OPA858 [TI]

具有 FET 输入的 5.5GHz 增益带宽积、解补偿跨阻放大器;
OPA858
型号: OPA858
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 FET 输入的 5.5GHz 增益带宽积、解补偿跨阻放大器

放大器
文件: 总37页 (文件大小:2852K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
OPA858  
ZHCSI18A APRIL 2018REVISED JULY 2018  
OPA858 5.5GHz 增益带宽积、7V/V 增益稳定型 FET 输入放大器  
1 特性  
3 说明  
1
高增益带宽积:5.5GHz  
解补偿,增益 7V/V(稳定)  
超低偏置电流 MOSFET 输入:10pA  
低输入电压噪声:2.5nV/Hz  
压摆率:2000V/µs  
OPA858 是一款具有 CMOS 输入的低噪声运算放大  
器,适用于宽带跨阻和电压放大器 应用。当将该器件  
配置为跨阻放大器 (TIA) 时,5.5GHz 增益带宽积  
(GBWP) 可为 需要 在数十至数百千欧范围内的跨阻增  
益下实现高闭环带宽的应用提供支持。  
低输入电容:  
下图展示了当将 OPA858 配置为 TIA 时,该放大器的  
带宽和噪声性能与光电二极管电容的函数关系。计算总  
噪声时所依据的带宽范围为:从直流到左轴上计算得出  
f-3dB 频率。OPA858 封装 具有 反馈引脚 (FB),可  
简化输入和输出之间的反馈网络连接。  
共模:0.6pF  
差动:0.2pF  
宽输入共模范围:  
与正电源相差 1.4V  
包括负电源  
OPA858 经过优化,可用于光学飞行时间 (ToF) 系  
统,下图所示系统便是一个例子,其中 OPA858 是与  
TDC7201 时数转换器搭配使用。OPA858 可搭配高速  
模数转换器 (ADC) 和用以驱动该 ADC 的差动输出放  
大器(如 THS4541 LMH5401),用于高分辨率激  
光雷达系统。  
TIA 配置下的输出摆幅为 2.5VPP  
电源电压范围:3.3V 5.25V  
静态电流:20.5mA  
采用 8 引脚 WSON 封装  
温度范围:–40 +125°C  
2 应用  
器件信息(1)  
高速跨阻放大器  
器件型号  
OPA858  
封装  
WSON (8)  
封装尺寸(标称值)  
激光测距  
2.00mm × 2.00mm  
激光雷达接收器  
液位变送器(光学)  
光学时域反射法 (OTDR)  
分布式温度检测  
3D 扫描仪  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
飞行时间 (ToF) 系统  
自主驾驶系统  
空白  
高速飞行时间接收器  
光电二极管电容与带宽和噪声  
CF  
450  
400  
350  
300  
250  
200  
150  
100  
50  
110  
100  
90  
RF  
VBIAS  
f-3dB, RF = 10 kW  
f-3dB, RF = 20 kW  
IRN, RF = 10 kW  
IRN, RF = 20 kW  
Rx  
Lens  
5 V  
TLV3501  
+
œ
3.5 V  
+
OPA858  
Stop 2  
Start 2  
VREF  
œ
80  
CF  
RF  
70  
TDC7201  
(Time-to-  
Digital  
VBIAS  
60  
5 V  
Converter)  
TLV3501  
+
œ
50  
3.5 V  
+
OPA858  
Stop 1  
Start 1  
40  
VREF  
œ
30  
0
20  
20  
Tx  
Lens  
0
2
4
6
8
10  
12  
14  
16  
18  
MSP430  
Controller  
Pulsed Laser  
Diode  
Photodiode capacitance (pF)  
D209  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBOS629  
 
 
 
OPA858  
ZHCSI18A APRIL 2018REVISED JULY 2018  
www.ti.com.cn  
目录  
9.2 Functional Block Diagram ....................................... 15  
9.3 Feature Description................................................. 16  
9.4 Device Functional Modes........................................ 19  
10 Application and Implementation........................ 20  
10.1 Application Information.......................................... 20  
10.2 Typical Application ............................................... 22  
11 Power Supply Recommendations ..................... 24  
12 Layout................................................................... 25  
12.1 Layout Guidelines ................................................. 25  
12.2 Layout Example .................................................... 25  
13 器件和文档支持 ..................................................... 27  
13.1 接收文档更新通知 ................................................. 27  
13.2 社区资源................................................................ 27  
13.3 ....................................................................... 27  
13.4 静电放电警告......................................................... 27  
13.5 术语表 ................................................................... 27  
14 机械、封装和可订购信息....................................... 28  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics .......................................... 5  
7.6 Typical Characteristics ............................................. 7  
Parameter Measurement Information ................ 14  
8.1 Parameter Measurement Information ..................... 14  
Detailed Description ............................................ 15  
9.1 Overview ................................................................. 15  
8
9
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (April 2018) to Revision A  
Page  
已更改 将器件状态从预告信息更改为生产数据” ................................................................................................................. 1  
2
Copyright © 2018, Texas Instruments Incorporated  
 
OPA858  
www.ti.com.cn  
ZHCSI18A APRIL 2018REVISED JULY 2018  
5 Device Comparison Table  
MINIMUM STABLE  
GAIN  
VOLTAGE NOISE  
INPUT  
CAPACITANCE (pF)  
GAIN BANDWIDTH  
(GHz)  
DEVICE  
INPUT TYPE  
(nV/Hz)  
OPA858  
OPA855  
LMH6629  
CMOS  
Bipolar  
Bipolar  
7 V/V  
7 V/V  
2.5  
0.8  
0.8  
5.7  
5.5  
8
0.98  
0.69  
10 V/V  
4
6 Pin Configuration and Functions  
DSG Package  
8-Pin WSON With Exposed Thermal Pad  
Top View  
FB  
NC  
INœ  
IN+  
1
2
3
4
8
7
6
5
PD  
VS+  
OUT  
VSœ  
Thermal  
Pad  
Not to scale  
NC - no internal connection  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
FB  
NO.  
1
I
I
Feedback connection to output of amplifier  
Inverting input  
IN–  
3
IN+  
4
I
Noninverting input  
NC  
2
O
Do not connect  
OUT  
6
Amplifier output  
Power down connection. PD = logic low = power off mode; PD = logic high = normal  
operation  
PD  
8
I
VS–  
5
7
Negative voltage supply  
VS+  
Positive voltage supply  
Thermal pad  
Connect the thermal pad to VS–  
Copyright © 2018, Texas Instruments Incorporated  
3
OPA858  
ZHCSI18A APRIL 2018REVISED JULY 2018  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
5.5  
UNIT  
VS  
Total supply voltage (VS+ – VS–  
)
VIN+, VIN–  
VID  
Input voltage  
(VS–) – 0.5  
(VS–) – 0.5  
(VS+) + 0.5  
1
V
Differential input voltage  
Output voltage  
VOUT  
IIN  
IOUT  
TJ  
(VS+) + 0.5  
±10  
Continuous input current  
Continuous output current(2)  
Junction temperature  
Operating free-air temperature  
Storage temperature  
mA  
°C  
±100  
150  
TA  
125  
TSTG  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Long-term continuous output current for electromigration limits.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±1000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±1500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
VS  
Total supply voltage (VS+ – VS–  
)
3.3  
5
5.25  
V
7.4 Thermal Information  
OPA858  
THERMAL METRIC(1)  
DSG (WSON)  
8 PINS  
80.1  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
100  
45  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
6.8  
ψJB  
45.2  
RθJC(bot)  
22.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2018, Texas Instruments Incorporated  
OPA858  
www.ti.com.cn  
ZHCSI18A APRIL 2018REVISED JULY 2018  
7.5 Electrical Characteristics  
VS+ = 5 V, VS– = 0 V, G = 7 V/V, RF = 453 Ω, input common-mode biased at midsupply, RL = 200 Ω, output load is referenced  
to midsupply, and TA = 25(unless otherwise noted)  
TEST  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LEVEL(1)  
AC PERFORMANCE  
SSBW  
LSBW  
GBWP  
Small-signal bandwidth  
Large-signal bandwidth  
Gain-bandwidth product  
Bandwidth for 0.1-dB flatness  
Slew rate (10% - 90%)  
Rise time  
VOUT = 100 mVPP  
1.2  
600  
5.5  
130  
2000  
0.3  
0.3  
8
GHz  
MHz  
GHz  
MHz  
V/µs  
ns  
C
VOUT = 2 VPP  
C
C
C
C
C
C
C
C
C
C
SR  
tr  
VOUT = 2-V step  
VOUT = 100-mV step  
VOUT = 100-mV step  
VOUT = 2-V step  
tf  
Fall time  
ns  
Settling time to 0.1%  
Settling time to 0.001%  
Overshoot or undershoot  
Overdrive recovery  
ns  
VOUT = 2-V step  
3000  
7%  
200  
88  
ns  
VOUT = 2-V step  
2x output overdrive (0.1% recovery)  
f = 10 MHz, VOUT = 2 VPP  
f = 100 MHz, VOUT = 2 VPP  
f = 10 MHz, VOUT = 2 VPP  
f = 100 MHz, VOUT = 2 VPP  
f = 1 MHz  
ns  
HD2  
HD3  
Second-order harmonic distortion  
Third-order harmonic distortion  
dBc  
C
C
64  
86  
dBc  
68  
en  
Input-referred voltage noise  
2.5  
0.15  
nV/Hz  
C
C
ZOUT  
Closed-loop output impedance  
f = 1 MHz  
Ω
DC PERFORMANCE  
AOL  
Open-loop voltage gain  
72  
–5  
75  
±0.8  
±2  
dB  
mV  
A
A
B
A
A
VOS  
Input offset voltage  
Input offset voltage drift  
Input bias current  
TA = 25°C  
5
ΔVOS/ΔT  
IBN, IBI  
IBOS  
TA = –40°C to +125°C  
TA = 25°C  
µV/°C  
pA  
±0.4  
±0.01  
5
5
Input offset current  
TA = 25°C  
pA  
VCM = ±0.5 V, referenced to  
midsupply  
CMRR  
Common-mode rejection ratio  
70  
90  
dB  
A
INPUT  
Common-mode input resistance  
Common-mode input capacitance  
Differential input resistance  
1
0.62  
1
GΩ  
pF  
GΩ  
pF  
V
C
C
C
C
A
A
A
B
CCM  
CDIFF  
VIH  
Differential input capacitance  
0.2  
1.9  
0
Common-mode input range (high) CMRR > 66 dB, VS+ = 3.3 V  
1.7  
3.4  
VIL  
Common-mode input range (low)  
CMRR > 66 dB, VS+ = 3.3 V  
CMRR > 66 dB  
0.4  
0.4  
V
3.6  
3.4  
VIH  
Common-mode input range (high)  
V
V
TA = –40°C to +125°C, CMRR > 66  
dB  
CMRR > 66 dB  
0
A
B
VIL  
Common-mode input range (low)  
TA = –40°C to +125°C, CMRR > 66  
dB  
0.35  
OUTPUT  
VOH  
Output voltage (high)  
Output voltage (high)  
Output voltage (low)  
TA = 25°C, VS+ = 3.3 V  
TA = 25°C  
2.3  
2.4  
4.1  
V
V
V
A
A
B
A
3.95  
VOH  
VOL  
TA = –40°C to +125°C  
TA = 25°C, VS+ = 3.3 V  
3.9  
1.05  
1.15  
(1) Test levels (all values set by characterization and simulation): (A) 100% tested at 25°C, overtemperature limits by characterization and  
simulation; (B) Not tested in production, limits set by characterization and simulation; (C) Typical value only for information.  
Copyright © 2018, Texas Instruments Incorporated  
5
OPA858  
ZHCSI18A APRIL 2018REVISED JULY 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
VS+ = 5 V, VS– = 0 V, G = 7 V/V, RF = 453 Ω, input common-mode biased at midsupply, RL = 200 Ω, output load is referenced  
to midsupply, and TA = 25(unless otherwise noted)  
TEST  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LEVEL(1)  
TA = 25°C  
1.05  
1.2  
80  
1.15  
A
VOL  
Output voltage (low)  
V
TA = –40°C to +125°C  
B
A
B
RL = 10 Ω, AOL > 60 dB  
65  
85  
Linear output drive (sink and  
source)  
mA  
mA  
TA = –40°C to +125°C, RL = 10 Ω,  
AOL > 60 dB  
64  
ISC  
Output short-circuit current  
105  
A
POWER SUPPLY  
VS  
IQ  
IQ  
IQ  
IQ  
IQ  
Operating voltage  
3.3  
18  
5.25  
24  
V
A
A
A
A
B
B
Quiescent current  
Quiescent current  
Quiescent current  
Quiescent current  
Quiescent current  
VS+ = 5 V  
20.5  
20  
mA  
mA  
mA  
mA  
mA  
VS+ = 3.3 V  
VS+ = 5.25 V  
TA = 125°C  
TA = –40°C  
17.5  
18  
23.5  
24  
21  
24.5  
18.5  
Positive power-supply rejection  
ratio  
PSRR+  
PSRR–  
74  
70  
84  
80  
dB  
A
Negative power-supply rejection  
ratio  
POWER DOWN  
Disable voltage threshold  
Amplifier OFF below this voltage  
Amplifier ON above this voltage  
0.65  
1
1.5  
70  
V
V
A
A
A
A
C
C
Enable voltage threshold  
Power-down quiescent current  
PD bias current  
1.8  
140  
200  
µA  
µA  
ns  
ns  
70  
Turnon time delay  
Time to VOUT = 90% of final value  
13  
Turnoff time delay  
120  
6
版权 © 2018, Texas Instruments Incorporated  
OPA858  
www.ti.com.cn  
ZHCSI18A APRIL 2018REVISED JULY 2018  
7.6 Typical Characteristics  
VS+ = 2.5 V, VS– = –2.5 V, VIN+ = 0 V, RF = 453 Ω, Gain = 7 V/V, RL = 200 Ω, output load referenced to midsupply, and TA =  
25°C (unless otherwise noted)  
3
0
4
2
0
-2  
-3  
-4  
-6  
-6  
-8  
Gain = +7 V/V  
Gain = +10 V/V  
Gain = +20 V/V  
Gain = -7 V/V  
-9  
-10  
-12  
VS = 5 V  
VS = 3.3 V  
-12  
1M  
10M  
100M  
1G  
5G  
1M  
10M  
100M  
Frequency (Hz)  
1G  
5G  
Frequency (Hz)  
D100  
D102  
VOUT = 100 mVPP; see 43 and 44 for circuit configuration  
VOUT = 100 mVPP  
1. Small-Signal Frequency Response vs Gain  
2. Small-Signal Frequency Response vs Supply Voltage  
3
2
1
0
0
-3  
-6  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
TA = -40èC  
TA = 0èC  
TA = 25èC  
TA = 85èC  
TA = 125èC  
-9  
RL = 200 W  
RL = 400 W  
RL = 100 W  
-12  
1M  
10M  
100M  
Frequency (Hz)  
1G  
5G  
1M  
10M  
100M  
Frequency (Hz)  
1G  
D103  
D104  
VOUT = 100 mVPP  
VOUT = 100 mVPP  
3. Small-Signal Frequency Response vs Output Load  
4. Small-Signal Frequency Response vs Ambient  
Temperature  
4
2
4
2
0
0
-2  
-4  
-6  
-2  
-4  
-6  
-8  
-8  
RS = 24 W, C L = 10 pF  
Gain = 7 V/V  
Gain = 10 V/V  
Gain = 20 V/V  
Gain = -7 V/V  
RS = 10 W, C L = 47 pF  
RS = 5.6 W, C L = 100 pF  
RS = 1.8 W, C L = 1 nF  
-10  
-12  
-10  
-12  
1M  
10M  
100M  
Frequency (Hz)  
1G  
1M  
10M  
100M  
Frequency (Hz)  
1G  
D105  
D106  
VOUT = 100 mVPP; see 45 for circuit configuration  
VOUT = 2 VPP  
6. Large-Signal Frequency Response vs Gain  
5. Small-Signal Frequency Response vs Capacitive Load  
版权 © 2018, Texas Instruments Incorporated  
7
OPA858  
ZHCSI18A APRIL 2018REVISED JULY 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
VS+ = 2.5 V, VS– = –2.5 V, VIN+ = 0 V, RF = 453 Ω, Gain = 7 V/V, RL = 200 Ω, output load referenced to midsupply, and TA =  
25°C (unless otherwise noted)  
0.4  
0.3  
0.2  
0.1  
0
4
2
0
-2  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-4  
-6  
-8  
-10  
-12  
1M  
10M  
100M  
Frequency (Hz)  
1G  
1M  
10M  
100M  
Frequency (Hz)  
1G  
5G  
D107  
D108  
VOUT = 2 VPP  
VS = 3.3 V  
VOUT = 1 VPP  
7. Large-Signal Response for 0.1-dB Gain Flatness  
100  
8. Large-Signal Frequency Response  
90  
75  
60  
45  
30  
15  
0
45  
Gain = 7 V/V  
Gain = 20 V/V  
AOL magnitude (dB)  
AOL phase (è)  
0
-45  
10  
1
-90  
-135  
-180  
-225  
-270  
0.1  
-15  
1M  
10M  
100M  
10k  
100k  
1M  
10M  
100M  
1G  
10G  
Frequency (Hz)  
Frequency (Hz)  
D109  
D500  
Small-Signal Response  
9. Closed-Loop Output Impedance vs Frequency  
Small-Signal Response  
10. Open-Loop Magnitude and Phase vs Frequency  
100  
10  
1
3.2  
3
2.8  
2.6  
2.4  
2.2  
2
1.8  
1k  
10k  
100k  
1M  
10M  
100M  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Frequency (Hz)  
Ambient Temperature (èC)  
D111  
D112  
Frequency = 10 MHz  
11. Voltage Noise Density vs Frequency  
12. Voltage Noise Density vs Ambient Temperature  
版权 © 2018, Texas Instruments Incorporated  
8
 
OPA858  
www.ti.com.cn  
ZHCSI18A APRIL 2018REVISED JULY 2018  
Typical Characteristics (接下页)  
VS+ = 2.5 V, VS– = –2.5 V, VIN+ = 0 V, RF = 453 Ω, Gain = 7 V/V, RL = 200 Ω, output load referenced to midsupply, and TA =  
25°C (unless otherwise noted)  
-40  
-40  
-50  
HD2, VOUT = 0.5 VPP  
HD2, VOUT = 1 VPP  
HD2, VOUT = 2 VPP  
HD2, VOUT = 2.5 VPP  
HD3, VOUT = 0.5 VPP  
HD3, VOUT = 1 VPP  
HD3, VOUT = 2 VPP  
HD3, VOUT = 2.5 VPP  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
1M  
10M  
Frequency (Hz)  
100M  
1M  
10M  
Frequency (Hz)  
100M  
D113  
D114  
13. Harmonic Distortion (HD2) vs Output Swing  
14. Harmonic Distortion (HD3) vs Output Swing  
-40  
-50  
-40  
-50  
HD2, RL = 100 W  
HD2, RL = 200 W  
HD2, RL = 400 W  
HD3, RL = 100 W  
HD3, RL = 200 W  
HD3, RL = 400 W  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
1M  
10M  
100M  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
D115  
D116  
VOUT = 2 VPP  
VOUT = 2 VPP  
15. Harmonic Distortion (HD2) vs Output Load  
16. Harmonic Distortion (HD3) vs Output Load  
-40  
-50  
-40  
-50  
HD2, G = -7 V/V  
HD2, G = 7 V/V  
HD2, G = 20 V/V  
HD3, G = -7 V/V  
HD3, G = 7 V/V  
HD3, G = 20 V/V  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
1M  
10M  
100M  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
D117  
D118  
VOUT = 2 VPP  
VOUT = 2 VPP  
17. Harmonic Distortion (HD2) vs Gain  
18. Harmonic Distortion (HD3) vs Gain  
版权 © 2018, Texas Instruments Incorporated  
9
OPA858  
ZHCSI18A APRIL 2018REVISED JULY 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
VS+ = 2.5 V, VS– = –2.5 V, VIN+ = 0 V, RF = 453 Ω, Gain = 7 V/V, RL = 200 Ω, output load referenced to midsupply, and TA =  
25°C (unless otherwise noted)  
80  
1.25  
1
Input  
Output  
Input  
Output  
60  
0.75  
0.5  
40  
20  
0.25  
0
0
-0.25  
-0.5  
-0.75  
-1  
-20  
-40  
-60  
-80  
-1.25  
Time (5 ns/div)  
Time (5 ns/div)  
D119  
D120  
Average Rise and Fall Time (10% - 90%) = 450 ps  
Average Rise and Fall Time (10% - 90%) = 750 ps  
19. Small-Signal Transient Response  
20. Large-Signal Transient Response  
3
2
80  
60  
Measured Output  
Ideal Output  
40  
1
20  
0
0
-20  
-40  
-60  
-80  
-1  
-2  
RS = 24 W, CL = 10 pF  
RS = 10 W, CL = 47 pF  
RS = 5.6 W, CL = 100 pF  
RS = 1.8 W, CL = 1 nF  
-3  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Time (5 ns/div)  
Time (ns)  
D121  
D122  
2x Output Overdrive  
22. Output Overload Response  
21. Small-Signal Transient Response vs Capacitive Load  
5
4.5  
4
5
4.5  
4
Power Down (PD)  
Output  
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
Power Down (PD)  
0.5  
0.5  
0
Output  
0
Time (5 ns/div)  
Time (5 ns/div)  
D123  
D124  
VS+ = 5 V, VS– = Ground  
VS+ = 5 V, VS– = Ground  
23. Turnon Transient Response  
24. Turnoff Transient Response  
10  
版权 © 2018, Texas Instruments Incorporated  
 
 
OPA858  
www.ti.com.cn  
ZHCSI18A APRIL 2018REVISED JULY 2018  
Typical Characteristics (接下页)  
VS+ = 2.5 V, VS– = –2.5 V, VIN+ = 0 V, RF = 453 Ω, Gain = 7 V/V, RL = 200 Ω, output load referenced to midsupply, and TA =  
25°C (unless otherwise noted)  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
PSRR-  
PSRR+  
-20  
-40  
-20  
10k  
100k  
1M  
10M  
100M  
1G  
10k  
100k  
1M  
10M  
100M  
1G  
Frequency (Hz)  
Frequency (Hz)  
D125  
D126  
Small-Signal Response  
Small-Signal Response  
25. Common-Mode Rejection Ratio vs Frequency  
26. Power Supply Rejection Ratio vs Frequency  
23  
22.5  
22  
26  
25  
24  
23  
22  
21  
20  
19  
18  
21.5  
21  
20.5  
20  
Unit 1 (VS = 3.3 V)  
Unit 1 (VS = 5 V)  
Unit 2 (VS = 3.3 V)  
Unit 2 (VS = 5 V)  
19.5  
19  
Unit1  
Unit2  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
5
5.25  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Total Supply Voltage (V)  
Ambient Temperature (èC)  
D160  
D161  
2 Typical Units  
2 Typical Units  
27. Quiescent Current vs Supply Voltage  
28. Quiescent Current vs Ambient Temperature  
85  
80  
75  
70  
65  
1.5  
1.2  
0.9  
0.6  
0.3  
0
Unit 1  
Unit 2  
Unit 3  
-0.3  
-0.6  
-0.9  
-1.2  
-1.5  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
3
3.25 3.5  
3.75  
4
4.25 4.5  
4.75  
5
5.25  
Ambient Temperature (èC)  
D162  
Total Supply Voltage (V)  
D163  
30 Units Tested  
3 Typical Units  
29. Quiescent Current (Amplifier Disabled) vs Ambient  
30. Offset Voltage vs Supply Voltage  
Temperature  
版权 © 2018, Texas Instruments Incorporated  
11  
OPA858  
ZHCSI18A APRIL 2018REVISED JULY 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
VS+ = 2.5 V, VS– = –2.5 V, VIN+ = 0 V, RF = 453 Ω, Gain = 7 V/V, RL = 200 Ω, output load referenced to midsupply, and TA =  
25°C (unless otherwise noted)  
4
3.5  
3
0.8  
0.6  
0.4  
0.2  
0
Unit 1  
Unit 2  
Unit 3  
2.5  
2
1.5  
1
-0.2  
-0.4  
-0.6  
-0.8  
0.5  
0
-0.5  
-1  
-1.5  
0
0.25 0.5 0.75  
1
1.25 1.5 1.75  
2
2.25 2.5 2.75  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Common-Mode Voltage (V)  
Ambient Temperature (èC)  
D165  
D164  
VS = 3.3 V  
3 Typical Units  
µ = 1 µV/°C  
σ = 2.2 µV/°C  
28 Units Tested  
32. Offset Voltage vs Input Common-Mode Voltage  
31. Offset Voltage vs Ambient Temperature  
3
2.5  
2
2
Unit 1  
Unit 2  
Unit 3  
1.6  
1.2  
0.8  
0.4  
0
1.5  
1
0.5  
0
-0.4  
-0.8  
-1.2  
-1.6  
-2  
-0.5  
-1  
TA = -40èC  
TA = 25èC  
TA = 125èC  
-1.5  
-2  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
0
0.4 0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
4
Common-Mode Voltage (V)  
Common-Mode Voltage (V)  
D166  
D167  
VS = 5 V  
3 Typical Units  
33. Offset Voltage vs Input Common-Mode Voltage  
34. Offset Voltage vs Input Common-Mode Voltage vs  
Ambient Temperature  
4
3
2.5  
Unit 1  
Unit 2  
Unit 3  
2
1.5  
1
2
1
0.5  
0
0
-0.5  
-1  
-1  
-2  
-3  
-4  
-1.5  
-2  
Unit 1  
Unit 2  
Unit 3  
-2.5  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
0.8  
1.2  
1.6  
2
2.4  
2.8  
3.2  
3.6  
4
Output Voltage (V)  
Output Voltage (V)  
D168  
D169  
VS = 3.3 V  
3 Typical Units  
VS = 5 V  
3 Typical Units  
35. Offset Voltage vs Output Swing  
36. Offset Voltage vs Output Swing  
12  
版权 © 2018, Texas Instruments Incorporated  
OPA858  
www.ti.com.cn  
ZHCSI18A APRIL 2018REVISED JULY 2018  
Typical Characteristics (接下页)  
VS+ = 2.5 V, VS– = –2.5 V, VIN+ = 0 V, RF = 453 Ω, Gain = 7 V/V, RL = 200 Ω, output load referenced to midsupply, and TA =  
25°C (unless otherwise noted)  
1.5  
1000  
100  
10  
1
0.5  
0
1
-0.5  
-1  
0.1  
TA = -40èC  
TA = 25èC  
TA = 125èC  
Unit 1  
Unit 2  
Unit 3  
-1.5  
0.01  
0.8  
1.2  
1.6  
2
2.4  
2.8  
3.2  
3.6  
4
-40  
-20  
0
20  
40  
60  
80  
100  
120 140  
Output Voltage (V)  
Ambient Temperature (èC)  
D170  
D171  
3 Typical Units  
37. Offset Voltage vs Output Swing vs Ambient  
38. Input Bias Current vs Ambient Temperature  
Temperature  
4000  
5
0
3500  
3000  
2500  
2000  
1500  
1000  
500  
-5  
-10  
-15  
-20  
-25  
-30  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
Common-Mode Voltage (V)  
D140  
D172  
Quiescent Current (mA)  
µ = 20.35 mA  
σ = 0.2 mA  
4555 units tested  
39. Input Bias Current vs Input Common-Mode Voltage  
40. Quiescent Current Distribution  
1750  
1500  
1250  
1000  
750  
500  
250  
0
1200  
1000  
800  
600  
400  
200  
0
D142  
D141  
Offset Voltage (mV)  
Input Bias Current (pA)  
µ = –0.28 mV  
σ = 0.8 mV  
4555 units tested  
µ = –0.1 pA  
σ = 0.39 pA  
4555 units tested  
41. Offset Voltage Distribution  
42. Input Bias Current Distribution  
版权 © 2018, Texas Instruments Incorporated  
13  
OPA858  
ZHCSI18A APRIL 2018REVISED JULY 2018  
www.ti.com.cn  
8 Parameter Measurement Information  
8.1 Parameter Measurement Information  
The various test setup configurations for the OPA858 are shown below  
GND  
50  
2.5 V  
50 ꢀ  
50-ꢀ  
Source  
169 ꢀ  
+
50-ꢀ  
Measurement  
System  
œ
50 ꢀ  
Þ2.5 V  
71.5 ꢀ  
RG  
453 ꢀ  
GND  
GND  
GND  
RG values depend on gain configuration  
43. Noninverting Configuration  
2.5 V  
169  
+
50-ꢀ  
Measurement  
System  
GND  
œ
50 ꢀ  
Þ2.5 V  
71.5 ꢀ  
50 ꢀ  
50-ꢀ  
Source  
GND  
64 ꢀ  
453 ꢀ  
GND  
220 ꢀ  
GND  
44. Inverting Configuration (Gain = –7 V/V)  
GND  
50  
2.5 V  
50 ꢀ  
50-ꢀ  
Source  
RS  
1 kꢀ  
+
50-ꢀ  
Measurement  
System  
œ
50 ꢀ  
CL  
53.6 ꢀ  
Þ2.5 V  
75 ꢀ  
453 ꢀ  
GND  
GND  
GND  
GND  
45. Capacitive Load Driver Configuration  
14  
版权 © 2018, Texas Instruments Incorporated  
OPA858  
www.ti.com.cn  
ZHCSI18A APRIL 2018REVISED JULY 2018  
9 Detailed Description  
9.1 Overview  
The ultra-wide, 5.5-GHz gain bandwidth product (GBWP) of the OPA858, combined with the broadband voltage  
noise of 2.5 nV/Hz, produces a viable amplifier for wideband transimpedance applications, high-speed data  
acquisition systems, and applications with weak signal inputs that require low-noise and high-gain front ends.  
The OPA858 combines multiple features to optimize dynamic performance. In addition to the wide, small-signal  
bandwidth, the OPA858 has 600 MHz of large signal bandwidth (VOUT = 2 VPP) and a slew rate of 2000 V/µs.  
The OPA858 is offered in a 2-mm × 2-mm, 8-pin WSON package that features a feedback (FB) pin for a simple  
feedback network connection between the amplifiers output and inverting input. Excess capacitance on an  
amplifiers input pin can reduce phase margin causing instability. This problem is exacerbated in the case of very  
wideband amplifiers like the OPA858. To reduce the effects of stray capacitance on the input node, the OPA858  
pinout features an isolation pin (NC) between the feedback and inverting input pins that increases the physical  
spacing between them thereby reducing parasitic coupling at high frequencies. The OPA858 also features a very  
low capacitance input stage with only 0.8-pF of total input capacitance.  
9.2 Functional Block Diagram  
The OPA858 is a classic, voltage feedback operational amplifier (op amp) with two high-impedance inputs and a  
low-impedance output. Standard application circuits are supported, like the two basic options shown in 46 and  
47. The DC operating point for each configuration is level-shifted by the reference voltage (VREF), which is  
typically set to midsupply in single-supply operation. VREF is typically connected to ground in split-supply  
applications.  
VSIG  
VS+  
(1 + RF / RG) × VSIG  
VREF  
VIN  
+
VOUT  
VREF  
œ
RG  
VSœ  
RF  
VREF  
46. Noninverting Amplifier  
VS+  
œ(RF / RG) × VSIG  
VREF  
+
VSIG  
VOUT  
VREF  
VREF  
VIN  
œ
RG  
VSœ  
RF  
47. Inverting Amplifier  
版权 © 2018, Texas Instruments Incorporated  
15  
 
 
OPA858  
ZHCSI18A APRIL 2018REVISED JULY 2018  
www.ti.com.cn  
9.3 Feature Description  
9.3.1 Input and ESD Protection  
The OPA858 is fabricated on a low-voltage, high-speed, BiCMOS process. The internal, junction breakdown  
voltages are low for these small geometry devices, and as a result, all device pins are protected with internal  
ESD protection diodes to the power supplies as 48 shows. There are two antiparallel diodes between the  
inputs of the amplifier that clamp the inputs during an overrange or fault condition.  
VS+  
Power Supply  
ESD Cell  
VIN+  
+
VOUT  
œ
VINÞ  
FB  
VSÞ  
48. Internal ESD Structure  
9.3.2 Feedback Pin  
The OPA858 pin layout is optimized to minimize parasitic inductance and capacitance, which is critical in high-  
speed analog design. The FB pin (pin 1) is internally connected to the output of the amplifier. The FB pin is  
separated from the inverting input of the amplifier (pin 3) by a no connect (NC) pin (pin 2). The NC pin must be  
left floating. There are two advantages to this pin layout:  
1. A feedback resistor (RF) can connect between the FB and IN– pin on the same side of the package (see 图  
49) rather than going around the package.  
2. The isolation created by the NC pin minimizes the capacitive coupling between the FB and IN– pins by  
increasing the physical separation between the pins.  
FB  
NC  
INœ  
IN+  
PD  
1
2
3
4
8
7
6
5
VS+  
OUT  
VSœ  
RF  
œ
+
49. RF Connection Between FB and IN– Pins  
16  
版权 © 2018, Texas Instruments Incorporated  
 
 
OPA858  
www.ti.com.cn  
ZHCSI18A APRIL 2018REVISED JULY 2018  
Feature Description (接下页)  
9.3.3 Wide Gain-Bandwidth Product  
10 shows the open-loop magnitude and phase response of the OPA858. Calculate the gain bandwidth product  
of any op amp by determining the frequency at which the AOL is 60 dB and multiplying that frequency by a factor  
of 1000. The second pole in the AOL response occurs before the magnitude crosses 0 dB, and the resultant  
phase margin is less than 0°. This indicates instability at a gain of 0 dB (1 V/V). Amplifiers that are not unity-gain  
stable are known as decompensated amplifiers. Decompensated amplifiers typically have higher gain-bandwidth  
product, higher slew rate, and lower voltage noise, compared to a unity-gain stable amplifier with the same  
amount of quiescent power consumption.  
50 shows the open-loop magnitude (AOL) of the OPA858 as a function of temperature. The results show  
minimal variation over temperature. The phase margin of the OPA858 configured in a noise gain of 7 V/V (16.9  
dB) is close to 55° across temperature. Similarly 51 shows the AOL magnitude of the OPA858 as a function of  
process variation. The results show the AOL curve for the nominal process corner and the variation one standard  
deviation from the nominal. The simulated results suggest less than 1° of phase margin difference within a  
standard deviation of process variation when the amplifier is configured in a gain of 7 V/V.  
One of the primary applications for the OPA858 is as a high-speed transimpedance amplifier (TIA), as 59  
shows. The low-frequency noise gain of a TIA is 0 dB (1 V/V). At high frequencies the ratio of the total input  
capacitance and the feedback capacitance set the noise gain. To maximize the TIA closed-loop bandwidth, the  
feedback capacitance is typically smaller than the input capacitance, which implies that the high-frequency noise  
gain is greater than 0 dB. As a result, op amps configured as TIAs are not required to be unity-gain stable, which  
makes a decompensated amplifier a viable option for a TIA. What You Need To Know About Transimpedance  
Amplifiers – Part 1 and What You Need To Know About Transimpedance Amplifiers – Part 2 describe  
transimpedance amplifier compensation in greater detail.  
90  
75  
60  
45  
30  
15  
0
90  
75  
60  
45  
30  
15  
0
AOL at -40èC  
AOL at 25èC  
AOL at +125èC  
AOL (-1 s)  
AOL (Typ.)  
AOL (+1 s)  
-15  
-15  
100k  
1M  
10M  
100M  
1G  
10G  
100k  
1M  
10M  
100M  
1G  
10G  
Frequency (Hz)  
Frequency (Hz)  
D204  
D205  
50. Open-Loop Gain vs Temperature  
51. Open-Loop Gain vs Process Variation  
9.3.4 Slew Rate and Output Stage  
In addition to wide bandwidth, the OPA858 features a high slew rate of 2000 V/µs . The slew rate is a critical  
parameter in high-speed pulse applications with narrow sub 10-ns pulses such as Optical Time-Domain  
Reflectometry (OTDR) and LIDAR. The high slew rate of the OPA858 implies that the device accurately  
reproduces a 2-V, sub-ns pulse edge as seen in 20. The wide bandwidth and slew rate of the OPA858 make it  
an ideal amplifier for high-speed, signal-chain front ends.  
52 shows the open-loop output impedance of the OPA858 as a function of frequency. To achieve high slew  
rates and low output impedance across frequency, the output swing of the OPA858 is limited to approximately 3  
V. The OPA858 is typically used in conjunction with high-speed pipeline ADCs and flash ADCs that have limited  
input ranges. Therefore, the OPA858 output swing range coupled with the class-leading voltage noise  
specification maximizes the overall dynamic range of the signal chain.  
版权 © 2018, Texas Instruments Incorporated  
17  
 
OPA858  
ZHCSI18A APRIL 2018REVISED JULY 2018  
www.ti.com.cn  
Feature Description (接下页)  
20  
18  
16  
14  
12  
10  
8
6
4
2
0
10k  
100k  
1M  
10M  
100M  
1G  
10G  
Frequency (Hz)  
D601  
52. Open-Loop Output Impedance (ZOL) vs Frequency  
9.3.5 Current Noise  
The input impedance of CMOS and JFET input amplifiers at low frequencies exceed several GΩs. However, at  
higher frequencies, the transistors parasitic capacitance to the drain, source, and substrate reduces the  
impedance. The high impedance at low frequencies eliminates any bias current and the associated shot noise. At  
higher frequencies, the input current noise increases (see 53) as a result of capacitive coupling between the  
CMOS gate oxide and the underlying transistor channel. This phenomenon is a natural artifact of the construction  
of the transistor and is unavoidable.  
100p  
10p  
1p  
100f  
10f  
1f  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
Frequency (Hz)  
D607  
53. Input Current Noise (IBN and IBI) vs Frequency  
18  
版权 © 2018, Texas Instruments Incorporated  
 
OPA858  
www.ti.com.cn  
ZHCSI18A APRIL 2018REVISED JULY 2018  
9.4 Device Functional Modes  
9.4.1 Split-Supply and Single-Supply Operation  
The OPA858 can be configured with single-sided supplies or split-supplies as shown in 63. Split-supply  
operation using balanced supplies with the input common-mode set to ground eases lab testing because most  
signal generators, network analyzers, spectrum analyzers, and other lab equipment typically reference inputs and  
outputs to ground. Split-supply operation is preferred in systems where the signals swing around ground.  
However, the system requires two supply rails. In split-supply operation, the thermal pad must be connected to  
the negative supply.  
Newer systems use a single power supply to improve efficiency and reduce the cost of the extra power supply.  
The OPA858 can be used with a single positive supply (negative supply at ground) with no change in  
performance if the input common-mode and output swing are biased within the linear operation of the device. To  
change the circuit from a split-supply to a single-supply configuration, level shift all the voltages by half the  
difference between the power supply rails. In this case, the thermal pad must be connected to ground.  
9.4.2 Power-Down Mode  
The OPA858 features a power-down mode to reduce the quiescent current to conserve power. 23 and 24  
show the transient response of the OPA858 as the PD pin toggles between the disabled and enabled states.  
The PD disable and enable threshold voltages are with reference to the negative supply. If the amplifier is  
configured with the positive supply at 3.3 V and the negative supply at ground, then the disable and enable  
threshold voltages are 0.65 V and 1.8 V, respectively. If the amplifier is configured with ±1.65-V supplies, then  
the disable and enable threshold voltages are at –1 V and 0.15 V, respectively. If the amplifier is configured with  
±2.5-V supplies, then the threshold voltages are at –1.85 V and –0.7 V.  
54 shows the switching behavior of a typical amplifier as the PD pin is swept down from the enabled state to  
the disabled state. Similarly 55 shows the switching behavior of a typical amplifier as the PD pin is swept up  
from the disabled state to the enabled state. The small difference in the switching thresholds between the down  
sweep and the up sweep is due to the hysteresis designed into the amplifier to increase its immunity to noise on  
the PD pin.  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
TA = -40èC  
TA = 25èC  
TA = 125èC  
TA = -40èC  
TA = 25èC  
TA = 125èC  
0
0
-2  
-1.5  
-1  
-0.5  
0
0.5  
1
1.5  
2
-2  
-1.5  
-1  
-0.5  
0
0.5  
1
1.5  
2
Power Down Voltage (V)  
Power Down Voltage (V)  
D200  
D201  
54. Switching Threshold (PD Pin Swept from HIGH to  
55. Switching Threshold (PD Pin Swept from LOW to  
LOW)  
HIGH)  
Connecting the PD pin low disables the amplifier and places the output in a high-impedance state. When the  
amplifier is configured as a noninverting amplifier, the feedback (RF) and gain (RG) resistor network form a  
parallel load to the output of the amplifier. To protect the input stage of the amplifier, the OPA858 uses internal,  
back-to-back protection diodes between the inverting and noninverting input pins as 48 shows. When the  
differential voltage between the input pins of the amplifier exceeds a diode voltage drop, an additional low-  
impedance path is created between the inputs.  
版权 © 2018, Texas Instruments Incorporated  
19  
 
OPA858  
ZHCSI18A APRIL 2018REVISED JULY 2018  
www.ti.com.cn  
10 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
10.1.1 Using the OPA858 as a Transimpedance Amplifier  
The OPA858 design has been optimized to meet the industry's growing demand for wideband, low-noise  
photodiode amplifiers. The closed-loop bandwidth of a transimpedance amplifier is a function of the following:  
1. The total input capacitance. This includes the photodiode capacitance, input capacitance of the amplifier  
(common-mode and differential capacitance) and any stray capacitance from the PCB.  
2. The op amp gain bandwidth product (GBWP), and,  
3. The transimpedance gain RF.  
5 V  
OPA858  
+
œ
100 V  
+
3.4 V  
GND  
œ
GND  
RF  
CF  
56. Transimpedance Amplifier Circuit  
56 shows the OPA858 configured as a TIA with the avalanche photodiode (APD) reverse biased such that its  
cathode is tied to a large positive bias voltage. In this configuration the APD sources current into the op amp  
feedback loop so that the output swings in a negative direction relative to the input common-mode voltage. To  
maximize the output swing in the negative direction, the OPA858 common-mode is set close to the positive limit,  
1.6 V from the positive supply rail.  
The feedback resistance RF and the input capacitance form a zero in the noise gain that results in instability if left  
unchecked. To counteract the effect of the zero, a pole is inserted by adding the feedback capacitor (CF.) into the  
noise gain transfer function. The Transimpedance Considerations for High-Speed Amplifiers application report  
discusses theories and equations that show how to compensate a transimpedance amplifier for a particular gain  
and input capacitance. The bandwidth and compensation equations from the application report are available in a  
Microsoft Excel ™ calculator. What You Need To Know About Transimpedance Amplifiers – Part 1 provides a  
link to the calculator.  
20  
版权 © 2018, Texas Instruments Incorporated  
 
OPA858  
www.ti.com.cn  
ZHCSI18A APRIL 2018REVISED JULY 2018  
Application Information (接下页)  
450  
110  
100  
90  
350  
300  
250  
200  
150  
100  
50  
120  
f-3dB, CF = 1 pF  
f-3dB, RF = 10 kW  
400  
350  
300  
250  
200  
150  
100  
50  
f-3dB, RF = 20 kW  
IRN, RF = 10 kW  
IRN, RF = 20 kW  
f-3dB, CF = 2 pF  
IRN, CF = 1 pF  
100  
IRN, CF = 2 pF  
80  
80  
70  
60  
40  
20  
60  
50  
40  
30  
0
20  
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
10  
100  
Photodiode capacitance (pF)  
Feedback Resistance (kW)  
D209  
D210  
57. Bandwidth and Noise Performance vs Photodiode  
58. Bandwidth and Noise Performance vs Feedback  
Capacitance  
Resistance  
The equations and calculators in the application report and blog posts referenced above are used to model the  
bandwidth (f-3dB) and noise (IRN) performance of the OPA858 configured as a TIA. The resultant performance is  
shown in 57 and 58. The left side Y-axis shows the closed-loop bandwidth performance, while the right  
side of the graph shows the integrated input referred noise. The noise bandwidth to calculate IRN, for a fixed RF  
and CPD is set equal to the f–3dB frequency.  
57 shows the amplifier performance as a function of photodiode capacitance (CPD) for RF = 10 kΩ and 20 kΩ.  
Increasing CPD decreases the closed-loop bandwidth. It is vital to reduce any stray parasitic capacitance from the  
PCB to maximize bandwidth. The OPA858 is designed with 0.8 pF of total input capacitance to minimize the  
effect on system performance.  
58 shows the amplifier performance as a function of RF for CPD = 1 pF and 2 pF. Increasing RF results in  
lower bandwidth. To maximize the signal-to-noise ratio (SNR) in an optical front-end system, maximize the gain  
in the TIA stage. Increasing RF by a factor of "X" increases the signal level by "X", but only increases the resistor  
noise contribution by "X", thereby improving SNR.  
版权 © 2018, Texas Instruments Incorporated  
21  
 
OPA858  
ZHCSI18A APRIL 2018REVISED JULY 2018  
www.ti.com.cn  
10.2 Typical Application  
The high GBWP, low input voltage noise and high slew rate of the OPA858 makes the device a viable wideband,  
high input impedance voltage amplifier.  
2.5 V  
169  
+
50-ꢀ  
Measurement  
System  
GND  
œ
50 ꢀ  
Þ2.5 V  
71.5 ꢀ  
50 ꢀ  
50-ꢀ  
Source  
226 ꢀ  
453 ꢀ  
GND  
GND  
62 ꢀ  
Supply decoupling not shown  
GND  
GND  
59. OPA858 in a Gain of –2V/V (No Noise Gain Shaping)  
2.5 V  
169  
+
50-ꢀ  
Measurement  
System  
GND  
œ
50 ꢀ  
Þ2.5 V  
71.5 ꢀ  
50 ꢀ  
50-ꢀ  
Source  
226 ꢀ  
453 ꢀ  
GND  
GND  
2.7 pF  
GND  
62 ꢀ  
Supply decoupling not shown  
0.5 pF  
GND  
GND  
60. OPA858 in a Gain of –2V/V (With Noise Gain Shaping)  
10.2.1 Design Requirements  
Design a high-bandwidth, high-gain, voltage amplifier with the design requirements listed in 1. An inverting  
amplifier configuration is chosen here; however, the theory is applicable to a noninverting configuration as well.  
In an inverting configuration the signal gain and noise gain transfer functions are not equal, unlike the  
noninverting configuration.  
1. Design Requirements  
TARGET BANDWIDTH  
(MHz)  
FEEDBACK RESISTANCE  
FREQUENCY  
PEAKING (dB)  
SIGNAL GAIN (V/V)  
(Ω)  
> 750  
–2  
453  
< 2  
10.2.2 Detailed Design Procedure  
The OPA858 is compensated to have less than 1 dB of peaking in a gain of 7 V/V. Using the device in lower  
gains results in increased peaking and potential instability. 59 shows the OPA858 configured in a signal gain  
of –2 V/V. The DC noise gain (1/β) of the amplifier is affected by the 62-Ω termination resistor and the 50-Ω  
source resistor and is given by 公式 1. At higher frequencies the noise gain is affected by reactive elements such  
as inductors and capacitors. These include both discrete board components as well as printed circuit board  
(PCB) parasitics.  
«
1
453 W  
Noise Gain =  
= 1+  
= 2.79 V/V = 5.04 dB  
÷
÷
b
226 W + 62 W || 50 W  
(
)
(1)  
22  
版权 © 2018, Texas Instruments Incorporated  
 
 
 
 
OPA858  
www.ti.com.cn  
ZHCSI18A APRIL 2018REVISED JULY 2018  
The stability and phase margin of the amplifier depend on the loop gain of the amplifier, which is the product of  
the AOL and the feedback factor (β) of the amplifier. The β of a negative-feedback loop system is the portion of  
the output signal that is fed back to the input, and in the case of an amplifier is the inverse of the noise gain. The  
noise gain of the amplifier at high frequencies can be increased by adding an input capacitor and a feedback  
capacitor as 60 shows. If done carefully, increasing 1/β improves the phase margin just as any amplifier is  
more stable in a high gain configuration versus a unity-gain buffer configuration. The modified network with the  
added capacitors alters the high-frequency noise gain, but does not alter the signal gain. The AN-1604  
Decompensated Operational Amplifiers application report provides a detailed analysis of noise gain-shaping  
techniques for decompensated amplifiers and shows how to choose external resistors and capacitor values.  
61 shows the uncompensated frequency response of the OPA858 configured as shown in 59. Without any  
added noise gain shaping components, the OPA858 shows approximately 13 dB of peaking.  
62 shows the noise gain compensated frequency response of the OPA858 configured as shown in 60. The  
noise gain shaping elements reduce the peaking to less than 1.5 dB. The 2.7-pF input capacitor, the input  
capacitance of the amplifier, the gain resistor, and the feedback resistor create a zero in the noise gain at a  
frequency f, as 公式 2 shows.  
1
f =  
2p R || R  
C
IN  
(
)
F
G
where  
RF is the feedback resistor  
RG is the input or gain resistor (includes the effect of the source and termination resistor)  
CIN is the total input capacitance, which includes the external 2.7-pF capacitor, the amplifier input capacitance,  
and any parasitic PCB capacitance.  
(2)  
The zero in 公式 2 increases the noise gain at higher frequencies, which is important when compensating a  
decompensated amplifier. However, the noise gain zero reduces the loop gain phase which results in a lower  
phase margin. To counteract the phase reduction due to the noise gain zero, add a pole to the noise gain curve  
by inserting the 0.5-pF feedback capacitor. The pole occurs at a frequency shown in 公式 3. The noise gain pole  
and zero locations must be selected so that the rate-of-closure between the magnitude curves of AOL and 1/β is  
approximately 20 dB. To ensure this, the noise gain pole must occur before the 1/β magnitude curve intersects  
the AOL magnitude curve. In other words, the noise gain pole must occur before |AOL| = |1/β|. The point at which  
the two curves intersect is known as the loop gain crossover frequency.  
1
f =  
2pRFCF  
where  
CF is the feedback capacitor (includes any added PCB parasitic)  
(3)  
For more information on op amp stability, watch the TI Precision Lab series on stability video.  
10.2.3 Application Curves  
16  
12  
8
4
0
-4  
-8  
4
-12  
-16  
-20  
-24  
-28  
-32  
0
-4  
-8  
-12  
-16  
Simulated Response  
Measured Response  
Simulated Response  
Measured Response  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
Frequency (Hz)  
Frequency (Hz)  
D206  
D207  
VOUT = 100 mVPP  
VOUT = 100 mVPP  
61. Gain = –2 V/V, Uncompensated Frequency  
62. Gain = –2 V/V, Compensated Frequency Response  
Response  
版权 © 2018, Texas Instruments Incorporated  
23  
 
 
 
OPA858  
ZHCSI18A APRIL 2018REVISED JULY 2018  
www.ti.com.cn  
11 Power Supply Recommendations  
The OPA858 operates on supplies from 3.3 V to 5.25 V. The OPA858 operates on single-sided supplies, split  
and balanced bipolar supplies, and unbalanced bipolar supplies. Because the OPA858 does not feature rail-to-  
rail inputs or outputs, the input common-mode and output swing ranges are limited at 3.3-V supplies.  
a) Single supply configuration  
VS+  
VS+  
+
2
0.1 F  
6.8 F  
RG  
75  
RF  
453 ꢀ  
œ
50-Ω Source  
+
VI  
200 ꢀ  
RT  
49.9 ꢀ  
VS+  
2
VS+  
2
b) Split supply configuration  
VS+  
+
0.1 F  
6.8 F  
RG  
RF  
75 ꢀ  
453 ꢀ  
œ
50-Ω Source  
+
VI  
200 ꢀ  
+
RT  
49.9 ꢀ  
0.1 F  
6.8 F  
VSœ  
63. Split and Single Supply Circuit Configuration  
24  
版权 © 2018, Texas Instruments Incorporated  
OPA858  
www.ti.com.cn  
ZHCSI18A APRIL 2018REVISED JULY 2018  
12 Layout  
12.1 Layout Guidelines  
Achieving optimum performance with a high-frequency amplifier like the OPA858 requires careful attention to  
board layout parasitics and external component types. Recommendations that optimize performance include:  
1. Minimize parasitic capacitance from the signal I/O pins to AC ground. Parasitic capacitance on the output  
and inverting input pins can cause instability. To reduce unwanted capacitance, TI recommends cutting out  
the power and ground traces underneath the signal input and output pins. Otherwise, ground and power  
planes must be unbroken elsewhere on the board. When configuring the amplifier as a TIA, if the required  
feedback capacitor is under 0.15 pF, consider using two series resistors, each of half the value of a single  
resistor in the feedback loop to minimize the parasitic capacitance from the resistor.  
2. Minimize the distance (less than 0.25") from the power-supply pins to high-frequency bypass capacitors. Use  
high quality, 100-pF to 0.1-µF, C0G and NPO-type decoupling capacitors with voltage ratings at least three  
times greater than the amplifiers maximum power supplies to ensure that there is a low-impedance path to  
the amplifiers power-supply pins across the amplifiers gain bandwidth specification. At the device pins, do  
not allow the ground and power plane layout to be in close proximity to the signal I/O pins. Avoid narrow  
power and ground traces to minimize inductance between the pins and the decoupling capacitors. The  
power-supply connections must always be decoupled with these capacitors. Larger (2.2-µF to 6.8-µF)  
decoupling capacitors, effective at lower frequency, must be used on the supply pins. These are placed  
further from the device and are shared among several devices in the same area of the PC board.  
3. Careful selection and placement of external components preserves the high-frequency performance  
of the OPA858 . Use low-reactance resistors. Surface-mount resistors work best and allow a tighter overall  
layout. Never use wirewound resistors in a high-frequency application. Because the output pin and inverting  
input pin are the most sensitive to parasitic capacitance, always position the feedback and series output  
resistor, if any, as close to the output pin as possible. Place other network components (such as noninverting  
input termination resistors) close to the package. Even with a low parasitic capacitance shunting the external  
resistors, high resistor values create significant time constants that can degrade performance. When  
configuring the OPA858 as a voltage amplifier, keep resistor values as low as possible and consistent with  
load driving considerations. Decreasing the resistor values keeps the resistor noise terms low and minimizes  
the effect of the parasitic capacitance. However, lower resistor values increase the dynamic power  
consumption because RF and RG become part of the output load network of the amplifier.  
12.2 Layout Example  
Representative schematic  
Connect PD to VS+ to enable the  
amplifier  
VS+  
1
2
8
7
CBYP  
RS  
+
NC (Pin 2) isolates the IN- and FB  
pins thereby reducing capacitive  
coupling  
œ
Thermal  
Pad  
CBYP  
RF  
CBYP  
Place gain and feedback resistors  
close to pins to minimize stray  
capacitance  
VS-  
RF  
3
4
6
5
RS  
RG  
RG  
CBYP  
Connect the thermal pad to the  
negative supply pin  
Ground and power plane exist on  
inner layers.  
Ground and power plane removed  
from inner layers. Ground fill on  
outer layers also removed  
Place bypass capacitor  
close to power pins  
64. Layout Recommendation  
版权 © 2018, Texas Instruments Incorporated  
25  
OPA858  
ZHCSI18A APRIL 2018REVISED JULY 2018  
www.ti.com.cn  
Layout Example (接下页)  
When configuring the OPA858 as a transimpedance amplifier additional care must be taken to minimize the  
inductance between the avalanche photodiode (APD) and the amplifier. Always place the photodiode on the  
same side of the PCB as the amplifier. Placing the amplifier and the APD on opposite sides of the PCB  
increases the parasitic effects due to via inductance. APD packaging can be quite large which often requires the  
APD to be placed further away from the amplifier than ideal. The added distance between the two device results  
in increased inductance between the APD and op amp feedback network as shown in 65. The added  
inductance is detrimental to a decompensated amplifiers stability since it isolates the APD capacitance from the  
noise gain transfer function. The noise gain is given by 公式 4. The added PCB trace inductance between the  
feedback network increases the denominator in 公式 4 thereby reducing the noise gain and the phase margin. In  
cases where a leaded APD in a TO can is used inductance should be further minimized by cutting the leads of  
the TO can as short as possible.  
The layout shown in 65 can be improved by following some of the guidelines shown in 66. The two key  
rules to follow are:  
Add an isolation resistor RISO as close as possible to the inverting input of the amplifier. Select the value of  
RISO to be between 10 Ω and 20 Ω. The resistor dampens the potential resonance caused by the trace  
inductance and the amplifiers internal capacitance.  
Close the loop between the feedback elements (RF and CF) and RISO as close to the APD pins as possible.  
This ensures a more balanced layout and reduces the inductive isolation between the APD and the feedback  
network.  
÷
ZF  
Noise Gain = 1+  
ZIN ◊  
«
where  
ZF is the total impedance of the feedback network.  
ZIN is the total impedance of the input network.  
(4)  
Vbias  
Vbias  
CF  
RF  
APD  
Package  
APD  
Package  
FB  
NC  
INœ  
IN+  
FB  
NC  
INœ  
IN+  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
PD  
PD  
RF  
VS+  
VS+  
CF  
Close the loop close  
to APD pins  
Thermal  
Pad  
Thermal  
Pad  
OUT  
OUT  
Trace inductance isolates  
APD capacitance from the  
amplifier noise gain  
RISO  
VSœ  
VSœ  
Place RISO close to INœ  
65. Non-Ideal TIA Layout  
66. Improved TIA Layout  
26  
版权 © 2018, Texas Instruments Incorporated  
 
 
OPA858  
www.ti.com.cn  
ZHCSI18A APRIL 2018REVISED JULY 2018  
13 器件和文档支持  
13.1 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
13.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
13.3 商标  
E2E is a trademark of Texas Instruments.  
is a trademark of ~Microsoft Corporation.  
13.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
13.5 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
版权 © 2018, Texas Instruments Incorporated  
27  
OPA858  
ZHCSI18A APRIL 2018REVISED JULY 2018  
www.ti.com.cn  
14 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
28  
版权 © 2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA858IDSGR  
OPA858IDSGT  
ACTIVE  
ACTIVE  
WSON  
WSON  
DSG  
DSG  
8
8
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
X858  
X858  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
OTHER QUALIFIED VERSIONS OF OPA858 :  
Automotive : OPA858-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
31-Jul-2018  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA858IDSGR  
OPA858IDSGT  
WSON  
WSON  
DSG  
DSG  
8
8
3000  
250  
180.0  
180.0  
8.4  
8.4  
2.3  
2.3  
2.3  
2.3  
1.15  
1.15  
4.0  
4.0  
8.0  
8.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
31-Jul-2018  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA858IDSGR  
OPA858IDSGT  
WSON  
WSON  
DSG  
DSG  
8
8
3000  
250  
210.0  
210.0  
185.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DSG 8  
2 x 2, 0.5 mm pitch  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224783/A  
www.ti.com  
PACKAGE OUTLINE  
DSG0008A  
WSON - 0.8 mm max height  
SCALE 5.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
B
A
0.32  
0.18  
PIN 1 INDEX AREA  
2.1  
1.9  
0.4  
0.2  
ALTERNATIVE TERMINAL SHAPE  
TYPICAL  
0.8  
0.7  
C
SEATING PLANE  
0.05  
0.00  
SIDE WALL  
0.08 C  
METAL THICKNESS  
DIM A  
OPTION 1  
0.1  
OPTION 2  
0.2  
EXPOSED  
THERMAL PAD  
(DIM A) TYP  
0.9 0.1  
5
4
6X 0.5  
2X  
1.5  
9
1.6 0.1  
8
1
0.32  
0.18  
PIN 1 ID  
(45 X 0.25)  
8X  
0.4  
0.2  
8X  
0.1  
C A B  
C
0.05  
4218900/E 08/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.9)  
(
0.2) VIA  
8X (0.5)  
TYP  
1
8
8X (0.25)  
(0.55)  
SYMM  
9
(1.6)  
6X (0.5)  
5
4
SYMM  
(1.9)  
(R0.05) TYP  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218900/E 08/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
8X (0.5)  
METAL  
8
SYMM  
1
8X (0.25)  
(0.45)  
SYMM  
9
(0.7)  
6X (0.5)  
5
4
(R0.05) TYP  
(0.9)  
(1.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 9:  
87% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4218900/E 08/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

OPA858-Q1

OPA859-Q1 1.8-GHz Unity-Gain Bandwidth, 3.3-nV/√Hz, FET Input Amplifier
TI

OPA858-Q1_V01

OPA858-Q1 5.5-GHz Gain Bandwidth Product, Gain of 7-V/V Stable, FET Input Amplifier
TI

OPA858IDSGR

具有 FET 输入的 5.5GHz 增益带宽积、解补偿跨阻放大器 | DSG | 8 | -40 to 125
TI

OPA858IDSGT

具有 FET 输入的 5.5GHz 增益带宽积、解补偿跨阻放大器 | DSG | 8 | -40 to 125
TI

OPA858Q1DSGR

OPA858-Q1 5.5-GHz Gain Bandwidth Product, Gain of 7-V/V Stable, FET Input Amplifier
TI

OPA858QDSGRQ1

OPA858-Q1 5.5-GHz Gain Bandwidth Product, Gain of 7-V/V Stable, FET Input Amplifier
TI

OPA859

具有 1.8GHz 单位增益带宽、3.3nV/√Hz 电压噪声的 FET 输入放大器
TI

OPA859-Q1

OPA859-Q1 1.8-GHz Unity-Gain Bandwidth, 3.3-nV/√Hz, FET Input Amplifier
TI

OPA859-Q1_V01

OPA859-Q1 1.8-GHz Unity-Gain Bandwidth, 3.3-nV/√Hz, FET Input Amplifier
TI

OPA859IDSGR

具有 1.8GHz 单位增益带宽、3.3nV/√Hz 电压噪声的 FET 输入放大器 | DSG | 8 | -40 to 125
TI

OPA859IDSGT

具有 1.8GHz 单位增益带宽、3.3nV/√Hz 电压噪声的 FET 输入放大器 | DSG | 8 | -40 to 125
TI

OPA859Q1DSGR

OPA859-Q1 1.8-GHz Unity-Gain Bandwidth, 3.3-nV/√Hz, FET Input Amplifier
TI