PT6933A [TI]

Analog IC ; 模拟IC\n
PT6933A
型号: PT6933A
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Analog IC
模拟IC\n

模拟IC
文件: 总7页 (文件大小:161K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PT6930 Series  
8-A5V-Input Dual-Output  
Integrated Switching Regulator  
SLTS062B  
(Revised 7/20/2001)  
Features  
Dual Outputs:  
Description  
The PT6930 Excalibur™ series of 8-A  
dual-output ISRs are designed to power  
DSP ICs. Both output voltages are inde-  
pendently adjustable with external resistors.  
The second output may also be set to an  
alternate lower bus voltage with a simple  
pin strap. Internal power sequencing of  
both outputs, during both power-up and  
power-down, meets the requirements of  
most DSP chipsets.  
+3.3V/2.5V  
+3.3V/1.5V  
+3.3V/1.8V  
Adjustable Output Voltages  
Remote Sense (both outputs)  
Standby Function  
Over-Temperature Protection  
Soft-Start  
Internal Sequencing  
23-pin Excalibur™ Package  
Pin-Out Information  
Pin Function  
Ordering Information  
PT 6931o = +3.3 Volts  
Pin Function  
+2.5/1.8 Volts  
PT 6932o = +3.3 Volts  
+1.5/1.2 Volts  
PT 6933o = +3.3 Volts  
+1.8/1.2 Volts  
Standard Application  
1
2
Vo1 Sense  
No Connect  
STBY  
VIN  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
Vo1  
Vo2 Sense  
Vo1 Sense  
Vo1  
3
Vo1  
STBY  
4
Vo1 Adjust  
No Connect  
Vo2  
3
22  
1
Vo2  
Vo1  
18-21  
12-15  
5
VIN  
VIN  
4,5,6  
PT6930  
6
VIN  
7
GND  
GND  
GND  
GND  
GND  
Vo1  
Vo2  
+
PT Series Suffix  
(PT1234X)  
7-11  
16  
23  
C3  
+
C1  
8
Vo2  
Case/Pin  
Configuration  
C2  
9
Vo2  
GND  
GND  
Vertical Through-Hole  
Horizontal Through-Hole  
Horizontal Surface Mount  
N
A
C
10  
11  
12  
Vo2 Sense  
Vo2 Adjust*  
C1/C2 =Req’d 330µF electrolytic (See table footnotes)  
C3 =Optional 100µF electrolytic  
(For dimensions and PC board layout, see  
Package Styles 1320 and 1330).  
* Note:Vo1 & Vo2 Adjust can be pin-strapped to an  
alternative lower bus voltage. Consult the voltage  
adjustment application note for more information.  
Specifications  
PT6930 SERIES  
Characteristics  
(Ta= 25°C unless noted)  
Symbols  
Conditions  
Min  
Typ  
Max  
Units  
(1)  
(2)  
Output Current  
Io1, Io2  
Ta = +60°C, 200 LFM, pkg N  
Ta = +25°C, natural convection  
0.1A Io Ityp  
Vo1 =3.3V  
Vo2 =2.5V  
Vo2 =1.8V  
Vo2 =1.5V  
Vo1 =1.2V  
0.1  
5.5  
(2)  
(2)  
(2)  
(2)  
0
0
0
0
2.2  
1.75  
1.45  
1.2  
A
(1)  
(2)  
(2)  
(2)  
(2)  
(2)  
Vo1 =3.3V  
Vo2 =2.5V  
Vo2 =1.8V  
Vo2 =1.5V  
Vo1 =1.2V  
0.1  
0
6.0  
A
A
2.2  
0
1.75  
1.45  
1.2  
0
0
Input Voltage Range  
Vin  
4.5  
5.5  
V
V
Output Voltage Tolerance  
Vo  
Vin = +5V, Io =Ityp, both outputs  
Vo-0.1  
Vo+0.1  
0°C Ta +65°C  
Line Regulation  
Load Regulation  
Vo Ripple/Noise  
Regline  
Regload  
Vn  
4.5V Vin 5.5V, Io =Ityp  
Vin = +5V, 0.1 Io Ityp  
Vin = +5V, Io =Ityp  
Vo1  
Vo2  
7
7
17  
13  
V
Vo1  
Vo2  
17  
33  
10  
mV  
4
Vo1  
Vo2  
50  
25  
mV  
Transient Response  
with C2 = 330µF  
ttr  
Io step between 0.5xItyp and Ityp  
Vo over/undershoot  
25  
60  
60  
µSec  
mV  
Vos  
Vo1  
Vo2  
Efficiency  
η
Vin = +5V, Io =4A total  
75  
%
Switching Frequency  
ƒo  
4.5V Vin 5.5V  
0.1A Io Ityp  
600  
725  
475  
kHz  
(Continued)  
For technical support and more information, see inside back cover or visit www.ti.com  
PT6930 Series  
8-A 5V-Input Dual-Output  
Integrated Switching Regulator  
Specifications (From previous page)  
PT6930 SERIES  
Typ  
Characteristics  
(Ta= 25°C unless noted)  
Symbols  
Conditions  
Min  
Max  
Units  
Absolute Maximum  
Ta  
-40 (3)  
+85 (4)  
°C  
Operating Temperature Range  
Storage Temperature  
Weight  
Ts  
-40  
29  
+125  
°C  
Vertical/Horizontal  
grams  
Notes: (1) Iomin current of 0.1A can be divided btween both outputs; Vo1, or Vo2. The ISR will operate down to no-load with reduced specifications.  
(2) Iomax listed for each output assumes the maximum current drawn simultaneously on both outputs. Consult the factory for the absolute maximum.  
(3) For operating temperatures below 0°C, use tantalum type capacitors at both the input and output.  
(4) See Safe Operating Area curves for appropriate derating.  
Input/Output Capacitors: The PT6930 series requires a minimumm capacitance of 330µF at both the input and Vo1 output for proper operation in all applications. In addition,  
the input capacitor, C1, must be rated for a minimum of 1.0Arms ripple current. For transient or dynamic dynamic loads, additional capacitance may be required.  
T Y P I C A L  
C H A R A C T E R I S T I C S  
Safe Operating Area @VIN =5V (See Note B)  
PT6930 Series Performance (See Note A)  
PT6931 (Io2 fixed at 2.2A)  
Total Efficiency vs Io1; Io2 =Io2(max)  
90  
80  
70  
60  
50  
90.0  
80.0  
70.0  
60.0  
50.0  
40.0  
30.0  
20.0  
VOUT  
200LFM  
120LFM  
60LFM  
PT6931  
PT6932  
PT6933  
Nat conv  
0
1
2
3
4
5
6
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
Io1 (A) [ Io2 fixed at Io2(max) ]  
Io1 (A) [ Io2 fixed at 2.2A ]  
Vo1 Ripple vs Io1; Io2 =Io2(max)  
50  
40  
30  
20  
10  
0
PT6931  
PT6932  
PT6933  
0
1
2
3
4
5
6
Io1(A) [ Io2 fixed at Io2(max) ]  
Total Power Dissipation vs Io1; Io2 =Io2(max)  
7
6
5
4
3
2
1
0
PT6931  
PT6932  
PT6933  
0
1
2
3
4
5
6
Io1 (A) [ Io2 fixed at Io2(max) ]  
Note A: All characteristic data in the above graphs has been developed from actual products tested at 25°C. This data is considered typical data for the ISR.  
Note B: SOA curves represent operating conditions at which internal components are at or below the manufactuer’s maximum rated operating temperatures.  
For technical support and more information, see inside back cover or visit www.ti.com  
Application Notes  
PT6920/PT6930 Series  
Adjusting the Output Voltage of the PT6920 and  
PT6930 Dual Output Voltage ISRs  
5. If Vo1 is increased above 3.3V, the minimum input voltage  
to the ISR must also be increased. The minimum  
required input voltage must be (Vo1 + 1.2)V or 4.5V,  
whichever is greater. Do not exceed 5.5V  
Each output voltage from the PT6920 and PT6930 series  
of ISRs can be independantly adjusted higher or lower than  
the factory trimmed pre-set voltage. Vo1 or Vo2 may each  
be adjusted either up or down using a single external resis-  
6. Never connect capacitors to either the Vo1 Adjust or Vo2  
Adjust pins. Any capacitance added to these control pins  
will affect the stability of the respective regulated output.  
2
tor . Table 1 gives the adjustment range for both Vo1 and  
Vo2 for each model in the series as Va(min) and Va(max).  
7. Adjusting either voltage (Vo1 or Vo2) may increase the  
power dissipation in the regulator, and correspondingly  
change the maximum current available at either output.  
Consult the factory for application assistance.  
3
Note that Vo2 must always be lower than Vo1  
.
Vo1 Adjust Up: To increase the output, add a resistor R4  
2
between pin 16 (V1 Adjust) and pins 7-11 (GND) .  
The adjust up and adjust down resistor values can also be  
calculated using the following formulas. Be sure to select  
the correct formula parameter from Table 1 for the output  
and model being adjusted.  
Vo1 Adjust Down: Add a resistor (R3), between pin 16  
(Vo1 Adjust) and pin 1 (Vo1 Sense) .  
2
Vo2 Adjust Up: Add a resistor R2 between pin 23  
2
(Vo2 Adjust) and pins 7-11 (GND) .  
Ro (Va – Vr)  
Vo – Va  
(R1) or (R3)  
=
=
– Rs kΩ  
Vo2 Adjust Down: Add a resistor (R1) between pin 23  
2
(Vo2 Adjust) and pin 22 (Vo2 Sense) .  
Vr . Ro  
Va – Vo  
R2 or R4  
Where:  
– Rs  
kΩ  
Refer to Figure 1 and Table 2 for both the placement and value of  
the required resistor.  
Vo = Original output voltage, (Vo1 or Vo2)  
Va = Adjusted output voltage  
Vr = The reference voltage from Table 1  
Ro = The resistance value from Table 1  
Rs = The series resistance from Table 1  
Notes:  
1. The output voltages, Vo1 and Vo2, may be adjusted  
independantly.  
Table 1  
PT6920 ADJUSTMENT RANGE AND FORMULA PARAMETERS  
2. Use only a single 1% resistor in either the (R3) or R4  
location to adjust Vo1, and in the (R1) or R2 location to  
adjust Vo2. Place the resistor as close to the ISR as  
possible.  
Output Bus  
Series Pt #  
Vo1  
Vo2  
Standard Case  
Excalibur Case  
Adj. Resistor  
PT6921/22  
PT6931/32  
(R3)/R4  
PT6921  
PT6931  
(R1)/R2  
PT6922  
PT6932  
(R1)/R2  
PT6933  
(R1)/R2  
3. Vo2 must always be at least 0.2V lower than Vo1.  
4. Vo2 on both the PT6921 and PT6931 models may be  
adjusted from 2.5V to 1.8V by simply connecting pin  
22 (Vo2 Sense) to pin 23 (Vo2 Adjust). For more  
details, consult the data sheet.  
V (nom)  
o
3.3V  
2.3V  
3.6V  
1.02V  
12.1  
2.5V  
1.8V  
3.0V  
1.0V  
10.0  
1.5V  
1.2V  
3.0V  
1.0V  
9.76  
6.49  
1.8V  
1.2V  
3.0V  
1.0V  
10.0  
Va(min)  
Va(max)  
Vr  
R
R
(k)  
(k)  
o
s
12.1  
11.5  
3.32  
Figure 1  
22  
V2(sns)  
1
V1(sns)  
18  
12  
-
-
21  
15  
V2out  
V2o  
V1o  
4,5,6  
Vin  
Vin  
PT6920  
V1out  
GND  
7
Vo2(adj) Vo1(adj)  
23 16  
STBY  
3
- 11  
(R3)  
(R1)  
R2  
Adj Down  
L
O
A
D
L
O
A
D
+
+
+
C1  
C2  
C3  
R4  
Adjust Up  
COM  
CO  
Adjust V1out  
Adjust V2out  
For technical support and more information, see inside back cover or visit www.ti.com  
Application Notes continued  
PT6920/PT6930 Series  
Table 2  
PT6920/PT6930 ADJUSTMENT RESISTOR VALUES  
Output Bus  
Vo1  
Vo2  
Series Pt#  
StandardCase PT6921/6922  
ExcaliburCase PT6931/6932  
PT6921  
PT6931  
(R1)/R2  
2.5Vdc  
PT6922  
PT6932  
(R1)/R2  
1.5Vdc  
PT6933  
(R1)/R2  
1.8Vdc  
Adj Resistor  
Vo(nom)  
(R3)/R4  
3.3Vdc  
V (req’d)  
a
1.2  
(0.0)kΩ  
(3.3)kΩ  
(0.0)kΩ  
(1.2)kΩ  
1.25  
1.3  
(8.2)kΩ  
(2.7)kΩ  
1.35  
1.4  
(16.3)kΩ  
(32.6)kΩ  
(81.4)kΩ  
(4.5)kΩ  
(6.7)kΩ  
1.45  
1.5  
(9.5)kΩ  
(13.3)kΩ  
(18.7)kΩ  
(26.7)kΩ  
(40.0)kΩ  
(66.7)kΩ  
(147.0)kΩ  
1.55  
1.6  
189.0kΩ  
91.1kΩ  
58.6kΩ  
42.3kΩ  
32.6kΩ  
26.0kΩ  
21.4kΩ  
17.9kΩ  
15.2kΩ  
13.0kΩ  
11.3kΩ  
9.8kΩ  
8.5kΩ  
7.5kΩ  
6.5kΩ  
5.7kΩ  
5.0kΩ  
4.4kΩ  
3.8kΩ  
3.3kΩ  
2.8kΩ  
2.4kΩ  
2.0kΩ  
1.6kΩ  
1.3kΩ  
1.0kΩ  
0.7kΩ  
0.5kΩ  
0.2kΩ  
0.0kΩ  
1.65  
1.7  
1.75  
1.8  
(0.0)kΩ  
(1.6)kΩ  
1.85  
1.9  
197.0kΩ  
96.7kΩ  
63.3kΩ  
46.7kΩ  
36.7kΩ  
30.0kΩ  
25.3kΩ  
21.7kΩ  
18.9kΩ  
16.7kΩ  
14.9kΩ  
13.3kΩ  
12.1kΩ  
11.0kΩ  
10.0kΩ  
9.2kΩ  
(3.5)kΩ  
1.95  
2.0  
(5.8)kΩ  
(8.5)kΩ  
2.05  
2.1  
(11.8)kΩ  
(16.0)kΩ  
(21.4)kΩ  
(28.5)kΩ  
(38.5)kΩ  
(53.5)kΩ  
(78.5)kΩ  
(129.0)kΩ  
(279.0)kΩ  
2.15  
2.2  
2.25  
2.3  
(3.4)kΩ  
(4.8)kΩ  
2.35  
2.4  
(6.5)kΩ  
2.45  
2.5  
(8.3)kΩ  
(10.3)kΩ  
(12.6)kΩ  
(15.2)kΩ  
(18.2)kΩ  
(21.8)kSee Note 3  
(26.0)kΩ  
(31.0)kΩ  
(37.1)kΩ  
(44.8)kΩ  
(54.6)kΩ  
(67.8)kΩ  
(86.2)kΩ  
(114.0)kΩ  
(160.0)kΩ  
(252.0)kΩ  
(528.0)kΩ  
2.55  
2.6  
189.0kΩ  
88.5kΩ  
55.2kΩ  
38.5kΩ  
28.5kΩ  
21.8kΩ  
17.1kΩ  
13.5kΩ  
10.7kΩ  
8.5kΩ  
2.65  
2.7  
8.4kΩ  
7.8kΩ  
2.75  
2.8  
7.2kΩ  
6.7kΩ  
2.85  
2.9  
6.2kΩ  
5.8kΩ  
2.95  
3.0  
5.4kΩ  
5.0kΩ  
3.05  
3.1  
3.15  
3.2  
3.25  
3.3  
3.4  
111.0kSee Note 5  
49.6kΩ  
3.5  
3.6  
29.0kΩ  
R1/R3 = (Blue)  
R2/R4 = Black  
For technical support and more information, see inside back cover or visit www.ti.com  
Application Notes  
PT6920/PT6930 Series  
Figure 1  
Using the Standby Function on the PT6920 and  
PT6930 Dual Output Voltage Converters  
22  
V2(sns)  
1
Both output voltages of the 23-pin PT6920/6930 dual  
output converter may be disabled using the regulators  
standby function. This function may be used in applications  
that require power-up/shutdown sequencing, or wherever  
there is a requirement to control the output voltage On/  
Off status with external circuitry.  
V1(sns)  
18  
12  
-
-
21  
15  
V2out  
V2out  
V1out  
4,5,6  
Vin  
Vin  
PT6921  
V1out  
GND  
7
Vo2(adj) V01(adj)  
23 16  
STBY  
3
- 11  
+
C1  
+
+
C2  
C3  
The standby function is provided by the STBY* control  
(pin 3). If pin 3 is left open-circuit the regulator operates  
normally, and provides a regulated output at both Vo1  
(pins 12–15) and Vo2 (pins 18–21) whenever a valid supply  
voltage is applied to Vin (pins 4, 5, & 6) with respect to  
COM  
COM  
Q1  
BSS138  
Inhibit  
+5V V in  
2
GND (pins 7–11). If a low voltage is then applied to pin 3,  
both regulator outputs will be simultaneously disabled and  
the input current drawn by the ISR will typcially drop to  
less than 30mA (50mA max). The standby control may also  
be used to hold-off both regulator outputs during the pe-  
riod that input power is applied.  
Turn-On Time: Turning Q1 in Figure 1 off removes the low-  
voltage signal at pin 3 and enables both outputs from the  
PT6920/6930 regulator. Following a delay of about 10–20ms,  
Vo1 and Vo2 rise together until the lower voltage, Vo2,  
reaches its set output. Vo1 then continues to rise until both  
outputs reach full regulation voltage. The total power-up  
time is less than 25ms, and is relatively independant of load,  
temperature, and output capacitance. Figure 2 shows wave-  
forms of the output voltages Vo1 and Vo2, for a PT6931  
(3.3V/2.5V). The turn-off of Q1 corresponds to the rise in  
Vstby. The waveforms were measured with a 5Vdc input  
voltage, and with resistive loads of 5A and 2A at the Vo1  
and Vo2 outputs respectively.  
The standby pin is ideally controlled using an open-collector  
(or open-drain) discrete transistor (See Figure 1). It may  
3
also be driven directly from a dedicated TTL compatible  
gate. Table 1 provides details of the threshold requirements.  
2,3  
Table 1 Inhibit Control Thresholds  
Parameter  
Min  
Max  
Enable (V )  
IH  
1.8V  
Vin  
Disable (V )  
IL  
–0.1V  
0.8V  
Notes:  
1. The Standby/Inhibit control logic is similar for all  
Power Trends’ modules, but the flexibility and  
threshold tolerances will be different. For specific  
information on this function for other regulator  
models, consult the applicable application note.  
Figure 2  
Vo1 (3.3V)  
Vo2 (2.5V)  
2. The Standby control pin is ideally controlled using an  
open-collector (or open-drain) discrete transistor and  
requires no external pull-up resistor. To disable the  
regulator output, the control pin must be pulled to  
less than 0.8Vdc with a low-level 0.5mA sink to  
ground.  
3. The Standby input on the PT6920/6930 series may  
be driven by a differential output device, making it  
directly compatible with TTL logic. The control  
input has an internal pull-up to the input voltage Vin.  
A voltage of 1.8V or greater ensures that the  
Vstby  
Ch1 1V/Div  
Timebase: 5ms/Div  
Ch2 1V/Div  
Ch3 5V/Div  
regulator is enabled. Do not use devices that can drive  
the Standby control input above 5.5V or Vin.  
For technical support and more information, see inside back cover or visit www.ti.com  
Application Notes continued  
PT6920/PT6930Series  
Capacitor Recommendations for the Dual-Output  
PT6920/30 Regulator Series  
Tantalum Capacitors  
Input Capacitors:  
Tantalum type capacitors can be used for the output but only  
the AVX TPS series, Sprague 593D/594/595 series or Kemet  
T495/T510 series. The AVX TPS series, Kemet or Sprague  
series tantalums are recommended over many other types  
due to their higher rated surge, power dissipation, and ripple  
current capability. As a caution the TAJ series by AVX is not  
recommended. This series has considerably higher ESR,  
reduced power dissipation and lower ripple current capability.  
The TAJ Series is a less reliable when compared to the AVX  
TPS series when determining power dissipation capability.  
Tantalum types are recommended for applications where  
ambient temperatures fall below 0°C.  
The recommended input capacitance is determined by 1.0  
ampere minimum ripple current rating and 330µF minimum  
capacitance (300µF for Oscon® or low ESR tantalum).  
Ripple current and <100mequivalent series resistance  
(ESR) values are the major considerations, along with tem-  
perature, when designing with different types of capacitors.  
Tantalum capacitors have a recommended minimum voltage  
rating of 2 × the maximum DC voltage + AC ripple. This is  
necessary to insure reliability for input voltage bus applica-  
tions.  
Output Capacitors: C2(Required), C3(Optional)  
The ESR of the required capacitor (C2) must not be greater  
than 150m. Electrolytic capacitors have poor ripple per-  
formance at frequencies greater than 400kHz but excellent  
low frequency transient response. Above the ripple fre-  
quency, ceramic capacitors are necessary to improve the  
transient response and reduce any high frequency noise  
components apparent during higher current excursions.  
Preferred low ESR type capacitor part numbers are identified  
in Table 1. The optional 100µF capacitor (C3) for Vo2 can  
have an ESR of up to 200mfor optimum performance  
and ripple reduction. (Note: Vendor part numbers for the  
optional capacitor, C3, are not identified in the table. Use the  
same series selected for C2)  
Capacitor Table  
Table 1 identifies the characteristics of capacitors from a  
number of vendors with acceptable ESR and ripple current  
(rms) ratings. The number of capacitors required at both the  
input and output buses is identified for each capacitor type.  
This is not an extensive capacitor list. Capacitors from other  
vendors are available with comparable specifications. Those listed  
are for guidance. The RMS ripple current rating and ESR  
(Equivalent Series Resistance at 100kHz) are critical parameters  
necessary to insure both optimum regulator performance and  
long capacitor life.  
Table 1: Input/Output Capacitors  
Capacitor  
Vendor/  
Capacitor Characteristics  
Quantity  
Component  
Series  
Working  
Voltage  
85°C Maximum  
Ripple  
Current(Irms)  
(ESR) Equivalent  
Series Resistance  
Physical  
Size(mm)  
Input  
Bus  
Output  
Bus  
Value(µF)  
Vendor Number  
Panasonic  
FC  
25V  
35V  
35V  
560µF  
390µF  
330µF  
0.0065W  
0.065W  
0.117W  
1205mA  
1205mA  
555mA  
12.5x15  
12.5x15  
8x11.5  
1
2
(a)  
1
1
1
EEUFC1E561S  
EEUFC1V391S  
EEUFC1C331  
United  
Chemi -con  
LXV/FS/  
LXZ  
16V  
35V  
10V  
20V  
330µF  
470µF  
330µF  
150µF  
0.120W  
0.052W  
0.025W  
0.030/2W  
555mA  
1220mA  
3500mA  
3200mA  
8x12  
(a)  
1
1
LXZ16VB331M8X12LL  
LXZ35VB471M10X20LL  
10FS330M  
10x20  
1
10x10.5  
10x10.5  
1
(N/R)  
(N/R)  
2
20FS150M  
Nichicon  
PL  
PM  
35V  
35V  
50V  
560µF  
330µF  
470µF  
0.048W  
0.065/2W  
0.046W  
1360mA  
1020mA  
1470mA  
16x15  
12.5x15  
18x15  
1
1
1
1
1
1
UPL1V561MHH6  
UPL1V331MHH6  
UPM1H4711MHH6  
Panasonic  
FC  
Surface Mtg  
10V  
35V  
16V  
1000µF  
330µF  
330µF  
0.043W  
0.065W  
0.150W  
1205mA  
1205mA  
670mA  
12x16.5  
12.5x16  
10x10.2  
1
1
(a)  
1
1
1
EEVFC1A102LQ  
EEVFC1V331LQ  
EEVFC1C331P  
10V  
10V  
20V  
330µF  
330µF  
150µF  
0.025W  
0.025W  
0.024/2W  
>3500mA  
>3800mA  
3600mA  
10.0x10.5  
10.3x10.3  
10.3x10.3  
1
1
2
(N/R)  
(N/R)  
(N/R)  
10SS330M  
10SV300M  
Oscon- SS  
SV  
20SV150M  
SV= Surface Mount  
AVX  
Tantalum  
TPS  
10V  
10V  
10V  
330µF  
330µF  
220µF  
0.100/2W  
0.100/2W  
0.095W  
>2500mA  
>3000mA  
>2000mA  
7.3Lx  
4.3Wx  
4.1H  
2
2
2
1
1
2
TPSV337M010R0100  
TPSV337M010R0060  
TPSV227M0105R0100  
Kemet  
T510  
T495  
10V  
10V  
330µF  
220µF  
0.033W  
0.070W/2=0.035W  
1400mA  
>2000mA  
7.3Lx5.7W  
x 4.0H  
2
2
1
2
T510X337M010AS  
T495X227M010AS  
7.3Lx  
6.0Wx  
4.1H  
Sprague  
594D  
10V  
10V  
330µF  
220µF  
0.0450W  
0.065W  
2350mA  
>2000mA  
2
2
1
2
4D337X0010R2T  
594D227X0010D2T  
(a) -Not recommended. The maximum ripple current rating of these capacitors does not meet the operating limits.  
(N/R) -Oscon Type Capcitors are not recommended for this application due to extremely low equivatlent series resistance (ESR)  
For technical support and more information, see inside back cover or visit www.ti.com  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its products to the specifications applicable at the time of sale in accordance with  
TI’sstandardwarranty. TestingandotherqualitycontroltechniquesareutilizedtotheextentTIdeemsnecessary  
to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except  
those mandated by government requirements.  
Customers are responsible for their applications using TI components.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
products or services might be or are used. TI’s publication of information regarding any third party’s products  
or services does not constitute TI’s approval, license, warranty or endorsement thereof.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation  
or reproduction of this information with alteration voids all warranties provided for an associated TI product or  
service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.  
Resale of TI’s products or services with statements different from or beyond the parameters stated by TI for  
that product or service voids all express and any implied warranties for the associated TI product or service,  
is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.  
Also see: Standard Terms and Conditions of Sale for Semiconductor Products. www.ti.com/sc/docs/stdterms.htm  
Mailing Address:  
Texas Instruments  
Post Office Box 655303  
Dallas, Texas 75265  
Copyright 2001, Texas Instruments Incorporated  

相关型号:

PT6933C

Analog IC
TI

PT6933N

Analog IC
TI

PT6935

11-A 5V/3.3V-Input Dual Output Integrated Switching Regulator
TI

PT6935A

Analog IC
TI

PT6935C

Analog IC
TI

PT6935N

Analog IC
TI

PT6936

11-A 5V/3.3V-Input Dual Output Integrated Switching Regulator
TI

PT6936A

Analog IC
TI

PT6936C

Analog IC
TI

PT6936N

Analog IC
TI

PT6937

11-A 5V/3.3V-Input Dual Output Integrated Switching Regulator
TI

PT6937

White LED Step-Up Converter
PTC