OPA2197 [TI]

双路 36V 精密轨到轨输入/输出、低失调电压运算放大器;
OPA2197
型号: OPA2197
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

双路 36V 精密轨到轨输入/输出、低失调电压运算放大器

放大器 运算放大器
文件: 总50页 (文件大小:2161K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
OPA197, OPA2197, OPA4197  
ZHCSEI8C JANUARY 2016REVISED MARCH 2018  
OPAx197 36V 轨到轨输入/输出  
、低失调电压精密运算放大器  
1 特性  
3 说明  
1
低失调电压:±100µV(最大值)  
低失调电压温漂:±2.5µV/°C(最大值)  
低噪声:1kHz 时为 5.5nV/Hz  
高共模抑制:120dB(最小值)  
低偏置电流:±5pA(典型值)  
轨到轨输入和输出  
OPAx197 系列(OPA197OPA2197 OPA4197)  
是新一代 36V 运算放大器。  
这些器件具有出色的直流精度和交流性能,包括轨至轨  
输入/输出、低偏移(典型值为 ±25µV)、低温漂(典  
型值为 ±0.25µV/°C)和 10MHz 带宽。  
OPAx196 拥有 拥有诸多独一无二的特性,例如电源轨  
的差分输入电压范围、高输出电流 (±65mA)、高达  
1nF 的高容性负载驱动以及高转换率 (20V/µs),是稳  
健耐用的高性能运算放大器,适用于各种高压工业 应  
用。  
高带宽:10MHz GBW  
高压摆率:20V/µs  
低静态电流:每个放大器 1mA(典型值)  
宽电源电压范围:±2.25V ±18V+4.5V 至  
+36V  
已过滤电磁干扰 (EMI) 和射频干扰 (RFI) 的输入  
电源轨的差分输入电压范围  
高容性负载驱动能力:1nF  
OPA197 系列运算放大器采用标准封装,在 -40°C 至  
+125°C 的额定温度范围内工作。  
器件信息(1)  
行业标准封装:  
器件型号  
封装  
SOIC (8)  
封装尺寸(标称值)  
SOIC-8SOT-5 VSSOP-8 单体封装  
SOIC-8 VSSOP-8 双列封装  
4.90mm × 3.90mm  
小外形尺寸晶体管  
(SOT) (5)  
OPA197  
2.90mm × 1.60mm  
四通道电源版本采用 SOIC-14 TSSOP-14 封  
VSSOP (8)  
SOIC (8)  
3.00mm × 3.00mm  
4.90mm × 3.90mm  
3.00mm × 3.00mm  
8.65mm x 3.90mm  
5.00mm x 4.40mm  
OPA2197  
OPA4197  
2 应用  
VSSOP (8)  
SOIC (14)  
TSSOP (14)  
多路复用数据采集系统  
测试和测量设备  
高分辨率模数转换器 (ADC) 驱动器放大器  
SAR ADC 基准缓冲器  
可编程逻辑控制器  
(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。  
高侧和低侧电流检测  
高精度比较器  
OPA197 应用于高压多路复用数据采集系统  
Analog Inputs  
REF3140  
RC Filter  
RC Filter  
OPA625  
Reference Driver  
Bridge Sensor  
Gain  
Gain  
Gain  
OPA197  
+
4:2  
HV MUX  
Thermocouple  
REF  
VIN  
+
OPA197  
P
OPA197  
+
Antialiasing  
Filter  
ADS8864  
VIN  
Current Sensing  
M
High-Voltage Multiplexed Input  
High-Voltage Level Translation  
VCM  
Optical Sensor  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBOS737  
 
 
 
 
OPA197, OPA2197, OPA4197  
ZHCSEI8C JANUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
目录  
7.3 Feature Description................................................. 20  
7.4 Device Functional Modes........................................ 26  
Application and Implementation ........................ 27  
8.1 Application Information............................................ 27  
8.2 Typical Applications ................................................ 27  
Power Supply Recommendations...................... 30  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ..................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information: OPA197 .................................. 6  
6.5 Thermal Information: OPA2197 ................................ 6  
6.6 Thermal Information: OPA4197 ................................ 6  
8
9
10 Layout................................................................... 31  
10.1 Layout Guidelines ................................................. 31  
10.2 Layout Example .................................................... 31  
11 器件和文档支持 ..................................................... 32  
11.1 器件支持................................................................ 32  
11.2 文档支持................................................................ 32  
11.3 相关链接................................................................ 32  
11.4 接收文档更新通知 ................................................. 33  
11.5 社区资源................................................................ 33  
11.6 ....................................................................... 33  
11.7 静电放电警告......................................................... 33  
11.8 Glossary................................................................ 33  
12 机械、封装和可订购信息....................................... 33  
6.7 Electrical Characteristics: VS = ±4 V to ±18 V (VS = 8  
V to 36 V)................................................................... 7  
6.8 Electrical Characteristics: VS = ±2.25 V to ±4 V (VS  
=
4.5 V to 8 V)............................................................... 9  
6.9 Typical Characteristics............................................ 11  
Detailed Description ............................................ 19  
7.1 Overview ................................................................. 19  
7.2 Functional Block Diagram ....................................... 19  
7
4 修订历史记录  
Changes from Revision B (October 2016) to Revision C  
Page  
已更改 将低失调电压:±250µV(最大值)更改成了低失调电压:±100µV(最大值)” ..................................................... 1  
Changed Electrical Characteristics: VS = ±4 V to ±18 V (VS = 8 V to 36 V) Input offset voltage VS = ±18 V under  
OFFSET VOLTAGE from "±250" to "±100"; remove "TA = 0°C to 85°C" and "TA = –40°C to +125°C" rows from same ...... 7  
Changed Electrical Characteristics: VS = ±4 V to ±18 V (VS = 8 V to 36 V) Input offset voltage VCM = (V+) – 1.5 V  
under OFFSET VOLTAGE from "±250" to "±100"; remove "TA = 0°C to 85°C" and "TA = –40°C to +125°C" rows  
from same............................................................................................................................................................................... 7  
Changed Electrical Characteristics: VS = ±2.25 V to ±4 V (VS = 4.5 V to 8 V) Input offset voltage VS = ±2.25 V, VCM  
= (V+) – 3 V under OFFSET VOLTAGE from "±250" to "±100"; remove "TA = 0°C to 85°C" and "TA = –40°C to  
+125°C" rows from same........................................................................................................................................................ 9  
Changed Electrical Characteristics: VS = ±4 V to ±18 V (VS = 8 V to 36 V) Input offset voltage VS = ±3 V, VCM  
=
(V+) – 1.5 V under OFFSET VOLTAGE from "±250" to "±100"; remove "TA = 0°C to 85°C" and "TA = –40°C to  
+125°C" rows from same........................................................................................................................................................ 9  
Changed "0" on Frequency (Hz) axis to "0.1" ..................................................................................................................... 11  
Changed "....to achieve a very low offset voltage of 250 µV (max)..." to "...to achieve a very low offset voltage of 100  
µV (maximum)..." ................................................................................................................................................................. 19  
Changes from Revision A (July 2016) to Revision B  
Page  
Added new row for PW package to Input bias current parameter ......................................................................................... 7  
Added new row for PW package to Input offset current parameter ...................................................................................... 7  
Added new footnote (1) to Open-loop gain parameter........................................................................................................... 7  
Changed Slew rate parameter from 20 V/µs : to 14 V/µs .................................................................................................... 10  
Changes from Original (January 2016) to Revision A  
Page  
Added OPA2197 and OPA4197 CDM values to ESD Ratings table...................................................................................... 5  
2
Copyright © 2016–2018, Texas Instruments Incorporated  
 
OPA197, OPA2197, OPA4197  
www.ti.com.cn  
ZHCSEI8C JANUARY 2016REVISED MARCH 2018  
5 Pin Configuration and Functions  
D and DGK Packages: OPA197  
8-Pin SOIC and VSSOP  
Top View  
D and DGK Packages: OPA2197  
8-Pin SOIC and VSSOP  
Top View  
NC  
-IN  
+IN  
V-  
1
2
3
4
8
7
6
5
NC  
V+  
OUT A  
-IN A  
+IN A  
V-  
1
2
3
4
8
7
6
5
V+  
OUT B  
-IN B  
+IN B  
OUT  
NC  
DBV Package: OPA197  
5-Pin SOT  
D and PW Packages: OPA4197  
14-Pin SOIC and TSSOP  
Top View  
Top View  
V+  
OUT  
V-  
1
2
3
5
4
OUT A  
1
2
3
4
5
6
7
14 OUT D  
-IN A  
+IN A  
V+  
13 -IN D  
12 +IN D  
11 V-  
-IN  
+IN  
+IN B  
-IN B  
OUT B  
10 +IN C  
9
8
-IN C  
OUT C  
Copyright © 2016–2018, Texas Instruments Incorporated  
3
OPA197, OPA2197, OPA4197  
ZHCSEI8C JANUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
Pin Functions: OPA197  
PIN  
OPA197  
I/O  
DESCRIPTION  
NAME  
D (SOIC),  
DGK (VSSOP)  
DBV (SOT)  
+IN  
–IN  
NC  
OUT  
V+  
3
3
4
I
Noninverting input  
Inverting input  
2
I
1, 5, 8  
1
O
No internal connection (can be left floating)  
Output  
6
7
4
5
Positive (highest) power supply  
Negative (lowest) power supply  
V–  
2
Pin Functions: OPA2197 and OPA4197  
PIN  
OPA2197  
OPA4197  
I/O  
DESCRIPTION  
NAME  
D (SOIC),  
D (SOIC),  
DGK (VSSOP)  
PW (TSSOP)  
+IN A  
+IN B  
+IN C  
+IN D  
–IN A  
–IN B  
–IN C  
–IN D  
OUT A  
OUT B  
OUT C  
OUT D  
V+  
3
5
3
5
I
I
Noninverting input, channel A  
Noninverting input, channel B  
Noninverting input, channel C  
Noninverting input, channel D  
Inverting input, channel A  
Inverting input, channel B  
Inverting input,,channel C  
Inverting input, channel D  
Output, channel A  
2
10  
12  
2
I
I
I
6
6
I
1
9
I
13  
1
I
O
O
O
O
7
7
Output, channel B  
8
8
Output, channel C  
14  
4
Output, channel D  
Positive (highest) power supply  
Negative (lowest) power supply  
V–  
4
11  
4
Copyright © 2016–2018, Texas Instruments Incorporated  
OPA197, OPA2197, OPA4197  
www.ti.com.cn  
ZHCSEI8C JANUARY 2016REVISED MARCH 2018  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
Dual supply  
Supply voltage, VS = (V+) – (V–)  
±20  
40  
V
Single supply  
Common-mode  
Voltage  
(V–) – 0.5  
(V+) + 0.5  
(V+) – (V–) + 0.2  
±10  
V
Signal input pins  
Output short circuit(2)  
Temperature  
Differential  
Current  
mA  
Continuous  
150  
Operating, TA  
Junction, TJ  
Storage, Tstg  
–55  
–65  
150  
°C  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Short-circuit to ground, one amplifier per package.  
6.2 ESD Ratings  
VALUE  
±4000  
±1000  
±750  
UNIT  
ALL DEVICES  
V(ESD)  
Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V
V
V
V
OPA197  
V(ESD)  
Electrostatic discharge Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Electrostatic discharge Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Electrostatic discharge Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
OPA2197  
V(ESD)  
OPA4197  
V(ESD)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
±2.25  
4.5  
NOM  
MAX  
±18  
36  
UNIT  
Dual supply  
Supply voltage, VS = (V+) – (V–)  
Operating temperature, TA  
V
Single supply  
–40  
125  
°C  
Copyright © 2016–2018, Texas Instruments Incorporated  
5
 
OPA197, OPA2197, OPA4197  
ZHCSEI8C JANUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
6.4 Thermal Information: OPA197  
OPA197  
DBV (SOT)  
5 PINS  
158.8  
60.7  
THERMAL METRIC(1)  
D (SOIC)  
8 PINS  
115.8  
60.1  
DGK (VSSOP)  
8 PINS  
180.4  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
67.9  
56.4  
44.8  
102.1  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
12.8  
1.6  
10.4  
ψJB  
55.9  
4.2  
100.3  
RθJC(bot)  
N/A  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Thermal Information: OPA2197  
OPA2197  
THERMAL METRIC(1)  
D (SOIC)  
8 PINS  
107.9  
53.9  
DGK (VSSOP)  
8 PINS  
158  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
48.6  
48.9  
78.7  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
6.6  
3.9  
ψJB  
48.3  
77.3  
RθJC(bot)  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.6 Thermal Information: OPA4197  
OPA4197  
THERMAL METRIC(1)  
D (SOIC)  
14 PINS  
86.4  
PW (TSSOP)  
14 PINS  
92.6  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
46.3  
27.5  
41.0  
33.6  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
11.3  
1.9  
ψJB  
40.7  
33.1  
RθJC(bot)  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6
Copyright © 2016–2018, Texas Instruments Incorporated  
OPA197, OPA2197, OPA4197  
www.ti.com.cn  
ZHCSEI8C JANUARY 2016REVISED MARCH 2018  
6.7 Electrical Characteristics: VS = ±4 V to ±18 V (VS = 8 V to 36 V)  
at TA = 25°C, VCM = VOUT = VS / 2, and RLOAD = 10 kΩ connected to VS / 2, (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
VS = ±18 V  
±25  
±10  
±100  
±100  
±2.5  
±4.5  
VOS  
Input offset voltage  
µV  
VCM = (V+) – 1.5 V  
VS = ±18 V, VCM = (V+) – 3 V  
VS = ±18 V, VCM = (V+) – 1.5 V  
±0.5  
±0.8  
dVOS/dT  
PSRR  
Input offset voltage drift  
TA = –40°C to +125°C  
µV/°C  
µV/V  
Power-supply rejection  
ratio  
TA = –40°C to +125°C  
TA = –40°C to +125°C  
±1  
±3  
INPUT BIAS CURRENT  
±5  
±20  
±5  
pA  
nA  
pA  
nA  
IB  
Input bias current  
PW package only  
±15  
±20  
±2  
±2  
IOS  
Input offset current  
Input voltage noise  
TA = –40°C to +125°C  
PW package only  
f = 0.1 Hz to 10 Hz  
±10  
NOISE  
(V–) – 0.1 V < VCM < (V+) – 3 V  
1.30  
4
En  
µVPP  
(V+) – 1.5 V < VCM < (V+) + 0.1 V f = 0.1 Hz to 10 Hz  
f = 100 Hz  
(V–) – 0.1 V < VCM < (V+) – 3 V  
f = 1 kHz  
10.5  
5.5  
32  
Input voltage noise  
density  
en  
nV/Hz  
f = 100 Hz  
(V+) – 1.5 V < VCM < (V+) + 0.1 V  
f = 1 kHz  
12.5  
Input current noise  
density  
in  
f = 1 kHz  
1.5  
fA/Hz  
INPUT VOLTAGE  
Common-mode voltage  
range  
VCM  
(V–) – 0.1  
(V+) + 0.1  
V
120  
110  
100  
80  
140  
126  
120  
100  
VS = ±18 V,  
(V–) – 0.1 V < VCM < (V+) – 3 V  
TA = –40°C to +125°C  
dB  
Common-mode  
rejection ratio  
VS = ±18 V,  
(V+) – 1.5 V < VCM < (V+)  
CMRR  
TA = –40°C to +125°C  
VS = ±18 V,  
(V+) – 3 V < VCM < (V+) – 1.5 V  
See Typical Characteristics  
INPUT IMPEDANCE  
ZID  
ZIC  
Differential  
Common-mode  
100 || 1.6  
1 || 6.4  
MΩ || pF  
1013Ω || pF  
OPEN-LOOP GAIN  
VS = ±18 V,  
(V–) + 0.6 V < VO < (V+) – 0.6 V,  
RLOAD = 2 kΩ  
120  
110  
120  
110  
134  
126  
143  
134  
TA = –40°C to +125°C  
TA = –40°C to +125°C  
Open-loop voltage  
gain(1)  
AOL  
dB  
VS = ±18 V,  
(V–) + 0.3 V < VO < (V+) – 0.3 V,  
RLOAD = 10 kΩ  
(1) For OPA2197, OPA4197: When driving high current loads on multiple channels, make sure the junction temperature does not exceed  
125°C.  
Copyright © 2016–2018, Texas Instruments Incorporated  
7
OPA197, OPA2197, OPA4197  
ZHCSEI8C JANUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
Electrical Characteristics: VS = ±4 V to ±18 V (VS = 8 V to 36 V) (continued)  
at TA = 25°C, VCM = VOUT = VS / 2, and RLOAD = 10 kΩ connected to VS / 2, (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
FREQUENCY RESPONSE  
GBW  
SR  
Unity gain bandwidth  
10  
20  
MHz  
V/µs  
Slew rate  
VS = ± 18 V, G = 1, 10-V step  
V S = ±18 V, G = 1, 10-V step  
V S = ±18 V, G = 1, 5-V step  
V S = ±18 V, G = 1, 10-V step  
V S = ±18 V, G = 1, 5-V step  
1.4  
0.9  
2.1  
1.8  
200  
To 0.01%  
ts  
Settling time  
µs  
ns  
To 0.001%  
tOR  
Overload recovery time VIN × G = VS  
Total harmonic  
THD+N  
OUTPUT  
G = 1, f = 1 kHz, VO = 3.5 VRMS  
0.00008%  
distortion + noise  
No load  
5
95  
25  
125  
500  
25  
Positive rail  
RLOAD = 10 kΩ  
RLOAD = 2 kΩ  
No load  
430  
5
Voltage output swing  
from rail  
VO  
mV  
Negative rail  
VS = ±18 V  
RLOAD = 10 kΩ  
RLOAD = 2 kΩ  
95  
125  
500  
430  
±65  
ISC  
Short-circuit current  
Capacitive load drive  
mA  
CLOAD  
See Typical Characteristics  
Open-loop output  
impedance  
ZO  
f = 1 MHz, IO = 0 A, See Figure 26  
375  
Ω
POWER SUPPLY  
IO = 0 A  
1
1.3  
1.5  
Quiescent current per  
IQ  
mA  
°C  
amplifier  
TEMPERATURE  
Thermal protection(2)  
TA = –40°C to +125°C, IO = 0 A  
140  
(2) For a detailed description of thermal protection, see the Thermal Protection section.  
8
Copyright © 2016–2018, Texas Instruments Incorporated  
OPA197, OPA2197, OPA4197  
www.ti.com.cn  
ZHCSEI8C JANUARY 2016REVISED MARCH 2018  
6.8 Electrical Characteristics: VS = ±2.25 V to ±4 V (VS = 4.5 V to 8 V)  
at TA = 25°C, VCM = VOUT = VS / 2, and RLOAD = 10 kΩ connected to VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
VS = ±2.25 V, VCM = (V+) – 3 V  
±5  
±100  
µV  
VOS  
Input offset voltage  
(V+) – 3.5 V < VCM < (V+) – 1.5 V  
VS = ±3 V, VCM = (V+) – 1.5 V  
VS = ±2.25 V, VCM = (V+) – 3 V  
VS = ±2.25 V, VCM = (V+) – 1.5 V  
See Common-Mode Voltage Range section  
±10  
±0.5  
±0.8  
±100  
±2.5  
±4.5  
µV  
dVOS/dT  
PSRR  
Input offset voltage drift  
TA = –40°C to +125°C  
µV/°C  
Power-supply rejection  
ratio  
TA = –40°C to +125°C, VCM = VS / 2 – 0.75 V  
±2  
µV/V  
INPUT BIAS CURRENT  
±5  
±2  
±20  
±5  
pA  
nA  
pA  
nA  
IB  
Input bias current  
TA = –40°C to +125°C  
TA = –40°C to +125°C  
±20  
±2  
IOS  
Input offset current  
Input voltage noise  
NOISE  
En  
(V–) – 0.1 V < VCM < (V+) – 3 V, f = 0.1 Hz to 10 Hz  
(V+) – 1.5 V < VCM < (V+) + 0.1 V, f = 0.1 Hz to 10 Hz  
1.30  
4
µVPP  
f = 100 Hz  
(V–) – 0.1 V < VCM < (V+) – 3 V  
f = 1 kHz  
10.5  
5.5  
32  
Input voltage noise  
density  
en  
nV/Hz  
f = 100 Hz  
(V+) – 1.5 V < VCM < (V+) + 0.1 V  
f = 1 kHz  
12.5  
Input current noise  
density  
in  
f = 1 kHz  
1.5  
fA/Hz  
INPUT VOLTAGE  
Common-mode voltage  
range  
VCM  
(V–) – 0.1  
(V+) + 0.1  
V
90  
88  
94  
77  
110  
104  
120  
100  
VS = ±2.25 V,  
(V–) – 0.1 V < VCM < (V+) – 3 V  
TA = –40°C to +125°C  
dB  
Common-mode  
rejection ratio  
VS = ±2.25 V,  
(V+) – 1.5 V < VCM < (V+)  
CMRR  
TA = –40°C to +125°C  
VS = ±2.25 V,  
(V+) – 3 V < VCM < (V+) – 1.5 V  
See Typical Characteristics  
INPUT IMPEDANCE  
ZID  
ZIC  
Differential  
Common-mode  
100 || 1.6  
1 || 6.4  
MΩ || pF  
1013Ω || pF  
OPEN-LOOP GAIN  
VS = ±2.25 V,  
(V–) + 0.6 V < VO < (V+) – 0.6 V,  
RLOAD = 2 kΩ  
104  
100  
104  
100  
126  
114  
134  
120  
TA = –40°C to +125°C  
TA = –40°C to +125°C  
AOL  
Open-loop voltage gain  
dB  
VS = ±2.25 V,  
(V–) + 0.3 V < VO < (V+) – 0.3 V,  
RLOAD = 10 kΩ  
Copyright © 2016–2018, Texas Instruments Incorporated  
9
OPA197, OPA2197, OPA4197  
ZHCSEI8C JANUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
Electrical Characteristics: VS = ±2.25 V to ±4 V (VS = 4.5 V to 8 V) (continued)  
at TA = 25°C, VCM = VOUT = VS / 2, and RLOAD = 10 kΩ connected to VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
FREQUENCY RESPONSE  
GBW  
SR  
Unity gain bandwidth  
10  
14  
MHz  
V/µs  
µs  
Slew rate  
G = 1, 1-V step  
To 0.01%  
ts  
Settling time  
VS = ±3 V, G = 1, 5-V step  
1
tOR  
Overload recovery time VIN× G = VS  
200  
ns  
OUTPUT  
No load  
5
95  
25  
125  
500  
25  
Positive rail  
RLOAD = 10 kΩ  
RLOAD = 2 kΩ  
No load  
430  
5
Voltage output swing  
from rail  
VO  
mV  
Negative rail  
RLOAD = 10 kΩ  
RLOAD = 2 kΩ  
95  
125  
500  
430  
±65  
ISC  
Short-circuit current  
Capacitive load drive  
VS = ±2.25 V  
mA  
CLOAD  
See Typical Characteristics  
Open-loop output  
impedance  
ZO  
f = 1 MHz, IO = 0 A, see Figure 26  
375  
Ω
POWER SUPPLY  
1
1.3  
1.5  
Quiescent current per  
IQ  
IO = 0 A  
mA  
°C  
amplifier  
TEMPERATURE  
Thermal protection(1)  
TA = –40°C to +125°C  
140  
(1) For a detailed description of thermal protection, see the Thermal Protection section.  
10  
Copyright © 2016–2018, Texas Instruments Incorporated  
OPA197, OPA2197, OPA4197  
www.ti.com.cn  
ZHCSEI8C JANUARY 2016REVISED MARCH 2018  
6.9 Typical Characteristics  
Table 1. Table of Graphs  
DESCRIPTION  
FIGURE  
Figure 1, Figure 2, Figure 3  
Figure 4  
Offset Voltage Production Distribution  
Offset Voltage Drift Distribution  
Offset Voltage vs Temperature  
Figure 5  
Offset Voltage vs Common-Mode Voltage  
Offset Voltage vs Power Supply  
Figure 6, Figure 7, Figure 8  
Figure 9  
Open-Loop Gain and Phase vs Frequency  
Closed-Loop Gain and Phase vs Frequency  
Input Bias Current vs Common-Mode Voltage  
Input Bias Current vs Temperature  
Output Voltage Swing vs Output Current (maximum supply)  
CMRR and PSRR vs Frequency  
CMRR vs Temperature  
Figure 10  
Figure 11  
Figure 12  
Figure 13  
Figure 14, Figure 15  
Figure 16  
Figure 17  
PSRR vs Temperature  
Figure 18  
0.1-Hz to 10-Hz Noise  
Figure 19  
Input Voltage Noise Spectral Density vs Frequency  
THD+N Ratio vs Frequency  
Figure 20  
Figure 21  
THD+N vs Output Amplitude  
Figure 22  
Quiescent Current vs Supply Voltage  
Quiescent Current vs Temperature  
Open Loop Gain vs Temperature  
Open Loop Output Impedance vs Frequency  
Small Signal Overshoot vs Capacitive Load (100-mV output step)  
No Phase Reversal  
Figure 23  
Figure 24  
Figure 25  
Figure 26  
Figure 27, Figure 28  
Figure 29  
Positive Overload Recovery  
Figure 30  
Negative Overload Recovery  
Figure 31  
Small-Signal Step Response (100 mV)  
Large-Signal Step Response  
Figure 32, Figure 33  
Figure 34  
Settling Time  
Figure 35, Figure 36, ,  
Figure 37  
Short-Circuit Current vs Temperature  
Maximum Output Voltage vs Frequency  
Propagation Delay Rising Edge  
Figure 38  
Figure 39  
Propagation Delay Falling Edge  
Figure 40  
Copyright © 2016–2018, Texas Instruments Incorporated  
11  
 
OPA197, OPA2197, OPA4197  
ZHCSEI8C JANUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
500  
400  
300  
200  
100  
0
35  
30  
25  
20  
15  
10  
5
0
-100 -80 -60 -40 -20  
0
20 40 60 80 100  
-60 -50 -40 -30 -20 -10  
0
10 20 30 40 50 60  
Input Offset Voltage (mV)  
Input Offset Voltage (mV)  
4770 production units  
Figure 1. Offset Voltage Production Distribution at 25°C  
Figure 2. Offset Voltage Production Distribution at 125°C  
35  
15  
30  
25  
20  
15  
10  
5
12  
9
6
3
0
0
-200 -150 -100  
-50  
0
50  
100  
150  
200  
-1.2 -1.0 -0.8 -0.6 -0.4 -0.2  
0
0.2 0.4 0.6 0.8 1.0 1.2  
Input Offset Voltage (mV)  
Input Offset Voltage Drift (mV/èC)  
Figure 3. Offset Voltage Production Distribution at –40°C  
Figure 4. Offset Voltage Drift Distribution  
from –40°C to +125°C  
150  
100  
50  
75  
50  
25  
0
0
œ50  
œ100  
œ150  
-25  
-50  
-75  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
-20  
-15  
-10  
-5  
0
5
10  
15  
20  
Temperature (°C)  
Common-Mode Voltage (V)  
C001  
6 typical units  
9 typical units  
Figure 5. Offset Voltage vs Temperature  
Figure 6. Offset Voltage vs Common-Mode Voltage  
12  
Copyright © 2016–2018, Texas Instruments Incorporated  
OPA197, OPA2197, OPA4197  
www.ti.com.cn  
ZHCSEI8C JANUARY 2016REVISED MARCH 2018  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
100  
200  
150  
100  
50  
75  
50  
25  
0
0
-25  
-50  
-75  
-100  
-50  
-100  
-150  
-200  
13  
14  
15  
16  
17  
18  
19  
-2.5 -2 -1.5 -1 -0.5  
0
0.5  
1
1.5  
2
2.5  
Common-Mode Voltage (V)  
Common-Mode Voltage (V)  
6 typical units  
6 typical units  
Figure 7. Offset Voltage vs Common-Mode Voltage  
Figure 8. Offset Voltage vs Common-Mode Voltage  
100  
140  
120  
100  
80  
280  
Open Loop Gain  
Phase  
75  
50  
240  
200  
160  
120  
80  
25  
0
60  
-25  
-50  
-75  
-100  
40  
20  
40  
0
0
-20  
-40  
10M 100M  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
1
10  
100  
1k  
10k  
100k  
1M  
Power-Supply Voltage (V)  
Frequency (Hz)  
6 typical units  
CLOAD = 15 pF  
Figure 9. Offset Voltage vs Power Supply  
Figure 10. Open-Loop Gain and Phase vs Frequency  
60  
40  
20  
0
1000  
800  
G = 100 V/V  
G = +1 V/V  
G = 10 V/V  
G = -1 V/V  
600  
400  
200  
0
œ200  
œ400  
œ600  
œ800  
œ1000  
-20  
0.0  
5.0  
10.0 15.0 20.0  
œ20.0 œ15.0 œ10.0 œ5.0  
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
50M  
VCM (V)  
C001  
Figure 11. Closed-Loop Gain and Phase vs Frequency  
Figure 12. Input Bias Current vs Common-Mode Voltage  
Copyright © 2016–2018, Texas Instruments Incorporated  
13  
OPA197, OPA2197, OPA4197  
ZHCSEI8C JANUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
3000  
2000  
1000  
0
(V-) + 5  
(V-) + 4  
(V-) + 3  
(V-) + 2  
(V-) + 1  
(V-)  
IB-  
IB+  
IOS  
+125°C  
+85°C  
-40°C  
25°C  
(V-) - 1  
-1000  
0
10  
20  
30  
40  
50  
60  
70  
80  
-75  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Output Current (mA)  
C001  
Figure 13. Input Bias Current vs Temperature  
Figure 14. Output Voltage Swing from Negative Power  
Supply vs Output Current (Maximum Supply)  
(V+) + 1  
(V+)  
160.0  
140.0  
120.0  
100.0  
80.0  
(V+) - 1  
(V+) - 2  
(V+) - 3  
(V+) - 4  
(V+) - 5  
25°C  
-40°C  
+125°C  
60.0  
+PSRR  
40.0  
CMRR  
20.0  
-PSRR  
0.0  
+85°C  
0
10  
20  
30  
40  
50  
60  
70  
80  
1
10  
100  
1k  
10k  
100k  
1M  
C012  
Output Current (mA)  
Frequency (Hz)  
C001  
Figure 16. CMRR and PSRR vs Frequency  
Figure 15. Output Voltage Swing from Positive Power  
Supply vs Output Current (Maximum Supply)  
10  
8
1
0.8  
0.6  
0.4  
0.2  
0
6
4
VS = ±2.25 V  
2
0
œ2  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
VS = ±18 V  
œ4  
œ6  
œ8  
œ10  
0
25  
50  
75  
100 125 150  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
œ75 œ50 œ25  
Temperature (°C)  
Temperature (°C)  
C001  
C001  
Figure 17. CMRR vs Temperature  
Figure 18. PSRR vs Temperature  
14  
Copyright © 2016–2018, Texas Instruments Incorporated  
OPA197, OPA2197, OPA4197  
www.ti.com.cn  
ZHCSEI8C JANUARY 2016REVISED MARCH 2018  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
1000  
VCM = 0 V (P-Channel)  
VCM = V+ - 100 mV (N-Channel)  
500  
300  
200  
100  
50  
30  
20  
10  
5
3
2
1
100m  
1
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Time (1 s/div)  
Peak-to-peak noise = VRMS × 6.6 = 1.30 VPP  
Figure 19. 0.1-Hz to 10-Hz Noise  
Figure 20. Input Voltage Noise Spectral Density  
vs Frequency  
0.1  
0.01  
1
0.1  
G = 1 V/V, RL = 10 kW  
G = 1 V/V, RL = 2 kW  
G = -1 V/V, RL = 2 kW  
G = -1 V/V, RL = 10 kW  
G = 1 V/V, RL = 10 kW  
G = 1 V/V, RL = 2 kW  
G = -1 V/V, RL = 2 kW  
G = -1 V/V, RL = 10 kW  
0.01  
0.001  
0.0001  
1E-5  
0.001  
0.0001  
1E-5  
10  
100  
1k  
10k  
100k  
0.01  
0.1  
1
10 20  
Frequency (Hz)  
Output Amplitude (VRMS)  
VOUT = 3.5 VRMS, BW = 80 kHz  
f = 1 kHz, BW = 80 kHz  
Figure 21. THD+N Ratio vs Frequency  
Figure 22. THD+N vs Output Amplitude  
1.2  
1.1  
1
1.2  
1.1  
1
VS = ê2.25 V  
VS = ê18 V  
0.9  
0.8  
0.9  
0.8  
0
4
8
12  
16  
20  
24  
28  
32  
36  
-50  
-25  
0
25  
50  
75  
100  
125  
Supply Voltage (V)  
Temperature (èC)  
Figure 23. Quiescent Current vs Supply Voltage  
Figure 24. Quiescent Current vs Temperature  
Copyright © 2016–2018, Texas Instruments Incorporated  
15  
OPA197, OPA2197, OPA4197  
ZHCSEI8C JANUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
3
10k  
VS = ê2.25 V  
VS = ê18 V  
2
1k  
1
0
100  
10  
-1  
-2  
-3  
0.1  
1
10  
100  
1k  
10k 100k 1M  
10M  
-50  
-25  
0
25  
50  
75  
100  
125  
Frequency (Hz)  
C016  
Temperature (èC)  
Figure 26. Open-Loop Output Impedance vs Frequency  
Figure 25. Open-Loop Gain vs Temperature  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
RISO = 0 W  
RISO = 25 W  
RISO = 50 W  
RISO = 0 W  
RISO = 25 W  
RISO = 50 W  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
20 30 40 50 70 100  
200 300 500 7001000  
2000  
20 30 40 50 70 100  
200 300 500 7001000  
2000  
Capacitive Load (pF)  
Capacitive Load (pF)  
G = –1 V/V  
G = 1 V/V  
Figure 27. Small-Signal Overshoot vs Capacitive Load  
(100-mV Output Step)  
Figure 28. Small-Signal Overshoot vs Capacitive Load  
(100-mV Output Step)  
Output  
Input  
Output  
Input  
Time (200 ms/div)  
Time (200 ns/div)  
VS = ±18 V, input = ±18.5 VPP  
G = –10 V/V  
Figure 29. No Phase Reversal  
Figure 30. Positive Overload Recovery  
16  
Copyright © 2016–2018, Texas Instruments Incorporated  
OPA197, OPA2197, OPA4197  
www.ti.com.cn  
ZHCSEI8C JANUARY 2016REVISED MARCH 2018  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
Output  
Input  
Time (200 ns/div)  
Time (200 ns/Div)  
G = –10 V/V  
G = 1 V/V  
Figure 31. Negative Overload Recovery  
Figure 32. Small-Signal Step Response  
Time (150 ns/Div)  
Time (300 ns/Div)  
G = –1 V/V  
G = 1 V/V  
Figure 33. Small-Signal Step Response  
Figure 34. Large-Signal Step Response  
4
3
4
3
2
2
1
1
0
0
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
Time (ms)  
Time (ms)  
G = 1, 0.01% settling = ±1 mV, step applied at t = 0  
G = 1, 0.01% settling = ±500 µV, step applied at t = 0  
Figure 35. Settling Time (10-V Positive Step)  
Figure 36. Settling Time (5-V Positive Step)  
Copyright © 2016–2018, Texas Instruments Incorporated  
17  
OPA197, OPA2197, OPA4197  
ZHCSEI8C JANUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
100  
30  
Sinking current  
Maximum output voltage without  
slew-rate induced distortion.  
VS = ±15 V  
Sourcing current  
25  
20  
15  
10  
5
80  
60  
40  
20  
0
VS = ±5 V  
VS = ±2.25 V  
0
10k  
100k  
1M  
10M  
-75  
-50  
-25  
0
25  
50  
75  
100 125 150  
Temperature (èC)  
Frequency (Hz)  
C033  
Figure 37. Short-Circuit Current vs Temperature  
Figure 38. Maximum Output Voltage vs Frequency  
Overdrive = 100 mV  
VOUT Voltage  
tpLH = 1.1 s  
tpLH = 0.97 s  
VOUT Voltage  
Overdrive = 100 mV  
Time (200 ns/div)  
Time (200 ns/div)  
C025  
C026  
Figure 39. Propagation Delay Rising Edge  
Figure 40. Propagation Delay Falling Edge  
18  
Copyright © 2016–2018, Texas Instruments Incorporated  
OPA197, OPA2197, OPA4197  
www.ti.com.cn  
ZHCSEI8C JANUARY 2016REVISED MARCH 2018  
7 Detailed Description  
7.1 Overview  
The OPAx197 uses a patented two-temperature trim architecture to achieve a very low offset voltage of 250 µV  
(max) and low voltage offset drift of 0.75 µV/°C (maximum) over the full specified temperature range. This level  
of precision performance at wide supply voltages makes these amplifiers useful for high-impedance industrial  
sensors, filters, and high-voltage data acquisition.  
7.2 Functional Block Diagram  
OPAx197  
-
NCH Input  
Stage  
+
+IN  
-
OUT  
High  
Capacitive Load  
Compensation  
36-V  
Differential  
Front End  
Output  
Stage  
Slew  
Boost  
+
-IN  
+
PCH Input  
Stage  
t
Copyright © 2016–2018, Texas Instruments Incorporated  
19  
OPA197, OPA2197, OPA4197  
ZHCSEI8C JANUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Input Protection Circuitry  
The OPAx197 uses a unique input architecture to eliminate the need for input protection diodes, but still provides  
robust input protection under transient conditions. Conventional input diode protection schemes shown in  
Figure 41 can be activated by fast transient step responses and can introduce signal distortion and settling time  
delays because of alternate current paths, as shown in Figure 42. For low-gain circuits, these fast-ramping input  
signals forward-bias back-to-back diodes, causing an increase in input current, and resulting in extended settling  
time, as shown in Figure 43.  
V+  
V+  
+IN  
-IN  
+IN  
-IN  
OUT  
OUT  
OPAx197  
~0.7 V  
36 V  
V-  
V-  
OPAx197 Provides Full 36-V  
Differential Input Range  
Conventional Input Protection  
Limits Differential Input Range  
Figure 41. OPA197 Input Protection Does Not Limit Differential Input Capability  
1
Ron_mux  
Vn = +10 V  
RFILT  
+10 V  
Sn  
D
1
2
~œ9.3 V  
+10 V  
CFILT  
CS  
CD  
Vinœ  
2
Ron_mux  
Sn+1  
Vn+1 = œ10 V RFILT  
œ10 V  
~0.7 V  
Vout  
CFILT  
CS  
Idiode_transient  
Vin+  
œ10 V  
Input Low Pass Filter  
Simplified Mux Model  
Buffer Amplifier  
Figure 42. Back-to-Back Diodes Create Settling Issues  
100  
Op amp with standard input diodes  
OPA197  
50  
0
0.1% settling = ê10 mV  
-50  
-100  
0
6
12  
18  
24  
30  
36  
42  
48  
54  
60  
Time (ms)  
Figure 43. OPA197 Protection Circuit Maintains Fast-Settling Transient Response  
20  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
 
OPA197, OPA2197, OPA4197  
www.ti.com.cn  
ZHCSEI8C JANUARY 2016REVISED MARCH 2018  
Feature Description (continued)  
The OPAx197 family of operational amplifiers provides a true high-impedance differential input capability for high-  
voltage applications. This patented input protection architecture does not introduce additional signal distortion or  
delayed settling time, making the device an optimal op amp for multichannel, high-switched, input applications.  
The OPA197 can tolerate a maximum differential swing (voltage between inverting and noninverting pins of the  
op amp) of up to 36 V, making the device suitable for use as a comparator or in applications with fast-ramping  
input signals such as multiplexed data-acquisition systems, as shown in Figure 53.  
7.3.2 EMI Rejection  
The OPAx197 uses integrated electromagnetic interference (EMI) filtering to reduce the effects of EMI from  
sources such as wireless communications and densely-populated boards with a mix of analog signal chain and  
digital components. EMI immunity can be improved with circuit design techniques; the OPAx197 benefits from  
these design improvements. Texas Instruments has developed the ability to accurately measure and quantify the  
immunity of an operational amplifier over a broad frequency spectrum extending from 10 MHz to 6 GHz.  
Figure 44 shows the results of this testing on the OPA197. Table 2 shows the EMIRR IN+ values for the OPA197  
at particular frequencies commonly encountered in real-world applications. Applications listed in Table 2 may be  
centered on or operated near the particular frequency shown. Detailed information can also be found in the  
application report EMI Rejection Ratio of Operational Amplifiers, SBOA128, available for download from  
www.ti.com.  
160.0  
PRF = -10 dBm  
VSUPPLY = ±18 V  
VCM = 0 V  
140.0  
120.0  
100.0  
80.0  
60.0  
40.0  
20.0  
0.0  
10M  
100M  
Frequency (Hz)  
1G  
10G  
C017  
Figure 44. EMIRR Testing  
Table 2. OPA197 EMIRR IN+ For Frequencies of Interest  
FREQUENCY  
APPLICATION OR ALLOCATION  
EMIRR IN+  
Mobile radio, mobile satellite, space operation, weather, radar, ultra-high frequency (UHF)  
applications  
400 MHz  
44.1 dB  
Global system for mobile communications (GSM) applications, radio communication, navigation,  
GPS (to 1.6 GHz), GSM, aeronautical mobile, UHF applications  
900 MHz  
1.8 GHz  
2.4 GHz  
3.6 GHz  
5.0 GHz  
52.8 dB  
61.0 dB  
69.5 dB  
88.7 dB  
105.5 dB  
GSM applications, mobile personal communications, broadband, satellite, L-band (1 GHz to 2 GHz)  
802.11b, 802.11g, 802.11n, Bluetooth®, mobile personal communications, industrial, scientific and  
medical (ISM) radio band, amateur radio and satellite, S-band (2 GHz to 4 GHz)  
Radiolocation, aero communication and navigation, satellite, mobile, S-band  
802.11a, 802.11n, aero communication and navigation, mobile communication, space and satellite  
operation, C-band (4 GHz to 8 GHz)  
Copyright © 2016–2018, Texas Instruments Incorporated  
21  
 
 
OPA197, OPA2197, OPA4197  
ZHCSEI8C JANUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
7.3.3 Phase Reversal Protection  
The OPAx197 family has internal phase-reversal protection. Many op amps exhibit a phase reversal when the  
input is driven beyond its linear common-mode range. This condition is most often encountered in noninverting  
circuits when the input is driven beyond the specified common-mode voltage range, causing the output to  
reverse into the opposite rail. The OPAx197 is a rail-to-rail input op amp; therefore, the common-mode range can  
extend up to the rails. Input signals beyond the rails do not cause phase reversal; instead, the output limits into  
the appropriate rail. This performance is shown in Figure 45.  
Output  
Input  
Time (200 ms/div)  
Figure 45. No Phase Reversal  
7.3.4 Thermal Protection  
The internal power dissipation of any amplifier causes its internal (junction) temperature to rise. This  
phenomenon is called self heating. The absolute maximum junction temperature of the OPAx197 is 150°C.  
Exceeding this temperature causes damage to the device. The OPAx197 has a thermal protection feature that  
prevents damage from self heating. The protection works by monitoring the temperature of the device and  
turning off the op amp output drive for temperatures above 140°C. Figure 46 shows an application example for  
the OPA197 that has significant self heating (159°C) because of its power dissipation (0.81 W). Thermal  
calculations indicate that for an ambient temperature of 65°C the device junction temperature must reach 187°C.  
The actual device, however, turns off the output drive to maintain a safe junction temperature. Figure 46 depicts  
how the circuit behaves during thermal protection. During normal operation, the device acts as a buffer so the  
output is 3 V. When self heating causes the device junction temperature to increase above 140°C, the thermal  
protection forces the output to a high-impedance state and the output is pulled to ground through resistor RL.  
Normal  
Operation  
VOUT  
3 V  
TA = 65°C  
+30 V  
PD = 0.81W  
JA = 116°C/W  
TJ = 116°C/W × 0.81W + 65°C  
TJ = 159°C (expected)  
Output  
High-Z  
0 V  
-
150°C  
140ºC  
OPAx197  
+
IOUT = 30 mA  
+
3 V  
œ
RL  
100 Ω  
+
VIN  
3 V  
œ
Figure 46. Thermal Protection  
7.3.5 Capacitive Load and Stability  
The OPAx197 features a patented output stage capable of driving large capacitive loads, and in a unity-gain  
configuration, directly drives up to 1 nF of pure capacitive load. Increasing the gain enhances the ability of the  
amplifier to drive greater capacitive loads; see Figure 47 and Figure 48. The particular op amp circuit  
configuration, layout, gain, and output loading are some of the factors to consider when establishing whether an  
amplifier will be stable in operation.  
22  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
OPA197, OPA2197, OPA4197  
www.ti.com.cn  
ZHCSEI8C JANUARY 2016REVISED MARCH 2018  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
RISO = 0 W  
RISO = 25 W  
RISO = 50 W  
RISO = 0 W  
RISO = 25 W  
RISO = 50 W  
0
20 30 40 50 70 100  
200 300 500 7001000  
2000  
20 30 40 50 70 100  
200 300 500 7001000  
2000  
Capacitive Load (pF)  
Capacitive Load (pF)  
Figure 47. Small-Signal Overshoot vs Capacitive Load  
(100-mV Output Step, G = –1 V/V)  
Figure 48. Small-Signal Overshoot vs Capacitive Load  
(100-mV Output Step, G = 1 V/V)  
For additional drive capability in unity-gain configurations, improve capacitive load drive by inserting a small  
(10-Ω to 20-Ω) resistor, RISO, in series with the output, as shown in Figure 49. This resistor significantly reduces  
ringing while maintaining dc performance for purely capacitive loads. However, if there is a resistive load in  
parallel with the capacitive load, a voltage divider is created, introducing a gain error at the output and slightly  
reducing the output swing. The error introduced is proportional to the ratio RISO / RL, and is generally negligible at  
low output levels. A high capacitive load drive makes the OPA197 well suited for applications such as reference  
buffers, MOSFET gate drives, and cable-shield drives. The circuit shown in Figure 49 uses an isolation resistor,  
RISO, to stabilize the output of an op amp. RISO modifies the open-loop gain of the system for increased phase  
margin, and results using the OPA197 are summarized in Table 3. For additional information on techniques to  
optimize and design using this circuit, TI Precision Design TIDU032 details complete design goals, simulation,  
and test results.  
+Vs  
Vout  
Riso  
+
Cload  
+
Vin  
-Vs  
œ
Figure 49. Extending Capacitive Load Drive with the OPA197  
Table 3. OPA197 Capacitive Load Drive Solution Using Isolation Resistor Comparison of Calculated and  
Measured Results  
PARAMETER  
Capacitive Load  
Phase Margin  
RISO (Ω)  
VALUE  
100 pF  
1000 pF  
0.01 µF  
0.1 µF  
1 µF  
45°  
60°  
45°  
60°  
45°  
60°  
45°  
6.2  
60°  
45°  
2.0  
60°  
4.7  
47.0  
360.0  
24.0  
100.0  
20.0  
51.0  
15.8  
Measured  
Overshoot (%)  
23.2 8.6  
45.1°  
10.4  
22.5  
9.0  
22.1  
8.7  
23.1  
8.6  
21.0  
8.6  
Calculated PM  
58.1°  
45.8°  
59.7°  
46.1°  
60.1°  
45.2°  
60.2°  
47.2°  
60.2°  
For step-by-step design procedure, circuit schematics, bill of materials, printed circuit board (PCB) files,  
simulation results, and test results, refer to TI Precision Design TIDU032, Capacitive Load Drive Solution using  
an Isolation Resistor .  
Copyright © 2016–2018, Texas Instruments Incorporated  
23  
 
 
OPA197, OPA2197, OPA4197  
ZHCSEI8C JANUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
7.3.6 Common-Mode Voltage Range  
The OPAx197 is a 36-V, true rail-to-rail input operational amplifier with an input common-mode range that  
extends 100 mV beyond either supply rail. This wide range is achieved with paralleled complementary N-channel  
and P-channel differential input pairs, as shown in Figure 50. The N-channel pair is active for input voltages  
close to the positive rail, typically (V+) – 3 V to 100 mV above the positive supply. The P-channel pair is active  
for inputs from 100 mV below the negative supply to approximately (V+) – 1.5 V. There is a small transition  
region, typically (V+) –3 V to (V+) – 1.5 V in which both input pairs are on. This transition region can vary  
modestly with process variation, and within this region PSRR, CMRR, offset voltage, offset drift, noise and THD  
performance may be degraded compared to operation outside this region.  
V+  
IS1  
œIN  
PCH1  
NCH4  
NCH3  
PCH2  
+IN  
FUSE BANK  
TRIM  
TRIM  
Vœ  
Figure 50. Rail-to-Rail Input Stage  
To achieve the best performance for two-stage rail-to-rail input amplifiers, avoid the transition region when  
possible. The OPAx197 uses a precision trim for both the N-channel and P-channel regions. This technique  
enables significantly lower levels of offset than previous-generation devices, causing variance in the transition  
region of the input stages to appear exaggerated relative to offset over the full common-mode voltage range, as  
shown in Figure 51.  
P-Channel  
Region  
Transition  
Region  
N-Channel  
Region  
P-Channel  
Region  
Transition  
Region  
N-Channel  
Region  
200  
100  
200  
100  
0
0
œ100  
œ100  
œ200  
œ300  
OPAx197  
Input Offset Voltage vs Vcm  
œ200  
œ300  
Input Offset Voltage vs Vcm  
without a precision trimmed Input  
œ15.0 œ14.0  
11.0  
12.0  
13.0  
14.0  
15.0  
œ15.0 œ14.0  
11.0  
12.0  
13.0  
14.0  
15.0  
Common-Mode Voltage (V)  
Common-Mode Voltage (V)  
Figure 51. Common-Mode Transition vs Standard Rail-to-Rail Amplifiers  
24  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
OPA197, OPA2197, OPA4197  
www.ti.com.cn  
ZHCSEI8C JANUARY 2016REVISED MARCH 2018  
7.3.7 Electrical Overstress  
Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress  
(EOS). These questions tend to focus on the device inputs, but may involve the supply voltage pins or even the  
output pin. Each of these different pin functions have electrical stress limits determined by the voltage breakdown  
characteristics of the particular semiconductor fabrication process and specific circuits connected to the pin.  
Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect them from  
accidental ESD events both before and during product assembly.  
Having a good understanding of this basic ESD circuitry and its relevance to an electrical overstress event is  
helpful. See Figure 52 for an illustration of the ESD circuits contained in the OPAx197 (indicated by the dashed  
line area). The ESD protection circuitry involves several current-steering diodes connected from the input and  
output pins and routed back to the internal power-supply lines, where the diodes meet at an absorption device or  
the power-supply ESD cell, internal to the operational amplifier. This protection circuitry is intended to remain  
inactive during normal circuit operation.  
TVS  
RF  
+VS  
VDD  
OPAx197  
100 Ω  
100 Ω  
R1  
RS  
INœ  
œ
IN+  
+
Power-Supply  
ESD Cell  
RL  
+
ID  
œ
VIN  
VSS  
œVS  
TVS  
Figure 52. Equivalent Internal ESD Circuitry Relative to a Typical Circuit Application  
Copyright © 2016–2018, Texas Instruments Incorporated  
25  
 
OPA197, OPA2197, OPA4197  
ZHCSEI8C JANUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
An ESD event is very short in duration and very high voltage (for example, 1 kV, 100 ns), whereas an EOS event  
is long duration and lower voltage (for example, 50 V, 100 ms). The ESD diodes are designed for out-of-circuit  
ESD protection (that is, during assembly, test, and storage of the device before being soldered to the PCB).  
During an ESD event, the ESD signal is passed through the ESD steering diodes to an absorption circuit (labeled  
ESD power-supply circuit). The ESD absorption circuit clamps the supplies to a safe level.  
Although this behavior is necessary for out-of-circuit protection, excessive current and damage is caused if  
activated in-circuit. A transient voltage suppressors (TVS) can be used to prevent against damage caused by  
turning on the ESD absorption circuit during an in-circuit ESD event. Using the appropriate current limiting  
resistors and TVS diodes allows for the use of device ESD diodes to protect against EOS events.  
7.3.8 Overload Recovery  
Overload recovery is defined as the time required for the op amp output to recover from a saturated state to a  
linear state. The output devices of the op amp enter a saturation region when the output voltage exceeds the  
rated operating voltage, either due to the high input voltage or the high gain. After the device enters the  
saturation region, the charge carriers in the output devices require time to return back to the linear state. After  
the charge carriers return back to the linear state, the device begins to slew at the specified slew rate. Thus, the  
propagation delay in case of an overload condition is the sum of the overload recovery time and the slew time.  
The overload recovery time for the OPAx197 is approximately 200 ns.  
7.4 Device Functional Modes  
The OPAx197 has a single functional mode and is operational when the power-supply voltage is greater than  
4.5 V (±2.25 V). The maximum power supply voltage for the OPAx197 is 36 V (±18 V).  
26  
Copyright © 2016–2018, Texas Instruments Incorporated  
OPA197, OPA2197, OPA4197  
www.ti.com.cn  
ZHCSEI8C JANUARY 2016REVISED MARCH 2018  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The OPAx197 family offers outstanding dc precision and ac performance. These devices operate up to 36-V  
supply rails and offer true rail-to-rail input/output, ultralow offset voltage and offset voltage drift, as well as  
10-MHz bandwidth and high capacitive load drive. These features make the OPAx197 a robust, high-  
performance operational amplifier for high-voltage industrial applications.  
8.2 Typical Applications  
8.2.1 16-Bit Precision Multiplexed Data-Acquisition System  
Figure 53 shows a 16-bit, differential, 4-channel, multiplexed data-acquisition system. This example is typical in  
industrial applications that require low distortion and a high-voltage differential input. The circuit uses the  
ADS8864, a 16-bit, 400-kSPS successive-approximation-resistor (SAR) analog-to-digital converter (ADC), along  
with a precision, high-voltage, signal-conditioning front end, and a 4-channel differential multiplexer (mux). This  
application example explains the process for optimizing the precision, high-voltage, front-end drive circuit using  
the OPA197 and OPA140 to achieve excellent dynamic performance and linearity with the ADS8864.  
1
2
3
4
High-Impedance Inputs  
No Differential Input Clamps  
Fast Settling-Time Requirements  
Attenuate High-Voltage Input Signal  
Fast-Settling Time Requirements  
Stability of the Input Driver  
Attenuate ADC Kickback Noise  
VREF Output: Value and Accuracy  
Low Temp and Long-Term Drift  
Very Low Output Impedance  
Input-Filter Bandwidth  
Voltage  
Reference  
CH0+  
CH0-  
RC Filter  
Buffer  
RC Filter  
+
+
±20-V,  
10-kHz  
Sine Wave  
OPA197  
OPA197  
Reference Driver  
Gain  
Network  
Gain  
Network  
OPA197  
+
4:2  
Mux  
REFP  
+
OPA140  
VINP  
Gain  
Network  
CH3+  
+
OPA197  
Antialiasing  
Filter  
SAR  
ADC  
+
+
±20-V,  
10-kHz  
Sine Wave  
OPA197  
OPA197  
VINM  
CH3-  
n
CONV  
16 Bits  
High-Voltage Level Translation  
400 kSPS  
High-Voltage Multiplexed Input  
VCM  
Voltage  
Divider  
REF3240  
OPA350  
Shmidtt  
Trigger  
VCM Generation Circuit  
Counter  
Delay  
n
Digital Counter For Multiplexer  
5
Fast logic transition  
Figure 53. OPA197 in 16-Bit, 400-kSPS, 4-Channel, Multiplexed Data Acquisition System for High-Voltage  
Inputs With Lowest Distortion  
Copyright © 2016–2018, Texas Instruments Incorporated  
27  
 
OPA197, OPA2197, OPA4197  
ZHCSEI8C JANUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
Typical Applications (continued)  
8.2.1.1 Design Requirements  
The primary objective is to design a ±20 V, differential 4-channel multiplexed data acquisition system with lowest  
distortion using the 16-bit ADS8864 at a throughput of 400 kSPS for a 10 kHz full-scale pure sine-wave input.  
The design requirements for this block design are:  
System Supply Voltage: ±15 V  
ADC Supply Voltage: 3.3 V  
ADC Sampling Rate: 400 kSPS  
ADC Reference Voltage (REFP): 4.096 V  
System Input Signal: A high-voltage differential input signal with a peak amplitude of 10 V and frequency  
(fIN) of 10 kHz are applied to each differential input of the mux.  
8.2.1.2 Detailed Design Procedure  
The purpose of this precision design is to design an optimal high voltage multiplexed data acquisition system for  
highest system linearity and fast settling. The overall system block diagram is shown in Figure 53. The circuit is a  
multichannel data acquisition signal chain consisting of an input low-pass filter, multiplexer (mux), mux output  
buffer, attenuating SAR ADC driver, digital counter for mux and the reference driver. The architecture allows fast  
sampling of multiple channels using a single ADC, providing a low-cost solution. The two primary design  
considerations to maximize the performance of a precision multiplexed data acquisition system are the mux input  
analog front-end and the high-voltage level translation SAR ADC driver design. However, carefully design each  
analog circuit block based on the ADC performance specifications in order to achieve the fastest settling at 16-bit  
resolution and lowest distortion system. The diagram includes the most important specifications for each  
individual analog block.  
This design systematically approaches each analog circuit block to achieve a 16-bit settling for a full-scale input  
stage voltage and linearity for a 10-kHz sinusoidal input signal at each input channel. The first step in the design  
is to understand the requirement for extremely low impedance input-filter design for the mux. This understanding  
helps in the decision of an appropriate input filter and selection of a mux to meet the system settling  
requirements. The next important step is the design of the attenuating analog front end (AFE) used to level  
translate the high-voltage input signal to a low-voltage ADC input while maintaining the amplifier stability. The  
next step is to design a digital interface to switch the mux input channels with minimum delay. The final design  
challenge is to design a high-precision, reference-driver circuit that provides the required REFP reference voltage  
with low offset, drift, and noise contributions.  
8.2.1.3 Application Curve  
2.0  
1.5  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–20  
–15  
–10  
–5  
0
5
10  
15  
20  
ADC Differential Input (V)  
Figure 54. ADC 16-Bit Linearity Error for the Multiplexed Data Acquisition Block  
For step-by-step design procedure, circuit schematics, bill of materials, PCB files, simulation results, and test  
results, refer to TI Precision Design TIDU181, 16-bit, 400-kSPS, 4-Channel, Multiplexed Data Acquisition  
System for High Voltage Inputs with Lowest Distortion.  
28  
Copyright © 2016–2018, Texas Instruments Incorporated  
OPA197, OPA2197, OPA4197  
www.ti.com.cn  
ZHCSEI8C JANUARY 2016REVISED MARCH 2018  
8.2.2 Slew Rate Limit for Input Protection  
In control systems for valves or motors, abrupt changes in voltages or currents can cause mechanical damages.  
By controlling the slew rate of the command voltages into the drive circuits, the load voltages ramps up and down  
at a safe rate. For symmetrical slew-rate applications (positive slew rate equals negative slew rate), one  
additional op amp provides slew-rate control for a given analog gain stage. The unique input protection and high  
output current and slew rate of the OPAx197 make the device an optimal amplifier to achieve slew rate control  
for both dual- and single-supply systems.Figure 55 shows the OPA197 in a slew-rate limit design.  
Op Amp Gain Stage  
Slew Rate Limiter  
C1  
R1  
470 nF  
1.69 kΩ  
VEE  
VEE  
R2  
1.6 MΩ  
-
-
OPA197  
VIN  
V+  
+
OPA197  
V+  
VOUT  
+
VCC  
RL  
VCC  
10 kΩ  
Figure 55. Slew Rate Limiter Uses One Op Amp  
For step-by-step design procedure, circuit schematics, bill of materials, PCB files, simulation results, and test  
results, refer to TI Precision Design TIDU026, Slew Rate Limiter Uses One Op Amp.  
Copyright © 2016–2018, Texas Instruments Incorporated  
29  
 
OPA197, OPA2197, OPA4197  
ZHCSEI8C JANUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
8.2.3 Precision Reference Buffer  
The OPAx197 features high output current drive capability and low input offset voltage, making the device an  
excellent reference buffer to provide an accurate buffered output with ample drive current for transients. For the  
10-µF ceramic capacitor shown in Figure 56, RISO, a 37.4-Ω isolation resistor, provides separation of two  
feedback paths for optimal stability. Feedback path number one is through RF and is directly at the output, VOUT  
.
Feedback path number two is through RFx and CF and is connected at the output of the op amp. The optimized  
stability components shown for the 10-µF load give a closed-loop signal bandwidth at VOUT of 4 kHz, while still  
providing a loop gain phase margin of 89°. Any other load capacitances require recalculation of the stability  
components: RF, RFx, CF, and RISO  
.
RF  
1 kΩ  
CF  
39 nF  
RFx  
10 kΩ  
RISO  
œ
37.4 Ω  
OPA197  
V+  
VOUT  
+
CL  
10 µF  
VCC  
VREF  
2.5 V  
Figure 56. Precision Reference Buffer  
9 Power Supply Recommendations  
The OPAx197 is specified for operation from 4.5 V to 36 V (±2.25 V to ±18 V); many specifications apply from  
–40°C to +125°C. Parameters that can exhibit significant variance with regard to operating voltage or  
temperature are presented in the Typical Characteristics.  
CAUTION  
Supply voltages larger than 40 V can permanently damage the device; see the  
Absolute Maximum Ratings.  
Place 0.1-µF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-  
impedance power supplies. For more detailed information on bypass capacitor placement, refer to the Layout  
section.  
30  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
OPA197, OPA2197, OPA4197  
www.ti.com.cn  
ZHCSEI8C JANUARY 2016REVISED MARCH 2018  
10 Layout  
10.1 Layout Guidelines  
For best operational performance of the device, use good PCB layout practices, including:  
Noise can propagate into analog circuitry through the power pins of the circuit as a whole and op amp  
itself. Bypass capacitors are used to reduce the coupled noise by providing low-impedance power  
sources local to the analog circuitry.  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as  
close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-  
supply applications.  
Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective  
methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground  
planes. A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically  
separate digital and analog grounds paying attention to the flow of the ground current. For more detailed  
information refer to Circuit Board Layout Techniques, SLOA089.  
In order to reduce parasitic coupling, run the input traces as far away from the supply or output traces as  
possible. If these traces cannot be kept separate, crossing the sensitive trace perpendicular is much  
better as opposed to in parallel with the noisy trace.  
Place the external components as close to the device as possible. As shown in Figure 57, keeping RF  
and RG close to the inverting input minimizes parasitic capacitance.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly  
reduce leakage currents from nearby traces that are at different potentials.  
Cleaning the PCB following board assembly is recommended for best performance.  
Any precision integrated circuit may experience performance shifts due to moisture ingress into the  
plastic package. Following any aqueous PCB cleaning process, baking the PCB assembly is  
recommended to remove moisture introduced into the device packaging during the cleaning process. A  
low temperature, post cleaning bake at 85°C for 30 minutes is sufficient for most circumstances.  
10.2 Layout Example  
+
VIN  
VOUT  
RG  
RF  
(Schematic Representation)  
Place components  
close to device and  
to each other to  
reduce parasitic  
errors  
Run the input traces  
as far away from  
the supply lines  
as possible  
VS+  
RF  
NC  
NC  
RG  
GND  
VIN  
GND  
œIN  
+IN  
Vœ  
V+  
OUT  
NC  
Use low-ESR, ceramic  
bypass capacitor  
GND  
Use low-ESR,  
ceramic bypass  
capacitor  
VOUT  
VSœ  
Ground (GND) plane on another layer  
Figure 57. Operational Amplifier Board Layout for Noninverting Configuration  
版权 © 2016–2018, Texas Instruments Incorporated  
31  
 
OPA197, OPA2197, OPA4197  
ZHCSEI8C JANUARY 2016REVISED MARCH 2018  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
11.1.1.1 TINA-TI™(免费软件下载)  
TINA™是一款简单、功能强大且易于使用的电路仿真程序,此程序基于 SPICE 引擎。TINA-TI TINA 软件的一  
款免费全功能版本,除了一系列无源和有源模型外,此版本软件还预先载入了一个宏模型库。TINA-TI 提供所有传  
统的 SPICE 直流、瞬态和频域分析,以及其他设计功能。  
TINA-TI 可从 Analog eLab Design Center(模拟电子实验室设计中心)免费下载,它提供全面的后续处理能力,  
使得用户能够以多种方式形成结果。虚拟仪器提供选择输入波形和探测电路节点、电压和波形的功能,从而创建一  
个动态的快速入门工具。  
这些文件需要安装 TINA 软件(由 DesignSoft™提供)或者 TINA-TI 软件。请从 TINA-TI 文  
件夹 中下载免费的 TINA-TI 软件。  
11.1.1.2 TI 高精度设计  
OPA197 采用多种 TI 高精度设计,获取相关内容请访问 TI 高精度设计网站TI 高精度设计是由 TI 公司高精度模  
拟 应用 专家创建的模拟解决方案,提供了许多实用电路的工作原理、组件选择、仿真、完整印刷电路板 (PCB) 电  
路原理图和布局布线、物料清单以及性能测量结果。  
11.2 文档支持  
11.2.1 相关文档  
如需相关文档,请参阅:  
《电路板布局布线技巧》(文献编号:SLOA089)  
《适用于所有人的运算放大器》(文献编号:SLOD006)  
11.3 相关链接  
4 列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件以及申请样片或购买产品的快速访问  
链接。  
4. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
工具和软件  
请单击此处  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
请单击此处  
OPA197  
OPA2197  
OPA4197  
32  
版权 © 2016–2018, Texas Instruments Incorporated  
 
OPA197, OPA2197, OPA4197  
www.ti.com.cn  
ZHCSEI8C JANUARY 2016REVISED MARCH 2018  
11.4 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。请单击右上角的提醒我 进行注册,即可每周接收  
产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.5 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.6 商标  
E2E is a trademark of Texas Instruments.  
TINA-TI is a trademark of Texas Instruments, Inc and DesignSoft, Inc.  
Bluetooth is a registered trademark of Bluetooth SIG, Inc.  
TINA, DesignSoft are trademarks of DesignSoft, Inc.  
All other trademarks are the property of their respective owners.  
11.7 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.8 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2016–2018, Texas Instruments Incorporated  
33  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA197ID  
OPA197IDBVR  
OPA197IDBVT  
OPA197IDGKR  
OPA197IDGKT  
OPA197IDR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOT-23  
SOT-23  
VSSOP  
VSSOP  
SOIC  
D
DBV  
DBV  
DGK  
DGK  
D
8
5
75  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
OPA197  
3000 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
75 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
50 RoHS & Green  
2500 RoHS & Green  
90 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
SN  
12MV  
5
12MV  
8
12ST  
8
12ST  
8
OPA197  
2197  
OPA2197ID  
SOIC  
D
8
OPA2197IDGKR  
OPA2197IDGKT  
OPA2197IDR  
OPA4197ID  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
4HV  
8
4HV  
8
2197  
SOIC  
D
14  
14  
14  
14  
OPA4197  
OPA4197  
OPA4197  
OPA4197  
OPA4197IDR  
OPA4197IPW  
OPA4197IPWR  
SOIC  
D
TSSOP  
TSSOP  
PW  
PW  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA197IDBVR  
OPA197IDBVT  
OPA197IDGKR  
OPA197IDGKT  
OPA197IDR  
SOT-23  
SOT-23  
VSSOP  
VSSOP  
SOIC  
DBV  
DBV  
DGK  
DGK  
D
5
5
3000  
250  
180.0  
180.0  
330.0  
177.8  
330.0  
330.0  
177.8  
330.0  
330.0  
330.0  
8.4  
3.23  
3.23  
5.3  
5.3  
6.4  
5.3  
5.3  
6.4  
6.5  
6.9  
3.17  
3.17  
3.4  
3.4  
5.2  
3.4  
3.4  
5.2  
9.0  
5.6  
1.37  
1.37  
1.4  
1.4  
2.1  
1.4  
1.4  
2.1  
2.1  
1.6  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
8.4  
8.0  
8
2500  
250  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
16.4  
12.4  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
16.0  
12.0  
8
8
2500  
2500  
250  
OPA2197IDGKR  
OPA2197IDGKT  
OPA2197IDR  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
8
8
2500  
2500  
2000  
OPA4197IDR  
SOIC  
D
14  
14  
OPA4197IPWR  
TSSOP  
PW  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA197IDBVR  
OPA197IDBVT  
OPA197IDGKR  
OPA197IDGKT  
OPA197IDR  
SOT-23  
SOT-23  
VSSOP  
VSSOP  
SOIC  
DBV  
DBV  
DGK  
DGK  
D
5
5
3000  
250  
223.0  
223.0  
346.0  
223.0  
356.0  
346.0  
223.0  
356.0  
356.0  
356.0  
270.0  
270.0  
346.0  
270.0  
356.0  
346.0  
270.0  
356.0  
356.0  
356.0  
35.0  
35.0  
29.0  
35.0  
35.0  
29.0  
35.0  
35.0  
35.0  
35.0  
8
2500  
250  
8
8
2500  
2500  
250  
OPA2197IDGKR  
OPA2197IDGKT  
OPA2197IDR  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
8
8
2500  
2500  
2000  
OPA4197IDR  
SOIC  
D
14  
14  
OPA4197IPWR  
TSSOP  
PW  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
OPA197ID  
OPA2197ID  
OPA4197ID  
OPA4197IPW  
D
D
SOIC  
SOIC  
8
8
75  
75  
50  
90  
506.6  
506.6  
506.6  
508  
8
8
3940  
3940  
3940  
3250  
4.32  
4.32  
4.32  
2.8  
D
SOIC  
14  
14  
8
PW  
TSSOP  
8.5  
Pack Materials-Page 3  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

OPA2197-Q1

汽车类双路 36V、精密轨到轨输入/输出、低失调电压运算放大器
TI

OPA2197ID

双路 36V 精密轨到轨输入/输出、低失调电压运算放大器 | D | 8 | -40 to 125
TI

OPA2197IDGKR

双路 36V 精密轨到轨输入/输出、低失调电压运算放大器 | DGK | 8 | -40 to 125
TI

OPA2197IDGKT

双路 36V 精密轨到轨输入/输出、低失调电压运算放大器 | DGK | 8 | -40 to 125
TI

OPA2197IDR

双路 36V 精密轨到轨输入/输出、低失调电压运算放大器 | D | 8 | -40 to 125
TI

OPA2197QDGKRQ1

汽车类双路 36V、精密轨到轨输入/输出、低失调电压运算放大器 | DGK | 8 | -40 to 125
TI

OPA21E

Low-Power Precision OPERATIONAL AMPLIFIER
BB

OPA21EZ

Operational Amplifier, 1 Func, 200uV Offset-Max, BIPolar, CDIP8,
BB

OPA21G

Low-Power Precision OPERATIONAL AMPLIFIER
BB

OPA21GD

Operational Amplifier, 1 Func, 1300uV Offset-Max, BIPolar,
BB

OPA21GJ

Operational Amplifier, 1 Func, 1000uV Offset-Max, BIPolar, MBCY8,
BB

OPA21GZ

Operational Amplifier, 1 Func, 1000uV Offset-Max, BIPolar, CDIP8,
BB