OPA863SIDBVR [TI]

单通道低功耗 110MHz 12V 轨到轨输入和输出电压反馈放大器 | DBV | 6 | -40 to 125;
OPA863SIDBVR
型号: OPA863SIDBVR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

单通道低功耗 110MHz 12V 轨到轨输入和输出电压反馈放大器 | DBV | 6 | -40 to 125

放大器
文件: 总54页 (文件大小:3346K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OPA863, OPA2863, OPA4863  
ZHCSMO3J JUNE 2020 REVISED JUNE 2023  
OPAx863 低功耗、110MHz、轨到轨输入/输出、电压反馈运算放大器  
1 特性  
3 说明  
• 宽带宽  
– 单位增益带宽110MHz (AV = 1V/V)  
– 增益带宽积50 MHz  
• 低功耗  
OPAx863 器件是单位增益稳定的低功耗、轨到轨输入/  
输出、电压反馈运算放大器旨在于 2.7V 12.6V 的  
电源电压范围内运行。OPAx863 每通道仅消耗 700µA  
的电流供的增益带宽积为 50MHz摆率为  
105V/µs电压噪声密度5.9nV/Hz。  
– 静态电流700 µA/通道典型值)  
– 断电模式1.5 µA最大值VS= 3V)  
– 电源电压2.7V 12.6V  
• 输入电压噪声5.9 nV/Hz  
• 压摆率105 V/µs  
• 轨到轨输入和输出  
HD2/HD320 kHz (2VPP) 129dBc/–  
138dBc  
2.7V 电源供电的轨到轨输入级适用于便携式电池供  
电型应用。轨到轨输入级可在整个输入共模电压范围内  
很好地匹配增益带宽积和噪声从而在宽输入动态范围  
内实现出色的性能。OPAx863 具有断电 (PD) 模式,  
PD 静态电流 (IQ) 1.5µA最大值),并在 6.5µs  
电源电压3V时间内开启或关闭。  
OPAx863 包括过载功率限制功能可限制输出饱和时  
IQ 的增加从而避免电池供电的功率敏感型系统中出  
现过度功率耗散。输出级具有短路保护功能使得此类  
器件可适应恶劣的环境。  
• 工作温度范围:  
40°C +125°C  
• 其他特性:  
– 过载功率限制  
– 输出短路保护  
• 高精度版OPAx863A  
器件信息(1)(2)  
器件型号  
OPA863  
通道数  
封装  
DBVSOT-235)  
DBVSOT-236)  
DGKVSSOP8)  
RUNWQFN10)  
DSOIC8)  
2 应用  
单通道  
低功SAR Δ-ΣADC 驱动器  
ADC 基准缓冲器  
低侧电流检测  
光电二极TIA 接口  
电感式传感  
超声波流量计  
多功能打印机  
MDAC 输出缓冲器  
增益和有源滤波器级  
OPA2863  
OPA4863  
双通道  
四通道  
PWTSSOP14)  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
(2) 有关相关产品请参阅器件比较  
-20  
HD2, VOUT = 2 VPP  
HD3, VOUT = 2 VPP  
HD2, VOUT = 4 VPP  
HD3, VOUT = 4 VPP  
CF  
LED  
Driver  
-40  
RF  
-60  
VCC  
OPAx863  
VOUT  
ID  
œ
LED  
-80  
-100  
-120  
-140  
-160  
To  
ADC  
Photo-  
Diode  
+
GND  
VEE  
œVBIAS  
Transimpedance Amplifier Circuit  
Switching  
Circuit  
RF  
ISH  
To comparator  
for fault detection  
VCC  
1k  
10k  
100k  
1M  
10M  
RG  
Frequency (Hz)  
OPAx863  
œ
RSH  
VOUT  
GND  
+
To MCU/  
ADC  
RG  
G = 1V/V 时的失真性能  
GND  
VREF  
Low-side Current Sensing  
使OPAx863 的应用电路  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOS982  
 
 
 
 
 
OPA863, OPA2863, OPA4863  
ZHCSMO3J JUNE 2020 REVISED JUNE 2023  
www.ti.com.cn  
Table of Contents  
8.1 Overview...................................................................22  
8.2 Functional Block Diagram.........................................22  
8.3 Feature Description...................................................23  
8.4 Device Functional Modes..........................................24  
9 Application and Implementation..................................26  
9.1 Application Information............................................. 26  
9.2 Typical Applications.................................................. 26  
9.3 Power Supply Recommendations.............................30  
9.4 Layout....................................................................... 30  
10 Device and Documentation Support..........................32  
10.1 Documentation Support.......................................... 32  
10.2 接收文档更新通知................................................... 32  
10.3 支持资源..................................................................32  
10.4 Trademarks.............................................................32  
10.5 静电放电警告.......................................................... 32  
10.6 术语表..................................................................... 32  
11 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 6  
7.1 Absolute Maximum Ratings........................................ 6  
7.2 ESD Ratings............................................................... 6  
7.3 Recommended Operating Conditions.........................6  
7.4 Thermal Information: OPA863.................................... 7  
7.5 Thermal Information: OPA2863.................................. 7  
7.6 Thermal Information: OPA4863.................................. 7  
7.7 Electrical Characteristics: VS = 10 V ..........................8  
7.8 Electrical Characteristics: VS = 3 V........................... 11  
7.9 Typical Characteristics: VS = 10 V............................ 13  
7.10 Typical Characteristics: VS = 3 V............................ 18  
7.11 Typical Characteristics: VS = 3 V to 10 V................ 20  
8 Detailed Description......................................................22  
Information.................................................................... 32  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision I (December 2022) to Revision J (June 2023)  
Page  
OPA4863 PWTSSOP14封装的状态从预发更改为并添加了相关内容.....................................1  
Changes from Revision H (August 2022) to Revision I (December 2022)  
Page  
DBVSOT235封装的状态从预发布 更改为...................................................................................1  
Changes from Revision G (July 2022) to Revision H (August 2022)  
Page  
Changed the status of the RUN Package, from: preview to: production ........................................................... 3  
Changes from Revision F (April 2022) to Revision G (July 2022)  
Page  
• 向特性 部分添加了 OPAx863A 信息...................................................................................................................1  
• 向数据表添加DBVSOT235封装...........................................................................................................1  
Changed the status of the D Package, from: preview to: production .................................................................3  
Updated the Output Voltage vs Load Current and Output Voltage vs Load Current figures to show typical  
device performance.......................................................................................................................................... 13  
Changes from Revision E (November 2021) to Revision F (April 2022)  
Page  
• 向数据表添加了 DSOIC8封装RUNWQFN10封装.....................................................................1  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOS982  
2
Submit Document Feedback  
Product Folder Links: OPA863 OPA2863 OPA4863  
 
OPA863, OPA2863, OPA4863  
ZHCSMO3J JUNE 2020 REVISED JUNE 2023  
www.ti.com.cn  
5 Device Comparison Table  
VOLTAGE NOISE  
IQ / CHANNEL GBWP SLEW RATE  
DEVICE  
±VS (V)  
AMPLIFIER DESCRIPTION  
(mA)  
0.70  
2.7  
(MHz)  
(V/µs)  
(nV/Hz)  
OPA2863  
LMH6643  
OPAx810  
OPAx837  
±6.3  
±6.4  
50  
105  
5.9  
17  
Unity-gain stable RRIO Bipolar Amplifier  
Unity-gain stable NRI/RRO Bipolar Amplifier  
Unity-gain stable RRIO FET-Input Amplifier  
Unity-gain stable NRI/RRO Bipolar Amplifier  
65  
130  
±13.5  
±2.7  
3.6  
70  
200  
6.3  
4.7  
0.6  
50  
105  
Decompensated Gain of 6 V/V stable CMOS  
Amplifier  
OPAx607  
±2.75  
0.9  
50  
24  
3.8  
6 Pin Configuration and Functions  
VOUT  
VS+  
VOUT  
VS-  
VS+  
1
2
3
5
4
1
2
3
6
5
VS-  
PD  
VIN+  
VIN-  
VIN+  
VIN-  
4
6-1. OPA863 DBV Package,  
6-Pin SOT-23  
6-2. OPA863 DBV Package,  
5-Pin SOT-23  
(Top View)  
(Top View)  
6-1. Pin Functions: OPA863  
PIN  
NO.  
TYPE(1)  
DESCRIPTION  
NAME  
DBV  
DBV  
(SOT-23, 5) (SOT-23, 6)  
Power down.  
PD  
5
I
Low = disabled, high = normal operation (pin must be driven).  
VIN+  
VIN–  
VOUT  
VS–  
VS+  
3
4
1
2
5
3
4
1
2
6
I
Noninverting input pin  
I
Inverting input pin  
O
P
P
Output pin  
Negative power-supply pin  
Positive power-supply pin  
(1) I = input, O = output, and P = power.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: OPA863 OPA2863 OPA4863  
English Data Sheet: SBOS982  
 
 
 
 
 
OPA863, OPA2863, OPA4863  
ZHCSMO3J JUNE 2020 REVISED JUNE 2023  
www.ti.com.cn  
VS+  
10  
VOUT1  
1
VS+  
8
7
6
5
VOUT1  
VIN1-  
1
2
3
4
VOUT2  
9
8
VIN1-  
2
VOUT2  
VIN2-  
VIN2+  
PD2  
VIN1+  
3
VIN2-  
VIN2+  
VIN1+  
7
6
VS-  
4
PD1  
5
VS-  
6-3. OPA2863 D Package, 8-Pin SOIC  
and DGK Package, 8-Pin VSSOP,  
(Top View)  
6-4. OPA2863 RUN Package,  
10-Pin WQFN  
(Top View)  
6-2. Pin Functions: OPA2863  
PIN  
NO.  
TYPE(1)  
DESCRIPTION  
D (SOIC),  
DGK  
(VSSOP)  
NAME  
RUN  
(WQFN)  
Amplifier 1 power down.  
Low = disabled, high = normal operation (pin must be driven).  
PD1  
PD2  
4
6
I
I
Amplifier 2 power down.  
Low = disabled, high = normal operation (pin must be driven).  
2
3
6
5
1
7
4
8
2
3
I
I
Amplifier 1 inverting input pin  
Amplifier 1 noninverting input pin  
Amplifier 2 inverting input pin  
Amplifier 2 noninverting input pin  
Amplifier 1 output pin  
VIN1–  
VIN1+  
VIN2–  
VIN2+  
VOUT1  
VOUT2  
VS–  
8
I
7
I
1
O
O
P
P
9
Amplifier 2 output pin  
5
Negative power-supply pin  
Positive power-supply pin  
VS+  
10  
(1) I = input, O = output, and P = power.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOS982  
4
Submit Document Feedback  
Product Folder Links: OPA863 OPA2863 OPA4863  
 
OPA863, OPA2863, OPA4863  
ZHCSMO3J JUNE 2020 REVISED JUNE 2023  
www.ti.com.cn  
VOUT1  
VIN1-  
VIN1+  
VS+  
VOUT4  
13 VIN4-  
1
2
3
14  
VIN4+  
VS-  
12  
4
5
6
7
11  
10  
9
VIN2+  
VIN2-  
VIN3+  
VIN3-  
VOUT3  
8
VOUT2  
6-5. OPA4863 PW Package,  
14-Pin TSSOP  
(Top View)  
6-3. Pin Functions: OPA4863  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
VIN1–  
VIN1+  
VIN2–  
VIN2+  
VIN3–  
VIN3+  
VIN4–  
VIN4+  
VOUT1  
VOUT2  
VOUT3  
VOUT4  
VS–  
NO.  
2
I
I
Amplifier 1 inverting input pin  
Amplifier 1 noninverting input pin  
Amplifier 2 inverting input pin  
Amplifier 2 noninverting input pin  
Amplifier 3 inverting input pin  
Amplifier 3 noninverting input pin  
Amplifier 4 inverting input pin  
Amplifier 4 noninverting input pin  
Amplifier 1 output pin  
3
6
I
5
I
9
I
10  
13  
12  
1
I
I
I
O
O
O
O
P
P
7
Amplifier 2 output pin  
8
Amplifier 3 output pin  
14  
11  
4
Amplifier 4 output pin  
Negative power-supply pin  
Positive power-supply pin  
VS+  
(1) I = input, O = output, and P = power.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: OPA863 OPA2863 OPA4863  
English Data Sheet: SBOS982  
 
OPA863, OPA2863, OPA4863  
ZHCSMO3J JUNE 2020 REVISED JUNE 2023  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
V
Supply voltage  
13  
0.1  
VSto VS+  
Supply turn-on/off maximum dV/dt, DBV-6 and D packages  
V/µs  
V
VI  
VID  
II  
Input voltage  
VS+ + 0.5  
±1  
VS0.5  
Differential input voltage  
Continuous input current(2)  
Continuous output current(3)  
Continuous power dissipation  
Maximum junction temperature  
Operating free-air temperature  
Storage temperature  
V
±10  
mA  
mA  
IO  
±30  
See Thermal Information  
150  
TJ  
°C  
°C  
°C  
TA  
125  
150  
40  
65  
Tstg  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) Continuous input current limit for both the ESD diodes to supply pins and amplifier differential input clamp diode. The differential input  
clamp diode limits the voltage across it to 1 V with this continuous input current flowing through it.  
(3) Long-term continuous current for electromigration limits.  
7.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.7  
NOM  
10  
MAX  
12.6  
125  
UNIT  
V
Total supply voltage  
Ambient temperature  
VS+ VS–  
TA  
25  
°C  
40  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOS982  
6
Submit Document Feedback  
Product Folder Links: OPA863 OPA2863 OPA4863  
 
 
 
 
 
 
 
 
 
OPA863, OPA2863, OPA4863  
ZHCSMO3J JUNE 2020 REVISED JUNE 2023  
www.ti.com.cn  
7.4 Thermal Information: OPA863  
OPA863  
THERMAL METRIC(1)  
DBV (SOT-23)  
UNIT  
5 PINS  
6 PINS  
161.8  
73.9  
RθJA  
Junction-to-ambient thermal resistance  
168.3  
64.3  
40.6  
14.2  
40.3  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top) Junction-to-case (top) thermal resistance  
RθJB  
ΨJT  
YJB  
Junction-to-board thermal resistance  
42.6  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
21.2  
42.5  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Thermal Information: OPA2863  
OPA2863  
THERMAL METRIC(1)  
DGK (VSSOP)  
8 PINS  
180.3  
D (SOIC)  
8 PINS  
120.0  
63.3  
RUN (WQFN)  
10 PINS  
110.2  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
67.5  
66.8  
101.9  
63.2  
43.6  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
9.8  
17.2  
2.9  
YJB  
100.1  
62.5  
43.5  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.6 Thermal Information: OPA4863  
OPA4863  
THERMAL METRIC(1)  
PW (TSSOP)  
14 PINS  
99.5  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
27.6  
56.1  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
4.4  
YJB  
55.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: OPA863 OPA2863 OPA4863  
English Data Sheet: SBOS982  
 
 
 
 
 
 
 
OPA863, OPA2863, OPA4863  
ZHCSMO3J JUNE 2020 REVISED JUNE 2023  
www.ti.com.cn  
7.7 Electrical Characteristics: VS = 10 V  
at VS+ = 5 V, VS= 5 V, G = 1 V/V, RF = 0 Ωfor G = 1 V/V, otherwise RF = 1 kfor other gains, CL = 1 pF, RL = 2 kΩ  
referenced to mid-supply, input and output common-mode is at mid-supply, and TA 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AC PERFORMANCE  
SSBW  
GBWP  
LSBW  
Small-signal bandwidth  
Gain-bandwidth product  
Large-signal bandwidth  
Bandwidth for 0.1-dB flatness  
Slew rate  
VOUT = 20 mVPP, G = 1, < 1 dB peaking  
110  
50  
MHz  
MHz  
MHz  
MHz  
V/µs  
ns  
VOUT = 2 VPP  
17  
VOUT = 20 mVPP  
15  
SR  
105  
9
VOUT = 2V step, G = 1  
VOUT = 200mV step  
Rise, fall time  
Settling time to 0.1%  
Settling time to 0.01%  
Overshoot/undershoot  
57  
ns  
%
VOUT = 2V step  
70  
1
VOUT = 2V step  
70  
G = 1, 0.5 V overdrive beyond supplies  
G = 1, 0.5 V overdrive beyond supplies  
Overdrive recovery time  
ns  
100  
129  
138  
107  
125  
5.9  
HD2  
HD3  
HD2  
HD3  
eN  
Second-order harmonic distortion  
Third-order harmonic distortion  
Second-order harmonic distortion  
Third-order harmonic distortion  
Input voltage noise  
f = 20 kHz, VOUT = 2 VPP  
f = 100 kHz, VOUT = 2 VPP  
dBc  
dBc  
Flatband, 1/f corner at 25 Hz  
Flatband, 1/f corner at 2 kHz  
f = 1 MHz  
nV/Hz  
pA/Hz  
iN  
Input current noise  
0.4  
Closed-loop output impedance  
Channel-to-channel crosstalk  
0.2  
Ω
f = 1 MHz, VOUT = 2 VPP, OPA2863  
dBc  
124  
DC PERFORMANCE  
AOL  
VOS  
Open-loop voltage gain  
VOUT = ±2.5 V  
110  
128  
dB  
Input-referred offset voltage  
±0.4  
1.3  
3.5  
mV  
1.3  
TA = 40°C to +125°C,  
D, DBV-5, RUN and DGK packages  
±1  
3.5  
±1  
±1  
4
4.4  
TA = 40°C to +125°C, PW package  
TA = 0°C to +85°C, DBV-6 package  
TA = 40°C to +125°C, DBV-6 package  
TA 25°C  
4  
4.4  
4.9  
Input offset voltage drift  
µV/°C  
µA  
±1  
4.9  
0.3  
0.73  
1.2  
Input bias current  
TA = 40°C to +85°C  
1.6  
TA = 40°C to +125°C  
Input bias current drift  
Input offset current  
±3  
7.6 nA/°C  
TA = 40°C to +125°C  
±10  
30  
nA  
30  
INPUT  
Input common-mode voltage range  
Common-mode rejection ratio  
VS++0.2  
V
VS0.2  
CMRR  
100  
120  
650 || 0.8  
200 || 0.5  
dB  
VCM = VS0.2 V to VS+ 1.6 V  
Input impedance common-mode  
Input impedance differential mode  
MΩ|| pF  
kΩ|| pF  
OUTPUT  
VS+0.14  
VS+0.2  
TA 25°C  
VOL  
Output voltage, low  
V
VS+0.15 VS+0.22  
TA = 40°C to +125°C  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOS982  
8
Submit Document Feedback  
Product Folder Links: OPA863 OPA2863 OPA4863  
 
OPA863, OPA2863, OPA4863  
ZHCSMO3J JUNE 2020 REVISED JUNE 2023  
www.ti.com.cn  
7.7 Electrical Characteristics: VS = 10 V (continued)  
at VS+ = 5 V, VS= 5 V, G = 1 V/V, RF = 0 Ωfor G = 1 V/V, otherwise RF = 1 kfor other gains, CL = 1 pF, RL = 2 kΩ  
referenced to mid-supply, input and output common-mode is at mid-supply, and TA 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TA 25°C  
VS+0.2 VS+0.14  
VS+0.2 VS+0.15  
VOH  
Output voltage, high  
V
TA = 40°C to +125°C  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: OPA863 OPA2863 OPA4863  
English Data Sheet: SBOS982  
OPA863, OPA2863, OPA4863  
ZHCSMO3J JUNE 2020 REVISED JUNE 2023  
www.ti.com.cn  
7.7 Electrical Characteristics: VS = 10 V (continued)  
at VS+ = 5 V, VS= 5 V, G = 1 V/V, RF = 0 Ωfor G = 1 V/V, otherwise RF = 1 kfor other gains, CL = 1 pF, RL = 2 kΩ  
referenced to mid-supply, input and output common-mode is at mid-supply, and TA 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Linear output drive (sourcing/  
sinking)  
VOUT = ±2.5 V, ΔVOS < 1 mV  
25  
30  
mA  
OPA863 and OPA2863(1)  
Short-circuit current  
45  
mA  
POWER SUPPLY  
700  
120  
970  
TA 25°C  
IQ  
Quiescent current per amplifier  
µA  
dB  
1280  
TA = 40°C to +125°C  
ΔVS = ±2 V(2)  
PSRR  
Power-supply rejection ratio  
100  
3.5  
POWER DOWN (Pin Must be Driven)  
Enable voltage threshold  
4.5  
V
V
Specified on above VS+ 0.5 V  
Specified off below VS+ 1.5 V  
Disable voltage threshold  
Power-down quiescent current per  
channel  
2
3.3  
50  
µA  
PD VS+ 1.5 V  
Power-down pin bias current  
Turn-on time delay  
2
6
nA  
µs  
µs  
Turn-off time delay  
4.5  
AUXILIARY INPUT STAGE  
Gain-bandwidth product  
Input voltage noise  
50  
6
MHz  
nV/Hz  
pA/Hz  
mV  
Flatband, 1/f corner at 25 Hz  
Flatband, 1/f corner at 100 Hz  
Input current noise  
0.4  
Input-referred offset voltage  
±0.15  
0.2  
1.3  
0.6  
1.3  
1.3  
TA 25°C  
Input bias current  
µA  
0.2  
TA = 40°C to +125°C  
VCM = 4.1 V to 5.2 V  
ΔVS = ±0.6 V  
Common-mode rejection ratio  
Power supply rejection ratio  
100  
100  
120  
120  
dB  
dB  
(1) Change in input offset voltage from no-load condition.  
(2) Change in supply voltage from the default test condition with only one of the positive or negative supplies changing corresponding to  
+PSRR and PSRR.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOS982  
10  
Submit Document Feedback  
Product Folder Links: OPA863 OPA2863 OPA4863  
 
 
OPA863, OPA2863, OPA4863  
ZHCSMO3J JUNE 2020 REVISED JUNE 2023  
www.ti.com.cn  
7.8 Electrical Characteristics: VS = 3 V  
at VS+ = 3 V, VS= 0 V, G = 1, RF = 0 Ωfor G =1 V/V, otherwise RF = 1 kfor other gains, CL = 1 pF, RL = 2 kΩconnected  
to 1 V, input and output VCM = 1 V, and TA 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AC PERFORMANCE  
SSBW  
GBWP  
LSBW  
Small-signal bandwidth  
Gain-bandwidth product  
Large-signal bandwidth  
Bandwidth for 0.1-dB flatness  
Slew rate  
VOUT = 20 mVPP, G = 1  
97  
50  
MHz  
MHz  
MHz  
MHz  
V/µs  
ns  
VOUT = 1 VPP  
26  
VOUT = 20 mVPP  
10  
SR  
105  
10  
VOUT = 1V step, Gain = 1  
VOUT = 200mV step  
Rise, fall time  
Settling time to 0.1%  
Settling time to 0.01%  
Overshoot  
58  
ns  
%
VOUT = 1V step  
VOUT = 1V step  
90  
2
Undershoot  
16  
95  
G = 1, 0.5V overdrive beyond supplies  
Overdrive recovery time  
ns  
G = 1, 0.5V overdrive beyond supplies  
100  
123  
132  
109  
129  
6
HD2  
HD3  
HD2  
HD3  
eN  
Second-order harmonic distortion  
Third-order harmonic distortion  
Second-order harmonic distortion  
Third-order harmonic distortion  
Input voltage noise  
f = 20 kHz, VOUT = 1 VPP  
f = 100 kHz, VOUT = 1 VPP  
dBc  
dBc  
Flatband, 1/f corner at 25 Hz  
Flatband, 1/f corner at 2 kHz  
f = 1 MHz  
nV/Hz  
pA/Hz  
iN  
Input current noise  
0.4  
Closed-loop output impedance  
Channel-to-channel crosstalk  
0.2  
Ω
f = 1 MHz, VOUT = 1 VPP, OPA2863  
dBc  
127  
DC PERFORMANCE  
AOL  
VOS  
Open-loop voltage gain  
VOUT = 1 V to 2 V  
104  
123  
dB  
Input-referred offset voltage  
±0.4  
1.3  
3.5  
mV  
1.3  
TA = 40°C to +125°C,  
D, DBV-5, RUN, and DGK packages  
±1  
3.5  
±1  
±1  
4
4.4  
5
TA = 40°C to +125°C, PW package  
TA = 0°C to +85°C, DBV-6 package  
TA = 40°C to +125°C, DBV-6 package  
TA 25°C  
4  
4.4  
5  
Input offset voltage drift  
μV/°C  
±1  
0.3  
0.73  
1.2  
1.56  
Input bias current  
µA  
TA = 40°C to +85°C  
TA = 40°C to +125°C  
Input bias current drift  
Input offset current  
±3  
7.4 nA/°C  
TA = 40°C to +125°C  
±10  
30  
nA  
30  
INPUT  
Input common-mode voltage range  
Common-mode rejection ratio  
VS++0.2  
V
VS0.2  
CMRR  
94  
115  
360 || 0.9  
200 || 0.5  
dB  
VCM = VS0.2 V to VS+ 1.6 V  
Input impedance common-mode  
Input impedance differential mode  
MΩ|| pF  
kΩ|| pF  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: OPA863 OPA2863 OPA4863  
English Data Sheet: SBOS982  
 
OPA863, OPA2863, OPA4863  
ZHCSMO3J JUNE 2020 REVISED JUNE 2023  
www.ti.com.cn  
7.8 Electrical Characteristics: VS = 3 V (continued)  
at VS+ = 3 V, VS= 0 V, G = 1, RF = 0 Ωfor G =1 V/V, otherwise RF = 1 kfor other gains, CL = 1 pF, RL = 2 kΩconnected  
to 1 V, input and output VCM = 1 V, and TA 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTPUT  
VS+ 0.13 VS+ 0.15  
VS+ 0.13 VS+ 0.16  
TA 25°C  
VOL  
Output voltage, low  
Output voltage, high  
V
V
TA = 40°C to +125°C  
TA 25°C  
VS+0.15 VS+0.13  
VS+0.15 VS+0.13  
VOH  
TA = 40°C to +125°C  
Linear output drive (sourcing/  
sinking)  
VOUT = ±0.7 V, ΔVOS < 1 mV  
23  
33  
45  
mA  
mA  
OPA863 and OPA2863(1)  
Short-circuit current  
POWER SUPPLY  
690  
120  
910  
TA 25°C  
IQ  
Quiescent current per amplifier  
µA  
dB  
1180  
TA = 40°C to +125°C  
ΔVS = ±1 V(2)  
PSRR  
Power-supply rejection ratio  
100  
1.5  
POWER DOWN (Pin Must be Driven)  
Enable voltage threshold  
2.5  
V
V
Specified on above VS+ 0.5 V  
Specified off below VS+ 1.5 V  
Disable voltage threshold  
Power-down quiescent current per  
channel  
0.8  
1.5  
50  
µA  
PD VS+ 1.5 V  
Power-down pin bias current  
Turn-on time delay  
1
6.5  
5
nA  
µs  
µs  
Turn-off time delay  
AUXILIARY INPUT STAGE  
Gain-bandwidth product  
Input voltage noise  
50  
6
MHz  
nV/Hz  
pA/Hz  
mV  
Flatband, 1/f corner at 25 Hz  
Flatband, 1/f corner at 100 Hz  
Input current noise  
0.4  
Input-referred offset voltage  
±0.15  
0.2  
1.3  
0.6  
1.2  
1.3  
TA 25°C  
Input bias current  
µA  
0.4  
TA = 40°C to +125°C  
VCM = 2.1 V to 3.2 V  
ΔVS = ±0.6 V  
Common-mode rejection ratio  
Power supply rejection ratio  
100  
100  
120  
115  
dB  
dB  
(1) Change in input offset voltage from no-load condition.  
(2) Change in supply voltage from the default test condition with only one of the positive or negative supplies changing corresponding to  
+PSRR and PSRR.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOS982  
12  
Submit Document Feedback  
Product Folder Links: OPA863 OPA2863 OPA4863  
 
 
OPA863, OPA2863, OPA4863  
ZHCSMO3J JUNE 2020 REVISED JUNE 2023  
www.ti.com.cn  
7.9 Typical Characteristics: VS = 10 V  
at VS+ = 5 V, VS= 5 V, RF = 0 Ωfor Gain = 1 V/V, otherwise RF = 1 kΩfor other gains, CL = 1 pF, RL = 2 kΩreferenced  
to mid-supply, G = 1 V/V, input and output referenced to mid-supply, and TA 25°C (unless otherwise noted)  
3
0
3
0
-3  
-3  
-6  
-6  
-9  
-9  
-12  
-15  
-18  
-21  
-12  
-15  
-18  
-21  
G = 1 V/V  
G = -1 V/V  
G = 2 V/V  
G = 5 V/V  
G = 10 V/V  
RL = 2 k  
RL = 500   
100k  
1M  
10M  
100M  
100k  
1M  
10M  
Frequency (Hz)  
100M  
Frequency (Hz)  
VOUT = 20 mVPP  
7-1. Small-Signal Frequency Response vs Gain  
VOUT = 20 mVPP  
7-2. Small-Signal Frequency Response vs Output Load  
6
1
3
0
0.5  
0
-3  
-6  
-9  
No CL  
CL = 2.2 pF  
CL =4.7 pF  
CL = 10 pF, Rs = 200  
CL = 10 pF, G = 2 V/V  
-0.5  
G = 1 V/V  
G = 2 V/V  
-1  
1M  
10M  
Frequency (Hz)  
100M  
100k  
1M  
10M  
Frequency (Hz)  
100M  
VOUT = 20 mVPP  
VOUT = 20 mVPP  
7-3. Frequency Response vs Load Capacitance  
7-4. Small-Signal Response Flatness vs Gain  
3
0
6
3
0
-3  
-6  
-9  
-3  
-6  
VOUT = 20 mVPP  
VOUT = 200 mVPP  
VOUT = 500 mVPP  
VOUT = 1 VPP  
VOUT = 2 VPP  
VOUT = 4 VPP  
TA = 25°C  
TA = 125°C  
TA = 45 °C  
-9  
VOUT = 8 VPP  
-12  
100k  
1M  
10M  
Frequency (Hz)  
100M  
1M  
10M  
Frequency (Hz)  
100M  
VOUT = 20 mVPP  
.
7-5. Frequency Response vs Ambient Temperature  
7-6. Frequency Response vs Output Voltage  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: OPA863 OPA2863 OPA4863  
English Data Sheet: SBOS982  
 
 
OPA863, OPA2863, OPA4863  
ZHCSMO3J JUNE 2020 REVISED JUNE 2023  
www.ti.com.cn  
7.9 Typical Characteristics: VS = 10 V (continued)  
at VS+ = 5 V, VS= 5 V, RF = 0 Ωfor Gain = 1 V/V, otherwise RF = 1 kΩfor other gains, CL = 1 pF, RL = 2 kΩreferenced  
to mid-supply, G = 1 V/V, input and output referenced to mid-supply, and TA 25°C (unless otherwise noted)  
3
3
0
0
-3  
-3  
-6  
-9  
-6  
G = 1 V/V  
G = 2 V/V  
G = 5 V/V  
G = 10 V/V  
-9  
TA = 25°C  
TA = 125 °C  
TA = 45 °C  
-12  
100k  
100k  
1M  
10M  
Frequency (Hz)  
100M  
1M  
10M  
100M  
Frequency (Hz)  
VOUT = 2 VPP  
VOUT = 2 VPP  
7-7. Large-Signal Frequency Response vs Gain  
7-8. Frequency Response vs Ambient Temperature  
-20  
-20  
HD2, G = 1 V/V  
HD3, G = 1 V/V  
HD2, G = 2 V/V  
HD3, G = 2 V/V  
HD2, VOUT = 2 VPP  
HD3, VOUT = 2 VPP  
HD2, VOUT = 4 VPP  
HD3, VOUT = 4 VPP  
-40  
-60  
-40  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
G = 1 V/V  
VOUT = 2 VPP  
7-9. Harmonic Distortion vs Frequency  
7-10. Harmonic Distortion vs Gain  
0.15  
6
4
0.1  
0.05  
0
2
0
-0.05  
-0.1  
-0.15  
-2  
-4  
-6  
Time (200 ns/div)  
Time (50 ns/div)  
.
.
7-11. Small-Signal Transient Response  
7-12. Large-Signal Transient Response  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOS982  
14  
Submit Document Feedback  
Product Folder Links: OPA863 OPA2863 OPA4863  
OPA863, OPA2863, OPA4863  
ZHCSMO3J JUNE 2020 REVISED JUNE 2023  
www.ti.com.cn  
7.9 Typical Characteristics: VS = 10 V (continued)  
at VS+ = 5 V, VS= 5 V, RF = 0 Ωfor Gain = 1 V/V, otherwise RF = 1 kΩfor other gains, CL = 1 pF, RL = 2 kΩreferenced  
to mid-supply, G = 1 V/V, input and output referenced to mid-supply, and TA 25°C (unless otherwise noted)  
6
6
4
4
2
2
0
0
-2  
-4  
-6  
-2  
-4  
-6  
Input  
Output  
Input x -1 V/V  
Output  
Time (100 ns/div)  
Time (100 ns/div)  
Gain = 1 V/V  
Gain = 1 V/V  
7-13. Input Overdrive Recovery  
7-14. Output Overdrive Recovery  
1200  
900  
600  
300  
0
1000  
750  
500  
250  
0
-250  
-500  
-750  
-1000  
-300  
-600  
-6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
-5.5 -4.5 -3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5  
Input Common-Mode Voltage (V)  
Input Common-Mode Voltage (V)  
Measured for 10 units  
7-15. Input Offset Voltage vs Input Common-Mode Voltage  
7-16. Input Bias Current vs Input Common-Mode Voltage  
6
50  
40  
30  
20  
4
2
10  
Sourcing  
Sourcing  
Sinking  
Sinking  
0
0
-10  
-20  
-30  
-40  
-50  
-2  
-4  
-6  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
0
5
10  
15  
20  
25  
30  
35  
Ambient Temperature (°C)  
Output Current (mA)  
Output saturated and then short-circuited to opposite supply  
7-17. Output Voltage vs Load Current  
7-18. Output Short-Circuit Current vs Ambient Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: OPA863 OPA2863 OPA4863  
English Data Sheet: SBOS982  
OPA863, OPA2863, OPA4863  
ZHCSMO3J JUNE 2020 REVISED JUNE 2023  
www.ti.com.cn  
7.9 Typical Characteristics: VS = 10 V (continued)  
at VS+ = 5 V, VS= 5 V, RF = 0 Ωfor Gain = 1 V/V, otherwise RF = 1 kΩfor other gains, CL = 1 pF, RL = 2 kΩreferenced  
to mid-supply, G = 1 V/V, input and output referenced to mid-supply, and TA 25°C (unless otherwise noted)  
20000  
9000  
18000  
8000  
16000  
7000  
14000  
6000  
12000  
5000  
10000  
4000  
8000  
3000  
6000  
2000  
4000  
1000  
2000  
0
0
Quiescent Current per Channel (A)  
μ= 678 μA, σ= 13 μA  
Input Bias Current (nA)  
μ= 251 nA, σ= 5.6 nA  
7-19. Quiescent Current Distribution  
7-20. Input Bias Current Distribution  
6
5
4
3
2
1
0
12000  
11000  
10000  
9000  
8000  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
Input Offset Drift (μV/°C)  
μ
Input Offset Voltage ( V)  
35 units, μ=-0.26 μV/°C, σ= 0.49 μV/°C, DGK package  
μ= 209 μV, σ= 193 μV  
7-22. Input Offset Voltage Drift Distribution  
7-21. Input Offset Voltage Distribution  
7
6
5
4
3
2
1
0
0.9  
0.85  
0.8  
0.75  
0.7  
0.65  
0.6  
0.55  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Ambient Temperature (°C)  
Input Offset Drift (V/C)  
35 units  
32 units, μ= 0.02 μV/°C, σ= 0.98 μV/°C, DBV-6 package  
7-23. Input Offset Voltage Drift Distribution  
7-24. Quiescent Current vs Ambient Temperature  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: OPA863 OPA2863 OPA4863  
English Data Sheet: SBOS982  
OPA863, OPA2863, OPA4863  
ZHCSMO3J JUNE 2020 REVISED JUNE 2023  
www.ti.com.cn  
7.9 Typical Characteristics: VS = 10 V (continued)  
at VS+ = 5 V, VS= 5 V, RF = 0 Ωfor Gain = 1 V/V, otherwise RF = 1 kΩfor other gains, CL = 1 pF, RL = 2 kΩreferenced  
to mid-supply, G = 1 V/V, input and output referenced to mid-supply, and TA 25°C (unless otherwise noted)  
700  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
100  
75  
50  
25  
0
-25  
-50  
-75  
-100  
-125  
-150  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
35 units  
Normalized to 25°C values, 35 units, DGK package  
7-25. Input Bias Current vs Ambient Temperature  
7-26. Input Offset Voltage vs Ambient Temperature  
8
6
8
VPD  
VOUTx10  
6
4
4
2
2
0
0
-2  
-4  
-2  
-4  
-6  
-8  
-6  
-8  
VPD  
VOUTx10  
Time (2.5 s/div)  
Time (2.5 s/div)  
.
.
7-27. Turn-On Time to DC Input  
7-28. Turn-Off Time to DC Input  
8000  
6000  
4000  
2000  
0
2.8  
2.4  
2
1.6  
1.2  
0.8  
0.4  
0
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
Power-Down Quiescent Current (A)  
Ambient Temperature (C)  
.
μ= 1.86 μA, σ= 0.076 μA  
7-30. Power-Down IQ vs Ambient Temperature  
7-29. Power-Down Quiescent Current Distribution  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: OPA863 OPA2863 OPA4863  
English Data Sheet: SBOS982  
OPA863, OPA2863, OPA4863  
ZHCSMO3J JUNE 2020 REVISED JUNE 2023  
www.ti.com.cn  
7.10 Typical Characteristics: VS = 3 V  
at VS+ = 3 V, VS= 0 V, RF = 0 Ωfor Gain = 1 V/V, otherwise RF = 1 kfor other gains, CL = 1 pF, RL = 2 kΩconnected to 1  
V, G = 1 V/V, input and output VCM = 1 V, and TA 25°C (unless otherwise noted)  
3
0
-3  
-6  
-9  
-12  
G = 1 V/V  
-15  
-18  
-21  
G = -1 V/V  
G = 2 V/V  
G = 5 V/V  
G = 10 V/V  
100k  
1M  
10M  
Frequency (Hz)  
100M  
VOUT = 20 mVPP  
VOUT = 1 VPP  
7-31. Small-Signal Frequency Response vs Gain  
7-32. Harmonic Distortion vs Frequency  
0.15  
1
0.1  
0.05  
0
0.5  
0
-0.5  
-1  
-0.05  
-0.1  
-0.15  
Time (200 ns/div)  
Time (50 ns/div)  
.
.
7-33. Small-Signal Transient Response  
7-34. Large-Signal Transient Response  
1000  
1000  
750  
500  
800  
600  
400  
200  
0
250  
0
-250  
-500  
-750  
-1000  
-200  
-400  
-2  
-1.5  
-1  
-0.5  
0
0.5  
1
1.5  
2
-2  
-1.5  
-1  
-0.5  
0
0.5  
1
1.5  
2
Input Common-Mode Voltage (V)  
Input Common-Mode Voltage (V)  
Measured for 10 units  
.
7-35. Input Offset Voltage vs Input Common-Mode Voltage  
7-36. Input Bias Current vs Input Common-Mode Voltage  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: OPA863 OPA2863 OPA4863  
English Data Sheet: SBOS982  
 
OPA863, OPA2863, OPA4863  
ZHCSMO3J JUNE 2020 REVISED JUNE 2023  
www.ti.com.cn  
7.10 Typical Characteristics: VS = 3 V (continued)  
at VS+ = 3 V, VS= 0 V, RF = 0 Ωfor Gain = 1 V/V, otherwise RF = 1 kfor other gains, CL = 1 pF, RL = 2 kΩconnected to 1  
V, G = 1 V/V, input and output VCM = 1 V, and TA 25°C (unless otherwise noted)  
3
2.5  
2
60  
40  
20  
0
Sourcing  
Sinking  
Sourcing  
Sinking  
1.5  
1
-20  
-40  
-60  
0.5  
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
0
5
10  
15  
20  
25  
30  
35  
40  
Ambient Temperature (°C)  
Output Current (mA)  
.
Output saturated and then short-circuited to other supply  
7-37. Output Voltage vs Load Current  
7-38. Output Short-Circuit Current vs Ambient Temperature  
6
4
2
0
6
4
2
0
-2  
-4  
-6  
-2  
-4  
VPD  
VOUTx10  
VPD  
VOUTx10  
-6  
Time (2.5 s/div)  
Time (2.5 s/div)  
.
.
7-39. Turn-On Time to DC Input  
7-40. Turn-Off Time to DC Input  
5000  
4000  
3000  
2000  
1000  
0
1
0.8  
0.6  
0.4  
0.2  
0
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
Ambient Temperature (C)  
Power-Down Quiescent Current (A)  
μ= 0.64 μA, σ= 0.056 μA  
.
7-42. Power-Down IQ vs Ambient Temperature  
7-41. Power-Down Quiescent Current Distribution  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: OPA863 OPA2863 OPA4863  
English Data Sheet: SBOS982  
OPA863, OPA2863, OPA4863  
ZHCSMO3J JUNE 2020 REVISED JUNE 2023  
www.ti.com.cn  
7.11 Typical Characteristics: VS = 3 V to 10 V  
at VOUT = 2 VPP, RF = 0 Ωfor Gain = 1 V/V, otherwise RF = 1 kfor other gains, CL = 1 pF, RL = 2 kΩreferenced to mid-  
supply, G = 1 V/V, input and output referenced to mid-supply, and TA 25°C (unless otherwise noted)  
3
3
0
0
-3  
-3  
-6  
-6  
-9  
-9  
VS = 10 V  
VS = 5 V  
VS = 3 V  
VS = 10 V  
VS = 5 V  
VS = 3 V  
-12  
-12  
100k  
1M  
10M  
Frequency (Hz)  
100M  
100k  
1M  
10M  
100M  
Frequency (Hz)  
VOUT = 20 mVPP  
7-43. Frequency Response vs Supply Voltage  
VOUT = 1 VPP  
7-44. Frequency Response vs Supply Voltage  
100  
10  
Main Stage  
Auxiliary Stage  
10  
1
1
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
D401  
.
.
7-45. Input Voltage Noise Density vs Frequency  
7-46. Input Current Noise Density vs Frequency  
140  
140  
PSRR  
PSRR+  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
-20  
100  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
.
.
7-47. Common-Mode Rejection Ratio vs Frequency  
7-48. Power Supply Rejection Ratio vs Frequency  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOS982  
20  
Submit Document Feedback  
Product Folder Links: OPA863 OPA2863 OPA4863  
 
OPA863, OPA2863, OPA4863  
ZHCSMO3J JUNE 2020 REVISED JUNE 2023  
www.ti.com.cn  
7.11 Typical Characteristics: VS = 3 V to 10 V (continued)  
at VOUT = 2 VPP, RF = 0 Ωfor Gain = 1 V/V, otherwise RF = 1 kfor other gains, CL = 1 pF, RL = 2 kΩreferenced to mid-  
supply, G = 1 V/V, input and output referenced to mid-supply, and TA 25°C (unless otherwise noted)  
100  
80  
60  
40  
20  
0
135  
120  
105  
90  
210  
180  
150  
120  
90  
Magnitude  
Phase  
75  
60  
60  
45  
30  
30  
0
15  
-30  
-60  
-90  
0
-15  
1
10  
100  
1k  
10k 100k  
1M  
10M 100M  
1
10  
100  
1k  
10k 100k  
1M  
10M 100M  
Frequency (Hz)  
Frequency (Hz)  
.
Small-signal response  
7-49. Open-Loop Output Impedance vs Frequency  
7-50. Open-Loop Gain and Phase vs Frequency  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-100  
-120  
HD2, VS = 10 V  
HD3, VS = 10 V  
HD2, VS = 5 V  
HD3, VS = 5 V  
-120  
-140  
Ch-A to Ch-B  
Ch-B to Ch-A  
-140  
100k  
-160  
1k  
1M  
10M  
100M  
10k  
100k  
Frequency (Hz)  
1M 10M  
Frequency(Hz)  
DGK package  
VOUT = 2 VPP  
7-52. Crosstalk vs Frequency  
7-51. Harmonic Distortion vs Supply Voltage  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: OPA863 OPA2863 OPA4863  
English Data Sheet: SBOS982  
OPA863, OPA2863, OPA4863  
ZHCSMO3J JUNE 2020 REVISED JUNE 2023  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The OPAx863 devices are low-power, 50MHz, rail-to-rail input and output (RRIO), bipolar, voltage-feedback  
operational amplifiers with a voltage noise density of 5.9 nV/Hz and 1/f noise corner at 25 Hz. The OPAx863  
work with a wide-supply voltage range of 2.7 V to 12.6 V, and consume only 700 μA quiescent current. The  
OPAx863 operate with a 2.7 V supply, are RRIO capable, consume low-power, and offer a power-down mode,  
which makes them great amplifiers for 3.3V or lower-voltage applications that require excellent ac performance.  
The main and auxiliary input stages of the amplifier are matched for gain bandwidth product (GBW), noise, and  
offset voltage and designed for applications that require wide dynamic input range and good SNR.  
The device includes an overload power limit feature which limits the increase in quiescent current with over-  
driven and saturated outputs to either of the supply rails. For more details of this overload power limit feature,  
see 8.3.2.1. The amplifier's output is protected against short-circuit fault conditions.  
The OPAx863 feature a power-down mode (PD) with a PD quiescent current of 1.5 µA (maximum) with a 3V  
supply, with turn-on and turn-off time within less than 6.5 µs.  
8.2 Functional Block Diagram  
PD  
VS+  
OPAx863  
Auxiliary  
NPN-  
+
Stage  
VIN+  
EN  
Output  
Short-Circuit  
Protection  
CC  
Main  
PNP-  
Stage  
VOUT  
+
Overload  
Power  
EN  
Limiting  
+
VIN–  
VS+ –1.6 V  
VS–  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOS982  
22  
Submit Document Feedback  
Product Folder Links: OPA863 OPA2863 OPA4863  
 
 
 
OPA863, OPA2863, OPA4863  
ZHCSMO3J JUNE 2020 REVISED JUNE 2023  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Input Stage  
The OPAx863 include a rail-to-rail input stage. The main stage differential pair using PNP bipolar transistors  
operates for common-mode input voltages from VS0.2 V to VS+ 1.6 V. The amplifier inputs transition into  
the auxiliary stage using NPN transistors for common-mode input voltages from VS+ 1.6 V till VS+ + 0.2 V. The  
PNP and NPN input stages offer a gain-bandwidth product of 50 MHz and a voltage noise density of 6.3 nV/√  
Hz. The offset voltage for the two input stages is matched to lie within the device specifications. The auxiliary  
NPN input stage does not use the slew-boost circuit during large-signal transient response. The input bias  
current for the PNP and NPN input stages is opposite in polarity, which adds an additional offset based on the  
values of the gain-setting and feedback resistors. A common-mode input voltage transition between these input  
stages causes a crossover distortion that must be considered in high-frequency applications requiring excellent  
linearity. Limit the common-mode input voltage to VS+ 1.6 V (maximum) for main-stage operation across  
process and ambient temperature.  
The OPAx863 are bipolar amplifiers; therefore, the two inputs are protected with antiparallel back-to-back diodes  
between the inputs, which limits the maximum input differential voltage to 1 V. The amplifier is slew limited, and  
the two inputs are pulled apart up to 1 V when the antiparallel diodes begin to conduct in very fast input or output  
transient conditions. Make sure to use gain-setting and feedback resistors large enough to limit the current  
through these diodes in such conditions.  
8.3.2 Output Stage  
The OPAx863 feature a rail-to-rail output stage with possible signal swing from VS+ 0.2 V to VS+ 0.2 V.  
Violating the output headroom of either supply causes output signal clipping and introduces distortion.  
The OPAx863 integrate an output short-circuit protection circuit that makes the device rugged for use in real-  
world applications.  
8.3.2.1 Overload Power Limit  
The OPAx863 include overload power limiting that limits the increase in device quiescent current with output  
saturated to either of the supplies. Typically, when an amplifier output saturates, the two inputs are pulled apart,  
which can enable the slew-boost circuit. The input differential voltage is an error voltage in negative feedback  
that the amplifier core nullifies by engaging the slew-boost circuit and driving the output stage deeper into  
saturation. After the input to an amplifier attains a value large enough to saturate the output, any further increase  
in this input excitation results in a finite input differential voltage. As the output stage transistor is pushed deeper  
into saturation, the base-to-collector current gain (hFE) drops with an increase in the base and collector current,  
and an increase in the device quiescent current. This increase in quiescent current can cause a catastrophic  
failure in multichannel, high-gain, high-density front-end designs, and reduce operating lifetime in portable,  
battery-powered systems.  
The OPAx863 overload power limiting includes an intelligent output saturation-detection circuit that limits the  
device quiescent current to 2.2-mA per channel under dc overload conditions. This increase in quiescent current  
is smaller with ac input or output and output saturation duration for only a fraction of the overall signal time  
period. 8-1 compares the increase in quiescent current with 50mV input overdrive for OPAx863 devices and  
other voltage-feedback amplifiers without overload power limit.  
8-1. Quiescent Current With Saturated Outputs  
INCREASE IN IQ FROM  
INPUT DIFFERENTIAL  
VOLTAGE  
QUIESCENT CURRENT  
DURING OVERLOAD  
DEVICE  
STEADY-STATE  
CONDITION  
OPAx863 with overload power limit  
50 mV  
50 mV  
1.1 mA  
1.57 ×  
3.43 ×  
Competitor amplifier without overload power limit  
1.96 mA  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: OPA863 OPA2863 OPA4863  
English Data Sheet: SBOS982  
 
 
 
OPA863, OPA2863, OPA4863  
ZHCSMO3J JUNE 2020 REVISED JUNE 2023  
www.ti.com.cn  
8.3.3 ESD Protection  
As 8-1 shows, all device pins are protected with internal ESD protection diodes to the power supplies. These  
diodes provide moderate protection to input overdrive voltages greater than the supplies. The protection diodes  
typically support 10-mA continuous input and output currents. Use series current limiting resistors if input  
voltages exceeding the supply voltages occur at the amplifier inputs, which makes sure that the current through  
the ESD diodes remains within the rated value. OPAx863 is a bipolar amplifier; therefore, the two inputs are  
protected with antiparallel, back-to-back diodes between the inputs that limits the maximum input differential  
voltage to approximately 1 V. Make sure to use gain-setting and feedback resistors large enough to limit the  
current through these diodes in fast slewing conditions.  
VS+  
Power Supply  
ESD Cell  
VIN+  
PD  
+
œ
VOUT  
VIN-  
VS-  
8-1. Internal ESD Protection  
8.4 Device Functional Modes  
8.4.1 Power-Down Mode  
The OPAx863 includes a power-down mode for low-power standby operation with a quiescent current of only 1.5  
μA (maximum) with a 3-V supply and high output impedance. Many low-power systems are active for only a  
small time interval when the parameters of interest are measured and remain in low-power standby mode for a  
majority of the time and an overall small average power consumption. The OPAx863 enables such a low-power  
operation with quick turn-on within less than 6.5 μs. See the Electrical Characteristics tables for power-down pin  
control thresholds.  
Always drive PD pin to avoid false triggering and oscillations. If power-down mode is not used, then connect the  
PD pin to VS+. For applications that need power-down mode, use an external pull-up resistor from the PD pin to  
VS+ (driven with an open-collector power-down control logic).  
VS+  
RPU  
1 M  
CPU  
1 nF  
OPAx863  
Control  
Logic  
PD  
VS–  
8-2. Power Down Control  
8-2 shows the choice of value of the pull-up resistor RPU, which impacts the current consumption in power-  
down mode. Using a large RPU reduces power consumption, but increases the noise at the PD pin, which can  
cause the amplifier to power down. A 1nF capacitor can be used in parallel with RPU to avoid coupling of  
external noise and false triggering. For the case of the PD pin driven to VS-, the IPU current through RPU is given  
as:  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOS982  
24  
Submit Document Feedback  
Product Folder Links: OPA863 OPA2863 OPA4863  
 
 
 
OPA863, OPA2863, OPA4863  
ZHCSMO3J JUNE 2020 REVISED JUNE 2023  
www.ti.com.cn  
− ꢃ  
ꢄ−  
ꢁꢂ  
ꢁꢂ  
(1)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: OPA863 OPA2863 OPA4863  
English Data Sheet: SBOS982  
OPA863, OPA2863, OPA4863  
ZHCSMO3J JUNE 2020 REVISED JUNE 2023  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The OPAx863 are classic voltage-feedback amplifiers with two high-impedance inputs and a low-impedance  
output. These devices have a GBW of 50 MHz, 5.9 nV/Hz of noise, RRIO capability, and precision  
performance consuming only 700 µA quiescent current per channel These features make the OPAx863 an  
excellent choice for use in low-side current sensing, ADC input driver, and reference buffering with fast settling,  
buffers, high gain and filter circuits. The overload power limit makes the OPAx863 truly low-power in high-gain,  
multichannel systems limiting any increase in quiescent current during output overload conditions.  
9.2 Typical Applications  
9.2.1 Low-Side Current Sensing  
Power converters use current-mode feedback control for excellent transient response and multiphase load  
sharing. Inverter stages control the phase currents for torque control in motor drives. As a result of the simplicity  
and low-cost, many of these topologies use difference-amplifier-based, low-side current sensing. 9-1 shows  
the use of the OPAx863 in a difference amplifier circuit for low-side current sensing.  
300V  
3.3V  
Switching  
Circuit  
TLV3201  
VTH  
+
12k  
Interrupt  
œ
ISH  
3.3V  
3.3V  
MCU  
600Ω  
600Ω  
OPAx863  
VOUT  
250  
œ
RSH  
ADS7056  
Digital I/O  
+
220pF  
12kΩ  
GND  
1.65V  
9-1. Low-Side Current Sensing in Power Converters  
9.2.1.1 Design Requirements  
9-1. Design Requirements  
PARAMETER  
DESIGN REQUIREMENT  
Shunt resistor  
Input current  
10 mΩ  
15 APP  
Output voltage  
3 VPP  
50 kHz  
Switching frequency  
Data acquisition  
1 MSPS with 0.1% accuracy  
10 Vpk  
Input voltage due to ground bounce  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: OPA863 OPA2863 OPA4863  
English Data Sheet: SBOS982  
 
 
 
 
OPA863, OPA2863, OPA4863  
ZHCSMO3J JUNE 2020 REVISED JUNE 2023  
www.ti.com.cn  
9.2.1.2 Detailed Design Procedure  
In a difference amplifier circuit, the output voltage is given by:  
4(  
81 =  
+5*45* + 84'(  
4)  
(2)  
For lowest system noise, small values of RF and RG are preferred. The smallest value of RG is limited by the  
input transient voltage (10 V here) seen by the circuit, and is given by:  
8
+0(I=T .) F 8& F 8  
5
4) =  
+
&(I=T .)  
(3)  
Where,  
VIN(maximum) is the maximum input transient voltage seen by the circuit.  
VD is the forward voltage drop of ESD diodes at the amplifier input.  
ID(maximum) is the maximum current rating of the ESD diodes at the amplifier input.  
For a difference amplifier gain of 20 V/V, an RF of 12 kΩ and RG of 600 Ω are used. With a clock frequency of  
40 MHz and the ADS7056 sampling at 1 MSPS, the available acquisition time for amplifier output settling is 550  
ns. 9-2 shows the simulation results for the circuit in 9-1. The worst-case peak-to-peak input transient  
condition is simulated. The output of the OPAx863 device settles to within 0.1% accuracy within 543 ns. If using  
a slower clock frequency with the ADC is desired, then the acquisition time reduces with the same sampling rate,  
which degrades measurement accuracy. Alternatively, the sampling rate can be reduced to recover the required  
acquisition time and 0.1% accuracy.  
9.2.1.3 Application Curves  
4
3.5  
3
1.2  
1.1  
1
2.5  
2
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.5  
1
0.5  
0
-0.5  
-1  
VIN x 20  
OPAx863 O/P  
S/H Voltage  
% Error  
-1.5  
-2  
Time (150 ns/div)  
D805  
9-2. 0.1% Settling Performance  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: OPA863 OPA2863 OPA4863  
English Data Sheet: SBOS982  
 
OPA863, OPA2863, OPA4863  
ZHCSMO3J JUNE 2020 REVISED JUNE 2023  
www.ti.com.cn  
9.2.2 Front-End Gain and Filtering  
C2  
D1  
RBIAS  
R2  
-VBIAS  
VS+  
C1  
D2  
R1  
RISO  
œ
VS+  
œ
+
CSH  
RP  
+
VS-  
VS-  
High-Gain Band Pass Filter  
High-Speed Peak Detector  
9-3. High-Gain Narrow Bandpass Filter and Peak Detector Circuit  
Ultrasonic signaling is used for proximity and obstacle detection, level sensing, sonars, and so forth. Such signal  
chains detect the amplitude of received ultrasonic signal at a particular center frequency. 9-3 shows a high-  
gain narrow bandpass filter and peak detector circuit using any of the OPAx863 devices. The signal at the  
frequency of interest is filtered out, gained, and peak detected to report the amplitude at the output of this circuit.  
The phase information is lost in this circuit. The OPAx863 devices are used with the 50-MHz GBW to add a  
single-stage gain and filtering, and the peak detection capability is easily made with the RRIO capability of these  
amplifiers.  
9.2.3 Low-Power SAR ADC Driver and Reference Buffer  
9-4 shows the use of the OPAx863 as a SAR ADC input driver and reference buffer driving the ADS7945.  
sensors, which are used for interface with the physical environment, exhibit high output impedance, and cannot  
drive SAR ADC inputs directly. A wide-GBW amplifier, such as the OPAx863, is needed to charge the switching  
capacitors at the SAR ADC input, and quickly settle to the required accuracy within the given acquisition time.  
The ADC core draws transient current from the reference input during the conversion (digitization) phase, which  
must be driven with a wide-GBW amplifier to offer fast settling and maintain a stable reference voltage for  
excellent digitization performance. The OPAx863 reference buffer is used in a composite loop with the OPA378  
precision amplifier because of limitations in precision performance of wide-GBW amplifiers. The precision  
amplifier maintains low-offset output, whereas the OPAx863 devices provide the output drive and fast-settling  
performance.  
RF  
RG  
6 V  
5 V  
5 V  
RS  
AVDD  
DVDD  
Sensor  
OPAx863  
+
ZOUT  
ADS7945  
14-bit  
CCB  
2 MSPS  
VREF  
5 V  
12 V  
6 V  
OPA378  
+
REF5050  
5.0 V  
Reference  
RFILT  
OPAx863  
+
CFILT  
9-4. OPAx863 as Low-Power SAR ADC Driver  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOS982  
28  
Submit Document Feedback  
Product Folder Links: OPA863 OPA2863 OPA4863  
 
 
OPA863, OPA2863, OPA4863  
ZHCSMO3J JUNE 2020 REVISED JUNE 2023  
www.ti.com.cn  
9.2.4 Variable Reference Generator Using MDAC  
High-speed amplifiers can be used as a voltage buffer at MDAC output to generate a fast-settling variable  
reference voltage. 9-5 shows a representative circuit using DAC8801 and OPAx863.  
VDD  
RFB  
+6 V  
IOUT  
VREF  
+
DAC8801  
VOUT  
OPAx863  
6 V  
9-5. Variable Reference Generator Using MDAC and OPAx863  
9.2.5 Clamp-On Ultrasonic Flow Meter  
9-6 shows how ultrasonic flow meters measure the rate of flow of a liquid using transit-time difference (t12–  
t21), which depends on the flow rate. 9-6 shows a representative schematic for a non-intrusive ultrasonic flow  
meter using the OPAx863 and 12-V transducer excitation. The OPAx863 are used for the forward path as a  
unity-gain buffer for 12-V pulsed transducer excitation at NODE 1. At the same time, the receiver circuit at NODE  
2 (which also uses the OPAx863) first provides an ac-gain followed by a dc-level shift to lead to the PGA, ADC,  
and processor within the MSP430microcontroller.  
NODE 2 and NODE 1 use similar transmit and receive circuits (discussed previously) for the reverse path. The  
OPAx863 wide GBW of 50 MHz introduces minimal phase-delay and low-noise for excellent flow rate  
measurement. The amplifier stays in power-down mode for a majority of the time in battery-powered systems.  
This configuration results in very small average system-level power consumption and prolonged battery lifetime  
with the 1.5µA (maximum) power-down mode quiescent current with a 3-V supply. The transmit and receive  
signal chains are connected to the same point at the respective node transducers. Therefore, the OPAx863 12.6-  
V supply voltage capability enables 12-V transducer excitation without any damage to the front-end, or a need  
for external switches, thus enabling a more compact solution. These specifications make the OPAx863 an  
excellent choice for flow measurements in large diameter pipes and non-intrusive flow meters. The TIDM-02003  
reference design discusses an ultrasonic gas flow sensing subsystem which uses high-speed amplifiers for front-  
end amplification.  
NODE-1  
CFilt  
NODE-2  
3.3 V  
CG  
RG  
RF  
12 V  
3.3 V  
RISO  
œ
12 V  
R  
12 V  
MSP430FR6043  
ADC  
VTX  
CAC2  
+
OPAx863  
12 V  
0 V  
œ
R
Processor  
PGA  
+
OPAx863  
VRX  
t12  
CAC1  
R  
R
Transmitter  
TRX2  
TRX1  
VTX  
Receiver  
12 V  
VRX  
0 V  
Receiver  
Transmitter  
t21  
9-6. Non-Intrusive Ultrasonic Flow Meter  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: OPA863 OPA2863 OPA4863  
English Data Sheet: SBOS982  
 
 
OPA863, OPA2863, OPA4863  
ZHCSMO3J JUNE 2020 REVISED JUNE 2023  
www.ti.com.cn  
9.3 Power Supply Recommendations  
The OPAx863 is intended to operate on supplies ranging from 2.7 V to 12.6 V. The OPAx863 devices operate on  
single-sided supplies, split and balanced bipolar supplies, or unbalanced bipolar supplies. Operating from a  
single supply has numerous advantages. The dc errors, due to the PSRR term, can be minimized with the  
negative supply at ground. Typically, ac performance improves slightly at 10-V operation with minimal increase in  
supply current. Minimize the distance (< 0.1 in) from the power supply pins to high-frequency, 0.01-µF  
decoupling capacitors. A larger capacitor (2.2 µF typical) is used along with a high-frequency, 0.01-µF supply-  
decoupling capacitor at the device supply pins. Only the positive supply has these capacitors for single-supply  
operation. Use these capacitors from each supply to ground when a split-supply is used. If necessary, place the  
larger capacitors further from the device and share these capacitors among several devices in the same area of  
the printed circuit board (PCB). An optional supply decoupling capacitor across the two power supplies (for split-  
supply operation) reduces second harmonic distortion.  
9.4 Layout  
9.4.1 Layout Guidelines  
Achieving optimum performance with a high-frequency amplifier (like the OPAx863) requires careful attention to  
board layout parasitics and external component types. The OPA2863 DGK Evaluation Module user's guide can  
be used as a reference when designing the circuit board. Recommendations that optimize performance includes  
the following:  
1. Minimize parasitic capacitance to any ac ground for all of the signal I/O pins. Parasitic capacitance on the  
output and inverting input pins can cause instability on the noninverting input and can react with the source  
impedance to cause unintentional band-limiting. Open a window around the signal I/O pins in all of the  
ground and power planes around those pins to reduce unwanted capacitance. Otherwise, ground and power  
planes must be unbroken elsewhere on the board.  
2. Minimize the distance (< 0.1 in) from the power-supply pins to high-frequency 0.01-µF decoupling  
capacitors. Avoid narrow power and ground traces to minimize inductance between the pins and the  
decoupling capacitors. The power-supply connections must always be decoupled with these capacitors.  
Larger (2.2-µF to 6.8-µF) decoupling capacitors, effective at lower frequency, must also be used on the  
supply pins. These capacitors can be placed somewhat farther from the device and shared among several  
devices in the same area of the PCB.  
3. Careful selection and placement of external components preserves the high-frequency performance  
of the OPAx863. Resistors must be a low reactance type. Surface-mount resistors work best and allow a  
tighter overall layout. Other network components, such as noninverting input termination resistors, must also  
be placed close to the package. Keep resistor values as low as possible and consistent with load-driving  
considerations. Lowering the resistor values keeps the resistor noise terms low and minimizes the effect of  
the parasitic capacitance. Lower resistor values, however, increase the dynamic power consumption  
because RF and RG become part of the amplifier output load network.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOS982  
30  
Submit Document Feedback  
Product Folder Links: OPA863 OPA2863 OPA4863  
 
 
OPA863, OPA2863, OPA4863  
ZHCSMO3J JUNE 2020 REVISED JUNE 2023  
www.ti.com.cn  
9.4.1.1 Thermal Considerations  
The OPAx863 does not require heat sinking or airflow in most applications. The maximum allowed junction  
temperature sets the maximum allowed internal power dissipation. Do not allow the maximum junction  
temperature to exceed 150°C.  
Operating junction temperature (TJ) is given by,  
TJ = TA + PD x RƟJA  
(4)  
where  
TA is the ambient temperature  
PD is the total power dissipation internal to the amplifier  
RƟJA is the junction-to-ambient thermal resistance  
The total power dissipation PD = PDQ + PDL  
where  
PDQ = (VS+ VS-) x IQ, is the power dissipation due to the amplifier quiescent current  
PDL(max) = VS 2 / (4 × RL), is the internal power dissipation due to the output load current  
As a worst-case example, compute the maximum TJ using an OPA2863-DGK (VSSOP package) configured as a  
unity gain buffer, operating on ±6-V supplies at an ambient temperature of 25°C and driving a grounded 500-Ω  
load.  
PD = 12 V × 2 mA + 62 / (4 × 500 Ω) = 42 mW  
(5)  
Maximum TJ = 25°C + (0.042 W × 180.3°C/W) = 33°C, which is much less than the maximum allowed junction  
temperature of 150°C.  
9.4.2 Layout Example  
VS+  
Representative schematic of a  
single channel  
CBYP  
RS  
+
t
CBYP  
VS-  
RF  
RG  
Ground and power plane exist on inner  
layers.  
Ground and power plane removed  
from inner layers. Ground fill on outer  
layers also removed  
CBYP  
RS  
Place series output resistors close  
to output pin to minimize  
parasitic capacitance  
1
2
8
7
RF  
RS  
Place bypass capacitors  
close to power pins  
RG  
RF  
Place gain and feedback resistors close  
to pins to minimize stray capacitance  
3
4
6
5
RG  
Place bypass capacitors  
close to power pins  
Remove GND and Power plane under  
output and inverting pins to minimize  
stray PCB capacitance  
CBYP  
9-7. Layout Recommendation for Dual-Channel DGK Package  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: OPA863 OPA2863 OPA4863  
English Data Sheet: SBOS982  
OPA863, OPA2863, OPA4863  
ZHCSMO3J JUNE 2020 REVISED JUNE 2023  
www.ti.com.cn  
10 Device and Documentation Support  
10.1 Documentation Support  
10.1.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, OPA2863ADGK Evaluation Module user's guide  
Texas Instruments, Single-Supply Op Amp Design Techniques application report  
10.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
10.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.4 Trademarks  
MSP430and TI E2Eare trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
10.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
10.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOS982  
32  
Submit Document Feedback  
Product Folder Links: OPA863 OPA2863 OPA4863  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA2863DR  
OPA2863IDGKR  
OPA2863RUNR  
OPA4863PWR  
OPA863DBVR  
OPA863SIDBVR  
XOPA4863IPWR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
VSSOP  
QFN  
D
8
8
3000 RoHS & Green  
2500 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Call TI  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
O2863D  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
DGK  
RUN  
PW  
NIPDAUAG  
NIPDAUAG  
NIPDAU  
SN  
2FJ4  
10  
14  
5
O263  
TSSOP  
SOT-23  
SOT-23  
TSSOP  
OPA4863  
2QS5  
O863  
DBV  
DBV  
PW  
6
SN  
14  
2000  
TBD  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Jun-2023  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF OPA2863 :  
Automotive : OPA2863-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
22-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA2863DR  
OPA2863IDGKR  
OPA2863RUNR  
OPA4863PWR  
OPA863DBVR  
OPA863SIDBVR  
SOIC  
VSSOP  
QFN  
D
8
8
3000  
2500  
3000  
3000  
3000  
3000  
330.0  
330.0  
180.0  
330.0  
178.0  
178.0  
12.4  
12.4  
8.4  
6.4  
5.3  
2.2  
6.9  
3.3  
3.3  
5.2  
3.4  
2.2  
5.6  
3.2  
3.2  
2.1  
1.4  
1.2  
1.6  
1.4  
1.4  
8.0  
8.0  
4.0  
8.0  
4.0  
4.0  
12.0  
12.0  
8.0  
Q1  
Q1  
Q2  
Q1  
Q3  
Q3  
DGK  
RUN  
PW  
10  
14  
5
TSSOP  
SOT-23  
SOT-23  
12.4  
9.0  
12.0  
8.0  
DBV  
DBV  
6
9.0  
8.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
22-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA2863DR  
OPA2863IDGKR  
OPA2863RUNR  
OPA4863PWR  
OPA863DBVR  
OPA863SIDBVR  
SOIC  
VSSOP  
QFN  
D
8
8
3000  
2500  
3000  
3000  
3000  
3000  
356.0  
366.0  
213.0  
356.0  
180.0  
190.0  
356.0  
364.0  
191.0  
356.0  
180.0  
190.0  
35.0  
50.0  
35.0  
35.0  
18.0  
30.0  
DGK  
RUN  
PW  
10  
14  
5
TSSOP  
SOT-23  
SOT-23  
DBV  
DBV  
6
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
GENERIC PACKAGE VIEW  
RUN 10  
2 X 2, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4228249/A  
www.ti.com  
PACKAGE OUTLINE  
RUN0010B  
WQFN - 0.8 mm max height  
S
C
A
L
E
5
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
2.1  
1.9  
B
A
2.1  
1.9  
PIN 1 INDEX AREA  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
SYMM  
5
(0.2) TYP  
4
6
SYMM  
2X 1.5  
6X 0.5  
9
1
0.3  
0.2  
10X  
10  
PIN 1 ID  
0.1  
C A B  
0.6  
10X  
0.05  
0.4  
4226925/A 08/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RUN0010B  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
10  
SEE SOLDER MASK  
DETAIL  
10X (0.7)  
1
10X (0.25)  
9
SYMM  
(1.7)  
6X (0.5)  
(R0.05) TYP  
6
4
5
(1.7)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4226925/A 08/2021  
NOTES: (continued)  
3. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RUN0010B  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
10X (0.7)  
10  
1
10X (0.25)  
9
SYMM  
(1.7)  
6X (0.5)  
(R0.05) TYP  
6
4
5
SYMM  
(1.7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 20X  
4226925/A 08/2021  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DBV0006A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
B
1.45 MAX  
A
PIN 1  
INDEX AREA  
1
2
6
5
2X 0.95  
1.9  
3.05  
2.75  
4
3
0.50  
6X  
0.25  
C A B  
0.15  
0.00  
0.2  
(1.1)  
TYP  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
TYP  
0
0.6  
0.3  
TYP  
SEATING PLANE  
4214840/C 06/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.  
4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.  
5. Refernce JEDEC MO-178.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214840/C 06/2021  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214840/C 06/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

OPA8709

Infrared LED Chip
KODENSHI

OPA8731H

Infrared LED Chip
KODENSHI

OPA8736H

Infrared LED Chip
KODENSHI

OPA8740HP

Infrared LED Chip
KODENSHI

OPA8745H

Infrared LED Chip
KODENSHI

OPA875

Triple 2:1 High-Speed Video Multiplexer
BB

OPA875

Single 2:1 High-Speed Video Multiplexer
TI

OPA8750T

Infrared LED Chip
KODENSHI

OPA875ID

Single 2:1 High-Speed Video Multiplexer
TI

OPA875ID

Single 2:1 High-Speed Video Multiplexer
BB

OPA875IDG4

Single 2:1 High-Speed Video Multiplexer
TI

OPA875IDG4

Single 2:1 High-Speed Video Multiplexer
BB