SMJ320C6701-SP_15 [TI]

RAD-TOLERANT CLASS-V FLOATING-POINT DIGITAL SIGNAL PROCESSOR;
SMJ320C6701-SP_15
型号: SMJ320C6701-SP_15
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

RAD-TOLERANT CLASS-V FLOATING-POINT DIGITAL SIGNAL PROCESSOR

文件: 总60页 (文件大小:791K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SMJ320C6701-SP  
www.ti.com ............................................................................................................................................................ SGUS030EAPRIL 2000REVISED JULY 2009  
RAD-TOLERANT CLASS-V FLOATING-POINT DIGITAL SIGNAL PROCESSOR  
1
FEATURES  
Rad-Tolerant: 100-kRad (Si) TID  
Bit Counting  
Normalization  
23456  
SEL Immune at 89MeV-cm2/mg LET Ions  
QML-V Qualified, SMD 5962-98661  
1M-Bit On-Chip SRAM  
512K-Bit Internal Program/Cache (16K  
32-Bit Instructions)  
Highest-Performance Floating-Point Digital  
Signal Processor (DSP) SMJ320C6701  
512K-Bit Dual-Access Internal Data (64K  
Bytes)  
7-ns Instruction Cycle Time  
140-MHz Clock Rate  
32-Bit External Memory Interface (EMIF)  
Glueless Interface to Synchronous  
Memories: SDRAM and SBSRAM  
Eight 32-Bit Instructions/Cycle  
Up to One GFLOPS Performance  
Glueless Interface to Asynchronous  
Memories: SRAM and EPROM  
Pin Compatible With ’C6201 Fixed-Point  
DSP  
Four-Channel Bootloading  
Direct Memory Access (DMA) Controller With  
Auxiliary Channel  
SMJ: QML Processing to MIL-PRF-38535  
SM: Standard Processing  
Operating Temperature Ranges  
16-Bit Host-Port Interface (HPI)  
–55°C to 115°C  
–55°C to 125°C  
Access to Entire Memory Map  
Two Multichannel Buffered Serial Ports  
(McBSPs)  
VelociTI™ Advanced Very Long Instruction  
Word (VLIW) ’C67x CPU Core  
Direct Interface to T1/E1, MVIP, SCSA  
Framers  
Eight Highly Independent Functional Units:  
Four ALUs (Floating and Fixed Point)  
Two ALUs (Fixed Point)  
ST Bus Switching Compatible  
Up to 256 Channels Each  
AC97 Compatible  
Two Multipliers (Floating and Fixed  
Point)  
Serial Peripheral Interface (SPI)  
Compatible (Motorola™)  
Load-Store Architecture With 32  
32-Bit General-Purpose Registers  
Two 32-Bit General-Purpose Timers  
Instruction Packing Reduces Code Size  
All Instructions Conditional  
Flexible Phase-Locked Loop (PLL) Clock  
Generator  
(1)  
Instruction Set Features  
IEEE Std 1149.1 (JTAG  
)
Hardware Support for IEEE  
Single-Precision Instructions  
Boundary Scan Compatible  
429-Pin Ceramic Ball Grid Array (CBGA/GLP)  
and Ceramic Land Grid Array (CLGA/ZMB)  
Package Types  
Hardware Support for IEEE  
Double-Precision Instructions  
Byte Addressable (8-/16-/32-Bit Data)  
32-Bit Address Range  
0.18-µm/5-Level Metal Process  
CMOS Technology  
8-Bit Overflow Protection  
Saturation  
3.3-V I/Os, 1.9 V Internal  
(1) IEEE Std 1149.1-1990 Test Access Port and Boundary Scan  
Architecture  
Bit-Field Extract, Set, Clear  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
3
4
5
6
VelociTI, XDS, XDS510, XDS510WS are trademarks of Texas Instruments.  
Windows, Win32, NT are trademarks of Microsoft Corporation.  
Motorola is a trademark of Motorola, Inc.  
SPARC is a trademark of SPARC International.  
Solaris is a trademark of Sun Microsystems, Inc..  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2000–2009, Texas Instruments Incorporated  
SMJ320C6701-SP  
SGUS030EAPRIL 2000REVISED JULY 2009 ............................................................................................................................................................ www.ti.com  
GLP AND ZMB PACKAGES  
(BOTTOM VIEW)  
AA  
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1
3
5
7
9
11 13 15 17 19 21  
10 12 14 16 18 20  
2
4
6
8
DESCRIPTION  
The SMJ320C67x DSPs are the floating-point DSP family in the SMJ320C6000 platform. The SMJ320C6701  
(’C6701) device is based on the high-performance, advanced VelociTI™ very-long-instruction-word (VLIW)  
architecture developed by Texas Instruments (TI), making this DSP an excellent choice for multichannel and  
multifunction applications. With performance of up to 1 giga floating-point operations per second (GFLOPS) at a  
clock rate of 140 MHz, the ’C6701 offers cost-effective solutions to high-performance DSP programming  
challenges. The ’C6701 DSP possesses the operational flexibility of high-speed controllers and the numerical  
capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight  
highly independent functional units. The eight functional units provide four floating-/fixed-point ALUs, two  
fixed-point ALUs, and two floating-/fixed-point multipliers. The ’C6701 can produce two multiply-accumulates  
(MACs) per cycle for a total of 334 million MACs per second (MMACS). The ’C6701 DSP also has  
application-specific hardware logic, on-chip memory, and additional on-chip peripherals.  
The ’C6701 includes a large bank of on-chip memory and has a powerful and diverse set of peripherals. Program  
memory consists of a 64K-byte block that is user-configurable as cache or memory-mapped program space.  
Data memory consists of two 32K-byte blocks of RAM. The peripheral set includes two multichannel buffered  
serial ports (McBSPs), two general-purpose timers, a host-port interface (HPI), and a glueless external memory  
interface (EMIF) capable of interfacing to SDRAM or SBSRAM and asynchronous peripherals.  
The ’C6701 has a complete set of development tools that includes a new C compiler, an assembly optimizer to  
simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code  
execution.  
2
Submit Documentation Feedback  
Copyright © 2000–2009, Texas Instruments Incorporated  
Product Folder Link(s): SMJ320C6701-SP  
SMJ320C6701-SP  
www.ti.com ............................................................................................................................................................ SGUS030EAPRIL 2000REVISED JULY 2009  
Device Characteristics  
Table 1 provides an overview of the ’C6701 DSP. The table shows significant features of each device, including  
the capacity of on-chip RAM, the peripherals, the execution time, and the package type with pin count.  
Table 1. Characteristics of 'C6701 Processors  
CHARACTERISTICS  
Device Number  
DESCRIPTION  
SMJ320C6701  
512K-bit Program Memory  
512K-bit Data Memory (organized as 2 blocks)  
On–Chip Memory  
2 Mutichannel Buffered Serial Ports (McBSP)  
2 General-Purpose Timers  
Host-Port Interface (HPI)  
Peripherals  
External Memory Interface (EMIF)  
Cycle Time  
7 ns at 140 MHz  
Package Type  
27 mm × 27 mm, 429–Pin BGA (GLP) and 429-Pin LGA (ZMB)  
1.9 V Core  
3.3 V I/O  
Nominal Voltage  
Functional and CPU Block Diagram  
’C6701 Digital Signal Processor  
SDRAM  
SBSRAM  
SRAM  
Internal Program Memory  
1 Block Program/Cache  
(64K Bytes)  
Program  
Access/Cache  
Controller  
32  
External Memory  
Interface (EMIF)  
ROM/FLASH  
I/O Devices  
’C67x CPU  
Timer 0  
Timer 1  
Instruction Fetch  
Control  
Registers  
Instruction Dispatch  
Instruction Decode  
Control  
Logic  
Multichannel  
Buffered Serial  
Port 0  
Framing Chips:  
H.100, MVIP,  
SCSA, T1, E1  
AC97 Devices,  
SPI Devices,  
Codecs  
Data Path A  
A Register File  
Data Path B  
Test  
B Register File  
In-Circuit  
Emulation  
Multichannel  
Buffered Serial  
Port 1  
Interrupt  
Control  
(1)  
(1)  
(1)  
(1)  
.D2 .M2 .S2  
(1)  
(1)  
.L2  
.L1 .S1 .M1  
.D1  
Direct Memory  
Access Controller  
(DMA)  
Internal Data  
Memory  
(64K Bytes)  
HOST CONNECTION  
MC68360 Glueless  
MPC860 Glueless  
PCI9050 Bridge + Inverter  
MC68302 + PAL  
Data  
Access  
Controller  
Power-  
Down  
Logic  
(4 Channels)  
2 Blocks of 8 Banks  
Each  
Host Port  
Interface  
(HPI)  
16  
PLL  
(x1, x4)  
MPC750 + PAL  
MPC960 (Jx/Rx) + PAL  
(1) These functional units execute floating-point instructions.  
Copyright © 2000–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): SMJ320C6701-SP  
 
SMJ320C6701-SP  
SGUS030EAPRIL 2000REVISED JULY 2009 ............................................................................................................................................................ www.ti.com  
CPU Description  
The CPU fetches VelociTI advanced very-long instruction words (VLIW) (256 bits wide) to supply up to eight  
32-bit instructions to the eight functional units during every clock cycle. The VelociTI VLIW architecture features  
controls by which all eight units do not have to be supplied with instructions if they are not ready to execute. The  
first bit of every 32-bit instruction determines if the next instruction belongs to the same execute packet as the  
previous instruction, or whether it should be executed in the following clock as a part of the next execute packet.  
Fetch packets are always 256 bits wide; however, the execute packets can vary in size. The variable-length  
execute packets are a key memory-saving feature, distinguishing the ’C67x CPU from other VLIW architectures.  
The CPU features two sets of functional units. Each set contains four units and a register file. One set contains  
functional units .L1, .S1, .M1, and .D1; the other set contains units .D2, .M2, .S2, and .L2. The two register files  
contain 16 32-bit registers each for the total of 32 general-purpose registers. The two sets of functional units,  
along with two register files, compose sides A and B of the CPU (see the functional and CPU block diagram and  
Figure 1). The four functional units on each side of the CPU can freely share the 16 registers belonging to that  
side. Additionally, each side features a single data bus connected to all registers on the other side, by which the  
two sets of functional units can access data from the register files on opposite sides. While register access by  
functional units on the same side of the CPU as the register file can service all the units in a single clock cycle,  
register access using the register file across the CPU supports one read and one write per cycle.  
The ’C67x CPU executes all ’C62x instructions. In addition to ’C62x fixed-point instructions, the six out of eight  
functional units (.L1, .M1, .D1, .D2, .M2, and .L2) also execute floating-point instructions. The remaining two  
functional units (.S1 and .S2) also execute the new LDDW instruction which loads 64 bits per CPU side for a  
total of 128 bits per cycle.  
Another key feature of the ’C67x CPU is the load/store architecture, where all instructions operate on registers  
(as opposed to data in memory). Two sets of data-addressing units (.D1 and .D2) are responsible for all data  
transfers between the register files and the memory. The data address driven by the .D units allows data  
addresses generated from one register file to be used to load or store data to or from the other register file. The  
’C67x CPU supports a variety of indirect-addressing modes using either linear- or circular-addressing modes with  
5- or 15-bit offsets. All instructions are conditional, and most can access any one of the 32 registers. Some  
registers, however, are singled out to support specific addressing or to hold the condition for conditional  
instructions (if the condition is not automatically "true"). The two .M functional units are dedicated for multiplies.  
The two .S and .L functional units perform a general set of arithmetic, logical, and branch functions with results  
available every clock cycle.  
The processing flow begins when a 256-bit-wide instruction fetch packet is fetched from a program memory. The  
32-bit instructions destined for the individual functional units are "linked" together by "1" bits in the least  
significant bit (LSB) position of the instructions. The instructions that are "chained" together for simultaneous  
execution (up to eight in total) compose an execute packet. A "0" in the LSB of an instruction breaks the chain,  
effectively placing the instructions that follow it in the next execute packet. If an execute packet crosses the  
fetch-packet boundary (256 bits wide), the assembler places it in the next fetch packet, while the remainder of  
the current fetch packet is padded with NOP instructions. The number of execute packets within a fetch packet  
can vary from one to eight. Execute packets are dispatched to their respective functional units at the rate of one  
per clock cycle and the next 256-bit fetch packet is not fetched until all the execute packets from the current fetch  
packet have been dispatched. After decoding, the instructions simultaneously drive all active functional units for a  
maximum execution rate of eight instructions every clock cycle. While most results are stored in 32-bit registers,  
they can be subsequently moved to memory as bytes or half-words as well. All load and store instructions are  
byte, half-word, or word addressable.  
4
Submit Documentation Feedback  
Copyright © 2000–2009, Texas Instruments Incorporated  
Product Folder Link(s): SMJ320C6701-SP  
SMJ320C6701-SP  
www.ti.com ............................................................................................................................................................ SGUS030EAPRIL 2000REVISED JULY 2009  
src1  
src2  
(1)  
.L1  
dst  
8
long dst  
long src  
8
32  
LD1 32 MSB  
ST1  
32  
Register  
File A  
long src  
long dst  
8
(A0−A15)  
8
Data Path A  
dst  
(1)  
.S1  
src1  
src2  
dst  
src1  
(1)  
.M1  
src2  
LD1 32 LSB  
DA1  
dst  
src1  
src2  
.D1  
2X  
1X  
src2  
.D2 src1  
DA2  
dst  
LD2 32 LSB  
src2  
(1)  
.M2  
src1  
dst  
src2  
Register  
File B  
(B0−B15)  
src1  
dst  
Data Path B  
(1)  
.S2  
8
8
long dst  
long src  
8
32  
32  
LD2 32 MSB  
ST2  
long src  
long dst  
dst  
8
(1)  
.L2  
src2  
src1  
Control  
Register File  
(1) These functional units execute floating-point instructions.  
Figure 1. SMJ320C67x CPU Data Paths  
Copyright © 2000–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): SMJ320C6701-SP  
SMJ320C6701-SP  
SGUS030EAPRIL 2000REVISED JULY 2009 ............................................................................................................................................................ www.ti.com  
Signal Groups Description  
CLKIN  
CLKOUT2  
CLKOUT1  
CLKMODE1  
CLKMODE0  
BOOTMODE4  
BOOTMODE3  
BOOTMODE2  
BOOTMODE1  
BOOTMODE0  
Boot Mode  
CLOCK/PLL  
PLLFREQ3  
PLLFREQ2  
PLLFREQ1  
PLLV  
RESET  
NMI  
EXT_INT7  
PLLG  
PLLF  
EXT_INT6  
EXT_INT5  
EXT_INT4  
IACK  
Reset and  
Interrupts  
INUM3  
INUM2  
INUM1  
INUM0  
TMS  
TDO  
TDI  
IEEE Standard  
1149.1  
(JTAG)  
Emulation  
TCK  
TRST  
EMU1  
EMU0  
Little ENDIAN  
Big ENDIAN  
LENDIAN  
RSV9  
RSV8  
RSV7  
RSV6  
RSV5  
RSV4  
RSV3  
RSV2  
RSV1  
RSV0  
DMAC3  
DMAC2  
DMAC1  
DMAC0  
DMA Status  
Reserved  
Power-Down  
Status  
PD  
Control/Status  
HPI  
16  
(Host-Port Interface)  
HD[15:0]  
Data  
HAS  
HR/W  
HCS  
HDS1  
HDS2  
HRDY  
HINT  
HCNTL0  
HCNTL1  
Register Select  
Control  
HHWIL  
HBE1  
HBE0  
Half-Word/Byte  
Select  
Figure 2. CPU and Peripheral Signals  
6
Submit Documentation Feedback  
Copyright © 2000–2009, Texas Instruments Incorporated  
Product Folder Link(s): SMJ320C6701-SP  
SMJ320C6701-SP  
www.ti.com ............................................................................................................................................................ SGUS030EAPRIL 2000REVISED JULY 2009  
32  
ED[31:0]  
Data  
ARE  
Asynchronous  
Memory  
AOE  
AWE  
ARDY  
Control  
CE3  
CE2  
CE1  
CE0  
Memory Map  
Space Select  
SSADS  
SSOE  
SSWE  
SSCLK  
SBSRAM  
Control  
20  
EA[21:2]  
Word Address  
Byte Enables  
BE3  
BE2  
BE1  
BE0  
SDA10  
SDRAS  
SDCAS  
SDWE  
SDRAM  
Control  
SDCLK  
HOLD  
HOLD/  
HOLDA  
HOLDA  
EMIF  
(External Memory Interface)  
TOUT1  
TINP1  
TOUT0  
TINP0  
Timer 1  
Timer 0  
Timers  
McBSP1  
Receive  
McBSP0  
Receive  
CLKX1  
FSX1  
DX1  
CLKX0  
FSX0  
DX0  
CLKR1  
FSR1  
DR1  
CLKR0  
FSR0  
DR0  
Transmit  
Clock  
Transmit  
Clock  
CLKS1  
CLKS0  
McBSPs  
(Multichannel Buffered Serial Ports)  
Figure 3. Peripheral Signals  
Copyright © 2000–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): SMJ320C6701-SP  
SMJ320C6701-SP  
SGUS030EAPRIL 2000REVISED JULY 2009 ............................................................................................................................................................ www.ti.com  
Signal Descriptions  
SIGNAL  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
CLOCK/PLL  
Clock Input  
CLKIN  
A14  
Y6  
I
CLKOUT1  
CLKOUT2  
CLKMODE1  
CLKMODE0  
PLLFREQ3  
PLLFREQ2  
PLLFREQ1  
PLLV(2)  
O
O
Clock output at full device speed  
Clock output at half of device speed  
Clock mode select  
V9  
B17  
C17  
C13  
G11  
F11  
D12  
G10  
C12  
I
Selects whether the output clock frequency = input clock freq ×4 or ×1  
PLL frequency range (3, 2, and 1)  
I
The target range for CLKOUT1 frequency is determined by the 3–bit value of the  
PLLFREQ pins.  
A(3)  
A(3)  
A(3)  
PLL analog VCC connection for the low-pass filter  
PLL analog GND connection for the low-pass filter  
PLL low-pass filter connection to external components and a bypass capacitor  
JTAG EMULATION  
PLLG(2)  
PLLF  
TMS  
TDO  
TDI  
K19  
R12  
R13  
M20  
N18  
R20  
T18  
I
JTAG test port mode select (features an internal pull-up)  
JTAG test port data out  
O/Z  
I
JTAG test port data in (features an internal pull-up)  
JTAG test port clock  
TCK  
I
TRST  
EMU1  
EMU0  
I
JTAG test port reset (features an internal pull-down)  
Emulation pin 1, pullup with a dedicated 20-kresistor(4)  
Emulation pin 0, pullup with a dedicated 20-kresistor(4)  
RESET AND INTERRUPTS  
I/O/Z  
I/O/Z  
RESET  
NMI  
J20  
I
I
Device reset  
Nonmaskable interrupt  
K21  
Edge driven (rising edge)  
EXT_INT7  
EXT_INT6  
EXT_INT5  
EXT_INT4  
IACK  
R16  
P20  
R15  
R18  
R11  
T19  
T20  
T14  
T16  
External interrupts  
Edge driven (rising edge)  
I
O
O
Interrupt acknowledge for all active interrupts serviced by the CPU  
Active interrupt identification number  
INUM3  
INUM2  
Valid during IACK for all active interrupts (not just external)  
INUM1  
Encoding order follows the interrupt service fetch packet ordering.  
INUM0  
LITTLE ENDIAN/BIG ENDIAN  
If high, selects little-endian byte/half-word addressing order within a word.  
If low, selects big-endian addressing.  
LENDIAN  
PD  
G20  
D19  
I
POWER-DOWN STATUS  
O
Power-down mode 2 or 3 (active if high)  
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground  
(2) PLLV and PLLG signals are not part of external voltage supply or ground. See the CLOCK/PLL documentation for information on how to  
connect those pins.  
(3) A = Analog signal (PLL filter)  
(4) For emulation and normal operation, pull up EMU1 and EMU0 with a dedicated 20-kresistor. For boundary scan, pull down EMU1 and  
EMU0 with a dedicated 20-kresistor.  
8
Submit Documentation Feedback  
Copyright © 2000–2009, Texas Instruments Incorporated  
Product Folder Link(s): SMJ320C6701-SP  
SMJ320C6701-SP  
www.ti.com ............................................................................................................................................................ SGUS030EAPRIL 2000REVISED JULY 2009  
Signal Descriptions (continued)  
SIGNAL  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
HOST-PORT INTERFACE (HPI)  
HINT  
HCNTL1  
HCNTL0  
HHWIL  
HBE1  
HBE0  
HR/W  
HD15  
HD14  
HD13  
HD12  
HD11  
HD10  
HD9  
H2  
J6  
O/Z  
Host interrupt (from DSP to host)  
I
I
I
I
I
I
Host control – selects between control, address or data registers  
Host control – selects between control, address or data registers  
Host halfword select – first or second halfword (not necessarily high or low order)  
Host byte select within word or half-word  
H6  
E4  
G6  
F6  
Host byte select within word or half-word  
D4  
D11  
B11  
A11  
G9  
D10  
A10  
C10  
B9  
Host read or write select  
HD8  
I/O/Z  
Host-port data (used for transfer of data, address and control)  
HD7  
F9  
HD6  
C9  
A9  
HD5  
HD4  
B8  
HD3  
D9  
D8  
B7  
HD2  
HD1  
HD0  
C7  
L6  
HAS  
I
I
Host address strobe  
Host chip select  
HCS  
C5  
C4  
K6  
HDS1  
HDS2  
HRDY  
I
Host data strobe 1  
Host data strobe 2  
Host ready (from DSP to host)  
BOOT MODE  
I
H3  
O
BOOTMODE4  
BOOTMODE3  
BOOTMODE2  
BOOTMODE1  
BOOTMODE0  
B16  
G14  
F15  
C18  
D17  
I
Boot mode  
Copyright © 2000–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): SMJ320C6701-SP  
SMJ320C6701-SP  
SGUS030EAPRIL 2000REVISED JULY 2009 ............................................................................................................................................................ www.ti.com  
Signal Descriptions (continued)  
SIGNAL  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
EMIF - CONTROL SIGNALS COMMON TO ALL TYPES OF MEMORY  
CE3  
CE2  
CE1  
CE0  
BE3  
BE2  
BE1  
BE0  
Y5  
V3  
T6  
U2  
R8  
T3  
T2  
R2  
O/Z  
Memory space enables  
O/Z  
Enabled by bits 24 and 25 of the word address  
Only one asserted during any external data access  
O/Z  
O/Z  
O/Z  
O/Z  
O/Z  
O/Z  
Byte enable control  
Decoded from the two lowest bits of the internal address  
Byte write enables for most types of memory  
Can be directly connected to SDRAM read and write mask signal (SDQM)  
EMIF - ADDRESS  
EA21  
EA20  
EA19  
EA18  
EA17  
EA16  
EA15  
EA14  
EA13  
EA12  
EA11  
EA10  
EA9  
L4  
L3  
J2  
J1  
K1  
K2  
L2  
L1  
M1  
M2  
M6  
N4  
N1  
N2  
N6  
P4  
P3  
P2  
P1  
P6  
O/Z  
External address (word address)  
EA8  
EA7  
EA6  
EA5  
EA4  
EA3  
EA2  
10  
Submit Documentation Feedback  
Copyright © 2000–2009, Texas Instruments Incorporated  
Product Folder Link(s): SMJ320C6701-SP  
SMJ320C6701-SP  
www.ti.com ............................................................................................................................................................ SGUS030EAPRIL 2000REVISED JULY 2009  
Signal Descriptions (continued)  
SIGNAL  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
EMIF - DATA  
ED31  
ED30  
ED29  
ED28  
ED27  
ED26  
ED25  
ED24  
ED23  
ED22  
ED21  
ED20  
ED19  
ED18  
ED17  
ED16  
ED15  
ED14  
ED13  
ED12  
ED11  
ED10  
ED9  
U18  
U20  
T15  
V18  
V17  
V16  
T12  
W17  
T13  
Y17  
T11  
Y16  
W15  
V14  
Y15  
R9  
I/O/Z  
External data  
Y14  
V13  
AA13  
T10  
Y13  
W12  
Y12  
Y11  
V10  
AA10  
Y10  
W10  
Y9  
ED8  
ED7  
ED6  
ED5  
ED4  
ED3  
ED2  
AA9  
Y8  
ED1  
ED0  
W9  
EMIF - ASYNCHRONOUS MEMORY CONTROL  
ARE  
R7  
T7  
V5  
R4  
O/Z  
Asynchronous memory read enable  
Asynchronous memory output enable  
Asynchronous memory write enable  
Asynchronous memory ready input  
AOE  
AWE  
ARDY  
O/Z  
O/Z  
I
Copyright © 2000–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): SMJ320C6701-SP  
SMJ320C6701-SP  
SGUS030EAPRIL 2000REVISED JULY 2009 ............................................................................................................................................................ www.ti.com  
Signal Descriptions (continued)  
SIGNAL  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
EMIF - SYNCHRONOUS BURST SRAM CONTROL  
SSADS  
SSOE  
V8  
W7  
Y7  
O/Z  
O/Z  
O/Z  
O/Z  
SBSRAM address strobe  
SBSRAM output enable  
SBSRAM write enable  
SBSRAM clock  
SSWE  
SSCLK  
AA8  
EMIF - SYNCHRONOUS DRAM CONTROL  
SDRAM address 10 (separate for deactivate command)  
SDRAM row address strobe  
SDRAM column address strobe  
SDRAM write enable  
SDA10  
SDRAS  
SDCAS  
SDWE  
SDCLK  
V7  
V6  
W5  
T8  
T9  
O/Z  
O/Z  
O/Z  
O/Z  
O/Z  
SDRAM clock  
EMIF - BUS ARBITRATION  
Hold request from the host  
HOLD  
R6  
I
HOLDA  
B15  
O
Hold request acknowledge to the host  
TIMERS  
TOUT1  
TINP1  
TOUT0  
TINP0  
G2  
K3  
O/Z  
Timer 1 or general-purpose output  
Timer 1 or general-purpose input  
Timer 0 or general-purpose output  
Timer 0 or general-purpose input  
DMA ACTION COMPLETE  
I
O/Z  
I
M18  
J18  
DMAC3  
DMAC2  
DMAC1  
DMAC0  
E18  
F19  
E20  
G16  
O
DMA action complete  
MULTICHANNEL BUFFERED SERIAL PORT 1 (McBSP1)  
CLKS1  
CLKR1  
CLKX1  
DR1  
F4  
H4  
J4  
I
External clock source (as opposed to internal)  
Receive clock  
I/O/Z  
I/O/Z  
I
Transmit clock  
E2  
G4  
F3  
F2  
Receive data  
DX1  
O/Z  
I/O/Z  
I/O/Z  
Transmit data  
FSR1  
FSX1  
Receive frame sync  
Transmit frame sync  
12  
Submit Documentation Feedback  
Copyright © 2000–2009, Texas Instruments Incorporated  
Product Folder Link(s): SMJ320C6701-SP  
SMJ320C6701-SP  
www.ti.com ............................................................................................................................................................ SGUS030EAPRIL 2000REVISED JULY 2009  
Signal Descriptions (continued)  
SIGNAL  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
MULTICHANNEL BUFFERED SERIAL PORT 0 (McBSP0)  
CLKS0  
CLKR0  
CLKX0  
DR0  
K18  
L21  
K20  
J21  
I
Extended clock source (as opposed to internal)  
Receive clock  
I/O/Z  
I/O/Z  
I
Transmit clock  
Receive data  
DX0  
M21  
P16  
N16  
O/Z  
I/O/Z  
I/O/Z  
Transmit data  
FSR0  
FSX0  
Receive frame sync  
Transmit frame sync  
RESERVED FOR TEST  
RSV0  
RSV1  
RSV2  
RSV3  
RSV4  
RSV5  
RSV6  
RSV7  
RSV8  
RSV9  
N21  
K16  
B13  
B14  
F13  
C15  
F7  
I
I
Reserved for testing, pullup with a dedicated 20-kresistor  
Reserved for testing, pullup with a dedicated 20-kresistor  
Reserved for testing, pullup with a dedicated 20-kresistor  
Reserved for testing, pullup with a dedicated 20-kresistor  
Reserved for testing, pulldown with a dedicated 20-kresistor  
Reserved (leave unconnected, do not connect to power or ground)  
Reserved for testing, pullup with a dedicated 20-kresistor  
Reserved for testing, pullup with a dedicated 20-kresistor  
Reserved for testing, pullup with a dedicated 20-kresistor  
Reserved (leave unconnected, do not connect to power or ground)  
I
I
I
O
I
D7  
I
B5  
I
F16  
C14  
C8  
O
E19  
E3  
H11  
H13  
H9  
J10  
J12  
J14  
J19  
J3  
DVDD  
S
3.3-V supply voltage  
J8  
K11  
K13  
K15  
K7  
K9  
L10  
L12  
L14  
Copyright © 2000–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): SMJ320C6701-SP  
SMJ320C6701-SP  
SGUS030EAPRIL 2000REVISED JULY 2009 ............................................................................................................................................................ www.ti.com  
Signal Descriptions (continued)  
SIGNAL  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
SUPPLY VOLTAGE PINS (CONTINUED)  
L8  
M11  
M13  
M15  
M7  
M9  
N10  
N12  
N14  
N19  
N3  
DVDD  
S
3.3-V supply voltage  
N8  
P11  
P13  
P9  
U19  
U3  
W14  
W8  
A12  
A13  
B10  
B12  
B6  
D15  
D16  
F10  
F14  
F8  
CVDD  
S
1.9-V supply voltage  
G13  
G7  
G8  
K4  
M3  
M4  
A3  
A5  
A7  
A16  
14  
Submit Documentation Feedback  
Copyright © 2000–2009, Texas Instruments Incorporated  
Product Folder Link(s): SMJ320C6701-SP  
SMJ320C6701-SP  
www.ti.com ............................................................................................................................................................ SGUS030EAPRIL 2000REVISED JULY 2009  
Signal Descriptions (continued)  
SIGNAL  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
SUPPLY VOLTAGE PINS (CONTINUED)  
A18  
AA4  
AA6  
AA15  
AA17  
AA19  
B2  
B4  
B19  
C1  
C3  
C20  
D2  
D21  
E1  
E6  
E8  
CVDD  
S
1.9-V supply voltage  
E10  
E12  
E14  
E16  
F5  
F17  
F21  
G1  
H5  
H17  
K5  
K17  
M5  
M17  
P5  
P17  
R21  
Copyright © 2000–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): SMJ320C6701-SP  
SMJ320C6701-SP  
SGUS030EAPRIL 2000REVISED JULY 2009 ............................................................................................................................................................ www.ti.com  
Signal Descriptions (continued)  
SIGNAL  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
SUPPLY VOLTAGE PINS (CONTINUED)  
T1  
T5  
T17  
U6  
U8  
U10  
U12  
U14  
U16  
U21  
V1  
V20  
W2  
W19  
W21  
Y3  
Y18  
Y20  
AA11  
AA12  
F20  
G18  
H16  
H18  
L18  
L19  
L20  
N20  
P18  
P19  
R10  
R14  
U4  
CVDD  
S
1.9-V supply voltage  
V11  
V12  
V15  
W13  
16  
Submit Documentation Feedback  
Copyright © 2000–2009, Texas Instruments Incorporated  
Product Folder Link(s): SMJ320C6701-SP  
SMJ320C6701-SP  
www.ti.com ............................................................................................................................................................ SGUS030EAPRIL 2000REVISED JULY 2009  
Signal Descriptions (continued)  
SIGNAL  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
GROUND PINS  
C11  
C16  
C6  
D5  
G3  
H10  
H12  
H14  
H7  
H8  
J11  
J13  
J7  
J9  
K8  
L7  
L9  
M8  
N7  
VSS  
R3  
GND  
Ground  
A4  
A6  
A8  
A15  
A17  
A19  
AA3  
AA5  
AA7  
AA14  
AA16  
AA18  
B3  
B18  
B20  
C2  
C19  
C21  
D1  
Copyright © 2000–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): SMJ320C6701-SP  
SMJ320C6701-SP  
SGUS030EAPRIL 2000REVISED JULY 2009 ............................................................................................................................................................ www.ti.com  
Signal Descriptions (continued)  
SIGNAL  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
GROUND PINS (CONTINUED)  
D20  
E5  
E7  
E9  
E11  
E13  
E15  
E17  
E21  
F1  
G5  
G17  
G21  
H1  
J5  
J17  
L5  
VSS  
L17  
N5  
GND  
Ground pins  
N17  
P21  
R1  
R5  
R17  
T21  
U1  
U5  
U7  
U9  
U11  
U13  
U15  
U17  
V2  
V21  
18  
Submit Documentation Feedback  
Copyright © 2000–2009, Texas Instruments Incorporated  
Product Folder Link(s): SMJ320C6701-SP  
SMJ320C6701-SP  
www.ti.com ............................................................................................................................................................ SGUS030EAPRIL 2000REVISED JULY 2009  
Signal Descriptions (continued)  
SIGNAL  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
GROUND PINS (CONTINUED)  
W1  
W3  
W20  
Y2  
Y4  
Y19  
F18  
G19  
H15  
J15  
J16  
K10  
K12  
K14  
L11  
L13  
L15  
M10  
M12  
M14  
N11  
N13  
N15  
N9  
VSS  
GND  
Ground pins  
P10  
P12  
P14  
P15  
P7  
P8  
R19  
T4  
W11  
W16  
W6  
Copyright © 2000–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): SMJ320C6701-SP  
SMJ320C6701-SP  
SGUS030EAPRIL 2000REVISED JULY 2009 ............................................................................................................................................................ www.ti.com  
Signal Descriptions (continued)  
SIGNAL  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
REMAINING UNCONNECTED PINS  
D13  
D14  
D18  
D3  
D6  
F12  
G12  
G15  
H19  
H20  
H21  
L16  
M16  
M19  
V19  
V4  
NC  
Unconnected pins  
W18  
W4  
20  
Submit Documentation Feedback  
Copyright © 2000–2009, Texas Instruments Incorporated  
Product Folder Link(s): SMJ320C6701-SP  
SMJ320C6701-SP  
www.ti.com ............................................................................................................................................................ SGUS030EAPRIL 2000REVISED JULY 2009  
Development Support  
Texas Instruments (TI) offers an extensive line of development tools for the ’C6x generation of DSPs, including  
tools to evaluate the performance of the processors, generate code, develop algorithm implementations, and fully  
integrate and debug software and hardware modules.  
The following products support development of ’C6x-based applications:  
Software-development tools  
Assembly optimizer  
Assembler/Linker  
Simulator  
Optimizing ANSI C compiler  
Application algorithms  
C/Assembly debugger and code profiler  
Hardware-development tools  
Extended development system (XDS™) emulator (supports ’C6x multiprocessor system debug)  
EVM (Evaluation Module)  
The TMS320 DSP Development Support Reference Guide (SPRU011) contains information about  
development-support products for all TMS320 family member devices, including documentation. See this  
document for further information on TMS320 documentation or any TMS320 support products from Texas  
Instruments. An additional document, the TMS320 Third-Party Support Reference Guide (SPRU052), contains  
information about TMS320-related products from other companies in the industry. To receive TMS320 literature,  
contact the Literature Response Center at 800/477-8924.  
See Table 2 for a complete listing of development-support tools for the ’C6x. For information on pricing and  
availability, contact the nearest TI field sales office or authorized distributor.  
Table 2. SMJ320C6x Development-Support Tools  
DEVELOPMENT TOOL  
PLATFORM  
Software  
PART NUMBER  
AD0345AS8500RF – Single user  
AD0345BS8500RF – Multi user  
Ada 95 Compiler(1)  
Sun Solaris 2.3™(2)  
C Compiler/Assembler/Linker/Assembly  
Optimizer  
Win32™  
TMDX3246855-07  
TMDX3246555-07  
C Compiler/Assembler/Linker/Assembly  
Optimizer  
SPARC™ Solaris™  
Simulator  
Win32  
SPARC Solaris  
Win32, Windows NT™  
Hardware  
TMDS3246851-07  
TMDS3246551-07  
TMDX324016X-07  
Simulator  
XDS510™ Debugger/Emulation Software  
XDS510 Emulator(3)  
PC  
TMDS00510  
XDS510WS™ Emulator(4)  
SCSI  
TMDS00510WS  
Software/Hardware  
PC/Win95/Windows NT  
EVM Evaluation Kit  
TMDX3260A6201  
TMDX326006201  
EVM Evaluation Kit (including  
TMDX3246855-07)  
PC/Win95/Windows NT  
(1) Contact IRVINE Compiler Corporation (949) 250-1366 to order  
(2) NT support estimated availability 1Q00  
(3) Includes XDS510 board and JTAG emulation cable. TMDX324016X-07 C-source Debugger/Emulation software is not included.  
(4) Includes XDS510WS box, SCSI cable, power supply, and JTAG emulation cable.  
Copyright © 2000–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): SMJ320C6701-SP  
 
SMJ320C6701-SP  
SGUS030EAPRIL 2000REVISED JULY 2009 ............................................................................................................................................................ www.ti.com  
Device and Development-Support Tool Nomenclature  
To designate the stages in the product-development cycle, TI assigns prefixes to the part numbers of all SMJ320  
devices and support tools. Each SMJ320 member has one of three prefixes: SMX, SM, or SMJ. Texas  
Instruments recommends two of three possible prefix designators for support tools: TMDX and TMDS. These  
prefixes represent evolutionary stages of product development from engineering prototypes (SMX/TMDX)  
through fully qualified production devices/tools (SMJ/TMDS).  
Device development evolutionary flow:  
SMX  
SM  
Experimental device that is not necessarily representative of the final device’s electrical  
specifications  
Final silicon die that conforms to the device’s electrical specifications but has not completed  
quality and reliability verification  
SMJ  
Fully qualified production device processed to MIL-PRF-38535  
Support tool development evolutionary flow:  
TMDX  
TMDS  
Development-support product that has not yet completed Texas Instruments internal  
qualification testing.  
Fully qualified development-support product  
SMX devices and TMDX development-support tools are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
SMJ devices and TMDS development-support tools have been characterized fully, and the quality and reliability  
of the device have been demonstrated fully. TI’s standard warranty applies.  
Predictions show that prototype devices (SMX or SM) have a greater failure rate than the standard production  
devices. Texas Instruments recommends that these devices not be used in any production system because their  
expected end-use failure rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type  
(for example, GLP), the temperature range, and the device speed range in megahertz (for example, 14 is 140  
MHz). Figure 4 provides a legend for reading the complete device name for any SMJ320 family member.  
22  
Submit Documentation Feedback  
Copyright © 2000–2009, Texas Instruments Incorporated  
Product Folder Link(s): SMJ320C6701-SP  
SMJ320C6701-SP  
www.ti.com ............................................................................................................................................................ SGUS030EAPRIL 2000REVISED JULY 2009  
W
SMJ 320  
C
6701 GLP  
14  
-SP  
PREFIX  
SMX= Experimental device  
SMJ = MIL-PRF-38535, QML  
SM Commercial  
processing  
RAD-TOLERANT CLASS V  
DEVICE SPEED RANGE  
14 = 140 MHz  
=
TEMPERATURE RANGE (DEFAULT: 0°C TO 90°C)  
-55 °C to 115°C, extended temperature  
DEVICE FAMILY  
320 = SMJ320 family  
W
=
TECHNOLOGY  
(1)  
PACKAGE TYPE  
GLP  
ZMB = 429-pin ceramic LGA  
C
= CMOS  
429-pin ceramic BGA  
=
DEVICE  
’6x DSP:  
6201B  
6203  
6701  
(1) BGA = Ball grid array  
Figure 4. SMJ320 Device Nomenclature (Including SMJ320C6701-SP)  
Documentation Support  
Extensive documentation supports all SMJ320 family generations of devices from product announcement through  
applications development. The types of documentation available include: data sheets, such as this document,  
with design specifications; complete user’s reference guides for all devices; technical briefs; development-support  
tools; and hardware and software applications. The following is a brief, descriptive list of support documentation  
specific to the ’C6x devices:  
The TMS320C6000 CPU and Instruction Set Reference Guide (literature number SPRU189) describes the  
’C6000 CPU architecture, instruction set, pipeline, and associated interrupts.  
The TMS320C6000 Peripherals Reference Guide (literature number SPRU190) describes the functionality of the  
peripherals available on ’C6x devices, such as the external memory interface (EMIF), host-port interface (HPI),  
multichannel buffered serial ports (McBSPs), direct-memory-access (DMA), enhanced direct-memory-access  
(EDMA) controller, expansion bus (XB), clocking and phase-locked loop (PLL); and power-down modes. This  
guide also includes information on internal data and program memories.  
The TMS320C6000 Programmer’s Guide (literature number SPRU198) describes ways to optimize C and  
assembly code for ’C6x devices and includes application program examples.  
The TMS320C6x C Source Debugger User’s Guide (literature number SPRU188) describes how to invoke the  
’C6x simulator and emulator versions of the C source debugger interface and discusses various aspects of the  
debugger, including: command entry, code execution, data management, breakpoints, profiling, and analysis.  
The TMS320C6x Peripheral Support Library Programmer’s Reference (literature number SPRU273) describes  
the contents of the ’C6x peripheral support library of functions and macros. It lists functions and macros both by  
header file and alphabetically, provides a complete description of each, and gives code examples to show how  
they are used.  
TMS320C6000 Assembly Language Tools User’s Guide (literature number SPRU186) describes the assembly  
language tools (assembler, linker, and other tools used to develop assembly language code), assembler  
directives, macros, common object file format, and symbolic debugging directives for the ’C6000 generation of  
devices.  
Copyright © 2000–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s): SMJ320C6701-SP  
SMJ320C6701-SP  
SGUS030EAPRIL 2000REVISED JULY 2009 ............................................................................................................................................................ www.ti.com  
The TMS320C6x Evaluation Module Reference Guide (literature number SPRU269) provides instructions for  
installing and operating the ’C6x evaluation module. It also includes support software documentation, application  
programming interfaces, and technical reference material.  
TMS320C6000 DSP/BIOS User’s Guide (literature number SPRU303) describes how to use DSP/BIOS tools and  
APIs to analyze embedded real-time DSP applications.  
Code Composer User’s Guide (literature number SPRU296) explains how to use the Code Composer  
development environment to build and debug embedded real-time DSP applications.  
Code Composer Studio Tutorial (literature number SPRU301) introduces the Code Composer Studio integrated  
development environment and software tools.  
The TMS320C6000 Technical Brief (literature number SPRU197) gives an introduction to the ’C62x/C67x  
devices, associated development tools, and third-party support.  
A series of DSP textbooks is published by Prentice-Hall and John Wiley & Sons to support DSP research and  
education. The TMS320 newsletter, Details on Signal Processing, is published quarterly and distributed to update  
SMJ320 customers on product information. The TMS320 DSP bulletin board service (BBS) provides access to  
information pertaining to the SMJ320 family, including documentation, source code, and object code for many  
DSP algorithms and utilities. The BBS can be reached at 281/274-2323.  
Information regarding TI DSP products is also available on the Worldwide Web at http://www.ti.com uniform  
resource locator (URL).  
Clock PLL  
All of the internal ’C67x clocks are generated from a single source through the CLKIN pin. This source clock  
either drives the PLL, which multiplies the source clock in frequency to generate the internal CPU clock, or  
bypasses the PLL to become the internal CPU clock.  
To use the PLL to generate the CPU clock, the external PLL filter circuit must be properly designed. Table 3,  
Table 4, and Figure 5 show the external PLL circuitry for either x1 (PLL bypass) or x4 PLL multiply modes.  
Table 3 and Figure 6 show the external PLL circuitry for a system with ONLY x1 (PLL bypass) mode.  
To minimize the clock jitter, a single clean power supply should power both the ’C67x device and the external  
clock oscillator circuit. Noise coupling into PLLF will directly impact PLL clock jitter. The minimum CLKIN rise and  
fall times should also be observed. For the input clock timing requirements, see the input and output clocks  
electricals section. Guidelines for EMI filter selection are as follows: maximum attenuation frequency = 20–30  
MHz, maximum dB attenuation = 45–50 dB, and minimum dB attenuation above 30 MHz = 20 dB.  
Table 3. CLKOUT1 Frequency Ranges(1)  
PLLFREQ3  
(C13)  
PLLFREQ2  
(G11)  
PLLFREQ1  
(F11)  
CLKOUT1 FREQUENCY RANGE  
(MHz)  
0
0
0
50-140  
(1) Due to overlap of frequency ranges when choosing the PLLFREQ, more than one frequency range can contain the CLKOUT1  
frequency. Choose the lowest frequency range that includes the desired frequency. For example, for CLKOUT1 = 133 MHz, choose  
PLLFREQ value of 000b. PLLFREQ values other than 000b, 001b, and 010b are reserved.  
Table 4. 'C6701 PLL Component Selection Table  
CPU CLOCK  
FREQUENCY  
(CLKOUT1)  
CLKIN  
RANGE  
(MHz)  
TYPICAL  
LOCK TIME  
(µs)(1)  
CLKOUT2 RANGE  
(MHz)  
R1  
(W)  
C1  
(nF)  
C2  
(pF)  
CLKMODE  
RANGE (MHz)  
x4  
12.5 – 41.7  
50-140  
25 – 83.5  
60.4  
27  
560  
75  
(1) Under some operating conditions, the maximum PLL lock time may vary as much as 150% from the specified typical value. For  
example, if the typical lock time is specified as 100 µs, the maximum value may be as long as 250 µs.  
24  
Submit Documentation Feedback  
Copyright © 2000–2009, Texas Instruments Incorporated  
Product Folder Link(s): SMJ320C6701-SP  
 
 
SMJ320C6701-SP  
www.ti.com ............................................................................................................................................................ SGUS030EAPRIL 2000REVISED JULY 2009  
AVAILABLE MULTIPLY FACTORS  
CPU CLOCK FREQUENCY  
CLKMODE1  
CLKMODE0  
PLL MULTIPLY FACTORS  
F(CPUCLOCK)  
1 x f(CLKIN)  
Reserved  
0
0
1
1
0
1
0
1
x1(BYPASS)  
Reserved  
Reserved  
x4  
Reserved  
4 x f(CLKIN)  
PLLFREQ3  
PLLFREQ2  
See Table 3  
PLLFREQ1  
3.3V  
PLLV  
Internal to ’C6701  
PLL  
CLKMODE0  
CLKMODE1  
PLLMULT  
C4  
C3  
PLLCLK  
0.1 mF  
10 mF  
CLKIN  
CLKIN  
1
CPU  
CLOCK  
LOOP FILTER  
0
C2  
C1  
R1  
(1) Keep the lead length and the number of vias between the PLLF pin, the PLLG pin, and R1, C1, and C2 to a minimum.  
In addition, place all PLL external components (R1, C1, C2, C3, C4, and the EMI filter) as close to the ’C6000 device  
as possible. For the best performance, TI recommends that all the PLL external components be on a single side of  
the board without jumpers, switches, or components other than the ones shown.  
(2) For reduced PLL jitter, maximize the spacing between switching signals and the PLL external components (R1, C1,  
C2, C3, C4, and the EMI filter).  
(3) The 3.3-V supply for the EMI filter must be from the same 3.3-V power plane supplying the I/O voltage, DVDD  
.
Figure 5. External PLL Circuitry for Either PLL ×4 Mode or ×1 (Bypass) Mode  
PLLFREQ3  
PLLFREQ2  
PLLFREQ1  
See Table 3  
3.3V  
PLLV  
Internal to ’C6701  
CLKMODE0  
CLKMODE1  
PLL  
PLLMULT  
CLKIN  
PLLCLK  
CLKIN  
1
0
CPU  
CLOCK  
LOOP FILTER  
(1) For a system with ONLY PLL x1 (bypass) mode, short the PLLF terminal to the PLLG terminal.  
(2) The 3.3-V supply for the EMI filter must be from the same 3.3-V power plane supplying the I/O voltage, DVDD  
.
Figure 6. External PLL Circuitry for ×1 (Bypass) Mode Only  
Copyright © 2000–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Link(s): SMJ320C6701-SP  
SMJ320C6701-SP  
SGUS030EAPRIL 2000REVISED JULY 2009 ............................................................................................................................................................ www.ti.com  
Power-Supply Sequencing  
TI DSPs do not require specific power sequencing between the core supply and the I/O supply. However,  
systems should be designed to ensure that neither supply is powered up for extended periods of time if the other  
supply is below the proper operating voltage.  
System-Level Design Considerations  
System-level design considerations, such as bus contention, may require supply sequencing to be implemented.  
In this case, the core supply should be powered up at the same time as, or prior to (and powered down after),  
the I/O buffers. This is to ensure that the I/O buffers receive valid inputs from the core before the output buffers  
are powered up, thus, preventing bus contention with other chips on the board.  
Power-Supply Design Considerations  
For systems using the C6000™ DSP platform of devices, the core supply may be required to provide in excess  
of 2 A per DSP until the I/O supply is powered up. This extra current condition is a result of uninitialized logic  
within the DSP(s) and is corrected once the CPU sees an internal clock pulse. With the PLL enabled, as the I/O  
supply is powered on, a clock pulse is produced stopping the extra current draw from the supply. With the PLL  
disabled, an external clock pulse may be required to stop this extra current draw. A normal current state returns  
once the I/O power supply is turned on and the CPU sees a clock pulse. Decreasing the amount of time between  
the core supply power up and the I/O supply power up can minimize the effects of this current draw.  
A dual-power supply with simultaneous sequencing, such as available with TPS563xx controllers or PT69xx  
plug-in power modules, can be used to eliminate the delay between core and I/O power up [see the Using the  
TPS56300 to Power DSPs application report (literature number SLVA088)]. A Schottky diode can also be used to  
tie the core rail to the I/O rail, effectively pulling up the I/O power supply to a level that can help initialize the logic  
within the DSP.  
Core and I/O supply voltage regulators should be located close to the DSP (or DSP array) to minimize  
inductance and resistance in the power delivery path. Additionally, when designing for high-performance  
applications utilizing the C6000™ platform of DSPs, the PC board should include separate power planes for  
core, I/O, and ground, all bypassed with high-quality low-ESL/ESR capacitors.  
26  
Submit Documentation Feedback  
Copyright © 2000–2009, Texas Instruments Incorporated  
Product Folder Link(s): SMJ320C6701-SP  
SMJ320C6701-SP  
www.ti.com ............................................................................................................................................................ SGUS030EAPRIL 2000REVISED JULY 2009  
Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–40  
MAX  
2.3  
4
UNIT  
CVDD Supply voltage range(2)  
DVDD Supply voltage range(2)  
Input voltage range  
V
V
V
V
4
Output voltage range  
4
S-suffix device  
W-suffix device  
90  
115  
150  
TC  
Operating case temperature range  
Storage temperature range  
°C  
°C  
–55  
Tstg  
–55  
(1) Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating  
conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to VSS.  
Recommended Operating Conditions  
MIN  
1.81  
3.14  
0
NOM  
1.9  
3.3  
0
MAX  
1.99  
3.46  
0
UNIT  
V
CVDD  
DVDD  
VSS  
VIH  
Supply voltage  
Supply voltage  
V
Supply ground  
V
High-level input voltage  
Low-level input voltage  
High-level output current  
Low-level output current  
2
V
VIL  
0.8  
–12  
12  
V
IOH  
mA  
mA  
IOL  
S-suffix device  
W-suffix device  
–40  
–55  
90  
TC  
Case temperature  
°C  
115  
Copyright © 2000–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Link(s): SMJ320C6701-SP  
SMJ320C6701-SP  
SGUS030EAPRIL 2000REVISED JULY 2009 ............................................................................................................................................................ www.ti.com  
Electrical Characteristics  
over recommended ranges of supply voltage and operating case temperature (unless otherwise noted) (unchanged after 100  
kRad)  
PARAMETER  
High-level output voltage  
Low-level output voltage  
Input current(1)  
TEST CONDITIONS  
DVDD = MIN, IOH = MAX  
MIN  
TYP  
MAX UNIT  
VOH  
VOL  
II  
2.4  
V
DVDD = MIN, IOL = MAX  
VI = VSS to DVDD  
0.6  
±10  
±10  
V
µA  
µA  
IOZ  
Off-state output current  
VO = DVDD or 0 V  
Supply current, CPU + CPU memory  
access(2)  
IDD2V  
CVDD = NOM, CPU clock = 150 MHz  
470  
mA  
IDD2V  
IDD3V  
Ci  
Supply current, peripherals(3)  
Supply current, I/O pins(4)  
Input capacitance  
CVDD = NOM, CPU clock = 150 MHz  
DVDD = NOM, CPU clock = 150 MHz  
250  
85  
mA  
mA  
pF  
15(5)  
15(5)  
Co  
Output capacitance  
pF  
(1) TMS and TDI are not included due to internal pullups.  
TRST is not included due to internal pulldown.  
(2) Measured with average CPU activity:  
50% of time: 8 instructions per cycle, 32-bit DMEM access per cycle  
50% of time: 2 instructions per cycle, 16-bit DMEM access per cycle  
(3) Measured with average peripheral activity:  
50% of time: Timers at max rate, McBSPs at E1 rate, and DMA burst transfer between DMEM and SDRAM  
50% of time: Timers at max rate, McBSPs at E1 rate, and DMA servicing McBSPs  
(4) Measured with average I/O activity (30-pF load, SDCLK on):  
25% of time: Reads from external SDRAM  
25% of time: Writes to external SDRAM  
50% of time: No activity  
(5) This parameter is not tested.  
28  
Submit Documentation Feedback  
Copyright © 2000–2009, Texas Instruments Incorporated  
Product Folder Link(s): SMJ320C6701-SP  
SMJ320C6701-SP  
www.ti.com ............................................................................................................................................................ SGUS030EAPRIL 2000REVISED JULY 2009  
PARAMETER MEASUREMENT INFORMATION  
I
OL  
Tester Pin  
Electronics  
Output  
Under  
Test  
50  
V
ref  
(1)  
C
T
= 30 pF  
I
OH  
(1) Typical distributed load circuit capacitance.  
Signal-Transition Levels  
All input and output timing parameters are referenced to 1.5 V for both “0” and “1” logic levels.  
V
ref  
= 1.5 V  
Figure 7. Input and Output Voltage Reference Levels for AC Timing Measurements  
Copyright © 2000–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Link(s): SMJ320C6701-SP  
SMJ320C6701-SP  
SGUS030EAPRIL 2000REVISED JULY 2009 ............................................................................................................................................................ www.ti.com  
INPUT AND OUTPUT CLOCKS  
Timing Requirements for CLKIN(1)  
(see Figure 8)  
CLKMODE = x4  
CLKMODE = x1  
NO.  
UNIT  
MIN  
MAX  
MIN  
MAX  
1
2
tc(CLKIN)  
Cycle time, CLKIN  
28.4  
7.1  
ns  
ns  
Pulse duration,  
CLKIN high  
tw(CLKINH)  
0.4C(2)(3)  
0.4C(2)(3)  
0.45C(2)(3)  
0.45C(2)(3)  
Pulse duration,  
CLKIN low  
3
4
tw(CLKINL)  
tt(CLKIN)  
ns  
ns  
Transition time, CLKIN  
5(2)  
0.6(2)  
(1) The reference points for the rise and fall transitions ar measured at 20% and 80%, respectively, of VIH  
.
(2) This parameter is not tested.  
(3) C = CLKIN cycle time in ns. For example, when CLKIN frequency is 10 MHz, use C = 100 ns.  
1
4
2
CLKIN  
3
4
Figure 8. CLKIN Timing  
Switching Characteristics for CLKOUT1(1)(2)  
(see Figure 9)  
CLKMODE = x4  
CLKMODE = x1  
MIN MAX  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
1
2
3
4
tc(CKO1)  
tw(CKO1H)  
tw(CKO1L)  
tt(CKO1)  
Cycle time, CLKOUT1  
P – 0.7(3)  
P + 0.7(3)  
P – 0.7(3)  
P + 0.7(3)  
ns  
ns  
ns  
ns  
Pulse duration, CLKOUT1 high  
Pulse duration, CLKOUT1 low  
Transition time, CLKOUT1  
(P/2) – 0.5(3) (P/2) + 0.5(3) PH – 0.5(3) PH + 0.5(3)  
(P/2) – 0.5(3) (P/2) + 0.5(3) PL – 0.5(3) PL + 0.5(3)  
0.6(3)  
0.6(3)  
(1) P = 1/CPU clock frequency in nanoseconds (ns).  
(2) PH is the high period of CLKIN in ns and PL is the low period of CLKIN in ns.  
(3) This parameter is not tested.  
1
4
2
CLKOUT1  
3
4
Figure 9. CLKOUT1 Timing  
30  
Submit Documentation Feedback  
Copyright © 2000–2009, Texas Instruments Incorporated  
Product Folder Link(s): SMJ320C6701-SP  
 
 
SMJ320C6701-SP  
www.ti.com ............................................................................................................................................................ SGUS030EAPRIL 2000REVISED JULY 2009  
Switching Characteristics for CLKOUT2(1)  
(see Figure 10)  
NO.  
1
PARAMETER  
Cycle time, CLKOUT2  
MIN  
MAX  
UNIT  
ns  
tc(CKO2)  
tw(CKO2H)  
tw(CKO2L)  
tt(CKO2)  
2P – 0.7(2) 2P + 0.7(2)  
P – 0.7(2) P + 0.7(2)  
P – 0.7(2) P + 0.7(2)  
0.6(2)  
2
Pulse duration, CLKOUT2 high  
Pulse duration, CLKOUT2 low  
Transition time, CLKOUT2  
ns  
3
ns  
4
ns  
(1) P = 1/CPU clock frequency in ns.  
(2) This parameter is not tested.  
1
4
2
CLKOUT2  
3
4
Figure 10. CLKOUT2 Timing  
SDCLK, SSCLK Timing Parameter  
SDCLK timing parameters are the same as CLKOUT2 parameters.  
SSCLK timing parameters are the same as CLKOUT1 or CLKOUT2 parameters, depending on SSCLK  
configuration.  
Switching Characteristics for the Relation of SSCLK, SDCLK, and CLKOUT2 to CLKOUT1  
(see Figure 11)  
NO.  
1
PARAMETER  
MIN  
–0.8  
MAX  
3.4  
UNIT  
ns  
td(CKO1–SSCLK)  
td(CKO1–SSCLK1/2)  
td(CKO1–CKO2)  
Delay time, CLKOUT1 edge to SSCLK edge  
Delay time, CLKOUT1 edge to SSCLK edge (1/2 clock rate)  
Delay time, CLKOUT1 edge to CLKOUT2 edge  
Delay time, CLKOUT1 edge to SDCLK edge  
2
–1  
–1.5  
–1.5  
3
2.5  
1.9  
ns  
3
ns  
4
td(CKO1–SDCLK)  
ns  
CLKOUT1  
SSCLK  
1
2
3
4
SSCLK (1/2rate)  
CLKOUT2  
SDCLK  
Figure 11. Relation of CLKOUT2, SDCLK, and SSCLK to CLKOUT1  
Copyright © 2000–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Link(s): SMJ320C6701-SP  
 
 
SMJ320C6701-SP  
SGUS030EAPRIL 2000REVISED JULY 2009 ............................................................................................................................................................ www.ti.com  
ASYNCHRONOUS MEMORY TIMING  
Timing Requirements for Asynchronous Memory Cycles(1)  
(see Figure 12 and Figure 13)  
NO.  
6
MIN  
MAX  
UNIT  
ns  
tsu(EDV–CKO1H)  
th(CKO1H–EDV)  
tsu(ARDY–CKO1H)  
th(CKO1H–ARDY)  
Setup time, read EDx valid before CLKOUT1 high  
Hold time, read EDx valid after CLKOUT1 high  
Setup time, ARDY valid before CLKOUT1 high  
Hold time, ARDY valid after CLKOUT1 high  
4.8  
1.5  
3.5  
1.5  
7
ns  
10  
11  
ns  
ns  
(1) To ensure data setup time, simply program the strobe width wide enough. ARDY is internally synchronized. If ARDY does meet setup or  
hold time, it may be recognized in the current cycle or the next cycle. Thus, ARDY can be an asynchronous input.  
Switching Characteristics for Asynchronous Memory Cycles(1)  
(see Figure 12 and Figure 13)  
NO.  
1
PARAMETER  
MIN  
MAX  
4.5  
UNIT  
ns  
td(CKO1H–CEV)  
td(CKO1H–BEV)  
td(CKO1H–BEIV)  
td(CKO1H–EAV)  
td(CKO1H–EAIV)  
td(CKO1H–AOEV)  
td(CKO1H–AREV)  
td(CKO1H–EDV)  
td(CKO1H–EDIV)  
td(CKO1H–AWEV)  
Delay time, CLKOUT1 high to CEx valid  
Delay time, CLKOUT1 high to BEx valid  
Delay time, CLKOUT1 high to BEx invalid  
Delay time, CLKOUT1 high to EAx valid  
Delay time, CLKOUT1 high to EAx invalid  
Delay time, CLKOUT1 high to AOE valid  
Delay time, CLKOUT1 high to ARE valid  
Delay time, CLKOUT1 high to EDx valid  
Delay time, CLKOUT1 high to EDx invalid  
Delay time, CLKOUT1 high to AWE valid  
–1  
–1  
2
4.5  
ns  
3
ns  
4
4.5  
ns  
5
–1  
–1  
–1  
ns  
8
4.5  
4.5  
4.5  
ns  
9
ns  
12  
13  
14  
ns  
–1  
–1  
ns  
4.5  
ns  
(1) The minimum delay is also the minimum output hold after CLKOUT1 high.  
Not ready = 2  
Setup = 2  
Strobe = 5  
HOLD = 1  
CLKOUT1  
CEx  
1
2
4
1
3
5
BE[3:0]  
EA[21:2]  
ED[31:0]  
AOE  
7
6
8
8
9
9
ARE  
AWE  
11  
11  
10  
10  
ARDY  
Figure 12. Asynchronous Memory Read Timing  
32  
Submit Documentation Feedback  
Copyright © 2000–2009, Texas Instruments Incorporated  
Product Folder Link(s): SMJ320C6701-SP  
 
SMJ320C6701-SP  
www.ti.com ............................................................................................................................................................ SGUS030EAPRIL 2000REVISED JULY 2009  
Not ready = 2  
Setup = 2  
Strobe = 5  
HOLD = 1  
CLKOUT1  
1
2
4
1
3
5
CEx  
BE[3:0]  
EA[21:2]  
12  
13  
14  
ED[31:0]  
AOE  
ARE  
14  
AWE  
11  
11  
10  
10  
ARDY  
Figure 13. Aysnchronous Memory Write Timing  
Copyright © 2000–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Link(s): SMJ320C6701-SP  
SMJ320C6701-SP  
SGUS030EAPRIL 2000REVISED JULY 2009 ............................................................................................................................................................ www.ti.com  
SYNCHRONOUS-BURST MEMORY TIMING  
Timing Requirements for Synchronous-Burst SRAM Cycles (Full-Rate SSCLK)  
(see Figure 14)  
NO.  
7
MIN  
MAX  
UNIT  
ns  
tsu(EDV–SSCLKH)  
th(SSCLKH–EDV)  
Setup time, read EDx valid before SSCLK high  
Hold time, read EDx valid after SSCLK high  
2.6  
1.5  
8
ns  
Switching Characteristics for Synchronous-burst SRAM Cycles(1) (Full-Rate SSCLK)  
(see Figure 14 and Figure 15)  
NO.  
1
PARAMETER  
MIN  
MAX  
UNIT  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tosu(CEV–SSCLKH)  
toh(SSCLKH–CEV)  
tosu(BEV–SSCLKH)  
toh(SSCLKH–BEIV)  
tosu(EAV–SSCLKH)  
toh(SSCLKH–EAIV)  
tosu(ADSV–SSCLKH)  
toh(SSCLKH–ADSV)  
tosu(OEV–SSCLKH)  
toh(SSCLKH–OEV)  
tosu(EDV–SSCLKH)  
toh(SSCLKH–EDIV)  
tosu(WEV–SSCLKH)  
toh(SSCLKH–WEV)  
Output setup time, CEx valid before SSCLK high  
Output hold time, CEx valid after SSCLK high  
Output setup time, BEx valid before SSCLK high  
Output hold time, BEx invalid after SSCLK high  
Output setup time, EAx valid before SSCLK high  
Output hold time, EAx invalid after SSCLK high  
Output setup time, SSADS valid before SSCLK high  
Output hold time, SSADS valid after SSCLK high  
Output setup time, SSOE valid before SSCLK high  
Output hold time, SSOE valid after SSCLK high  
Output setup time, EDx valid before SSCLK high  
Output hold time, EDx invalid after SSCLK high  
Output setup time, SSWE valid before SSCLK high  
Output hold time, SSWE valid after SSCLK high  
0.5P – 1.5  
0.5P – 2.5  
0.5P – 1.6  
0.5P – 2.5  
0.5P – 1.7  
0.5P – 2.5  
0.5P – 1.5  
0.5P – 2.5  
0.5P – 1.5  
0.5P – 2.5  
0.5P – 1.5  
0.5P – 2.5  
0.5P – 1.5  
0.5P – 2.5  
2
3
4
5
6
9
10  
11  
12  
13  
14  
15  
16  
(1) The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter. When the PLL is  
used (CLKMODE x4), P = 1/CPU clock frequency in ns. For example, when running parts at 140 MHz, use P = 7 ns. For CLKMODE x1,  
0.5P is defined as PH (pulse duration of CLKIN high) for all output setup times; 0.5P is defined as PL (pulse duration of CLKIN low) for  
all output hold times.  
SSCLK  
1
3
5
2
CEx  
BE[3:0]  
4
BE1  
A1  
BE2  
BE3  
BE4  
6
EA[21:2]  
A2  
7
A3  
8
A4  
Q1  
Q2  
Q3  
Q4  
ED[31:0]  
SSADS  
9
10  
11  
12  
SSOE  
SSWE  
Figure 14. SBSRAM Read Timing (Full-Rate SSCLK)  
34  
Submit Documentation Feedback  
Copyright © 2000–2009, Texas Instruments Incorporated  
Product Folder Link(s): SMJ320C6701-SP  
 
SMJ320C6701-SP  
www.ti.com ............................................................................................................................................................ SGUS030EAPRIL 2000REVISED JULY 2009  
SSCLK  
1
2
CEx  
3
4
BE[3:0]  
BE1  
A1  
BE2  
A2  
BE3  
A3  
BE4  
5
6
EA[21:2]  
ED[31:0]  
A4  
13  
14  
D4  
D1  
D2  
D3  
9
10  
SSADS  
SSOE  
15  
16  
SSWE  
Figure 15. SBSRAM Write Timing (Full-Rate SSCLK)  
Timing Requirements for Synchronous-Burst SRAM Cycles (Half-Rate SSCLK)  
(seeFigure 16)  
NO.  
7
MIN  
MAX  
UNIT  
ns  
tsu(EDV–SSCLKH)  
th(SSCLKH–EDV)  
Setup time, read EDx valid before SSCLK high  
Hold time, read EDx valid after SSCLK high  
3.8  
1.5  
8
ns  
Switching Characteristics for Synchronous-Burst SRAM Cycles(1) (Half-Rate SSCLK)  
(see Figure 16 and Figure 17)  
NO.  
1
PARAMETER  
MIN  
MAX  
UNIT  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tosu(CEV–SSCLKH)  
toh(SSCLKH–CEV)  
tosu(BEV–SSCLKH)  
toh(SSCLKH–BEIV)  
tosu(EAV–SSCLKH)  
toh(SSCLKH–EAIV)  
tosu(ADSV–SSCLKH)  
toh(SSCLKH–ADSV)  
tosu(OEV–SSCLKH)  
toh(SSCLKH–OEV)  
tosu(EDV–SSCLKH)  
toh(SSCLKH–EDIV)  
tosu(WEV–SSCLKH)  
toh(SSCLKH–WEV)  
Output setup time, CEx valid before SSCLK high  
Output hold time, CEx valid after SSCLK high  
Output setup time, BEx valid before SSCLK high  
Output hold time, BEx invalid after SSCLK high  
Output setup time, EAx valid before SSCLK high  
Output hold time, EAx invalid after SSCLK high  
Output setup time, SSADS valid before SSCLK high  
Output hold time, SSADS valid after SSCLK high  
Output setup time, SSOE valid before SSCLK high  
Output hold time, SSOE valid after SSCLK high  
Output setup time, EDx valid before SSCLK high  
Output hold time, EDx invalid after SSCLK high  
Output setup time, SSWE valid before SSCLK high  
Output hold time, SSWE valid after SSCLK high  
1.5P – 5.5  
0.5P – 2.3  
1.5P – 5.5  
0.5P – 2.3  
1.5P – 5.5  
0.5P – 2.3  
1.5P – 5.5  
0.5P – 2.3  
1.5P – 5.5  
0.5P – 2.3  
1.5P – 5.5  
0.5P – 2.3  
1.5P – 5.5  
0.5P – 2.3  
2
3
4
5
6
9
10  
11  
12  
13  
14  
15  
16  
(1) The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter. When the PLL is  
used (CLKMODE x4), P = 1/CPU clock frequency in ns. For example, when running parts at 140 MHz, use P = 7 ns.  
For CLKMODE x1:  
1.5P = P + PH, where P = 1/CPU clock frequency, and PH = pulse duration of CLKIN high.  
0.5P = PL, where PL = pulse duration of CLKIN low.  
Copyright © 2000–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Link(s): SMJ320C6701-SP  
SMJ320C6701-SP  
SGUS030EAPRIL 2000REVISED JULY 2009 ............................................................................................................................................................ www.ti.com  
SSCLK  
1
2
CEx  
3
4
6
BE[3:0]  
BE1  
BE2  
A2  
BE3  
A3  
BE4  
5
A1  
A4  
8
EA[21:2]  
ED[31:0]  
SSADS  
7
Q1  
Q2  
Q3  
10  
Q4  
9
11  
12  
SSOE  
SDWE  
Figure 16. SBSRAM Read Timing (Half-Rate SSCLK)  
SSCLK  
CEx  
1
3
2
4
6
BE[3:0]  
EA[21:2]  
BE1  
BE2  
A2  
BE3  
A3  
BE4  
A4  
5
A1  
13  
14  
10  
Q1  
Q2  
Q3  
Q4  
ED[31:0]  
9
SSADS  
SSOE  
15  
16  
SSWE  
Figure 17. SBSRAM Write Timing (Half-Rate SSCLK)  
36  
Submit Documentation Feedback  
Copyright © 2000–2009, Texas Instruments Incorporated  
Product Folder Link(s): SMJ320C6701-SP  
SMJ320C6701-SP  
www.ti.com ............................................................................................................................................................ SGUS030EAPRIL 2000REVISED JULY 2009  
SYNCHRONOUS DRAM TIMING  
Timing Requirements for Synchronous DRAM Cycles  
(see Figure 18)  
NO.  
7
MIN  
MAX  
UNIT  
ns  
tsu(EDV–SDCLKH)  
th(SDCLKH–EDV)  
Setup time, read EDx valid before SDCLK high  
Hold time, read EDx valid after SDCLK high  
2
3
8
ns  
Switching Characteristics for Synchronous DRAM Cycles(1)  
(see Figure 18 Figure 23)  
NO.  
1
PARAMETER  
MIN  
MAX  
UNIT  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tosu(CEV–SDCLKH)  
toh(SDCLKH–CEV)  
Output setup time, CEx valid before SDCLK high  
Output hold time, CEx valid after SDCLK high  
Output setup time, BEx valid before SDCLK high  
Output hold time, BEx invalid after SDCLK high  
Output setup time, EAx valid before SDCLK high  
Output hold time, EAx invalid after SDCLK high  
Output setup time, SDCAS valid before SDCLK high  
Output hold time, SDCAS valid after SDCLK high  
Output setup time, EDx valid before SDCLK high  
Output hold time, EDx invalid after SDCLK high  
Output setup time, SDWE valid before SDCLK high  
Output hold time, SDWE valid after SDCLK high  
Output setup time, SDA10 valid before SDCLK high  
Output hold time, SDA10 invalid after SDCLK high  
Output setup time, SDRAS valid before SDCLK high  
Output hold time, SDRAS valid after SDCLK high  
1.5P – 5  
0.5P – 1.9  
1.5P – 5  
2
3
tosu(BEV–SDCLKH)  
toh(SDCLKH–BEIV)  
tosu(EAV–SDCLKH)  
toh(SDCLKH–EAIV)  
tosu(SDCAS–SDCLKH)  
toh(SDCLKH–SDCAS)  
tosu(EDV–SDCLKH)  
toh(SDCLKH–EDIV)  
tosu(SDWE–SDCLKH)  
toh(SDCLKH–SDWE)  
tosu(SDA10V–SDCLKH)  
toh(SDCLKH–SDA10IV)  
tosu(SDRAS–SDCLKH)  
toh(SDCLKH–SDRAS)  
4
0.5P – 1.9  
1.5P – 5  
5
6
0.5P – 1.9  
1.5P – 5  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
0.5P – 1.9  
1.5P – 5  
0.5P – 1.9  
1.5P – 5  
0.5P – 1.9  
1.5P – 5  
0.5P – 1.9  
1.5P – 5  
0.5P – 1.9  
(1) The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter. When the PLL is  
used (CLKMODE x4), P = 1/CPU clock frequency in ns. For example, when running parts at 140 MHz, use P = 7 ns.  
For CLKMODE x1:  
1.5P = P + PH, where P = 1/CPU clock frequency, and PH = pulse duration of CLKIN high.  
0.5P = PL, where PL = pulse duration of CLKIN low.  
Copyright © 2000–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Link(s): SMJ320C6701-SP  
SMJ320C6701-SP  
SGUS030EAPRIL 2000REVISED JULY 2009 ............................................................................................................................................................ www.ti.com  
READ  
READ  
READ  
SDCLK  
1
5
2
CEx  
3
4
BE[3:0]  
BE1  
BE2  
CA3  
BE3  
7
6
CA1  
CA2  
EA[15:2]  
ED[31:0]  
8
D1  
D2  
D3  
15  
9
16  
10  
SDA10  
SDRAS  
SDCAS  
SDWE  
Figure 18. Three SDRAM Read Commands  
WRITE  
WRITE  
WRITE  
SDCLK  
CEx  
1
2
3
4
BE1  
CA1  
BE2  
CA2  
D2  
BE3  
CA3  
D3  
BE[3:0]  
EA[15:2]  
ED[31:0]  
5
6
11  
12  
D1  
15  
16  
SDA10  
SDRAS  
9
10  
14  
SDCAS  
SDWE  
13  
Figure 19. Three SDRAM Write Commands  
38  
Submit Documentation Feedback  
Copyright © 2000–2009, Texas Instruments Incorporated  
Product Folder Link(s): SMJ320C6701-SP  
SMJ320C6701-SP  
www.ti.com ............................................................................................................................................................ SGUS030EAPRIL 2000REVISED JULY 2009  
ACTV  
SDCLK  
1
2
CEx  
BE[3:0]  
5
Bank Activate/Row Address  
EA[15:2]  
ED[31:0]  
15  
Row Address  
SDA10  
17  
18  
SDRAS  
SDCAS  
SDWE  
Figure 20. SDRAM ACTV Command  
DCAB  
SDCLK  
1
2
CEx  
BE[3:0]  
EA[15:2]  
ED[31:0]  
15  
16  
SDA10  
17  
18  
SDRAS  
SDCAS  
13  
14  
SDWE  
Figure 21. SDRAM DCAB Command  
Copyright © 2000–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Link(s): SMJ320C6701-SP  
SMJ320C6701-SP  
SGUS030EAPRIL 2000REVISED JULY 2009 ............................................................................................................................................................ www.ti.com  
REFR  
SDCLK  
1
2
CEx  
BE[3:0]  
EA[15:2]  
ED[31:0]  
SDA10  
17  
18  
SDRAS  
9
10  
SDCAS  
SDWE  
Figure 22. SDRAM REFR Command  
MRS  
SDCLK  
1
2
6
CEx  
BE[3:0]  
5
MRS Value  
EA[15:2]  
ED[31:0]  
SDA10  
SDRAS  
17  
18  
10  
14  
9
SDCAS  
SDWE  
13  
Figure 23. SDRAM MRS Command  
40  
Submit Documentation Feedback  
Copyright © 2000–2009, Texas Instruments Incorporated  
Product Folder Link(s): SMJ320C6701-SP  
SMJ320C6701-SP  
www.ti.com ............................................................................................................................................................ SGUS030EAPRIL 2000REVISED JULY 2009  
HOLD/HOLDA TIMING  
Timing Requirements for the Hold/Hold Acknowledge Cycles(1)  
(see Figure 24)  
NO.  
1
MIN  
MAX  
UNIT  
ns  
tsu(HOLDH–CKO1H)  
th(CKO1H–HOLDL)  
Setup time, HOLD high before CLKOUT1 high  
Hold time, HOLD low after CLKOUT1 high  
5
2
2
ns  
(1) HOLD is synchronized internally. Therefore, if setup and hold times are not met, it will either be recognized in the current cycle or in the  
next cycle. Thus, HOLD can be an asynchronous input.  
Switching Characteristics for the Hold/Hold Acknowledge Cycles(1)  
(seeFigure 24)  
NO.  
3
PARAMETER  
MIN  
MAX  
UNIT  
(2)ns  
ns  
tR(HOLDL–EMHZ)  
tR(EMHZ–HOLDAL)  
tR(HOLDH–HOLDAH)  
td(CKO1H–HOLDAL)  
td(CKO1H–BHZ)  
Response time, HOLD low to EMIF high impedance  
Response time, EMIF high impedance to HOLDA low  
Response time, HOLD high to HOLDA high  
4P  
4
2P  
7P  
8
5
4P  
1
ns  
6
Delay time, CLKOUT1 high to HOLDA valid  
ns  
7
Delay time, CLKOUT1 high to EMIF Bus high impedance(3)  
Delay time, CLKOUT1 high to EMIF Bus low impedance(3)  
Response time, HOLD high to EMIF Bus low impedance(3)  
1(4)  
1(4)  
3P  
8(4)  
12(4)  
6P  
ns  
8
td(CKO1H–BLZ)  
ns  
9
tR(HOLDH–BLZ)  
ns  
(1) P = 1/CPU clock frequency in ns. For example, when running parts at 140 MHz, use P = 7 ns.  
(2) All pending EMIF transactions are allowed to complete before HOLDA is asserted. The worst cases for this is an asynchronous read or  
write with external ARDY used or a minimum of eight consecutive SDRAM reads or writes when RBTR8 = 1. If no bus transactions are  
occurring, then the minimum delay time can be achieved. Also, bus hold can be indefinitely delayed by setting the NOHOLD = 1.  
(3) EMIF Bus consists of CE[3:0], BE[3:0], ED[31:0], EA[21:2], ARE, AOE, AWE, SSADS, SSOE, SSWE, SDA10, SDRAS, SDCAS, and  
SDWE.  
(4) This parameter is not tested.  
DSP Owns Bus  
External Requester  
DSP Owns Bus  
5
4
9
2
3
CLKOUT1  
HOLD  
2
1
1
6
6
HOLDA  
7
8
(1)  
EMIF Bus  
’C6701  
Ext Req  
’C6701  
(1) EMIF bus consists of CE[3:0], BE[3:0], ED[31:0], EA[21:2], ARE, AOE, AWE, SSADS, SSOE, SSWE, SDA10,  
SDRAS, SDCAS, and SDWE.  
Figure 24. HOLD/HOLDA Timing  
Copyright © 2000–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Link(s): SMJ320C6701-SP  
 
SMJ320C6701-SP  
SGUS030EAPRIL 2000REVISED JULY 2009 ............................................................................................................................................................ www.ti.com  
RESET TIMING  
Timing Requirements for Reset  
(see Figure 25)  
NO.  
MIN  
10(2)  
250(2)  
MAX  
UNIT  
CLKOUT  
1
cycles  
Width of the RESET pulse (PLL stable)(1)  
1
tw(RESET)  
Width of the RESET pulse (PLL needs to sync up)(3)  
µs  
(1) This parameter applies to CLKMODE x1 when CLKIN is stable and applies to CLKMODE x4 when CLKIN and PLL are stable.  
(2) This parameter is not tested.  
(3) This parameter only applies to CLKMODE x4. The RESET signal is not connected internally to the clock PLL circuit. The PLL, however,  
may need up to 250 µs to stabilize following device powerup or after PLL configuration has been changed. During that time, RESET  
must be asserted to ensure proper device operation. See the clock PLL section for PLL lock times.  
Switching Characteristics During Reset(1)  
(see Figure 25)  
NO.  
PARAMETER  
MIN  
1(2)  
MAX  
UNIT  
CLKOUT1  
cycles  
2
tR(RESET)  
Response time to change of value in RESET signal  
3
4
td(CKO1H–CKO2IV)  
td(CKO1H–CKO2V)  
td(CKO1H–SDCLKIV)  
td(CKO1H–SDCLKV)  
td(CKO1H–SSCKIV)  
td(CKO1H–SSCKV)  
td(CKO1H–LOWIV)  
td(CKO1H–LOWV)  
td(CKO1H–HIGHIV)  
td(CKO1H–HIGHV)  
td(CKO1H–ZHZ)  
Delay time, CLKOUT1 high to CLKOUT2 invalid  
Delay time, CLKOUT1 high to CLKOUT2 valid  
Delay time, CLKOUT1 high to SDCLK invalid  
Delay time, CLKOUT1 high to SDCLK valid  
Delay time, CLKOUT1 high to SSCLK invalid  
Delay time, CLKOUT1 high to SSCLK valid  
Delay time, CLKOUT1 high to low group invalid  
Delay time, CLKOUT1 high to low group valid  
Delay time, CLKOUT1 high to high group invalid  
Delay time, CLKOUT1 high to high group valid  
Delay time, CLKOUT1 high to Z group high impedance  
Delay time, CLKOUT1 high to Z group valid  
–1(2)  
–1(2)  
–1(2)  
–1(2)  
–1(2)  
–1(2)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
10(2)  
5
6
10(2)  
10(2)  
10(2)  
10(2)  
10(2)  
7
8
9
10  
11  
12  
13  
14  
td(CKO1H–ZV)  
(1) Low group consists of: IACK, INUM[3:0], DMAC[3:0], PD, TOUT0, and TOUT1.  
High group consists of: HRDY and HINT.  
Z group consists of: EA[21:2], ED[31:0], CE[3:0], BE[3:0], ARE, AWE, AOE, SSADS, SSOE, SSWE, SDA10, SDRAS, SDCAS, SDWE,  
HD[15:0], CLKX0, CLKX1, FSX0, FSX1, DX0, DX1, CLKR0, CLKR1, FSR0, and FSR1.  
(2) This parameter is not tested  
42  
Submit Documentation Feedback  
Copyright © 2000–2009, Texas Instruments Incorporated  
Product Folder Link(s): SMJ320C6701-SP  
SMJ320C6701-SP  
www.ti.com ............................................................................................................................................................ SGUS030EAPRIL 2000REVISED JULY 2009  
CLKOUT1  
1
2
2
RESET  
CLKOUT2  
SDCLK  
3
5
4
6
7
8
SSCLK  
9
10  
12  
14  
(1)  
LOW GROUP  
11  
13  
of  
(1)  
HIGH GROUP  
(1)  
Z GROUP  
(1) Low  
High  
group  
consists  
group  
IACK,  
consists  
INUM[3:0],  
of  
DMAC[3:0],  
PD,  
TOUT0,  
and  
and  
TOUT1.  
HINT.  
HRDY  
Z group consists of EA[21:2], ED[31:0], CE[3:0], BE[3:0], ARE, AWE, AOE, SSADS, SSOE, SSWE, SDA10, SDRAS,  
SDCAS, SDWE, HD[15:0], CLKX0, CLKX1, FSX0, FSX1, DX0, DX1, CLKR0, CLKR1, FSR0, and FSR1.  
Figure 25. Reset Timing  
Copyright © 2000–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Link(s): SMJ320C6701-SP  
SMJ320C6701-SP  
SGUS030EAPRIL 2000REVISED JULY 2009 ............................................................................................................................................................ www.ti.com  
EXTERNAL INTERRUPT/RESET TIMING  
Timing Requirements for Interrupt Response Cycles(1)(2)  
(see Figure 26)  
NO.  
2
MIN  
2P(3)  
2P(3)  
MAX  
UNIT  
ns  
tw(ILOW)  
tw(IHIGH)  
Width of the interrupt pulse low  
Width of the interrupt pulse high  
3
ns  
(1) Interrupt signals are synchronized internally and are potentially recognized one cycle later if setup and hold times are violated. Thus,  
they can be connected to asynchronous inputs.  
(2) P = 1/CPU clock frequency in ns. For example, when running parts at 140 MHz, use P = 7 ns.  
(3) This parameter is not tested.  
Switching Characteristics During Interrupt Response Cycles(1)  
(see Figure 26)  
NO.  
1
PARAMETER  
MIN  
MAX  
UNIT  
ns  
tR(EINTH–IACKH)  
td(CKO2L–IACKV)  
td(CKO2L–INUMV)  
td(CKO2L–INUMIV)  
Response time, EXT_INTx high to IACK high  
Delay time, CLKOUT2 low to IACK valid  
Delay time, CLKOUT2 low to INUMx valid  
Delay time, CLKOUT2 low to INUMx invalid  
9P  
4
–0.5P 13 – 0.5P  
10 – 0.5P  
ns  
5
ns  
6
–0.5P  
ns  
(1) P = 1/CPU clock frequency in ns. For example, when running parts at 140 MHz, use P = 7 ns.  
When the PLL is used (CLKMODE x4), 0.5P = 1/(2 x CPU clock frequency).  
For CLKMODE x1: 0.5P = PH, where PH is the high period of CLKIN.  
1
CLKOUT2  
3
2
EXT_INTx, NMI  
Intr Flag  
4
4
IACK  
6
5
INUMx  
Interrupt Number  
Figure 26. Interrupt Timing  
44  
Submit Documentation Feedback  
Copyright © 2000–2009, Texas Instruments Incorporated  
Product Folder Link(s): SMJ320C6701-SP  
 
SMJ320C6701-SP  
www.ti.com ............................................................................................................................................................ SGUS030EAPRIL 2000REVISED JULY 2009  
HOST-PORT INTERFACE TIMING  
Timing Requirements for Host-Port Interface Cycles(1)(2)  
(see Figure 27, Figure 28, Figure 29, and Figure 30)  
NO.  
1
MIN  
MAX  
UNIT  
ns  
tsu(SEL–HSTBL)  
th(HSTBL–SEL)  
tw(HSTBL)  
Setup time, select signals(3) valid before HSTROBE low  
Hold time, select signals(3) valid after HSTROBE low  
Pulse duration, HSTROBE low  
4
2
2
ns  
3
2P(4)  
ns  
4
tw(HSTBH)  
Pulse duration, HSTROBE high between consecutive accesses  
Setup time, select signals(3) valid before HAS low  
Hold time, select signals(3) valid after HAS low  
Setup time, host data valid before HSTROBE high  
Hold time, host data valid after HSTROBE high  
2P(4)  
ns  
10  
11  
12  
13  
tsu(SEL–HASL)  
th(HASL–SEL)  
tsu(HDV–HSTBH)  
th(HSTBH–HDV)  
4
2
3
2
ns  
ns  
ns  
ns  
Hold time, HSTROBE low after HRDY low. HSTROBE should  
not be inactivated until HRDY is active (low); otherwise, HPI  
writes will not complete properly.  
14  
th(HRDYL–HSTBL)  
1(4)  
ns  
18  
19  
tsu(HASL–HSTBL)  
th(HSTBL–HASL)  
Setup time, HAS low before HSTROBE low  
Hold time, HAS low after HSTROBE low  
2(4)  
2(4)  
ns  
ns  
(1) HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
(2) The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter. P = 1/CPU clock  
frequency in ns. For example, when running parts at 140 MHz, use P = 7 ns.  
(3) Select signals include: HCNTRL[1:0], HR/W, and HHWIL.  
(4) This parameter is not tested.  
Switching Characteristics During Host-Port Interface Cycles(1)(2)  
(see Figure 27, Figure 28, Figure 29, and Figure 30)  
NO.  
5
PARAMETER  
Delay time, HCS to HRDY(3)  
Delay time, HSTROBE low to HRDY high(4)  
MIN  
MAX  
UNIT  
ns  
td(HCS–HRDY)  
1
1
12  
12  
6
td(HSTBL–HRDYH)  
ns  
Output hold time, HD low impedance after HSTROBE low for an  
HPI read  
7
toh(HSTBL–HDLZ)  
4(5)  
ns  
8
td(HDV–HRDYL)  
toh(HSTBH–HDV)  
td(HSTBH–HDHZ)  
td(HSTBL–HDV)  
td(HSTBH–HRDYH)  
Delay time, HD valid to HRDY low  
P – 3(5)  
P + 3(5)  
12  
ns  
ns  
ns  
ns  
ns  
9
Output hold time, HD valid after HSTROBE high  
Delay time, HSTROBE high to HD high impedance  
Delay time, HSTROBE low to HD valid  
3
3(5)  
3
15  
16  
17  
12(5)  
12  
Delay time, HSTROBE high to HRDY high(6)  
1
12  
(1) HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
(2) The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter. P = 1/CPU clock  
frequency in ns. For example, when running parts at 140 MHz, use P = 7 ns.  
(3) HCS enables HRDY, and HRDY is always low when HCS is high. The case where HRDY goes high when HCS falls indicates that HPI  
is busy completing a previous HPID write or READ with autoincrement.  
(4) This parameter is used during an HPID read. At the beginning of the first half–word transfer on the falling edge of HSTROBE, the HPI  
sends the request to the DMA auxiliary channel, and HRDY remains high until the DMA auxiliary channel loads the requested data into  
HPID.  
(5) This parameter is not tested.  
(6) This parameter is used after the second half-word of an HPID write or autoincrement read. HRDY remains low if the access is not an  
HPID write or autoincrement read. Reading or writing to HPIC or HPIA does not affect the HRDY signal.  
Copyright © 2000–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Link(s): SMJ320C6701-SP  
SMJ320C6701-SP  
SGUS030EAPRIL 2000REVISED JULY 2009 ............................................................................................................................................................ www.ti.com  
HAS  
1
1
1
1
1
1
2
2
2
2
2
HCNTL[1:0]  
HR/W  
2
HHWIL  
4
3
(1)  
HSTROBE  
HCS  
15  
9
15  
9
7
16  
HD[15:0] (output)  
HRDY (case 1)  
HRDY (case 2)  
5
5
1st half-word  
2nd half-word  
5
8
8
17  
17  
6
(1) HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
Figure 27. HPI Read Timing (HAS Not Used, Tied High)  
HAS  
19  
11  
19  
11  
10  
10  
10  
10  
HCNTL[1:0]  
HR/W  
11  
11  
11  
11  
10  
10  
HHWIL  
4
3
(1)  
HSTROBE  
18  
18  
HCS  
15  
15  
7
9
16  
9
17  
17  
HD[15:0] (output)  
HRDY (case 1)  
HRDY (case 2)  
1st half-word  
2nd half-word  
5
8
8
5
5
6
(1) HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
Figure 28. HPI Read Timing (HAS Used)  
46  
Submit Documentation Feedback  
Copyright © 2000–2009, Texas Instruments Incorporated  
Product Folder Link(s): SMJ320C6701-SP  
SMJ320C6701-SP  
www.ti.com ............................................................................................................................................................ SGUS030EAPRIL 2000REVISED JULY 2009  
HAS  
1
1
2
2
HCNTL[1:0]  
HBE[1:0]  
12  
12  
13  
13  
1
1
1
1
2
2
2
2
HR/W  
HHWIL  
3
4
14  
(1)  
HSTROBE  
HCS  
HD[15:0] (input)  
HRDY  
12  
12  
13  
2nd half-word  
13  
17  
1st half-word  
5
5
(1) HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
Figure 29. HPI Write Timing (HAS Not Used, Tied High)  
HAS  
HBE[1:0]  
12  
12  
19  
13  
19  
13  
11  
11  
11  
11  
11  
11  
10  
10  
10  
10  
HCNTL[1:0]  
10  
10  
HR/W  
HHWIL  
3
4
14  
(1)  
HSTROBE  
18  
12  
18  
HCS  
HD[15:0] (input)  
HRDY  
12  
13  
13  
1st half-word  
2nd half-word  
5
5
17  
(1) HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
Figure 30. HPI Write Timing (HAS Used)  
Copyright © 2000–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
Product Folder Link(s): SMJ320C6701-SP  
SMJ320C6701-SP  
SGUS030EAPRIL 2000REVISED JULY 2009 ............................................................................................................................................................ www.ti.com  
MULTICHANNEL BUFFERED SERIAL PORT TIMING  
Timing Requirements for McBSP(1)(2)  
(see Figure 31)  
NO.  
2
MIN  
2P(3)  
P – 1(3)  
MAX  
UNIT  
ns  
tc(CKRX)  
tw(CKRX)  
Cycle time, CLKR/X  
CLKR/X ext  
CLKR/X ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
3
Pulse duration, CLKR/X high or CLKR/X low  
ns  
13(3)  
5
6
tsu(FRH–CKRL)  
th(CKRL–FRH)  
tsu(DRV–CKRL)  
th(CKRL–DRV)  
tsu(FXH–CKXL)  
th(CKXL–FXH)  
Setup time, external FSR high before CLKR low  
Hold time, external FSR high after CLKR low  
Setup time, DR valid before CLKR low  
ns  
ns  
ns  
ns  
ns  
ns  
4
7(3)  
4
10  
1
7
4
8
Hold time, DR valid after CLKR low  
4
13(3)  
10  
11  
Setup time, external FSX high before CLKX low  
Hold time, external FSX high after CLKX low  
4
7(3)  
3
(1) P = 1/CPU clock frequency in ns. For example, when running parts at 140 MHz, use P = 7 ns.  
(2) CLKRP = CLKXP = FSRP = FSXP = 0 in the pin control register (PCR). If polarity of any of the signals is inverted, then the timing  
references of that signal are also inverted.  
(3) This parameter is not tested.  
48  
Submit Documentation Feedback  
Copyright © 2000–2009, Texas Instruments Incorporated  
Product Folder Link(s): SMJ320C6701-SP  
SMJ320C6701-SP  
www.ti.com ............................................................................................................................................................ SGUS030EAPRIL 2000REVISED JULY 2009  
Switching Characteristics for McBSP(1)(2)(3)  
(see Figure 31)  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
Delay time, CLKS high to CLKR/X high for internal  
CLKR/X generated from CLKS input  
1
td(CKSH–CKRXH)  
tc(CKRX)  
3
15  
ns  
CLKR/X  
int  
2
Cycle time, CLKR/X  
2P  
ns  
CLKR/X  
int  
3
4
tw(CKRX)  
Pulse duration, CLKR/X high or CLKR/X low  
Delay time, CLKR high to internal FSR valid  
C – 1(4)  
C + 1(4)  
ns  
ns  
td(CKRH–FRV)  
CLKR int  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
FSX int  
–4  
–4  
3(5)  
–3(5)  
2(5)  
–2  
4
5
16(5)  
2(5)  
9(5)  
4
9
td(CKXH–FXV)  
tdis(CKXH–DXHZ)  
td(CKXH–DXV)  
Delay time, CLKX high to internal FSX valid  
ns  
ns  
ns  
Disable time, DX high impedance following last data bit  
from CLKX high  
12  
13  
Delay time, CLKX high to DX valid.  
3
–2(5)  
16  
4(5)  
Delay time, FSX high to DX valid.  
ONLY applies when in data delay 0 (XDATDLY = 00b)  
mode.  
14  
td(FXH–DXV)  
ns  
FSX ext  
2(5)  
10(5)  
(1) CLKRP = CLKXP = FSRP = FSXP = 0 in the pin control register (PCR). If polarity of any of the signals is inverted, then the timing  
references of that signal are also inverted.  
(2) Minimum delay times also represent minimum output hold times.  
(3) P = 1/CPU clock frequency in ns. For example, when running parts at 140 MHz, use P = 7 ns.  
(4) C = H or L  
S = sample rate generator input clock = P if CLKSM = 1 (P = 1/CPU clock frequency)  
= sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)  
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
(5) This parameter is not tested.  
Copyright © 2000–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
49  
Product Folder Link(s): SMJ320C6701-SP  
SMJ320C6701-SP  
SGUS030EAPRIL 2000REVISED JULY 2009 ............................................................................................................................................................ www.ti.com  
CLKS  
1
2
3
3
CLKR  
4
4
FSR (int)  
5
6
FSR (ext)  
7
8
DR  
Bit(n-1)  
(n-2)  
(n-3)  
2
3
3
CLKX  
9
FSX (int)  
11  
10  
FSX (ext)  
FSX (XDATDLY=00b)  
13  
(n-2)  
14  
13  
12  
DX  
Bit 0  
Bit(n-1)  
(n-3)  
Figure 31. McBSP Timing  
Timing Requirements for FSR When GSYNC = 1  
(see Figure 32)  
NO.  
MIN  
MAX  
UNIT  
ns  
1
2
tsu(FRH–CKSH)  
th(CKSH–FRH)  
Setup time, FSR high before CLKS high  
Hold time, FSR high after CLKS high  
4(1)  
4(1)  
ns  
(1) This parameter is not tested.  
CLKS  
1
2
FSR external  
CLKR/X (no need to resync)  
CLKR/X(needs resync)  
Figure 32. FSR Timing When GSYNC = 1  
50  
Submit Documentation Feedback  
Copyright © 2000–2009, Texas Instruments Incorporated  
Product Folder Link(s): SMJ320C6701-SP  
 
SMJ320C6701-SP  
www.ti.com ............................................................................................................................................................ SGUS030EAPRIL 2000REVISED JULY 2009  
Timing Requirements for McBSP as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0(1)(2)  
(seeFigure 33)  
MASTER  
SLAVE  
MIN MAX  
NO.  
UNIT  
MIN  
12  
4
MAX  
4
5
tsu(DRV–CKXL)  
th(CKXL–DRV)  
Setup time, DR valid before CLKX low  
Hold time, DR valid after CLKX low  
2 – 3P  
5 + 6P  
ns  
ns  
(1) The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter. P = 1/CPU clock  
frequency in ns. For example, when running parts at 140 MHz, use P = 7 ns.  
(2) For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
Switching Characteristics for McBSP as SPI Master or Slave: CLKSTP = 10b, CLKXP=0(1)(2)  
(see Figure 33)  
MASTER(3)  
SLAVE  
MIN  
NO.  
PARAMETER  
UNIT  
MIN  
T – 4  
L – 4  
–4  
MAX  
MAX  
1
2
3
th(CKXL–FXL)  
td(FXL–CKXH)  
td(CKXH–DXV)  
Hold time, FSX low after CLKX low(4)  
Delay time, FSX low to CLKX high(5)  
Delay time, CLKX high to DX valid  
T + 4  
L + 4  
4
ns  
ns  
ns  
3P + 1  
5P + 17  
Disable time, DX high impedance following last  
databit from CLKX low  
6
tdis(CKXL–DXHZ)  
L – 2(6)  
L + 3(6)  
ns  
Disable time, DX high impedance following last  
databit from FSX high  
7
8
tdis(FXH–DXHZ)  
td(FXL–DXV)  
P + 4(6) 3P + 17(6)  
2P + 1 4P + 13  
ns  
ns  
Delay time, FSX low to DX valid  
(1) The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter. P = 1/CPU clock  
frequency in ns. For example, when running parts at 140 MHz, use P = 7 ns.  
(2) For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
(3) S = sample rate generator input clock = P if CLKSM = 1 (P = 1/CPU clock frequency)  
= sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)  
T = CLKX period = (1 + CLKGDV) * S  
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
(4) FSRP = FSXP = 1. As a SPI master, FSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on  
FSX and FSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP  
(5) FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master  
clock (CLKX).  
(6) This parameter is not tested.  
CLKX  
1
2
8
FSX  
7
6
3
DX  
DR  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-3)  
(n-4)  
4
5
Bit 0  
(n-2)  
(n-4)  
Figure 33. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0  
Timing Requirements SPI Master or Slave: CLKSTP = 11b, CLKXP = 0(1)(1)  
(see Figure 34)  
(1) The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter. P = 1/CPU clock  
frequency in ns. For example, when running parts at 140 MHz, use P = 7 ns.  
Copyright © 2000–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
51  
Product Folder Link(s): SMJ320C6701-SP  
 
SMJ320C6701-SP  
SGUS030EAPRIL 2000REVISED JULY 2009 ............................................................................................................................................................ www.ti.com  
Timing Requirements SPI Master or Slave: CLKSTP = 11b, CLKXP = 0 (continued)  
(see Figure 34)  
MASTER  
SLAVE  
MIN MAX  
NO.  
UNIT  
MIN  
12  
4
MAX  
4
5
tsu(DRV–CKXH)  
th(CKXH–DRV)  
Setup time, DR valid before CLKX high  
Hold time, DR valid after CLKX high  
2 – 3P  
5 + 6P  
ns  
ns  
Switching Characteristics for McBSP as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0(1)(2)  
(see Figure 34)  
MASTER(3)  
SLAVE  
MIN  
NO.  
PARAMETER  
UNIT  
MIN  
L – 4  
T – 4  
–4  
MAX  
MAX  
1
2
3
th(CKXL–FXL)  
td(FXL–CKXH)  
td(CKXL–DXV)  
Hold time, FSX low after CLKX low(4)  
Delay time, FSX low to CLKX high(5)  
Delay time, CLKX low to DX valid  
L + 4  
T + 4  
4
ns  
ns  
ns  
3P + 1  
5P + 17  
Disable time, DX high impedance following last  
data bit from CLKX low  
6
7
tdis(CKXL–DXHZ)  
td(FXL–DXV)  
2(6)  
4(6) 3P + 4(6) 5P + 17(6)  
ns  
ns  
Delay time, FSX low to DX valid  
H – 2(6) H + 3(6)  
2P + 1 4P + 13  
(1) The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter. P = 1/CPU clock  
frequency in ns. For example, when running parts at 140 MHz, use P = 7 ns.  
(2) For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
(3) S = sample rate generator input clock = P if CLKSM = 1 (P = 1/CPU clock frequency)  
= sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)  
T = CLKX period = (1 + CLKGDV) * S  
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
(4) FSRP = FSXP = 1. As a SPI master, FSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on  
FSX and FSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP  
(5) FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master  
clock (CLKX).  
(6) This parameter is not tested.  
CLKX  
1
2
7
FSX  
DX  
6
3
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-3)  
(n-4)  
4
5
DR  
Bit 0  
(n-2)  
(n-4)  
Figure 34. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0  
52  
Submit Documentation Feedback  
Copyright © 2000–2009, Texas Instruments Incorporated  
Product Folder Link(s): SMJ320C6701-SP  
 
SMJ320C6701-SP  
www.ti.com ............................................................................................................................................................ SGUS030EAPRIL 2000REVISED JULY 2009  
Timing Requirements for MCBSP as SPI Master or Slave: CLKSTOP = 10b, CLKXP = 1(1)(2)  
(see Figure 35)  
MASTER  
SLAVE  
MIN MAX  
NO.  
UNIT  
MIN  
12  
4
MAX  
4
5
tsu(DRV–CKXH)  
th(CKXH–DRV)  
Setup time, DR valid before CLKX high  
Hold time, DR valid after CLKX high  
2 – 3P  
5 + 6P  
ns  
ns  
(1) The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter. P = 1/CPU clock  
frequency in ns. For example, when running parts at 140 MHz, use P = 7 ns.  
(2) For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
Switching Characteristics for McBSP as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1(1)(2)  
(see Figure 35)  
MASTER(3)  
SLAVE  
MIN  
NO.  
PARAMETER  
UNIT  
MIN  
T – 4  
H – 4  
–4  
MAX  
MAX  
1
2
3
th(CKXH–FXL)  
td(FXL–CKXL)  
td(CKXL–DXV)  
Hold time, FSX low after CLKX high(4)  
Delay time, FSX low to CLKX low(5)  
Delay time, CLKX low to DX valid  
T + 4  
H + 4  
4
ns  
ns  
ns  
3P + 1  
5P + 17  
Disable time, DX high impedance following last  
data bit from CLKX high  
6
tdis(CKXH–DXHZ)  
H – 2(6) H + 3(6)  
ns  
Disable time, DX high impedance following last  
data bit from FSX high  
7
8
tdis(FXH–DXHZ)  
td(FXL–DXV)  
P + 4(6) 3P + 17(6)  
2P + 1 4P + 13  
ns  
ns  
Delay time, FSX low to DX valid  
(1) The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter. P = 1/CPU clock  
frequency in ns. For example, when running parts at 140 MHz, use P = 7 ns.  
(2) For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
(3) S = sample rate generator input clock = P if CLKSM = 1 (P = 1/CPU clock frequency)  
= sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)  
T = CLKX period = (1 + CLKGDV) * S  
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
(4) FSRP = FSXP = 1. As a SPI master, FSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on  
FSX and FSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP  
(5) FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master  
clock (CLKX).  
(6) This parameter is not tested.  
CLKX  
1
2
8
FSX  
7
6
3
DX  
DR  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
4
5
Bit 0  
(n-2)  
(n-3)  
(n-4)  
Figure 35. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1  
Timing Requirements for McBSP as SPI Master or Slave: CLKSTOP = 11b, CLKXP = 1(1)(2)  
(see Figure 36)  
(1) The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter. P = 1/CPU clock  
frequency in ns. For example, when running parts at 140 MHz, use P = 7 ns.  
(2) For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
Copyright © 2000–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
53  
Product Folder Link(s): SMJ320C6701-SP  
 
SMJ320C6701-SP  
SGUS030EAPRIL 2000REVISED JULY 2009 ............................................................................................................................................................ www.ti.com  
Timing Requirements for McBSP as SPI Master or Slave: CLKSTOP = 11b, CLKXP = 1  
(continued)  
(see Figure 36)  
MASTER  
SLAVE  
MIN MAX  
NO.  
UNIT  
MIN  
12  
4
MAX  
4
5
tsu(DRV–CKXL)  
th(CKXL–DRV)  
Setup time, DR valid before CLKX low  
Hold time, DR valid after CLKX low  
2 - 3P  
5 + 6P  
ns  
ns  
Switching Characteristics for McBSP as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1(1)(2)  
(see Figure 36)  
MASTER(3)  
SLAVE  
MIN MAX  
NO.  
PARAMETER  
UNIT  
MIN  
H – 4  
T – 4  
–4  
MAX  
1
2
3
th(CKXH–FXL)  
td(FXL–CKXL)  
td(CKXH–DXV)  
Hold time, FSX low after CLKX high(4)  
Delay time, FSX low to CLKX low(5)  
Delay time, CLKX high to DX valid  
H + 4  
T + 4  
4
ns  
ns  
3P + 1  
5P + 17 ns  
Disable time, DX high impedance following last  
data bit from CLKX high  
6
7
tdis(CKXH–DXHZ)  
td(FXL–DXV)  
2(6)  
4(6) 3P + 4(6) 5P + 17(6)  
L + 3(6)  
4P + 13  
ns  
ns  
Delay time, FSX low to DX valid  
L – 2(6)  
2P + 1  
(1) The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter. P = 1/CPU clock  
frequency in ns. For example, when running parts at 140 MHz, use P = 7 ns.  
(2) For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
(3) S = sample rate generator input clock = P if CLKSM = 1 (P = 1/CPU clock frequency)  
= sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)  
T = CLKX period = (1 + CLKGDV) * S  
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
(4) FSRP = FSXP = 1. As a SPI master, FSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on  
FSX and FSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP  
(5) FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master  
clock (CLKX).  
(6) This parameter is not tested.  
CLKX  
1
2
FSX  
DX  
7
6
3
Bit 0  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
4
5
DR  
(n-2)  
(n-3)  
(n-4)  
Figure 36. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1  
54  
Submit Documentation Feedback  
Copyright © 2000–2009, Texas Instruments Incorporated  
Product Folder Link(s): SMJ320C6701-SP  
 
SMJ320C6701-SP  
www.ti.com ............................................................................................................................................................ SGUS030EAPRIL 2000REVISED JULY 2009  
DMAC, TIMER, POWER-DOWN TIMING  
Switching Characteristics for DMAC Outputs  
(see Figure 37)  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
1
td(CKO1H–DMACV)  
Delay time, CLKOUT1 high to DMAC valid  
2
11  
ns  
CLKOUT1  
1
1
DMAC[0:3]  
Figure 37. DMAC Timing  
Timing Requirements for Timer Inputs(1)  
(see Figure 38)  
NO.  
MIN  
MAX  
UNIT  
1
tw(TINPH)  
Pulse duration, TINP high  
2P  
ns  
(1) P = 1/CPU clock frequency in ns. For example, when running parts at 140 MHz, use P = 7 ns.  
Switching Characteristics for Timer Outputs  
(see Figure 38)  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
2
td(CKO1H–TOUTV)  
Delay time, CLKOUT1 high to TOUT valid  
1
10  
ns  
CLKOUT1  
1
TINP  
2
2
TOUT  
Figure 38. Timer Timing  
Switching Characteristics for Power-Down Outputs  
(seeFigure 39)  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
1
td(CKO1H–PDV)  
Delay time, CLKOUT1 high to PD valid  
1
9
ns  
CLKOUT1  
1
1
PD  
Figure 39. Power-Down Timing  
JTAG TEST-PORT TIMING  
Timing Requirements for JTAG Test Port  
(see Figure 40)  
Copyright © 2000–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
55  
Product Folder Link(s): SMJ320C6701-SP  
 
 
 
SMJ320C6701-SP  
SGUS030EAPRIL 2000REVISED JULY 2009 ............................................................................................................................................................ www.ti.com  
Timing Requirements for JTAG Test Port (continued)  
(see Figure 40)  
NO.  
1
MIN  
MAX  
UNIT  
ns  
tc(TCK)  
Cycle time, TCK  
35  
10  
9
3
tsu(TDIV–TCKH)  
th(TCKH–TDIV)  
Setup time, TDI/TMS/TRST valid before TCK high  
Hold time, TDI/TMS/TRST valid after TCK high  
ns  
4
ns  
Switching Characteristics for JTAG Test Port  
(see Figure 40)  
NO.  
PARAMETER  
MIN  
3(1)  
MAX  
15(1)  
UNIT  
2
td(TCKL–TDOV)  
Delay time, TCK low to TDO valid  
ns  
(1) This parameter is not tested.  
1
TCK  
TDO  
2
2
4
3
TDI/TMS/TRST  
Figure 40. JTAG Test-Port Timing  
56  
Submit Documentation Feedback  
Copyright © 2000–2009, Texas Instruments Incorporated  
Product Folder Link(s): SMJ320C6701-SP  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Jul-2009  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
5962-9866101VXA  
5962-9866102VXA  
5962-9866102VYC  
ACTIVE  
ACTIVE  
ACTIVE  
CFCBGA  
CFCBGA  
FCLGA  
GLP  
429  
429  
429  
1
1
1
TBD  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
N / A for Pkg Type  
N / A for Pkg Type  
N / A for Pkg Type  
GLP  
ZMB  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF SMJ320C6701-SP :  
Catalog: SMJ320C6701  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 1  
MECHANICAL DATA  
MCBG004A – SEPTEMBER 1998 – REVISED JANUARY 2002  
GLP (S-CBGA-N429)  
CERAMIC BALL GRID ARRAY  
27,20  
26,80  
SQ  
25,40 TYP  
1,27  
AA  
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1
3
5
7
9
11 13 15 17 19 21  
10 12 14 16 18 20  
A1 Corner  
2
4
6
8
Bottom View  
1,22  
1,00  
3,30 MAX  
Seating Plane  
0,15  
0,90  
0,60  
M
0,10  
0,70  
0,50  
4164732/B 11/01  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MO-156  
D. Flip chip application only  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
www.ti.com/audio  
Data Converters  
DLP® Products  
Automotive  
www.ti.com/automotive  
www.ti.com/communications  
Communications and  
Telecom  
DSP  
dsp.ti.com  
Computers and  
Peripherals  
www.ti.com/computers  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
Consumer Electronics  
Energy  
www.ti.com/consumer-apps  
www.ti.com/energy  
Logic  
Industrial  
www.ti.com/industrial  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Medical  
www.ti.com/medical  
microcontroller.ti.com  
www.ti-rfid.com  
Security  
www.ti.com/security  
Space, Avionics &  
Defense  
www.ti.com/space-avionics-defense  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
Video and Imaging  
Wireless  
www.ti.com/video  
www.ti.com/wireless-apps  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2010, Texas Instruments Incorporated  

相关型号:

SMJ320C6701GLP

FLOATING-POINT DIGITAL SIGNAL PROCESSOR
TI

SMJ320C6701GLPS14

32-BIT, 140.84MHz, OTHER DSP, CBGA429, 27 X 27 MM, CERAMIC, MO-156, BGA-429
TI

SMJ320C6701GLPS14-SP

IC,DSP,32-BIT,CMOS,BGA,429PIN,CERAMIC
TI

SMJ320C6701GLPS16-SP

IC,DSP,32-BIT,CMOS,BGA,429PIN,CERAMIC
TI

SMJ320C6701GLPW14

FLOATING - POINT DIGITAL SIGNAL PROCESSOR
TI

SMJ320C6701GLPW14-SP

IC,DSP,32-BIT,CMOS,BGA,429PIN,CERAMIC
TI

SMJ320C6701GLPW16

32-BIT, 166.66MHz, OTHER DSP, CBGA429, 27 X 27 MM, CERAMIC, MO-156, BGA-429
TI

SMJ320C6701GLPW16-SP

IC,DSP,32-BIT,CMOS,BGA,429PIN,CERAMIC
TI

SMJ320C6701S14

FLOATING-POINT DIGITAL SIGNAL PROCESSOR
TI

SMJ320C6701S16

FLOATING-POINT DIGITAL SIGNAL PROCESSOR
TI

SMJ320C6701W14

FLOATING-POINT DIGITAL SIGNAL PROCESSOR
TI

SMJ320C6701W16

FLOATING-POINT DIGITAL SIGNAL PROCESSOR
TI