PGA112AIDGSTG4 [TI]

Zerø-Drift PROGRAMMABLE GAIN AMPLIFIER with MUX; 零漂移可编程增益放大器与MUX
PGA112AIDGSTG4
型号: PGA112AIDGSTG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Zerø-Drift PROGRAMMABLE GAIN AMPLIFIER with MUX
零漂移可编程增益放大器与MUX

放大器
文件: 总47页 (文件大小:1542K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PGA112, PGA113  
PGA116, PGA117  
www.ti.com ............................................................................................................................................ SBOS424BMARCH 2008REVISED SEPTEMBER 2008  
Zerø-Drift  
PROGRAMMABLE GAIN AMPLIFIER with MUX  
1
FEATURES  
APPLICATIONS  
Remote e-Meter Reading  
Automatic Gain Control  
23  
Rail-to-Rail Input/Output  
Offset: 25µV (typ), 100µV (max)  
Zerø Drift: 0.35µV/°C (typ), 1.2µV/°C (max)  
Low Noise: 12nV/Hz  
Portable Data Acquisition  
PC-Based Signal Acquisition Systems  
Test and Measurement  
Programmable Logic Controllers  
Battery-Powered Instruments  
Handheld Test Equipment  
Input Offset Current: ±5nA max (+25°C)  
Gain Error: 0.1% max (G 32),  
0.3% max (G > 32)  
Binary Gains: 1, 2, 4, 8, 16, 32, 64, 128  
(PGA112, PGA116)  
DESCRIPTION  
Scope Gains: 1, 2, 5, 10, 20, 50, 100, 200  
(PGA113, PGA117)  
The PGA112 and PGA113 (binary/scope gains) offer  
two analog inputs, a three-pin SPI interface, and  
software shutdown in an MSOP-10 package. The  
PGA116 and PGA117 (binary/scope gains) offer 10  
Gain Switching Time: 200ns  
Two Channel MUX: PGA112, PGA113  
10 Channel MUX: PGA116, PGA117  
analog inputs,  
a
four-pin SPI interface with  
daisy-chain capability, and hardware and software  
shutdown in a TSSOP-20 package.  
Four Internal Calibration Channels  
Amplifier Optimized for Driving CDAC ADCs  
Output Swing: 50mV to Supply Rails  
AVDD and DVDD for Mixed Voltage Systems  
IQ = 1.1mA (typ)  
All versions provide internal calibration channels for  
system-level calibration. The channels are tied to  
GND, 0.9VCAL, 0.1VCAL, and VREF, respectively. VCAL  
,
an external voltage connected to Channel 0, is used  
as the system calibration reference. Binary gains are:  
1, 2, 4, 8, 16, 32, 64, and 128; scope gains are: 1, 2,  
5, 10, 20, 50, 100, and 200.  
Software/Hardware Shutdown: IQ 4µA (typ)  
Temperature Range: –40°C to +125°C  
SPI™ Interface (10MHz) with Daisy-Chain  
Capability  
+3V  
+5V  
CBYPASS  
CBYPASS  
CBYPASS  
0.1mF  
0.1mF  
0.1mF  
AVDD  
1
DVDD  
10  
MSP430  
PGA112  
Microcontroller  
ADC  
PGA113  
3
2
MUX  
VCAL/CH0  
CH1  
5
VOUT  
Output  
Stage  
CAL1  
10kW  
80kW  
RF  
G = 1  
0.9VCAL  
0.1VCAL  
CAL2  
CAL3  
CAL4  
VREF  
RI  
7
8
9
SCLK  
DIO  
CS  
SPI  
Interface  
CAL2/3  
10kW  
6
4
GND  
VREF  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
3
SPI is a trademark of Motorola.  
All other trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2008, Texas Instruments Incorporated  
PGA112, PGA113  
PGA116, PGA117  
SBOS424BMARCH 2008REVISED SEPTEMBER 2008 ............................................................................................................................................ www.ti.com  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
PACKAGE AND MODEL COMPARISON  
SHUTDOWN  
# OF MUX  
INPUTS  
GAINS  
(Eight Each)  
SPI  
DEVICE  
PGA112  
PGA113  
PGA116  
PGA117  
DAISY-CHAIN  
HARDWARE  
SOFTWARE  
PACKAGE  
MSOP-10  
MSOP-10  
TSSOP-20  
TSSOP-20  
Two  
Two  
10  
Binary  
Scope  
Binary  
Scope  
No  
No  
ü
No  
No  
ü
ü
ü
ü
ü
10  
ü
ü
ORDERING INFORMATION(1)  
DESCRIPTION  
PACKAGE  
PACKAGE  
PRODUCT  
PGA112  
PGA113  
PGA116  
PGA117  
(Gains/Channels)  
Binary(2)/2 Channels  
Scope(3)/2 Channels  
Binary(2)/10 Channels  
Scope(3)/10 Channels  
PACKAGE-LEAD  
MSOP-10  
DESIGNATOR  
MARKING  
DGS  
DGS  
PW  
P112  
MSOP-10  
P113  
TSSOP-20  
TSSOP-20  
PGA116  
PGA117  
PW  
(1) For the most current package and ordering information see the Package Option Addendum at the end of this document, or see the TI  
web site at www.ti.com.  
(2) Binary gains: 1, 2, 4, 8, 16, 32, 64, and 128.  
(3) Scope gains: 1, 2, 5, 10, 20, 50, 100, and 200.  
ABSOLUTE MAXIMUM RATINGS(1)  
Over operating free-air temperature range, unless otherwise noted.  
PGA112, PGA113, PGA116, PGA117  
UNIT  
V
Supply Voltage  
+7  
Signal Input Terminals, Voltage(2)  
Signal Input Terminals, Current(2)  
Output Short-Circuit  
GND – 0.5 to (AVDD) + 0.5  
V
±10  
Continuous  
–40 to +125  
–65 to +150  
+150  
mA  
Operating Temperature  
Storage Temperature  
°C  
°C  
°C  
V
Junction Temperature  
Human Body Model (HBM)  
3000  
ESD Ratings:  
Charged Device Model (CDM)  
Machine Model (MM)  
1000  
V
300  
V
(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may  
degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond  
those specified is not implied.  
(2) Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5V beyond the supply rails should  
be current limited to 10mA or less.  
2
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117  
PGA112, PGA113  
PGA116, PGA117  
www.ti.com ............................................................................................................................................ SBOS424BMARCH 2008REVISED SEPTEMBER 2008  
ELECTRICAL CHARACTERISTICS: VS = AVDD = DVDD = +5V  
Boldface limits apply over the specified temperature range, TA = –40°C to +125°C.  
At TA = +25°C, RL = 10k//CL = 100pF connected to DVDD/2, and VREF = GND, unless otherwise noted.  
PGA112, PGA113, PGA116, PGA117  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
Input Offset Voltage  
VOS  
AVDD = DVDD = +5V, VREF = VIN = AVDD/2, VCM = 2.5V  
AVDD = DVDD = +5V, VREF = VIN = AVDD/2, VCM = 4.5V  
AVDD = DVDD = +5V, VCM = 2.5V  
±25  
±75  
0.35  
0.15  
0.6  
±100  
±325  
1.2  
µV  
µV  
vs Temperature, –40°C to +125°C  
vs Temperature, –40°C to +85°C  
vs Temperature, –40°C to +125°C  
vs Temperature, –40°C to +85°C  
dVOS/dT  
µV/°C  
µV/°C  
µV/°C  
µV/°C  
AVDD = DVDD = +5V, VCM = 2.5V  
0.9  
AVDD = DVDD = +5V, VCM = 4.5V  
1.8  
AVDD = DVDD = +5V, VCM = 4.5V  
0.3  
1.3  
AVDD = DVDD = +2.2V to +5.5V, VCM = 0.5V,  
VREF = VIN = AVDD/2  
vs Power Supply  
PSRR  
5
20  
µV/V  
µV/V  
AVDD = DVDD = +2.2V to +5.5V, VCM = 0.5V,  
VREF = VIN = AVDD/2  
Over Temperature, –40°C to +125°C  
5
40  
INPUT ON-CHANNEL CURRENT  
Input On-Channel Current (Ch0, Ch1)  
Over Temperature, –40°C to +125°C  
INPUT VOLTAGE RANGE  
Input Voltage Range(1)  
IIN  
VREF = VIN = AVDD/2  
±1.5  
±5  
nA  
VREF = VIN = AVDD/2  
See Typical Characteristics  
nA  
IVR  
GND – 0.1  
AVDD + 0.1  
AVDD + 0.3  
V
V
Overvoltage Input Range  
INPUT IMPEDANCE (Channel On)(3)  
Channel Input Capacitance  
Channel Switch Resistance  
Amplifier Input Capacitance  
Amplifier Input Resistance  
VCAL/CH0  
No Output Phase Reversal(2)  
GND – 0.3  
CCH  
RSW  
CAMP  
RAMP  
RIN  
2
pF  
150  
3
pF  
G  
kΩ  
Input Resistance to GND  
CAL1 or CAL2 Selected  
10  
100  
GAIN SELECTIONS  
Nominal Gains  
Binary gains: 1, 2, 4, 8, 16, 32, 64, 128  
Scope gains: 1, 2, 5, 10, 20, 50, 100, 200  
VOUT = GND + 85mV to DVDD – 85mV  
VOUT = GND + 85mV to DVDD – 85mV  
VOUT = GND + 85mV to DVDD – 85mV  
VOUT = GND + 85mV to DVDD – 85mV  
VOUT = GND + 85mV to DVDD – 85mV  
VOUT = GND + 85mV to DVDD – 85mV  
1
1
128  
200  
0.1  
0.1  
0.3  
DC Gain Error  
G = 1  
1 < G 32  
G 50  
0.006  
%
%
%
DC Gain Drift  
G = 1  
0.5  
2
ppm/°C  
ppm/°C  
ppm/°C  
1 < G 32  
G 50  
6
Op Amp + Input = 0.9VCAL  
VREF = VCAL = AVDD/2, G = 1  
,
CAL2 DC Gain Error(4)  
CAL2 DC Gain Drift(4)  
CAL3 DC Gain Error(4)  
CAL3 DC Gain Drift(4)  
0.02  
2
%
Op Amp + Input = 0.9VCAL  
VREF = VCAL = AVDD/2, G = 1  
,
ppm/°C  
%
Op Amp + Input = 0.1VCAL  
,
0.02  
2
VREF = VCAL = AVDD/2, G = 1  
Op Amp + Input = 0.1VCAL  
VREF = VCAL = AVDD/2, G = 1  
,
ppm/°C  
INPUT IMPEDANCE (Channel Off)(3)  
Input Impedance  
CCH  
See Figure 1  
2
pF  
nA  
INPUT OFF-CHANNEL CURRENT  
VREF = GND, VOFF-CHANNEL = AVDD/2,  
VON-CHANNEL = AVDD/2 – 0.1V  
Input Off-Channel Current (Ch0, Ch1)(5)  
ILKG  
±0.05  
±1  
VREF = GND, VOFF-CHANNEL = AVDD/2,  
VON-CHANNEL = AVDD/2 – 0.1V  
Over Temperature, –40°C to +125°C  
See Typical Characteristics  
Channel-to-Channel Crosstalk  
130  
dB  
(1) Gain error is a function of the input voltage. Gain error outside of the range (GND + 85mV VOUT DVDD – 85mV) increases to 0.5%  
(typical).  
(2) Input voltages beyond this range must be current limited to < |10mA| through the input protection diodes on each channel to prevent  
permanent destruction of the device.  
(3) See Figure 1.  
(4) Total VOUT error must be computed using input offset voltage error multiplied by gain. Includes op amp G = 1 error.  
(5) Maximum specification limitation limited by final test time and capability.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117  
PGA112, PGA113  
PGA116, PGA117  
SBOS424BMARCH 2008REVISED SEPTEMBER 2008 ............................................................................................................................................ www.ti.com  
ELECTRICAL CHARACTERISTICS: VS = AVDD = DVDD = +5V (continued)  
Boldface limits apply over the specified temperature range, TA = –40°C to +125°C.  
At TA = +25°C, RL = 10k//CL = 100pF connected to DVDD/2, and VREF = GND, unless otherwise noted.  
PGA112, PGA113, PGA116, PGA117  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTPUT  
(6)  
Voltage Output Swing from Rail  
IOUT = ±0.25mA, AVDD DVDD  
GND + 0.05  
GND + 0.25  
DVDD – 0.05  
DVDD – 0.25  
V
V
(6)  
IOUT = ±5mA, AVDD DVDD  
DC Output Nonlinearity  
Short-Circuit Current  
Capacitive Load Drive  
NOISE  
VOUT = GND + 85mV to DVDD – 85mV(7)  
0.0015  
%FSR  
mA  
ISC  
–30/+60  
CLOAD  
See Typical Characteristics  
Input Voltage Noise Density  
en  
en  
In  
f > 10kHz, CL = 100pF, VS = 5V  
f > 10kHz, CL = 100pF, VS = 2.2V  
f = 0.1Hz to 10Hz, CL = 100pF, VS = 5V  
f = 0.1Hz to 10Hz, CL = 100pF, VS = 2.2V  
f = 10kHz, CL = 100pF  
12  
22  
nV/Hz  
nV/Hz  
µVPP  
Input Voltage Noise  
0.362  
0.736  
400  
µVPP  
Input Current Density  
SLEW RATE  
fA/Hz  
Slew Rate  
SR  
tS  
See Table 1  
See Table 1  
See Table 1  
V/µs  
µs  
SETTLING TIME  
Settling Time  
FREQUENCY RESPONSE  
Frequency Response  
THD + NOISE  
MHz  
G = 1, f = 1kHz, VOUT = 4VPP at 2.5VDC, CL = 100pF  
G = 10, f = 1kHz, VOUT = 4VPP at 2.5VDC, CL = 100pF  
G = 50, f = 1kHz, VOUT = 4VPP at 2.5VDC, CL = 100pF  
G = 128, f = 1kHz, VOUT = 4VPP at 2.5VDC, CL = 100pF  
G = 200, f = 1kHz, VOUT = 4VPP at 2.5VDC, CL = 100pF  
G = 1, f = 20kHz, VOUT = 4VPP at 2.5VDC, CL = 100pF  
G = 10, f = 20kHz, VOUT = 4VPP at 2.5VDC, CL = 100pF  
G = 50, f = 20kHz, VOUT = 4VPP at 2.5VDC, CL = 100pF  
G = 128, f = 20kHz, VOUT = 4VPP at 2.5VDC, CL = 100pF  
G = 200, f = 20kHz, VOUT = 4VPP at 2.5VDC, CL = 100pF  
0.003  
0.005  
0.03  
0.08  
0.1  
%
%
%
%
%
%
%
%
%
%
0.02  
0.01  
0.03  
0.08  
0.11  
POWER SUPPLY  
Operating Voltage Range(6)  
AVDD  
DVDD  
IQA  
2.2  
2.2  
5.5  
5.5  
V
V
Quiescent Current Analog  
IO = 0, G = 1, VOUT = VREF  
0.33  
0.75  
0.45  
0.45  
mA  
mA  
Over Temperature, –40°C to +125°C  
IO = 0, G = 1, VOUT = VREF, SCLK at 10MHz,  
CS = Logic 0, DIO or DIN = Logic 0  
Quiescent Current Digital(8)(9)(10)  
IQD  
1.2  
mA  
IO = 0, G = 1, VOUT = VREF, SCLK at 10MHz,  
CS = Logic 0, DIO or DIN = Logic 0  
Over Temperature, –40°C to +125°C(8)(9)(10)  
1.2  
mA  
µA  
Shutdown Current Analog + Digital(8)(9)  
ISDA + ISDD  
IO = 0, VOUT = VREF, G = 1, SCLK Idle  
4
IO = 0, VOUT = 0, G = 1, SCLK at 10MHz,  
CS = Logic 0, DIO or DIN = Logic 0  
245  
µA  
POWER-ON RESET (POR)  
Digital interface disabled and Command Register set to POR  
values for DVDD < POR Trip Voltage  
POR Trip Voltage  
1.6  
V
(6) When AVDD is less than DVDD, the output is clamped to AVDD + 300mV.  
(7) Measurement limited by noise in test equipment and test time.  
(8) Does not include current into or out of the VREF pin. Internal RF and RI are always connected between VOUT and VREF  
(9) Digital logic levels: DIO or DIN = logic 0. 10µA internal pull-down current source.  
(10) Includes current from op amp output structure.  
.
4
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117  
PGA112, PGA113  
PGA116, PGA117  
www.ti.com ............................................................................................................................................ SBOS424BMARCH 2008REVISED SEPTEMBER 2008  
ELECTRICAL CHARACTERISTICS: VS = AVDD = DVDD = +5V (continued)  
Boldface limits apply over the specified temperature range, TA = –40°C to +125°C.  
At TA = +25°C, RL = 10k//CL = 100pF connected to DVDD/2, and VREF = GND, unless otherwise noted.  
PGA112, PGA113, PGA116, PGA117  
PARAMETER  
TEMPERATURE RANGE  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Specified Range  
–40  
–40  
+125  
+125  
°C  
°C  
Operating Range  
Thermal Resistance  
MSOP-10  
θJA  
164  
°C/W  
DIGITAL INPUTS (SCLK, CS, DIO, DIN)  
Logic Low  
0
0.3DVDD  
+1  
V
µA  
µA  
V
Input Leakage Current (SCLK and CS only)  
Weak Pull-Down Current (DIO, DIN only)  
Logic High  
–1  
10  
0.7DVDD  
DVDD  
Hysteresis  
700  
mV  
DIGITAL OUTPUT (DIO, DOUT)  
Logic High  
IOH = –3mA (sourcing)  
IOL = +3mA (sinking)  
DVDD – 0.4  
GND  
DVDD  
V
V
Logic Low  
GND + 0.4  
CHANNEL AND GAIN TIMING  
Channel Select Time  
Gain Select Time  
0.2  
0.2  
µs  
µs  
SHUTDOWN MODE TIMING  
Enable Time  
4.0  
2.0  
µs  
µs  
VOUT goes high-impedance, RF and RI remain connected  
between VOUT and VREF  
Disable Time  
POWER-ON-RESET (POR) TIMING  
POR Power-Up Time  
DVDD 2V  
40  
5
µs  
µs  
POR Power-Down Time  
DVDD 1.5V  
Table 1. Frequency Response versus Gain (CL = 100pF, RL= 10k)  
0.1%  
0.01%  
0.1%  
0.01%  
TYPICAL  
–3dB  
FREQUENCY  
(MHz)  
SLEW  
RATE-  
FALL  
SLEW  
RATE-  
RISE  
SETTLING SETTLING  
TYPICAL  
–3dB  
FREQUENCY  
(MHz)  
SLEW  
RATE-  
FALL  
SLEW  
RATE-  
RISE  
SETTLING SETTLING  
TIME:  
4VPP  
(µs)  
TIME:  
4VPP  
(µs)  
SCOPE  
GAIN  
(V/V)  
TIME:  
4VPP  
(µs)  
TIME:  
4VPP  
(µs)  
BINARY  
GAIN (V/V)  
(V/µs)  
(V/µs)  
(V/µs)  
(V/µs)  
1
2
10  
3.8  
2
8
3
2
2
2.55  
2.6  
2.6  
2.6  
2.6  
3
1
2
10  
3.8  
8
9
3
2
2.55  
2.6  
2.6  
2.6  
2.8  
3.8  
7
9
6.4  
6.4  
10.6  
10.6  
9.1  
7.1  
3.5  
2
2
4
12.8  
12.8  
12.8  
12.8  
4
10.6  
10.6  
12.8  
13.3  
3.5  
2
5
1.8  
12.8  
12.8  
12.8  
9.1  
4
2
8
1.8  
1.6  
1.8  
0.6  
0.35  
2
10  
20  
50  
100  
200  
1.8  
2.2  
2.3  
2.4  
4.4  
6.9  
16  
32  
64  
128  
2.3  
2.3  
3
1.3  
0.9  
6
0.38  
0.23  
2.5  
2.5  
4.8  
8
2.3  
10  
Mux  
Switch  
RSW  
CHx  
(Input)  
VOUT  
CCH  
Break-Before-Make  
CAMP  
RAMP  
RF  
RI  
VREF  
Figure 1. Equivalent Input Circuit  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117  
PGA112, PGA113  
PGA116, PGA117  
SBOS424BMARCH 2008REVISED SEPTEMBER 2008 ............................................................................................................................................ www.ti.com  
SPI TIMING: VS = AVDD = DVDD = +2.2V to +5V  
Boldface limits apply over the specified temperature range, TA = –40°C to +125°C.  
At TA = +25°C, RL = 10k//CL = 100pF connected to DVDD/2, and VREF = GND, unless otherwise noted.  
PGA112, PGA113,  
PGA116, PGA117  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Input Capacitance (SCLK, CS, and DIO pins)  
1
pF  
Input Rise/Fall Time(1)  
(CS, SCLK, and DIO pins)  
tRFI  
2
µs  
Output Rise/Fall Time (DIO pin)(1)  
CS High Time (CS pin)(1)  
SCLK Edge to CS Fall Setup Time(1)  
CS Fall to First SCLK Edge Setup Time  
SCLK Frequency(2)  
SCLK High Time(3)  
SCLK Low Time(3)  
SCLK Last Edge to CS Rise Setup Time(1)  
CS Rise to SCLK Edge Setup Time(1)  
DIN Setup Time  
tRFO  
tCSH  
tCSO  
tCSSC  
fSCLK  
tHI  
CLOAD = 60pF  
10  
ns  
ns  
40  
10  
10  
ns  
ns  
10  
MHz  
ns  
40  
40  
10  
10  
10  
10  
tLO  
ns  
tSCCS  
tCS1  
tSU  
ns  
ns  
ns  
DIN Hold Time  
tHD  
ns  
SCLK to DOUT Valid Propagation Delay(1)  
CS Rise to DOUT Forced to Hi-Z(1)  
tDO  
25  
20  
ns  
tSOZ  
ns  
(1) Ensured by design; not production tested.  
(2) When using devices in daisy-chain mode, the maximum clock frequency for SCLK is limited by SCLK rise/fall time, DIN setup time, and  
DOUT propagation delay. See Figure 63. Based on this limitation, the maximum SCLK frequency for daisy-chain mode is 9.09MHz.  
(3) tHI and tLO must not be less than 1/SCLK (max).  
6
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117  
PGA112, PGA113  
PGA116, PGA117  
www.ti.com ............................................................................................................................................ SBOS424BMARCH 2008REVISED SEPTEMBER 2008  
SPI TIMING DIAGRAMS  
tCSH  
CS  
tCSSC  
tSCCS tCS1  
tCS0  
tLO  
tHI  
SCLK  
1/fSCLK  
tSU  
tHD  
DIN  
tDO  
tSOZ  
Hi-Z  
Hi-Z  
DOUT  
Figure 2. SPI Mode 0, 0  
tCSH  
CS  
SCLK  
DIN  
tCSSC  
tSCCS tCS1  
tCS0  
tHI  
tLO  
1/fSCLK  
tSU  
tHD  
tDO  
tSOZ  
Hi-Z  
Hi-Z  
DOUT  
Figure 3. SPI Mode 1, 1  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117  
PGA112, PGA113  
PGA116, PGA117  
SBOS424BMARCH 2008REVISED SEPTEMBER 2008 ............................................................................................................................................ www.ti.com  
PIN CONFIGURATIONS  
MSOP-10  
DGS PACKAGE  
(TOP VIEW)  
AVDD  
CH1  
1
2
3
4
5
10 DVDD  
9
8
7
6
CS  
PGA112  
PGA113  
VCAL/CH0  
VREF  
DIO  
SCLK  
GND  
VOUT  
PGA112, PGA113 TERMINAL FUNCTIONS  
MSOP  
PACKAGE  
PIN #  
NAME  
AVDD  
CH1  
DESCRIPTION  
1
2
Analog supply voltage (+2.2V to +5.5V)  
Input MUX channel 1  
Input MUX channel 0 and VCAL input. For system calibration purposes, connect this pin to a  
low-impedance external reference voltage to use internal calibration channels. The four internal  
calibration channels are connected to GND, 0.9VCAL, 0.1VCAL, and VREF, respectively. VCAL is loaded  
with 100k(typical) when internal calibration channels CAL2 or CAL3 are selected. Otherwise,  
VCAL/CH0 appears as high impedance.  
3
VCAL/CH0  
Reference input pin. Connect external reference for VOUT offset shift or to midsupply for midsupply  
referenced systems. VREF must be connected to a low-impedance reference capable of sourcing and  
sinking at least 2mA or VREF must be connected to GND.  
4
VREF  
5
6
7
8
9
VOUT  
GND  
SCLK  
DIO  
Analog voltage output. When AVDD < DVDD, VOUT is clamped to AVDD + 300mV.  
Ground pin  
Clock input for SPI serial interface  
Data input/output for SPI serial interface. DIO contains a weak, 10µA internal pull-down current source.  
Chip select line for SPI serial interface  
CS  
Digital and op amp output stage supply voltage (+2.2V to +5.5V). Useful in multi-supply systems to  
prevent overvoltage/lockup condition on an analog-to-digital (ADC) input (for example, a microcontroller  
10  
DVDD  
with an ADC running on +3V and the PGA powered from +5V). Digital I/O levels to be relative to DVDD  
DVDD should be bypassed with a 0.1µF ceramic capacitor, and DVDD must supply the current for the  
digital portion of the PGA as well as the load current for the op amp output stage.  
.
8
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117  
PGA112, PGA113  
PGA116, PGA117  
www.ti.com ............................................................................................................................................ SBOS424BMARCH 2008REVISED SEPTEMBER 2008  
TSSOP-20  
PW PACKAGE  
(TOP VIEW)  
AVDD  
CH5  
1
2
3
4
5
6
7
8
9
20 CH6  
19 DVDD  
18 CS  
CH4  
CH3  
17 DOUT  
PGA116  
PGA117  
CH2  
16  
DIN  
CH1  
15 SCLK  
14 GND  
13 ENABLE  
12 CH9  
VCAL/CH0  
VREF  
VOUT  
CH7 10  
11 CH8  
PGA116, PGA117 TERMINAL FUNCTIONS  
TSSOP  
PACKAGE  
PIN #  
NAME  
AVDD  
CH5  
CH4  
CH3  
CH2  
CH1  
DESCRIPTION  
1
2
3
4
5
6
Analog supply voltage (+2.2V to +5.5V)  
Input MUX channel 5  
Input MUX channel 4  
Input MUX channel 3  
Input MUX channel 2  
Input MUX channel 1  
Input MUX channel 0 and VCAL input. For system calibration purposes, connect this pin to a  
low-impedance external reference voltage to use internal calibration channels. The four internal  
calibration channels are connected to GND, 0.9VCAL, 0.1VCAL, and VREF, respectively. VCAL is loaded  
with 100k(typical) when internal calibration channels CAL2 or CAL3 are selected. Otherwise,  
VCAL/CH0 appears as high impedance.  
7
8
VCAL/CH0  
Reference input pin. Connect external reference for VOUT offset shift or to midsupply for midsupply  
referenced systems. VREF must be connected to a low-impedance reference capable of sourcing and  
sinking at least 2mA or to GND.  
VREF  
9
VOUT  
CH7  
Analog voltage output. When AVDD < DVDD, VOUT is clamped to AVDD + 300mV.  
10  
11  
12  
13  
14  
15  
Input MUX channel 7  
CH8  
Input MUX channel 8  
CH9  
Input MUX channel 9  
ENABLE  
GND  
Hardware enable pin. Logic low puts the part into Shutdown mode (IQ < 1µA).  
Ground pin  
SCLK  
Clock input for SPI serial interface  
Data input for SPI serial interface. DIN contains a weak, 10µA internal pull-down current source to  
allow for ease of daisy-chain configurations.  
16  
DIN  
Data output for SPI serial interface. DOUT goes to high-Z state when CS goes high for standard SPI  
interface.  
17  
18  
DOUT  
CS  
Chip select line for SPI serial interface  
Digital and op amp output stage supply voltage (+2.2V to +5.5V). Useful in multi-supply systems to  
prevent overvoltage/lockup condition on an ADC input (for example, a microcontroller with an ADC  
running on +3V and the PGA powered from +5V). Digital I/O levels to be relative to DVDD. DVDD should  
be bypassed with a 0.1µF ceramic capacitor, and DVDD must supply the current for the digital portion of  
the PGA as well as the load current for the op amp output stage.  
19  
20  
DVDD  
CH6  
Input MUX channel 6  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117  
PGA112, PGA113  
PGA116, PGA117  
SBOS424BMARCH 2008REVISED SEPTEMBER 2008 ............................................................................................................................................ www.ti.com  
TYPICAL APPLICATION CIRCUITS  
+3V  
+5V  
CBYPASS  
CBYPASS  
CBYPASS  
0.1mF  
0.1mF  
0.1mF  
AVDD  
1
DVDD  
10  
MSP430  
PGA112  
Microcontroller  
ADC  
PGA113  
3
2
MUX  
VCAL/CH0  
CH1  
5
VOUT  
Output  
Stage  
CAL1  
10kW  
80kW  
RF  
G = 1  
0.9VCAL  
0.1VCAL  
CAL2  
CAL3  
CAL4  
VREF  
RI  
7
8
9
SCLK  
DIO  
CS  
SPI  
Interface  
CAL2/3  
10kW  
6
4
GND  
VREF  
Figure 4. PGA112, PGA113 (MSOP-10)  
+5V  
CBYPASS  
0.1mF  
AVDD  
1
7
+3V  
VCAL/CH0  
6
19 DVDD  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
CH8  
CH9  
5
CBYPASS  
0.1mF  
PGA116  
PGA117  
CBYPASS  
4
0.1mF  
3
2
MSP430  
20  
10  
11  
12  
Microcontroller  
MUX  
9
VOUT  
Output  
Stage  
ADC  
CAL1  
10kW  
80kW  
RF  
G = 1  
0.9VCAL  
0.1VCAL  
CAL2  
CAL3  
CAL4  
15 SCLK  
16 DIN  
VREF  
RI  
SPI  
Interface  
18 CS  
CAL2/3  
10kW  
17 DOUT  
14  
8
13  
ENABLE  
GND  
VREF  
Figure 5. PGA116, PGA117 (TSSOP-20)  
10  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117  
PGA112, PGA113  
PGA116, PGA117  
www.ti.com ............................................................................................................................................ SBOS424BMARCH 2008REVISED SEPTEMBER 2008  
TYPICAL CHARACTERISTICS  
At TA = +25°C, AVDD = DVDD = 5V, RL = 10kconnected to DVDD/2, VREF = GND, and CL = 100pF, unless otherwise noted.  
OFFSET VOLTAGE  
OFFSET VOLTAGE  
VCM = 4.5V  
VCM = 2.5V  
Offset Voltage (mV)  
Offset Voltage (mV)  
Figure 6.  
Figure 7.  
OFFSET VOLTAGE DRIFT  
(–40°C to +85°C)  
OFFSET VOLTAGE DRIFT  
(–40°C TO +85°C)  
VCM = 4.5V  
VCM = 2.5V  
Offset Voltage Drift (mV/°C)  
Offset Voltage Drift (mV/°C)  
Figure 8.  
Figure 9.  
OFFSET VOLTAGE DRIFT  
(–40°C to +125°C)  
OFFSET VOLTAGE DRIFT  
(–40°C TO +125°C)  
VCM = 4.5V  
VCM = 2.5V  
Offset Voltage Drift (mV/°C)  
Offset Voltage Drift (mV/°C)  
Figure 10.  
Figure 11.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117  
PGA112, PGA113  
PGA116, PGA117  
SBOS424BMARCH 2008REVISED SEPTEMBER 2008 ............................................................................................................................................ www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, AVDD = DVDD = 5V, RL = 10kconnected to DVDD/2, VREF = GND, and CL = 100pF, unless otherwise noted.  
INPUT OFFSET VOLTAGE vs INPUT VOLTAGE  
PGA112/PGA116 NONLINEARITY  
0.0010  
0.0008  
0.0006  
0.0004  
0.0002  
0
100  
80  
AVDD = DVDD = +5V  
G = 1  
G = 2  
60  
40  
20  
0
-0.0002  
-0.0004  
-0.0006  
-0.0008  
-0.0010  
-20  
-40  
-60  
-80  
-100  
G = 16  
G = 128  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
0
1
2
3
4
5
Input Voltage (V)  
VOUT (V)  
Figure 12.  
Figure 13.  
GAIN ERROR (G = 1)  
GAIN ERROR (1 < G 32)  
Gain Error (%)  
Gain Error (%)  
Figure 14.  
Figure 15.  
GAIN ERROR DRIFT  
(–40°C to +125°C)  
GAIN ERROR (G 50)  
G = 1  
Gain Error Drift (ppm/°C)  
Gain Error (%)  
Figure 16.  
Figure 17.  
12  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117  
PGA112, PGA113  
PGA116, PGA117  
www.ti.com ............................................................................................................................................ SBOS424BMARCH 2008REVISED SEPTEMBER 2008  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, AVDD = DVDD = 5V, RL = 10kconnected to DVDD/2, VREF = GND, and CL = 100pF, unless otherwise noted.  
GAIN ERROR DRIFT  
(–40°C to +125°C)  
GAIN ERROR DRIFT  
(–40°C to +125°C)  
1 < G £ 32  
G ³ 50  
Gain Error Drift (ppm/°C)  
Figure 19.  
Gain Error Drift (ppm/°C)  
Figure 18.  
CAL2 GAIN ERROR  
CAL3 GAIN ERROR  
Gain Error (%)  
Gain Error (%)  
Figure 20.  
Figure 21.  
CAL2 GAIN ERROR DRIFT  
(–40°C to +125°C)  
CAL3 GAIN ERROR DRIFT  
(–40°C to +125°C)  
Gain Error Drift (ppm/°C)  
Gain Error Drift (ppm/°C)  
Figure 22.  
Figure 23.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117  
PGA112, PGA113  
PGA116, PGA117  
SBOS424BMARCH 2008REVISED SEPTEMBER 2008 ............................................................................................................................................ www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, AVDD = DVDD = 5V, RL = 10kconnected to DVDD/2, VREF = GND, and CL = 100pF, unless otherwise noted.  
0.1Hz TO 10Hz NOISE  
0.1Hz TO 10Hz NOISE  
VS = 2.2V  
VS = 5V  
2.5s/div  
2.5s/div  
Figure 24.  
Figure 25.  
PGA112, PGA116 THD + NOISE vs FREQUENCY  
(VOUT = 2VPP  
SPECTRAL NOISE DENSITY  
)
1
0.1  
100  
50  
1k  
G = 128  
G = 16  
G = 32  
G = 64  
500  
Current Noise, VS = 5V  
Voltage Noise, VS = 2.2V  
0.01  
20  
10  
200  
100  
0.001  
0.0001  
Voltage Noise, VS = 5V  
G = 8  
G = 1  
G = 4  
G = 2  
1
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
Figure 26.  
Figure 27.  
PGA112, PGA116 THD + NOISE vs FREQUENCY  
(VOUT = 4VPP  
PGA113, PGA117 THD + NOISE vs FREQUENCY  
(VOUT = 2VPP  
)
)
1
1
0.1  
G = 200  
G = 50  
G = 100  
G = 20  
G = 128  
G = 32 G = 16  
G = 64  
0.1  
0.01  
0.01  
G = 8  
0.001  
0.001  
0.0001  
G = 4  
G = 2  
G = 2  
G = 1  
G = 5  
G = 1  
G = 10  
0.0001  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
Figure 28.  
Figure 29.  
14  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117  
PGA112, PGA113  
PGA116, PGA117  
www.ti.com ............................................................................................................................................ SBOS424BMARCH 2008REVISED SEPTEMBER 2008  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, AVDD = DVDD = 5V, RL = 10kconnected to DVDD/2, VREF = GND, and CL = 100pF, unless otherwise noted.  
PGA113, PGA117 THD + NOISE vs FREQUENCY  
(VOUT = 4VPP  
QUIESCENT CURRENT  
vs TEMPERATURE  
)
1
0.1  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
G = 100  
G = 200  
G = 50  
G = 20  
Digital  
0.01  
Analog  
G = 1  
0.001  
0.0001  
VS = 5.5V  
VS = 2.2V  
G = 2  
G = 5  
G = 10  
fSCLK = 10MHz  
75 100 125  
10  
100  
1k  
10k  
100k  
-50  
-25  
0
25  
50  
Frequency (Hz)  
Temperature (°C)  
Figure 30.  
Figure 31.  
TOTAL QUIESCENT CURRENT  
vs SUPPLY VOLTAGE  
SHUTDOWN QUIESCENT CURRENT  
vs TEMPERATURE  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
SCLK = 5MHz  
SCLK = 10MHz  
Digital  
SCLK = 2MHz  
SCLK = 500kHz  
Analog  
-50  
-25  
0
25  
50  
75  
100  
125  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Supply Voltage (V)  
Figure 32.  
Temperature (°C)  
Figure 33.  
OUTPUT VOLTAGE  
vs OUTPUT CURRENT  
OUTPUT VOLTAGE  
vs OUTPUT CURRENT  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
VS = 5.5V  
G = 1  
VS = 2.2V  
G = 1  
+125°C  
+25°C  
+125°C  
+25°C  
-40°C  
-40°C  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
2
4
6
8
10 12 14 16 18 20 22 24  
Output Current (mA)  
Output Current (mA)  
Figure 34.  
Figure 35.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117  
PGA112, PGA113  
PGA116, PGA117  
SBOS424BMARCH 2008REVISED SEPTEMBER 2008 ............................................................................................................................................ www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, AVDD = DVDD = 5V, RL = 10kconnected to DVDD/2, VREF = GND, and CL = 100pF, unless otherwise noted.  
PGA112, PGA116 OUTPUT VOLTAGE SWING vs  
FREQUENCY  
PGA112, PGA116 OUTPUT VOLTAGE SWING vs  
FREQUENCY  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.5  
2.0  
1.5  
1.0  
0.5  
0
AVDD = DVDD = 2.2V  
AVDD = DVDD = 2.2V  
G = 4  
G = 8  
G = 16  
G = 2  
G = 64  
G = 32  
G = 1  
G = 128  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Figure 36.  
Frequency (Hz)  
Figure 37.  
PGA112, PGA116 OUTPUT VOLTAGE SWING vs  
FREQUENCY  
PGA112, PGA116 OUTPUT VOLTAGE SWING vs  
FREQUENCY  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
G = 8  
G = 4  
G = 16  
G = 32  
G = 1  
G = 64  
G = 2  
AVDD = DVDD = 5.5V  
AVDD = DVDD = 5.5V  
100 1k  
G = 128  
1M  
100  
1k  
10k  
100k  
1M  
10M  
10k  
100k  
10M  
Frequency (Hz)  
Frequency (Hz)  
Figure 38.  
Figure 39.  
PGA113, PGA117 OUTPUT VOLTAGE SWING vs  
FREQUENCY  
PGA113, PGA117 OUTPUT VOLTAGE SWING vs  
FREQUENCY  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.5  
2.0  
1.5  
1.0  
0.5  
0
G = 20  
G = 10  
G = 2  
G = 50  
G = 100  
G = 200  
G = 1  
G = 5  
AVDD = DVDD = 2.2V  
AVDD = DVDD = 2.2V  
10k  
1k  
10k  
100k  
1M  
10M  
1k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
Figure 40.  
Figure 41.  
16  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117  
PGA112, PGA113  
PGA116, PGA117  
www.ti.com ............................................................................................................................................ SBOS424BMARCH 2008REVISED SEPTEMBER 2008  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, AVDD = DVDD = 5V, RL = 10kconnected to DVDD/2, VREF = GND, and CL = 100pF, unless otherwise noted.  
PGA113, PGA117 OUTPUT VOLTAGE SWING vs  
FREQUENCY  
PGA113, PGA117 OUTPUT VOLTAGE SWING vs  
FREQUENCY  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
G = 10  
G = 5  
G = 50  
G = 20  
G = 100  
G = 1  
G = 200  
G = 2  
1M  
AVDD = DVDD = 5.5V  
100  
1k  
AVDD = DVDD = 5.5V  
10k  
100k  
10M  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
Figure 42.  
Figure 43.  
SMALL-SIGNAL OVERSHOOT  
vs LOAD CAPACITANCE  
GAIN vs SETTLING TIME  
50  
40  
30  
20  
10  
0
12  
10  
8
CL = 100pF//RL = 10kW  
VOUT = 4VPP  
0.01%  
G = 1  
6
G > 2  
0.1%  
4
2
0
0
100  
200  
300  
400  
500  
600  
700  
800  
0
50  
100  
150  
200  
Gain  
Load Capacitance (pF)  
Figure 44.  
Figure 45.  
INPUT ON-CHANNEL CURRENT  
vs TEMPERATURE  
INPUT OFF-CHANNEL LEAKAGE CURRENT  
vs TEMPERATURE  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
0.15  
Measurement made with channel pin  
connected to midsupply  
Measurement made with channel pin  
connected to midsupply  
0.10  
0.05  
0
CH0  
CH1 to  
CH9  
-0.05  
-0.01  
-0.15  
CH0  
CH1 to  
CH9  
0
0
-5  
-5  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
Figure 46.  
Figure 47.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117  
PGA112, PGA113  
PGA116, PGA117  
SBOS424BMARCH 2008REVISED SEPTEMBER 2008 ............................................................................................................................................ www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, AVDD = DVDD = 5V, RL = 10kconnected to DVDD/2, VREF = GND, and CL = 100pF, unless otherwise noted.  
POWER-SUPPLY REJECTION RATIO  
vs FREQUENCY  
CROSSTALK vs FREQUENCY  
140  
130  
120  
110  
100  
90  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
G = 1  
G = 50  
G = 200  
G ³ 2  
G = 2  
80  
70  
G = 10  
10k 100k 1M  
60  
10  
100  
1k  
10k  
100k  
1M  
10M  
0.1  
1
10  
100  
1k  
10M  
Frequency (Hz)  
Frequency (Hz)  
Figure 48.  
Figure 49.  
SMALL-SIGNAL PULSE RESPONSE  
SMALL-SIGNAL PULSE RESPONSE  
G = 20  
G = 10  
G = 1  
100mV  
0V  
100mV  
G = 50  
Output  
G = 100, 200  
Output  
Input  
0V  
VIN/G  
VIN/G  
Input  
0V  
0V  
2.5ms/div  
2.5ms/div  
Figure 50.  
Figure 51.  
LARGE-SIGNAL PULSE RESPONSE  
LARGE-SIGNAL PULSE RESPONSE  
G = 10  
G = 2  
G = 1  
G = 50  
Output  
Output  
G = 100, 200  
Input  
Input  
2.5ms/div  
2.5ms/div  
Figure 53.  
Figure 52.  
18  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117  
PGA112, PGA113  
PGA116, PGA117  
www.ti.com ............................................................................................................................................ SBOS424BMARCH 2008REVISED SEPTEMBER 2008  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, AVDD = DVDD = 5V, RL = 10kconnected to DVDD/2, VREF = GND, and CL = 100pF, unless otherwise noted.  
POWER-UP/POWER-DOWN TIMING  
OUTPUT OVERDRIVE PERFORMANCE  
VIN  
5V  
Output (1V/div)  
VOUT  
0V  
0V  
Supply (5V/div)  
VS = 5V  
RL = 10kW  
0V  
CL = 100pF  
25ms/div  
1ms/div  
Figure 54.  
Figure 55.  
OUTPUT VOLTAGE vs SHUTDOWN MODE  
PGA116, PGA117 HARDWARE SHUTDOWN MODE  
Active  
Active  
In  
Shutdown  
Output  
In  
Shutdown  
Output  
Output  
Enable  
CS  
CS  
10ms/div  
10ms/div  
Figure 56.  
Figure 57.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117  
PGA112, PGA113  
PGA116, PGA117  
SBOS424BMARCH 2008REVISED SEPTEMBER 2008 ............................................................................................................................................ www.ti.com  
SERIAL INTERFACE INFORMATION  
SPI Mode 0, 0 (CPOL = 0, CPHA = 0)  
CS  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
1
2
3
4
SCLK  
DIN  
DOUT  
SPI Mode 1, 1 (CPOL = 1, CPHA = 1)  
CS  
SCLK  
DIN  
1
2
3
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
4
DOUT  
Figure 58. SPI Mode 0,0 and Mode 1,1  
Table 2. SPI Mode Setting Description  
MODE  
0, 0  
CPOL  
CPHA  
0(1)  
1(2)  
CPOL DESCRIPTION  
Clock idles low  
CPHA DESCRIPTION  
0
1
Data are read on the rising edge of clock. Data change on the falling edge of clock.  
Data are read on the rising edge of clock. Data change on the falling edge of clock.  
1, 1  
Clock idles high  
(1) CPHA = 0 means sample on first clock edge (rising or falling) after a valid CS.  
(2) CPHA = 1 means sample on second clock edge (rising or falling) after a valid CS.  
SERIAL DIGITAL INTERFACE: SPI MODES  
The PGA uses a standard serial peripheral interface  
(SPI). Both SPI Mode 0,0 and Mode 1,1 are  
supported, as shown in Figure 58 and described in  
Table 2.  
DOUT  
If there are not even-numbered increments of 16  
clocks (that is, 16, 32, 64, and so forth) between CS  
going low (falling edge) and CS going high (rising  
edge), the device takes no action. This condition  
provides reliable serial communication. Furthermore,  
this condition also provides a way to quickly reset the  
SPI interface to a known starting condition for data  
DIN  
10mA  
PGA116  
PGA117  
synchronization. Transmitted data are latched  
internally on the rising edge of CS.  
Figure 59. Digital I/O Structure—PGA116/PGA117  
On the PGA116/PGA117, CS, DIN, and SCLK are  
Schmitt-triggered CMOS logic inputs. DIN has a weak  
internal  
pull-down  
to  
support  
daisy-chain  
communications on the PGA116/PGA117. DOUT is a  
CMOS logic output. When CS is high, the state of  
DOUT is high-impedance. When CS is low, DOUT is  
driven as illustrated in Figure 59.  
20  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117  
 
 
 
PGA112, PGA113  
PGA116, PGA117  
www.ti.com ............................................................................................................................................ SBOS424BMARCH 2008REVISED SEPTEMBER 2008  
On the PGA112/PGA113, there are digital output and  
digital input gates both internally connected to the  
DIO pin. DIN is an input-only gate and DOUT is a  
digital output that can give a 3-state output. The DIO  
pin has a weak 10µA pull-down current source to  
prevent the pin from floating in systems with a  
high-impedance SPI DOUT line. When CS is high,  
the state of the internal DOUT gate is  
high-impedance. When CS is low, the state of DIO  
depends on the previous valid SPI communication;  
either DIO becomes an output to clock out data or it  
remains an input to receive data. This structure is  
shown in Figure 60.  
used (see Table 4) to ensure that data are written or  
read in the proper sequence. There is a special  
daisy-chain NOP command (No OPeration) which,  
when presented to the desired device in the  
daisy-chain, causes no changes in that respective  
device. Detailed timing diagrams for daisy-chain  
operation are shown in Figure 65 through Figure 67.  
CS  
SCLK  
DOUT  
PGA116/PGA117  
PGA116/PGA117  
DIN  
MSP430  
CS  
CS  
U1  
U2  
SCLK  
SCLK  
DIN1  
DOUT1  
DIN2  
DOUT2  
DOUT  
DIO  
Figure 61. Daisy-Chain Read/Write Configuration  
The PGA112/PGA113 can be used as the last device  
in a daisy-chain as shown in Figure 62 if write-only  
communication  
is  
acceptable,  
because  
the  
PGA112/PGA113 have no separate DOUT pin to  
connect back to the microcontroller DIN pin in order  
to read back data in this configuration.  
DIN  
10mA  
PGA112  
PGA113  
CS  
SCLK  
DOUT  
Figure 60. Digital I/O Structure—PGA112/PGA113  
PGA116/PGA117  
PGA112/PGA113  
DIN  
MSP430  
CS  
CS  
U1  
U2  
SCLK  
SCLK  
SERIAL DIGITAL INTERFACE: SPI  
DAISY-CHAIN COMMUNICATIONS  
DIN1  
DOUT1  
DIO  
To reduce the number of I/O port pins used on a  
microcontroller, the PGA116/PGA117 support SPI  
daisy-chain communications with full read/write  
capability. A two-device daisy-chain configuration is  
shown in Figure 61, although any number of devices  
can be daisy-chained. The SPI daisy-chain  
communication uses a common SCLK and CS line  
for all devices in the daisy chain, rather than each  
device requiring a separate CS line. The daisy-chain  
mode of communication routes data serially through  
each device in the chain by using its respective DIN  
and DOUT pins as shown. Special commands are  
Figure 62. Daisy-Chain Write-Only Configuration  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117  
 
 
 
PGA112, PGA113  
PGA116, PGA117  
SBOS424BMARCH 2008REVISED SEPTEMBER 2008 ............................................................................................................................................ www.ti.com  
The maximum SCLK frequency that can be used in  
daisy-chain operation is directly related to SCLK  
tRFI  
tRFI  
rise/fall times, DIN setup time, and DOUT  
propagation delay. Any number of two or more  
devices have the same limitations because it is the  
timing considerations between adjacent devices that  
limit the clock speed.  
10ns  
10ns  
SCLK  
Figure 63 analyzes the maximum SCLK frequency for  
daisy-chain mode based on the circuit of Figure 61. A  
clock rise and fall time of 10ns is assumed to allow  
for extra bus capacitance that could occur as a result  
of multiple devices in the daisy-chain.  
tDO  
25ns  
DOUT1  
tSU  
10ns  
DIN2  
tMIN = 55ns  
tMIN = 55ns  
SCLKMAX = 9.09MHz  
Figure 63. Daisy-Chain Maximum SCLK  
Frequency  
22  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117  
 
PGA112, PGA113  
PGA116, PGA117  
www.ti.com ............................................................................................................................................ SBOS424BMARCH 2008REVISED SEPTEMBER 2008  
SPI SERIAL INTERFACE  
Figure 64. SPI Serial Interface Timing Diagrams  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117  
PGA112, PGA113  
PGA116, PGA117  
SBOS424BMARCH 2008REVISED SEPTEMBER 2008 ............................................................................................................................................ www.ti.com  
Figure 65. SPI Daisy-Chain Write Timing Diagrams  
24  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117  
PGA112, PGA113  
PGA116, PGA117  
www.ti.com ............................................................................................................................................ SBOS424BMARCH 2008REVISED SEPTEMBER 2008  
Figure 66. SPI Daisy-Chain Read Timing Diagram (Mode 0,0)  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117  
PGA112, PGA113  
PGA116, PGA117  
SBOS424BMARCH 2008REVISED SEPTEMBER 2008 ............................................................................................................................................ www.ti.com  
Figure 67. SPI Daisy-Chain Read Timing Diagram (Mode 1,1)  
26  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117  
PGA112, PGA113  
PGA116, PGA117  
www.ti.com ............................................................................................................................................ SBOS424BMARCH 2008REVISED SEPTEMBER 2008  
SPI COMMANDS  
Table 3. SPI Commands (PGA112/PGA113)(1)(2)  
THREE-WIRE  
D15  
0
D14  
1
D13  
1
D12  
0
D11  
1
D10  
0
D9  
1
D8  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
SPI COMMAND  
0
READ  
0
0
1
0
1
0
1
0
G3  
0
G2  
0
G1  
0
G0  
0
CH3  
0
CH2  
0
CH1  
0
CH0 WRITE  
0
0
0
0
0
0
0
0
0
0
1
NOP WRITE  
SDN_DIS  
WRITE  
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
SDN_EN WRITE  
(1) SDN = Shutdown mode. Enter Shutdown mode by issuing an SDN_EN command. Shutdown mode is cleared (returned to the last valid  
write configuration) by a SDN_DIS command or by any valid Write command.  
(2) POR (Power-on-Reset) value of internal Gain/Channel Select Register is all 0s; this value sets Gain = 1, and Channel = VCAL/CH0.  
Table 4. SPI Daisy-Chain Commands(1)(2)  
DAISY-CHAIN  
D15  
0
D14  
0
D13  
0
D12  
1
D11  
0
D10  
0
D9  
0
D8  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
COMMAND  
NOP  
1
1
1
1
0
0
0
1
0
0
0
0
0
0
0
0
SDN_DIS  
SDN_EN  
READ  
1
1
1
1
0
0
0
1
1
1
1
1
0
0
0
1
0
1
1
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
1
0
G3  
G2  
G1  
G0  
CH3  
CH2  
CH1  
CH0 WRITE  
(1) SDN = Shutdown Mode. Shutdown Mode is entered by an SDN_EN command. Shutdown Mode is cleared (returned to the last valid  
write configuration) by a SDN_DIS command or by any valid Write command.  
(2) POR (Power-on-Reset) value of internal Gain/Channel Register is all 0s; this value sets Gain = 1, VCAL/CH0 selected.  
Table 5. Gain Selection Bits (PGA112/PGA113)  
G3  
0
G2  
0
G1  
0
G0  
0
BINARY GAIN  
SCOPE GAIN  
1
2
1
2
0
0
0
1
0
0
1
0
4
5
0
0
1
1
8
10  
20  
50  
100  
200  
0
1
0
0
16  
32  
64  
128  
0
1
0
1
0
1
1
0
0
1
1
1
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117  
PGA112, PGA113  
PGA116, PGA117  
SBOS424BMARCH 2008REVISED SEPTEMBER 2008 ............................................................................................................................................ www.ti.com  
Table 6. Mux Channel Selection Bits  
CH3  
0
CH2  
0
CH1  
0
CH0  
0
PGA112, PGA113  
PGA116, PGA117  
VCAL/CH0  
CH1  
VCAL/CH0  
0
0
0
1
CH1  
0
0
1
0
X(1)  
CH2  
0
0
1
1
X
CH3  
0
1
0
0
X
CH4  
0
1
0
1
X
CH5  
0
1
1
0
X
CH6  
0
1
1
1
X
CH7  
1
0
0
0
X
X
CH8  
1
0
0
1
CH9  
1
0
1
0
X
X(1)  
1
0
1
1
Factory Reserved  
CAL1(2)  
CAL2(3)  
CAL3(4)  
CAL4(5)  
Factory Reserved  
CAL1(2)  
CAL2(3)  
CAL3(4)  
CAL4(5)  
1
1
0
0
1
1
0
1
1
1
1
0
1
1
1
1
(1) X = channel is not used.  
(2) CAL1: connects to GND.  
(3) CAL2: connects to 0.9VCAL  
(4) CAL3: connects to 0.1VCAL  
.
.
(5) CAL4: connects to VREF  
.
28  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117  
PGA112, PGA113  
PGA116, PGA117  
www.ti.com ............................................................................................................................................ SBOS424BMARCH 2008REVISED SEPTEMBER 2008  
APPLICATION INFORMATION  
PMOS transistors. The result of this transition  
appears as a small input offset voltage transition that  
is reflected to the output by the selected PGA gain.  
This transition may be either increasing or  
decreasing, and differs from part to part as described  
in Figure 69 and Figure 70. These figures illustrate  
possible differences in input offset voltage between  
two different devices when used with AVDD = +5V.  
Because the exact transition region varies from  
device to device, the Electrical Characteristics table  
specifies an input offset voltage above and below this  
input transition region.  
FUNCTIONAL DESCRIPTION  
The PGA112/PGA113 and PGA116/PGA117 are  
single-ended input, single-supply, programmable gain  
amplifiers (PGAs) with an input multiplexer.  
Multiplexer channel selection and gain selection are  
done through  
a
standard SPI interface. The  
PGA112/PGA113 have a two-channel input MUX and  
the PGA116/PGA117 have a 10-channel input MUX.  
The PGA112 and PGA116 provide binary gain  
selections (1, 2, 4, 8, 16, 32, 64, 128) and the  
PGA113 and PGA117 provide scope gain selections  
(1, 2, 5, 10, 20, 50, 100, 200). All models use a  
AVDD  
split-supply architecture with an analog supply, AVDD  
and digital supply, DVDD This split-supply  
architecture allows for ease of interface to  
analog-to-digital converters (ADCs) and  
,
Reference  
Current  
a
.
microcontrollers in mixed-supply voltage systems,  
such as where the analog supply is +5V and the  
digital supply is +3V. Four internal calibration  
channels are provided for system-level calibration.  
The channels are tied to GND, 0.9VCAL, 0.1VCAL, and  
VIN+  
VIN-  
VREF  
,
respectively. VCAL  
,
an external voltage  
connected to VCAL/CH0, acts as the system  
calibration reference. If VCAL is the system ADC  
reference, then gain and offset calibration on the  
ADC are easily accomplished through the PGA using  
only one MUX input. If calibration is not used, then  
VCAL/CH0 can be used as a standard MUX input. All  
four versions provide a VREF pin that can be tied to  
ground or, for ease of scaling, to midsupply in  
single-supply systems where midsupply is used as a  
GND  
Figure 68. PGA Rail-to-Rail Input Stage  
virtual ground. The PGA112/PGA113 offer  
a
80  
software-controlled shutdown feature for low standby  
power. The PGA116/PGA117 offer both hardware-  
and software-controlled shutdown for low standby  
power. The PGA112/PGA113 have a three-wire SPI  
70  
60  
50  
40  
30  
20  
10  
0
digital interface; the PGA116/PGA117 have  
a
four-wire SPI digital interface. The PGA116/117 also  
have daisy-chain capability.  
OP AMP: INPUT STAGE  
The PGA op amp is a rail-to-rail input and output  
(RRIO) single-supply op amp. The input topology  
uses two separate input stages in parallel to achieve  
rail-to-rail input. As Figure 68 shows, there is a  
PMOS transistor on each input for operation down to  
ground; there is also an NMOS transistor on each  
input in parallel for operation to the positive supply  
rail. When the common-mode input voltage (that is,  
the single-ended input, because this PGA is  
configured internally for noninverting gain) crosses a  
level that is typically about 1.5V below the positive  
supply, there is a transition between the NMOS and  
AVDD = 5V  
5 6  
0
1
2
3
4
Input Voltage (V)  
Figure 69. VOS versus Input Voltage—Case 1  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117  
 
 
PGA112, PGA113  
PGA116, PGA117  
SBOS424BMARCH 2008REVISED SEPTEMBER 2008 ............................................................................................................................................ www.ti.com  
50  
CH0  
PGA112  
AVDD = 5V  
PGA113  
MUX  
CH1  
40  
30  
VOUT  
RI  
VIN0  
VIN1  
VREF  
RF  
20  
+
G = 1  
10  
VS/2  
-
0
-10  
-20  
-30  
Figure 72. PGA112/PGA113 Configuration for  
Positive and Negative Excursions Around  
Midsupply Virtual Ground  
0
1
2
3
4
5
6
VOUT0 = G ´ VIN0 - AVDD/2 ´ (G - 1)  
Input Voltage (V)  
(2)  
When: G = 1  
Figure 70. VOS versus Input Voltage—Case 2  
OP AMP: GENERAL GAIN EQUATIONS  
Then: VOUT0 = G × VIN0  
VOUT1 = G ´ (VIN1 + AVDD/2) - AVDD/2 ´ (G - 1)  
Figure 71 shows the basic configuration for using the  
PGA as a gain block. VOUT/VIN is the selected  
noninverting gain, depending on the model selected,  
for either binary or scope gains.  
VOUT1 = G ´ VIN1 + AVDD/2, where: -AVDD/2 < G ´ VIN1 < +AVDD/2  
(3)  
Where:  
G = 1, 2, 4, 8, 16, 32, 64, and 128 (binary gains)  
G = 1, 2, 5, 10, 20, 50, 100, and 200 (scope  
gains)  
CH1  
VOUT  
RI  
Table 7 details the internal typical values for the op  
amp internal feedback resistor (RF) and op amp  
internal input resistor (RI) for both binary and scope  
gains.  
VIN  
VREF  
RF  
G = 1  
Table 7. Typical RF and RI versus Gain  
Binary  
Gain  
(V/V)  
Scope  
Gain  
(V/V)  
Figure 71. PGA Used as a Gain Block  
RF ()  
0
RI ()  
3.25k  
3.25k  
3.25k  
3.25k  
3.25k  
3.25k  
3.25k  
3.25k  
RF ()  
0
RI ()  
3.25k  
3.25k  
3.25k  
3.25k  
3.25k  
3.25k  
3.25k  
3.25k  
1
2
1
2
VOUT = G ´ VIN  
(1)  
3.25k  
3.25k  
Where:  
4
9.75k  
5
13k  
G = 1, 2, 4, 8, 16, 32, 64, and 128 (binary gains)  
G = 1, 2, 5, 10, 20, 50, 100, and 200 (scope  
gains)  
8
22.75k  
48.75k  
100.75k  
204.75k  
412.75k  
10  
20  
50  
100  
200  
29.25k  
61.75k  
159.25k  
321.75k  
646.75k  
16  
32  
64  
128  
Figure 72 shows the PGA configuration and gain  
equations for VREF = AVDD/2. VOUT0 is VOUT when  
CH0 is selected and VOUT1 is VOUT when CH1 is  
selected. Notice the VREF pin has no effect for G = 1  
because the internal feedback resistor, RF, is shorted  
out. This configuration allows for positive and  
negative voltage excursions around a midsupply  
virtual ground.  
30  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117  
 
 
 
PGA112, PGA113  
PGA116, PGA117  
www.ti.com ............................................................................................................................................ SBOS424BMARCH 2008REVISED SEPTEMBER 2008  
OP AMP: FREQUENCY RESPONSE VERSUS  
GAIN  
ANALOG MUX  
The analog input MUX provides two input channels  
for the PGA112/PGA113 and 10 input channels for  
the PGA116/PGA117. The MUX switches are  
designed to be break-before-make and thereby  
eliminate any concerns about shorting the two input  
signal sources together.  
Table 8 documents how small-signal bandwidth and  
slew rate change correspond to changes in PGA  
gain.  
Full power bandwidth (that is, the highest frequency  
that a sine wave can pass through the PGA for a  
given gain) is related to slew rate by Equation 4:  
Four internal MUX CAL channels are included in the  
analog MUX for ease of system calibration. These  
CAL channels allow ADC gain and offset errors to be  
calibrated out. This calibration does not remove the  
offset and gain errors of the PGA for gains greater  
than 1, but most systems should see a significant  
increase in the ADC accuracy. In addition, these CAL  
channels can be used by the ADC to read the  
minimum and maximum possible voltages from the  
PGA. With these minimum and maximum levels  
known, the system architecture can be designed to  
indicate an out-of-range condition on the measured  
analog input signals if these levels are ever  
measured.  
SR (V/ms) = 2pf ´ VOP (1 ´ 10-6)  
(4)  
Where:  
SR = Slew rate in V/µs  
f = Frequency in Hz  
VOP = Output peak voltage in volts  
Example:  
For G = 8, then SR = 10.6V/µs (slew rate rise is  
minimum slew rate).  
For a 5V system, choose 0.1V < VOUT < 4.9V or  
VOUTPP = 4.8V or VOUTP = 2.4V.  
SR (V/µs) = 2πf × VOP (1 × 10–6).  
To use the CAL channels, VCAL/CH0 must be  
permanently connected to the system ADC reference.  
There is a typical 100kload from VCAL/CH0 to  
ground. Table 9 illustrates how to use the CAL  
channels with VREF = ground. Table 10 describes how  
to use the CAL channels with VREF = AVDD/2. The  
VREF pin must be connected to a source that is  
low-impedance for both dc and ac in order to  
maintain gain and nonlinearity accuracy. Worst-case  
current demand on the VREF pin occurs when G = 1  
because there is a 3.25kresistor between VOUT and  
VREF. For a 5V system with AVDD/2 = 2.5V, the VREF  
pin buffer must source and sink 2.5V/3.25k= 0.7mA  
minimum for a VOUT that can swing from ground to  
+5V.  
10.6 = 2πf (2.4) (1 × 10–6) f = 702.9kHz  
This example shows that a G = 8 configuration  
can produce a 4.8VPP sine wave with frequency  
up to 702.9kHz. This computation only shows the  
theoretical upper limit of frequency for this  
example, but does not indicate the distortion of  
the sine wave. The acceptable distortion depends  
on the specific application. As  
a
general  
guideline, maintain two to three times the  
calculated slew rate to minimize distortion on the  
sine wave. For this example, the application  
should only use G = 8, 4.8VPP, up to a frequency  
range of 234kHz to 351kHz, depending upon the  
acceptable distortion. For a given gain and slew  
rate requirement, check for adequate small-signal  
bandwidth (typical –3dB frequency) in order to  
assure that the frequency of the signal can be  
passed without attenuation.  
Table 8. Frequency Response versus Gain (CL = 100pF, RL= 10k)  
0.1%  
0.01%  
0.1%  
0.01%  
TYPICAL  
–3dB  
FREQUENCY  
(MHz)  
SLEW  
RATE-  
FALL  
SLEW  
RATE-  
RISE  
SETTLING SETTLING  
TYPICAL  
–3dB  
FREQUENCY  
(MHz)  
SLEW  
RATE-  
FALL  
SLEW  
RATE-  
RISE  
SETTLING SETTLING  
TIME:  
4VPP  
(µs)  
TIME:  
4VPP  
(µs)  
SCOPE  
GAIN  
(V/V)  
TIME:  
4VPP  
(µs)  
TIME:  
4VPP  
(µs)  
BINARY  
GAIN (V/V)  
(V/µs)  
(V/µs)  
(V/µs)  
(V/µs)  
1
2
10  
3.8  
2
8
3
2
2
2.55  
2.6  
2.6  
2.6  
2.6  
3
1
2
10  
3.8  
8
9
3
2
2.55  
2.6  
2.6  
2.6  
2.8  
3.8  
7
9
6.4  
6.4  
10.6  
10.6  
9.1  
7.1  
3.5  
2
2
4
12.8  
12.8  
12.8  
12.8  
4
10.6  
10.6  
12.8  
13.3  
3.5  
2
5
1.8  
12.8  
12.8  
12.8  
9.1  
4
2
8
1.8  
1.6  
1.8  
0.6  
0.35  
2
10  
20  
50  
100  
200  
1.8  
2.2  
2.3  
2.4  
4.4  
6.9  
16  
32  
64  
128  
2.3  
2.3  
3
1.3  
0.9  
6
0.38  
0.23  
2.5  
2.5  
4.8  
8
2.3  
10  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117  
 
 
PGA112, PGA113  
PGA116, PGA117  
SBOS424BMARCH 2008REVISED SEPTEMBER 2008 ............................................................................................................................................ www.ti.com  
+3V  
+3V  
CBYPASS  
CBYPASS  
CBYPASS  
0.1mF  
0.1mF  
0.1mF  
AVDD  
DVDD  
ADC Ref  
2.5V  
REF3225  
PGA112  
PGA113  
VCAL/CH0  
CH1  
MUX  
VOUT  
Output  
Stage  
ADC  
CAL1  
10kW  
80kW  
RF  
G = 1  
0.9VCAL  
0.1VCAL  
MSP430  
CAL2  
CAL3  
CAL4  
Microcontroller  
RI  
VREF  
SCLK  
DIO  
CS  
SPI  
Interface  
CAL2/3  
10kW  
GND  
VREF  
Figure 73. Using CAL Channels with VREF = Ground  
Table 9. Using the MUX CAL Channels with VREF = GND  
(AVDD = 3V, DVDD = 3V, ADC Ref = 2.5V, and VREF = GND)  
MUX  
SELECT  
GAIN  
SELECT  
OP AMP  
(+In)  
OP AMP  
(VOUT  
FUNCTION  
MUX INPUT  
)
DESCRIPTION  
Minimum signal level that the  
MUX, op amp, and ADC can  
read. Op amp VOUT is limited  
by negative saturation.  
Minimum Signal  
Gain Calibration  
CAL1  
CAL2  
1
1
GND  
GND  
50mV  
2.25V  
90% ADC Ref for system  
full-scale or gain calibration  
of the ADC.  
0.9 ×  
(VCAL/CH0)  
2.25V  
Maximum signal level that  
the MUX, op amp, and ADC  
can read. Op amp VOUT is  
limited by positive saturation.  
System is limited by ADC  
max input of 2.5V (ADC Ref  
= 2.5V).  
0.9 ×  
(VCAL/CH0)  
Maximum Signal  
CAL2  
2
2.25V  
2.95V  
0.1 ×  
(VCAL/CH0)  
10% ADC Ref for system  
offset calibration of the ADC.  
Offset Calibration  
Minimum Signal  
CAL3  
CAL4  
1
1
0.25V  
GND  
0.25V  
50mV  
Minimum signal level that the  
MUX, op amp, and ADC can  
read. Op amp VOUT is limited  
by negative saturation.  
VREF  
32  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117  
PGA112, PGA113  
PGA116, PGA117  
www.ti.com ............................................................................................................................................ SBOS424BMARCH 2008REVISED SEPTEMBER 2008  
+3V  
+3V  
CBYPASS  
CBYPASS  
CBYPASS  
0.1mF  
0.1mF  
0.1mF  
AVDD  
DVDD  
PGA112  
PGA113  
ADC Ref  
VCAL/CH0  
CH1  
MUX  
VOUT  
Output  
Stage  
ADC  
CAL1  
10kW  
80kW  
RF  
G = 1  
0.9VCAL  
0.1VCAL  
MSP430  
CAL2  
CAL3  
CAL4  
Microcontroller  
RI  
VREF  
SCLK  
DIO  
CS  
SPI  
Interface  
CAL2/3  
10kW  
GND  
VREF  
RF  
10kW  
CF  
2.7nF  
+3V  
CBYPASS  
+3V  
0.1mF  
RX  
(1.5V)  
100kW  
OPA364  
CL2  
0.1mF  
RY  
0.1mF  
100kW  
Figure 74. Using CAL Channels with VREF = AVDD/2  
Table 10. Using the MUX CAL Channels with VREF = AVDD/2  
(AVDD = 3V, DVDD = 3V, ADC Ref = 3V, and VREF = 1.5V)  
MUX  
SELECT  
GAIN  
SELECT  
OP AMP  
(+In)  
OP AMP  
(VOUT  
FUNCTION  
MUX INPUT  
)
DESCRIPTION  
Minimum signal level that the MUX,  
op amp, and ADC can read. Op amp  
VOUT is limited by negative saturation.  
Minimum Signal  
CAL1  
CAL2  
CAL2  
1
1
GND  
GND  
2.7V  
50mV  
2.7V  
0.9 ×  
(VCAL/CH0)  
90% ADC Ref for system full-scale or  
gain calibration of the ADC.  
Gain Calibration  
Maximum signal level that the MUX,  
op amp, and ADC can read. Op amp  
VOUT is limited by positive saturation.  
0.9 ×  
(VCAL/CH0)  
Maximum Signal  
4 or 5  
2.25V  
2.95V  
0.1 ×  
(VCAL/CH0)  
10% ADC Ref for system offset  
calibration of the ADC.  
Offset Calibration  
VREF Check  
CAL3  
CAL4  
1
1
0.3V  
1.5V  
0.3V  
1.5V  
VREF  
Midsupply voltage used as VREF.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117  
PGA112, PGA113  
PGA116, PGA117  
SBOS424BMARCH 2008REVISED SEPTEMBER 2008 ............................................................................................................................................ www.ti.com  
SYSTEM CALIBRATION USING THE PGA  
In practice, the zero input (0V) or full-scale input  
(VREF_ADC – 1LSB) of ADCs cannot always be  
measured because of internal offset error and gain  
error. However, if measurements are made very close  
to the full-scale input and the zero input, both zero  
and full-scale can be calibrated very accurately with  
the assumption of linearity from the calibration points  
to the desired end points of the ADC ideal transfer  
function. For the zero calibration, choose  
10%VREF_ADC; this value should be above the internal  
offset error and sufficiently out of the noise floor  
range of the ADC. For the gain calibration, choose  
90%VREF_ADC; this value should be less than the  
internal gain error and sufficiently below the tolerance  
of VREF. These key points can be summarized in this  
way:  
Analog-to-digital converters (ADCs) contain two major  
errors that can be easily removed by calibration at a  
system level. These errors are gain error and offset  
error, as shown in Figure 75. Figure 75 shows a  
typical transfer function for a 12-bit ADC. The analog  
input is on the x-axis with a range from 0V to  
(VREF_ADC – 1LSB), where VREF_ADC is the ADC  
reference voltage. The y-axis is the hexadecimal  
equivalent of the digital codes that result from ADC  
conversions. The dotted red line represents an ideal  
transfer function with 0000h representing 0V analog  
input and 0FFFh representing an analog input of  
(VREF_ADC – 1LSB). The solid blue line illustrates the  
offset error. Although the solid blue line includes both  
offset error and gain error, at an analog input of 0V  
the offset error voltage, VZ_ACTUAL, can be measured.  
The dashed black line represents the transfer function  
with gain error. The dashed black line is equivalent to  
the solid blue line without the offset error, and can be  
measured and computed using VZ_ACTUAL and  
VZ_IDEAL. The difference between the dashed black  
line and the dotted red line is the gain error. Gain and  
offset error can be computed by taking zero input and  
full-scale input readings. Using these error  
calculations, compute a calibrated ADC reading to  
remove the ADC gain and offset error.  
For zero calibration:  
The ADC cannot read the ideal zero because of  
offset error  
Must be far enough above ground to be above  
noise floor and ADC offset error  
Therefore, choose 10%VREF_ADC for zero  
calibration  
For gain calibration:  
The ADC cannot read the ideal full-scale because  
of gain error  
Must be far enough below full-scale to be below  
the VREF tolerance and ADC gain error  
Therefore, choose 90%VREF_ADC for gain  
calibration  
VFS_ACTUAL  
Gain Error  
0FFFh  
VFS_IDEAL  
Transfer Function  
with Offset Error + Gain Error  
Transfer Function  
with Gain Error Only  
VZ_ACTUAL  
0000h  
Offset Error  
VZ_IDEAL  
Analog Input  
0V  
VREF_ADC - 1LSB  
Figure 75. ADC Offset and Gain Error  
34  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117  
 
PGA112, PGA113  
PGA116, PGA117  
www.ti.com ............................................................................................................................................ SBOS424BMARCH 2008REVISED SEPTEMBER 2008  
VREF90 = 0.9(VREF_ADC  
)
The 12-bit ADC example in Figure 76 illustrates the  
technique for calibrating an ADC using  
(5)  
a
VREF10 = 0.1(VREF_ADC  
)
(6)  
(7)  
(8)  
10%VREF_ADC and 90%VREF_ADC reading where  
VREF_ADC is the ADC reference voltage. Note that the  
10%VREF reading also contains a gain error because  
it is not a VIN = 0 calibration point. First, use the  
90%VREF and 10%VREF points to compute the  
measured gain error. The measured gain error is then  
used to remove the gain error from the 10%VREF  
reading, giving a measured 10%VREF number. The  
measured 10%VREF number is used to compute the  
measured offset error.  
VMEAS90 = ADCMEASUREMENT at VREF90  
VMEAS10 = ADCMEASUREMENT at VREF10  
2. Compute the ADC measured gain. The slope of  
the curve connecting the measured 10%VREF and  
measured 90%VREF point is computed and  
compared to the slope between the ideal  
10%VREF and ideal 90%VREF. This result is the  
measured gain.  
VMEAS90 - VMEAS10  
GMEAS  
=
VREF = +5V  
VREF90 - VREF10  
(9)  
Offset Error = +4LSB  
Gain Error = +6LSB  
0FFFh (4.99878V)  
(4.5114751443V)  
3. Compute the ADC measured offset. The  
measured offset is computed by taking the  
difference between the measured 10%VREF and  
the (ideal 10%VREF) × (measured gain).  
Transfer Function  
with Offset Error + Gain Error  
OMEAS = VMEAS10 - (VREF10 ´ GMEAS  
)
(10)  
4. Compute the calibrated ADC readings.  
VAD_MEAS = Any VIN ADCMEASUREMENT  
(11)  
V
AD_MEAS - OMEAS  
VADC_CAL  
=
GMEAS  
(12)  
(0.5056191443V)  
0000h (0V)  
Any ADC reading can therefore be calibrated by  
removing the gain error and offset error. The  
measured offset is subtracted from the ADC reading  
and then divided by the measured gain to give a  
corrected reading. If this calibration is performed on a  
timed basis, relative to the specific application, gain  
and offset error over temperature are also removed  
from the ADC reading by calibration.  
0V  
0.5V  
(0.1 ´ VREF_ADC  
4.5V  
(0.9 ´ VREF_ADC  
4.99878V  
(VREF_ADC - 1LSB)  
VIN  
)
)
Figure 76. 12-Bit Example of ADC Calibration for  
Gain and Offset Error  
The gain error and offset error in ADC readings can  
be calibrated by  
using 10%VREF_ADC and  
For example; given:  
90%VREF_ADC calibration points. Because the  
calibration is ratiometric to VREF_ADC, the exact value  
of VREF_ADC does not need to be known in the end  
application.  
12-Bit ADC  
ADC Gain Error = +6LSB  
ADC Offset Error = +4LSB  
ADC Reference (VREF_ADC) = +5V  
Temperature = +25°C  
Follow these steps to compute a calibrated ADC  
reading:  
1. Take the ADC reading at VIN = 90% × VREF and  
VIN = 10% × VREF. The ADC readings for  
10%VREF and 90%VREF are taken.  
Table 11 shows the resulting system accuracy.  
Table 11. Bits of System Accuracy(1) (to 0.5LSB)  
ADC ACCURACY WITHOUT  
ADC ACCURACY WITH PGA112  
CALIBRATION  
VIN  
CALIBRATION  
10%VREF_ADC  
90%VREF_ADC  
8.80 Bits  
12.80 Bits  
11.06 Bits  
7.77 Bits  
(1) Difference in maximum input offset voltage for VIN = 10%VREF_ADC and VIN = 90%VREF_ADC is the reason for different accuracies.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117  
 
 
PGA112, PGA113  
PGA116, PGA117  
SBOS424BMARCH 2008REVISED SEPTEMBER 2008 ............................................................................................................................................ www.ti.com  
APPLICATIONS: GENERAL-PURPOSE INPUT  
SCALING  
Table 12 summarizes the scaling resistor values for  
RA, RX, and RB for different ADC Ref voltages.  
VREF_ADC is the reference voltage used for the ADC  
connected to the PGA112/PGA113 output. It is  
assumed the ADC input range is 0V to VREF_ADC. The  
Bipolar Input to Single-Supply Scaling section gives  
the algorithm to compute resistor values for  
references not listed in Table 12. As a general  
guideline, RB should be chosen such that the input  
on-channel current multiplied by RB is less than or  
equal to the input offset voltage. This value ensures  
that the scaling network contributes no more error  
than the input offset voltage. Individual applications  
may require other design trade-offs.  
Figure 77 is an example application that  
demonstrates the flexibility of the PGA for  
general-purpose input scaling. VIN0 is a ±100mV input  
that is ac-coupled into CH0. The PGA112/PGA113 is  
powered from  
a +5V supply voltage, VS, and  
configured with the VREF pin connected to VS/2  
(+2.5V). VCH0 is the ±100mV input, level-shifted and  
centered on VS/2 (+2.5V). A gain of 20 is applied to  
CH0, and because of the PGA113 configuration, the  
output voltage at VOUT is ±2V centered on VS/2  
(+2.5V).  
CH1 is set to G = 1; through a resistive divider and  
scalar network, we can read ±5V or 0V. This setting  
provides bipolar to single-ended input scaling.  
VCH0  
VIN0  
+2.6V  
+2.5V  
+2.4V  
+100mV  
0
CA  
-100mV  
VOUT0  
VIN0  
VS  
PGA112  
PGA113  
+4.5V  
+2.5V  
+0.5V  
200mVPP  
(+5V)  
CH0  
CH1  
AVDD  
RA  
MUX  
DVDD  
VOUT  
RI  
G = 20  
VREF  
VOUT1  
RF  
+4.9625V  
+37.5mV  
VREF_ADC  
+
VS/2  
(+2.5V)  
-
RX  
G = 1  
RA  
RB  
VIN1  
Figure 77. General-Purpose Input Scaling  
36  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117  
 
PGA112, PGA113  
PGA116, PGA117  
www.ti.com ............................................................................................................................................ SBOS424BMARCH 2008REVISED SEPTEMBER 2008  
Table 12. Bipolar to Single-Ended Input Scaling(1)(2)  
VREF_ADC (V)  
VIN1 (V)  
–5  
0
CH1 INPUT  
0.047613  
1.247613  
2.447613  
0.050317  
1.250317  
2.450317  
0.058003  
1.498003  
2.938003  
0.059303  
1.499303  
2.939303  
0.082224  
2.048304  
4.014384  
0.086018  
2.052098  
4.018178  
0.093506  
2.493506  
4.893506  
0.095227  
2.495227  
4.895227  
RA (k)  
RX ()  
RB (k)  
2.5  
9.2  
4.81k  
10  
5
2.5  
–10  
0
3.16  
13.5  
4.02  
37  
2.4k  
5.76k  
2.87k  
7.87k  
3.92k  
965  
10  
10  
10  
10  
10  
10  
10  
10  
–5  
0
3
3
5
–10  
0
10  
–5  
0
4.096  
4.096  
5
5
–10  
0
6.49  
24  
10  
–5  
0
5
5
–10  
0
9.2  
4.81k  
10  
(1) Scaling is based on 0.02(VREF_ADC) to 0.98(VREF_ADC), using standard 0.1% resistor values.  
(2) Assumes symmetrical VIN and symmetrical scaling for CH1 input minimum and maximum.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117  
 
PGA112, PGA113  
PGA116, PGA117  
SBOS424BMARCH 2008REVISED SEPTEMBER 2008 ............................................................................................................................................ www.ti.com  
2 ´ RB ´ g  
1 - g  
Bipolar Input to Single-Supply Scaling  
RA =  
Note that this process assumes a symmetrical VIN1  
and that symmetrical scaling is used for CH1 input  
minimum and maximum values. The following steps  
give the algorithm to compute resistor values for  
references not listed in Table 12.  
2 ´ 10kW ´ 0.315789474  
1 - 0.315789474  
9.23077kW =  
d. RX can now be computed from the starting value  
of RB and the computed value for RA.  
RB ´ RA  
Step 1: Choose the following:  
a. VREF_ADC = 2.5V (ADC reference voltage)  
b. | VIN1 | = 5  
RX =  
RB + RA  
(magnitude of VIN, assuming scaling is for ±VIN1  
)
10kW ´ 9.23077kW  
4.81kW =  
10kW + 9.23077kW  
c. Choose RB as a standard resistor value. The  
input on-channel current multiplied by RB should  
be less than the input offset voltage, such that RB  
is not a major source of inaccuracy.  
+
VREF_ADC  
RX  
(2.5V)  
RB = 10k(select as a starting value for  
resistors)  
4.81kW  
RB  
10kW  
CH1 Input  
(2.447817V,  
0.0474093V)  
d. For the most negative VIN1  
,
choose the  
percentage (in decimal format) of VREF_ADC  
desired at the ADC input.  
VIN1  
RA  
(+5V, -5V)  
9.2kW  
kVO– = 0.02  
(CH1 input = kVO– × VREF_ADC when VIN1 = –VIN1  
)
e. For the most positive VIN1, choose the percentage  
(in decimal format) of VREF_ADC desired at the  
ADC input. Since this scaling is based on  
symmetry, kVO+ must be the same percentage  
away from VREF_ADC at the upper limit as at the  
lower limit where kVO– is computed.  
Figure 78. Bipolar to Single-Ended Input  
Algorithm  
APPLICATIONS: HIGH GAIN/WIDE  
BANDWIDTH CONSIDERATIONS  
As a result of the combination of wide bandwidth and  
high gain capability of the PGA112/PGA113 and  
PGA116/PGA117, there are several printed circuit  
board (PCB) design and system recommendations to  
consider for optimum application performance.  
kVO+ = 1 – kVO–  
kVO+ = 1 – 0.02 = 0.98  
(CH1 input = kVO+ × VREF_ADC when VIN1 = +VIN1  
)
1. Power-supply  
power-supply pin separately. Use a ceramic  
capacitor connected directly from the  
bypass.  
Bypass  
each  
Step 2: Compute the following:  
a. To simplify analysis, create one constant called  
kVO  
kVO = kVO+ - kVO-  
.
power-supply pin to the ground pin of the IC on  
the same PCB plane. Vias can then be used to  
connect to ground and voltage planes. This  
configuration keeps parasitic inductive paths out  
of the local bypass for the PGA. Good analog  
design practice dictates the use of a large value  
tantalum bypass capacitor on the PCB for each  
respective voltage.  
0.96 = 0.98 - 0.02  
b. A constant, g, is created to simplify resistor value  
computations.  
kVO ´ VREF_ADC  
g =  
2 ´ |VIN1| - kVO ´ VREF_ADC  
0.96 ´ 2.5  
0.315789474 =  
2 ´ 5 - 0.96 ´ 2.5  
c. RA is now selected from the starting value of RB  
and the g constant.  
38  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117  
PGA112, PGA113  
PGA116, PGA117  
www.ti.com ............................................................................................................................................ SBOS424BMARCH 2008REVISED SEPTEMBER 2008  
2. Signal trace routing. Keep VOUT and other low  
impedance traces away from MUX channel inputs  
that are high impedance. Poor signal routing can  
cause positive feedback, unwanted oscillations,  
or excessive overshoot and ringing on  
step-changing signals. If the input signals are  
particularly noisy, separate MUX input channels  
with guard traces on either side of the signal  
traces. Connect the guard traces to ground near  
the PGA and at the signal entry point into the  
PCB. On multilayer PCBs, ensure that there are  
no parallel traces near MUX input traces on  
adjacent layers; capacitive coupling from other  
layers can be a problem. Use ground planes to  
isolate MUX input signal traces from signal traces  
on other layers.  
Bypass capacitors greater than 100pF are  
recommended. Lower impedances and a bypass  
capacitor placed directly at the input MUX  
channels keep crosstalk between channels to a  
minimum as a result of parasitic capacitive  
coupling from adjacent PCB traces and pin-to-pin  
capacitance.  
APPLICATIONS: DRIVING/INTERFACING TO  
ADCS  
CDAC SAR ADCs contain an input sampling  
capacitor, CSH, to sample the input signal during a  
sample period as shown in Figure 79. After the  
sample period, CSH is removed from the input signal.  
Subsequent comparisons of the charge stored on CSH  
are performed during the ADC conversion process.  
To achieve optimal op amp stability, input signal  
settling, and the demands for charge from the input  
signal conditioning circuitry, most ADC applications  
are optimized by the use of a resistor (RFILT) and  
capacitor (CFILT) filter placed between the op amp  
output and ADC input. For the PGA112/PGA113, or  
Additionally, group and route the digital signals  
into the PGA as far away as possible from the  
analog MUX input signals. Most digital signals  
are fast rise/fall time signals with low-impedance  
drive capability that can easily couple into the  
high-impedance inputs of the input MUX  
channels. This coupling can create unwanted  
the PGA116/PGA117, setting CFILT = 1nF and RFILT  
=
noise that gains up to VOUT  
.
100yields optimum system performance for  
sampling converters operating at speeds up to  
500kHz, depending upon the application settling time  
and accuracy requirements.  
3. Input MUX channels and source impedance.  
Input MUX channels are high-impedance; when  
combined with high gain, the channels can pick  
up unwanted noise. Keep the input signal  
sources low-impedance (< 10k). Also, consider  
bypassing input MUX channels with a ceramic  
bypass capacitor directly at the MUX input pin.  
+3V  
+5V  
CBYPASS  
CBYPASS  
0.1mF  
CBYPASS  
0.1mF  
0.1mF  
AVDD  
1
DVDD  
10  
PGA112  
PGA113  
RFILT  
3
2
(MSOP-10)  
MUX  
VCAL/CH0  
CH1  
100W  
5
VOUT  
Output  
Stage  
CSH  
40pF  
CFILT  
CAL1  
10kW  
80kW  
(1nF)  
RF  
CDAC SAR  
ADC  
G = 1  
0.9VCAL  
0.1VCAL  
CAL2  
CAL3  
CAL4  
VREF  
RI  
7
8
9
SCLK  
DIO  
CS  
SPI  
Interface  
CAL2/3  
10kW  
6
4
12-Bit Settling ® 500kHz  
16-Bit Settling ® 300kHz  
GND  
VREF  
Figure 79. Driving/Interfacing to ADCs  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117  
 
PGA112, PGA113  
PGA116, PGA117  
SBOS424BMARCH 2008REVISED SEPTEMBER 2008 ............................................................................................................................................ www.ti.com  
POWER SUPPLIES  
At initial power-on, the state of the PGA is G = 1 and  
Channel 0 active. CAUTION: For most applications,  
set AVDD DVDD to prevent VOUT from driving  
current into AVDD and raising the voltage level of  
Figure 80 shows a typical mixed-supply voltage  
system where the analog supply, AVDD, is +5V and  
the digital supply voltage, DVDD, is +3V. The analog  
output stage of the PGA and the SPI interface digital  
AVDD  
.
circuitry are both powered from DVDD  
.
When  
SHUTDOWN AND POWER-ON-RESET (POR)  
considering the power required for DVDD, use the  
Electrical Characteristics table and add any load  
current anticipated on VOUT; this load current must be  
provided by DVDD. This split-supply architecture  
The PGA112/PGA113 have a software shutdown  
mode, and the PGA116/PGA117 offer both  
hardware and software shutdown mode. When the  
PGA is shut down, it goes into a low-power standby  
mode. The Electrical Characteristics table details the  
current draw in shutdown mode with and without the  
SPI interface being clocked. In shutdown mode, RF  
a
ensures  
compatible  
logic  
levels  
with  
the  
microcontroller. It also ensures that the PGA output  
cannot run the input for the onboard ADC into an  
overvoltage condition; this condition could cause  
device latch-up and system lock-up, and require  
power-supply sequencing. Each supply pin should be  
individually bypassed with a 0.1µF ceramic capacitor  
directly at the device to ground. If there is only one  
power supply in the system, AVDD and DVDD can both  
be connected to the same supply; however, it is  
recommended to use individual bypass capacitors  
directly at each respective supply pin to a single point  
ground. VOUT is diode-clamped to AVDD (as shown in  
Figure 80); therefore, set DVDD less than or equal to  
AVDD + 0.3V. DVDD and AVDD must be within the  
operating voltage range of +2.2V to +5.5V.  
and RI remain connected between VOUT and VREF  
.
When DVDD is less than 1.6V, the digital interface is  
disabled and the channel and gain selections are  
held to the respective POR states of Gain = 1 and  
Channel = VCAL/CH0. When DVDD is above 1.8V, the  
digital interface is enabled and the POR gain and  
channel states remain unchanged until a valid SPI  
communication is received.  
+3V  
+5V  
AVDD  
DVDD  
1
10  
PGA112  
PGA113  
MSP430  
Microcontroller  
(MSOP-10)  
3
2
MUX  
VCAL/CH0  
CH1  
5
VOUT  
Output  
Stage  
ADC  
CAL1  
10kW  
80kW  
RF  
G = 1  
0.9VCAL  
0.1VCAL  
CAL2  
CAL3  
CAL4  
VREF  
RI  
7
8
9
SCLK  
DIO  
CS  
SPI  
Interface  
CAL2/3  
10kW  
6
4
GND  
VREF  
Figure 80. Split Power-Supply Architecture: AVDD DVDD  
40  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
13-Nov-2008  
PACKAGING INFORMATION  
Orderable Device  
PGA112AIDGSR  
PGA112AIDGSRG4  
PGA112AIDGST  
PGA112AIDGSTG4  
PGA113AIDGSR  
PGA113AIDGSRG4  
PGA113AIDGST  
PGA113AIDGSTG4  
PGA116AIPW  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
MSOP  
DGS  
10  
10  
10  
10  
10  
10  
10  
10  
20  
20  
20  
20  
20  
20  
20  
20  
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
MSOP  
MSOP  
MSOP  
MSOP  
MSOP  
MSOP  
MSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
DGS  
DGS  
DGS  
DGS  
DGS  
DGS  
DGS  
PW  
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
70 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
PGA116AIPWG4  
PGA116AIPWR  
PW  
70 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
PW  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
PGA116AIPWRG4  
PGA117AIPW  
PW  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
PW  
70 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
PGA117AIPWG4  
PGA117AIPWR  
PW  
70 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
PW  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
PGA117AIPWRG4  
PW  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
13-Nov-2008  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Jan-2009  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0 (mm)  
B0 (mm)  
K0 (mm)  
P1  
W
Pin1  
Diameter Width  
(mm) W1 (mm)  
(mm) (mm) Quadrant  
PGA112AIDGSR  
PGA112AIDGST  
PGA113AIDGSR  
PGA113AIDGST  
PGA116AIPWR  
PGA117AIPWR  
MSOP  
MSOP  
MSOP  
MSOP  
TSSOP  
TSSOP  
DGS  
DGS  
DGS  
DGS  
PW  
10  
10  
10  
10  
20  
20  
2500  
250  
330.0  
180.0  
330.0  
180.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
16.4  
16.4  
5.3  
5.3  
3.3  
3.3  
3.3  
3.3  
7.1  
7.1  
1.3  
1.3  
1.3  
1.3  
1.6  
1.6  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
16.0  
16.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
2500  
250  
5.3  
5.3  
2000  
2000  
6.95  
6.95  
PW  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Jan-2009  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
PGA112AIDGSR  
PGA112AIDGST  
PGA113AIDGSR  
PGA113AIDGST  
PGA116AIPWR  
PGA117AIPWR  
MSOP  
MSOP  
MSOP  
MSOP  
TSSOP  
TSSOP  
DGS  
DGS  
DGS  
DGS  
PW  
10  
10  
10  
10  
20  
20  
2500  
250  
370.0  
195.0  
370.0  
195.0  
346.0  
346.0  
355.0  
200.0  
355.0  
200.0  
346.0  
346.0  
55.0  
45.0  
55.0  
45.0  
33.0  
33.0  
2500  
250  
2000  
2000  
PW  
Pack Materials-Page 2  
MECHANICAL DATA  
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Amplifiers  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Military  
Optical Networking  
Security  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
www.ti.com/audio  
Data Converters  
DLP® Products  
DSP  
Clocks and Timers  
Interface  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Logic  
Power Mgmt  
Microcontrollers  
RFID  
Telephony  
Video & Imaging  
Wireless  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2009, Texas Instruments Incorporated  

相关型号:

PGA112M622C1-1176F

IC Socket, PGA112, 112 Contact(s), 2.54mm Term Pitch , 0.1inch Row Spacing
AMPHENOL

PGA112M623C1-1176F

IC Socket, PGA112, 112 Contact(s), 2.54mm Term Pitch , 0.1inch Row Spacing
AMPHENOL

PGA112_08

Single-Supply, Single-Ended, Precision Programmable Gain Amplifier with MUX
TI

PGA112_0809

Zero-Drift,PROGRAMMABLE GAIN AMPLIFIER with MUX
TI

PGA112_0811

Zerø-Drift PROGRAMMABLE GAIN AMPLIFIER with MUX
TI

PGA113

Zerø-Drift PROGRAMMABLE GAIN AMPLIFIER with MUX
TI

PGA113AIDGSR

Zero-Drift,PROGRAMMABLE GAIN AMPLIFIER with MUX
TI

PGA113AIDGSRG4

Single-Supply, Single-Ended, Precision Programmable Gain Amplifier with MUX
TI

PGA113AIDGST

Single-Supply, Single-Ended, Precision Programmable Gain Amplifier with MUX
TI

PGA113AIDGSTG4

Zero-Drift,PROGRAMMABLE GAIN AMPLIFIER with MUX
TI

PGA114H622C1-1340F

IC Socket, PGA114, 114 Contact(s), 2.54mm Term Pitch , 0.1inch Row Spacing
AMPHENOL

PGA114H623C1-1340F

IC Socket, PGA114, 114 Contact(s), 2.54mm Term Pitch, 0.1inch Row Spacing,
AMPHENOL