REF2125IDBVR [TI]

具有零噪声启动功能的低漂移、低功耗、小型串联电压基准 | DBV | 5 | -40 to 125;
REF2125IDBVR
型号: REF2125IDBVR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有零噪声启动功能的低漂移、低功耗、小型串联电压基准 | DBV | 5 | -40 to 125

光电二极管
文件: 总28页 (文件大小:2071K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
REF2125  
ZHCSGP1 SEPTEMBER 2017  
REF2125 具有干净启动功能的低漂移、低功耗、小型串联  
电压基准  
1 特性  
3 说明  
1
初始精度:±0.05%(最大值)  
温度系数:6ppm/°C(最大值)  
REF2125 器件是低温度漂移(6ppm/°C)、低功耗、高  
精度 CMOS 电压基准,具有 ±0.05% 初始精度、低运  
行电流以及小于 95μA 的功耗。该器件还提供 5μVp-p/V  
的极低输出噪声,这使得它在用于高分辨率数据转换器  
和噪声关键应用时能够保持高度的信号完整性。  
运行温度范围:40°C +125°C  
输出电流:±10mA  
低静态电流:95μA(最大值)  
宽输入电压:12V  
该器件的低输出电压迟滞和低长期输出电压漂移进一步  
提高了稳定性和系统可靠性。此外,器件的小尺寸和低  
运行电流 (95μA) 使其非常适合便携式和电池供电的应  
用 。  
输出 1/f 噪声(0.1Hz 10Hz):5µVPP/V  
出色的长期稳定性(30ppm/1000 小时)  
小型 5 引脚 SOT-23 封装  
2 应用  
REF2125 具有宽额定温度范围(40°C +125°  
C)。有关其他电压选项,请联系 TI 销售代表。  
精密数据采集系统  
电源监控  
器件信息(1)  
PLC 模拟 I/O 模块  
工业仪表  
部件名称  
REF2125  
封装  
SOT-23 (5)  
封装尺寸(标称值)  
2.90mm × 1.60mm  
场发射器  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
测试设备  
4 - 20mA 环路传感器  
LCR 表  
简化电路原理图  
10  
10 ꢀ  
124 ꢀ  
-
ADS1287  
REF  
Input Signal  
1 nF  
+
VIN  
REF21xx  
CIN  
1µF  
COUT  
10 µF  
Copyright © 2017, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBAS798  
 
 
 
REF2125  
ZHCSGP1 SEPTEMBER 2017  
www.ti.com.cn  
目录  
8.1 Overview ................................................................. 15  
8.2 Functional Block Diagram ....................................... 15  
8.3 Feature Description................................................. 15  
8.4 Device Functional Modes........................................ 16  
Applications and Implementation ...................... 18  
9.1 Application Information............................................ 18  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 7  
Parameter Measurement Information ................ 11  
7.1 Solder Heat Shift..................................................... 11  
7.2 Long-Term Stability................................................. 12  
7.3 Thermal Hysteresis ................................................. 12  
7.4 Power Dissipation ................................................... 13  
7.5 Noise Performance ................................................. 14  
Detailed Description ............................................ 15  
9
9.2 Typical Application: Basic Voltage Reference  
Connection............................................................... 18  
10 Power-Supply Recommendations ..................... 19  
11 Layout................................................................... 20  
11.1 Layout Guidelines ................................................. 20  
11.2 Layout Example .................................................... 20  
12 器件和文档支持 ..................................................... 21  
12.1 文档支持................................................................ 21  
12.2 接收文档更新通知 ................................................. 21  
12.3 社区资源................................................................ 21  
12.4 ....................................................................... 21  
12.5 静电放电警告......................................................... 21  
12.6 Glossary................................................................ 21  
13 机械、封装和可订购信息....................................... 21  
7
8
4 修订历史记录  
日期  
修订版本  
说明  
2017 9 月  
*
初始发行版  
2
Copyright © 2017, Texas Instruments Incorporated  
 
REF2125  
www.ti.com.cn  
ZHCSGP1 SEPTEMBER 2017  
5 Pin Configuration and Functions  
DBV Package  
5-Pin SOT-23  
Top View  
1
5
EN  
GND  
2
VIN  
3
4
CS  
VOUT  
Not to scale  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NO.  
1
NAME  
EN  
Input  
Power  
Input  
Enable connection. Enables or disables the device.  
Input supply voltage connection.  
2
VIN  
3
CS  
Clean start pin. Connect to a resistor or capacitor to enable the clean start feature.  
4
VOUT  
GND  
Output  
Ground  
Reference voltage output.  
Ground connection.  
5
Copyright © 2017, Texas Instruments Incorporated  
3
REF2125  
ZHCSGP1 SEPTEMBER 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
VREF + 0.05  
–0.3  
MAX  
13  
UNIT  
IN  
Input voltage  
EN  
V
IN + 0.3  
5.5  
Output voltage  
VREF  
–0.3  
V
Output short circuit current  
20  
mA  
Operating, TA  
Storage Tstg  
–55  
–65  
150  
Temperature  
°C  
170  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±1000  
±250  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN NOM  
MAX  
12  
UNIT  
(1)  
IN  
EN  
IL  
Supply input voltage (IL = 0 mA, TA = 25°C)  
Enable voltage  
VREF + VDO  
V
V
0
IN  
Output current  
–10  
–40  
10  
mA  
°C  
TA  
Operating temperature  
25  
125  
(1) Dropout voltage.  
6.4 Thermal Information  
REF2125  
THERMAL METRIC(1)  
DBV (SOT-23)  
6 PINS  
185  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
156  
29.6  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
33.8  
ψJB  
29.1  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2017, Texas Instruments Incorporated  
 
REF2125  
www.ti.com.cn  
ZHCSGP1 SEPTEMBER 2017  
6.5 Electrical Characteristics  
At TA = 25°C unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ACCURACY AND DRIFT  
Output voltage  
accuracy  
–0.05%  
0.05%  
6
–40°C TA 125°C  
Output voltage  
temperature  
coefficient(1)  
2.5  
2
ppm/°C  
ppm/V  
LINE AND LOAD REGULATION  
VIN = 2.55 V to 12 V , TA = 25°C  
VIN = VREF + VDO(2) to 12 V, 40°C TA  
125°C  
ΔV(OΔVIN)  
Line regulation  
15  
30  
IL = 0 mA to 10 mA, VIN = 3 V,  
TA = 25°C  
Sourcing  
Sourcing  
Sinking  
20  
40  
IL = 0 mA to 10 mA, VIN = 3 V,  
40°C TA 125°C  
ΔV(OΔIL)  
Load regulation  
ppm/mA  
IL = 0 mA to –10 mA, VIN  
VREF+ VDO(2), TA = 25°C  
=
=
IL = 0 mA to –10 mA, VIN  
VREF+ VDO(2), 40°C TA  
Sinking  
70  
125°C  
VREF = 0, CCS = No connect, TA = 25°C  
Short-circuit current(3) RCS = 500kΩ, TA = 25°C  
18  
7
mA  
mA  
mA  
ISC  
CCS = GND, TA = 25°C  
0.5  
NOISE  
ƒ = 0.1 Hz to 10 Hz  
ƒ = 10 Hz to 10 kHz  
5
μV p-p/V  
μV rms  
Output voltage  
noise(4)  
en p-p  
24  
Output voltage noise  
density  
en  
ƒ = 1 kHz  
0.25  
ppm/Hz  
HYSTERESIS AND LONG TERM STABILITY  
Long-term stability(5)  
1000 hours  
30  
30  
10  
ppm  
ppm  
TA = 25°C to 40°C to 125°C to 25°C, Cycle 1  
TA = 25°C to 40°C to 125°C to 25°C, Cycle 2  
Output voltage  
hysteresis(6)  
TURNON  
0.1% of output voltage settling, CL = 10 µF,  
REF2125  
tON  
Turnon time  
2.5  
ms  
CAPACITIVE LOAD  
Stable output  
capacitor value  
OUTPUT VOLTAGE  
VREF Output voltage  
CL  
40°C TA 125°C  
0.1  
10  
µF  
V
REF2125  
2.5  
(1) Temperature drift is specified according to the box method. See Feature Description for more details.  
(2) Dropout voltage under test condition is 100mV.  
(3) In clean start section it is referred as IPEAK  
.
(4) The peak-to-peak noise measurement procedure is explained in more detail in Noise Performance.  
(5) Long-term stability measurement procedure is explained in more in detail in Long-Term Stability.  
(6) The thermal hysteresis measurement procedure is explained in more detail in Thermal Hysteresis.  
Copyright © 2017, Texas Instruments Incorporated  
5
REF2125  
ZHCSGP1 SEPTEMBER 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
At TA = 25°C unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
VIN  
Input voltage  
VREF + VDO  
12  
V
VIN = VREF + VDO(2) to 12 V  
VIN = VREF + VDO(2) to 12 V  
Sourcing  
Sinking  
10  
Output current  
capacity  
IL  
mA  
–10  
40°C TA 125°C  
Active mode  
72  
2.5  
50  
95  
3
IQ  
Quiescent current  
µA  
Shutdown  
mode  
40°C TA 125°C  
IL = 0 mA, TA= 25°C  
VDO  
Dropout voltage  
IL = 0 mA, 40°C TA +125°C  
IL = 10 mA, 40°C TA +125°C  
100  
500  
mV  
Voltage reference in active mode (EN = 1)  
Voltage reference in shutdown mode (EN = 0)  
1.6  
VEN  
IEN  
ENABLE pin voltage  
V
0.5  
2
ENABLE pin leakage  
current  
ENABLE = VIN, 40°C TA 125°C  
1
µA  
6
Copyright © 2017, Texas Instruments Incorporated  
REF2125  
www.ti.com.cn  
ZHCSGP1 SEPTEMBER 2017  
6.6 Typical Characteristics  
at TA = 25°C, VIN = VEN = 12 V, IL = 0 mA , CL = 10 µF, CIN = 0.1 µF (unless otherwise noted)  
0.02  
0.015  
0.01  
0.005  
0
-0.005  
-0.01  
-0.015  
-0.02  
-50  
-25  
0
25  
50  
75  
100  
125  
D001  
Temperature (°C)  
D002  
Drift (ppm/°C)  
(-40°C to 125°C)  
Figure 1. Temperature Drift  
Figure 2. Output Voltage Accuracy vs Temperature  
75  
74.5  
74  
-20  
-40  
CL = 1uF  
CL = 10uF  
73.5  
73  
-60  
-80  
72.5  
72  
-100  
71.5  
71  
-120  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
100  
1k  
10k  
100k  
Temperature (°C)  
Frequency (Hz)  
D004  
D005  
Figure 3. Quiescent Current vs Temperature  
Figure 4. Power-Supply Rejection Ratio vs Frequency  
800  
720  
640  
560  
480  
400  
320  
240  
160  
80  
ILOAD  
+1mA  
+1mA  
-1mA  
1mA/div  
4mV/div  
VOUT  
0
10  
250µs/div  
100  
1k  
10k  
100k  
Frequency(Hz)  
(CL = 1µF, IOUT = 1mA)  
D010  
D009  
Figure 6. Load Transient  
Figure 5. Noise Performance 10 Hz to 10 kHz  
Copyright © 2017, Texas Instruments Incorporated  
7
REF2125  
ZHCSGP1 SEPTEMBER 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
at TA = 25°C, VIN = VEN = 12 V, IL = 0 mA , CL = 10 µF, CIN = 0.1 µF (unless otherwise noted)  
ILOAD  
ILOAD  
+1mA  
+10mA  
+10mA  
+1mA  
10mA/div  
-1mA  
-10mA  
1mA/div  
4mV/div  
VOUT  
VOUT  
100mV/div  
250µs/div  
250µs/div  
(CL = 10µF, IOUT = 1mA)  
(CL = 1µF, IOUT = 10mA)  
D010  
D010  
D011  
D010  
Figure 7. Load Transient  
Figure 8. Load Transient  
ILOAD  
-10mA  
+10mA  
10mA/div  
20mV/div  
VIN  
4V/div  
+10mA  
VOUT  
VOUT  
15mV/div  
250µs/div  
(CL = 1µF)  
250µs/div  
D011  
(CL = 10µF, IOUT = 10mA)  
Figure 9. Load Transient  
Figure 10. Line Transient  
VIN  
En  
4V/div  
1V/div  
VOUT  
5mV/div  
VOUT  
250µs/div  
0.5ms/div  
(CL = 10µF)  
D018  
Figure 12. Start-Up  
Figure 11. Line Transient  
8
Copyright © 2017, Texas Instruments Incorporated  
REF2125  
www.ti.com.cn  
ZHCSGP1 SEPTEMBER 2017  
Typical Characteristics (continued)  
at TA = 25°C, VIN = VEN = 12 V, IL = 0 mA , CL = 10 µF, CIN = 0.1 µF (unless otherwise noted)  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2
30%  
25%  
20%  
15%  
10%  
5%  
0
-40  
-15  
10  
35  
60  
85  
110 125  
D016  
Temperature (°C)  
Thermal Hysteresis - Cycle 1 (ppm)  
D013  
Figure 14. Thermal Hysteresis Distribution (Cycle 1)  
Figure 13. Quiescent Current Shutdown Mode  
50%  
30%  
25%  
20%  
15%  
10%  
5%  
40%  
30%  
20%  
10%  
0
0
D017  
D016  
Solder Heat Shift (%)  
Thermal Hysteresis - Cycle 2 (ppm)  
Refer to Solder Heat Shift for more information  
Figure 16. Solder Heat Shift Distribution  
Figure 15. Thermal Hysteresis Distribution (Cycle 2)  
0.24  
0.23  
0.22  
0.21  
0.2  
8.7  
8.4  
8.1  
7.8  
7.5  
7.2  
6.9  
6.6  
6.3  
6
0.19  
0.18  
0.17  
0.16  
0.15  
0.14  
0.13  
5.7  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (°C)  
Temperature (°C)  
D019  
D020  
Figure 17. Line Regulation  
Figure 18. Load Regulation Sourcing  
Copyright © 2017, Texas Instruments Incorporated  
9
REF2125  
ZHCSGP1 SEPTEMBER 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
at TA = 25°C, VIN = VEN = 12 V, IL = 0 mA , CL = 10 µF, CIN = 0.1 µF (unless otherwise noted)  
55  
52.5  
50  
47.5  
45  
42.5  
40  
37.5  
35  
32.5  
30  
Time 1s/div  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (°C)  
D08_  
D021  
Figure 20. 0.1-Hz to 10-Hz Noise (VREF  
)
Figure 19. Load Regulation Sinking  
65  
55  
45  
35  
25  
15  
5
-5  
-15  
-25  
0
100 200 300 400 500 600 700 800 900 1000  
Hours  
D015  
Figure 21. Long Term Stability - 1000 hours (VREF  
)
10  
Copyright © 2017, Texas Instruments Incorporated  
REF2125  
www.ti.com.cn  
ZHCSGP1 SEPTEMBER 2017  
7 Parameter Measurement Information  
7.1 Solder Heat Shift  
The materials used in the manufacture of the REF2125 have differing coefficients of thermal expansion, resulting  
in stress on the device die when the part is heated. Mechanical and thermal stress on the device die can cause  
the output voltages to shift, degrading the initial accuracy specifications of the product. Reflow soldering is a  
common cause of this error.  
In order to illustrate this effect, a total of 32 devices were soldered on four printed circuit boards [16 devices on  
each printed circuit board (PCB)] using lead-free solder paste and the paste manufacturer suggested reflow  
profile. The reflow profile is as shown in Figure 22. The printed circuit board is comprised of FR4 material. The  
board thickness is 1.65 mm and the area is 114 mm × 152 mm.  
300  
250  
200  
150  
100  
50  
0
0
50  
100  
150  
200  
250  
300  
350  
400  
Time (seconds)  
C01  
Figure 22. Reflow Profile  
The reference and bias output voltages are measured before and after the reflow process; the typical shift is  
displayed in Figure 23. Although all tested units exhibit very low shifts (< 0.01%), higher shifts are also possible  
depending on the size, thickness, and material of the printed circuit board. An important note is that the  
histograms display the typical shift for exposure to a single reflow profile. Exposure to multiple reflows, as is  
common on PCBs with surface-mount components on both sides, causes additional shifts in the output bias  
voltage. If the PCB is exposed to multiple reflows, solder the device in the second pass to minimize its exposure  
to thermal stress.  
50%  
40%  
30%  
20%  
10%  
0
D017  
Solder Heat Shift (%)  
Figure 23. Solder Heat Shift Distribution, VREF (%)  
Copyright © 2017, Texas Instruments Incorporated  
11  
 
 
REF2125  
ZHCSGP1 SEPTEMBER 2017  
www.ti.com.cn  
7.2 Long-Term Stability  
One of the key parameters of the REF2125 reference is long-term stability. Typical characteristic expressed as:  
curves shows the typical drift value for the REF2125 is 30 ppm from 0 to 1000 hours. This parameter is  
characterized by measuring 32 units at regular intervals for a period of 1000 hours. It is important to understand  
that long-term stability is not ensured by design and that the output from the device may shift beyond the typical  
30 ppm specification at any time. For systems that require highly stable output voltages over long periods of  
time, the designer should consider burning in the devices prior to use to minimize the amount of output drift  
exhibited by the reference over time  
65  
55  
45  
35  
25  
15  
5
-5  
-15  
-25  
0
100 200 300 400 500 600 700 800 900 1000  
Hours  
D015  
Figure 24. Long Term Stability - 1000 hours (VREF  
)
7.3 Thermal Hysteresis  
Thermal hysteresis is measured with the REF2125 soldered to a PCB, similar to a real-world application.  
Thermal hysteresis for the device is defined as the change in output voltage after operating the device at 25°C,  
cycling the device through the specified temperature range, and returning to 25°C. Hysteresis can be expressed  
by Equation 1:  
«
÷
| VPRE - VPOST  
|
VHYST  
=
ì106 ppm  
(
)
VNOM  
where  
VHYST = thermal hysteresis (in units of ppm)  
VNOM = the specified output voltage  
VPRE = output voltage measured at 25°C pre-temperature cycling  
VPOST = output voltage measured after the device has cycled from 25°C through the specified temperature  
range of –40°C to +125°C and returns to 25°C.  
(1)  
Typical thermal hysteresis distribution is as shown in Figure 25.  
12  
Copyright © 2017, Texas Instruments Incorporated  
 
REF2125  
www.ti.com.cn  
ZHCSGP1 SEPTEMBER 2017  
Thermal Hysteresis (continued)  
30%  
25%  
20%  
15%  
10%  
5%  
0
D016  
Thermal Hysteresis - Cycle 1 (ppm)  
Figure 25. Thermal Hysteresis Distribution (VREF  
)
7.4 Power Dissipation  
The REF2125 voltage reference is capable of source and sink up to 10 mA of load current across the rated input  
voltage range. However, when used in applications subject to high ambient temperatures, the input voltage and  
load current must be carefully monitored to ensure that the device does not exceeded its maximum power  
dissipation rating. The maximum power dissipation of the device can be calculated with Equation 2:  
TJ = TA +P ì RqJA  
D
where  
PD is the device power dissipation  
TJ is the device junction temperature  
TA is the ambient temperature  
RθJA is the package (junction-to-air) thermal resistance  
(2)  
Because of this relationship, acceptable load current in high temperature conditions may be less than the  
maximum current-sourcing capability of the device. In no case should the part be operated outside of its  
maximum power rating because doing so can result in premature failure or permanent damage to the device.  
Copyright © 2017, Texas Instruments Incorporated  
13  
 
REF2125  
ZHCSGP1 SEPTEMBER 2017  
www.ti.com.cn  
7.5 Noise Performance  
Typical 0.1-Hz to 10-Hz voltage noise can be seen in Figure 26 . Device noise increases with output voltage and  
operating temperature. Additional filtering can be used to improve output noise levels, although care must be  
taken to ensure the output impedance does not degrade ac performance. Peak-to-peak noise measurement  
setup is shown in Figure 26.  
Time 1s/div  
D08_  
Figure 26. 0.1-Hz to 10-Hz Noise (VREF  
)
14  
Copyright © 2017, Texas Instruments Incorporated  
 
REF2125  
www.ti.com.cn  
ZHCSGP1 SEPTEMBER 2017  
8 Detailed Description  
8.1 Overview  
The REF2125 is part of a family of low-noise, precision bandgap voltage references that are specifically designed  
for excellent initial voltage accuracy and drift. The Functional Block Diagram is a simplified block diagram of the  
REF2125 showing basic band-gap topology.  
8.2 Functional Block Diagram  
Enable  
Blocks  
EN  
IN  
GND  
Vdd  
Digital  
Clean  
Start  
Bandgap  
core  
CS  
Buffer  
OUT  
Copyright © 2017, Texas Instruments Incorporated  
8.3 Feature Description  
8.3.1 Supply Voltage  
The REF2125 family of references features an extremely low dropout voltage. The REF2125 can be operated  
with a supply of only 1 mV above the output voltage in an unloaded condition. For loaded conditions, a typical  
dropout voltage versus load is shown on the front page. The REF2125 features a low quiescent current that is  
extremely stable over changes in both temperature and supply. The typical room temperature quiescent current  
is 72 μA, and the maximum quiescent current over temperature is just 95 μA. Supply voltages below the  
specified levels can cause the REF2125 to momentarily draw currents greater than the typical quiescent current.  
Use a power supply with a fast rising edge and low output impedance to easily prevent this issue.  
8.3.2 Low Temperature Drift  
The REF2125 is designed for minimal drift error, which is defined as the change in output voltage over  
temperature. The drift is calculated using the box method, as described by Equation 3:  
VREF(MAX) - VREF(MIN)  
«
÷
Drift =  
ì 106  
VREF ì Temperature Range  
(3)  
8.3.3 Load Current  
The REF2125 family is specified to deliver a current load of ±10 mA per output. The VREF output of the device  
are protected from short circuits by limiting the output short-circuit current to 18 mA. The device temperature  
increases according to Equation 4:  
TJ = TA +P ì RqJA  
D
where  
TJ = junction temperature (°C),  
TA = ambient temperature (°C),  
PD = power dissipated (W), and  
RθJA = junction-to-ambient thermal resistance (°C/W)  
(4)  
15  
The REF2125 maximum junction temperature must not exceed the absolute maximum rating of 150°C.  
Copyright © 2017, Texas Instruments Incorporated  
 
 
 
REF2125  
ZHCSGP1 SEPTEMBER 2017  
www.ti.com.cn  
Feature Description (continued)  
8.3.4 Clean Start Feature  
In many applications (for example, loop powered applications), the supply at VIN has inductive impedance. This  
can cause the supply to dip during start-up because of the large output capacitor connected to the voltage  
reference and the inductive supply. The REF2125 family has an internal clean start block to control the peak of  
the inrush current during start-up. This feature is illustrated in Functional Block Diagram. The peak of inrush  
current can be calculated as Equation 5:  
IPEAK ö 466mA +13.54mAìRCS  
where  
IPEAK = Peak of inrush current (µA), has a range of [0.5 mA, 19 mA],  
Rcs = External resistor connected to the CS pin  
(5)  
During power up, IPEAK is split between the device current and output current. The output current (IOUT) is split  
between output capacitor and load current (ILOAD). The device current can be estimated to be IQ+IOUT/183, where  
IQ is quiescent current at no load. Hence for a given ILOAD it is important to choose Rcs such that IPEAK is larger  
than ILOAD. Above equations capture typical characteristics and hence it is suggested to include ±25% margins  
while budgeting for inrush current and also while choosing Rcs for a given ILOAD. This inrush current continues to  
stay at the limiting value (IPEAK) till output reaches close to VREF (2.5 V).  
When a Ccs is also connected in parallel to Rcs, The inrush current limit shall rise exponentially to the steady  
state value (IPEAK) as calculated using above equations, with a time constant of Rcs × Ccs. Hence the initial (and  
maximum) rate of rise of inrush current shall be IPEAK /(Rcs × Ccs). Because the inrush current rate is limited, the  
loop powered supply dip is controlled.  
8.4 Device Functional Modes  
8.4.1 EN Pin  
When the ENABLE pin of the REF2125 is pulled high, the device is in active mode. The device must be in active  
mode for normal operation. The REF2125 can be placed in a low-power mode by pulling the ENABLE pin low.  
When in shutdown mode, the output of the device becomes high impedance and the quiescent current of the  
device reduces to 2 µA in shutdown mode. The EN pin must not be pulled higher than VIN supply voltage. See  
the Thermal Information for logic high and logic low voltage levels.  
8.4.2 Negative Reference Voltage  
For applications requiring a negative and positive reference voltage, the REF2125 and OPA735 can be used to  
provide a dual-supply reference from a 5-V supply. Figure 27 shows the REF2125 used to provide a 2.5-V supply  
reference voltage. The low drift performance of the REF2125 complements the low offset voltage and zero drift of  
the OPA735 to provide an accurate solution for split-supply applications. Take care to match the temperature  
coefficients of R1 and R2.  
16  
Copyright © 2017, Texas Instruments Incorporated  
 
REF2125  
www.ti.com.cn  
ZHCSGP1 SEPTEMBER 2017  
Device Functional Modes (continued)  
+5V  
1
2
REF2125  
4
+2.5V  
3
5
R1  
10 kΩ  
R2  
10 kΩ  
RCS  
CCS  
_
-2.5V  
OPA735  
+
GND  
Copyright © 2017, Texas Instruments Incorporated  
Figure 27. REF2125 and OPA735 Create Positive and Negative Reference Voltages  
Copyright © 2017, Texas Instruments Incorporated  
17  
REF2125  
ZHCSGP1 SEPTEMBER 2017  
www.ti.com.cn  
9 Applications and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
As this device has many applications and setups, there are many situations that this datasheet can not  
characterize in detail. Basic applications includes positive/negative voltage reference and data acquisition  
systems. For more information see application sections in the REF32xx data sheet.  
9.2 Typical Application: Basic Voltage Reference Connection  
The circuit shown in Figure 28 shows the basic configuration for the REF2125 references. Connect bypass  
capacitors according to the guidelines in Input and Output Capacitors.  
10 ꢀ  
10 ꢀ  
124 ꢀ  
-
ADS1287  
REF  
Input Signal  
1 nF  
+
VIN  
REF21xx  
CIN  
1µF  
COUT  
10 µF  
Copyright © 2017, Texas Instruments Incorporated  
Figure 28. Basic Reference Connection  
9.2.1 Design Requirements  
A detailed design procedure is described based on a design example. For this design example, use the  
parameters listed in Table 1 as the input parameters.  
Table 1. Design Example Parameters  
DESIGN PARAMETER  
Input voltage VIN  
VALUE  
5 V  
Output voltage VOUT  
2.5 V  
1 µF  
REF2125 input capacitor  
REF2125 output capacitor  
10 µF  
9.2.2 Detailed Design Procedure  
9.2.2.1 Input and Output Capacitors  
A 1-μF to 10-μF electrolytic or ceramic capacitor can be connected to the input to improve transient response in  
applications where the supply voltage may fluctuate. Connect an additional 0.1-μF ceramic capacitor in parallel to  
reduce high frequency supply noise.  
A ceramic capacitor of at least 0.1 μF must be connected to the output to improve stability and help filter out high  
frequency noise. An additional 1-μF to 10-μF electrolytic or ceramic capacitor can be added in parallel to improve  
transient performance in response to sudden changes in load current; however, keep in mind that doing so  
increases the turnon time of the device.  
18  
Copyright © 2017, Texas Instruments Incorporated  
 
 
 
REF2125  
www.ti.com.cn  
ZHCSGP1 SEPTEMBER 2017  
Best performance and stability is attained with low-ESR, low-inductance ceramic chip-type output capacitors  
(X5R, X7R, or similar). If using an electrolytic capacitor on the output, place a 0.1-μF ceramic capacitor in parallel  
to reduce overall ESR on the output.  
9.2.2.2 VIN Slew Rate Considerations  
In applications with slow-rising input voltage signals, the reference exhibits overshoot or other transient  
anomalies that appear on the output. These phenomena also appear during shutdown as the internal circuitry  
loses power.  
To avoid such conditions, ensure that the input voltage wave-form has both a rising and falling slew rate close to  
6 V/ms.  
9.2.2.3 Shutdown/Enable Feature  
The REF2125 references can be switched to a low power shut-down mode when a voltage of 0.5 V or lower is  
input to the ENABLE pin. Likewise, the reference becomes operational for ENABLE voltages of 1.6 V or higher.  
During shutdown, the supply current drops to less than 2 μA, useful in applications that are sensitive to power  
consumption.  
If using the shutdown feature, ensure that the ENABLE pin voltage does not fall between 0.5 V and 1.6 V  
because this causes a large increase in the supply current of the device and may keep the reference from  
starting up correctly. If not using the shutdown feature, however, the ENABLE pin can simply be tied to the IN  
pin, and the reference remains operational continuously.  
9.2.3 Application Curves  
75  
74.5  
74  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2
73.5  
73  
72.5  
72  
71.5  
71  
-50  
-25  
0
25  
50  
75  
100  
125  
-40  
-15  
10  
35  
60  
85  
110 125  
Temperature (°C)  
Temperature (°C)  
D004  
D013  
Figure 29. Quiescent Current vs Temperature  
Figure 30. Quiescent Current Shutdown Mode  
10 Power-Supply Recommendations  
The REF2125 family of references feature an extremely low-dropout voltage. These references can be operated  
with a supply of only 50 mV above the output voltage. TI recommends a supply bypass capacitor ranging  
between 0.1 µF to 10 µF.  
Copyright © 2017, Texas Instruments Incorporated  
19  
REF2125  
ZHCSGP1 SEPTEMBER 2017  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
Figure 31 illustrates an example of a PCB layout for a data acquisition system using the REF2125. Some key  
considerations are:  
Connect low-ESR, 0.1-μF ceramic bypass capacitors at VIN, VREF of the REF2125.  
Decouple other active devices in the system per the device specifications.  
Using a solid ground plane helps distribute heat and reduces electromagnetic interference (EMI) noise pickup.  
Place the external components as close to the device as possible. This configuration prevents parasitic errors  
(such as the Seebeck effect) from occurring.  
Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if  
possible, and only make perpendicular crossings when absolutely necessary.  
11.2 Layout Example  
EN  
IN  
1
2
5 GND  
REF21XX  
C
CS  
OUT  
4
3
R
C
Figure 31. Layout Example  
20  
版权 © 2017, Texas Instruments Incorporated  
 
REF2125  
www.ti.com.cn  
ZHCSGP1 SEPTEMBER 2017  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
请参阅如下相关文档:  
INA21x 电压输出、低侧或高侧测量、双向、零漂移系列分流监控器》  
《低漂移双向单电源低侧电流感应参考设计》  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.4 商标  
E2E is a trademark of Texas Instruments.  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械封装、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据如有变更,恕  
不另行通知和修订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
版权 © 2017, Texas Instruments Incorporated  
21  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
REF2125IDBVR  
ACTIVE  
SOT-23  
DBV  
5
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
19DD  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Apr-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
REF2125IDBVR  
SOT-23  
DBV  
5
3000  
178.0  
9.0  
3.23  
3.17  
1.37  
4.0  
8.0  
Q3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Apr-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOT-23 DBV  
SPQ  
Length (mm) Width (mm) Height (mm)  
445.0 220.0 345.0  
REF2125IDBVR  
5
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

REF25

Analog IC
ETC

REF2525Z

Voltage Reference
ETC

REF25D

Analog IC
ETC

REF25Z

Voltage Reference
ETC

REF2912

CMOS VOLTAGE REFERENCE
TI

REF2912

100ppm/C, 50UA in SOT23-3 CMOS VOLTAGE REFERENCE
BB

REF2912AIDBZR

CMOS VOLTAGE REFERENCE
TI

REF2912AIDBZR

100ppm/C, 50UA in SOT23-3 CMOS VOLTAGE REFERENCE
BB

REF2912AIDBZRG4

100ppm/C, 50UA in SOT23-3 CMOS VOLTAGE REFERENCE
BB

REF2912AIDBZT

CMOS VOLTAGE REFERENCE
TI

REF2912AIDBZT

100ppm/C, 50UA in SOT23-3 CMOS VOLTAGE REFERENCE
BB

REF2912AIDBZTG4

100ppm/C, 50UA in SOT23-3 CMOS VOLTAGE REFERENCE
BB