Coilcraft Inc.  
http://www.coilcraft.com  
Halo-Electronics Inc.  
Murata Power Solutions  
Wurth Electronics Midcom Inc  
http://www.haloelectronics.com  
http://www.murata-ps.com  
http://www.midcom-inc.com  
26  
Copyright © 2015–2018, Texas Instruments Incorporated  
 
 
 
SN6505A, SN6505B  
www.ti.com.cn  
ZHCSE71G SEPTEMBER 2015REVISED NOVEMBER 2018  
VIN  
0.1F  
3.3V  
2, 5  
Vcc  
MBR0520L  
MBR0520L  
1:2.2  
5VISO  
3
1
1
3
5
2
D2  
IN  
OUT  
GND  
TPS76350  
SN6505  
10F 0.1F  
10F  
EN  
D1  
GND  
4,6  
10F  
Isolation Barrier  
0.1F  
0.1F  
0.1F  
1
16  
2
VCC1  
R
VCC2  
3
DVcc  
16  
UCA0RXD  
P3.0  
10MELF  
10MELF  
5
6
13  
B
XOUT  
XIN  
11  
12  
12  
4
5
6
RE  
DE  
D
ISO3082  
ISO3088  
MSP430F2132  
12  
P3.1  
UCA0TXD  
A
DVss  
4
SM712  
GND1  
2,7,8  
GND2  
9,10,15  
4.7nF/2kV  
Figure 51. Isolated RS-485 Interface  
Copyright © 2015–2018, Texas Instruments Incorporated  
27  
SN6505A, SN6505B  
ZHCSE71G SEPTEMBER 2015REVISED NOVEMBER 2018  
www.ti.com.cn  
10 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range between 2.5 V and 5 V nominal. This input  
supply must be regulated within ±10%. If the input supply is located more than a few inches from the device, a  
0.1 μF by-pass capacitor should be connected as close as possible to the device VCC pin and a 10 μF capacitor  
should be connected close to the transformer center-tap pin.  
11 Layout  
11.1 Layout Guidelines  
The VIN pin must be buffered to ground with a low-ESR ceramic bypass-capacitor. The recommended  
capacitor value can range from 1 μF to 10 μF. The capacitor must have a voltage rating of 10 V minimum and  
a X5R or X7R dielectric.  
The optimum placement is closest to the VIN and GND pins at the board entrance to minimize the loop area  
formed by the bypass-capacitor connection, the VIN terminal, and the GND pin. See Figure 52 for a PCB  
layout example.  
The connections between the device D1 and D2 pins and the transformer primary endings, and the  
connection of the device VCC pin and the transformer center-tap must be as close as possible for minimum  
trace inductance.  
The connection of the device VCC pin and the transformer center-tap must be buffered to ground with a low-  
ESR ceramic bypass-capacitor. The recommended capacitor value can range from 1μF to 10 μF. The  
capacitor must have a voltage rating of 16 V minimum and a X5R or X7R dielectric.  
The device GND pins must be tied to the PCB ground plane using two vias for minimum inductance.  
The ground connections of the capacitors and the ground plane should use two vias for minimum inductance.  
The rectifier diodes should be Schottky diodes with low forward voltage in the 10 mA to 100 mA current range  
to maximize efficiency.  
The VOUT pin must be buffered to ISO-Ground with a low-ESR ceramic bypass-capacitor. The recommended  
capacitor value can range from 1μF to 10 μF. The capacitor must have a voltage rating of 16 V minimum and  
a X5R or X7R dielectric.  
11.2 Layout Example  
Figure 52. Layout Example of a 2-Layer Board  
28  
版权 © 2015–2018, Texas Instruments Incorporated  
 
SN6505A, SN6505B  
www.ti.com.cn  
ZHCSE71G SEPTEMBER 2015REVISED NOVEMBER 2018  
12 器件和文档支持  
12.1 器件支持  
12.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
12.2 文档支持  
12.2.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)《数字隔离器设计指南》  
德州仪器 (TI)《隔离相关术语》  
德州仪器 (TI)如何在隔离式 CAN 系统中隔离信号和电源 TI 技术手册  
德州仪器 (TI)《适用于三相逆变器的小型增强型隔离式 IGBT 栅极驱动参考设计》TI 设计  
12.3 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。  
5. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
立即订购  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
SN6505A  
SN6505B  
12.4 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.5 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.6 商标  
E2E is a trademark of Texas Instruments.  
12.7 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.8 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
版权 © 2015–2018, Texas Instruments Incorporated  
29  
SN6505A, SN6505B  
ZHCSE71G SEPTEMBER 2015REVISED NOVEMBER 2018  
www.ti.com.cn  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
30  
版权 © 2015–2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Feb-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
SN6505ADBVR  
SN6505ADBVT  
SN6505BDBVR  
SN6505BDBVT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
DBV  
6
6
6
6
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
(650A, 65AQ)  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
NIPDAU  
(650A, 65AQ)  
(650B, 65BQ)  
(650B, 65BQ)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Feb-2023  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF SN6505A, SN6505B :  
Automotive : SN6505A-Q1, SN6505B-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
SN6505ADBVR  
SN6505ADBVR  
SN6505ADBVT  
SN6505BDBVR  
SN6505BDBVT  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
DBV  
DBV  
6
6
6
6
6
3000  
3000  
250  
180.0  
178.0  
180.0  
180.0  
178.0  
8.4  
9.0  
8.4  
8.4  
9.0  
3.2  
3.23  
3.2  
3.2  
3.17  
3.2  
1.4  
1.37  
1.4  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q3  
3000  
250  
3.2  
3.2  
1.4  
3.23  
3.17  
1.37  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
SN6505ADBVR  
SN6505ADBVR  
SN6505ADBVT  
SN6505BDBVR  
SN6505BDBVT  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
DBV  
DBV  
6
6
6
6
6
3000  
3000  
250  
210.0  
180.0  
210.0  
210.0  
180.0  
185.0  
180.0  
185.0  
185.0  
180.0  
35.0  
18.0  
35.0  
35.0  
18.0  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0006A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
B
1.45 MAX  
A
PIN 1  
INDEX AREA  
1
2
6
5
2X 0.95  
1.9  
3.05  
2.75  
4
3
0.50  
6X  
0.25  
C A B  
0.15  
0.00  
0.2  
(1.1)  
TYP  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
TYP  
0
0.6  
0.3  
TYP  
SEATING PLANE  
4214840/C 06/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.  
4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.  
5. Refernce JEDEC MO-178.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214840/C 06/2021  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214840/C 06/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SN6505BQDBVRQ1

适用于隔离电源的汽车类低噪声、1A、420kHz 变压器驱动器 | DBV | 6 | -40 to 125
TI

SN6505BQDBVTQ1

适用于隔离电源的汽车类低噪声、1A、420kHz 变压器驱动器 | DBV | 6 | -40 to 125
TI

SN6505D-Q1

适用于隔离电源的汽车类、低噪声、1A、420kHz 变压器驱动器
TI

SN6505DQDBVRQ1

适用于隔离电源的汽车类、低噪声、1A、420kHz 变压器驱动器 | DBV | 6 | -40 to 125
TI

SN6505DQDBVTQ1

适用于隔离电源的汽车类、低噪声、1A、420kHz 变压器驱动器 | DBV | 6 | -40 to 125
TI

SN65061

Two Channels Direct Drive Speech Controller
SONIX

SN6507

适用于隔离式电源且具有占空比控制功能的低发射 36V 推挽式变压器驱动器
TI

SN6507-Q1

具有占空比控制的汽车级低辐射 36V 推挽式变压器驱动器
TI

SN65076BP-00

LINE TRANSCEIVER, PDIP8
TI

SN6507DGQR

适用于隔离式电源且具有占空比控制功能的低发射 36V 推挽式变压器驱动器 | DGQ | 10 | -55 to 125
TI

SN6507DGQRQ1

具有占空比控制的汽车级低辐射 36V 推挽式变压器驱动器 | DGQ | 10 | -55 to 125
TI

SN6509

Wide Band Medium Power Amplifier, 5MHz Min, 500MHz Max, SM-3, 4 PIN
APITECH