PTSM82903SISB2R [TI]

具有集成电感器的 3V 至 17V、3A 高效率、低 IQ 同步降压转换器模块 | SIS | 11 | -40 to 125;
PTSM82903SISB2R
型号: PTSM82903SISB2R
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成电感器的 3V 至 17V、3A 高效率、低 IQ 同步降压转换器模块 | SIS | 11 | -40 to 125

电感器 转换器
文件: 总42页 (文件大小:4867K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPSM82903  
ZHCSPZ6B FEBRUARY 2022 REVISED NOVEMBER 2022  
MicroSiPTM 封装并具有集成电感器TPSM82903 3A 3V 17V,高效率和  
IQ 降压转换器模块  
1 特性  
3 说明  
• 在宽占空比和负载范围内可实现高效率  
IQ4µA典型值)  
62mΩ22mΩRDS(ON)  
3mm × 2.8mm × 1.6mm MicroSiP封装  
• 高3A 的持续输出电流  
TPSM82903 是一款高效、小巧、灵活且易用的同步降  
压直流/直流转换器 MicroSiP 封装模块。2.5MHz 或  
1.0MHz 的可选开关频率支持使用小型元件并提供快  
速瞬态响应。该器件利用 DCS-Control 拓扑支持 ± 1%  
的高 VOUT 精度。3V 17V 的宽输入电压范围支持各  
种标称输入例如 12V 电源轨、单节或多节锂离子电  
池、5V 3.3V 电源轨。  
• 整个温度范围-40°C 125°C内的反馈电压  
精度±0.9%  
• 可配置的输出电压选项:  
TPSM82903 可在轻负载时自动进入省电模式如果选  
择了自动 PFM/PWM以保持高效率。此外为了在  
非常小的负载下提供高效率该器件具有 4µA 的低典  
型静态电流。AEE如果启用可在 VINVOUT 和负  
载电流范围内提供高效率。该器件包含一个 MODE/  
Smart-CONF 输入用来设置内部/外部分压器、开关  
频率、输出电压放电和自动省电模式或强制 PWM 操  
作。  
VFB 外部分压器0.6V 5.5V  
VSET 内部分压器16 个电压选项0.4V 至  
5.5V)  
100% 模式DCS-Control 拓扑  
• 通MODE/S-CONF 引脚实现灵活性  
2.5MHz 1.0MHz 开关频率  
– 具有动态模式更改选项的强PWM 或自动  
(PFM) 省电模式  
该器件采用小型 11 MicroSiP 寸为  
3.0mm × 2.8mm × 1.6mm带有集1μH 电感器。  
– 自动效率增(AEE)  
– 输出放电开/关  
• 高度灵活且易于使用  
封装信息  
封装(1)  
– 针对单层布线的引脚排列进行了优化  
– 精密使能输入  
– 电源正常状态输出  
封装尺寸标称值)  
器件型号  
TPSM82903  
SIS (uSiP, 11)  
3.00mm × 2.80mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
– 可调软启动和跟踪  
• 无需外部自举电容器  
• 使TPSM82903 并借WEBENCH® Power  
Designer 创建定制设计方案  
2 应用  
数据中心和企业级计算  
有线网络  
无线基础设施  
工厂自动化和控制  
测试和测量  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
VIN  
3V t 17V  
VOUT  
0.6V t 5.5V  
TPSM8290x  
VIN  
VOUT  
EN  
GND  
C2  
22F  
C1  
10F  
R1  
R2  
FB/  
VSET  
SS/TR  
MODE/  
S-CONF  
PG  
R3  
C3  
30%  
VIN=17V  
VIN=15V  
VIN=12V  
VIN=9V  
VIN=6V  
VIN=3V  
20%  
10%  
0
1E-6  
1E-5  
0.0001  
0.001  
0.01  
0.05  
0.2 0.5  
1
2 3  
IOUT (A)  
简化版原理图  
效率与输出电流间的关系频率2.5MHz VO 为  
1.2VPFM/PWM)  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSG64  
 
 
 
 
TPSM82903  
www.ti.com.cn  
ZHCSPZ6B FEBRUARY 2022 REVISED NOVEMBER 2022  
Table of Contents  
7.4 Device Functional Modes..........................................14  
8 Application and Implementation..................................17  
8.1 Application Information............................................. 17  
8.2 Typical Application with Adjustable Output Voltage.. 17  
8.3 Typical Application with Setable VO Using VSET .... 29  
8.4 Power Supply Recommendations.............................32  
8.5 Layout....................................................................... 32  
9 Device and Documentation Support............................35  
9.1 Device Support......................................................... 35  
9.2 接收文档更新通知..................................................... 35  
9.3 支持资源....................................................................35  
9.4 Trademarks...............................................................35  
9.5 Electrostatic Discharge Caution................................35  
9.6 术语表....................................................................... 35  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................5  
6.6 Typical Characteristics................................................7  
7 Detailed Description........................................................8  
7.1 Overview.....................................................................8  
7.2 Functional Block Diagram...........................................8  
7.3 Feature Description.....................................................9  
Information.................................................................... 36  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (October 2022) to Revision B (November 2022)  
Page  
• 将状态从“预告信息”更改为“量产数据”....................................................................................................... 1  
Changes from Revision * (February 2022) to Revision A (October 2022)  
Page  
• 通篇更新了商标信息........................................................................................................................................... 1  
Added Peak reflow case temperature.................................................................................................................4  
Added Maximum number of reflows allowed......................................................................................................4  
Added Mil-STD-883D, Method 2002.3, 1 msec, 1/2 sine, mounted................................................................... 4  
Added Mil-STD-883D, Method 2007.2, 20 to 2000 Hz....................................................................................... 4  
Updated 8-4 SWpin to VOUTpin to reflect accurate pin name.................................................... 19  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPSM82903  
 
TPSM82903  
www.ti.com.cn  
ZHCSPZ6B FEBRUARY 2022 REVISED NOVEMBER 2022  
5 Pin Configuration and Functions  
VOUT  
VIN  
10  
1
VIN  
EN  
VOUT  
2
3
9
11  
GND  
SW/NC  
8
FB/VSET  
7
4
MODE/S-CONF  
SS/TR  
PG  
6
5
5-1. 11-Pin SIS MicroSiPPackage (Top View, Device Pins Face Down)  
5-1. Pin Functions  
Pin  
I/O  
Description  
Name  
Number  
Power supply input pin. Ensure the input capacitor is connected as close as possible between  
the VIN and GND pins.  
VIN  
1, 2  
I
I
Enable input pin. Connect to logic low to disable the device. Pull high to enable the device. Do  
not leave this pin unconnected.  
EN  
3
4
Device mode selection (auto PFM/PWM or forced PWM operation) and SmartConfig™  
application. Connect high, low, or to a resistor to configure the device according to 7-2. Do  
not leave this pin unconnected.  
MODE/  
S-CONF  
I
Soft start/tracking pin. An external capacitor connected from this pin to GND defines the rise  
time for the internal reference voltage. The pin can also be used as an input for tracking and  
sequencing. The pin can be left floating for the fastest ramp-up time.  
SS/TR  
PG  
5
6
I
Open-drain power-good output. High = VOUT is ready. Low = VOUT is below nominal regulation.  
This pin requires a pullup resistor.  
O
Depends on device configuration (see 7.3.1)  
FB: Voltage feedback input. Connect a resistive output voltage divider to this pin.  
VSET: Output voltage setting pin. Connect a resistor to GND to choose the output voltage  
according to 7-3.  
FB/VSET  
7
I
SW/NC  
VOUT  
8
NC  
O
Switch pin of the converter. Do not connect, leave floating.  
9, 10  
Output voltage pin. Connect directly to the positive pin of the output capacitor.  
Ground pin. It must be connected directly to the common ground plane. It must be soldered to  
achieve appropriate power dissipation and mechanical reliability.  
GND  
11  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPSM82903  
 
TPSM82903  
www.ti.com.cn  
ZHCSPZ6B FEBRUARY 2022 REVISED NOVEMBER 2022  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
0.3  
55  
MAX  
18  
UNIT  
VIN  
EN, PG  
Voltage(2)  
18  
V
MODE/S-CONF  
18  
FB/VSET, SS/TR, VOUT  
6
TJ  
Junction temperature  
125  
260  
3
°C  
°C  
Peak reflow case temperature  
Maximum number of reflows allowed  
Mechanical  
shock  
Mil-STD-883D, Method 2002.3, 1 msec, 1/2 sine, mounted  
1500  
G
Mechanical  
vibration  
Mil-STD-883D, Method 2007.2, 20 to 2000 Hz  
Storage temperature  
20  
G
Tstg  
125  
°C  
55  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) All voltage values are with respect to network ground terminal.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS-001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per ANSI/ESDA/  
JEDEC JS-002, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
Over operating junction temperature range (unless otherwise noted)  
MIN  
3.0  
0.4  
3
NOM  
MAX  
17  
UNIT  
V
VI  
Input voltage range  
VO  
Output voltage range  
5.5  
V
CI  
Effective input capacitance  
Effective output capacitance (2.5MHz selection)  
Effective output capacitance (1.0MHz selection)  
Output current  
10  
22  
22  
µF  
µF  
µF  
A
CO  
10  
6
100 (1)  
50 (1)  
3
CO  
IOUT  
ISINK_PG  
TJ  
0
Sink current at PG-Pin  
1
mA  
°C  
Junction temperature (2)  
-40  
125  
(1) This is for capacitors directly at the output of the device. More capacitance is allowed if there is a series resistance associated to the  
capacitor.  
(2) Operating lifetime is derated at junction temperatures greater than 125°C.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPSM82903  
 
 
 
 
 
 
 
 
 
 
 
TPSM82903  
www.ti.com.cn  
ZHCSPZ6B FEBRUARY 2022 REVISED NOVEMBER 2022  
6.4 Thermal Information  
TPSM8290x  
THERMAL METRIC(1)  
uSIP11-Pin  
TPSM8290xEVM-188  
UNIT  
JEDEC PCB  
58.2  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
48.7  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
34.5  
26.9  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
0.8  
ΨJT  
26.6  
27.8  
ΨJB  
RθJC(bot)  
26.0  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
VI = 3 V to 17 V, TJ = -40°C to +125°C, Typical values at VI = 12.0 V and TA = 25°C,unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY  
Operating Quiescent Current (Power  
Save Mode)  
IQ_PSM  
Iout = 0 mA, device not switching  
4
8
µA  
Operating Quiescent Current (PWM  
Mode)  
VIN=12 V, VOUT=1.2 V; Iout = 0 mA,  
device switching  
IQ_PWM  
ISD  
mA  
Shutdown current into VIN pin  
Under Voltage Lock-Out  
EN = 0 V  
VIN rising  
VIN falling  
Hysteresis  
0.27  
2.925  
2.775  
150  
3.5  
3.0  
µA  
V
2.85  
2.7  
VUVLO  
Under Voltage Lock-Out  
2.85  
V
VUVLO_HYS  
Under Voltage Lock-Out Hysteresis  
mV  
CONTROL & INTERFACE  
ILKG  
EN Input leakage current  
EN = 12 V  
10  
300  
nA  
V
High-Level Input Voltage at MODE/S-  
CONF-Pin  
VIH_MODE  
1.0  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
High-level input voltage at EN-Pin  
Low-level input voltage at EN-Pin  
TJ rising  
170  
20  
TSD  
°C  
Hysteresis  
VIH  
VIL  
0.97  
0.87  
1.0  
0.9  
1.03  
0.93  
V
V
Smart-Enable Internal Pulldown  
Resistor  
REN_PD  
EN = LOW  
0.5  
MΩ  
VFB rising, referenced to VFB nominal  
VFB falling, referenced to VFB nominal  
Hysteresis  
93.5%  
88.5%  
1.5%  
96%  
93%  
3.5%  
99%  
96%  
6%  
VPG  
Power good threshold  
VPG_OL  
IPG_LKG  
tPG_DLY  
RSET  
Low-level output voltage at PG pin  
Input leakage current into PG pin  
Power good delay time  
ISINK = 1 mA  
0.4  
V
nA  
µs  
%
VPG = 5 V  
15  
32  
550  
VFB falling  
S-CONF/VSET Resistor Tolerance  
+4  
30  
4  
Maximum Capacitance connected to  
S-CONF/VSET Pins  
CSET  
pF  
POWER SWITCHES  
ILKG_SW Leakage current into SW-Pin  
VSW = VOS = 5.5 V  
2
62  
22  
7
111  
40  
µA  
High-side FET on resistance  
Low-side FET on resistance  
VIN > 4 V, ISW = 500 mA  
VIN > 4 V, ISW = 500 mA  
RDS_ON  
mΩ  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPSM82903  
 
 
 
 
TPSM82903  
www.ti.com.cn  
ZHCSPZ6B FEBRUARY 2022 REVISED NOVEMBER 2022  
6.5 Electrical Characteristics (continued)  
VI = 3 V to 17 V, TJ = -40°C to +125°C, Typical values at VI = 12.0 V and TA = 25°C,unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
4.1  
3.8  
1.3  
TYP  
4.9  
4.3  
1.7  
2.5  
50  
MAX  
5.8  
UNIT  
A
High-side FET current limit  
Low-side FET current limit  
Low-side FET sink current limit  
Switching frequency  
Minimum On-time  
ILIM  
4.7  
A
ILIM_SINK  
fSW  
TON(MIN)  
fSW  
2.5  
A
2.5-MHz selection  
MHz  
ns  
Switching frequency  
Dutycycle  
1.0-MHz selection  
1.0  
MHz  
D
1
RPD  
Dropout resistance  
100% mode, VIN > 4 V  
100  
mΩ  
OUTPUT  
VSET Configuration selected. TJ =  
25°C.  
VO_Reg1  
VO_Reg2  
VO_Reg3  
Output Voltage Regulation  
Output Voltage Regulation  
Output Voltage Regulation  
+0.9%  
+1.1%  
0.9%  
1.1%  
VSET Configuration selected. 0 °C<  
TJ < 85°C  
VSET Configuration selected. 40°C  
< TJ < 125°C  
+1.25%  
1.25%  
VFB  
Feedback Regulation Voltage  
Feedback Voltage Regulation  
Feedback Voltage Regulation  
Adjustable Configuration selected  
FB-Option selected. TJ = 25°C.  
FB-Option selected. 0°C < TJ < 85°C.  
0.6  
V
VFB_Reg1  
VFB_Reg2  
+0.6%  
0.6%  
+0.65%  
0.65%  
FB-Option selected. 40°C < TJ <  
125°C  
VFB_Reg3  
IFB  
Feedback Voltage Regulation  
+0.9%  
70  
0.9%  
Input leakage current into FB pin  
Adjustable configuration, VFB = 0.6 V  
1
nA  
µs  
IO = 0 mA, time from EN=HIGH until  
start switching, Adjustable  
Configuration selected  
Start-up delay time  
Start-up delay time  
600  
1400  
1850  
Tdelay  
IO = 0 mA, time from EN=HIGH until  
start switching, VSET Configuration  
selected. The typical value is based on  
the first option of VSET configuration.  
650  
150  
µs  
IO = 0 mA after Tdelay, from 1st  
switching pulse until target VO; TR/SS-  
Pin = OPEN  
TSS  
Soft-Start time  
200  
2.7  
µs  
ISS  
SS/TR source current  
2.3  
2.5  
0.75  
±8  
µA  
Tracking Gain, Adjustable  
Configuration  
VFB/VSS/TR  
VFB/VSS/TR  
RDISCH  
Tracking Gain tolerance  
mV  
Discharge = ON - Option Selected, EN  
= LOW,  
Active Discharge Resistance  
7.5  
20  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPSM82903  
TPSM82903  
www.ti.com.cn  
ZHCSPZ6B FEBRUARY 2022 REVISED NOVEMBER 2022  
6.6 Typical Characteristics  
9
80  
70  
60  
50  
40  
30  
20  
10  
0
-40C  
0C  
25C  
17V  
12V  
6V  
8
125C  
3V  
7
6
5
4
3
2
1
0
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100 110 120125  
VIN (V)  
Temperature (C)  
6-1. Typical Quiescent Current vs VIN  
6-2. Maximum Quiescent Current vs  
Temperature  
1
0.85  
-40C  
-25C  
0C  
25C  
85C  
125C  
-40C  
25C  
85C  
0.8  
0.75  
0.7  
125C  
0.8  
0.6  
0.4  
0.2  
0
0.65  
0.6  
0.55  
0.5  
0.45  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
VIN (V)  
VIN (V)  
6-3. Typical Shutdown Current  
6-4. Output Voltage Accuracy VFEB Selected  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPSM82903  
 
TPSM82903  
www.ti.com.cn  
ZHCSPZ6B FEBRUARY 2022 REVISED NOVEMBER 2022  
7 Detailed Description  
7.1 Overview  
The TPSM82903 synchronous step-down converter MicroSiP package module is based on DCS-Control (Direct  
Control with Seamless Transition into power save mode). DCS-Control is an advanced regulation topology that  
combines the advantages of hysteretic, voltage mode, and current mode control. This control loop takes  
information about output voltage changes and feeds it directly to a fast comparator stage. The control loop sets  
the switching frequency, which is constant for steady-state operating conditions, and provides immediate  
response to dynamic load changes. To get accurate DC load regulation, a voltage feedback loop is used. The  
internally compensated regulation network achieves fast and stable operation with small external components  
and low-ESR capacitors.  
7.2 Functional Block Diagram  
PG  
VIN  
VI  
Ref  
1.0 V  
HS Limit  
+
EN  
VO  
Device Control  
and Logic  
Power Control  
Internal/External  
Divider  
FB  
/VSET  
Gate  
Driver  
Resistor-to-Digital  
VFB  
Power Save Mode  
Forced PWM  
100% Mode  
Smart-Enable  
Ref-System  
UVLO  
SS/TR  
Start-up Handling  
SmartConfigTM  
PG-Control  
Thermal Shutdown  
Resistor-to-  
Digital  
MODE  
/S-CONF  
LS Limit  
MODE Detection  
VOUT  
VO  
VOS  
Direct  
Control  
VI  
TON Timer  
VFB  
VO  
+
DCS-ControlTM  
Device  
Control  
VREF  
GND  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPSM82903  
 
 
 
TPSM82903  
www.ti.com.cn  
ZHCSPZ6B FEBRUARY 2022 REVISED NOVEMBER 2022  
7.3 Feature Description  
7.3.1 Mode Selection and Device Configuration (MODE/S-CONF)  
With MODE/S-CONF (SmartConfig application), this device features an input with two functions. It can be used  
to customize the device behavior in two ways:  
Select the device mode (FPWM or auto PFM/PWM with AEE operation) traditionally with a HIGH- or LOW-  
level.  
Select the device configuration (switching frequency, internal/external feedback, output discharge, and  
PFM/PWM mode) by connecting a single resistor to the MODE/S-CONF pin.  
The device interprets this pin during the start-up sequence after the internal OTP readout and before it starts  
switching in soft start. If the device reads a HIGH- or LOW-level, the dynamic mode change is active and  
PFM/PWM mode can be changed during operation. If the device reads a resistor value, there is no further  
interpretation during operation and device mode or other configurations cannot be changed afterward.  
备注  
The MODE/S-CONF pin must not be left floating. Connect the pin high, low, or to a resistor to  
configure the device according to 7-2.  
EN and UVLO  
Precise  
Enable  
Detection  
PG to High  
Switching  
Operation  
OTP  
Readout  
S-CONF  
Readout  
VSET  
Readout  
Softstart  
Resistor-to-Digitial  
Readout and  
Interpretation  
No Interpretation of  
MODE/S-CONF or VSET  
MODE-Pin Toggling Detection  
VOUT  
7-1. Interpretation of S-CONF and VSET Flow  
CAUTION  
For each operating mode and switching frequency, the following VOUT range is recommended:  
7-1. Recommended VOUT Ranges with Respect to MODE and FSW  
Mode  
Auto PFM/PWM  
Forced PWM  
FSW (MHz)  
VOUT  
1 MHz  
0.4 V < VOUT < 2.0 V  
0.4 V < VOUT < 2.0 V  
0.4 V < VOUT< 5.5 V  
2.0 V < VOUT < 5.5 V  
1 MHz  
Auto PFM/PWM with AEE  
Forced PWM  
2.5 MHz  
2.5 MHz  
Failure to follow the recommended VOUT ranges causes the device to malfunction.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPSM82903  
 
 
TPSM82903  
www.ti.com.cn  
ZHCSPZ6B FEBRUARY 2022 REVISED NOVEMBER 2022  
7-2. SmartConfigApplication Setting Table  
FB/VSET-  
Pin  
Output  
Discharge  
Mode (Auto or Forced  
PWM)  
Dynamic Mode  
Change  
Level Or Resistor Value [Ω]  
#
FSW (MHz)  
(1)  
Setting Options by Level  
Auto PFM/PWM with  
AEE  
1
2
GND  
external FB  
external FB  
2.5  
2.5  
yes  
yes  
active  
HIGH (>VIH_MODE  
)
Forced PWM  
Setting Options by Resistor  
Auto PFM/PWM with  
AEE  
3
7.15 k  
external FB  
2.5  
no  
4
5
6
7
8
8.87 k  
11.0 k  
13.7 k  
16.9 k  
21.0 k  
external FB  
external FB  
external FB  
external FB  
external FB  
2.5  
1
no  
yes  
yes  
no  
Forced PWM  
Auto PFM/PWM  
Forced PWM  
1
1
Auto PFM/PWM  
Forced PWM  
1
no  
Auto PFM/PWM with  
AEE  
9
26.1 k  
32.4 k  
40.2 k  
VSET  
VSET  
VSET  
2.5  
2.5  
2.5  
yes  
yes  
no  
not active  
10  
11  
Forced PWM  
Auto PFM/PWM with  
AEE  
12  
13  
14  
15  
16  
49.9 k  
61.9 k  
76.8 k  
95.3 k  
118 k  
VSET  
VSET  
VSET  
VSET  
VSET  
2.5  
1
no  
yes  
yes  
no  
Forced PWM  
Auto PFM/PWM  
Forced PWM  
1
1
Auto PFM/PWM  
Forced PWM  
1
no  
(1) E96 Resistor Series, 1% Accuracy, Temperature Coefficient better or equal than ±200 ppm/°C  
7.3.2 Adjustable VO Operation (External Voltage Divider)  
The TPSM82903 can be programmed by the MODE/S-CONF pin to either classical configuration where the FB/  
VSET pin is used as the feedback pin, sensing VO through an external resistive divider. The TPSM82903 can  
also be programmed to 16 different fixed output voltages. These are set through an external resistor between the  
FB/VSET pin and GND. In this configuration, VO is directly sensed at the VOS internal terminal connection of the  
device.  
If the device is configured to operate in classical adjustable VO operation, the FB/VSET pin is used as the  
feedback pin and needs to sense VO through an external divider network. 7-2 shows the typical schematic for  
this configuration.  
VIN  
3V t 17V  
VOUT  
0.6V t 5.5V  
TPSM8290x  
VIN  
VOUT  
EN  
GND  
C2  
22F  
C1  
10F  
R1  
R2  
FB/  
VSET  
SS/TR  
MODE/  
S-CONF  
PG  
R3  
C3  
7-2. Adjustable VO Operation Schematic  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPSM82903  
 
 
 
TPSM82903  
www.ti.com.cn  
ZHCSPZ6B FEBRUARY 2022 REVISED NOVEMBER 2022  
7.3.3 Setable VO Operation (VSET and Internal Voltage Divider)  
If the device is configured to VSET operation, VO is sensed only through the internal VOS connection by an  
internal resistor divider. The target VO is programmed by an external resistor connected between the VSET pin  
and GND. 7-3 shows the typical schematic for this configuration.  
VIN  
3V t 17V  
VOUT  
0.4V t 5.5V  
TPSM8290x  
VIN  
VOUT  
EN  
GND  
C2  
22F  
C1  
10F  
FB/  
VSET  
SS/TR  
R2  
MODE/  
S-CONF  
PG  
R3  
C3  
7-3. Setable VO Operation Schematic  
7-3. VSET Selection Table  
#
1
Target VO [V]  
Resistor Value [Ω]  
GND  
4.64 k  
1.2  
0.4  
0.6  
0.8  
1.0  
1.1  
1.3  
1.35  
1.8  
1.9  
2.5  
3.8  
5.0  
5.1  
5.5  
3.3  
2
3
5.76 k  
4
7.15 k  
5
8.87 k  
6
11.0 k  
7
13.7 k  
8
16.9 k  
9
21.0 k  
10  
11  
12  
13  
14  
15  
16  
26.1 k  
40.2 k  
61.9 k  
76.8 k  
95.3 k  
118.0 k  
249.00 k or larger/Open  
7.3.4 Soft Start/Tracking (SS/TR)  
With the SS/TR pin, it is possible to adjust the soft-start behavior and track an external voltage. See 8.2.2.4  
for operation details.  
The internal soft-start circuitry controls the output voltage slope during start-up. This avoids excessive inrush  
current and makes sure there is a controlled output voltage rise time. It also prevents unwanted voltage drops  
from high impedance power sources or batteries. When EN is set high to start operation, the device starts  
switching after a delay, then the internal reference, and hence VO, rises with a slope controlled by an external  
capacitor connected to the SS/TR pin.  
Leaving the SS/TR pin unconnected provides the fastest start-up, limited internally (the pin must not be pulled  
LOW externally).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPSM82903  
 
 
TPSM82903  
www.ti.com.cn  
ZHCSPZ6B FEBRUARY 2022 REVISED NOVEMBER 2022  
If the device is set to shut down (EN = GND), undervoltage lockout, or thermal shutdown, an internal resistor  
pulls the SS/TR pin down to ensure a proper low level. Returning from those states causes a new start-up  
sequence as set by the SS/TR connection.  
A voltage supplied to SS/TR can be used to track a primary voltage. The output voltage follows this voltage up  
and down in forced PWM mode. In PFM mode, the output voltage decreases based on the load current.  
7.3.5 Smart Enable with Precise Threshold  
The voltage applied at the enable pin of the TPSM82903 is compared to a fixed threshold rising voltage, allowing  
the user to drive the pin by a slowly changing voltage and enables the use of an external RC network to achieve  
a power-up delay.  
The precise enable input allows the user to program the undervoltage lockout by adding a resistor divider to the  
input of the enable pin.  
The enable input threshold for a falling edge is lower than the rising edge threshold. The TPSM82903 starts  
operation when the rising threshold is exceeded. For proper operation, the EN pin must be terminated and must  
not be left floating. Pulling the EN pin low forces the device into shutdown. In this mode, the internal high-side  
and low-side MOSFETs are turned off and the entire internal control circuitry is switched off.  
An internal resistor pulls the EN pin to GND when the device is disabled and avoids floating the pin after the  
device is enabled, the pulldown is removed. This prevents an uncontrolled start-up of the device in case the EN  
pin cannot be driven to a low level safely. With EN low, the device is in shutdown mode. The device is turned on  
with EN set to a high level. The pulldown control circuit disconnects the pulldown resistor on the EN pin after the  
internal control logic and the reference have been powered up. With EN set to a low level, the device enters  
shutdown mode and the pulldown resistor is activated again.  
7.3.6 Power Good (PG)  
The TPSM82903 has a built-in power-good (PG) feature to indicate whether the output voltage has reached its  
target and the device is ready. The PG signal can be used for start-up sequencing of multiple rails. The PG pin is  
an open-drain output that requires a pullup resistor to any voltage up to the recommended input voltage level.  
PG is low when the device is turned off due to EN, UVLO (undervoltage lockout), or thermal shutdown. VIN must  
remain present for the PG pin to stay low.  
If the power-good output is not used, it is recommended to tie to GND or leave it open.  
7-4. Power Good Indicator Functional Table  
Logic Signals  
PG Status  
VI  
EN Pin  
Thermal Shutdown  
VO  
VO on target  
High Impedance  
LOW  
No  
HIGH  
VO < target  
VI > UVLO  
Yes  
x
x
x
x
x
LOW  
LOW  
LOW  
1.8 V< VI < UVLO  
VI < 1.8 V  
x
x
x
LOW  
x
Undefined  
7.3.7 Undervoltage Lockout (UVLO)  
If the input voltage drops, the undervoltage lockout prevents mis-operation of the device by switching off both the  
power FETs. The device is fully operational for voltages above the rising UVLO threshold and turns off if the  
input voltage trips below the threshold for a falling supply voltage.  
7.3.8 Current Limit And Short Circuit Protection  
The TPSM82903 is protected against overload and short circuit events. If the inductor current exceeds the high-  
side FET current limit (ILIMH), the high-side switch is turned off and the low-side switch is turned on to ramp down  
the inductor current. The high-side FET turns on again only if the current in the low-side FET has decreased  
below the low-side FET current limit threshold.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPSM82903  
TPSM82903  
www.ti.com.cn  
ZHCSPZ6B FEBRUARY 2022 REVISED NOVEMBER 2022  
Due to internal propagation delay, the actual current can exceed the static current limit during that time. The  
dynamic current limit is given as 方程1:  
V
L
Ipeak(typ) = ILIMH  
+
´tPD  
L
(1)  
where  
ILIMH is the static high-side FET current limit as specified in the Electrical Characteristics.  
L is the effective inductance at the peak current (approximately 0.9 μH).  
VL is the voltage across the inductor (VIN VOUT).  
tPD is the internal propagation delay of typically 50 ns.  
The current limit can exceed static values, especially if the input voltage is high and very small inductances are  
used. The dynamic high-side switch peak current can be calculated as follows:  
V IN - VO U T  
I
peak ( typ ) = IL IM H  
+
´ 50 ns  
L
(2)  
7.3.9 Thermal Shutdown  
The junction temperature, TJ, of the device is monitored by an internal temperature sensor. If TJ rises and  
exceeds the thermal shutdown threshold, TSD, the device shuts down. Both the high-side and low-side power  
FETs are turned off and PG goes low. When TJ decreases below the hysteresis, the converter resumes normal  
operation, beginning with soft start. During a PFM skip pause, the thermal shutdown feature is not active. A  
shutdown or re-start is only triggered during a switching cycle. See 7.4.3.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPSM82903  
 
TPSM82903  
www.ti.com.cn  
ZHCSPZ6B FEBRUARY 2022 REVISED NOVEMBER 2022  
7.4 Device Functional Modes  
7.4.1 Pulse Width Modulation (PWM) Operation  
The TPSM82903 has two operating modes: forced PWM mode discussed in this section and PWM/PFM as  
discussed in 7.4.3.  
With the MODE/S-CONF pin configured for PWM mode, the TPSM82903 operates with pulse width modulation  
in continuous conduction mode (CCM) with a nominal switching frequency of 2.5 MHz/1.0 MHz. The frequency  
variation in PWM is controlled and depends on VIN, VOUT, and the inductance. The on time in forced PWM mode  
is given by 方程3:  
VOUT  
VIN  
1
TON =  
ì
fsw  
(3)  
7.4.2 AEE (Automatic Efficiency Enhancement)  
When the MODE/S-CONF pin is configured for AEE mode, the TPSM82903 provides the highest efficiency over  
the entire input voltage and output voltage range by automatically adjusting the switching frequency of the  
converter. This is achieved by setting the predictive off time of the converter. The efficiency of a switched mode  
converter is determined by the power losses during the conversion. The efficiency decreases if VOUT decreases,  
V
IN increases as shown in 方程式 4, or both. In order to keep the efficiency high over the entire duty cycle range  
(VOUT/VIN ratio), the switching frequency is adjusted while maintaining the ripple current.  
VIN -VOUT  
VIN  
F (MHz) =10ìVOUT  
ì
sw  
2
(4)  
The AEE function in the TPSM82903 adjusts the on time (TON) in power save mode, depending on the input  
voltage and the output voltage to maintain highest efficiency. The on time in steady-state operation can be  
estimated as using 方程5:  
VIN  
TON =100´  
[ns]  
VIN -VOUT  
(5)  
方程6 shows the relationship among the inductor ripple current, switching frequency, and duty cycle.  
VOUT  
1-(  
)
1- D  
Lì fSW  
VIN  
DIL =VOUT ì(  
) =VOUT ì(  
)
Lì fSW  
(6)  
Efficiency increases by decreasing switching losses and preserving high efficiency for varying duty cycles, while  
the ripple current amplitude remains low enough to deliver the full output current without reaching current limit.  
The AEE feature provides an efficiency enhancement for various duty cycles, especially for lower VOUT values  
where fixed frequency converters suffer from a significant efficiency drop. Furthermore, this feature compensates  
for the very small duty cycles of high VIN to low VOUT conversion, which limits the control range in other  
topologies.  
7.4.3 Power Save Mode Operation (Auto PFM/PWM)  
When the MODE/S-CONF pin is configured for power save mode (auto PFM/PWM), the device operates in  
PWM mode as long the output current is higher than half of the ripple current of the inductor. To maintain high  
efficiency at light loads, the device enters power save mode at the boundary to discontinuous conduction mode  
(DCM). This happens if the output current becomes smaller than half of the ripple current of the inductor. The  
power save mode is entered seamlessly when the load current decreases. This makes sure there is a high  
efficiency in light load operation. The device remains in power save mode as long as the inductor current is  
discontinuous.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPSM82903  
 
 
 
 
 
 
 
TPSM82903  
www.ti.com.cn  
ZHCSPZ6B FEBRUARY 2022 REVISED NOVEMBER 2022  
In power save mode, the switching frequency decreases linearly with the load current maintaining high efficiency.  
The transition in and out of power save mode is seamless in both directions.  
In addition to adjusting the switching, the TPSM82903 adjusts the on time (TON) in power save mode,  
depending on the input voltage and the output voltage to maintain the highest efficiency using the AEE function  
when 2.5 MHz is selected as described in 7.4.2.  
In power save mode, the TON time can be estimated using 方程式 3 for 1 MHz and 方程式 5 for 2.5 MHz (given  
the AEE is enabled for 2.5 MHz).  
For very small output voltages, an absolute minimum on time of about 50 ns is kept to limit switching losses. The  
operating frequency is thereby reduced from its nominal value, which keeps efficiency high. Using TON, the  
typical peak inductor current in power save mode is approximated by 方程7:  
(V IN - VO U T )´ TO N  
=
IL P SM ( peak )  
L
(7)  
There is a minimum off time that limits the duty cycle of the TPSM82903. When VIN decreases to typically 15%  
above VOUT, the TPSM82903 does not enter power save mode, regardless of the load current. The device  
maintains output regulation in PWM mode.  
The output voltage ripple in power save mode is given by 方程8:  
2 æ  
ç
ö
÷
ø
L´VIN  
1
1
DV =  
+
200´C VIN -VOUT VOUT  
è
(8)  
where  
L is the effective inductance (approximately 0.9 μF).  
C is the output effective capacitance.  
7.4.4 100% Duty-Cycle Operation  
The duty cycle of the buck converter operating in PWM mode is given as D = VOUT/VIN. The duty cycle increases  
as the input voltage comes close to the output voltage and the off time gets smaller. When the minimum off time  
of typically 80 ns is reached, the TPSM82903 scales down its switching frequency while it approaches 100%  
mode. In 100% mode, the device keeps the high-side switch on continuously. The high-side switch stays turned  
on as long as the output voltage is below the internal set point. This allows the conversion of small input to  
output voltage differences (for example, getting longest operation time of battery-powered applications). In 100%  
duty cycle mode, the low-side FET is switched off.  
The minimum input voltage to maintain output voltage regulation, depending on the load current and the output  
voltage level, can be calculated as:  
VIN(min) =VOUT + IOUT(RDS(on) + R  
)
L
(9)  
where  
IOUT is the output current.  
RDS(on) is the on-state resistance of the high-side FET.  
RL is the DC resistance of the inductor used (approximately 40 mΩ).  
7.4.5 Output Discharge Function  
The purpose of the discharge function is to ensure a defined down-ramp of the output voltage when the device is  
being disabled but also to keep the output voltage close to 0 V when the device is off. The output discharge  
feature is only active after the TPSM82903 has been enabled at least once since the supply voltage was  
applied. The internal discharge resistor is connected to the VOS pin. The discharge function is enabled as soon  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPSM82903  
 
 
TPSM82903  
www.ti.com.cn  
ZHCSPZ6B FEBRUARY 2022 REVISED NOVEMBER 2022  
as the device is disabled, in thermal shutdown, or in undervoltage lockout. The minimum supply voltage required  
for the discharge function to remain active typically is 2 V.  
7.4.6 Starting into a Pre-Biased Load  
The TPSM82903 is capable of starting into a pre-biased output. The device only starts switching when the  
internal soft-start ramp is equal or higher than the feedback voltage. If the voltage at the feedback pin is biased  
to a higher voltage than the nominal value, the TPSM82903 does not start switching unless the voltage at the  
feedback pin drops to the target.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPSM82903  
TPSM82903  
www.ti.com.cn  
ZHCSPZ6B FEBRUARY 2022 REVISED NOVEMBER 2022  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
8.1 Application Information  
The TPSM82903 device is highly efficient, small, and flexible synchronous step-down DC-DC converter  
MicroSiP package module that is easy to use. A wide input voltage range of 3 V to 17 V supports a wide variety  
of inputs like 12-V supply rails, single-cell or multi-cell Li-Ion, and 5-V or 3.3-V rails.  
8.2 Typical Application with Adjustable Output Voltage  
VIN  
3V t 17V  
VOUT  
0.6V t 5.5V  
TPSM8290x  
VIN  
VOUT  
EN  
GND  
C2  
22F  
C1  
10F  
R1  
R2  
FB/  
VSET  
SS/TR  
MODE/  
S-CONF  
PG  
R3  
C3  
8-1. Typical Application Circuit  
8.2.1 Design Requirements  
8-1. List of Components  
Reference  
Description  
Manufacturer  
IC  
17 V, 3-A Step-Down Converter  
TPSM8290x series; Texas Instruments  
C3216X7R1E106M160AE, TDK  
C2012X7S1A226M125AC, TDK  
16 V, Ceramic, X7R  
CIN  
COUT  
CSS  
R1  
10 µF, 25 V, Ceramic, 0805  
22 µF, 16 V, Ceramic, 0805  
Depends on soft start time; see 8.2.2.3.3.  
Depending on VOUT; see 8.2.2.2.  
Depending on VOUT; see 8.2.2.2.  
Depending on device setting, see 7.3.1.  
Standard 1% metal film  
R2  
Standard 1% metal film  
R3  
Standard 1% metal film  
8.2.2 Detailed Design Procedure  
8.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPSM82903 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPSM82903  
 
 
 
TPSM82903  
www.ti.com.cn  
ZHCSPZ6B FEBRUARY 2022 REVISED NOVEMBER 2022  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.2.2.2 Programming the Output Voltage  
The output voltage of the TPSM82903 is adjustable. It can be programmed for output voltages from 0.6 V to 5.5  
V using a resistor divider from VOUT to GND. The voltage at the FB pin is regulated to 600 mV. The value of the  
output voltage is set by the selection of the resistor divider from 方程式 10. It is recommended to choose resistor  
values that allow a current of at least 2 μA, meaning the value of R2 must not exceed 400 kΩ. Lower resistor  
values are recommended for highest accuracy and most robust design.  
VOUT  
æ
ç
è
ö
÷
ø
R1  
= R2 ´  
-1  
VFB  
(10)  
With typical VFB = 0.6 V, 1-MHz switching frequency is not recommended for VOUT > 1.8 V.  
8-2. Setting the Output Voltage  
Nominal Output Voltage  
R1  
R2  
Exact Output Voltage  
0.749 V  
1.2 V  
0.75 V  
1.2 V  
1.5 V  
1.8 V  
2.0 V  
2.5 V  
3.0 V  
3.3 V  
5.0 V  
24.9 kΩ  
100 kΩ  
150 kΩ  
200 kΩ  
49.9 kΩ  
100 kΩ  
100 kΩ  
113 kΩ  
182 kΩ  
100 kΩ  
100 kΩ  
100 kΩ  
100 kΩ  
21.5 kΩ  
31.6 kΩ  
24.9 kΩ  
24.9 kΩ  
24.9 kΩ  
1.5 V  
1.8 V  
1.992 V  
2.498 V  
3.009 V  
3.322 V  
4.985 V  
8.2.2.3 Capacitor Selection  
8.2.2.3.1 Output Capacitor  
The recommended value for the output capacitor is 22 µF. Output capacitance above 100 µF needs to have a  
ESR of 10 mΩfor stable operation. The architecture of the TPSM82903 allows the use of tiny ceramic output  
capacitors with low equivalent series resistance (ESR). These capacitors provide low output voltage ripple and  
are recommended. To keep its low resistance up to high frequencies and to get narrow capacitance variation  
with temperature, use X7R or X5R dielectric. Using a higher value has advantages like smaller voltage ripple  
and a tighter DC output accuracy in power save mode (see the Optimizing the TPS62130/40/50/60 Output Filter  
application report).  
In power save mode, the output voltage ripple depends on the output capacitance, its ESR, ESL, and the peak  
inductor current. Using ceramic capacitors provides small ESR, ESL, and low ripple. The output capacitor needs  
to be as close as possible to the device.  
For large output voltages, the DC bias effect of ceramic capacitors is large and the effective capacitance must be  
observed.  
8.2.2.3.2 Input Capacitor  
For most applications, 10 µF nominal is sufficient and is recommended, though a larger value reduces input  
current ripple further. The input capacitor buffers the input voltage for transient events and also decouples the  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPSM82903  
 
 
TPSM82903  
www.ti.com.cn  
ZHCSPZ6B FEBRUARY 2022 REVISED NOVEMBER 2022  
converter from the supply. A low-ESR multilayer ceramic capacitor (MLCC) is recommended for best filtering and  
must be placed between VIN and GND as close as possible to those pins.  
8-3. List of Capacitors  
Type (1)  
Nominal Capacitance [µF]  
Voltage Rating [V]  
Size  
0805  
0805  
Manufacturer  
TDK  
C3216X7R1E106K160AB  
C2012X7S1A226M125AC  
10  
22  
25  
10  
TDK  
(1) Lower of IRMS at 40°C rise or ISAT at 30% drop  
8.2.2.3.3 Soft-Start Capacitor  
A capacitor connected between SS/TR pin and GND allows a user-programmable start-up slope of the output  
voltage.  
ISS  
SS/TR  
to VREF  
8-2. Soft-Start Operation Simplified Schematic  
An internal constant current source is provided to charge the external capacitance. The capacitor required for a  
given soft-start ramp time is given by:  
ISS  
CSS = TSS ì  
VREF  
(11)  
where  
CSS is the capacitance required at the SS/TR pin.  
TSS is the desired soft-start ramp time.  
ISS is the SS/TR source current, see the Electrical Characteristics.  
VREF is the feedback regulation voltage divided by tracking gain (VFB/0.75), see the Electrical Characteristics.  
The fastest achievable typical ramp time is 150 µs even if the external Css capacitance is lower than 680 pF or  
the pin is open.  
8.2.2.4 Tracking Function  
If a tracking function is desired, the SS/TR pin can be used for this purpose by connecting it to an external  
tracking voltage. The output voltage tracks that voltage with the typical gain and offset as specified in the  
Electrical Characteristics.  
ISS  
SS/TR  
to VREF  
8-3. Tracking Operation Simplified Schematic  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPSM82903  
 
 
 
 
TPSM82903  
www.ti.com.cn  
ZHCSPZ6B FEBRUARY 2022 REVISED NOVEMBER 2022  
VFB = 0.75ìVSS/TR  
(12)  
When the SS/TR pin voltage is above 0.8 V, the internal voltage is clamped and the device goes to normal  
regulation. This works for rising and falling tracking voltages with the same behavior, as long as the input voltage  
is inside the recommended operating conditions. For decreasing SS/TR pin voltage in PFM mode, the device  
does not sink current from the output. The resulting decrease of the output voltage can therefore be slower than  
the SS/TR pin voltage if the load is light. When driving the SS/TR pin with an external voltage, do not exceed the  
voltage rating of the SS/TR pin, which is 6 V. The SS/TR pin is internally connected with a resistor to GND when  
EN = 0.  
If the input voltage drops below undervoltage lockout, the output voltage goes to zero, independent of the  
tracking voltage. 8-4 shows how to connect devices to get ratiometric and simultaneous sequencing by using  
the tracking function.  
Device 1  
TPSM8290x  
VOUT1  
22 F  
VIN=12V  
VIN  
VOUT  
EN  
GND  
R1  
R2  
10uF  
SS/  
TR  
FB/  
VSET  
MODE/  
S-CONF  
PG  
CSS  
R3  
Device 2  
TPSM8290x  
VOUT2  
VIN  
VOUT  
EN  
GND  
22 F  
R7  
R8  
R4  
R5  
10uF  
SS/  
TR  
FB/  
VSET  
MODE/  
S-CONF  
PG  
R6  
8-4. Schematic for Ratiometric and Simultaneous Start-Up  
The resistive divider of R7 and R8 can be used to change the ramp rate of VOUT2 to be faster, slower, or the  
same as VOUT1.  
A sequential start-up is achieved by connecting the PG pin of VOUT of device 1 to the EN pin of device 2. PG  
requires a pullup resistor. Ratiometric start-up sequence happens if both supplies are sharing the same soft-start  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPSM82903  
 
TPSM82903  
www.ti.com.cn  
ZHCSPZ6B FEBRUARY 2022 REVISED NOVEMBER 2022  
capacitor. 方程式 11 gives the soft-start time, though the SS/TR current has to be doubled. Details about these  
and other tracking and sequencing circuits are found in Sequencing and Tracking With the TPS621-Family and  
TPS821-Family application report.  
备注  
If the voltage at the FB pin is below its typical value of 0.6 V, the output voltage accuracy can have a  
wider tolerance than specified. The current of 2.5 µA out of the SS/TR pin also has an influence on the  
tracking function, especially for high resistive external voltage dividers on the SS/TR pin.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPSM82903  
TPSM82903  
www.ti.com.cn  
ZHCSPZ6B FEBRUARY 2022 REVISED NOVEMBER 2022  
8.2.3 Application Curves  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
VIN=17V  
VIN=15V  
VIN=12V  
VIN=9V  
VIN=6V  
VIN=3V  
VIN=17V  
VIN=15V  
VIN=12V  
VIN=9V  
VIN=6V  
VIN=3V  
1E-6  
1E-5  
0.0001  
0.001  
0.01  
0.05  
0.2 0.5  
1
2 3  
1E-6  
1E-5  
0.0001  
0.001  
0.01  
0.05  
0.2 0.5  
1
2 3  
IOUT (A)  
IOUT (A)  
Auto PFM/PWM  
Fsw = 1 MHz  
Auto PFM/PWM  
Fsw = 2.5 MHz  
8-5. Efficiency vs Output Current  
8-6. Efficiency vs Output Current  
VOUT = 1.2 V  
VOUT = 1.2 V  
100%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
VIN=17V  
VIN=15V  
VIN=12V  
VIN=9V  
VIN=6V  
VIN=3V  
VIN=17V  
VIN=15V  
VIN=12V  
VIN=9V  
VIN=6V  
VIN=3V  
0.0005  
0.002 0.005 0.01 0.02  
0.05 0.1 0.2 0.3 0.5  
1
2
3
1E-6  
1E-5  
0.0001  
0.001  
0.01  
0.05  
0.2 0.5  
1
2 3  
IOUT (A)  
IOUT (A)  
FPWM  
Fsw = 1 MHz  
Auto PFM/PWM  
Fsw = 1 MHz  
8-7. Efficiency vs Output Current  
8-8. Efficiency vs Output Current  
VOUT = 1.2 V  
VOUT = 1.8 V  
100%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
VIN=17V  
VIN=15V  
VIN=12V  
VIN=9V  
VIN=6V  
VIN=3V  
VIN=17V  
VIN=15V  
VIN=12V  
VIN=9V  
VIN=6V  
VIN=3V  
1E-6  
1E-5  
0.0001  
0.001  
0.01  
0.05  
0.2 0.5  
1
2 3  
0.0005  
0.002 0.005 0.01 0.02  
0.05 0.1 0.2 0.3 0.5  
1
2
3
IOUT (A)  
IOUT (A)  
Auto PFM/PWM  
Fsw = 2.5 MHz  
FPWM  
Fsw = 1 MHz  
8-9. Efficiency vs Output Current  
8-10. Efficiency vs Output Current  
VOUT = 1.8 V  
VOUT = 1.8 V  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPSM82903  
TPSM82903  
www.ti.com.cn  
ZHCSPZ6B FEBRUARY 2022 REVISED NOVEMBER 2022  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
VIN=17V  
VIN=15V  
VIN=12V  
VIN=9V  
VIN=6V  
VIN=17V  
VIN=15V  
VIN=12V  
VIN=9V  
VIN=6V  
0
1E-6  
1E-5  
0.0001  
0.001  
0.01  
0.05  
0.2 0.5  
1
2 3  
0.0005  
0.002 0.005 0.01 0.02  
0.05 0.1 0.2 0.3 0.5  
1
2
3
IOUT (A)  
IOUT (A)  
Auto PFM/PWM  
Fsw = 2.5 MHz  
FPWM  
Fsw = 2.5 MHz  
8-11. Efficiency vs Output Current  
8-12. Efficiency vs Output Current  
VOUT = 3.3 V  
VOUT = 3.3 V  
100%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
VIN=17V  
VIN=15V  
VIN=12V  
VIN=9V  
VIN=17V  
VIN=15V  
VIN=12V  
VIN=9V  
1E-6  
1E-5  
0.0001  
0.001  
0.01  
0.05  
0.2 0.5  
1
2 3  
0.0005  
0.002 0.005 0.01 0.02  
0.05 0.1 0.2 0.3 0.5  
1
2
3
IOUT (A)  
IOUT (A)  
Auto PFM/PWM  
Fsw = 2.5 MHz  
FPWM  
Fsw = 2.5 MHz  
8-13. Efficiency vs Output Current  
8-14. Efficiency vs Output Current  
VOUT = 5.5 V  
VOUT = 5.5 V  
2
3.5  
3
IOUT=3A  
IOUT=3A  
IOUT=2A  
IOUT=1A  
IOUT=0.4A  
IOUT=0.1A  
IOUT=2A  
IOUT=1A  
IOUT=0.4A  
IOUT=0.1A  
1.75  
1.5  
1.25  
1
2.5  
2
1.5  
1
0.75  
0.5  
0.25  
0
0.5  
0
2
4
6
8
10  
12  
14  
16  
18  
2
4
6
8
10  
12  
14  
16  
18  
VIN (V)  
VIN (V)  
Auto PFM/PWM  
Fsw = 1 MHz  
Auto PFM/PWM  
Fsw = 2.5 MHz  
8-15. Switching Frequency vs Input Voltage  
8-16. Switching Frequency vs Input Voltage  
VOUT = 1.2 V  
VOUT = 1.2 V  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPSM82903  
TPSM82903  
www.ti.com.cn  
ZHCSPZ6B FEBRUARY 2022 REVISED NOVEMBER 2022  
2
2
1.75  
1.5  
1.25  
1
IOUT=3A  
IOUT=3A  
IOUT=2A  
IOUT=1A  
IOUT=0.4A  
IOUT=0.1A  
IOUT=2A  
IOUT=1A  
IOUT=0.4A  
IOUT=0.1A  
1.75  
1.5  
1.25  
1
0.75  
0.5  
0.25  
0
0.75  
0.5  
2
4
6
8
10  
12  
14  
16  
18  
2
4
6
8
10  
12  
14  
16  
18  
VIN (V)  
VIN (V)  
FPWM  
Fsw = 1 MHz  
Auto PFM/PWM  
Fsw = 1 MHz  
8-17. Switching Frequency vs Input Voltage  
8-18. Switching Frequency vs Input Voltage  
VOUT = 1.2 V  
VOUT = 1.8 V  
4.5  
1.5  
IOUT=3A  
IOUT=2A  
IOUT=1A  
IOUT=0.4A  
IOUT=0.1A  
IOUT=3A  
IOUT=2A  
IOUT=1A  
IOUT=0.4A  
IOUT=0.1A  
1.25  
4
3.5  
3
2.5  
2
1
0.75  
0.5  
1.5  
1
0.5  
0
2
4
6
8
10  
12  
14  
16  
18  
2
4
6
8
10  
12  
14  
16  
18  
VIN (V)  
VIN (V)  
Auto PFM/PWM  
Fsw = 2.5 MHz  
FPWM  
Fsw = 1 MHz  
8-19. Switching Frequency vs Input Voltage  
8-20. Switching Frequency vs Input Voltage  
VOUT = 1.8 V  
VOUT = 1.8 V  
3.5  
3.5  
IOUT=3A  
IOUT=2A  
IOUT=1A  
IOUT=0.4A  
IOUT=0.1A  
IOUT=3A  
IOUT=2A  
IOUT=1A  
IOUT=0.4A  
IOUT=0.1A  
3
3.25  
3
2.5  
2
1.5  
1
2.75  
2.5  
2.25  
2
0.5  
0
5
7
9
11  
13  
15  
17  
18  
4
6
8
10  
12  
14  
16  
18  
VIN (V)  
VIN (V)  
Auto PFM/PWM  
Fsw = 2.5 MHz  
FPWM  
Fsw = 2.5 MHz  
8-21. Switching Frequency vs Input Voltage  
8-22. Switching Frequency vs Input Voltage  
VOUT = 3.3 V  
VOUT = 3.3 V  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPSM82903  
TPSM82903  
www.ti.com.cn  
ZHCSPZ6B FEBRUARY 2022 REVISED NOVEMBER 2022  
4
3.5  
3
3.5  
3.25  
3
IOUT=3A  
IOUT=2A  
IOUT=1A  
IOUT=0.4A  
IOUT=0.1A  
IOUT=3A  
IOUT=2A  
IOUT=1A  
IOUT=0.4A  
IOUT=0.1A  
2.5  
2
2.75  
2.5  
1.5  
1
0.5  
0
8
2.25  
10  
12  
14  
16  
18  
8
10  
12  
14  
16  
18  
VIN (V)  
VIN (V)  
Auto PFM/PWM  
Fsw = 2.5 MHz  
FPWM  
Fsw = 2.5 MHz  
8-23. Switching Frequency vs Input Voltage  
8-24. Switching Frequency vs Input Voltage  
VOUT = 5.5 V  
VOUT = 5.5 V  
1.8125  
VIN=17V  
VIN=15V  
VIN=12V  
VIN=9V  
1.81  
VIN=6V  
VIN=3V  
1.8075  
1.805  
1.8025  
1.8  
1.7975  
1.795  
0.0005  
0.002 0.005 0.01 0.02  
0.05 0.1 0.2 0.3 0.5  
1
2
3
IOUT (A)  
VIN = 12 V  
1-MHz FPWM  
IO = 0 mA  
TA = 25°C  
FPWM  
Fsw = 1 MHz  
VOUT = 1.2 V  
8-25. Output Voltage vs Output Current  
8-26. Start-Up Timing  
VOUT = 1.8 V  
VIN = 12 V  
VOUT = 5 V  
2.5-MHz FPWM  
IO = 1 A  
VIN = 12 V  
1-MHz Auto  
PFM/PWM  
IO = 1 A  
TA = 25°C  
VOUT = 1.8 V  
TA = 25°C  
8-28. Start-Up Timing  
8-27. Start-Up Timing  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPSM82903  
TPSM82903  
www.ti.com.cn  
ZHCSPZ6B FEBRUARY 2022 REVISED NOVEMBER 2022  
VIN = 12 V  
VOUT = 5 V  
2.5-MHz  
IO = 1 A  
VIN = 12 V  
1-MHz Auto  
PFM/PWM  
IO = 3 A  
PFM/PWM  
TA = 25°C  
VOUT = 1.2 V  
TA = 25°C  
8-29. Start-Up Timing  
8-30. Output Voltage Ripple  
VIN = 12 V  
VOUT = 1.2 V  
1-MHz Auto  
PFM/PWM  
IO = 0.1 A  
TA = 25°C  
VIN = 12 V  
VOUT = 1.2 V  
2.5-MHz Auto  
PFM/PWM  
IO = 3 A  
TA = 25°C  
8-31. Output Voltage Ripple  
8-32. Output Voltage Ripple  
VIN = 12 V  
VOUT = 3.3 V  
2.5-MHz Auto  
PFM/PWM  
IO = 1 A  
TA = 25°C  
VIN = 12 V  
VOUT = 1.2 V  
2.5-MHz Auto  
PFM/PWM  
IO = 0.1 A  
TA = 25°C  
8-34. Output Voltage Ripple  
8-33. Output Voltage Ripple  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPSM82903  
TPSM82903  
www.ti.com.cn  
ZHCSPZ6B FEBRUARY 2022 REVISED NOVEMBER 2022  
VIN = 12 V  
VOUT = 3.3 V  
2.5-MHz FPWM  
IO = 0.1 A  
TA = 25°C  
VIN = 12 V  
2.5-MHz FPWM  
IO = 1 A  
VOUT = 5.0 V  
TA = 25°C  
8-35. Output Voltage Ripple  
8-36. Output Voltage Ripple  
VIN = 12 V  
VOUT = 1.2 V  
1-MHz Auto  
PFM/PWM  
IO = 0.1 A to 1 A  
TA = 25°C  
VIN = 12 V  
VOUT = 5.0 V  
2.5-MHz Auto PFM/PWM  
IO = 1 A  
TA = 25°C  
8-37. Output Voltage Ripple  
8-38. PSM-to-PWM Transition  
VIN = 12 V  
1-MHz Auto  
PFM/PWM  
IO = 5 mA to 1 A  
TA = 25°C  
VIN = 12 V  
1-MHz Auto  
PFM/PWM  
IO = 5 mA to 1 A to 5  
mA  
VOUT = 1.2 V  
VOUT = 1.2 V  
TA = 25°C  
8-40. Load Transient Response Rising Edge  
8-39. Load Transient Response  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPSM82903  
TPSM82903  
www.ti.com.cn  
ZHCSPZ6B FEBRUARY 2022 REVISED NOVEMBER 2022  
VIN = 12 V  
1-MHz Auto  
PFM/PWM  
IO = 1 A to 5 mA  
TA = 25°C  
VIN = 12 V  
IO = 5 mA to 2 A to 5 mA  
VOUT = 3.3 V  
2.5-MHz Auto  
PFM/PWM  
TA = 25°C  
VOUT = 1.2 V  
8-41. Load Transient Response Falling Edge  
8-42. Load Transient Response  
VIN = 12 V  
IO = 5 mA to 2 A to 5 mA  
2.5-MHz FPWM TA = 25°C  
VIN = 12 V  
Output Discharge = Yes  
TA = 25°C  
VOUT = 3.3 V  
VOUT = 1.2 V  
8-43. Load Transient Response  
8-44. Output Discharge Function Enabled  
4
3.5  
3
4
VIN=15V  
VIN=12V  
VIN=9V  
VIN=15V  
VIN=12V  
VIN=9V  
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
25  
35  
45  
55  
65  
75  
85  
95  
105  
115  
125130  
25  
35  
45  
55  
65  
75  
85  
95  
105  
115  
125130  
Ambient Temperature ( °C )  
Ambient Temperature ( °C )  
Auto PFM/PWM  
Fsw = 2.5 MHz  
Auto PFM/PWM  
Fsw = 2.5 MHz  
8-45. Thermal Derating VOUT = 1.2 V  
8-46. Thermal Derating VOUT = 3.3 V  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPSM82903  
TPSM82903  
www.ti.com.cn  
ZHCSPZ6B FEBRUARY 2022 REVISED NOVEMBER 2022  
8.3 Typical Application with Setable VO Using VSET  
VIN  
VOUT  
0.4V t 5.5V  
TPSM8290x  
3V t 17V  
VIN  
VOUT  
EN  
GND  
C2  
22F  
C1  
10F  
FB/  
VSET  
SS/TR  
R2  
MODE/  
S-CONF  
PG  
R3  
C3  
8-47. Typical Application Circuit (VSET)  
8.3.1 Design Requirements  
VSET allows the user to set the output voltage using only one resistor to ground on the FB/VSET pin. 7-3  
shows the 16 available options.  
8.3.2 Detailed Design Procedure  
The VSET option needs to be selected using the MODE/S-CONF pin. After the device is configured to VSET  
operation, VO is sensed only through the VOS pin by an internal resistor divider. The target VO is programmed by  
an external resistor R2 connected between FB/VSET and GND.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPSM82903  
 
TPSM82903  
www.ti.com.cn  
ZHCSPZ6B FEBRUARY 2022 REVISED NOVEMBER 2022  
8.3.3 Application Curves  
VIN = 12 V  
1-MHz Auto  
PFM/PWM  
IO = 1 A  
VIN = 12 V  
1-MHz Auto  
PFM/PWM  
IO = 100 mA  
TA = 25°C  
VOUT = 0.4 V  
TA = 25°C  
VOUT = 0.4 V  
8-48. Output Voltage Ripple  
8-49. Output Voltage Ripple  
VIN = 12 V  
VOUT = 0.4 V  
1-MHz FPWM  
IO = 1 A  
TA = 25°C  
VIN = 12 V  
VOUT = 0.4 V  
1-MHz FPWM  
IO = 100 mA  
TA = 25°C  
8-50. Output Voltage Ripple  
8-51. Output Voltage Ripple  
1.2  
1.15  
1.1  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
-40C  
-20C  
0C  
25C  
85C  
125C  
1.05  
1
0.95  
0.9  
VIN=17V  
VIN=15V  
VIN=12V  
VIN=9V  
VIN=6V  
VIN=3V  
0.85  
0.8  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
1E-6  
1E-5  
0.0001  
0.001  
0.01  
0.05  
0.2 0.5  
1
2 3  
VIN (V)  
IOUT (A)  
VIN = 3 V17 V  
Temp = 40°C to 150°C  
Auto PFM/PWM  
Fsw = 1 MHz  
8-52. Output Voltage Accuracy VSET Selected  
8-53. Efficiency vs Output Current  
VOUT = 0.4 V  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPSM82903  
TPSM82903  
www.ti.com.cn  
ZHCSPZ6B FEBRUARY 2022 REVISED NOVEMBER 2022  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
VIN=17V  
VIN=15V  
VIN=12V  
VIN=9V  
VIN=6V  
VIN=3V  
VIN=17V  
VIN=15V  
VIN=12V  
VIN=9V  
VIN=6V  
VIN=3V  
0
1E-6  
1E-5  
0.0001  
0.001  
0.01  
0.05  
0.2 0.5  
1
2 3  
0.0005  
0.002 0.005 0.01 0.02  
0.05 0.1  
0.2 0.3 0.50.7  
1
2
3
IOUT (A)  
IOUT (A)  
Auto PFM/PWM  
Fsw = 2.5 MHz  
FPWM  
Fsw = 1 MHz  
8-54. Efficiency vs Output Current  
8-55. Efficiency vs Output Current  
VOUT = 0.4 V  
VOUT = 0.4 V  
2
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
2.5  
2
IOUT=3A  
IOUT=3A  
IOUT=2A  
IOUT=1A  
IOUT=0.4A  
IOUT=0.1A  
IOUT=2A  
IOUT=1A  
IOUT=0.4A  
IOUT=0.1A  
1.5  
1
0.5  
0
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
2
4
6
8
10  
12  
14  
16  
18  
VIN (V)  
VIN (V)  
Auto PFM/PWM  
Fsw = 1 MHz  
Auto PFM/PWM  
Fsw = 2.5 MHz  
8-56. Switching Frequency vs Input Voltage  
8-57. Switching Frequency vs Input Voltage  
VOUT = 0.4 V  
VOUT = 0.4 V  
2
1.23  
IOUT=3A  
IOUT=2A  
IOUT=1A  
IOUT=0.4A  
IOUT=0.1A  
VIN=17V  
VIN=15V  
VIN=12V  
VIN=9V  
VIN=6V  
VIN=3V  
1.225  
1.22  
1.75  
1.5  
1.25  
1
1.215  
1.21  
1.205  
1.2  
0.75  
0.5  
1.195  
1.19  
2
4
6
8
10  
VIN (V)  
12  
14  
16  
18  
1E-5  
0.0001  
0.001  
0.010.02 0.05 0.1 0.2 0.5  
IOUT (A)  
1
2 3  
FPWM  
Fsw = 1 MHz  
Auto PFM/PWM  
Fsw = 1 MHz  
8-58. Switching Frequency vs Input Voltage  
8-59. Output Voltage vs Output Current  
VOUT = 0.4 V  
VOUT = 1.2 V  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPSM82903  
TPSM82903  
www.ti.com.cn  
ZHCSPZ6B FEBRUARY 2022 REVISED NOVEMBER 2022  
5.6  
5.55  
5.5  
VIN=17V  
VIN=15V  
VIN=12V  
VIN=9V  
5.45  
5.4  
1E-6  
1E-5  
0.0001  
0.001  
0.01  
0.05  
0.2 0.5  
1
2 3  
IOUT (A)  
Auto PFM/PWM  
Fsw = 2.5 MHz  
8-60. Output Voltage vs Output Current  
VOUT = 5.5 V  
8.4 Power Supply Recommendations  
The power supply to the TPSM82903 must have a current rating according to the supply voltage, output voltage,  
and output current of the TPSM82903.  
8.5 Layout  
8.5.1 Layout Guidelines  
A proper layout is critical for the operation of a switched mode power supply, even more at high switching  
frequencies. Therefore, the PCB layout of the TPSM82903 demands careful attention to ensure operation and to  
get the performance specified. A poor layout can lead to issues like poor regulation (both line and load), stability  
and accuracy weaknesses, increased EMI radiation, bad thermal performance, and noise sensitivity.  
See 8-61 for the recommended layout of the TPSM82903, which is designed for common external ground  
connections. TI recommends placing all components as close as possible to the package pins. The input and  
output capacitors placement specifically, must be closest to the VIN, VOUT, and GND pins of the  
TPSM82903.  
Provide low capacitive paths (with respect to all other nodes) for traces with high dv/dt. Therefore, the input  
and output capacitance must be placed as close as possible to the IC pins and parallel wiring over long  
distances as well as narrow traces must be avoided. Loops which conduct an alternating current must outline  
an area as small as possible, as this area is proportional to the energy radiated.  
Sensitive nodes like FB needs to be connected with short wires and not nearby high dv/dt signals. As it  
carries information about the output voltage, it must be connected as close as possible to the actual output  
voltage (at the output capacitor). The capacitor on the SS/TR pin as well as the FB resistors, R1 and R2,  
must be kept close to the module and connect directly to those pins and the system ground plane. The same  
applies to VSET resistor if VSET is used to scale the output voltage.  
The package uses the pins for power dissipation. Thermal vias on the VIN, VOUT, and GND pins help to  
spread the heat through the PCB.  
In case of the EN, and MODE/S-CONF need to be tied to the input supply voltage at VIN, the connection must  
be made directly at the input capacitor as indicated in the schematics.  
The SW/NC pin must not be connected to any other traces. For best practice, this pin must be left floating. If  
the pin is soldered to PCB copper, the pour needs to be: as small as possible, no inner layer connections, no  
vias, electrically floating, and limited to the pin area as possible.  
Refer to 8-61 for an example of component placement, routing and thermal design. The recommended  
layout is implemented on the EVM and shown in its user's guide.  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPSM82903  
 
 
TPSM82903  
www.ti.com.cn  
ZHCSPZ6B FEBRUARY 2022 REVISED NOVEMBER 2022  
8.5.2 Layout Example  
8-61. Layout  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPSM82903  
 
TPSM82903  
www.ti.com.cn  
ZHCSPZ6B FEBRUARY 2022 REVISED NOVEMBER 2022  
8.5.2.1 Thermal Considerations  
Implementation of power converter modules with low-profile and fine-pitch such as MircoSiP packages typically  
requires special attention to power dissipation and thermal rise. Many system-dependent issues such as thermal  
coupling, airflow, added heat sinks and convection surfaces, and the presence of other heat-generating  
components affect the power-dissipation limits of a given component.  
The TPSM82903 is designed for a maximum operating junction temperature (TJ) of 125°C. Therefore, the  
maximum output power is limited by the power losses that can be dissipated over the actual thermal resistance,  
given by the package and the surrounding PCB structures. If the thermal resistance of the package is given, the  
size of the surrounding copper area and a proper thermal connection of the module can reduce the thermal  
resistance. To get an improved thermal behavior, TI recommends to follow the following guidelines:  
Use a multi-layer PCB boards (at least four layers, with 1-oz or more copper).  
Use thermal vias on the GND pin to connect the GND top layer with the GND inner and bottom layers. This  
helps dissipate the heat across layers.  
Generate as large a GND plane as allowable on the top and bottom layers, especially right near the package.  
The exposed thermal pad of the device sits right at the middle of the package. This is ideal for thermal  
dissipation. To take advantage of that, TI recommends the ground plan to cross through the package to allow  
maximum ground plan connection with the exposed pad. See 8-61 how the north ground pour is  
connecting with the south ground pour as it crosses through the exposed pad of the package.  
Use thermal vias on the VIN and VOUT pins (as close as possible to the pin) and around input and output  
capacitors to connect the VIN and VOUT top layer with the inner and bottom layers. This helps dissipate the  
heat across layers as well as decreases the resistance drop on these traces.  
Use wide and short traces for the main current paths to reduce the parasitic inductance and resistance and  
helps on thermal dissipation.  
Introduce airflow in the system if possible.  
Refer to 8-61 for an example of component placement, routing and thermal design.  
For more details on how to use the thermal parameters, see the Thermal Characteristics of Linear and Logic  
Packages Using JEDEC PCB Designs and Semiconductor and IC Package Thermal Metrics application reports.  
If short circuit or overload conditions are present, the device is protected by limiting internal power dissipation.  
The device is qualified for long term qualification with a 125°C junction temperature.  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TPSM82903  
TPSM82903  
www.ti.com.cn  
ZHCSPZ6B FEBRUARY 2022 REVISED NOVEMBER 2022  
9 Device and Documentation Support  
9.1 Device Support  
9.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
9.1.2 Development Support  
9.1.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPSM82903 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
9.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.4 Trademarks  
MicroSiP, SmartConfig, and TI E2Eare trademarks of Texas Instruments.  
WEBENCH® is a registered trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
9.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TPSM82903  
 
 
 
 
 
 
 
TPSM82903  
www.ti.com.cn  
ZHCSPZ6B FEBRUARY 2022 REVISED NOVEMBER 2022  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TPSM82903  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Mar-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PTSM82903SISB2R  
TPSM82903SISR  
ACTIVE  
ACTIVE  
uSiP  
uSiP  
SIS  
SIS  
11  
11  
3000  
TBD  
Call TI  
Call TI  
-40 to 125  
-40 to 125  
Samples  
Samples  
3000 RoHS & Green  
ENEPIG  
Level-2-260C-1 YEAR  
TM2903  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Mar-2023  
Addendum-Page 2  
PACKAGE OUTLINE  
SIS0011A  
MicroSiPTM - 1.6 mm max height  
S
C
A
L
E
4
.
0
0
0
MICRO SYSTEM IN PACKAGE  
2.9  
2.7  
B
A
(0.05)  
PIN 1 INDEX &  
MARKING AREA  
3.1  
2.9  
PKG  
DESIGNATED LASER  
MARKING AREA  
TEXT HEIGHT TO BE  
150um MINIMUM  
2.7  
2.3  
PICK AREA  
NOTE 3  
PKG  
(0.1)  
(0.1)  
2.2  
1.8  
1.60 MAX  
C
SEATING PLANE  
0.08 C  
0.34 MAX  
2.1  
0.94  
0.86  
EXPOSED  
THERMAL PAD  
(0.1) TYP  
0.29  
5
6X  
6
0.21  
0.1  
0.05  
C A  
C
B
2X  
2.275  
SYMM  
11  
2.84  
2.76  
4X 0.5  
0.565  
0.485  
4X  
10  
1
0.54  
0.46  
SYMM  
PIN 1 ID  
(OPTIONAL)  
10X  
0.1  
C A  
C
B
0.05  
4226726/B 07/2021  
MicroSiP is a trademark of Texas Instruments  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Pick and place nozzle 1.3 mm or smaller recommended.  
4. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
SIS0011A  
MicroSiPTM - 1.6 mm max height  
MICRO SYSTEM IN PACKAGE  
10X (0.55)  
(0.9)  
(R0.05)  
TYP  
10  
1
4X (0.5)  
11  
SYMM  
(2.9)  
2X  
(2.325)  
(2.4)  
6X (0.25)  
6
5
4X (0.575)  
SYMM  
(2.15)  
(
0.2)  
TYP  
LAND PATTERN EXAMPLE  
SOLDER MASK DEFINED  
SCALE:25X  
(0.07) TYP  
ALL AROUND  
(0.05)  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
NON-SOLDER  
MASK DEFINED  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAIL  
4226726/B 07/2021  
NOTES: (continued)  
5. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
6. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view.  
It is recommended that vias under paste be filled, plugged or tented  
www.ti.com  
EXAMPLE STENCIL DESIGN  
SIS0011A  
MicroSiPTM - 1.6 mm max height  
MICRO SYSTEM IN PACKAGE  
SOLDER MASK  
EDGE TYP  
2X (0.8)  
10X (0.55)  
1
10  
2X  
(1.3)  
4X (0.5)  
11  
2X  
(2.325)  
SYMM  
2X  
(0.75)  
6X (0.25)  
4X  
(0.575)  
5
6
(R0.05)  
TYP  
EXPOSED  
METAL  
TYP  
SYMM  
(2.15)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
80% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4226726/B 07/2021  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

PTSPLO-6/1-2X22,1R32

Barrier Strip Terminal Block,
PHOENIX

PTT-102-01-L-D-001

Board Connector,
SAMTEC

PTT-102-01-L-D-002

Board Connector,
SAMTEC

PTT-102-01-L-D-004

Board Connector,
SAMTEC

PTT-102-01-S-D

Board Connector, 4 Contact(s), 2 Row(s), Male, Straight, 0.079 inch Pitch, Press Fit Terminal, Locking, Black Insulator, ROHS COMPLIANT
SAMTEC

PTT-102-01-S-D-001

Board Connector,
SAMTEC

PTT-102-01-S-D-004

Board Connector,
SAMTEC

PTT-102-01-S-Q

Board Connector, 8 Contact(s), 4 Row(s), Male, Straight, Press Fit Terminal, ROHS COMPLIANT
SAMTEC

PTT-102-01-S-T

Board Connector, 6 Contact(s), 3 Row(s), Male, Straight, Press Fit Terminal, ROHS COMPLIANT
SAMTEC

PTT-102-05-L-D

Board Connector
SAMTEC

PTT-102-05-SM-D

Board Connector, 4 Contact(s), 2 Row(s), Male, Straight, 0.079 inch Pitch, Press Fit Terminal, Locking, Black Insulator,
SAMTEC

PTT-103-01-L-D

Board Connector, 6 Contact(s), 2 Row(s), Male, Straight, 0.079 inch Pitch, Press Fit Terminal, Black Insulator, ROHS COMPLIANT
SAMTEC