OPA1637DGKR [TI]

高保真、高电压 (36V)、低噪声 (3.7nV/rtHz) Burr-Brown™ 音频全差分放大器 | DGK | 8 | -40 to 125;
OPA1637DGKR
型号: OPA1637DGKR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

高保真、高电压 (36V)、低噪声 (3.7nV/rtHz) Burr-Brown™ 音频全差分放大器 | DGK | 8 | -40 to 125

放大器 光电二极管
文件: 总36页 (文件大小:2424K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OPA1637  
ZHCSKM2B DECEMBER 2019 REVISED AUGUST 2020  
OPA1637 高保真、低噪声、全差分、Burr-Brown™ 音频  
运算放大器  
1 特性  
3 说明  
• 低输入电压噪声1kHz 3.7nV/Hz  
THD + N1 kHz -120dB  
• 低电源电流±18V 950µA  
• 输入失调电压±200µV最大值)  
• 输入偏置电流2nA最大值)  
• 低偏置电流噪声10Hz 400fA/Hz  
• 带宽增益积9.2MHz  
• 差分输出压摆率15V/µs  
• 宽输入和输出共模范围  
• 宽单电源工作电压范围3V 36V  
• 低电源电流断电特性< 20µA  
• 过载功率限制  
OPA1637 是一款具有低噪声、低总谐波失真 (THD) 的  
全差分 Burr-Brown音频运算放大器可轻松过滤和  
驱动全差分信号链。  
OPA1637 还可将单端信号源转换为高保真模数转换器  
(ADC) 所需的差分输出。双极性超级 ß 输入专为实现  
出色的低噪声和 THD 而设计在非常低的静态电流和  
输入偏置电流下就可产生非常低的噪声系数。该器件设  
计用于要求低功耗、高信噪比 (SNR) 和无杂散动态范  
(SFDR) 的音频电路。  
OPA1637 具有高压电源功能支持高达 ±18V 的电源  
电压。高压差分信号链可通过该功能提高裕量和动态范  
而无需为差分信号的每个极性添加单独的放大器。  
极低的电压和电流噪声使得 OPA1637 可以用于高增益  
配置而对音频信号噪声的影响最小。  
• 电流限制  
• 封装8 VSSOP  
• 温度范围40°C +125°C  
OPA1637 可在 –40°C +125°C 的宽温度范围内工  
并采8 VSSOP 封装。  
2 应用  
专业音频混合器或控制平面  
专业麦克风和无线系统  
专业扬声器系统  
专业音频放大器  
条形音箱  
器件信息(1)  
封装尺寸标称值)  
器件型号  
OPA1637  
封装  
VSSOP (8)  
3.00mm × 3.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的封装选项附录。  
转盘  
专业摄像机  
吉他和其他乐器放大器  
数据采(DAQ)  
RF1  
100  
70  
1 k  
CF1  
3.3 nF  
50  
C2  
1 µF  
RISO1  
75 ꢀ  
30  
20  
RI1  
49 5 V  
INPUT_A  
5 V  
œ
TPA3251  
Class D  
Amplifier
+
OPA1637  
CDF  
PCM1795  
Audio DAC  
œ 3.5 V  
IOUTL/R+  
IOUTL/Rœ  
10  
7
10 nF  
C3  
1 µF  
C5  
1 µF  
œ
+
PD  
5
GND  
5 V  
œ10 V  
RI2  
49 ꢀ  
œ10 V  
INPUT_B  
RISO2  
75 ꢀ  
3
2
CF2  
3.3 nF  
RF2  
1 kꢀ  
GND  
1
100m  
1
10  
100  
Frequency (Hz)  
1k  
10k  
100k  
低噪声、低功耗、全差分放大器增益模块和接口  
D022  
低输入电压噪声  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOSA00  
 
 
 
OPA1637  
www.ti.com.cn  
ZHCSKM2B DECEMBER 2019 REVISED AUGUST 2020  
Table of Contents  
8.4 Device Functional Modes..........................................18  
9 Application and Implementation..................................19  
9.1 Application Information............................................. 19  
9.2 Typical Applications.................................................. 23  
10 Power Supply Recommendations..............................28  
11 Layout...........................................................................28  
11.1 Layout Guidelines................................................... 28  
11.2 Layout Example...................................................... 28  
12 Device and Documentation Support..........................29  
12.1 Device Support....................................................... 29  
12.2 Documentation Support.......................................... 29  
12.3 接收文档更新通知................................................... 29  
12.4 支持资源..................................................................29  
12.5 Trademarks.............................................................29  
12.6 静电放电警告.......................................................... 29  
12.7 术语表..................................................................... 29  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics.............................................5  
6.6 Typical Characteristics................................................9  
7 Parameter Measurement Information..........................16  
7.1 Characterization Configuration................................. 16  
8 Detailed Description......................................................17  
8.1 Overview...................................................................17  
8.2 Functional Block Diagram.........................................17  
8.3 Feature Description...................................................18  
Information.................................................................... 29  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (May 2020) to Revision B (August 2020)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
• 更改了首页应用图RF1 显示正确的标签和值................................................................................................1  
Changed Figure 7-1 to show correct labels......................................................................................................16  
Changed Figure 9-5 to show correct label and value for RF1 .......................................................................... 23  
Changed Figure 9-8 negative rail from 0 V to 5 V.........................................................................................25  
Changes from Revision * (December 2019) to Revision A (May 2020)  
Page  
• 将器件状态从“预告信息预发布”更改为“生产数据正在供货.........................................................1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: OPA1637  
 
OPA1637  
www.ti.com.cn  
ZHCSKM2B DECEMBER 2019 REVISED AUGUST 2020  
5 Pin Configuration and Functions  
IN-  
8
7
6
5
IN+  
1
2
3
4
VOCM  
VS+  
PD  
VS-  
OUT-  
OUT+  
5-1. DGK Package, 8-Pin VSSOP, Top View  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
IN–  
NO.  
1
I
Inverting (negative) amplifier input  
Noninverting (positive) amplifier input  
Inverting (negative) amplifier output  
Noninverting (positive) amplifier output  
IN+  
8
I
5
O
O
OUT–  
OUT+  
4
Power down.  
PD = logic low = power off mode.  
PD = logic high = normal operation.  
PD  
7
I
The logic threshold is referenced to VS+.  
If power down is not needed, leave PD floating.  
VOCM  
VS–  
VS+  
2
6
3
I
I
I
Ouput common-mode voltage control input  
Negative power-supply input  
Positive power-supply input  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: OPA1637  
 
OPA1637  
www.ti.com.cn  
ZHCSKM2B DECEMBER 2019 REVISED AUGUST 2020  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
V
Single supply  
40  
±20  
VS  
Supply voltage  
Dual supply  
V
IN+, IN, Differential voltage(2)  
±0.5  
V
IN+, IN, VOCM, PD, OUT+, OUTvoltage(3)  
IN+, INcurrent  
VVS0.5  
10  
VVS+ + 0.5  
10  
V
mA  
mA  
50  
OUT+, OUTcurrent  
50  
Output short-circuit(4)  
Continuous  
150  
TA  
Operating Temperature  
Junction Temperature  
°C  
°C  
°C  
40  
40  
65  
TJ  
175  
Tstg  
Storage Temperature  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) Input pins IN+ and INare connected with anti-parallel diodes in between the two terminals. Differential input signals that are greater  
than 0.5 V or less than 0.5 V must be current-limited to 10 mA or less.  
(3) Input terminals are diode-clamped to the supply rails (VS+, VS). Input signals that swing more than 0.5 V greater or less the supply  
rails must be current-limited to 10 mA or less.  
(4) Short-circuit to VS / 2.  
6.2 ESD Ratings  
VALUE  
±1000  
±500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3
NOM  
MAX  
36  
UNIT  
Single-supply  
Dual-supply  
VS  
TA  
Supply voltage  
V
±1.5  
40  
±18  
125  
Specified temperature  
°C  
6.4 Thermal Information  
OPA1637  
DGK (VSSOP)  
8 PINS  
181.1  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
68.3  
102.8  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
10.6  
ψJT  
101.1  
ψJB  
RθJC(bot)  
N/A  
(1) For information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: OPA1637  
 
 
 
 
 
 
 
 
 
 
 
 
OPA1637  
www.ti.com.cn  
ZHCSKM2B DECEMBER 2019 REVISED AUGUST 2020  
6.5 Electrical Characteristics  
at TA = 25°C, VS (dual supply) = ±1.5 V to ±18 V, VVOCM = 0 V, input common mode voltage (VICM) = 0 V, RF = 2 kΩ, VPD  
VVS+, RL = 10 kΩ(1) (unless otherwise noted)  
=
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
FREQUENCY RESPONSE  
VO (2) = 100 mVPP, G = 1 V/V  
VO = 100 mVPP, G = 10 V/V  
SSBW  
GBP  
FBP  
SR  
Small-signal bandwidth  
Gain-bandwidth product  
Full-power bandwidth  
Slew rate  
7
9.2  
2.5  
15  
1
MHz  
MHz  
MHz  
V/µs  
VO = 1 VPP, G = 1 V/V  
G = 1, 10-V step  
0.1% of final value, G = 1 V/V, VO = 10-V step  
0.01% of final value, G = 1 V/V, VO= 10-V step  
Settling time  
µs  
2
dB  
%
120  
0.0001  
115  
Differential input, f = 1 kHz, VO = 10 VPP  
Single-ended input, f = 1 kHz, VO = 10 VPP  
Differential input, f = 10 kHz, VO = 10 VPP  
Single-ended input, f = 10 kHz, VO = 10 VPP  
dB  
%
0.00018  
112  
Total harmonic distortion and  
noise  
THD+N  
dB  
%
0.00025  
107  
0.00045  
126  
120  
131  
119  
dB  
%
Differential input, f = 1 kHz, VO = 10 VPP  
Single-ended input, f = 1 kHz, VO = 10 VPP  
Differential input, f = 1 kHz, VO = 10 VPP  
Single-ended input, f = 1 kHz, VO = 10 VPP  
G = 5 V/V, 2x output overdrive, dc-coupled  
HD2  
HD3  
Second-order harmonic distortion  
dB  
Third-order harmonic distortion  
Overdrive recovery time  
dB  
µs  
3.3  
NOISE  
f = 1 kHz  
3.7  
4
nV/Hz  
µVPP  
en  
Input differential voltage noise  
Input current noise, each input  
f = 10 Hz  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
0.1  
300  
400  
13.4  
fA/Hz  
pAPP  
ei  
f = 10 Hz  
f = 0.1 Hz to 10 Hz  
OFFSET VOLTAGE  
20  
±200  
µV  
VIO  
Input-referred offset voltage  
±250  
TA = 40°C to +125°C  
TA = 40°C to +125°C  
Input offset voltage drift  
0.1  
±1 µV/°C  
0.025  
±0.5  
µV/V  
±1  
PSRR  
Power-supply rejection ratio  
TA = 40°C to +125°C  
INPUT BIAS CURRENT  
0.2  
±2  
nA  
±4  
IB  
Input bias current  
TA = 40°C to +125°C  
TA = 40°C to +125°C  
Input bias current drift  
Input offset current  
2
±15 pA/°C  
0.2  
±1  
nA  
±3  
IOS  
TA = 40°C to +125°C  
TA = 40°C to +125°C  
Input offset current drift  
1
±10 pA/°C  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: OPA1637  
 
OPA1637  
www.ti.com.cn  
ZHCSKM2B DECEMBER 2019 REVISED AUGUST 2020  
6.5 Electrical Characteristics (continued)  
at TA = 25°C, VS (dual supply) = ±1.5 V to ±18 V, VVOCM = 0 V, input common mode voltage (VICM) = 0 V, RF = 2 kΩ, VPD  
VVS+, RL = 10 kΩ(1) (unless otherwise noted)  
=
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
INPUT VOLTAGE  
VVS+  
1
Common-mode voltage  
VVS+ 1  
V
dB  
TA = 40°C to +125°C  
140  
140  
VVS+ 1 V VICM VVS+ 1 V  
126  
120  
VVS+ 1 V VICM VVS+ 1 V, VS = ±18 V  
CMRR  
Common-mode rejection ratio  
VVS+ 1 V VICM VVS+ 1 V, VS = ±18 V  
TA = 40°C to +125°C  
INPUT IMPEDANCE  
Input impedance differential  
VICM = 0 V  
1 || 1  
GΩ|| pF  
mode  
OPEN-LOOP GAIN  
115  
110  
115  
110  
120  
120  
120  
120  
VS = ±2.5 V, VVS+ 0.2 V < VO < VVS+ 0.2 V  
VS = ±2.5 V, VVS+ 0.3 V < VO < VVS+ 0.3 V,  
TA = 40°C to +125°C  
AOL  
Open-loop voltage gain  
dB  
VS = ±15 V, VVS+ 0.6 V < VO < VVS+ 0.6 V  
VS = ±15 V, VVS+ 0.6 V < VO < VVS+ 0.6 V,  
TA = 40°C to +125°C  
OUTPUT  
VS = ±2.5 V  
±100  
±100  
±230  
±270  
±31  
VS = ±2.5 V, TA = 40°C to +125°C  
VS = ±18 V  
Output voltage difference from  
supply voltage  
mV  
VS = ±18 V, TA = 40°C to +125°C  
ISC  
Short-circuit current  
mA  
pF  
Ω
Differential capacitive load, no output Isolation  
resistors, phase margin = 30°  
CLOAD  
ZO  
Capacitive load drive  
50  
14  
Open-loop output impedance  
f = 100 kHz (differential)  
OUTPUT COMMON-MODE VOLTAGE (VOCM) CONTROL  
VVS+  
1
VS = ±2.5 V  
Input Voltage Range  
VVS+ 1  
VVS+ 2  
VVS+  
2
VS = ±18 V  
Small-signal bandwidth from  
VOCM pin  
VVOCM= 100 mVPP  
2
MHz  
V/µs  
Large-signal bandwidth from  
VOCM pin  
VVOCM = 0.6 VPP  
5.7  
VVOCM = 0.5-V step, rising  
3.5  
5.5  
Slew rate from VOCM pin  
VVOCM = 0.5-V step, falling  
VVOCM fixed midsupply (VO = ±1 V)  
DC output balance  
78  
dB  
MΩ|| pF  
mV  
VOCM input impedance  
VOCM offset from mid-supply  
2.5 || 1  
2
VOCM pin floating  
VVOCM = VICM, VO = 0 V  
±1  
±6  
VOCM common-mode offset  
voltage  
mV  
±10  
VVOCM = VICM, VO = 0 V, TA = 40°C to +125°C  
VOCM common-mode offset  
voltage drift  
±20  
±60 µV/°C  
VVOCM = VICM, VO = 0 V, TA = 40°C to +125°C  
POWER SUPPLY  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: OPA1637  
OPA1637  
www.ti.com.cn  
ZHCSKM2B DECEMBER 2019 REVISED AUGUST 2020  
6.5 Electrical Characteristics (continued)  
at TA = 25°C, VS (dual supply) = ±1.5 V to ±18 V, VVOCM = 0 V, input common mode voltage (VICM) = 0 V, RF = 2 kΩ, VPD  
VVS+, RL = 10 kΩ(1) (unless otherwise noted)  
=
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
0.95  
1.2  
mA  
1.6  
IQ  
Quiescent operating current  
TA = 40°C to +125°C  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: OPA1637  
OPA1637  
www.ti.com.cn  
ZHCSKM2B DECEMBER 2019 REVISED AUGUST 2020  
6.5 Electrical Characteristics (continued)  
at TA = 25°C, VS (dual supply) = ±1.5 V to ±18 V, VVOCM = 0 V, input common mode voltage (VICM) = 0 V, RF = 2 kΩ, VPD  
VVS+, RL = 10 kΩ(1) (unless otherwise noted)  
=
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
POWER DOWN  
VVS+  
VPD(HI)  
Power-down enable voltage  
V
V
TA = 40°C to +125°C  
0.5  
VVS+  
VPD(LOW) Power-down disable voltage  
TA = 40°C to +125°C  
VPD = VVS+ 2 V  
2.0  
PD bias current  
1
10  
10  
15  
2
µA  
µA  
µs  
µs  
Powerdown quiescent current  
Turn-on time delay  
20  
VIN = 100 mV, time to VO = 90% of final value  
VIN = 100 mV, time to VO = 10% of original value  
Turn-off time delay  
(1) RL is connected differentially, from OUT+ to OUT.  
(2) VO refers to the differential output voltage, VOUT+ VOUT–  
.
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: OPA1637  
 
 
OPA1637  
www.ti.com.cn  
ZHCSKM2B DECEMBER 2019 REVISED AUGUST 2020  
6.6 Typical Characteristics  
at VS = ±18 V, TA = 25°C, VVOCM = VVICM = 0 V, RF = 2 kΩ, RL = 10 kΩ, VOUT = 2 VPP, G = 1 V/V, and V PD = VS+ (unless  
otherwise noted)  
100  
70  
5000  
3000  
2000  
50  
30  
20  
1000  
700  
10  
7
500  
5
300  
200  
3
2
100  
0.1  
1
100m  
0.5  
2 3 5 10 20  
100  
Frequency (Hz)  
1000  
10000 100000  
1
10  
100  
Frequency (Hz)  
1k  
10k  
100k  
D014  
D013  
6-2. Current Noise vs Frequency  
6-1. Input-Referred Voltage Noise vs Frequency  
-90  
0.1  
0.01  
-60  
RL = 2 kW  
RL = 10 kW  
RL = 2 kW  
RL = 10 kW  
-95  
RL = 600 W  
-80  
-100  
-105  
-110  
-115  
-120  
-125  
0.001  
0.0001  
1E-5  
-100  
-120  
-140  
10m  
100m 1  
Output Amplitude (VRMS  
10  
10  
100  
1k  
Frequency (Hz)  
10k 20k  
)
D016  
D015  
f = 1 kHz, VS = ±15 V  
VOUT = 3 VRMS, VS = ±15 V  
6-3. Total Harmonic Distortion + Noise vs Frequency  
6-4. Total Harmonic Noise + Distortion vs Amplitude  
180  
160  
140  
120  
100  
80  
200  
160  
120  
80  
50  
40  
30  
20  
10  
Gain  
Phase  
40  
0
60  
-40  
-80  
-120  
-160  
-200  
40  
0
20  
G = 1  
G = 10  
-10  
0
G = 100  
-20  
-20  
1
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
10M  
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
D068  
D009  
VS = ±15 V, CL = 50 pF  
6-5. Open Loop Gain vs Frequency  
VS = ±15 V, CL = 50 pF  
6-6. Closed-Loop Gain vs Frequency  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: OPA1637  
 
OPA1637  
www.ti.com.cn  
ZHCSKM2B DECEMBER 2019 REVISED AUGUST 2020  
6.6 Typical Characteristics (continued)  
at VS = ±18 V, TA = 25°C, VVOCM = VVICM = 0 V, RF = 2 kΩ, RL = 10 kΩ, VOUT = 2 VPP, G = 1 V/V, and V PD = VS+ (unless  
otherwise noted)  
180  
160  
140  
120  
100  
80  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
60  
40  
20  
0
10m 100m  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
1
10  
100 1k  
Frequency (Hz)  
10k 100k 1M 10M  
D030  
D011  
VS = ±15 V  
6-8. Common Mode Rejection Ratio vs Temperature  
6-7. Common Mode Rejection Ratio vs Frequency  
180  
-0.01  
PSRR+  
PSRR-  
160  
140  
120  
100  
80  
-0.02  
-0.03  
-0.04  
-0.05  
60  
40  
20  
0
10m 100m  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
1
10  
100 1k  
Frequency (Hz)  
10k 100k 1M 10M  
D031  
D012  
VS = ±15 V  
6-10. Power Supply Rejection Ratio vs Temperature  
6-9. Power Supply Rejection Ratio vs Frequency  
40  
10000  
5000  
35  
30  
25  
20  
15  
10  
5
3000  
2000  
1000  
500  
300  
200  
100  
50  
30  
20  
0
10  
1
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
10M  
1
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
10M  
D019  
D017  
VS = ±15 V  
VS = ±15 V  
6-11. Maximum Output Voltage vs Frequency  
6-12. Output Impedance vs Frequency  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: OPA1637  
OPA1637  
www.ti.com.cn  
ZHCSKM2B DECEMBER 2019 REVISED AUGUST 2020  
6.6 Typical Characteristics (continued)  
at VS = ±18 V, TA = 25°C, VVOCM = VVICM = 0 V, RF = 2 kΩ, RL = 10 kΩ, VOUT = 2 VPP, G = 1 V/V, and V PD = VS+ (unless  
otherwise noted)  
15  
10  
5
15  
10  
5
0
-200 -150 -100  
0
-200 -150 -100  
-50  
0
50  
100  
150  
200  
-50  
0
50  
100  
150  
200  
Input Offset Voltage (mV)  
Input Offset Voltage (mV)  
D001  
D061  
VS = ±1.5 V  
VS = ±18 V  
6-13. Input Offset Voltage Histogram  
6-14. Input Offset Voltage Histogram  
25  
20  
15  
10  
5
20  
15  
10  
5
0
0
-1 -0.8 -0.6 -0.4 -0.2  
0
0.2 0.4 0.6 0.8  
1
-6  
-4  
-2  
0
Common-Mode Input Offset Voltage (mV)  
2
4
6
Offset Voltage Drift (mV/èC)  
D002  
D006  
VS = ±15 V  
VS = ±18 V, VOCM = floating  
6-15. Input Offset Voltage Drift Histogram  
6-16. Output Common Mode Voltage Offset  
15  
10  
5
2
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
-40oC  
25oC  
85oC  
125oC  
0
3
6
9
12 15 18 21 24 27 30 33 36  
Supply Voltage (V)  
-6 -5 -4 -3 -2 -1  
0
1
2
3
Common-Mode Input Offset Voltage (mV)  
4
5
6
D045  
D007  
VS = ±18 V, VOCM = 0 V  
6-18. Quiescent Current vs Supply Voltage  
6-17. Output Common Mode Voltage Offset  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: OPA1637  
OPA1637  
www.ti.com.cn  
ZHCSKM2B DECEMBER 2019 REVISED AUGUST 2020  
6.6 Typical Characteristics (continued)  
at VS = ±18 V, TA = 25°C, VVOCM = VVICM = 0 V, RF = 2 kΩ, RL = 10 kΩ, VOUT = 2 VPP, G = 1 V/V, and V PD = VS+ (unless  
otherwise noted)  
1.5  
1.4  
1.3  
1.2  
1.1  
1
1.6  
1.4  
1.2  
1
Vs = ê1.5 V  
Vs = ê18 V  
0.8  
0.6  
0.4  
0.2  
0
0.9  
0.8  
0.7  
0.6  
0.5  
VS = ê18 V  
VS = ê1.5 V  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
VS+ Delta from Power Down (V)  
4
4.5  
5
Temperature (oC)  
D065  
D053  
6-19. Quiescent Current vs Temperature  
6-20. Quiescent Current vs Power-Down Delta from Supply  
Voltage  
250  
200  
150  
100  
50  
500  
400  
300  
200  
100  
0
-55oC  
-40oC  
25oC  
85oC  
125oC  
150oC  
0
-50  
-100  
-200  
-100  
-150  
-200  
-250  
17 V  
-17 V  
IB-  
IB+  
IOS  
-300  
-400  
-500  
-18  
-14  
-10  
-6  
Input Common-Mode Voltage (V)  
-2  
2
6
10  
14  
18  
-18  
-14  
-10  
-6  
Input Common-Mode Voltage (V)  
-2  
2
6
10  
14  
18  
D023  
D025  
6-21. Input Offset Voltage vs Input Common-Mode Voltage  
6-22. Input Bias Current vs Input Common-Mode Voltage  
500  
30  
IB-  
IB+  
IOS  
450  
400  
350  
300  
250  
200  
150  
100  
50  
28  
26  
24  
-40èC  
125èC  
25èC  
85èC  
22  
20  
0
-50  
-100  
3
6
9
12 15 18 21 24 27 30 33 36  
Supply Voltage (V)  
0
5
10  
15  
20  
25  
Output Current (mA)  
30  
35  
40  
D027  
D028  
6-23. Input Bias Current vs Supply Voltage  
6-24. Output Voltage vs Output Current  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: OPA1637  
OPA1637  
www.ti.com.cn  
ZHCSKM2B DECEMBER 2019 REVISED AUGUST 2020  
6.6 Typical Characteristics (continued)  
at VS = ±18 V, TA = 25°C, VVOCM = VVICM = 0 V, RF = 2 kΩ, RL = 10 kΩ, VOUT = 2 VPP, G = 1 V/V, and V PD = VS+ (unless  
otherwise noted)  
-20  
-22  
-24  
-26  
-28  
-30  
128  
126  
124  
122  
120  
118  
116  
114  
112  
110  
108  
-40èC  
125èC  
25èC  
85èC  
25 èC  
85 èC  
125 èC  
-40 èC  
0.3  
0.35  
0.4  
0.45  
0.5  
0.55  
0.6  
0.65  
0.7  
-40  
-35  
-30  
-25  
-20  
-15  
Output Current (mA)  
-10  
-5  
0
Output Voltage Delta from Supply Voltage, VS+/VS- (V)  
D049  
D029  
6-26. Open-Loop Gain vs Ouput Delta From Supply  
6-25. Output Voltage vs Output Current  
20  
20  
RISO = 0 W  
RISO = 25 W  
RISO = 50 W  
RISO = 0 W  
RISO = 25 W  
RISO = 50 W  
17.5  
15  
15  
10  
5
12.5  
10  
7.5  
5
2.5  
0
0
20  
40  
60  
80  
100  
120  
Capacitive Load (pF)  
140  
160  
180  
0
50  
100  
150  
200  
250  
Capacitive Load (pF)  
300  
350  
400  
D036  
D037  
AV = 1  
AV = 10  
6-27. Small-Signal Overshoot vs Capacitive Load  
6-28. Small-Signal Overshoot vs Capacitive Load  
20  
50  
40  
30  
20  
17  
14  
11  
I
I
I
I
OUT+ (sinking)  
OUT+ (sourcing)  
OUT- (sourcing)  
OUT- (sinking)  
10  
0
-10  
-20  
-30  
-40  
-50  
8
Falling Edge  
Rising Edge  
5
-25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
3
6
9
12 15 18 21 24 27 30 33 36  
Supply Voltage (V)  
Temperature (oC)  
D048  
D041  
6-30. Short-Circuit Current vs Temperature  
6-29. Output Slew Rate vs Supply Voltage  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: OPA1637  
OPA1637  
www.ti.com.cn  
ZHCSKM2B DECEMBER 2019 REVISED AUGUST 2020  
6.6 Typical Characteristics (continued)  
at VS = ±18 V, TA = 25°C, VVOCM = VVICM = 0 V, RF = 2 kΩ, RL = 10 kΩ, VOUT = 2 VPP, G = 1 V/V, and V PD = VS+ (unless  
otherwise noted)  
3
2.5  
2
1.1  
1.08  
1.06  
1.04  
1.02  
1
1.5  
1
0.5  
0
VOUT+  
VOUT-  
-0.5  
-1  
0.98  
0.96  
0.94  
0.92  
0.9  
-1.5  
-2  
VVOCM  
(VOUT+ + VOUT-)/2  
-2.5  
-3  
Time (1 ms/div)  
Time (5 ms /div)  
D044  
D054  
6-31. Large-Signal Step Response  
6-32. Output Common-Mode Step Response, Rising  
0.1  
0.08  
0.06  
0.04  
0.02  
0
VIN  
VOUT+  
VOUT-  
VVOCM  
(VOUT+ + VOUT-)/2  
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
Time (5 ms / div)  
Time (500 ns/div)  
D055  
D043  
6-33. Output Common-Mode Step Response, Falling  
6-34. Small-Signal Step Response, Falling  
+0.01%  
Settling  
Threshold  
-0.01%  
Settling  
VIN  
VOUT+  
VOUT-  
Input  
Transition  
Threshold  
Time (500 ns/div)  
Time (250 ns/div)  
D042  
D046  
6-35. Small-Signal Step Response, Rising  
6-36. Output Settling Time to ±0.01%  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: OPA1637  
OPA1637  
www.ti.com.cn  
ZHCSKM2B DECEMBER 2019 REVISED AUGUST 2020  
6.6 Typical Characteristics (continued)  
at VS = ±18 V, TA = 25°C, VVOCM = VVICM = 0 V, RF = 2 kΩ, RL = 10 kΩ, VOUT = 2 VPP, G = 1 V/V, and V PD = VS+ (unless  
otherwise noted)  
18  
15  
12  
9
0.3  
18  
15  
12  
9
0.3  
0.2  
0.1  
0
VPD  
VOUT  
0.25  
0.2  
0.15  
0.1  
6
6
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
3
0.05  
0
3
0
0
VPD  
VOUT  
-3  
-6  
-0.05  
-0.1  
-3  
-6  
Time (1 ms/div)  
Time (1 ms/div)  
D050  
D051  
6-37. Power-Down Time (PD Low to High)  
VIN  
6-38. Power-Down Time (PD High to Low)  
VIN  
VOUT+  
VOUT-  
VOUT+  
VOUT-  
Time (20 ms/div)  
Time (20 ms/div)  
D039  
D040  
6-39. Output Negative Overload Recovery  
6-40. Output Positive Overload Recovery  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: OPA1637  
OPA1637  
www.ti.com.cn  
ZHCSKM2B DECEMBER 2019 REVISED AUGUST 2020  
7 Parameter Measurement Information  
7.1 Characterization Configuration  
The OPA1637 provides the advantages of a fully differential amplifier (FDA) configuration that offers very low  
noise and harmonic distortion in a single, low-power amplifier. The FDA is a flexible device, where the main aim  
is to provide a purely differential output signal centered on a user-configurable, common-mode voltage that is  
usually matched to the input common-mode voltage required by an analog-to-digital converter (ADC) or class-D  
amplifier. The circuit used for characterization of the differential-to-differential performance is seen in 7-1.  
VINœ  
RI  
2 k  
RF  
2 kꢀ  
VOUT+  
RISO  
0 ꢀ  
VVS+  
œ
+
VIDIFF/2  
œ
+
VVOCM  
+
OPA1637  
RL  
10 kꢀ  
CL  
DNP  
VOUT  
+
œ
RISO  
0 ꢀ  
VCM  
œ
œ
+
+
œ
VIDIFF/2  
RI  
2 kꢀ  
VVSœ VPD  
RF  
2 kꢀ  
VOUTœ  
VIN+  
All voltages except VIN and VOUT are  
referenced to ground.  
7-1. Differential Source to a Differential Gain of a 1-V/V Test Circuit  
A similar circuit is used for single-ended to differential measurements, as shown in 7-2.  
VINœ  
RI  
2 k  
RF  
2 kꢀ  
VOUT+  
RISO  
0 ꢀ  
VVS+  
œ
+
VVOCM  
+
OPA1637  
RL  
10 kꢀ  
CL  
DNP  
VOUT  
œ
RISO  
0 ꢀ  
+
œ
RI  
2 kꢀ  
VPD  
VVSœ  
+
RF  
2 kꢀ  
VOUTœ  
VIN  
œ
VIN+  
All voltages except VOUT are  
referenced to ground.  
7-2. Single-Ended to Differential Gain of a 1-V/V Test Circuit  
The FDA requires feedback resistor for both output pins to the input pins. These feedback resistors load the  
output differentially only if the input common-mode voltage is equal to the output common-mode voltage set by  
VOCM. When VOCM differs from the input common-mode range, the feedback resistors create single-ended  
loading. The characterization plots fix the RF (RF1 = RF2) value at 2 kΩ, unless otherwise noted. This value can  
be adjusted to match the system design parameters with the following considerations in mind:  
The current needed to drive RF from the peak output voltage to the input common-mode voltage adds to the  
overall output load current. If the total load current (current through RF + current through RL) exceeds the  
current limit conditions, the device enters a current limit state, causing the output voltage to collapse.  
High feedback resistor values (RF> 100 kΩ) interact with the amplifier input capacitance to create a zero in  
the feedback network. Compensation must be added to account for this potential source of instability; see the  
TI Precision Labs FDA Stability Training for guidance on designing an appropriate compensation network.  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: OPA1637  
 
 
 
 
OPA1637  
www.ti.com.cn  
ZHCSKM2B DECEMBER 2019 REVISED AUGUST 2020  
8 Detailed Description  
8.1 Overview  
The OPA1637 is a low-noise, low-distortion fully-differential amplifier (FDA) that features Texas Instrument's  
super-beta bipolar input devices. Super-beta input devices feature very low input bias current as compared to  
standard bipolar technology. The low input bias current and current noise makes the OPA1637 an excellent  
choice for audio applications that require low-noise differential signal processing without significant current  
consumption. This device is also designed for analog-to-digital audio input circuits that require low noise in a  
single fully-differential amplifier. This device achieves lower current consumption at lower noise levels than what  
is achievable with two low-noise amplifiers. The OPA1637 also features high-voltage capability, which allows the  
device to be used in ±15-V supply circuits without any additional voltage clamping or regulators. This feature  
enables a direct, single amplifier for a 24-dBm differential output drive (commonly found on mixers and digital  
audio interfaces) without any additional amplification.  
8.2 Functional Block Diagram  
VS+  
OUT+  
œ
INœ  
Low Noise  
Differential I/O  
+
Amplifier  
œ
IN+  
+
OUTœ  
VSœ  
VS+  
5 M  
œ
VCM  
Error  
1 µA  
Amplifier  
+
VOCM  
PD  
5 Mꢀ  
VSœ  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: OPA1637  
 
 
 
OPA1637  
www.ti.com.cn  
ZHCSKM2B DECEMBER 2019 REVISED AUGUST 2020  
8.3 Feature Description  
8.3.1 Super-Beta Input Bipolar Transistors  
The OPA1637 is designed on a modern bipolar process that features TI's super-beta input transistors. Traditional  
bipolar transistors feature excellent voltage noise and offset drift, but suffer a tradeoff in high input bias current  
(IB) and high input bias current noise. Super-beta transistors offer the benefits of low voltage noise and low offset  
drift with an order of magnitude reduction in input bias current and reduction in input bias current noise. For  
audio circuits, input bias current noise can dominate in circuits where higher resistance input resistors are used.  
The OPA1637 enables a fully-differential, low-noise amplifier design without restrictions of low input resistance at  
a power level unmatched by traditional single-ended amplifiers.  
8.3.2 Power Down  
The OPA1637 features a power-down circuit to disable the amplifier when a low-power mode is required by the  
system. In the power-down state, the amplifier outputs are in a high-impedance state, and the amplifier total  
quiescent current is reduced to less than 20 µA.  
8.3.3 Flexible Gain Setting  
The OPA1637 offers considerable flexibility in the configuration and selection of resistor values. Low input bias  
current and bias current noise allows for larger gain resistor values with minimal impact to noise or offset. The  
design starts with the selection of the feedback resistor value. The 2-kΩ feedback resistor value used for the  
characterization curves is a good compromise among power, noise, and phase margin considerations. With the  
feedback resistor values selected (and set equal on each side), the input resistors are set to obtain the desired  
gain, with the input impedance also set with these input resistors. Differential I/O designs provide an input  
impedance that is the sum of the two input resistors. Single-ended input to differential output designs present a  
more complicated input impedance. Most characteristic curves implement the single-ended to differential design  
as the more challenging requirement over differential-to-differential I/O.  
8.3.4 Amplifier Overload Power Limit  
In many bipolar-based amplifiers, the output stage of the amplifier can draw significant (several milliamperes) of  
quiescent current if the output voltage becomes clipped (meaning the output voltage becomes limited by the  
negative or positive supply voltage). This condition can cause the system to enter a high-power consumption  
state, and potentially cause oscillations between the power supply and signal chain. The OPA1637 has an  
advanced output stage design that eliminates this problem. When the output voltage reaches the VVS+ or VVS–  
voltage, there is virtually no additional current consumption from the nominal quiescent current. This feature  
helps eliminate any potential system problems when the signal chain is disrupted by a large external transient  
voltage.  
8.4 Device Functional Modes  
The OPA1637 has two functional modes: normal operation and power-down. The power-down state is enabled  
when the voltage on the power-down pin is lowered to less than the power-down threshold. In the power-down  
state, the quiescent current is significantly reduced, and the output voltage is high-impedance. This high  
impedance can lead to the input voltages (+IN and IN) separating, and forward-biasing the ESD protection  
diodes. See 9 for guidance on power-down operation.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: OPA1637  
 
 
OPA1637  
www.ti.com.cn  
ZHCSKM2B DECEMBER 2019 REVISED AUGUST 2020  
9 Application and Implementation  
Note  
以下应用部分的信息不属TI 组件规范TI 不担保其准确性和完整性。客户应负责确定 TI 组件是否适  
用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
Most applications for the OPA1637 strive to deliver the best dynamic range in a design that delivers the desired  
signal processing along with adequate phase margin for the amplifier. The following sections detail some of the  
design issues with analysis and guidelines for improved performance.  
9.1.1 Driving Capacitive Loads  
The capacitive load of an ADC, or some other next-stage device, is commonly required to be driven. Directly  
connecting a capacitive load to the output pins of a closed-loop amplifier such as the OPA1637 can lead to an  
unstable response. One typical remedy to this instability is to add two small series resistors (RISO) at the outputs  
of the OPA1637 before the capacitive load. Good practice is to leave a place for the RISO elements in a board  
layout (a 0-Ωvalue initially) for later adjustment, in case the response appears unacceptable.  
For applications where the OPA1637 is used as an output device to drive an unknown capacitive load, such as a  
cable, RISO is required. 9-1 shows the required RISO value for a 40-degree phase-margin response. The peak  
required RISO value occurs when CL is between 500 pF and 1 nF. As CL increases beyond 1 nF, the bandwidth  
response of the device reduces, resulting in a slower response but no major degradation in phase margin. For a  
typical cable type, such as Belden 8451, capacitive loading can vary from 340 pF (10-foot cable) to 1.7 nF (50-  
foot cable). Selecting RISO to be 100 Ωprovides sufficient phase margin regardless of the cable length. RISO can  
also be used within the loop feedback of the amplifier; however, simulation must be used to verify the stability of  
the system.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100 p  
1 n 10 n  
Load Capacitance, CL (F)  
100 n  
D069  
9-1. Required Isolation Resistance vs Capacitive Load for a 40° Phase Margin  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: OPA1637  
 
 
 
OPA1637  
www.ti.com.cn  
ZHCSKM2B DECEMBER 2019 REVISED AUGUST 2020  
9.1.2 Operating the Power-Down Feature  
The power-down feature on the OPA1637 allows the device to be put into a low power-consumption state, in  
which quiescent current is minimized. To force the device into the low-power state, drive the PD pin lower than  
the power-down threshold voltage (VVS+ 2 V). Driving the PD pin lower than the power-down threshold  
voltage forces the internal logic to disable both the differential and common-mode amplifiers. The PD pin has an  
internal pullup current that allows the pin to be used in an open-drain MOSFET configuration without an  
additional pullup resistor, as seen in 9-2. In this configuration, the logic level can be referenced to the  
MOSFET, and the voltage at the PD pin is level-shifted to account for use with high supply voltages. Be sure to  
select an N-type MOSFET with a maximum BVDSS greater than the total supply voltage. For applications that do  
not use the power-down feature, tie the PD pin to the positive supply voltage.  
VS+  
1 µA  
To  
amplifier  
core  
PD  
Enabled  
MOSFET  
THRESHOLD  
Powerdown  
OPA1637  
GND  
9-2. Power-Down ( PD) Pin Interface With Low-Voltage Logic Level Signals  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: OPA1637  
 
OPA1637  
www.ti.com.cn  
ZHCSKM2B DECEMBER 2019 REVISED AUGUST 2020  
When PD is low (device is in power down) the output pins will be in a high-impedance state. When the device is  
in the power-down state, the outputs are high impedance, and the output voltage is no longer controlled by the  
amplifier, but dependant on the input and load configuration. In this case, the input voltage between INand  
IN+ can drift to a voltage that may forward-bias the input protection diodes. Take care to avoid high currents  
flowing through the input diodes by using an input resistor to limit the current to less than 10 mA. In 9-3, the  
OPA1637 is configured in a differential gain of 5 with 100-Ω input resistors. When the device enters power  
down, the voltage between INand IN+ increases until the internal protection diode is forward-biased. In this  
case, exceeding a voltage on VIN with RIN= 0 Ω of 2.5 V (diode forward voltage estimated at 0.5 V) results in a  
current greater than 10 mA. To avoid this high current, select RIN so that the maximum current flow is less than  
10 mA when VIN is at maximum voltage.  
500  
100 ꢀ  
+10 V  
RIN  
VIN  
œ
Highœ Z  
+
VOCM  
œ
Highœ Z  
+
PD  
RIN  
œ10 V  
100 ꢀ  
500 ꢀ  
9-3. Path of Input Current Flow When PD = Low  
9.1.3 I/O Headroom Considerations  
The starting point for most designs is to assign an output common-mode voltage for the OPA1637. For ac-  
coupled signal paths, this voltage is often the default midsupply voltage to retain the most available output swing  
around the voltage centered at the VOCM voltage. For dc-coupled designs, set this voltage with consideration to  
the required minimum headroom to the supplies, as described in the specifications for the VOCM control. For  
precision ADC drivers, this VOCM output becomes the VCM input to the ADC. Often, VCM is set to VREF / 2 to  
center the differential input on the available input when precision ADCs are being driven.  
From target output VOCM, the next step is to verify that the desired output differential peak-to-peak voltage,  
VOUTPP, stays within the supplies. For any desired differential VOUTPP, make sure that the absolute maximum  
voltage at the output pins swings with 方程式 1 and 方程式 2, and confirm that these expressions are within the  
supply rails minus the output headroom required for the RRO device.  
VOUTPP  
VOUTMIN = VOCM  
œ
4
(1)  
(2)  
VOUTPP  
VOUTMAX = VOCM  
+
4
With the output headroom confirmed, the input junctions must also stay within the operating range. The input  
range limitations require a maximum 1.0-V headroom from the supply voltages (VS+ and VS) over the full  
temperature range.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: OPA1637  
 
 
 
OPA1637  
www.ti.com.cn  
ZHCSKM2B DECEMBER 2019 REVISED AUGUST 2020  
9.1.4 Noise Performance  
The first step in the output noise analysis is to reduce the application circuit to the simplest form with equal  
feedback and gain setting elements to ground. 9-4 shows the simplest analysis circuit with the FDA and  
resistor noise terms to be considered.  
2
2
enRg  
enRf  
RF  
RG  
2
In+  
+
2
eno  
œ
2
Inœ  
2
eni  
2
2
enRg  
enRf  
RG  
RF  
9-4. FDA Noise Analysis Circuit  
The noise powers are shown in 9-4 for each term. When the RF and RG (or RI) terms are matched on each  
side, the total differential output noise is the root sum squared (RSS) of these separate terms. Using NG 1 +  
RF / RG, the total output noise is given by 方程式 3. Each resistor noise term is a 4kT × R power (4kT = 1.6E-20  
J at 290 K).  
eo = e NG 2 + 2 i R 2 + 2 4kTR NG  
(
)
(
)
(
)
ni  
N
F
F
(3)  
The first term is simply the differential input spot noise times the noise gain. The second term is the input current  
noise terms times the feedback resistor (and because there are two uncorrelated current noise terms, the power  
is two times one of them). The last term is the output noise resulting from both the RF and RG resistors, at again,  
twice the value for the output noise power of each side added together. Running a wide sweep of gains when  
holding RF to 2 kΩ gives the standard values and resulting noise listed in 9-1. When the gain increases, the  
input-referred noise approaches only the gain of the FDA input voltage noise term at 3.7 nV/Hz.  
9-1. Swept Gain of the Output- and Input-Referred Spot Noise Calculations  
GAIN (V/V)  
AV  
0.1  
1
RF (Ω)  
2000  
2000  
2000  
2000  
2000  
RG1 (Ω)  
20000  
2000  
1000  
402  
EO (nV/Hz)  
EI (nV/Hz)  
0.1  
1
9.4  
93.9  
13.6  
8.9  
13.6  
2
2
17.8  
5
4.98  
10  
29.5  
5.9  
10  
200  
48.6  
4.9  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: OPA1637  
 
 
 
OPA1637  
www.ti.com.cn  
ZHCSKM2B DECEMBER 2019 REVISED AUGUST 2020  
9.2 Typical Applications  
9.2.1 Current-Output Audio DAC Buffer to Class-D Amplifier  
RF1  
1 k  
CF1  
3.3 nF  
C2  
1 µF  
RISO1  
75 ꢀ  
RI1  
49 5 V  
INPUT_A  
5 V  
œ
TPA3251  
+
OPA1637  
CDF  
PCM1795  
Audio DAC  
œ 3.5 V  
IOUTL/R+  
IOUTL/Rœ  
Class D  
10 nF  
Amplifier  
C5  
1 µF  
œ
C3  
+
PD  
1 µF  
GND  
5 V  
œ10 V  
RI2  
49 ꢀ  
œ10 V  
INPUT_B  
RISO2  
75 ꢀ  
CF2  
3.3 nF  
RF2  
1 kꢀ  
GND  
9-5. Differential Current-to-Voltage Converter  
9.2.1.1 Design Requirements  
The requirements for this application are:  
Differential current-to-voltage conversion and filtering  
1-kmho transimpedance gain  
40-kHz Butterworth response filter  
0-V dc common-mode voltage at DAC output  
9.2.1.2 Detailed Design Procedure  
This design provides current-to-voltage conversion from a current-output audio DAC into a voltage-input, class-D  
amplifier. The order of design priorities are as follows:  
Select feedback-resistor values based on the gain required from the current-output stage to the voltage-input  
stage. For this design, the full-scale, peak-to-peak output current of the PCM1795 ( IOUTL/R+ IOUTL/R) is  
±4 mA. A gain of 1k gives a wide voltage swing of ±4 V, allowing for high SNR without exceeding the input  
voltage limit of the TPA3251.  
After the gain is fixed, select the output common-mode voltage. The output common-mode voltage  
determines the input common-mode voltage in this configuration. To set the nominal output voltage of the  
PCM1795 to 0 V (which corresponds to the input common mode voltage of the OPA1637), shift the output  
negatively from the desired common-mode input voltage by the gain multiplied by the dc center current value  
of the PCM1795 (3.5 mA). In this case, 3.5 V satisfies the design goal.  
A bypass capacitor from the VOCM pin to ground must be selected to filter noise from the voltage divider.  
The capacitor selection is determined by balancing the startup time of the system with the output common-  
mode noise. A higher capacitance gives a lower frequency filter cutoff on the VOCM pin, thus giving lower  
noise performance, but also slows down the initial startup time of the circuit as a result of the RC delay from  
the resistor divider in combination with the filter capacitor.  
Select CF so that the desired bandwidth of the active filter is achieved. The 3-dB frequency is determined by  
the reciprocal of the product of RF and CF.  
Use a passive filter on the output to increase noise filtering beyond the desired bandwidth. The passive filter  
formed by RD1,2 and CDF adds an additional real pole to the filter response. If the pole is designed at the  
same frequency as the active filter pole, the overall 3-dB frequency shifts to a lower frequency value, and the  
step response is overdamped. A trade-off must be made to give optimal transient response versus increased  
filter attenuation at higher frequencies. For this design, the second pole is set to 106 kHz.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: OPA1637  
 
 
OPA1637  
www.ti.com.cn  
ZHCSKM2B DECEMBER 2019 REVISED AUGUST 2020  
9.2.1.3 Application Curves  
The simulated response of the current-to-voltage audio DAC buffer can be seen in 9-6 and 9-7.  
90  
75  
60  
45  
30  
15  
0
0
1.2  
1.05  
0.9  
0.75  
0.6  
0.45  
0.3  
0.15  
0
-0.15  
-0.3  
-0.45  
-0.6  
-0.75  
-0.9  
-1.05  
-1.2  
VOUT  
VIN  
Gain  
Phase  
-30  
-60  
-90  
-120  
-150  
-180  
-210  
-240  
-270  
-300  
-15  
-30  
-45  
-60  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
0
20  
40  
60  
80 100 120 140 160 180 200  
Time (ms)  
C105  
C105  
9-6. Gain and Phase Response for Current-to-  
9-7. Transient Response for Current-to-Voltage  
Voltage Buffer  
Buffer  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: OPA1637  
 
OPA1637  
www.ti.com.cn  
ZHCSKM2B DECEMBER 2019 REVISED AUGUST 2020  
9.2.2 An MFB Filter Driving an ADC Application  
A common application use case for fully-differential amplifiers is to easily convert a single-ended signal into a  
differential signal to drive a differential input source, such as an ADC or class-D amplifier. Figure 9-8 shows an  
example of the OPA1637 used to convert a single-ended, low-voltage signal audio source, such as a small  
electret microphone, and deliver a low-noise differential signal that is common-mode shifted to the center of the  
ADC input range. A multiple-feedback (MFB) configuration is used to provide a Butterworth filter response, giving  
a 40-dB/decade rolloff with a 3-dB frequency of 30 kHz.  
RF1  
3.65 k  
CF1  
1 nF  
RG1  
604 ꢀ  
RI1  
732 ꢀ  
CA1  
47 pF  
RO1  
20 ꢀ  
RA1  
100 ꢀ  
+5 V  
VIN  
œ
+
CA2  
1 nF  
VOCM  
FDA  
6.2 nF  
ADC  
œ
+
PD  
VS+  
œ5 V  
RO2  
20 ꢀ  
RA2  
100 ꢀ  
CA3  
47 pF  
RI2  
732 ꢀ  
RG2  
604 ꢀ  
CF2  
1 nF  
RF2  
3.65 kꢀ  
9-8. Example 30-kHz Butterworth Filter  
9.2.2.1 Design Requirements  
The requirements for this application are:  
Single-ended to differential conversion  
5-V/V gain  
Active filter set to a Butterworth, 30-kHz response shape  
Output RC elements set by SAR input requirements (not part of the filter design)  
Filter element resistors and capacitors are set to limit added noise over the OPA1637 and noise peaking  
9.2.2.2 Detailed Design Procedure  
The design proceeds using the techniques and tools suggested in the Design Methodology for MFB Filters in  
ADC Interface Applications application note. The process includes:  
Scale the resistor values to not meaningfully contribute to the output noise produced by the OPA1637.  
Select the RC ratios to hit the filter targets when reducing the noise gain peaking within the filter design.  
Set the output resistor to 100 Ωinto a 1-nF differential capacitor.  
Add 47-pF common-mode capacitors to the load capacitor to improve common noise filtering.  
Inside the loop, add 20-Ωoutput resistors after the filter feedback capacitor to increase the isolation to the  
load capacitor.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: OPA1637  
 
 
OPA1637  
www.ti.com.cn  
ZHCSKM2B DECEMBER 2019 REVISED AUGUST 2020  
9.2.2.3 Application Curves  
The gain and phase plots are shown in 9-9. The MFB filter features a Butterworth responses feature very flat  
passband gain, with a 2-pole roll-off at 30 kHz to eliminate any higher-frequency noise from contaminating the  
signal chain, and potentially alias back into the audio band.  
20  
16  
12  
8
120  
90  
60  
30  
4
0
0
-30  
-60  
-90  
-120  
-150  
-180  
-4  
-8  
-12  
-16  
-20  
Gain  
Phase  
100  
1k  
Frequency (Hz)  
10k  
100k  
C100  
9-9. Gain and Phase Plot for a 30-kHz Butterworth Filter  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: OPA1637  
 
OPA1637  
www.ti.com.cn  
ZHCSKM2B DECEMBER 2019 REVISED AUGUST 2020  
9.2.3 Differential Microphone Input to Line Level  
Professional dynamic microphones typically feature low output impedance to minimize noise coupling on the  
microphone cable. Interfacing the microphone with high-impedance circuitry typically requires the use of an  
impedance conversion stage, often done with a transformer or discrete amplifiers. The flexibility of the OPA1637  
allows the device to be configured with a low differential input impedance and 20 dB of gain, simplifying the  
impedance conversion and gain stage into a single device. 9-10 shows an example of a differential, low input  
impedance, microphone level voltage (10 mV to 100 mV) amplifier to a line-level amplitude signal that also has  
adjustable dc common-mode shift capability. This design example shows how the OPA1637 makes a great  
choice for driving an ADC class-D amplifier.  
RF1  
750  
Dynamic  
Microphone  
CF1  
4.7 nF  
RG1  
75 ꢀ  
RISO1  
100 ꢀ  
+15  
XLR  
Cable  
œ
To ADC/  
Class D Amplifier/  
XLR output  
+
VIN  
VOCM  
FDA  
œ
+
PD  
+15  
-15  
CF2  
RISO2  
100 ꢀ  
RG2  
75 ꢀ  
4.7 nF  
RF2  
750 ꢀ  
9-10. Fully Differential, Low-Noise, 20-dB Microphone Gain Block With DC Shift  
9.2.3.1 Application Curves  
2.5  
2
VOUT-  
VOUT+  
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
-2  
-2.5  
0
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8  
Time (ms)  
2
D075  
VOCM = 0 V  
9-11. Output Waveform of the Microphone Amplifier  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: OPA1637  
 
OPA1637  
www.ti.com.cn  
ZHCSKM2B DECEMBER 2019 REVISED AUGUST 2020  
10 Power Supply Recommendations  
The OPA1637 operates from supply voltages of 3.0 V to 36 V (±1.5 V to ±18 V, dual supply). Connect ceramic  
bypass capacitors from both VS+ and VSto GND.  
11 Layout  
11.1 Layout Guidelines  
11.1.1 Board Layout Recommendations  
Keep differential signals routed together to minimize parasitic impedance mismatch.  
Connect a 0.1-µF capacitor to the supply nodes through a via.  
Connect a 0.1-µF capacitor to the VOCM pin if no external voltage is used.  
Keep any high-frequency nodes that can couple through parasitic paths away from the VOCM node.  
Clean the PCB board after assembly to minimize any leakage paths from excess flux into the VOCM node.  
11.2 Layout Example  
Connect IN+/INœ through  
input resistors on the top  
VIN  
layer. Maintain symmetry  
between traces and  
routing to minimize  
common mode coupling.  
RIN  
RIN  
Route the VOCM pin  
connection through a via.  
Connect a 0.1 µF  
capacitor to VOCM if no  
external voltage is used  
to set the output common  
mode voltage.  
INœ  
IN+  
PD  
Connect the powerdown  
RF  
RF  
pin through a via. If  
powerdown is not  
needed, leave floating.  
VOCM  
VS+  
CCM  
CBYPASS  
VSœ  
OUT+ OUTœ  
CBYPASS  
Connect bypass  
capacitors through a via.  
VOUT  
11-1. Example Layout  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: OPA1637  
 
 
 
 
OPA1637  
www.ti.com.cn  
ZHCSKM2B DECEMBER 2019 REVISED AUGUST 2020  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 Development Support  
OPA1637 TINA-TI™ model  
TINA-TI Gain of 0.2 100kHz Butterworth MFB Filter  
TINA-TI 100kHz MFB filter LG test  
TINA-TI Differential Transimpedance LG Sim  
12.2 Documentation Support  
12.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, OPAx192 36-V, Precision, Rail-to-Rail Input/Output, Low Offset Voltage, Low Input Bias  
Current Op Amp with e-trim™ data sheet  
Texas Instruments, OPA161x SoundPlus™ High-Performance, Bipolar-Input Audio Operational Amplifiers  
data sheet  
Texas Instruments, Design Methodology for MFB Filters in ADC Interface Applications application report  
Texas Instruments, Design for Wideband Differential Transimpedance DAC Output application report  
Texas Instruments, PCM1795 32-Bit, 192-kHz Sampling, Advanced Segment, Stereo Audio Digital-to-Analog  
Converter data sheet  
Texas Instruments, TPA3251 175-W Stereo, 350-W Mono PurePath™ Ultra-HD Analog Input Class-D  
Amplifier data sheet  
12.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.4 支持资源  
TI E2E中文支持论坛是工程师的重要参考资料可直接从专家处获得快速、经过验证的解答和设计帮助。搜索  
现有解答或提出自己的问题获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 使用条款。  
12.5 Trademarks  
Burr-Brownand TI E2Eare trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
12.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: OPA1637  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Aug-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA1637DGKR  
OPA1637DGKT  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
DGK  
DGK  
8
8
2500 RoHS & Green  
250 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
1637  
1637  
NIPDAUAG  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Aug-2021  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
25-Aug-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA1637DGKR  
OPA1637DGKT  
VSSOP  
VSSOP  
DGK  
DGK  
8
8
2500  
250  
330.0  
330.0  
12.4  
12.4  
5.3  
5.3  
3.4  
3.4  
1.4  
1.4  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
25-Aug-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA1637DGKR  
OPA1637DGKT  
VSSOP  
VSSOP  
DGK  
DGK  
8
8
2500  
250  
366.0  
366.0  
364.0  
364.0  
50.0  
50.0  
Pack Materials-Page 2  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

OPA1637DGKT

高保真、高电压 (36V)、低噪声 (3.7nV/rtHz) Burr-Brown™ 音频全差分放大器 | DGK | 8 | -40 to 125
TI

OPA1641

High-Performance, JFET-Input AUDIO OPERATIONAL AMPLIFIERS
TI

OPA1641-Q1

单通道汽车类 Sound-Plus 高性能、JFET 输入音频运算放大器
TI

OPA1641AID

High-Perforamnce,JFET-Input AUDIO OPERATIONAL AMPLIFIERS
TI

OPA1641AIDGKR

High-Perforamnce,JFET-Input AUDIO OPERATIONAL AMPLIFIERS
TI

OPA1641AIDGKT

High-Perforamnce,JFET-Input AUDIO OPERATIONAL AMPLIFIERS
TI

OPA1641AIDR

High-Perforamnce,JFET-Input AUDIO OPERATIONAL AMPLIFIERS
TI

OPA1641AQDGKRQ1

单通道汽车类 Sound-Plus 高性能、JFET 输入音频运算放大器 | DGK | 8 | -40 to 125
TI

OPA1641_1004

High-Performance, JFET-Input AUDIO OPERATIONAL AMPLIFIERS
TI

OPA1641_101

High-Perforamnce,JFET-Input AUDIO OPERATIONAL AMPLIFIERS
TI

OPA1642

High-Performance, JFET-Input AUDIO OPERATIONAL AMPLIFIERS
TI

OPA1642-Q1

汽车类双路 SoundPlus™ 高性能、JFET 输入音频运算放大器
TI