PCM1822 [TI]

汽车类、117dB SNR、192kHz、低功耗、硬件控制的音频 ADC;
PCM1822
型号: PCM1822
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类、117dB SNR、192kHz、低功耗、硬件控制的音频 ADC

文件: 总40页 (文件大小:2829K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PCM1822  
ZHCSQ26 MAY 2022  
PCM1822 立体声通道、32 位、192 kHzBurr-BrownTM ADC  
1 特性  
3 说明  
• 立体声高性ADC  
PCM1822 是一款高性能、Burr-Brown音频模数转换  
(ADC)可支持最多两个模拟通道的同步采样。该  
器件支持单端和差分线路和麦克风输入具有 1VRMS  
满量程信号集成了锁相(PLL) 和直流滤除高通滤波  
(HPF)并支持高达 192 kHz 的采样率。该器件支  
持时分多路复用 (TDM) I2S 音频格式且硬件引脚  
电平可选。此外PCM1822 还支持主从模式选择从  
而实现音频总线接口操作。这些集成的高性能特性以  
及采用 3.3V 单电源供电的功能使该器件非常适用于  
远场麦克风录音应用中对成本敏感的空间受限型音频系  
统。  
2 通道模拟麦克风输入或线路输入  
ADC 线路和麦克风差分和单端输入性能:  
PCM1822 动态范围:  
117 dB启用动态范围增强器  
111 dB禁用动态范围增强器  
THD+N-95 dB  
1VRMS 满量程输入  
ADC 采样(fS) = 8 kHz 192 kHz  
• 硬件引脚控制配置  
• 线性相位或低延迟滤波器可选  
• 灵活的音频串行数据接口:  
– 主或从接口可选  
32 位、2 TDM  
32 位、2 I2S  
• 音频时钟丢失时自动断电  
• 集成高性能音PLL  
• 单电源运行3.3V  
PCM1822 额定工作温度范围为 –40°C 至  
+125°C并且采20 WQFN 封装。  
器件信息(1)  
封装尺寸标称值)  
器件型号  
PCM1822  
封装  
3.00mm × 3.00mm间距  
0.5mm  
WQFN (20)  
I/O 电源运行3.3V 1.8V  
3.3V AVDD 电源电压下的功耗:  
(1) 如需了解所有可用封装请参阅数据表末尾的封装选项附录。  
16 kHz 采样率下19.6 mW/通道  
48 kHz 采样率下21.3 mW/通道  
2 应用  
SDOUT  
BCLK  
Digital  
Decimation  
Filters  
IN1P  
IN1M  
ADC  
Channel-1  
Audio Serial  
Interface  
智能扬声器  
DVD 录像机和播放器  
AV 接收机  
视频会议系统  
IP 网络摄像头  
with High Pass  
Filter (HPF)  
(TDM, I2S)  
IN2P  
ADC  
Channel-2  
IN2M  
FSYNC  
Clock and Timing  
Controller with  
Integrated PLL  
Regulators, Current Bias  
and Voltage Reference  
简化版方框图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBASAK0  
 
 
 
PCM1822  
ZHCSQ26 MAY 2022  
www.ti.com.cn  
Table of Contents  
8.3 Feature Description...................................................14  
8.4 Device Functional Modes..........................................28  
9 Application and Implementation..................................29  
9.1 Application Information............................................. 29  
9.2 Typical Application.................................................... 29  
10 Power Supply Recommendations..............................32  
11 Layout...........................................................................33  
11.1 Layout Guidelines................................................... 33  
11.2 Layout Example...................................................... 33  
12 Device and Documentation Support..........................34  
12.1 接收文档更新通知................................................... 34  
12.2 支持资源..................................................................34  
12.3 Trademarks.............................................................34  
12.4 Electrostatic Discharge Caution..............................34  
12.5 术语表..................................................................... 34  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings........................................ 5  
7.2 ESD Ratings............................................................... 5  
7.3 Recommended Operating Conditions.........................5  
7.4 Thermal Information....................................................6  
7.5 Electrical Characteristics.............................................6  
7.6 Timing Requirements: TDM or I2S Interface...............7  
7.7 Switching Characteristics: TDM or I2S Interface.........8  
7.8 Typical Characteristics................................................9  
8 Detailed Description......................................................13  
8.1 Overview...................................................................13  
8.2 Functional Block Diagram.........................................13  
Information.................................................................... 34  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
4-1.  
Date  
Revision  
Notes  
May 2022  
*
Initial release  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: PCM1822  
 
PCM1822  
ZHCSQ26 MAY 2022  
www.ti.com.cn  
5 Device Comparison Table  
FEATURE  
Control interface  
PCM1820  
PCM1821  
Pin control  
TDM or I2S  
PCM1822  
TLV320ADC3120  
TLV320ADC5120 TLV320ADC6120  
I2C  
Digital audio serial interface  
Audio analog channel  
TDM or I2S or left-justified (LJ)  
2
Digital microphone channel  
Not available  
N/A  
4
Programmable MICBIAS  
voltage  
Yes  
Dynamic range (DRE  
disabled)  
113 dB  
106 dB  
111dB  
106 dB  
108 dB  
113 dB  
Dynamic range (DRE enabled)  
ADC SNR with DRE  
Input Voltage  
123 dB  
123 dB  
Not available  
N/A  
117dB  
117dB  
1Vrms  
Not available  
N/A  
120 dB  
120 dB  
2Vrms  
123 dB  
123 dB  
2Vrms  
Input Type  
Differential  
Differential/Single-Ended  
2.5 kΩ, 10 kΩ, 20 kΩ  
Input impedance  
Compatibility  
2.5 kΩ  
10 kΩ  
2.5 kΩ  
Pin-to-pin, package, drop-in replacements of each other  
Pin-to-pin, package, and control registers compatible; drop-in  
replacements of each other  
Package  
WQFN (RTE), 20-pin, 3.00 mm × 3.00 mm (0.5-mm pitch)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: PCM1822  
 
PCM1822  
ZHCSQ26 MAY 2022  
www.ti.com.cn  
6 Pin Configuration and Functions  
20  
VSS  
VSS  
15  
IN1P  
1
14  
13  
12  
11  
DREG  
MSZ  
MD0  
MD1  
IN1M  
IN2P  
IN2M  
2
3
4
Thermal Pad (VSS)  
5
VSS  
VSS  
10  
Not to scale  
6-1. RTE Package, 20-Pin WQFN With Exposed Thermal Pad, Top View  
6-1. Pin Functions  
PIN  
NAME  
TYPE  
DESCRIPTION  
NO.  
1
IN1P  
IN1M  
IN2P  
Analog input  
Analog input  
Analog input  
Analog input  
Analog Supply  
Digital output  
Digital I/O  
Analog input 1P pin.  
Analog input 1M pin.  
Analog input 2P pin.  
Analog input 2M pin.  
2
3
4
IN2M  
VSS  
5
Short this pin directly to the board ground plane.  
Audio serial data interface bus output.  
6
SDOUT  
BCLK  
FSYNC  
IOVDD  
VSS  
7
Audio serial data interface bus bit clock.  
8
Digital I/O  
Audio serial data interface bus frame synchronization signal.  
Digital I/O power supply (1.8 V or 3.3 V, nominal).  
Short this pin directly to the board ground plane.  
Device configuration mode select 1 pin.  
9
Digital supply  
Analog supply  
Digital input  
Digital input  
Digital input  
Digital supply  
Analog supply  
Analog supply  
Analog supply  
Analog  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
MD1  
MD0  
Device configuration mode select 0 pin.  
MSZ  
Audio interface bus master or slave select pin.  
Digital regulator output voltage for digital core supply (1.5 V, nominal).  
Short this pin directly to the board ground plane.  
Analog power (3.3 V, nominal).  
DREG  
VSS  
AVDD  
AREG  
VREF  
FMT0  
VSS  
Analog on-chip regulator output voltage for analog supply (1.8 V, nominal).  
Analog reference voltage filter output.  
Digital input  
Analog supply  
Audio interface format select pin referred to AVDD supply.  
Short this pin directly to the board ground plane.  
Thermal pad shorted to internal device ground. Short thermal pad directly to board  
ground plane.  
Thermal Pad (VSS)  
Ground supply  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: PCM1822  
 
PCM1822  
ZHCSQ26 MAY 2022  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over the operating ambient temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
40  
40  
65  
MAX  
UNIT  
AVDD to AVSS  
3.9  
Supply voltage  
AREG to AVSS  
2.0  
3.9  
V
IOVDD to VSS (thermal pad)  
AVSS to VSS (thermal pad)  
Analog input pins voltage to AVSS  
Digital input pins voltage to VSS (thermal pad)  
Operating ambient, TA  
Ground voltage differences  
Analog input voltage  
Digital input voltage  
0.3  
V
V
V
AVDD + 0.3  
IOVDD + 0.3  
125  
Temperature  
Junction, TJ  
150  
°C  
Storage, Tstg  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
MIN  
NOM  
MAX  
UNIT  
POWER  
AVDD,  
Analog supply voltage AVDD to AVSS (AREG is generated using onchip regulator) -  
AVDD 3.3-V operation  
3.0  
3.3  
3.6  
V
V
AREG(1)  
IO supply voltage to VSS (thermal pad) - IOVDD 3.3-V operation  
IO supply voltage to VSS (thermal pad) - IOVDD 1.8-V operation  
3.0  
3.3  
1.8  
3.6  
IOVDD  
1.65  
1.95  
INPUTS  
Analog input pins and FMT0 voltage to VSS  
0
0
AVDD  
V
V
Digital input pins voltage(except FMT0) to VSS (thermal pad)  
IOVDD  
TEMPERATURE  
TA  
Operating ambient temperature  
125  
°C  
40  
OTHERS  
Digital input pin used as MCLK input clock frequency  
Digital output load capacitance  
36.864  
50  
MHz  
pF  
CL  
20  
(1) AVSS and VSS (thermal pad): all ground pins must be tied together and must not differ in voltage by more than 0.2 V.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: PCM1822  
 
 
 
 
 
 
 
 
PCM1822  
ZHCSQ26 MAY 2022  
www.ti.com.cn  
UNIT  
7.4 Thermal Information  
PCM182x  
RTE (WQFN)  
20 PINS  
55.9  
THERMAL METRIC(1)  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
33.1  
23.4  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.6  
ψJT  
23.3  
ψJB  
RθJC(bot)  
16.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, fIN = 1-kHz sinusoidal signal, fS = 48 kHz, 32-bit audio data, BCLK = 256 × fS,  
TDM slave mode (unless otherwise noted)  
PARAMETER  
ADC CONFIGURATION  
AC input impedance  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Input pins INxP or INxM  
2.5  
kΩ  
ADC PERFORMANCE FOR LINE, MICROPHONE INPUT RECORDING : AVDD 3.3-V OPERATION  
Full-scale AC signal  
voltage Differential/Single  
Ended  
AC-coupled input  
1
VRMS  
IN1 differential/single-ended input selected and AC  
signal shorted to ground, DRE enabled (DRE_LVL =  
36 dB, DRE_MAXGAIN = 18 dB)  
110  
105  
117  
111  
117  
111  
Signal-to-noise ratio, A-  
weighted(1) (2)  
SNR  
DR  
dB  
IN1 differential/single-ended input selected and AC  
signal shorted to ground, DRE disabled  
IN1 differential/single-ended input selected and 60-dB  
full-scale AC signal input, DRE enabled (DRE_LVL = –  
36 dB, DRE_MAXGAIN = 18 dB)  
Dynamic range, A-  
weighted(2)  
dB  
dB  
IN1 differential/single-ended input selected and 60-dB  
full-scale AC signal input, DRE disabled  
IN1 differential/single-ended input selected and 1-dB  
full-scale AC signal input, DRE enabled (DRE_LVL =  
36 dB, DRE_MAXGAIN = 18 dB)  
95  
95  
80  
Total harmonic distortion(2)  
THD+N  
(3)  
IN1 differential/single-ended input selected and 1-dB  
full-scale AC signal input, DRE disabled  
ADC OTHER PARAMETERS  
Output data sample rate  
7.35  
192  
32  
kHz  
Bits  
Output data sample word  
length  
1-dB full-scale AC-signal input to non measurement  
channel  
Interchannel isolation  
dB  
124  
Interchannel gain mismatch  
Gain drift(4)  
0.1  
50  
dB  
6-dB full-scale AC-signal input  
Across temperature range -40°C to 125°C  
ppm/°C  
Interchannel phase  
mismatch  
1-kHz sinusoidal signal  
0.02  
0.0005  
102  
Degrees  
Degrees/°C  
dB  
1-kHz sinusoidal signal, across temperature range -40°C  
to 125°C  
Phase drift(5)  
Power-supply rejection  
ratio  
100-mVPP, 1-kHz sinusoidal signal on AVDD, differential  
input selected, 0-dB channel gain  
PSRR  
Common-mode rejection  
ratio  
Differential microphone input selected, 100-mVPP, 1-kHz  
signal on both pins and measure level at output  
CMRR  
45  
dB  
DIGITAL I/O  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: PCM1822  
 
 
 
PCM1822  
ZHCSQ26 MAY 2022  
www.ti.com.cn  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, fIN = 1-kHz sinusoidal signal, fS = 48 kHz, 32-bit audio data, BCLK = 256 × fS,  
TDM slave mode (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
0.30 ×  
IOVDD  
All digital pins except FMT0, IOVDD 1.8-V operation  
0.3  
V
Low-level digital input logic  
voltage threshold  
VIL  
All digital pins except FMT0, IOVDD 3.3-V operation  
FMT0 Pin  
0.8  
0.8  
0.3  
0.3  
V
V
V
V
All digital pins except FMT0, IOVDD 1.8-V operation  
All digital pins except FMT0, IOVDD 3.3-V operation  
FMT0 Pin  
0.7 × IOVDD  
2.1  
IOVDD + 0.3  
IOVDD + 0.3  
AVDD + 0.3  
0.45  
High-level digital input logic  
voltage threshold  
VIH  
2.1  
All digital pins, IOL = 2 mA, IOVDD 1.8-V operation  
All digital pins, IOL = 2 mA, IOVDD 3.3-V operation  
Low-level digital output  
voltage  
VOL  
0.4  
IOVDD –  
All digital pins, IOH = 2 mA, IOVDD 1.8-V operation  
All digital pins, IOH = 2 mA, IOVDD 3.3-V operation  
All digital pins, input = IOVDD  
High-level digital output  
voltage  
0.45  
VOH  
V
2.4  
Input logic-high leakage for  
digital inputs  
IIH  
0.1  
0.1  
5
5
5
µA  
µA  
pF  
5  
Input logic-low leakage for  
digital inputs  
IIL  
All digital pins, input = 0 V  
All digital pins  
5  
Input capacitance for digital  
inputs  
CIN  
Pulldown resistance for  
digital I/O pins when  
asserted on  
RPD  
20  
kΩ  
TYPICAL SUPPLY CURRENT CONSUMPTION  
IAVDD  
AVDD = 3.3 V, internal AREG  
0.5  
0.5  
mA  
µA  
Current consumption with  
all Clocks disabled  
IIOVDD  
IIOVDD  
IAVDD  
All external clocks stopped, IOVDD = 3.3 V  
All external clocks stopped, IOVDD = 1.8 V  
AVDD = 3.3 V, internal AREG  
IOVDD = 3.3 V  
0.3  
Current consumption with  
ADC 2-channel operating  
at fS 16-kHz, BCLK = 256 ×  
fS and DRE disabled  
11.9  
0.05  
0.02  
12.9  
0.1  
IIOVDD  
IIOVDD  
IAVDD  
mA  
mA  
mA  
IOVDD = 1.8 V  
Current consumption with  
ADC 2-channel operating  
at fS 48-kHz, BCLK = 256 ×  
fS and DRE disabled  
AVDD = 3.3 V, internal AREG  
IOVDD = 3.3 V  
IIOVDD  
IIOVDD  
IAVDD  
IOVDD = 1.8 V  
0.05  
14  
Current consumption with  
ADC 2-channel operating  
at fS 48-kHz, BCLK = 256 ×  
fS and DRE enabled  
AVDD = 3.3 V, internal AREG  
IOVDD = 3.3 V  
IIOVDD  
IIOVDD  
0.1  
IOVDD = 1.8 V  
0.05  
(1) Ratio of output level with 1-kHz full-scale sine-wave input, to the output level with the AC signal input shorted to ground, measured A-  
weighted over a 20-Hz to 20-kHz bandwidth using an audio analyzer.  
(2) All performance measurements done with a 20-kHz, low-pass filter and, where noted, an A-weighted filter. Failure to use such a filter  
may result in higher THD and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter  
removes out-of-band noise, which, although not audible, may affect dynamic specification values.  
(3) For best distortion performance, use input AC-coupling capacitors with a low-voltage-coefficient.  
(4) Gain drift =gain_variation(in temperature range)/ typical gain value(gain at room temperature) / temperature range × 106 measured  
with gain in linear scale.  
(5) Phase drift =phase_deviation(in temperature range)/ (temperature range).  
7.6 Timing Requirements: TDM or I2S Interface  
at TA = 25°C, IOVDD = 3.3 V or 1.8 V and 20-pF load on all outputs (unless otherwise noted)  
MIN  
40  
25  
25  
8
NOM  
MAX  
UNIT  
ns  
t(BCLK)  
BCLK period  
tH(BCLK)  
tL(BCLK)  
BCLK high pulse duration (1)  
BCLK low pulse duration (1)  
FSYNC setup time  
FSYNC hold time  
ns  
ns  
tSU(FSYNC)  
tHLD(FSYNC)  
tr(BCLK)  
ns  
8
ns  
BCLK rise time  
10% - 90% rise time(2)  
10  
ns  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: PCM1822  
 
 
 
 
 
 
PCM1822  
ZHCSQ26 MAY 2022  
www.ti.com.cn  
at TA = 25°C, IOVDD = 3.3 V or 1.8 V and 20-pF load on all outputs (unless otherwise noted)  
MIN  
NOM  
MAX  
10  
UNIT  
tf(BCLK)  
BCLK fall time  
90% - 10% fall time(2)  
ns  
(1) The BCLK minimum high or low pulse duration can be relaxed to 14 ns (to meet the timing specifications), if the SDOUT data line is  
latched on the same BCLK edge polarity as the edge used by the device to transmit SDOUT data.  
(2) BCLK maximum rise and fall time can be relaxed to 13ns if BCLK frequency used in the system is below 20MHz. This can cause noise  
increase due to higher clock jitter.  
7.7 Switching Characteristics: TDM or I2S Interface  
at TA = 25°C, IOVDD = 3.3 V or 1.8 V and 20-pF load on all outputs (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
td(SDOUT-BCLK)  
td(SDOUT-FSYNC)  
BCLK to SDOUT delay  
50% of BCLK to 50% of SDOUT  
3
18  
ns  
FSYNC to SDOUT delay in TDM  
mode (for MSB data with  
TX_OFFSET = 0)  
50% of FSYNC to 50% of  
SDOUT  
18  
ns  
BCLK output clock frequency:  
master mode (1)  
f(BCLK)  
24.576  
MHz  
ns  
BCLK high pulse duration: master  
mode  
tH(BCLK)  
tL(BCLK)  
td(FSYNC)  
14  
14  
3
BCLK low pulse duration: master  
mode  
ns  
BCLK to FSYNC delay: master  
mode  
50% of BCLK to 50% of FSYNC  
18  
ns  
tr(BCLK)  
tf(BCLK)  
BCLK rise time: master mode  
BCLK fall time: master mode  
10% - 90% rise time  
90% - 10% fall time  
8
8
ns  
ns  
(1) The BCLK output clock frequency must be lower than 18.5 MHz (to meet the timing specifications), if the SDOUT data line is latched  
on the opposite BCLK edge polarity than the edge used by the device to transmit SDOUT data.  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: PCM1822  
 
 
 
 
PCM1822  
ZHCSQ26 MAY 2022  
www.ti.com.cn  
7.8 Typical Characteristics  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, fIN = 1-kHz sinusoidal signal, fS = 48 kHz, 32-bit audio data, BCLK = 256 × fS,  
TDM slave mode, PLL on, DRE_LVL = 36 dB, channel gain = 0 dB, and linear phase decimation filter (unless otherwise  
noted); all performance measurements are done with a 20-kHz, low-pass filter, and an A-weighted filter  
-60  
Channel-1 : DRE Enabled  
Channel-2 : DRE Enabled  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-130  
-115  
-100  
-85  
-70  
-55  
-40  
-25  
-10  
0
Input Amplitude (dB)  
THD+  
7-1. Differential Input: THD+N vs Input Amplitude  
7-2. Differential Input: THD+N vs Input Amplitude  
With DRE Enabled  
With DRE Disabled  
-60  
-60  
Channel-1 : DRE enabled  
Channel-2 : DRE enabled  
Channel-1 : DRE Disabled  
Channel-2 : DRE Disabled  
-70  
-80  
-70  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
-130  
20 30 4050 70 100  
200 300 500  
1000 2000  
5000 10000 20000  
20 30 4050 70 100  
200 300 500  
1000 2000  
5000 10000 20000  
Frequency (Hz)  
Frequency (Hz)  
7-3. Differential Input: DR vs Input Frequency  
7-4. Differential Input: DR vs Input Frequency  
With DRE Enabled  
With DRE Disabled  
-60  
20  
Channel-1  
Channel-2  
Channel-1  
Channel-2  
10  
-70  
-80  
0
-10  
-20  
-30  
-40  
-90  
-50  
-60  
-100  
-110  
-120  
-130  
-70  
-80  
-90  
-100  
-110  
-120  
20 30 50 70100 200300 500 1000 2000  
5000 1000020000  
100000  
Freq  
20 30 4050 70 100  
200 300 500  
1000 2000  
5000 10000 20000  
Frequency (Hz)  
Frequency (Hz)  
7-6. Differential Input: Frequency Response  
With a 12-dBr Input  
7-5. Differential Input: THD+N vs Input Frequency  
With a 1-dBr Input  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: PCM1822  
 
PCM1822  
ZHCSQ26 MAY 2022  
www.ti.com.cn  
7.8 Typical Characteristics (continued)  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, fIN = 1-kHz sinusoidal signal, fS = 48 kHz, 32-bit audio data, BCLK = 256 × fS,  
TDM slave mode, PLL on, DRE_LVL = 36 dB, channel gain = 0 dB, and linear phase decimation filter (unless otherwise  
noted); all performance measurements are done with a 20-kHz, low-pass filter, and an A-weighted filter  
-60  
0
-20  
Channel-1  
Channel-2  
Channel-1 : DRE enabled  
Channel-2 : DRE enabled  
-70  
-40  
-80  
-60  
-80  
-90  
-100  
-120  
-140  
-160  
-180  
-200  
-100  
-110  
-120  
-130  
20 30 4050 70 100  
200 300 500  
1000 2000  
5000 10000 20000  
20 30 4050 70 100  
200 300 500  
1000 2000  
5000 10000 20000  
Frequency (Hz)  
Frequency (Hz)  
7-7. Power-Supply Rejection Ratio vs  
7-8. Differential Input: FFT With Idle Input and DRE Enabled  
Ripple Frequency With a 100-mVPP Amplitude  
0
0
Channel-1 : DRE disabled  
Channel-1 : DRE enabled  
Channel-2 : DRE disabled  
Channel-2 : DRE enabled  
-20  
-20  
-40  
-60  
-40  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
-100  
-120  
-140  
-160  
-180  
-200  
20 30 4050 70 100  
200 300 500  
1000 2000  
5000 10000 20000  
20 30 4050 70 100  
200 300 500  
1000 2000  
5000 10000 20000  
Frequency (Hz)  
Frequency (Hz)  
7-9. Differential Input: FFT With Idle Input and DRE Disabled  
7-10. Differential Input: FFT With a 60-dBr Input and DRE  
Enabled  
0
0
Channel-1 : DRE disabled  
Channel-1 : DRE disabled  
Channel-2 : DRE disabled  
Channel-2 : DRE disabled  
-20  
-20  
-40  
-60  
-40  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
-100  
-120  
-140  
-160  
-180  
-200  
20 30 4050 70 100  
200 300 500  
1000 2000  
5000 10000 20000  
20 30 4050 70 100  
200 300 500  
1000 2000  
5000 10000 20000  
Frequency (Hz)  
Frequency (Hz)  
7-11. Differential Input: FFT With a 60-dBr Input and DRE  
7-12. Differential Input: FFT With a 1-dBr Input  
Disabled  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: PCM1822  
PCM1822  
ZHCSQ26 MAY 2022  
www.ti.com.cn  
7.8 Typical Characteristics (continued)  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, fIN = 1-kHz sinusoidal signal, fS = 48 kHz, 32-bit audio data, BCLK = 256 × fS,  
TDM slave mode, PLL on, DRE_LVL = 36 dB, channel gain = 0 dB, and linear phase decimation filter (unless otherwise  
noted); all performance measurements are done with a 20-kHz, low-pass filter, and an A-weighted filter  
-60  
-60  
Channel-1 : DRE Disabled  
Channel-2 : DRE Disabled  
Channel-1 : DRE enabled  
Channel-2 : DRE enabled  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
-130  
-130  
-115  
-100  
-85  
-70  
-55  
-40  
-25  
-10  
0
20 30 4050 70 100  
200 300 500  
1000 2000  
5000 10000 20000  
Input Amplitude (dB)  
THD+  
Frequency (Hz)  
7-13. Single-Ended Input: THD+N vs Input Amplitude  
7-14. Single-ended Input: DR vs Input Frequency  
With DRE Disabled  
With DRE Enabled  
-60  
-60  
Channel-1 : DRE Disabled  
Channel-2 : DRE Disabled  
Channel-1  
Channel-2  
-70  
-80  
-70  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
-130  
20 30 4050 70 100  
200 300 500  
1000 2000  
5000 10000 20000  
20 30 4050 70 100  
200 300 500  
1000 2000  
5000 10000 20000  
Frequency (Hz)  
Frequency (Hz)  
7-15. Single-Ended Input: DR vs Input Frequency  
7-16. Single-Ended Input: THD+N vs Input Frequency  
With a 1-dBr Input  
With DRE Disabled  
20  
0
Channel-1  
Channel-2  
Channel-1 : DRE enabled  
Channel-2 : DRE enabled  
10  
-20  
0
-10  
-40  
-60  
-20  
-30  
-80  
-40  
-50  
-100  
-120  
-140  
-160  
-180  
-200  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
20 30 50 70100 200300 500 1000 2000  
5000 1000020000  
Frequency (Hz)  
100000  
Freq  
20 30 4050 70 100  
200 300 500  
1000 2000  
5000 10000 20000  
Frequency (Hz)  
7-17. Single-ended Input: Frequency Response  
With a 12-dBr Input  
7-18. Single-ended Input: FFT With Idle Input and DRE  
Enabled  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: PCM1822  
PCM1822  
ZHCSQ26 MAY 2022  
www.ti.com.cn  
7.8 Typical Characteristics (continued)  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, fIN = 1-kHz sinusoidal signal, fS = 48 kHz, 32-bit audio data, BCLK = 256 × fS,  
TDM slave mode, PLL on, DRE_LVL = 36 dB, channel gain = 0 dB, and linear phase decimation filter (unless otherwise  
noted); all performance measurements are done with a 20-kHz, low-pass filter, and an A-weighted filter  
0
-20  
0
-20  
Channel-1 : DRE disabled  
Channel-2 : DRE disabled  
Channel-1 : DRE enabled  
Channel-2 : DRE enabled  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
-100  
-120  
-140  
-160  
-180  
-200  
20 30 4050 70 100  
200 300 500  
1000 2000  
5000 10000 20000  
20 30 4050 70 100  
200 300 500  
1000 2000  
5000 10000 20000  
Frequency (Hz)  
Frequency (Hz)  
7-19. Single-ended Input: FFT With Idle Input and DRE  
7-20. Single-ended Input: FFT With a 60-dBr Input and DRE  
Disabled  
Enabled  
0
0
Channel-1 : DRE disabled  
Channel-1 : DRE disabled  
Channel-2 : DRE disabled  
Channel-2 : DRE disabled  
-20  
-20  
-40  
-60  
-40  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
-100  
-120  
-140  
-160  
-180  
-200  
20 30 4050 70 100  
200 300 500  
1000 2000  
5000 10000 20000  
20 30 4050 70 100  
200 300 500  
1000 2000  
5000 10000 20000  
Frequency (Hz)  
Frequency (Hz)  
7-21. Single-ended Input: FFT With a 60-dBr Input and DRE  
7-22. Single-ended Input: FFT With a 1-dBr Input  
Disabled  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: PCM1822  
PCM1822  
ZHCSQ26 MAY 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The PCM1822 is a high-performance, low-power, stereo-channel, audio analog-to-digital converter (ADC) with  
flexible audio interface control options. This device is intended for applications in voice-activated systems, AV  
receivers, tv and blu-ray players, professional microphones, audio conferencing, portable computing,  
communication, and entertainment applications. The high dynamic range of the device enables far-field audio  
recording with high fidelity. This device integrates a host of features that reduces cost, board space, and power  
consumption in space-constrained applications. The device features are controlled through hardware by pulling  
pins high or low with resistors or a controller general-purpose inut/output (GPIO). The PCM1822 also supports a  
power-down and reset function by means of halting the system clock.  
The PCM1822 consists of the following blocks and features:  
Stereo-channel, multibit, high-performance delta-sigma (ΔΣ) ADC  
Differential/Single-Ended audio inputs with a 1-VRMS full-scale signal  
Hardware pin control operation to select the device features  
Audio bus serial interface master or slave select option  
Audio bus serial interface format select option  
Slave mode supports the audio bus serial interface up to 192 kHz sampling  
Slave mode supports a dynamic range enhancer (DRE) with 117-dB dynamic range for the PCM1822  
Slave mode supports decimation filters with linear-phase or low-latency filter selection  
Master mode operation supported using a system clock of 256 × fS or 512 × fS  
Power-down function by means of halting the audio clocks  
Integrated high-pass filter (HPF) that removes the DC component of the input signal  
Integrated low-jitter phase-locked loop (PLL) supporting a wide range of system clocks  
Integrated digital and analog voltage regulators to support single-supply, 3.3-V operation  
8.2 Functional Block Diagram  
SDOUT  
BCLK  
Digital  
Decimation  
Filters  
ADC  
Channel-1  
IN1P  
IN1M  
Audio Serial  
Interface  
with High Pass  
Filter (HPF)  
(TDM, I2S)  
ADC  
Channel-2  
IN2P  
IN2M  
FSYNC  
Clock and Timing  
Controller with  
Integrated PLL  
Regulators, Current Bias  
and Voltage Reference  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: PCM1822  
 
 
 
PCM1822  
ZHCSQ26 MAY 2022  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Hardware Control  
The device supports simple hardware-pin-controlled options to select a specific mode of operation and audio  
interface for a given system. The MSZ, MD0, MD1, and FMT0 pins allow the device to be controlled by either  
pullup or pulldown resistors.  
8.3.2 Audio Serial Interfaces  
Digital audio data flows between the host processor and the PCM1822 on the digital audio serial interface (ASI),  
or audio bus. This highly flexible ASI bus includes a TDM mode for multichannel operation, support for the I2S,  
and the pin-selectable master-slave configurability for bus clock lines.  
The device supports an audio bus master or slave mode of operation using the hardware pin MSZ. In slave  
mode, FSYNC and BCLK work as input pins whereas in master mode, FSYNC and BCLK work as output pins  
generated by the device. 8-1 shows the master and slave mode selection using the MSZ pin.  
8-1. Master and Slave Mode Selection  
MSZ  
Low  
High  
MASTER AND SLAVE SELECTION  
Slave mode of operation  
Master ode of operation  
The bus protocol TDM or I2S format can be selected by using the FMT0 pin. As shown in 8-2, these modes  
are all most significant byte (MSB)-first, pulse code modulation (PCM) data format, with an output channel data  
word-length of 32 bits.  
8-2. Audio Serial Interface Format  
FMT0  
Low  
AUDIO SERIAL INTERFACE FORMAT  
2-channel output with inter IC sound (I2S) mode  
2-channel output with time division multiplexing (TDM) mode  
High  
8.3.2.1 Time Division Multiplexed Audio (TDM) Interface  
In TDM mode, also known as DSP mode, the rising edge of FSYNC starts the data transfer with the slot 0 data  
first. Immediately after the slot 0 data transmission, the remaining slot data are transmitted in order. FSYNC and  
each data bit (except the MSB of slot 0 when TX_OFFSET equals 0) is transmitted on the rising edge of BCLK.  
8-1 to 8-4 illustrate the protocol timing for TDM operation with various configurations.  
FSYNC  
BCLK  
SDOUT  
N-1 N-2  
2
1
0
N-1 N-2 N-3  
2
1
0
N-1 N-2 N-3  
2
1
0
N-1 N-2  
2
1
0
Ch2  
(Word Length : 32)  
Ch1  
(Word Length : 32)  
Ch3 to Ch4  
(Word Length : 32)  
Ch1  
(Word Length : 32)  
(n+1)th Sample  
nth Sample  
8-1. TDM Mode Protocol Timing (FMT0 = LOW) In Slave Mode  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: PCM1822  
 
 
 
 
PCM1822  
ZHCSQ26 MAY 2022  
www.ti.com.cn  
FSYNC  
BCLK  
SDOUT  
N-1 N-2  
2
1
0
N-1 N-2 N-3  
2
1
0
N-1 N-2  
2
1
0
Ch2  
(Word Length : 32)  
Ch1  
(Word Length : 32)  
Ch1  
(Word Length : 32)  
(n+1)th Sample  
nth Sample  
8-2. TDM Mode Protocol Timing (FMT0 = HIGH) In Slave Mode  
FSYNC  
BCLK  
SDOUT  
0
N-1 N-2 N-3  
2
1
0
N-1 N-2 N-3  
1
0
N-1 N-2 N-3  
2
1
0
2
1
0
N-1 N-2 N-3  
Ch2  
(Word Length : 32)  
Ch1  
(Word Length : 32)  
Ch1  
(Word Length : 32)  
(n+1)th Sample  
Ch3 to Ch4  
(Word Length : 32)  
nth Sample ( 128 BCLK Cycles)  
8-3. TDM Mode Protocol Timing (FMT0 = LOW) In Master Mode  
FSYNC  
BCLK  
SDOUT  
0
N-1 N-2 N-3  
2
1
0
N-1 N-2 N-3  
N-1 N-2 N-3  
2
1
0
N-1 N-2 N-3  
1
0
1
0
N-1  
Ch2  
(Word Length : 32)  
Ch1  
(Word Length : 32)  
Ch2  
(Word Length : 32)  
(n+1)th Sample (64 BCLK Cycles)  
Ch1  
(Word Length : 32)  
nth Sample (64 BCLK Cycles)  
8-4. TDM Mode Protocol Timing (FMT0 = HIGH) In Master Mode  
For proper operation of the audio bus in TDM mode, the number of bit clocks per frame must be greater than or  
equal to the number of active output channels times the 32-bits word length of the output channel data. The  
device transmits a zero data value on SDOUT for the extra unused bit clock cycles. The device supports FSYNC  
as a pulse with a 1-cycle-wide bit clock, but also supports multiples as well.  
8.3.2.2 Inter IC Sound (I2S) Interface  
The standard I2S protocol is defined for only two channels: left and right. In I2S mode, the MSB of the left slot 0  
is transmitted on the falling edge of BCLK in the second cycle after the falling edge of FSYNC. The MSB of the  
right slot 0 is transmitted on the falling edge of BCLK in the second cycle after the rising edge of FSYNC. Each  
subsequent data bit is transmitted on the falling edge of BCLK. In master mode, FSYNC is transmitted on the  
rising edge of BCLK. 8-5 and 8-6 show the protocol timing for I2S operation in slave and master mode of  
operation.  
FSYNC  
BCLK  
SDOUT  
N-1 N-2  
1
0
1
0
N-1 N-2  
1
0
N-1 N-2  
Left (Ch1)  
Slot-0  
(Word Length : 32)  
(n+1)th Sample  
Left (Ch1)  
Slot-0  
(Word Length : 32)  
nth Sample  
Right (Ch2)  
Slot-0  
(Word Length : 32)  
8-5. I2S Mode Protocol Timing in Slave Mode  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: PCM1822  
 
 
PCM1822  
ZHCSQ26 MAY 2022  
www.ti.com.cn  
FSYNC  
BCLK  
SDOUT  
1
0
N-1 N-2  
1
0
N-1 N-2  
1
0
N-1 N-2  
1
0
N-1 N-2  
1
0
Right (Ch2)  
Slot-0  
(Word Length : 32)  
Right (Ch2)  
Slot-0  
(Word Length : 32)  
Left (Ch1)  
Slot-0  
(Word Length : 32)  
Left (Ch1)  
Slot-0  
(Word Length : 32)  
nth Sample (64 BCLK Cycles)  
(n+1)th Sample (64 BCLK Cycles)  
8-6. I2S Protocol Timing In Master Mode  
For proper operation of the audio bus in I2S mode, the number of bit clocks per frame must be greater than or  
equal to the number of active output channels (including left and right slots) times the 32-bits word length of the  
output channel data. The device FSYNC low pulse must be a number of BCLK cycles wide that is greater than or  
equal to the number of active left slots times the 32-bits data word length. Similarly, the FSYNC high pulse must  
be a number of BCLK cycles wide that is greater than or equal to the number of active right slots times the 32-  
bits data word length. The device transmit zero data value on SDOUT for the extra unused bit clock cycles.  
8.3.3 Phase-Locked Loop (PLL) and Clock Generation  
The device uses an integrated, low-jitter, phase-locked loop (PLL) to generate internal clocks required for the  
ADC modulator and digital filter engine, as well as other control blocks.  
In slave mode of operation, the device supports the various output data sample rates (of the FSYNC signal  
frequency) and the BCLK to FSYNC ratio to configure all clock dividers, including the PLL configuration,  
internally without host programming. 8-3 and 8-4 list the supported FSYNC and BCLK frequencies.  
8-3. Supported FSYNC (Multiples or Submultiples of 48 kHz) and BCLK Frequencies  
BCLK (MHz)  
BCLK TO  
FSYNC RATIO  
FSYNC  
(8 kHz)  
FSYNC  
(16 kHz)  
FSYNC  
(24 kHz)  
FSYNC  
(32 kHz)  
FSYNC  
(48 kHz)  
FSYNC  
(96 kHz)  
FSYNC  
(192 kHz)  
16  
24  
Reserved  
Reserved  
0.256  
0.256  
0.384  
0.512  
0.768  
1.024  
1.536  
2.048  
3.072  
4.096  
6.144  
8.192  
0.384  
0.576  
0.768  
1.152  
1.536  
2.304  
3.072  
4.608  
6.144  
9.216  
12.288  
0.512  
0.768  
1.024  
1.536  
2.048  
3.072  
4.096  
6.144  
8.192  
12.288  
16.384  
0.768  
1.152  
1.536  
2.304  
3.072  
4.608  
6.144  
9.216  
12.288  
18.432  
24.576  
1.536  
2.304  
3.072  
4.608  
32  
3.072  
6.144  
48  
0.384  
4.608  
9.216  
64  
0.512  
6.144  
12.288  
96  
0.768  
9.216  
18.432  
128  
192  
256  
384  
512  
1.024  
12.288  
18.432  
24.576  
Reserved  
Reserved  
24.576  
1.536  
Reserved  
Reserved  
Reserved  
Reserved  
2.048  
3.072  
4.096  
8-4. Supported FSYNC (Multiples or Submultiples of 44.1 kHz) and BCLK Frequencies  
BCLK (MHz)  
BCLK TO  
FSYNC  
FSYNC  
FSYNC  
FSYNC  
FSYNC  
FSYNC  
FSYNC  
FSYNC RATIO  
(7.35 kHz)  
(14.7 kHz)  
(22.05 kHz)  
(29.4 kHz)  
(44.1 kHz)  
(88.2 kHz)  
(176.4 kHz)  
16  
24  
32  
48  
64  
96  
Reserved  
Reserved  
Reserved  
0.3528  
Reserved  
0.3528  
0.4704  
0.7056  
0.9408  
1.4112  
0.3528  
0.5292  
0.7056  
1.0584  
1.4112  
2.1168  
0.4704  
0.7056  
0.9408  
1.4112  
1.8816  
2.8224  
0.7056  
1.0584  
1.4112  
2.1168  
2.8224  
4.2336  
1.4112  
2.1168  
2.8224  
4.2336  
5.6448  
8.4672  
2.8224  
4.2336  
5.6448  
8.4672  
11.2896  
16.9344  
0.4704  
0.7056  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: PCM1822  
 
 
 
 
PCM1822  
ZHCSQ26 MAY 2022  
www.ti.com.cn  
8-4. Supported FSYNC (Multiples or Submultiples of 44.1 kHz) and BCLK Frequencies (continued)  
BCLK (MHz)  
BCLK TO  
FSYNC  
FSYNC  
FSYNC  
FSYNC  
FSYNC  
FSYNC  
FSYNC  
FSYNC RATIO  
(7.35 kHz)  
(14.7 kHz)  
(22.05 kHz)  
(29.4 kHz)  
(44.1 kHz)  
(88.2 kHz)  
(176.4 kHz)  
128  
192  
256  
384  
512  
0.9408  
1.4112  
1.8816  
2.8224  
3.7632  
1.8816  
2.8224  
3.7632  
5.6448  
7.5264  
2.8224  
4.2336  
5.6448  
8.4672  
11.2896  
3.7632  
5.6448  
7.5264  
11.2896  
15.0528  
5.6448  
8.4672  
11.2896  
16.9344  
22.5792  
Reserved  
Reserved  
Reserved  
Reserved  
11.2896  
16.9344  
22.5792  
22.5792  
Reserved  
Reserved  
In the master mode of operation, the device uses the MD1 pin (as the system clock, MCLK) as the reference  
input clock source with a supported system clock frequency option of either 256 × fS or 512 × fS as configured  
using the MD0 pin. Master mode supports fS rates of 44.1 kHz and 48 kHz. 8-5 shows the system clock  
selection for the master mode using the MD0 pin.  
8-5. System Clock Selection for the Master Mode  
MD0  
LOW  
HIGH  
SYSTEM CLOCK SELECTION (Valid for Master Mode Only)  
System clock with frequency 256 × fS connected to the MD1 pin as MCLK  
System clock with frequency 512 × fS connected to the MD1 pin as MCLK  
See 8-7 and 8-20 for the MD0 and MD1 pin function in the slave mode of operation.  
8.3.4 Input Channel Configurations  
The device consists of two pairs of analog input pins (INxP and INxM) as differential inputs for the recording  
channel. The device supports simultaneous recording of up to two channels using the high-performance stereo  
ADC. The input source for the analog pins can be from electret condenser analog microphones, micro electrical-  
mechanical system (MEMS) analog microphones, or line-in (auxiliary) inputs from the system board.  
The voice or audio signal inputs must be capacitively coupled (AC-coupled) to the device and, for best distortion  
performance, use the low-voltage coefficient capacitors for AC coupling. The typical input impedance for the  
PCM1822 is 2.5 kΩfor the INxP or INxM pins. The value of the coupling capacitor in AC-coupled mode must be  
chosen so that the high-pass filter formed by the coupling capacitor and the input impedance do not affect the  
signal content. Before proper recording can begin, this coupling capacitor must be charged up to the common-  
mode voltage at power-up. To enable quick charging, the device has a quick charge scheme to speed up the  
charging of the coupling capacitor at power-up. The default value of the quick-charge timing is set for a coupling  
capacitor up to 1 µF.  
8.3.5 Reference Voltage  
All audio data converters require a DC reference voltage. The PCM1822 achieves low-noise performance by  
internally generating a low-noise reference voltage. This reference voltage is generated using a band-gap circuit  
with high PSRR performance. This audio converter reference voltage must be filtered externally using a  
minimum 1-µF capacitor connected from the VREF pin to analog ground (AVSS). The value of this reference  
voltage, VREF, is set to 2.75 V, which in turn supports a 2-VRMS differential full-scale input to the device. The  
required minimum AVDD voltage for this VREF voltage is 3 V. Do not connect any external load to a VREF pin.  
8.3.6 Signal-Chain Processing  
The PCM1822 signal chain is comprised of very-low-noise, high-performance, and low-power analog blocks and  
highly flexible and programmable digital processing blocks. The high performance and flexibility combined with a  
compact package makes the PCM1822 optimized for a variety of end-equipments and applications that require  
multichannel audio capture. 8-7 shows a conceptual block diagram for the PCM1822 that highlights the  
various building blocks used in the signal chain, and how the blocks interact in the signal chain. The PCM1822  
does not support DRE.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: PCM1822  
 
PCM1822  
ZHCSQ26 MAY 2022  
www.ti.com.cn  
Output  
Channel  
Data to  
INP  
INM  
Configurable  
Decimation  
Filters  
DRE  
Amplifier  
HPF  
DRE  
ADC  
Audio Bus  
8-7. Signal-Chain Processing Flowchart  
The front-end dynamic range enhancer (DRE) gain amplifier in the PCM1822 is very low noise, with a 117-dB  
dynamic range performance. Along with a low-noise and low-distortion, multibit, delta-sigma ADC, the front-end  
DRE gain amplifier enables the PCM1822 to record a far-field audio signal with very high fidelity, both in quiet  
and loud environments. Moreover, the ADC architecture has inherent antialias filtering with a high rejection of  
out-of-band frequency noise around multiple modulator frequency components. Therefore, the device prevents  
noise from aliasing into the audio band during ADC sampling. Further on in the signal chain, an integrated, high-  
performance multistage digital decimation filter sharply cuts off any out-of-band frequency noise with high stop-  
band attenuation.  
The device supports an input signal bandwidth up to 80 kHz, which allows the high-frequency non-audio signal  
to be recorded by using a 176.4-kHz (or higher) sample rate.  
8.3.6.1 Digital High-Pass Filter  
To remove the DC offset component and attenuate the undesired low-frequency noise content in the record data,  
the device supports a fixed high-pass filter (HPF) with 3-dB cut-off frequency of 0.00025 × fS. The HPF is not a  
channel-independent filter but is globally applicable for all the ADC channels. This HPF is constructed using the  
first-order infinite impulse response (IIR) filter, and is efficient enough to filter out possible DC components of the  
signal. 8-6 shows the fixed 3-dB cutoff frequency value. 8-8 shows a frequency response plot for the  
HPF filter.  
8-6. HPF Cutoff Frequency Value  
-3-dB CUTTOFF FREQUENCY AT 16 kHz  
SAMPLE RATE  
-3-dB CUTTOFF FREQUENCY AT 48 kHz  
SAMPLE RATE  
-3-dB CUTOFF FREQUENCY VALUE  
0.00025 × fS  
4 Hz  
12 Hz  
3
0
-3  
-6  
-9  
-12  
-15  
-18  
-21  
-24  
HPF -3 dB Cutoff = 0.00025 ì fS  
5E-5  
0.0001  
0.0005  
0.001  
Normalized Frequency (1/fS)  
0.005  
0.01  
0.05  
DPlo  
8-8. HPF Filter Frequency Response Plot  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: PCM1822  
 
 
 
PCM1822  
ZHCSQ26 MAY 2022  
www.ti.com.cn  
8.3.6.2 Configurable Digital Decimation Filters  
The device record channel includes a high dynamic range, built-in digital decimation filter to process the  
oversampled data from the multibit delta-sigma (ΔΣ) modulator to generate digital data at the same Nyquist  
sampling rate as the FSYNC rate. The decimation filter can be chosen from two different types only in slave  
mode, depending on the required frequency response, group delay, and phase linearity requirements for the  
target application. The selection of the decimation filter option can be done by the MD0 pin. 8-7 shows the  
decimation filter mode selection for the record channel.  
8-7. Decimation Filter Mode Selection for the Record Channel  
MD0  
DECIMATION FILTER MODE SELECTION (Supported Only in Slave Mode)  
LOW  
Linear phase filters are used for the decimation in slave mode. For master mode, the device  
always use linear phase filters for the decimation.  
HIGH  
Low latency filters are used for the decimation in slave mode. For master mode, the device  
always use linear phase filters for the decimation.  
8.3.6.2.1 Linear Phase Filters  
The linear phase decimation filters are the default filters set by the device and can be used for all applications  
that require a perfect linear phase with zero-phase deviation within the pass-band specification of the filter. The  
filter performance specifications and various plots for all supported output sampling rates are listed in this  
section.  
8.3.6.2.1.1 Sampling Rate: 8 kHz or 7.35 kHz  
8-9 and 8-10 respectively show the magnitude response and the pass-band ripple for a decimation filter  
with a sampling rate of 8 kHz or 7.35 kHz. 8-8 lists the specifications for a decimation filter with an  
8-kHz or 7.35-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
D001  
D001  
8-9. Linear Phase Decimation Filter Magnitude 8-10. Linear Phase Decimation Filter Pass-Band  
Response Ripple  
8-8. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
0.05  
72.7  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.454 × fS  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.454 × fS  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
81.2  
17.1  
1/fS  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: PCM1822  
 
 
 
PCM1822  
ZHCSQ26 MAY 2022  
www.ti.com.cn  
8.3.6.2.1.2 Sampling Rate: 16 kHz or 14.7 kHz  
8-11 and 8-12 respectively show the magnitude response and the pass-band ripple for a decimation filter  
with a sampling rate of 16 kHz or 14.7 kHz. 8-9 lists the specifications for a decimation filter with an 16-kHz or  
14.7-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
D001  
D001  
8-11. Linear Phase Decimation Filter Magnitude 8-12. Linear Phase Decimation Filter Pass-Band  
Response Ripple  
8-9. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
0.05  
73.3  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.454 × fS  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.454 × fS  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
95.0  
15.7  
1/fS  
8.3.6.2.1.3 Sampling Rate: 24 kHz or 22.05 kHz  
8-13 and 8-14 respectively show the magnitude response and the pass-band ripple for a decimation filter  
with a sampling rate of 24 kHz or 22.05 kHz. 8-10 lists the specifications for a decimation filter with an 24-kHz  
or 22.05-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
D001  
D001  
8-13. Linear Phase Decimation Filter Magnitude 8-14. Linear Phase Decimation Filter Pass-Band  
Response Ripple  
8-10. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
0.05  
73.0  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.454 × fS  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
0.05  
dB  
Stop-band attenuation  
dB  
96.4  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: PCM1822  
 
 
 
 
PCM1822  
ZHCSQ26 MAY 2022  
www.ti.com.cn  
8-10. Linear Phase Decimation Filter Specifications (continued)  
PARAMETER  
Group delay or latency  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Frequency range is 0 to 0.454 × fS  
16.6  
1/fS  
8.3.6.2.1.4 Sampling Rate: 32 kHz or 29.4 kHz  
8-15 and 8-16 respectively show the magnitude response and the pass-band ripple for a decimation filter  
with a sampling rate of 32 kHz or 29.4 kHz. 8-11 lists the specifications for a decimation filter with an 32-kHz  
or 29.4-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
D001  
D001  
8-15. Linear Phase Decimation Filter Magnitude 8-16. Linear Phase Decimation Filter Pass-Band  
Response Ripple  
8-11. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
0.05  
73.7  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.454 × fS  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.454 × fS  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
107.2  
16.9  
1/fS  
8.3.6.2.1.5 Sampling Rate: 48 kHz or 44.1 kHz  
8-17 and 8-18 respectively show the magnitude response and the pass-band ripple for a decimation filter  
with a sampling rate of 48 kHz or 44.1 kHz. 8-12 lists the specifications for a decimation filter with an 48-kHz  
or 44.1-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
D001  
D001  
8-17. Linear Phase Decimation Filter Magnitude 8-18. Linear Phase Decimation Filter Pass-Band  
Response  
Ripple  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: PCM1822  
 
 
 
PCM1822  
ZHCSQ26 MAY 2022  
www.ti.com.cn  
8-12. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
0.05  
73.8  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.454 × fS  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.454 × fS  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
98.1  
17.1  
1/fS  
8.3.6.2.1.6 Sampling Rate: 96 kHz or 88.2 kHz  
8-19 and 8-20 respectively show the magnitude response and the pass-band ripple for a decimation filter  
with a sampling rate of 96 kHz or 88.2 kHz. 8-13 lists the specifications for a decimation filter with an 96-kHz  
or 88.2-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
D001  
D001  
8-19. Linear Phase Decimation Filter Magnitude 8-20. Linear Phase Decimation Filter Pass-Band  
Response Ripple  
8-13. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
0.05  
73.6  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.454 × fS  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.454 × fS  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
97.9  
17.1  
1/fS  
8.3.6.2.1.7 Sampling Rate: 192 kHz or 176.4 kHz  
8-21 and 8-22 respectively show the magnitude response and the pass-band ripple for a decimation filter  
with a sampling rate of 192 kHz or 176.4 kHz. 8-14 lists the specifications for a decimation filter with an 192-  
kHz or 176.4-kHz sampling rate.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: PCM1822  
 
 
 
PCM1822  
ZHCSQ26 MAY 2022  
www.ti.com.cn  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05  
0.1  
0.15  
0.2  
0.25  
Normalized Frequency (1/fS)  
0.3  
0.35  
0.4  
D001  
D001  
8-21. Linear Phase Decimation Filter Magnitude  
8-22. Linear Phase Decimation Filter Pass-Band  
Response  
Ripple  
8-14. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.3 × fS  
Frequency range is 0.473 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.3 × fS  
0.05  
dB  
0.05  
70.0  
Stop-band attenuation  
Group delay or latency  
dB  
111.0  
11.9  
1/fS  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: PCM1822  
 
 
PCM1822  
ZHCSQ26 MAY 2022  
www.ti.com.cn  
8.3.6.2.2 Low-Latency Filters  
For applications where low latency with minimal phase deviation (within the audio band) is critical, the low-  
latency decimation filters on the PCM1822 can be used. The device supports these filters with a group delay of  
approximately seven samples with an almost linear phase response within the 0.365 × fS frequency band. This  
section provides the filter performance specifications and various plots for all supported output sampling rates for  
the low-latency filters.  
8.3.6.2.2.1 Sampling Rate: 16 kHz or 14.7 kHz  
8-23 shows the magnitude response and 8-24 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 16 kHz or 14.7 kHz. 8-15 lists the specifications for a decimation filter  
with a 16-kHz or 14.7-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
D002  
8-24. Low-Latency Decimation Filter Pass-Band  
8-23. Low-Latency Decimation Filter Magnitude  
Ripple and Phase Deviation  
Response  
8-15. Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
dB  
Frequency range is 0 to 0.451 × fS  
Frequency range is 0.61 × fS onwards  
Frequency range is 0 to 0.363 × fS  
Frequency range is 0 to 0.363 × fS  
Frequency range is 0 to 0.363 × fS  
0.05  
0.05  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
87.3  
dB  
7.6  
1/fS  
0.022  
0.25  
1/fS  
0.022  
0.21  
Degrees  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: PCM1822  
 
 
PCM1822  
ZHCSQ26 MAY 2022  
www.ti.com.cn  
8.3.6.2.2.2 Sampling Rate: 24 kHz or 22.05 kHz  
8-25 shows the magnitude response and 8-26 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 24 kHz or 22.05 kHz. 8-16 lists the specifications for a decimation  
filter with a 24-kHz or 22.05-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
D002  
8-26. Low-Latency Decimation Filter Pass-Band  
8-25. Low-Latency Decimation Filter Magnitude  
Ripple and Phase Deviation  
Response  
8-16. Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
dB  
Frequency range is 0 to 0.459 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
0.01  
0.01  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
87.2  
dB  
7.5  
1/fS  
0.026  
0.30  
1/fS  
0.026  
0.26  
Degrees  
8.3.6.2.2.3 Sampling Rate: 32 kHz or 29.4 kHz  
8-27 shows the magnitude response and 8-28 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 32 kHz or 29.4 kHz. 8-17 lists the specifications for a decimation filter  
with a 32-kHz or 29.4-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
D002  
8-28. Low-Latency Decimation Filter Pass-Band  
8-27. Low-Latency Decimation Filter Magnitude  
Ripple and Phase Deviation  
Response  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: PCM1822  
 
 
 
PCM1822  
ZHCSQ26 MAY 2022  
www.ti.com.cn  
8-17. Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
MIN  
0.04  
88.3  
TYP  
MAX  
UNIT  
dB  
Frequency range is 0 to 0.457 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.368 × fS  
Frequency range is 0 to 0.368 × fS  
Frequency range is 0 to 0.368 × fS  
0.04  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
dB  
8.7  
1/fS  
0.026  
0.31  
1/fS  
0.026  
0.26  
Degrees  
8.3.6.2.2.4 Sampling Rate: 48 kHz or 44.1 kHz  
8-29 shows the magnitude response and 8-30 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 48 kHz or 44.1 kHz. 8-18 lists the specifications for a decimation filter  
with a 48-kHz or 44.1-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
D002  
8-30. Low-Latency Decimation Filter Pass-Band  
8-29. Low-Latency Decimation Filter Magnitude  
Ripple and Phase Deviation  
Response  
8-18. Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
dB  
Frequency range is 0 to 0.452 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
0.015  
0.015  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
86.4  
dB  
7.7  
1/fS  
0.027  
0.30  
1/fS  
0.027  
0.25  
Degrees  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: PCM1822  
 
 
 
PCM1822  
ZHCSQ26 MAY 2022  
www.ti.com.cn  
8.3.6.2.2.5 Sampling Rate: 96 kHz or 88.2 kHz  
8-31 shows the magnitude response and 8-32 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 96 kHz or 88.2 kHz. 8-19 lists the specifications for a decimation filter  
with a 96-kHz or 88.2-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
D002  
8-32. Low-Latency Decimation Filter Pass-Band  
8-31. Low-Latency Decimation Filter Magnitude  
Ripple and Phase Deviation  
Response  
8-19. Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
dB  
Frequency range is 0 to 0.466 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
0.04  
0.04  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
86.3  
dB  
7.7  
1/fS  
0.027  
0.30  
1/fS  
0.027  
0.26  
Degrees  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: PCM1822  
 
 
PCM1822  
ZHCSQ26 MAY 2022  
www.ti.com.cn  
8.3.7 Dynamic Range Enhancer (DRE)  
The device integrates an ultra-low noise front-end DRE gain amplifier with 117-dB dynamic range performance  
with a low-noise, low-distortion, multibit delta-sigma (ΔΣ) ADC with a 111-dB dynamic range. The dynamic  
range enhancer (DRE) is a digitally assisted algorithm to boost the overall channel performance. The DRE  
monitors the incoming signal amplitude and accordingly adjusts the internal DRE amplifier gain automatically.  
The DRE achieves a complete-channel dynamic range as high as 117 dB. At a system level, the DRE scheme  
enables far-field, high-fidelity recording of audio signals in very quiet environments and low-distortion recording  
in loud environments.  
The DRE can be enabled only in slave mode by driving the MD1 pin high. 8-20 shows the DRE selection for  
the record channel.  
8-20. DRE Selection for the Record Channel  
MD1  
Low  
High  
DRE SELECTION (Supported Only in Slave Mode)  
The DRE is disabled in slave mode. For master mode, the DRE is always disabled.  
The DRE is enabled with DRE_LVL = 36 dB and DRE_MAXGAIN = 18 dB in slave mode.  
For master mode, the DRE is always disabled.  
This algorithm is implemented with very low latency and all signal chain blocks are designed to minimize any  
audible artifacts that may occur resulting from dynamic gain modulation. The target signal threshold level  
(DRE_LVL), at which the DRE is triggered, is fixed to the 36-dB input signal level. The DRE gain range can be  
dynamically modulated by using DRE_MAXGAIN, which is fixed to 18 dB to maximize the benefit of the DRE in  
real-world applications and to minimize any audible artifacts.  
Enabling the DRE for processing increases the power consumption of the device because of increased signal  
processing. Therefore, disable the DRE for low-power critical applications. Furthermore, the DRE is not  
supported for output sample rates greater than 48 kHz.  
8.4 Device Functional Modes  
8.4.1 Active Mode  
The device wakes up in active mode when AVDD and IOVDD are available. Configure all hardware control pins  
(MSZ, MD0, MD1, and FMT0 ) for the device desired mode of operation before enabling clocks for the device.  
In active mode, when the audio clocks are available, the device automatically powers up all ADC channels and  
starts transmitting data over the audio serial interface. If the clocks are stopped, then the device auto powers  
down the ADC channels.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: PCM1822  
 
 
PCM1822  
ZHCSQ26 MAY 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
The PCM1822 is a multichannel, high-performance audio analog-to-digital converter (ADC) that supports output  
sample rates of up to 192 kHz. The device supports up to two analog microphones for simultaneous recording  
applications.  
The PCM1822 configuration is supported using various hardware pin control options. The device supports a  
highly flexible, audio serial interface (TDM and I2S) to transmit audio data seamlessly in the system across  
devices.  
9.2 Typical Application  
9-1 shows a typical configuration of the PCM1822 for an application using stereo analog microelectrical-  
mechanical system (MEMS) microphones for simultaneous recording operation with a time-division multiplexing  
(TDM) audio data slave interface. For best distortion performance, use input AC-coupling capacitors with a low-  
voltage coefficient.  
3.3 V  
(3.0 V to 3.6 V)  
1
F
10  
F
1
F
0.1  
F
GND  
0.1 F  
GND  
GND  
10  
F
F
1
F
VDD  
OUTP  
IN1P  
IN1M  
DREG  
AMIC1  
0.1  
0.1  
F
OUTM  
0.1  
VSS  
1
1
F
F
GND  
GND  
PCM1822  
VDD  
OUTP  
3.3 V (3.0 V to 3.6 V)  
OR  
1.8 V (1.65 V to 1.95 V)  
10  
F
F
IN2P  
IN2M  
AMIC2  
IOVDD  
F
OUTM  
VSS  
1
F
GND  
0.1  
GND  
Thermal Pad  
(VSS)  
GND  
LOW or HIGH Pin  
Selector  
Host  
Processor  
9-1. Two-Channel Analog Microphone Recording Diagram for 3.3-V AVDD Operation  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: PCM1822  
 
 
 
 
PCM1822  
ZHCSQ26 MAY 2022  
www.ti.com.cn  
9.2.1 Design Requirements  
9-1 lists the design parameters for this application.  
9-1. Design Parameters  
KEY PARAMETER  
SPECIFICATION: 3.3-V AVDD OPERATION  
AVDD  
3.3 V  
AVDD supply current consumption  
IOVDD  
12.9 mA (two-channel recording, fS = 48 kHz)  
1.8 V or 3.3 V  
9.2.2 Detailed Design Procedure  
This section describes the necessary steps to configure the PCM1822 for this specific application. The following  
steps provide a sequence of steps that must be executed in the time between powering the device up and  
reading data from the device or transitioning from one mode to another mode of operation.  
1. Apply power to the device:  
a. Power-up the IOVDD and AVDD power supplies  
b. The device now goes into low-power mode  
2. Configure the pins for correct configuration:  
a. Connect the MSZ, FMT0, MD0, and MD1 pin voltages for the desired configuration  
b. Apply FSYNC and BCLK with the desired output sample rates and the BCLK to FSYNC ratio  
See the Phase-Locked Loop (PLL) and Clock Generation section for supported sample rates and the  
BCLK to FSYNC ratio  
c. The device recording data are now sent to the host processor via the audio serial data bus  
3. Stop the clocks to stop recording of data at any time  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: PCM1822  
 
PCM1822  
ZHCSQ26 MAY 2022  
www.ti.com.cn  
9.2.3 Application Curves  
Measurements are done on the EVM by feeding the device analog input signal using audio precision and with a  
3.3-V AVDD supply.  
0
-20  
-60  
Channel-1 : DRE Enabled  
Channel-2 : DRE Enabled  
Channel-1 DRE enabled  
Channel-2 DRE enabled  
-70  
-40  
-80  
-60  
-80  
-90  
-100  
-120  
-140  
-160  
-180  
-200  
-100  
-110  
-120  
-130  
-130  
-115  
-100  
-85  
-70  
-55  
-40  
-25  
-10  
0
20 30 4050 70 100  
200 300 500  
1000 2000  
5000 10000 20000  
Input Amplitude (dB)  
THD+  
Frequency (Hz)  
9-3. THD+N vs Input Amplitude With DRE  
9-2. FFT With a 60-dBr Input With DRE  
Enabled  
Enabled  
0
Channel-1 DRE disabled  
Channel-2 DRE disabled  
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
20 30 4050 70 100  
200 300 500  
1000 2000  
5000 10000 20000  
Frequency (Hz)  
9-5. THD+N vs Input Amplitude With DRE  
9-4. FFT With a 60-dBr Input With DRE  
Disabled  
Disabled  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: PCM1822  
PCM1822  
ZHCSQ26 MAY 2022  
www.ti.com.cn  
10 Power Supply Recommendations  
The power-supply sequence between the IOVDD and AVDD rails can be applied in any order. However, do not  
provide any clocks until the IOVDD and AVDD supply voltage settles to a stable and supported operating voltage  
range. Provide the clocks (FSYNC and BCLK) only when all hardware control pins (MSZ, MD0, MD1, FMT0, and  
FMT1) are driven to the voltage level for the device desired mode of operation.  
For the supply power-up requirement, t1 and t2 must be at least 100 µs. For the supply power-down requirement,  
t3 and t4 must be at least 10 ms. This timing (as shown in 10-1) allows the device to ramp down the volume  
on the record data, power down the analog and digital blocks, and put the device into hardware shutdown mode.  
AVDD  
t1  
t3  
IOVDD  
ASI Clocks  
t2  
t4  
10-1. Power-Supply Sequencing Requirement Timing Diagram  
Make sure that the supply ramp rate is slower than 1 V/µs and that the wait time between a power-down and a  
power-up event is at least 100 ms.  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: PCM1822  
 
 
PCM1822  
ZHCSQ26 MAY 2022  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
Each system design and printed circuit board (PCB) layout is unique. The layout must be carefully reviewed in  
the context of a specific PCB design. However, the following guidelines can optimize the device performance:  
Connect the thermal pad to ground. Use a via pattern to connect the device thermal pad, which is the area  
directly under the device, to the ground planes. This connection helps dissipate heat from the device.  
The decoupling capacitors for the power supplies must be placed close to the device pins.  
Route the analog differential audio signals differentially on the PCB for better noise immunity. Avoid crossing  
digital and analog signals to prevent undesirable crosstalk.  
The device internal voltage references must be filtered using external capacitors. Place the filter capacitors  
near the VREF pin for optimal performance.  
Directly short the VREF external capacitor ground terminal to the AVSS pin without using any vias for this  
connection trace.  
Use ground planes to provide the lowest impedance for power and signal current between the device and the  
decoupling capacitors. Treat the area directly under the device as a central ground area for the device, and  
all device grounds must be connected directly to that area.  
11.2 Layout Example  
11-1. Example Layout  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: PCM1822  
 
 
 
PCM1822  
ZHCSQ26 MAY 2022  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.3 Trademarks  
Burr-Brownand TI E2Eare trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: PCM1822  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-May-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PCM1822IRTER  
ACTIVE  
WQFN  
RTE  
20  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
PC1822  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF PCM1822 :  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-May-2022  
Automotive : PCM1822-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE OUTLINE  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
A
RTE0020A  
3.1  
2.9  
B
PIN 1 INDEX AREA  
3.1  
2.9  
C
0.8 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.5  
SQ  
1.4±0.1  
4X (SQ 0.2)  
TYP  
(0.1)  
6
10  
5
9
8X 0.4625  
0.225  
0.125  
0.1  
8X  
4
11  
C
A B  
0.05  
C
SYMM  
21  
1.5  
14  
1
12X 0.5  
0.3  
0.2  
0.1  
16X  
0.5  
C A B  
PIN1 ID  
(OPTIONAL)  
15  
20  
19  
16  
0.05  
C
16X  
SYMM  
0.3  
4225900/A 06/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
WQFN - 0.8 mm max height  
RTE0020A  
PLASTIC QUAD FLATPACK- NO LEAD  
(2.825)  
(2.8)  
(SQ 1.4)  
4X (0.575)  
4X (0.175)  
16X (0.6)  
4X (0.575)  
15  
19  
16  
20  
8X (0.4625)  
4X (0.175)  
14  
1
16X (0.25)  
12X (0.5)  
(2.825)  
(2.8)  
SYMM  
21  
2X (0.45)  
11  
4
(R 0.05) TYP  
(Ø 0.2) VIA  
TYP  
5
10  
2X (0.45)  
9
6
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
0.07 MAX  
0.07 MIN  
ALL AROUND  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4225900/A 06/2020  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271)  
.
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
WQFN - 0.8 mm max height  
RTE0020A  
PLASTIC QUAD FLATPACK- NO LEAD  
(2.825)  
(2.8)  
4X (0.575)  
4X (0.175)  
(SQ 1.3)  
16X (0.6)  
4X (0.575)  
19  
16  
15  
20  
8X (0.4625)  
4X (0.175)  
21  
1
14  
16X (0.25)  
12X (0.5)  
(2.825)  
SYMM  
(2.8)  
11  
4
(R 0.05) TYP  
METAL TYP  
5
10  
9
6
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
86% PRINTED COVERAGE BY AREA  
SCALE: 20X  
4225900/A 06/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

PCM1822-Q1

汽车类、立体声、117dB SNR、192kHz、硬件控制的音频 ADC
TI

PCM1822IRTER

汽车类、117dB SNR、192kHz、低功耗、硬件控制的音频 ADC | RTE | 20 | -40 to 125
TI

PCM1822QRTERQ1

汽车类、立体声、117dB SNR、192kHz、硬件控制的音频 ADC | RTE | 20 | -40 to 125
TI

PCM182X

PCM182x Stereo Channel, 32-Bit, 192-kHz, Burr-BrownTM Audio ADC
TI

PCM1840

四通道、32 位、192kHz 音频模数转换器 (ADC)
TI

PCM1840IRTWR

四通道、32 位、192kHz 音频模数转换器 (ADC) | RTW | 24 | -40 to 125
TI

PCM1840IRTWT

四通道、32 位、192kHz 音频模数转换器 (ADC) | RTW | 24 | -40 to 125
TI

PCM1850

24-BIT, 96-kHz STEREO A/D CONVERTER WITH 6 X 2-CHANNEL MUX AND PGA
BB

PCM1850A

24-BIT, 96-kHz STEREO A/D CONVERTER WITH 6 ⅴ 2-CHANNEL MUX AND PGAE
BB

PCM1850APJT

24-BIT, 96-kHz STEREO A/D CONVERTER WITH 6 ⅴ 2-CHANNEL MUX AND PGAE
BB

PCM1850APJTG4

24-BIT, 96-kHz STEREO A/D CONVERTER WITH 6 ⅴ 2-CHANNEL MUX AND PGAE
BB

PCM1850APJTR

24-BIT, 96-kHz STEREO A/D CONVERTER WITH 6 ⅴ 2-CHANNEL MUX AND PGAE
BB