REF2030-Q1 [TI]

REF20xx-Q1 Low-Drift, Low-Power, Dual-Output, VREF and VREF / 2 Voltage References;
REF2030-Q1
型号: REF2030-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

REF20xx-Q1 Low-Drift, Low-Power, Dual-Output, VREF and VREF / 2 Voltage References

文件: 总34页 (文件大小:3710K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
REF20-Q1  
SBOSA80 – DECEMBER 2021  
REF20xx-Q1 Low-Drift, Low-Power, Dual-Output, VREF and VREF / 2 Voltage References  
1 Features  
3 Description  
AEC-Q100 qualified with the following results:  
– Device temperature grade 1: –40°C to +125°C  
ambient operating temperature  
– Device HBM ESD classification level 2  
– Device CDM ESD classification level C7B  
Functional Safety-Capable  
Documentation available to aid functional safety  
system design  
Two Outputs, VREF and VREF / 2, for convenient  
use in single-supply systems  
Excellent temperature drift performance:  
– 8 ppm/°C (maximum) from –40°C to 125°C  
High initial accuracy: ±0.05% (maximum)  
VREF and VBIAS tracking overtemperature:  
– 7 ppm/°C (maximum) from –40°C to 125°C  
Microsize package: SOT23-5  
Applications with only a positive supply voltage often  
require additional stable voltage in the middle of the  
analog-to-digital converter (ADC) input range to bias  
input bipolar signals. The REF20xx-Q1 provides a  
reference voltage (VREF) for the ADC and a second  
highly-accurate voltage (VBIAS) that can be used to  
bias the input bipolar signals.  
The REF20xx-Q1 offers excellent temperature drift  
(8 ppm/°C, maximum) and initial accuracy (0.05%)  
on both the VREF and VBIAS outputs while operating  
at a quiescent current less than 430 µA. In addition,  
the VREF and VBIAS outputs track each other with  
a precision of 7 ppm/°C (maximum) across the  
temperature range of –40°C to 125°C. All these  
features increase the precision of the signal chain and  
decrease board space, while reducing the cost of the  
system as compared to a discrete solution. Extremely  
low dropout voltage of only 10 mV allows operation  
from very low input voltages, which can be very useful  
in battery-operated systems.  
Low dropout voltage: 10 mV  
High output current: ±20 mA  
Low quiescent current: 360 μA  
Line regulation: 3 ppm/V  
Load regulation: 8 ppm/mA  
Both the VREF and VBIAS voltages have the same  
excellent specifications and can sink and source  
current equally well. Very good long-term stability and  
low noise levels make these devices ideally-suited for  
high-precision applications.  
2 Applications  
Telematics control  
Battery management systems  
Inverter and motor control  
Automotive gateway  
Power distribution box  
Power steering  
Device Information  
PART NAME  
PACKAGE (1)  
BODY SIZE (NOM)  
REF20xx-Q1  
SOT-23 (5)  
2.90 mm × 1.60 mm  
On board chargers  
(1) For all available packages, see the orderable addendum at  
the end of the datasheet.  
Power  
Supply  
0.05  
0.04  
0.03  
VBIAS  
0.02  
0.01  
0
VIN+  
VOUT  
ADC  
INA240-Q1  
RSHUNT  
ISENSE  
-0.01  
VIN-  
REF1  
-0.02  
VREF  
-0.03  
REF2  
-0.04  
-0.05  
VBIAS = 1.5 V  
VREF = 3.0 V  
REF20-Q1  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
VIN  
EN  
GND  
Temperature (°C)  
C001  
Application Example  
VREF and VBIAS vs Temperature  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
REF20-Q1  
SBOSA80 – DECEMBER 2021  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings........................................ 5  
7.2 ESD Ratings............................................................... 5  
7.3 Recommended Operating Conditions.........................5  
7.4 Thermal Information....................................................5  
7.5 Electrical Characteristics.............................................6  
7.6 Typical Characteristics................................................7  
8 Parameter Measurement Information..........................14  
8.1 Solder Heat Shift.......................................................14  
8.2 Long-Term Stability................................................... 15  
8.3 Thermal Hysteresis...................................................16  
8.4 Noise Performance................................................... 17  
9 Detailed Description......................................................18  
9.1 Overview...................................................................18  
9.2 Functional Block Diagram.........................................18  
9.3 Feature Description...................................................18  
9.4 Device Functional Modes..........................................19  
10 Applications and Implementation..............................20  
10.1 Application Information........................................... 20  
10.2 Typical Application.................................................. 20  
11 Power-Supply Recommendations..............................26  
12 Layout...........................................................................27  
12.1 Layout Guidelines................................................... 27  
12.2 Layout Example...................................................... 27  
13 Device and Documentation Support..........................28  
13.1 Documentation Support.......................................... 28  
13.2 Receiving Notification of Documentation Updates..28  
13.3 Support Resources................................................. 28  
13.4 Trademarks.............................................................28  
13.5 Electrostatic Discharge Caution..............................28  
13.6 Glossary..................................................................28  
14 Mechanical, Packaging, and Orderable  
Information.................................................................... 28  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
DATE  
REVISION  
NOTES  
December 2021  
*
Initial Release  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: REF20-Q1  
 
REF20-Q1  
SBOSA80 – DECEMBER 2021  
www.ti.com  
5 Device Comparison Table  
PRODUCT  
REF2025-Q1  
REF2030-Q1  
REF2033-Q1  
REF2041-Q1  
VREF  
2.5 V  
VBIAS  
1.25 V  
1.5 V  
3.0 V  
3.3 V  
1.65 V  
2.048 V  
4.096 V  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: REF20-Q1  
 
REF20-Q1  
SBOSA80 – DECEMBER 2021  
www.ti.com  
6 Pin Configuration and Functions  
5
VREF  
VBIAS  
GND  
EN  
1
2
3
4
VIN  
Figure 6-1. DDC Package  
SOT23-5  
(Top View)  
Table 6-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
1
NAME  
VBIAS  
GND  
EN  
Output  
Bias voltage output (VREF / 2)  
Ground  
2
3
Input  
Input  
Output  
Enable (EN ≥ VIN – 0.7 V, device enabled)  
Input supply voltage  
4
VIN  
5
VREF  
Reference voltage output (VREF)  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: REF20-Q1  
 
REF20-Q1  
SBOSA80 – DECEMBER 2021  
www.ti.com  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted) (1)  
MIN  
–0.3  
–0.3  
–55  
MAX  
6
UNIT  
VIN  
Input voltage  
EN  
V
VIN + 0.3  
150  
Operating  
Temperature  
Junction, Tj  
150  
°C  
Storage, Tstg  
–65  
170  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress  
ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
7.2 ESD Ratings  
VALUE  
±2500  
±1500  
UNIT  
Human-body model (HBM), per AEC Q100-002 (1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
VIN  
Supply input voltage range (IL = 0 mA, TA = 25°C)  
VREF + 0.02 (1)  
5.5  
V
(1) See Figure 7-27 in Section 7.6 for minimum input voltage at different load currents and temperature  
7.4 Thermal Information  
REF20xx-Q1  
DDC (SOT23)  
5 PINS  
193.6  
THERMAL METRIC (1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
40.2  
34.5  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.9  
ψJB  
34.3  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: REF20-Q1  
 
 
 
 
 
 
 
 
 
REF20-Q1  
SBOSA80 – DECEMBER 2021  
www.ti.com  
7.5 Electrical Characteristics  
At TA = 25°C, IL = 0 mA, and VIN = 5 V, unless otherwise noted. Both VREF and VBIAS have the same specifications.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ACCURACY AND DRIFT  
Output voltage accuracy  
–0.05%  
0.05%  
Output voltage temperature coefficient (1)  
VREF and VBIAS tracking over temperature (2)  
–40°C ≤ TA ≤ 125°C  
±3  
±2  
±8 ppm/°C  
±7 ppm/°C  
–40°C ≤ TA ≤ 125°C  
LINE AND LOAD REGULATION  
ΔVO(ΔVI) Line regulation  
VREF + 0.02 V ≤ VIN ≤ 5.5 V  
3
8
35 ppm/V  
0 mA ≤ IL ≤ 20 mA ,  
VREF + 0.6 V ≤ VIN ≤ 5.5 V  
Sourcing  
Sinking  
20  
ΔVO(ΔIL)  
Load regulation  
ppm/mA  
20  
0 mA ≤ IL ≤ –20 mA,  
VREF + 0.02 V ≤ VIN ≤ 5.5 V  
8
POWER SUPPLY  
360  
3.3  
430  
Active mode  
–40°C ≤ TA ≤ 125°C  
460  
5
ICC  
Supply current  
µA  
Shutdown mode  
–40°C ≤ TA ≤ 125°C  
9
Device in shutdown mode (EN = 0)  
Device in active mode (EN = 1)  
0
0.7  
VIN  
20  
600  
Enable voltage  
Dropout voltage  
V
VIN – 0.7  
10  
mV  
IL = 20 mA  
ISC  
Short-circuit current  
Turn-on time  
50  
mA  
µs  
ton  
0.1% settling, CL = 1 µF  
500  
NOISE  
Low-frequency noise (3)  
0.1 Hz ≤ f ≤ 10 Hz  
f = 100 Hz  
12  
ppmPP  
Output voltage noise density  
0.25  
ppm/√ Hz  
CAPACITIVE LOAD  
Stable output capacitor range  
0
10  
µF  
HYSTERESIS AND LONG TERM STABILITY  
Long-term stability (4)  
0 to 1000 hours  
25  
ppm  
ppm  
Cycle 1  
Cycle 2  
60  
35  
Output voltage hysteresis (5)  
25°C, –40°C, 125°C, 25°C  
(1) Temperature drift is specified according to the box method. See the Section 9.3 section for more details.  
(2) The VREF and VBIAS tracking over temperature specification is explained in more detail in the Section 9.3 section.  
(3) The peak-to-peak noise measurement procedure is explained in more detail in the Section 8.4 section.  
(4) Long-term stability measurement procedure is explained in more in detail in the Section 8.2 section.  
(5) The thermal hysteresis measurement procedure is explained in more detail in the Section 8.3 section.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: REF20-Q1  
 
 
 
 
 
 
REF20-Q1  
SBOSA80 – DECEMBER 2021  
www.ti.com  
7.6 Typical Characteristics  
At TA = 25°C, IL = 0 mA, VIN = 5 V power supply, CL = 0 µF, and 2.5 V output, unless otherwise noted.  
70  
60  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
0
1
2
3
4
5
6
7
8
VREF Drift Distribution (ppm/°C)  
VREF Initial Accuracy (%)  
C010  
C008  
C004  
C015  
C015  
C017  
–40°C ≤ TA ≤ 125°C  
Figure 7-1. Initial Accuracy Distribution (VREF  
)
Figure 7-2. Drift Distribution (VREF  
)
80  
70  
60  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
0
1
2
3
4
5
6
7
8
VBIAS Drift Distribution (ppm/°C)  
VBIAS Initial Accuracy (%)  
–40°C ≤ TA ≤ 125°C  
Figure 7-3. Initial Accuracy Distribution (VBIAS  
)
Figure 7-4. Drift Distribution (VBIAS)  
40  
60  
50  
40  
30  
20  
10  
0
30  
20  
10  
0
0
1
2
3
4
5
6
7
VREF and VBIAS Tracking Over Temperature (ppm/°C)  
VREF and VBIAS Matching (ppm)  
–40°C ≤ TA ≤ 125°C  
Figure 7-6. Distribution of VREF – 2 × VBIAS Drift Tracking Over  
Temperature  
Figure 7-5. VREF – 2 × VBIAS Distribution  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: REF20-Q1  
 
REF20-Q1  
SBOSA80 – DECEMBER 2021  
www.ti.com  
7.6 Typical Characteristics (continued)  
At TA = 25°C, IL = 0 mA, VIN = 5 V power supply, CL = 0 µF, and 2.5 V output, unless otherwise noted.  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
-0.0125 -0.01 -0.0075 -0.005 -0.0025  
0
0.0025  
-0.0125 -0.01 -0.0075 -0.005 -0.0025  
0
0.0025  
Solder Heat Shift Histogram - VREF (%)  
Solder Heat Shift Histogram - VBIAS (%)  
C040  
C041  
Refer to the Section 8.1 section for more information.  
Refer to the Section 8.1 section for more information.  
Figure 7-8. Solder Heat Shift Distribution (VBIAS  
)
Figure 7-7. Solder Heat Shift Distribution (VREF  
)
0.05  
1000  
0.04  
0.03  
0.02  
0.01  
0
750  
500  
VBIAS  
250  
0
-0.01  
-0.02  
-0.03  
-0.04  
-0.05  
œ250  
œ500  
œ750  
œ1000  
VREF  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
Temperature (°C)  
Temperature (°C)  
C001  
C003  
Figure 7-9. Output Voltage Accuracy (VREF) vs Temperature  
Figure 7-10. VREF – 2 × VBIAS Tracking vs Temperature  
2.5005  
1.2503  
-40°C  
-40°C  
2.5000  
2.4995  
2.4990  
2.4985  
2.4980  
1.2501  
1.2499  
25°C  
1.2497  
25°C  
125°C  
125°C  
1.2495  
1.2493  
œ20  
œ15  
œ10  
œ5  
0
Load Current (mA)  
5
10  
15  
20  
œ20  
œ15  
œ10  
œ5  
0
5
10  
15  
20  
Load Current (mA)  
C039  
C038  
VBIAS output  
VREF output  
Figure 7-12. Output Voltage Change vs Load Current (VBIAS  
)
Figure 7-11. Output Voltage Change vs Load Current (VREF  
)
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: REF20-Q1  
REF20-Q1  
SBOSA80 – DECEMBER 2021  
www.ti.com  
7.6 Typical Characteristics (continued)  
At TA = 25°C, IL = 0 mA, VIN = 5 V power supply, CL = 0 µF, and 2.5 V output, unless otherwise noted.  
12  
11  
10  
9
12  
11  
10  
9
8
8
7
7
6
6
5
5
4
4
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
Temperature (°C)  
Temperature (°C)  
C020  
C025  
VBIAS output  
IL = 20 mA  
VREF output  
IL = 20 mA  
Figure 7-14. Load Regulation Sourcing vs Temperature (VBIAS  
)
Figure 7-13. Load Regulation Sourcing vs Temperature (VREF  
)
12  
11  
10  
9
12  
11  
10  
9
8
8
7
7
6
6
5
5
4
4
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
Temperature (°C)  
Temperature (°C)  
C021  
C022  
VREF output  
IL = –20 mA  
VBIAS output  
IL = –20 mA  
Figure 7-15. Load Regulation Sinking vs Temperature (VREF  
)
Figure 7-16. Load Regulation Sinking vs Temperature (VBIAS  
)
5
5
4.5  
4
4.5  
4
3.5  
3
3.5  
3
2.5  
2
2.5  
2
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
Temperature (°C)  
Temperature (°C)  
C019  
C018  
VREF output  
VBIAS output  
Figure 7-17. Line Regulation vs Temperature (VREF  
)
Figure 7-18. Line Regulation vs Temperature (VBIAS  
)
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: REF20-Q1  
REF20-Q1  
SBOSA80 – DECEMBER 2021  
www.ti.com  
7.6 Typical Characteristics (continued)  
At TA = 25°C, IL = 0 mA, VIN = 5 V power supply, CL = 0 µF, and 2.5 V output, unless otherwise noted.  
100  
80  
100  
VBIAS  
VBIAS  
80  
VREF  
VREF  
60  
60  
40  
40  
20  
20  
1
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
C026  
C027  
CL = 0 µF  
CL = 10 µF  
Figure 7-19. Power-Supply Rejection Ratio vs Frequency  
Figure 7-20. Power-Supply Rejection Ratio vs Frequency  
VIN + 0.25 V  
VIN + 0.25 V  
VIN + 0.25 V  
VIN + 0.25V  
500 mV/div  
40 mV/div  
500 mV/div  
40 mV/div  
VIN - 0.25 V  
VIN - 0.25V  
VREF  
VREF  
Time (500 µs/div)  
Time (500 µs/div)  
C006  
C006  
CL = 1 µF  
CL = 10 µF  
Figure 7-21. Line Transient Response  
Figure 7-22. Line Transient Response  
+1 mA  
+1 mA  
+1 mA  
+1 mA  
2 mA/div  
2 mA/div  
- 1 mA  
- 1 mA  
VREF  
VREF  
20 mV/div  
20 mV/div  
Time (500 µs/div)  
Time (500 µs/div)  
C032  
C037  
CL = 1 µF  
IL = ±1-mA step  
CL = 10 µF  
IL = ±1-mA step  
Figure 7-23. Load Transient Response  
Figure 7-24. Load Transient Response  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: REF20-Q1  
REF20-Q1  
SBOSA80 – DECEMBER 2021  
www.ti.com  
7.6 Typical Characteristics (continued)  
At TA = 25°C, IL = 0 mA, VIN = 5 V power supply, CL = 0 µF, and 2.5 V output, unless otherwise noted.  
+20 mA  
+20 mA  
+20 mA  
+20 mA  
40 mA/div  
40 mA/div  
40 mV/div  
-20 mA  
-20 mA  
VREF  
VREF  
40 mV/div  
Time (500 µs/div)  
Time (500 µs/div)  
C036  
C031  
CL = 10 µF  
IL = ±20-mA step  
CL = 1 µF  
IL = ±20-mA step  
Figure 7-26. Load Transient Response  
Figure 7-25. Load Transient Response  
400  
300  
200  
100  
0
125°C  
VIN  
25°C  
œ40°C  
2 V/div  
VREF  
Time (100 µs/div)  
œ30  
œ20  
œ10  
0
10  
20  
30  
Load Current (mA)  
C033  
C005  
CL = 1 µF  
Figure 7-28. Turn-On Settling Time  
Figure 7-27. Minimum Dropout Voltage vs Load Current  
500  
450  
400  
350  
300  
250  
200  
VIN  
2 V/div  
VREF  
Time (100 µs/div)  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
Temperature (°C)  
C034  
C006  
CL = 10 µF  
Figure 7-29. Turn-On Settling Time  
Figure 7-30. Quiescent Current vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: REF20-Q1  
 
REF20-Q1  
SBOSA80 – DECEMBER 2021  
www.ti.com  
7.6 Typical Characteristics (continued)  
At TA = 25°C, IL = 0 mA, VIN = 5 V power supply, CL = 0 µF, and 2.5 V output, unless otherwise noted.  
500  
450  
400  
350  
300  
250  
200  
Time (1 s/div)  
2
3
4
5
6
Input Voltage (V)  
C028  
C007  
VREF output  
Figure 7-32. 0.1-Hz to 10-Hz Noise (VREF  
)
Figure 7-31. Quiescent Current vs Input Voltage  
1
CL = 0 µF  
0.1  
CL = 4.7 F  
CL = 10 µF  
0.01  
Time (1 s/div)  
1
10  
100  
Frequency (Hz)  
1k  
10k  
C029  
C030  
VBIAS output  
Figure 7-33. 0.1-Hz to 10-Hz Noise (VBIAS  
)
Figure 7-34. Output Voltage Noise Spectrum  
100  
10  
100  
CL = 0 F  
CL = 0 F  
10  
1
CL = 1µF  
CL = 1µF  
1
CL = 10 F  
CL = 10 F  
0.1  
0.01  
0.1  
0.01  
0.01  
0.1  
1
10  
100  
1k  
10k  
100k  
0.01  
0.1  
1
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
C024  
C023  
VREF output  
VBIAS output  
Figure 7-35. Output Impedance vs Frequency (VREF  
)
Figure 7-36. Output Impedance vs Frequency (VBIAS)  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: REF20-Q1  
REF20-Q1  
SBOSA80 – DECEMBER 2021  
www.ti.com  
7.6 Typical Characteristics (continued)  
At TA = 25°C, IL = 0 mA, VIN = 5 V power supply, CL = 0 µF, and 2.5 V output, unless otherwise noted.  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
0
0
Thermal Hysterisis - VREF (ppm)  
Thermal Hysteresis - VBIAS (ppm)  
C013  
C014  
Figure 7-37. Thermal Hysteresis Distribution (VREF  
)
Figure 7-38. Thermal Hysteresis Distribution (VBIAS  
)
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
-5  
-10  
0
100 200 300 400 500 600 700 800 900 1000  
Time (hr)  
Figure 7-39. Long-Term Stability (First 1000 Hours)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: REF20-Q1  
REF20-Q1  
SBOSA80 – DECEMBER 2021  
www.ti.com  
8 Parameter Measurement Information  
8.1 Solder Heat Shift  
The materials used in the manufacture of the REF20xx-Q1 have differing coefficients of thermal expansion,  
resulting in stress on the device die when the part is heated. Mechanical and thermal stress on the device  
die can cause the output voltages to shift, degrading the initial accuracy specifications of the product. Reflow  
soldering is a common cause of this error.  
To illustrate this effect, a total of 92 devices were soldered on four printed circuit boards [23 devices on each  
printed circuit board (PCB)] using lead-free solder paste and the paste manufacturer suggested reflow profile.  
The reflow profile is as shown in Figure 8-1. The printed circuit board is comprised of FR4 material. The board  
thickness is 1.57 mm and the area is 171.54 mm × 165.1 mm.  
The reference and bias output voltages are measured before and after the reflow process; the typical shift is  
displayed in Figure 8-2 and Figure 8-3. Although all tested units exhibit very low shifts (< 0.01%), higher shifts  
are also possible depending on the size, thickness, and material of the printed circuit board. An important note is  
that the histograms display the typical shift for exposure to a single reflow profile. Exposure to multiple reflows,  
as is common on PCBs with surface-mount components on both sides, causes additional shifts in the output bias  
voltage. If the PCB is exposed to multiple reflows, the device must be soldered in the second pass to minimize  
its exposure to thermal stress.  
300  
250  
200  
150  
100  
50  
0
0
50  
100  
150  
200  
250  
300  
350  
400  
Time (seconds)  
C01  
Figure 8-1. Reflow Profile  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
-0.0125 -0.01 -0.0075 -0.005 -0.0025  
0
0.0025  
-0.0125 -0.01 -0.0075 -0.005 -0.0025  
0
0.0025  
Solder Heat Shift Histogram - VREF (%)  
Solder Heat Shift Histogram - VBIAS (%)  
C040  
C041  
Figure 8-3. Solder Heat Shift Distribution, VBIAS (%)  
Figure 8-2. Solder Heat Shift Distribution, VREF (%)  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: REF20-Q1  
 
 
 
 
REF20-Q1  
SBOSA80 – DECEMBER 2021  
www.ti.com  
8.2 Long-Term Stability  
The long term stability of the REF20xx-Q1 was collected on 32 parts that were soldered onto Printed Circuit  
Boards without any slots or special layout considerations. The boards were then placed into an oven with air  
temperature maintained at TA = 35°C. The Vref output of the 32 parts was measured regularly. Typical long term  
stability is as shown in Figure 8-4.  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
-5  
-10  
0
100 200 300 400 500 600 700 800 900 1000  
Time (hr)  
Figure 8-4. Long Term Stability – 1000 hours (VREF  
)
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: REF20-Q1  
 
 
REF20-Q1  
SBOSA80 – DECEMBER 2021  
www.ti.com  
8.3 Thermal Hysteresis  
Thermal hysteresis is measured with the REF20xx-Q1 soldered to a PCB, similar to a real-world application.  
Thermal hysteresis for the device is defined as the change in output voltage after operating the device at 25°C,  
cycling the device through the specified temperature range, and returning to 25°C. Hysteresis can be expressed  
by Equation 1:  
VPRE - VPOST  
VHYST  
=
ñ 106 (ppm)  
÷
÷
VNOM  
«
(1)  
where  
VHYST = thermal hysteresis (in units of ppm)  
VNOM = the specified output voltage  
VPRE = output voltage measured at 25°C pre-temperature cycling  
VPOST = output voltage measured after the device has cycled from 25°C through the specified temperature  
range of –40°C to 125°C and returns to 25°C  
Typical thermal hysteresis distribution is as shown in Figure 8-5 and Figure 8-6.  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
0
0
Thermal Hysterisis - VREF (ppm)  
Thermal Hysteresis - VBIAS (ppm)  
C013  
C014  
Figure 8-5. Thermal Hysteresis Distribution (VREF  
)
Figure 8-6. Thermal Hysteresis Distribution (VBIAS  
)
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: REF20-Q1  
 
 
 
REF20-Q1  
SBOSA80 – DECEMBER 2021  
www.ti.com  
8.4 Noise Performance  
Typical 0.1-Hz to 10-Hz voltage noise can be seen in Figure 8-7 and Figure 8-8. Device noise increases  
with output voltage and operating temperature. Additional filtering can be used to improve output noise levels,  
although care must be taken to ensure the output impedance does not degrade ac performance. Peak-to-peak  
noise measurement setup is shown in Figure 8-9.  
Time (1 s/div)  
Time (1 s/div)  
C028  
C029  
Figure 8-7. 0.1-Hz to 10-Hz Noise (VREF  
)
Figure 8-8. 0.1-Hz to 10-Hz Noise (VBIAS)  
10 k  
100  
40 mF  
VIN  
To scope  
VREF  
+
EN  
10  
F
1 k  
2-Pole High-pass  
4-Pole Low-pass  
REF20-Q1  
0.1  
F
0.1 Hz to 10 Hz Filter  
GND  
VBIAS  
Figure 8-9. 0.1-Hz to 10-Hz Noise Measurement Setup  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: REF20-Q1  
 
 
 
REF20-Q1  
SBOSA80 – DECEMBER 2021  
www.ti.com  
9 Detailed Description  
9.1 Overview  
The REF20xx-Q1 are a family of dual-output, VREF and VBIAS (VREF / 2) band-gap voltage references. The  
Section 9.1 section provides a block diagram of the basic band-gap topology and the two buffers used to derive  
the VREF and VBIAS outputs. Transistors Q1 and Q2 are biased such that the current density of Q1 is greater than  
that of Q2. The difference of the two base emitter voltages (VBE1 – VBE2) has a positive temperature coefficient  
and is forced across resistor R5. The voltage is amplified and added to the base emitter voltage of Q2, which has  
a negative temperature coefficient. The resulting band-gap output voltage is almost independent of temperature.  
Two independent buffers are used to generate VREF and VBIAS from the band-gap voltage. The resistors R1, R2  
and R3, R4 are sized such that VBIAS = VREF / 2.  
e-Trimis a method of package-level trim for the initial accuracy and temperature coefficient of VREF and VBIAS  
,
implemented during the final steps of manufacturing after the plastic molding process. This method minimizes  
the influence of inherent transistor mismatch, as well as errors induced during package molding. e-Trim is  
implemented in the REF20xx-Q1 to minimize the temperature drift and maximize the initial accuracy of both the  
VREF and VBIAS outputs.  
9.2 Functional Block Diagram  
R2  
R1  
R6  
R7  
VREF  
+
+
e-Trim  
R5  
+
+
R4  
VBE1 VBE2  
-
-
R3  
Q2  
VBIAS  
Q1  
+
e-Trim  
9.3 Feature Description  
9.3.1 VREF and VBIAS Tracking  
Most single-supply systems require an additional stable voltage in the middle of the analog-to-digital converter  
(ADC) input range to bias input bipolar signals. The VREF and VBIAS outputs of the REF20xx-Q1 are generated  
from the same band-gap voltage as shown in the Section 9.2. Hence, both outputs track each other over the full  
temperature range of –40°C to 125°C with an accuracy of 7 ppm/°C (maximum). The tracking error is calculated  
using the box method, as described by Equation 2:  
VDIFF(MAX) - VDIFF (MIN)  
«
÷
Tracking Error =  
ñ106 (ppm)  
VREF ñTemperature Range  
(2)  
where  
VDIFF = VREF - 2VBIAS  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: REF20-Q1  
 
 
 
 
 
REF20-Q1  
SBOSA80 – DECEMBER 2021  
www.ti.com  
The tracking accuracy is as shown in Figure 9-1.  
0.05  
0.04  
0.03  
0.02  
0.01  
0
VBIAS  
-0.01  
-0.02  
-0.03  
-0.04  
VREF  
-0.05  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
Temperature (°C)  
C001  
Figure 9-1. VREF and VBIAS Tracking vs Temperature  
9.3.2 Low Temperature Drift  
The REF20xx-Q1 is designed for minimal drift error, which is defined as the change in output voltage over  
temperature. The drift is calculated using the box method, as described by Equation 3:  
VREF(MAX)-VREF(MIN)  
«
÷
Drift =  
ñ106 (ppm)  
VREFñTemperature Range  
(3)  
9.3.3 Load Current  
The REF20xx-Q1 family is specified to deliver a current load of ±20 mA per output. Both the VREF and VBIAS  
outputs of the device are protected from short circuits by limiting the output short-circuit current to 50 mA. The  
device temperature increases according to Equation 4:  
TJ = TA +P RJA  
D
(4)  
where  
TJ = junction temperature (°C)  
TA = ambient temperature (°C)  
PD = power dissipated (W)  
RθJA = junction-to-ambient thermal resistance (°C/W)  
The REF20xx-Q1 maximum junction temperature must not exceed the absolute maximum rating of 150°C.  
9.4 Device Functional Modes  
When the EN pin of the REF20xx-Q1 is pulled high, the device is in active mode. The device must be in active  
mode for normal operation. The REF20xx-Q1 can be placed in a low-power mode by pulling the ENABLE pin  
low. When in shutdown mode, the output of the device becomes high impedance and the quiescent current of  
the device reduces to 5 µA in shutdown mode. See the Section 7.5 for logic high and logic low voltage levels.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: REF20-Q1  
 
 
 
 
REF20-Q1  
SBOSA80 – DECEMBER 2021  
www.ti.com  
10 Applications and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
10.1 Application Information  
The low-drift, bidirectional, single-supply, low-side, current-sensing solution, described in this section, can  
accurately detect load currents from –2.5 A to 2.5 A. The linear range of the output is from 250 mV to 2.75 V.  
Positive current is represented by output voltages from 1.5 V to 2.75 V, whereas negative current is represented  
by output voltages from 250 mV to 1.5 V. The difference amplifier is the INA240-Q1 current-shunt monitor, whose  
supply and reference voltages are supplied by the low-drift REF2030-Q1.  
10.2 Typical Application  
10.2.1 Low-Side, Current-Sensing Application  
REF20-Q1  
VREF  
+
VIN  
Reference  
EN  
+
VBIAS  
+
VCC  
GND  
REF1  
VS  
±ILOAD  
REF2  
OUT  
VREF  
ADC  
+
IN+  
+
VBUS  
RSHUNT  
VOUT  
IN-  
GND  
INA240-Q1  
Figure 10-1. Low-Side, Current-Sensing Application  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: REF20-Q1  
 
 
 
 
REF20-Q1  
SBOSA80 – DECEMBER 2021  
www.ti.com  
10.2.1.1 Design Requirements  
The design requirements are as follows:  
1. Supply voltage: 5.0 V  
2. Load current: ±2.5 A  
3. Output: 250 mV to 2.75 V  
4. Maximum shunt voltage: ±25 mV  
10.2.1.2 Detailed Design Procedure  
Low-side current sensing is desirable because the common-mode voltage is near ground. Therefore, the current-  
sensing solution is independent of the bus voltage, VBUS. When sensing bidirectional currents, use a differential  
amplifier with a reference pin. This procedure allows for the differentiation between positive and negative  
currents by biasing the output stage such that it can respond to negative input voltages. There are a variety of  
methods for supplying power (V+) and the reference voltage (VREF, or VBIAS) to the differential amplifier. For a  
low-drift solution, use a monolithic reference that supplies both power and the reference voltage. Figure 10-2  
shows the general circuit topology for a low-drift, low-side, bidirectional, current-sensing solution. This topology  
is particularly useful when interfacing with an ADC; see Figure 10-1. Not only do VREF and VBIAS track over  
temperature, but their matching is much better than alternate topologies.  
REF20-Q1  
VREF  
+
VIN  
Reference  
EN  
+
VBIAS  
+
VCC  
GND  
REF1  
VS  
±ILOAD  
REF2  
OUT  
+
IN+  
+
VBUS  
RSHUNT  
± VSHUNT  
VOUT  
IN-  
GND  
INA240-Q1  
Figure 10-2. Low-Drift, Low-Side, Bidirectional, Current-Sensing Circuit Topology  
The transfer function for the circuit given in Figure 10-2 is as shown in Equation 5:  
VOUT = G • (êVSHUNT ) + VBIAS  
= G • (êILOAD RSHUNT) + VBIAS  
(5)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: REF20-Q1  
 
 
REF20-Q1  
SBOSA80 – DECEMBER 2021  
www.ti.com  
10.2.1.2.1 Shunt Resistor  
As illustrated in Figure 10-2, the value of VSHUNT is the ground potential for the system load. If the value of  
VSHUNT is too large, issues may arise when interfacing with systems whose ground potential is actually 0 V. Also,  
a value of VSHUNT that is too negative may violate the input common-mode voltage of the differential amplifier  
in addition to potential interfacing issues. Therefore, limiting the voltage across the shunt resistor is important.  
Equation 6 can be used to calculate the maximum value of RSHUNT  
.
VSHUNT(max)  
RSHUNT(max)  
=
ILOAD(max)  
(6)  
Given that the maximum shunt voltage is ±25 mV and the load current range is ±2.5 A, the maximum shunt  
resistance is calculated as shown in Equation 7.  
VSHUNT (max)  
25mV  
2.5A  
RSHUNT (max)  
=
=
=10mW  
ILOAD(max)  
(7)  
To minimize errors over temperature, select a low-drift shunt resistor. To minimize offset error, select a shunt  
resistor with the lowest tolerance. For this design, the Y14870R01000B9W resistor is used.  
10.2.1.2.2 Differential Amplifier  
The differential amplifier used for this design must have the following features:  
1. Single-supply (3 V)  
2. Reference voltage input  
3. Low initial input offset voltage (VOS  
4. Low-drift  
)
5. Fixed gain  
6. Low-side sensing (input common-mode range below ground)  
For this design, a current-shunt monitor (INA240-Q1) is used. The INA240-Q1 family topology is shown in  
Figure 10-3. The INA240-Q1 specifications can be found in the INA240-Q1 product data sheet.  
VS  
REF1  
REF2  
OUT  
IN+  
IN-  
+
GND  
Figure 10-3. INA240-Q1 Current-Shunt Monitor Topology  
The INA240-Q1 is an excellent choice for this application because all the required features are included. In  
general, instrumentation amplifiers (INAs) do not have the input common-mode swing to ground that is essential  
for this application. In addition, INAs require external resistors to set their gain, which is not desirable for low-drift  
applications. Difference amplifiers typically have larger input bias currents, which reduce solution accuracy at  
small load currents. Difference amplifiers typically have a gain of 1 V/V. When the gain is adjustable, these  
amplifiers use external resistors that are not conducive to low-drift applications.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: REF20-Q1  
 
 
 
REF20-Q1  
SBOSA80 – DECEMBER 2021  
www.ti.com  
10.2.1.2.3 Voltage Reference  
The voltage reference for this application must have the following features:  
1. Dual output (3.0 V and 1.5 V)  
2. Low drift  
3. Low tracking errors between the two outputs  
For this design, the REF2030-Q1 is used. The REF20xx-Q1 topology is as shown in the Section 9.2 section.  
The REF2030-Q1 is an excellent choice for this application because of its dual output. The temperature drift of  
8 ppm/°C and initial accuracy of 0.05% make the errors resulting from the voltage reference minimal in this  
application. In addition, there is minimal mismatch between the two outputs and both outputs track very well  
across temperature, as shown in Figure 10-4 and Figure 10-5.  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
0
1
2
3
4
5
6
VREF and VBIAS Tracking Over Temperature (ppm/°C)  
VREF and VBIAS Matching (ppm)  
C016  
C004  
Figure 10-5. Distribution of VREF – 2 × VBIAS Drift  
Tracking Over Temperature  
Figure 10-4. VREF – 2 × VBIAS Distribution  
(At TA = 25°C)  
10.2.1.2.4 Error Calculations  
Two types of errors will be discussed: initial accuracy and drift. Accuracy errors include:  
Shunt resistor tolerance: αshunt_tol = 0.1% (maximum)  
INA initial input offset voltage: VOS_INA = 5 μV (typical)  
INA PSRR: VOS_INA_PSRR = 1 μV/V (typical)  
INA CMRR: VOS_INA_CMRR = 132 dB (typical)  
INA gain error: αINA_GE = 0.05% (typical)  
Reference output accuracy: αREF_output = 0.05% (maximum)  
It should be noted that these error sources can be greatly reduced at 25ºC by performing a two point system  
calibration. Drift errors, on the other hand, can only be reduced by performing the calibration over temperature.  
The drift errors include:  
Shunt resistor drift: δshunt_drift = 15 ppm/ºC (maximum)  
INA offset voltage drift: δINA_drift_Vos = 50 nV/ºC (typical)  
INA gain error drift: δINA_drift_GE = 0.5 ppm/ºC (typical)  
Reference output drift: δREF_drift_output = 3 ppm/ºC (typical)  
Equation 8 can be used to convert specifications given in parts per million (ppm) to a percentage (%), and vice  
versa.  
% = (ppm/10,000)  
(8)  
Equation 9 can be used to convert specifications given in decibels (dB) to a linear representation.  
(V / V) = (1 / 10(dB/20)  
)
(9)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: REF20-Q1  
 
 
 
REF20-Q1  
SBOSA80 – DECEMBER 2021  
www.ti.com  
For some error calculations a full-scale range (FSR) is required. The FSR for this design is determined by the  
voltage across the shunt resistor, which is ±25 mV (or 50 mV).  
For drift errors, the largest change in temperature (ΔT) is 100ºC, which is the difference between the maximum  
specified temperature (125ºC) and room temperature (25ºC). This temperature change is used when calculating  
drift errors for the shunt resistor and INA240-Q1. Because the REF20-Q1 uses the box method to determine  
drift, the temperature range used for calculations is the entire operating range, or 150ºC.  
Finally, errors due to CMRR and PSRR specifications require an adjustment depending on the difference  
between the system’s requirements and how the devices were characterized. For example, the INA240-Q1 was  
characterized using a common-mode voltage of 12 V. The common-mode voltage in this design is ~0V. This  
discrepancy causes an input-referred offset voltage.  
Below, Table 10-1 summarizes the initial accuracy calculations.  
Table 10-1. Initial Accuracy Error Summary  
ERROR SOURCE  
OFFSET  
DEVICE: RSHUNT (PPM) DEVICE: IN240-Q1 (PPM) DEVICE: REF2030-Q1 (PPM)  
TOTAL (PPM, RSS)  
510 FSR  
100 FSR  
60 FSR  
40 FSR  
500  
500 FSR  
CMRR  
60 FSR  
PSRR  
40 FSR  
GAIN ERROR  
1000  
1000  
1118  
1231 FSR  
(0.123%)  
TOTAL (PPM, RSS)  
1087.5 FSR  
500 FSR  
Below, Table 10-2 summarizes the total temperature drift calculations.  
Table 10-2. Temperature Drift Error Summary  
ERROR SOURCE  
OFFSET DRIFT  
DEVICE: RSHUNT (PPM) DEVICE: IN240-Q1 (PPM) DEVICE: REF2030-Q1 (PPM)  
TOTAL (PPM, RSS)  
505 FSR  
100 FSR  
50  
495  
GAIN ERROR DRIFT  
1500  
1500  
1501  
1583.52 FSR  
(0.194%)  
TOTAL (PPM, RSS)  
111.8 FSR  
495  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: REF20-Q1  
 
 
REF20-Q1  
SBOSA80 – DECEMBER 2021  
www.ti.com  
10.2.1.2.5 Application Curves  
Performing a two-point calibration at 25°C removes the errors associated with offset voltage, gain error, and so  
forth. Figure 10-6 to Figure 10-8 show the measured error at different conditions. For a more detailed description  
on measurement procedure, calibration, and calculations, please refer to TIDU357.  
3
2.5  
2
800  
600  
-40°C  
0°C  
400  
200  
1.5  
1
0
25°C  
85°C  
œ200  
œ400  
œ600  
œ800  
0.5  
0
125°C  
-3  
-2  
-1  
0
1
2
3
œ3  
œ2  
œ1  
0
1
2
3
Load current (mA)  
Load current (mA)  
C00  
C00  
Figure 10-6. Measured Transfer Function  
Figure 10-7. Uncalibrated Error vs Load Current  
800  
-40°C  
0°C  
600  
400  
200  
0
25°C  
85°C  
œ200  
œ400  
œ600  
œ800  
125°C  
œ3  
œ2  
œ1  
0
1
2
3
Load current (mA)  
C00  
Figure 10-8. Calibrated Error vs Load Current  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: REF20-Q1  
 
 
REF20-Q1  
SBOSA80 – DECEMBER 2021  
www.ti.com  
11 Power-Supply Recommendations  
The REF20xx-Q1 family of references feature an extremely low-dropout voltage. These references can be  
operated with a supply of only 20 mV above the output voltage. For loaded reference conditions, a typical  
dropout voltage versus load is shown in Figure 11-1. A supply bypass capacitor ranging between 0.1 µF to 10 µF  
is recommended.  
400  
125°C  
300  
25°C  
œ40°C  
200  
100  
0
œ30  
œ20  
œ10  
0
10  
20  
30  
Load Current (mA)  
C005  
Figure 11-1. Dropout Voltage vs Load Current  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: REF20-Q1  
 
 
REF20-Q1  
SBOSA80 – DECEMBER 2021  
www.ti.com  
12 Layout  
12.1 Layout Guidelines  
Figure 12-1 shows an example of a PCB layout for a data acquisition system using the REF2030-Q1. Some key  
considerations are:  
Connect low-ESR, 0.1-μF ceramic bypass capacitors at VIN, VREF, and VBIAS of the REF2030-Q1.  
Decouple other active devices in the system per the device specifications.  
Using a solid ground plane helps distribute heat and reduces electromagnetic interference (EMI) noise  
pickup.  
Place the external components as close to the device as possible. This configuration prevents parasitic errors  
(such as the Seebeck effect) from occurring.  
Minimize trace length between the reference and bias connections to the INA and ADC to reduce noise  
pickup.  
Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if  
possible, and only make perpendicular crossings when absolutely necessary.  
12.2 Layout Example  
Analog Inputs  
Via to  
Input Power  
IN+  
IN-  
C
C
VREF  
REF  
GND  
C
REF1  
VS  
VBIAS  
C
C
Microcontroller  
A/D Input  
REF2  
GND  
EN  
C
NC  
OUT  
VIN  
DIG1  
AIN  
Via  
to GND  
Plane  
Figure 12-1. Layout Example  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: REF20-Q1  
 
 
 
 
REF20-Q1  
SBOSA80 – DECEMBER 2021  
www.ti.com  
13 Device and Documentation Support  
13.1 Documentation Support  
13.1.1 Related Documentation  
For related documentation see the following:  
INA240-Q1 Automotive, Wide Common-Mode Range, High- and Low-Side, Bidirectional, Zero-Drift, Current-  
Sense Amplifier With Enhanced PWM Rejection (SBOS808)  
Low-Drift Bidirectional Single-Supply Low-Side Current Sensing Reference Design (TIDU357)  
13.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
13.3 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
13.4 Trademarks  
e-Trimis a trademark of Texas Instruments, Inc.  
TI E2Eis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
13.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
13.6 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: REF20-Q1  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Jan-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
REF2025QDDCRQ1  
REF2030QDDCRQ1  
REF2033QDDCRQ1  
REF2041QDDCRQ1  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
DDC  
DDC  
DDC  
DDC  
5
5
5
5
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
GACQ  
NIPDAU  
NIPDAU  
NIPDAU  
GADQ  
GAEQ  
GAFQ  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Jan-2022  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
REF2025QDDCRQ1  
REF2030QDDCRQ1  
REF2033QDDCRQ1  
REF2041QDDCRQ1  
SOT-  
23-THIN  
DDC  
DDC  
DDC  
DDC  
5
5
5
5
3000  
3000  
3000  
3000  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
1.4  
1.4  
1.4  
1.4  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
SOT-  
23-THIN  
SOT-  
23-THIN  
SOT-  
23-THIN  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
REF2025QDDCRQ1  
REF2030QDDCRQ1  
REF2033QDDCRQ1  
REF2041QDDCRQ1  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
DDC  
DDC  
DDC  
DDC  
5
5
5
5
3000  
3000  
3000  
3000  
213.0  
213.0  
213.0  
213.0  
191.0  
191.0  
191.0  
191.0  
35.0  
35.0  
35.0  
35.0  
Pack Materials-Page 2  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

REF2030AIDDCR

3V Vref、低温漂、低功耗、双输出 Vref 和 Vref/2 电压基准 | DDC | 5 | -40 to 125
TI

REF2030AIDDCT

3V Vref、低温漂、低功耗、双输出 Vref 和 Vref/2 电压基准 | DDC | 5 | -40 to 125
TI

REF2030QDDCRQ1

REF20xx-Q1 Low-Drift, Low-Power, Dual-Output, VREF and VREF / 2 Voltage References
TI

REF2033

3.3V Vref、低温漂、低功耗、双输出 Vref 和 Vref/2 电压基准
TI

REF2033-Q1

REF20xx-Q1 Low-Drift, Low-Power, Dual-Output, VREF and VREF / 2 Voltage References
TI

REF2033AIDDCR

3.3V Vref、低温漂、低功耗、双输出 Vref 和 Vref/2 电压基准 | DDC | 5 | -40 to 125
TI

REF2033AIDDCT

3.3V Vref、低温漂、低功耗、双输出 Vref 和 Vref/2 电压基准 | DDC | 5 | -40 to 125
TI

REF2033QDDCRQ1

REF20xx-Q1 Low-Drift, Low-Power, Dual-Output, VREF and VREF / 2 Voltage References
TI

REF2041

4.1V Vref、低温漂、低功耗、双输出 Vref 和 Vref/2 电压基准
TI

REF2041-Q1

REF20xx-Q1 Low-Drift, Low-Power, Dual-Output, VREF and VREF / 2 Voltage References
TI

REF2041AIDDCR

4.1V Vref、低温漂、低功耗、双输出 Vref 和 Vref/2 电压基准 | DDC | 5 | -40 to 125
TI

REF2041AIDDCT

4.1V Vref、低温漂、低功耗、双输出 Vref 和 Vref/2 电压基准 | DDC | 5 | -40 to 125
TI