OMAP3503ECUS72 [TI]

Sitara 处理器:Arm Cortex-A8、LPDDR | CUS | 423 | 0 to 90;
OMAP3503ECUS72
型号: OMAP3503ECUS72
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Sitara 处理器:Arm Cortex-A8、LPDDR | CUS | 423 | 0 to 90

时钟 双倍数据速率 控制器 微控制器 微控制器和处理器 光电二极管 外围集成电路 数字信号处理器
文件: 总227页 (文件大小:2954K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
1 OMAP3515/03 Applications Processor  
1.1 Features  
External Memory Interfaces:  
OMAP3515/03 Applications Processor:  
SDRAM Controller (SDRC)  
OMAP™ 3 Architecture  
MPU Subsystem  
16, 32-bit Memory Controller With  
2G-Byte Total Address Space  
Interfaces to Low-Power Double Data  
Rate (LPDDR) SDRAM  
SDRAM Memory Scheduler (SMS) and  
Rotation Engine  
600-MHz ARM Cortex™-A8 Core  
NEON™ SIMD Coprocessor  
2D/3D Graphics Accelerator (OMAP3515  
Device Only)  
Tile Based Architecture Delivering 10  
MPoly/sec  
General Purpose Memory Controller  
(GPMC)  
Universal Scalable Shader Engine:  
Multi-threaded Engine Incorporating  
Pixel and Vertex Shader Functionality  
16-bit Wide Multiplexed Address/Data  
Bus  
Up to 8 Chip Select Pins With 129M-Byte  
Address Space per Chip Select Pin  
Glueless Interface to NOR Flash, NAND  
Flash (With ECC Hamming Code  
Industry Standard API Support:  
OpenGLES 1.1 and 2.0, OpenVG1.0 and  
Direct3D Mobile  
Fine Grained Task Switching, Load  
Balancing, and Power Management  
Programmable High Quality Image  
Anti-Aliasing  
Calculation), SRAM and Pseudo-SRAM  
Flexible Asynchronous Protocol Control  
for Interface to Custom Logic (FPGA,  
CPLD, ASICs, etc.)  
Nonmultiplexed Address/Data Mode  
(Limited 2K-Byte Address Space)  
Fully Software-Compatible With ARM9™  
ARM Cortex™-A8 Core  
ARMv7 Architecture  
System Direct Memory Access (sDMA)  
Controller (32 Logical Channels With  
Configurable Priority)  
Trust Zone®  
Thumb®-2  
MMU Enhancements  
Camera Image Signal Processing (ISP)  
In-Order, Dual-Issue, Superscalar  
Microprocessor Core  
NEON™ Multimedia Architecture  
Over 2x Performance of ARMv6 SIMD  
Supports Both Integer and Floating Point  
SIMD  
Jazelle® RCT Execution Environment  
Architecture  
Dynamic Branch Prediction with Branch  
Target Address Cache, Global History  
Buffer, and 8-Entry Return Stack  
CCD and CMOS Imager Interface  
Memory Data Input  
RAW Data Interface  
BT.601/BT.656 Digital YCbCr 4:2:2  
(8-/16-Bit) Interface  
A-Law Compression and Decompression  
Preview Engine for Real-Time Image  
Processing  
Glueless Interface to Common Video  
Decoders  
Histogram Module/Auto-Exposure,  
Auto-White Balance, and Auto-Focus  
Engine  
Embedded Trace Macrocell (ETM) Support  
for Non-Invasive Debug  
ARM Cortex™-A8 Memory Architecture:  
Resize Engine  
16K-Byte Instruction Cache (4-Way  
Set-Associative)  
16K-Byte Data Cache (4-Way  
Set-Associative)  
Resize Images From 1/4x to 4x  
Separate Horizontal/Vertical Control  
Display Subsystem  
Parallel Digital Output  
256K-Byte L2 Cache  
Up to 24-Bit RGB  
HD Maximum Resolution  
Endianess: ARM Big Endian  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this document.  
is a trademark of ~ Texas Instruments.  
All other trademarks are the property of their respective owners.  
PRODUCT PREVIEW information concerns products in the  
formative or design phase of development. Characteristic data and  
other specifications are design goals. Texas Instruments reserves  
the right to change or discontinue these products without notice.  
Copyright © 2008, Texas Instruments Incorporated  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Supports Up to 2 LCD Panels  
Support for Remote Frame Buffer  
Interface (RFBI) LCD Panels  
Association [IrDA] and Consumer Infrared  
[CIR] Modes)  
Three Master/Slave High-Speed  
Inter-Integrated Circuit (I2C) Controllers  
2 10-Bit Digital-to-Analog Converters  
(DACs) Supporting:  
Removable Media Interfaces:  
Composite NTSC/PAL Video  
Luma/Chroma Separate Video (S-Video)  
Three Multimedia Card (MMC)/ Secure  
Digital (SD) With Secure Data I/O (SDIO)  
Rotation 90-, 180-, and 270-degrees  
Resize Images From 1/4x to 8x  
Color Space Converter  
Comprehensive Power, Reset, and Clock  
Management  
SmartReflex™ Technology  
Dynamic Voltage and Frequency Scaling  
(DVFS)  
8-bit Alpha Blending  
Serial Communication  
Test Interfaces  
5 Multichannel Buffered Serial Ports  
(McBSPs)  
IEEE-1149.1 (JTAG) Boundary-Scan  
Compatible  
512 Byte Transmit/Receive Buffer  
(McBSP1/3/4/5)  
5K-Byte Transmit/Receive Buffer  
(McBSP2)  
SIDETONE Core Support (McBSP2 and 3  
Only) For Filter, Gain, and Mix  
Operations  
Embedded Trace Macro Interface (ETM)  
Serial Data Transport Interface (SDTI)  
12 32-bit General Purpose Timers  
2 32-bit Watchdog Timers  
1 32-bit 32-kHz Sync Timer  
Up to 188 General-Purpose I/O (GPIO) Pins  
(Multiplexed With Other Device Functions)  
Direct Interface to I2S and PCM Device  
and TDM Buses  
128 Channel Transmit/Receive Mode  
65-nm CMOS Technology  
Four Master/Slave Multichannel Serial Port  
Interface (McSPI) Ports  
High-Speed/Full-Speed/Low-Speed USB  
OTG Controller (12-/8-Pin ULPI Interface)  
High-Speed/Full-Speed/Low-Speed  
Multiport USB Host Controller  
Package-On-Package (POP) Implementation  
for Memory Stacking (CBB Package Only)  
Packages:  
515-pin PBGA Package (CBB Suffix), .5mm  
Ball Pitch (Top), .4mm Ball Pitch (Bottom)  
423-pin PBGA Package (CUS Suffix), .65mm  
Ball Pitch  
12-/8-Pin ULPI Interface or 6-/4-/3-Pin  
Serial Interface  
3.3-V and 1.8-V I/O, 0.8-V to 1.8-V Adaptive  
Core Voltage  
Supports Transceiverless Link Logic  
(TLL)  
Applications:  
One HDQ/1-Wire Interface  
Three UARTs (One with Infrared Data  
TBD  
2
OMAP3515/03 Applications Processor  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
1.2 Description  
OMAP3515 and OMAP3503 high-performance, applications processors are based on the enhanced  
OMAP™ 3 architecture.  
The OMAP™ 3 architecture is designed to provide best-in-class video, image, and graphics processing  
sufficient to support the following:  
Streaming video  
2D/3D mobile gaming  
Video conferencing  
High-resolution still image  
Video capture in 2.5G wireless terminals, 3G wireless terminals, and rich multimedia-featured  
handsets, and high-performance personal digital assistants (PDAs).  
The device supports high-level operating systems (OSs), such as:  
Windows CE  
Symbian OS  
Linux  
Palm OS  
This OMAP device includes state-of-the-art power-management techniques required for high-performance  
mobile products.  
The following subsystems are part of the device:  
Microprocessor unit (MPU) subsystem based on the ARM Cortex™-A8 microprocessor  
SGX530 subsystem for 2D and 3D graphics acceleration to support display and gaming effects  
(3515only)  
Camera image signal processor (ISP) that supports multiple formats and interfacing options connected  
to a wide variety of image sensors  
Display subsystem with a wide variety of features for multiple concurrent image manipulation, and a  
programmable interface supporting a wide variety of displays. The display subsystem also supports  
NTSC/PAL video out.  
Level 3 (L3) and level 4 (L4) interconnects that provide high-bandwidth data transfers for multiple  
initiators to the internal and external memory controllers and to on-chip peripherals  
The device also offers:  
A comprehensive power and clock-management scheme that enables high-performance, low-power  
operation, and ultralow-power standby features. The device also supports SmartReflex™ adaptative  
voltage control. This power management technique for automatic control of the operating voltage of a  
module reduces the active power consumption.  
Memory stacking feature using the package-on-package (POP) implementation (CBB package only)  
OMAP3515/03 devices are available in a 515-pin PBGA package (CBB suffix) and a 423-pin PBGA  
package (CUS suffix). Some features of the CBB package are not available in the CUS package.  
Table 1-1 lists the differences between the CBB and CUS packages.  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
3
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 1-1. Differences Between CBB and CUS Packages  
Feature  
Pin Assignments  
CBB Package  
CUS Package  
Pin assignments are different from the CUS  
package. For CUS package pin assignments, see  
Table 2-2, Ball Characteristics (CUS Package).  
For CBB package pin assignments, see Table 2-1,  
Ball Characteristics (CBB Package).  
Package-On-Package (POP)  
Interface  
POP interface supported.  
Eight chip select pins available.  
Four wait pins available.  
POP interface not available.  
Chip select pins gpmc_ncs1 and gpmc_ncs2 are  
not available.  
GPMC  
Wait pins gpmc_wait1 and gpmc_wait2 are not  
available.  
The following signals are available on two pins  
(double muxed): uart2_cts (AF6/AB26), uart2_rts  
(AE6/AB25), uart2_tx (AF5/AA25), and uart2_rx  
(AE5/AD25).  
The following signals are available on one pin  
only: uart2_cts (V6), uart2_rts (V5), uart2_tx  
(W4), and uart2_rx (V4).  
UART2  
The following signals are available on three pins  
(triple muxed): mcbsp3_dx (AF6/AB26/V21),  
mcbsp3_dr (AE6/AB25/U21), mcbsp3_clkx  
The following signals are available on two pins  
only (double muxed): mcbsp3_dx (V6/W18),  
mcbsp3_dr (V5/Y18), mcbsp3_clkx (W4/V18),  
McBSP3  
GP Timer  
McBSP4  
(AF5/AA25/W21), and mcbsp3_fsx (AE5/AD25/K26). and mcbsp3_fsx (V4/AA19).  
The following signals are available on three pins  
(triple muxed): gpt8_pwm_evt (N8/AD25/V3),  
gpt9_pwm_evt (T8/AB26/Y2), gpt10_pwm_evt  
(R8/AB25/Y3), and gpt11_pwm_evt (P8/AA25/Y4).  
The following signals are available on two pins  
only (double muxed): gpt8_pwm_evt (G4/M4),  
gpt9_pwm_evt (F4/N4), gpt10_pwm_evt (G5/N3),  
and gpt11_pwm_evt (F3/M5).  
The following signals are available on two pins  
(double muxed): mcbsp4_clkx (T8/AE1), mcbsp4_dr  
(R8/AD1), mcbsp4_dx (P8/AD2), and mcbsp4_fsx  
(N8/AC1).  
The following signals are available on one pin  
only: mcbsp4_clkx (F4), mcbsp4_dr (G5),  
mcbsp4_dx (F3), and mcbsp4_fsx (G4).  
HSUSB3_TLL  
MM_FSUSB3  
Supported.  
Supported.  
Not Supported.  
Not Supported.  
Chip select pins mcspi1_cs1 and mcspi1_cs2 are  
not available.  
McSPI1  
Four chip select pins are available.  
The following signals are available on two pins  
(double muxed): mmc3_cmd (AC3/AE10) and  
mmc3_clk (AB1/AF10).  
The following signals are available on one pin  
only: mmc3_cmd (AD3) and mmc3_clk (AC1).  
MMC3  
A maximum of 170 GPIO pins are supported.  
The following GPIO pins are not available:  
gpio_112, gpio_113, gpio_114, gpio_115,  
gpio_52, gpio_53, gpio_63, gpio_64, gpio_144,  
gpio_145, gpio_146, gpio_147, gpio_152,  
gpio_153, gpio_154, gpio_155, gpio_175, and  
gpio_176.  
GPIO  
PLL  
A maximum of 188 GPIO pins are supported.  
The adpllv2d_dithering_en2 pin is supported.  
Pin muxing restricts the total number of GPIO  
pins available at one time. For more details, see  
Table 2-4, Multiplexing Characteristics (CUS  
Pkg.).  
The adpllv2d_dithering_en2 pin is not supported.  
This OMAP3515/03 Applications Processor data manual presents the electrical and mechanical  
specifications for the OMAP3515/03 Applications Processor. It consists of the following sections:  
A description of the OMAP3515/03 terminals: assignment, electrical characteristics, multiplexing, and  
functional description (Section 2)  
A presentation of the electrical characteristics requirements: power domains, operating conditions,  
power consumption, and dc characteristics (Section 3)  
The clock specifications: input and output clocks, DPLL and DLL (Section 4)  
The video DAC specification (Section 5)  
The timing requirements and switching characteristics (ac timings) of the interfaces (Section 6)  
A description of thermal characteristics, device nomenclature, and mechanical data about the available  
packaging (Section 7)  
4
OMAP3515/03 Applications Processor  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
1.3 Functional Block Diagram  
Figure 1-1 shows the functional block diagram of the OMAP3515/03 Applications Processor.  
Dual-  
Camera  
(serial and  
Parallel)  
OMAP Applications Processor  
CVBS  
or  
S-Video  
LCD Panel  
MPU  
Subsystem  
Amp  
TV  
ARM Cortex-  
Serial Parallel  
Camera  
ISP  
Image  
Capture  
Hardware  
Image  
Pipeline  
and  
Preview  
A8TM Core  
TrustZone  
16K/16K L1$  
HS USB  
Host  
(with  
USB  
TTL)  
HS  
Dual Output 3-Layer  
Display Processor  
(1xGraphics, 2xVideo)  
Temporal Dithering  
SDTV®QCIF Support  
2D/3D  
Graphics  
Accelerator  
(3515 Only)  
32  
Channel  
System  
DMA  
USB  
OTG  
L2$  
256K  
64  
Async  
64  
64  
64  
32  
32  
32 32  
32  
64  
32  
L3 Interconnect Network-Hierarchial, Performance, and Power Driven  
32 64 32 32  
SMS:  
32  
64K  
32  
L4 Interconnect  
112K  
SDRAM  
Memory  
Scheduler/  
Rotation  
On-Chip  
RAM  
2KB  
Public/  
62KB  
Secure  
On-Chip  
ROM  
80KB  
Secure/  
32KB  
BOOT  
GPMC:  
General  
Purpose  
Memory  
Controller  
NAND/  
System  
Controls  
PRCM  
Peripherals:  
3xUART, 3xHigh-Speed I2C,  
5xMcBSP  
(2x with Sidetone/Audio Buffer)  
4xMcSPI, 6xGPIO,  
3xHigh-Speed MMC/SDIO,  
HDQ/1 Wire,  
2xSmartReflexTM  
Control  
Module  
NOR  
Flash,  
SRAM  
SDRC:  
SDRAM  
Memory  
Controller  
2xMailboxes  
12xGPTimers, 2xWDT,  
32K Sync Timer  
External  
Peripherals  
Interfaces  
Emulation  
Debug: SDTI, ETM, JTAG,  
External and  
Stacked Memories  
CoresightTM DAP  
Figure 1-1. OMAP3515/03 Functional Block Diagram  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
5
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Contents  
1
2
OMAP3515/03 Applications Processor.............. 1  
5
VIDEO DAC SPECIFICATIONS ..................... 122  
1.1 Features .............................................. 1  
1.2 Description............................................ 3  
1.3 Functional Block Diagram ............................ 5  
TERMINAL DESCRIPTION.............................. 7  
2.1 Terminal Assignment ................................. 7  
2.2 Ball Characteristics.................................. 10  
2.3 Multiplexing Characteristics ......................... 57  
2.4 Signal Description ................................... 72  
ELECTRICAL CHARACTERISTICS.................. 96  
3.1 Power Domains ..................................... 96  
3.2 Absolute Maximum Ratings ......................... 98  
3.3 Recommended Operating Conditions ............. 100  
3.4 DC Electrical Characteristics....................... 101  
3.5 Core Voltage Decoupling .......................... 103  
3.6 Power-up and Power-down ........................ 105  
CLOCK SPECIFICATIONS........................... 108  
4.1 Input Clock Specifications ......................... 109  
4.2 Output Clock Specifications........................ 114  
4.3 DPLL and DLL Specifications...................... 116  
5.1 Interface Description ............................... 122  
5.2  
Electrical Specifications Over Recommended  
Operating Conditions .............................. 124  
5.3  
Analog Supply (vdda_dac) Noise Requirements .. 126  
5.4 External Component Value Choice ................ 127  
TIMING REQUIREMENTS AND SWITCHING  
6
CHARACTERISTICS.................................. 128  
6.1 Timing Test Conditions ............................ 128  
6.2 Interface Clock Specifications ..................... 128  
6.3 Timing Parameters................................. 129  
6.4 External Memory Interfaces........................ 130  
6.5 Video Interfaces.................................... 152  
6.6 Serial Communications Interfaces ................. 169  
6.7 Removable Media Interfaces ...................... 201  
6.8 Test Interfaces ..................................... 216  
PACKAGE CHARACTERISTICS.................... 222  
7.1 Package Thermal Resistance...................... 222  
7.2 Device Support..................................... 222  
3
4
7
6
Contents  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
2 TERMINAL DESCRIPTION  
2.1 Terminal Assignment  
Figure 2-1, Figure 2-2, and Figure 2-3 show the ball locations for the 515- and 423- ball plastic ball grid  
array (PBGA) packages. Table 2-1 through Table 2-24 indicate the signal names and ball grid numbers for  
both packages.  
Note: There are no balls present on the top of the 423-ball PBGA package.  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1
3
5
7
9
11  
13  
17  
19  
21  
23  
25  
27  
15  
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
030-001  
Figure 2-1. OMAP3515/03 Applications Processor CBB S-PBGA-N515 Package (Bottom View)  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
7
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
AC  
AB  
AA  
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1
5
7
9
11  
13  
15  
17  
19  
21  
23  
3
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
030-002  
Balls A1, A2, A22, A23, AB1, AB2, AB22, AB23, AC1, AC2, AC22, AC23, B1, B2, B22, and B23 are unused.  
Figure 2-2. OMAP3515/03 Applications Processor CBB S-PBGA-N515 Package (Top View)  
8
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
AD  
AC  
AB  
AA  
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
Figure 2-3. OMAP3515/03 Applications Processor CUS-PBGA-N423 Package (Bottom View)  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
9
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
2.2 Ball Characteristics  
Table 2-1 and Table 2-2 describe the terminal characteristics and the signals multiplexed on each pin for  
the CBB and CUS package, respectively. The following list describes the table column headers:  
1. BALL BOTTOM: Ball number(s) on the bottom side associated with each signal(s) on the bottom.  
2. BALL TOP: Ball number(s) on the top side associated with each signal(s) on the top.  
3. PIN NAME: Names of signals multiplexed on each ball (also notice that the name of the pin is the  
signal name in mode 0).  
Note: Table 2-1 and Table 2-2 do not take into account subsystem pin multiplexing options.  
Subsystem pin multiplexing options are described in Section 2.4, Signal Descriptions.  
4. MODE: Multiplexing mode number.  
a. Mode 0 is the primary mode; this means that when mode 0 is set, the function mapped on the pin  
corresponds to the name of the pin. There is always a function mapped on the primary mode.  
Notice that primary mode is not necessarily the default mode.  
Note: The default mode is the mode which is automatically configured on release of the internal  
GLOBAL_PWRON reset; also see the RESET REL. MODE column.  
b. Modes 1 to 7 are possible modes for alternate functions. On each pin, some modes are effectively  
used for alternate functions, while some modes are not used and do not correspond to a functional  
configuration.  
5. TYPE: Signal direction  
I = Input  
O = Output  
I/O = Input/Output  
D = Open drain  
DS = Differential  
A = Analog  
Note: In the safe_mode, the buffer is configured in high-impedance.  
6. BALL RESET STATE: The state of the terminal at reset (power up).  
0: The buffer drives VOL (pulldown/pullup resistor not activated)  
0(PD): The buffer drives VOL with an active pulldown resistor.  
1: The buffer drives VOH (pulldown/pullup resistor not activated)  
1(PU): The buffer drives VOH with an active pullup resistor.  
Z: High-impedance  
L: High-impedance with an active pulldown resistor  
H : High-impedance with an active pullup resistor  
7. BALL RESET REL. STATE: The state of the terminal at reset release.  
0: The buffer drives VOL (pulldown/pullup resistor not activated)  
0(PD): The buffer drives VOL with an active pulldown resistor.  
1: The buffer drives VOH (pulldown/pullup resistor not activated)  
1(PU): The buffer drives VOH with an active pullup resistor.  
Z: High-impedance  
L: High-impedance with an active pulldown resistor  
H : High-impedance with an active pullup resistor  
8. RESET REL. MODE: This mode is automatically configured on release of the internal  
GLOBAL_PWRON reset.  
9. POWER: The voltage supply that powers the terminal’s I/O buffers.  
10. HYS: Indicates if the input buffer is with hysteresis.  
11. BUFFER STRENGTH: Drive strength of the associated output buffer.  
12. PULL U/D - TYPE: Denotes the presence of an internal pullup or pulldown resistor. Pullup and  
pulldown resistors can be enabled or disabled via software.  
10  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Note: The pullup/pulldown drive strength is equal to 100 µA except for CBB balls P27, P26, R27, and  
R25 and CUB balls N22, N21, N20, and P24, which the pulldown drive strength is equal to 1.8 k.  
13. IO CELL: IO cell information.  
Note: Configuring two pins to the same input signal is not supported as it can yield unexpected results.  
This can be easily prevented with the proper software configuration.  
Table 2-1. Ball Characteristics (CBB Pkg.)(1)  
BALL  
BALL  
PIN  
MODE TYPE BALL  
BALL RESET POWER [9] HYS  
BUFFER  
PULL  
IO  
BOTTOM TOP  
NAME [3]  
[4]  
[5]  
RESET RESET  
REL.  
MODE  
[8]  
[10] STRENGTH  
(mA) [11]  
U/D CELL [13]  
TYPE  
[12]  
[1]  
[2]  
STATE  
[6]  
REL.  
STATE  
[7]  
D6  
C6  
J2  
J1  
sdrc_d0  
sdrc_d1  
sdrc_d2  
sdrc_d3  
sdrc_d4  
sdrc_d5  
sdrc_d6  
sdrc_d7  
sdrc_d8  
sdrc_d9  
sdrc_d10  
sdrc_d11  
sdrc_d12  
sdrc_d13  
sdrc_d14  
sdrc_d15  
sdrc_d16  
sdrc_d17  
sdrc_d18  
sdrc_d19  
sdrc_d20  
sdrc_d21  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
VDDS_ MEM Yes  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
PU/  
PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
VDDS_ MEM Yes  
VDDS_ MEM Yes  
VDDS_ MEM Yes  
VDDS_ MEM Yes  
VDDS_ MEM Yes  
VDDS_ MEM Yes  
VDDS_ MEM Yes  
VDDS_ MEM Yes  
VDDS_ MEM Yes  
VDDS_ MEM Yes  
VDDS_ MEM Yes  
VDDS_ MEM Yes  
VDDS_ MEM Yes  
VDDS_ MEM Yes  
VDDS_ MEM Yes  
VDDS_ MEM Yes  
VDDS_ MEM Yes  
VDDS_ MEM Yes  
VDDS_ MEM Yes  
VDDS_ MEM Yes  
VDDS_ MEM Yes  
PU/  
PD  
B6  
G2  
G1  
F2  
PU/  
PD  
C8  
PU/  
PD  
C9  
PU/  
PD  
A7  
F1  
PU/  
PD  
B9  
D2  
PU/  
PD  
A9  
D1  
PU/  
PD  
C14  
B14  
C15  
B16  
D17  
C17  
B17  
D18  
D11  
B10  
C11  
D12  
C12  
A11  
B13  
A13  
B14  
A14  
B16  
A16  
B19  
A19  
B3  
PU/  
PD  
PU/  
PD  
PU/  
PD  
PU/  
PD  
PU/  
PD  
PU/  
PD  
PU/  
PD  
PU/  
PD  
PU/  
PD  
A3  
PU/  
PD  
B5  
PU/  
PD  
A5  
PU/  
PD  
B8  
PU/  
PD  
A8  
PU/  
PD  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
11  
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-1. Ball Characteristics (CBB Pkg.)(1) (continued)  
BALL  
BOTTOM TOP  
BALL  
PIN  
NAME [3]  
MODE TYPE BALL  
BALL RESET POWER [9] HYS  
BUFFER  
PULL  
IO  
U/D CELL [13]  
TYPE  
[4]  
[5]  
RESET RESET  
REL.  
MODE  
[8]  
[10] STRENGTH  
(mA) [11]  
[1]  
[2]  
STATE  
[6]  
REL.  
STATE  
[7]  
[12]  
B13  
D14  
C18  
A19  
B19  
B20  
D20  
A21  
B21  
C21  
B9  
sdrc_d22  
sdrc_d23  
sdrc_d24  
sdrc_d25  
sdrc_d26  
sdrc_d27  
sdrc_d28  
sdrc_d29  
sdrc_d30  
sdrc_d31  
0
0
0
0
0
0
0
0
0
0
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
L
L
L
L
L
L
L
L
L
L
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
0
0
0
0
0
0
0
0
0
0
VDDS_ MEM Yes  
4
4
4
4
4
4
4
4
4
4
PU/  
PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
A9  
VDDS_ MEM Yes  
VDDS_ MEM Yes  
VDDS_ MEM Yes  
VDDS_ MEM Yes  
VDDS_ MEM Yes  
VDDS_ MEM Yes  
VDDS_ MEM Yes  
VDDS_ MEM Yes  
VDDS_ MEM Yes  
PU/  
PD  
B21  
A21  
D22  
D23  
E22  
E23  
G22  
G23  
PU/  
PD  
PU/  
PD  
PU/  
PD  
PU/  
PD  
PU/  
PD  
PU/  
PD  
PU/  
PD  
PU/  
PD  
H9  
H10  
A4  
AB21  
AC21  
N22  
N23  
P22  
P23  
R22  
R23  
T22  
sdrc_ba0  
sdrc_ba1  
sdrc_a0  
sdrc_a1  
sdrc_a2  
sdrc_a3  
sdrc_a4  
sdrc_a5  
sdrc_a6  
sdrc_a7  
sdrc_a8  
sdrc_a9  
sdrc_a10  
sdrc_a11  
sdrc_a12  
sdrc_a13  
sdrc_a14  
sdrc_ncs0  
sdrc_ncs1  
sdrc_clk  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
IO  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
L
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
VDDS_ MEM No  
VDDS_ MEM No  
VDDS_ MEM No  
VDDS_ MEM No  
VDDS_ MEM No  
VDDS_ MEM No  
VDDS_ MEM No  
VDDS_ MEM No  
VDDS_ MEM No  
VDDS_ MEM No  
VDDS_ MEM No  
VDDS_ MEM No  
VDDS_ MEM No  
VDDS_ MEM No  
VDDS_ MEM No  
VDDS_ MEM No  
VDDS_ MEM No  
VDDS_ MEM No  
VDDS_ MEM No  
VDDS_ MEM Yes  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
B4  
B3  
C5  
C4  
D5  
C3  
C2  
C1  
D4  
D3  
D2  
D1  
E2  
T23  
U22  
U23  
V22  
V23  
W22  
W23  
Y22  
M22  
M23  
A11  
E1  
H11  
H12  
A13  
PU/  
PD  
A14  
H16  
B11  
J22  
sdrc_nclk  
sdrc_cke0  
safe_mode  
sdrc_cke1  
safe_mode  
sdrc_nras  
sdrc_ncas  
0
0
7
0
7
0
0
O
O
1
1
1
0
7
VDDS_ MEM No  
VDDS_ MEM Yes  
4
4
NA  
LVCMOS  
LVCMOS  
H
PU/  
PD  
H17  
J23  
O
H
1
7
VDDS_ MEM Yes  
4
PU/  
PD  
LVCMOS  
H14  
H13  
L23  
L22  
O
O
1
1
1
1
0
0
VDDS_ MEM No  
VDDS_ MEM No  
4
4
NA  
NA  
LVCMOS  
LVCMOS  
12  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-1. Ball Characteristics (CBB Pkg.)(1) (continued)  
BALL  
BALL  
PIN  
MODE TYPE BALL  
BALL RESET POWER [9] HYS  
BUFFER  
PULL  
IO  
BOTTOM TOP  
NAME [3]  
[4]  
[5]  
RESET RESET  
REL.  
MODE  
[8]  
[10] STRENGTH  
(mA) [11]  
U/D CELL [13]  
TYPE  
[12]  
[1]  
[2]  
STATE  
[6]  
REL.  
STATE  
[7]  
H15  
B7  
K23  
C1  
sdrc_nwe  
sdrc_dm0  
sdrc_dm1  
sdrc_dm2  
sdrc_dm3  
sdrc_dqs0  
0
0
0
0
0
0
O
O
O
O
O
IO  
1
0
0
0
0
L
1
0
0
0
0
Z
0
0
0
0
0
0
VDDS_ MEM No  
4
4
4
4
4
4
NA  
NA  
NA  
NA  
NA  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
VDDS_ MEM No  
VDDS_ MEM No  
VDDS_ MEM No  
VDDS_ MEM No  
VDDS_ MEM Yes  
A16  
B11  
C20  
A6  
A17  
A6  
A20  
C2  
PU/  
PD  
A17  
A10  
A20  
N4  
B17  
B6  
sdrc_dqs1  
sdrc_dqs2  
sdrc_dqs3  
0
0
0
IO  
IO  
IO  
L
L
L
L
Z
Z
Z
L
0
0
0
7
VDDS_ MEM Yes  
VDDS_ MEM Yes  
VDDS_ MEM Yes  
VDDS_ MEM Yes  
4
4
4
4
PU/  
PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
PU/  
PD  
B20  
AC15  
PU/  
PD  
gpmc_a1  
gpio_34  
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
1
O
PU/  
PD  
IO  
safe_mode  
gpmc_a2  
gpio_35  
M4  
L4  
AB15  
AC16  
AB16  
AC17  
AB17  
AC18  
AB18  
AC19  
O
L
L
L
L
7
7
7
7
7
7
7
7
VDDS_ MEM Yes  
VDDS_ MEM Yes  
VDDS_ MEM Yes  
VDDS_ MEM Yes  
VDDS_ MEM Yes  
VDDS_ MEM Yes  
VDDS_ MEM Yes  
VDDS_ MEM Yes  
4
4
4
4
4
4
4
4
PU/  
PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
IO  
safe_mode  
gpmc_a3  
gpio_36  
O
PU/  
PD  
IO  
safe_mode  
gpmc_a4  
gpio_37  
K4  
T3  
R3  
N3  
M3  
L3  
O
L
L
PU/  
PD  
IO  
safe_mode  
gpmc_a5  
gpio_38  
O
L
L
PU/  
PD  
IO  
safe_mode  
gpmc_a6  
gpio_39  
O
H
H
H
H
H
H
H
H
PU/  
PD  
IO  
safe_mode  
gpmc_a7  
gpio_40  
O
PU/  
PD  
IO  
safe_mode  
gpmc_a8  
gpio_41  
O
PU/  
PD  
IO  
safe_mode  
gpmc_a9  
O
I
PU/  
PD  
sys_  
ndmareq2  
gpio_42  
4
7
0
1
IO  
safe_mode  
K3  
AB19 gpmc_a10  
O
I
H
H
7
VDDS_ MEM Yes  
4
PU/  
PD  
LVCMOS  
sys_  
ndmareq3  
gpio_43  
4
IO  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
13  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-1. Ball Characteristics (CBB Pkg.)(1) (continued)  
BALL  
BOTTOM TOP  
BALL  
PIN  
NAME [3]  
MODE TYPE BALL  
BALL RESET POWER [9] HYS  
BUFFER  
PULL  
IO  
U/D CELL [13]  
TYPE  
[4]  
[5]  
RESET RESET  
REL.  
MODE  
[8]  
[10] STRENGTH  
(mA) [11]  
[1]  
[2]  
STATE  
[6]  
REL.  
STATE  
[7]  
[12]  
safe_mode  
gpmc_d0  
7
0
K1  
L1  
M2  
M1  
N2  
N1  
R2  
R1  
T2  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
0
0
0
0
0
0
0
0
0
VDDS_ MEM Yes  
4
4
4
4
4
4
4
4
4
PU/  
PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
gpmc_d1  
gpmc_d2  
gpmc_d3  
gpmc_d4  
gpmc_d5  
gpmc_d6  
gpmc_d7  
0
0
0
0
0
0
0
VDDS_ MEM Yes  
VDDS_ MEM Yes  
VDDS_ MEM Yes  
VDDS_ MEM Yes  
VDDS_ MEM Yes  
VDDS_ MEM Yes  
VDDS_ MEM Yes  
VDDS_ MEM Yes  
PU/  
PD  
L2  
PU/  
PD  
P2  
T1  
V1  
V2  
W2  
H2  
PU/  
PD  
PU/  
PD  
PU/  
PD  
PU/  
PD  
T1  
PU/  
PD  
AB3  
gpmc_d8  
gpio_44  
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
0
4
7
0
4
IO  
IO  
PU/  
PD  
safe_mode  
gpmc_d9  
gpio_45  
K2  
P1  
R1  
R2  
T2  
AC3  
AB4  
AC4  
AB6  
AC6  
AB7  
AC7  
IO  
IO  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
0
0
0
0
0
0
0
VDDS_ MEM Yes  
VDDS_ MEM Yes  
VDDS_ MEM Yes  
VDDS_ MEM Yes  
VDDS_ MEM Yes  
VDDS_ MEM Yes  
VDDS_ MEM Yes  
4
4
4
4
4
4
4
PU/  
PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
safe_mode  
gpmc_d10  
gpio_46  
IO  
IO  
PU/  
PD  
safe_mode  
gpmc_d11  
gpio_47  
IO  
IO  
PU/  
PD  
safe_mode  
gpmc_d12  
gpio_48  
IO  
IO  
PU/  
PD  
safe_mode  
gpmc_d13  
gpio_49  
IO  
IO  
PU/  
PD  
safe_mode  
gpmc_d14  
gpio_50  
W1  
Y1  
IO  
IO  
PU/  
PD  
safe_mode  
gpmc_d15  
gpio_51  
IO  
IO  
PU/  
PD  
safe_mode  
gpmc_ncs0  
gpmc_ncs1  
gpio_52  
G4  
H3  
Y2  
Y1  
O
O
1
1
1
0
0
VDDS_ MEM No  
VDDS_ MEM Yes  
4
4
NA  
LVCMOS  
LVCMOS  
H
PU/  
PD  
IO  
safe_mode  
gpmc_ncs2  
gpio_53  
V8  
NA  
O
H
H
7
VDDS_ MEM Yes  
4
PU/  
PD  
LVCMOS  
IO  
14  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-1. Ball Characteristics (CBB Pkg.)(1) (continued)  
BALL  
BALL  
PIN  
MODE TYPE BALL  
BALL RESET POWER [9] HYS  
BUFFER  
PULL  
IO  
BOTTOM TOP  
NAME [3]  
[4]  
[5]  
RESET RESET  
REL.  
MODE  
[8]  
[10] STRENGTH  
(mA) [11]  
U/D CELL [13]  
TYPE  
[12]  
[1]  
[2]  
STATE  
[6]  
REL.  
STATE  
[7]  
safe_mode  
gpmc_ncs3  
7
0
1
U8  
NA  
O
I
H
H
H
H
7
7
VDDS_ MEM Yes  
4
4
PU/  
PD  
LVCMOS  
LVCMOS  
sys_  
ndmareq0  
gpio_54  
4
7
0
1
IO  
safe_mode  
gpmc_ncs4  
T8  
NA  
O
I
VDDS_ MEM Yes  
PU/  
PD  
sys_  
ndmareq1  
mcbsp4_  
clkx  
2
3
IO  
IO  
IO  
gpt9_pwm_  
evt  
gpio_55  
4
7
0
1
safe_mode  
gpmc_ncs5  
R8  
P8  
N8  
NA  
NA  
NA  
O
I
H
H
H
H
H
H
7
7
7
VDDS_ MEM Yes  
VDDS_ MEM Yes  
VDDS_ MEM Yes  
4
4
4
PU/  
PD  
LVCMOS  
LVCMOS  
LVCMOS  
sys_  
ndmareq2  
mcbsp4_dr  
2
3
I
gpt10_pwm  
_evt  
IO  
gpio_56  
4
7
0
1
IO  
safe_mode  
gpmc_ncs6  
O
I
PU/  
PD  
sys_  
ndmareq3  
mcbsp4_dx  
2
3
IO  
IO  
gpt11_pwm  
_evt  
gpio_57  
4
7
0
1
2
3
IO  
safe_mode  
gpmc_ncs7  
gpmc_io_dir  
mcbsp4_fsx  
O
O
PU/  
PD  
IO  
IO  
gpt8_pwm_  
evt  
gpio_58  
safe_mode  
gpmc_clk  
gpio_59  
4
7
0
4
7
0
IO  
T4  
F3  
W2  
W1  
O
L
0
0
0
0
0
VDDS_ MEM Yes  
VDDS_ MEM No  
4
4
PU/  
PD  
LVCMOS  
LVCMOS  
IO  
safe_mode  
gpmc_nadv  
_ale  
O
NA  
G2  
F4  
G3  
V2  
V1  
gpmc_noe  
gpmc_nwe  
0
0
0
O
O
O
1
1
L
1
1
0
0
0
0
VDDS_ MEM No  
VDDS_ MEM No  
VDDS_ MEM Yes  
4
4
4
NA  
NA  
LVCMOS  
LVCMOS  
LVCMOS  
AC12 gpmc_nbe0  
_cle  
PU/  
PD  
gpio_60  
4
IO  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
15  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-1. Ball Characteristics (CBB Pkg.)(1) (continued)  
BALL  
BOTTOM TOP  
BALL  
PIN  
NAME [3]  
MODE TYPE BALL  
BALL RESET POWER [9] HYS  
BUFFER  
PULL  
IO  
U/D CELL [13]  
TYPE  
[4]  
[5]  
RESET RESET  
REL.  
MODE  
[8]  
[10] STRENGTH  
(mA) [11]  
[1]  
[2]  
STATE  
[6]  
REL.  
STATE  
[7]  
[12]  
safe_mode  
gpmc_nbe1  
gpio_61  
7
0
4
7
0
4
7
0
U3  
H1  
NA  
O
L
L
L
0
7
0
VDDS_ MEM Yes  
4
4
PU/  
PD  
LVCMOS  
LVCMOS  
IO  
safe_mode  
AB10 gpmc_nwp  
gpio_62  
O
VDDS_ MEM Yes  
PU/  
PD  
IO  
safe_mode  
M8  
L8  
AB12 gpmc_wait0  
I
H
H
H
H
0
7
VDDS_ MEM Yes  
VDDS_ MEM Yes  
NA  
4
PU/  
PD  
LVCMOS  
LVCMOS  
AC10 gpmc_wait1  
gpio_63  
0
4
7
0
4
7
0
1
I
PU/  
PD  
IO  
safe_mode  
K8  
J8  
NA  
NA  
gpmc_wait2  
gpio_64  
I
H
H
H
H
7
7
VDDS_ MEM Yes  
VDDS_ MEM Yes  
4
4
PU/  
PD  
LVCMOS  
LVCMOS  
IO  
safe_mode  
gpmc_wait3  
I
I
PU/  
PD  
sys_  
ndmareq1  
gpio_65  
safe_mode  
dss_pclk  
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
IO  
D28  
D26  
NA  
NA  
NA  
NA  
NA  
O
H
H
H
L
H
H
H
L
7
7
7
7
7
VDDS  
VDDS  
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
Yes  
No  
4
4
4
8
4
PU/  
PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
gpio_66  
IO  
safe_mode  
dss_hsync  
gpio_67  
O
PU/  
PD  
IO  
safe_mode  
dss_vsync  
gpio_68  
D27  
O
PU/  
PD  
IO  
safe_mode  
dss_acbias  
gpio_69  
E27  
O
PU/  
PD  
IO  
safe_mode  
dss_data0  
AG22  
IO  
L
L
PU/  
PD  
LVDS/  
CMOS  
uart1_cts  
gpio_70  
2
4
7
0
I
IO  
safe_mode  
dss_data1  
AH22  
AG23  
NA  
NA  
IO  
L
L
L
L
7
7
VDDS  
VDDS  
No  
No  
4
4
PU/  
PD  
LVDS/  
CMOS  
uart1_rts  
gpio_71  
2
4
7
0
O
IO  
safe_mode  
dss_data2  
IO  
IO  
PU/  
PD  
LVDS/  
CMOS  
gpio_72  
4
7
safe_mode  
16  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-1. Ball Characteristics (CBB Pkg.)(1) (continued)  
BALL  
BALL  
PIN  
MODE TYPE BALL  
BALL RESET POWER [9] HYS  
BUFFER  
PULL  
IO  
BOTTOM TOP  
NAME [3]  
[4]  
[5]  
RESET RESET  
REL.  
MODE  
[8]  
[10] STRENGTH  
(mA) [11]  
U/D CELL [13]  
TYPE  
[12]  
[1]  
[2]  
STATE  
[6]  
REL.  
STATE  
[7]  
AH23  
NA  
dss_data3  
0
IO  
IO  
L
L
L
7
VDDS  
VDDS  
No  
No  
4
4
PU/  
PD  
LVDS/  
CMOS  
gpio_73  
safe_mode  
dss_data4  
4
7
0
AG24  
AH24  
NA  
NA  
IO  
I
L
7
PU/  
PD  
LVDS/  
CMOS  
uart3_rx_  
irrx  
2
gpio_74  
safe_mode  
dss_data5  
4
7
0
IO  
IO  
O
L
L
7
VDDS  
No  
4
PU/  
PD  
LVDS/  
CMOS  
uart3_tx_  
irtx  
2
gpio_75  
safe_mode  
dss_data6  
uart1_tx  
4
7
0
2
4
7
0
2
4
7
0
4
7
0
4
7
0
IO  
E26  
F28  
NA  
NA  
IO  
O
L
L
L
L
7
7
VDDS  
VDDS  
Yes  
Yes  
8
8
PU/  
PD  
LVCMOS  
LVCMOS  
gpio_76  
IO  
safe_mode  
dss_data7  
uart1_rx  
IO  
I
PU/  
PD  
gpio_77  
IO  
safe_mode  
dss_data8  
gpio_78  
F27  
G26  
NA  
NA  
NA  
IO  
IO  
L
L
L
L
L
L
7
7
7
VDDS  
VDDS  
VDDS  
Yes  
Yes  
NA  
8
8
4
PU/  
PD  
LVCMOS  
LVCMOS  
safe_mode  
dss_data9  
gpio_79  
IO  
IO  
PU/  
PD  
safe_mode  
dss_data10  
AD28  
IO  
IO  
PU/  
PD  
LVDS/  
CMOS  
gpio_80  
4
7
0
safe_mode  
dss_data11  
AD27  
AB28  
AB27  
NA  
NA  
NA  
IO  
IO  
L
L
L
L
L
L
7
7
7
VDDS  
VDDS  
VDDS  
NA  
NA  
NA  
4
4
4
PU/  
PD  
LVDS/  
CMOS  
gpio_81  
4
7
0
safe_mode  
dss_data12  
IO  
IO  
PU/  
PD  
LVDS/  
CMOS  
gpio_82  
4
7
0
safe_mode  
dss_data13  
IO  
IO  
PU/  
PD  
LVDS/  
CMOS  
gpio_83  
4
7
safe_mode  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
17  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-1. Ball Characteristics (CBB Pkg.)(1) (continued)  
BALL  
BOTTOM TOP  
BALL  
PIN  
NAME [3]  
MODE TYPE BALL  
BALL RESET POWER [9] HYS  
BUFFER  
PULL  
IO  
U/D CELL [13]  
TYPE  
[4]  
[5]  
RESET RESET  
REL.  
MODE  
[8]  
[10] STRENGTH  
(mA) [11]  
[1]  
[2]  
STATE  
[6]  
REL.  
STATE  
[7]  
[12]  
AA28  
NA  
dss_data14  
0
IO  
IO  
L
L
L
7
VDDS  
VDDS  
NA  
NA  
4
4
PU/  
PD  
LVDS/  
CMOS  
gpio_84  
4
7
0
safe_mode  
dss_data15  
AA27  
NA  
IO  
IO  
L
7
PU/  
PD  
LVDS/  
CMOS  
gpio_85  
safe_mode  
dss_data16  
gpio_86  
4
7
0
4
7
0
4
7
0
G25  
H27  
H26  
NA  
NA  
NA  
IO  
IO  
L
L
L
L
L
L
7
7
7
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
8
8
8
PU/  
PD  
LVCMOS  
LVCMOS  
LVCMOS  
safe_mode  
dss_data17  
gpio_87  
IO  
IO  
PU/  
PD  
safe_mode  
dss_data18  
IO  
PU/  
PD  
mcspi3_clk  
dss_data0  
gpio_88  
2
3
4
7
0
IO  
IO  
IO  
safe_mode  
dss_data19  
H25  
NA  
IO  
IO  
L
L
7
VDDS  
Yes  
8
PU/  
PD  
LVCMOS  
LVCMOS  
LVCMOS  
mcspi3_  
simo  
2
dss_data1  
gpio_89  
3
4
7
0
IO  
IO  
safe_mode  
dss_data20  
E28  
NA  
O
H
H
7
VDDS  
Yes  
4
PU/  
PD  
mcspi3_  
somi  
2
IO  
dss_data2  
gpio_90  
3
4
7
0
IO  
IO  
safe_mode  
dss_data21  
J26  
NA  
NA  
O
L
L
L
L
7
7
VDDS  
VDDS  
Yes  
8
4
PU/  
PD  
mcspi3_cs0  
dss_data3  
gpio_91  
2
3
4
7
0
IO  
IO  
IO  
safe_mode  
dss_data22  
AC27  
O
NA  
PU/  
PD  
LVDS/  
CMOS  
mcspi3_cs1  
dss_data4  
gpio_92  
2
3
4
7
O
IO  
IO  
safe_mode  
18  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-1. Ball Characteristics (CBB Pkg.)(1) (continued)  
BALL  
BALL  
PIN  
MODE TYPE BALL  
BALL RESET POWER [9] HYS  
BUFFER  
PULL  
IO  
BOTTOM TOP  
NAME [3]  
[4]  
[5]  
RESET RESET  
REL.  
MODE  
[8]  
[10] STRENGTH  
(mA) [11]  
U/D CELL [13]  
TYPE  
[12]  
[1]  
[2]  
STATE  
[6]  
REL.  
STATE  
[7]  
AC28  
NA  
dss_data23  
0
O
L
L
7
VDDS  
NA  
4
PU/  
PD  
LVDS/  
CMOS  
dss_data5  
gpio_93  
3
4
7
0
IO  
IO  
safe_mode  
tv_out2  
W28  
Y28  
Y27  
W27  
W26  
A24  
NA  
NA  
NA  
NA  
NA  
NA  
O
O
O
O
I
Z
Z
Z
Z
Z
L
0
0
0
0
0
0
0
7
VDDADAC  
VDDADAC  
VDDADAC  
VDDADAC  
VDDADAC  
VDDS  
8
8
NA  
NA  
NA  
NA  
NA  
10-bit  
DAC  
tv_out1  
tv_vfb1  
tv_vfb2  
tv_vref  
cam_hs  
0
0
0
0
0
10-bit  
DAC  
NA  
NA  
NA  
L
10-bit  
DAC  
10-bit  
DAC  
10-bit  
DAC  
IO  
IO  
Yes  
4
PU/  
PD  
LVCMOS  
gpio_94  
safe_mode  
cam_vs  
4
7
0
4
7
0
4
7
0
4
7
0
2
A23  
C25  
C27  
C23  
NA  
NA  
NA  
NA  
IO  
IO  
L
L
L
L
L
L
L
L
7
7
7
7
VDDS  
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
Yes  
4
4
4
4
PU/  
PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
gpio_95  
safe_mode  
cam_ xclka  
gpio_96  
O
PU/  
PD  
IO  
safe_mode  
cam_pclk  
gpio_97  
I
PU/  
PD  
IO  
safe_mode  
cam_fld  
IO  
IO  
PU/  
PD  
cam_global  
_reset  
gpio_98  
safe_mode  
cam_d0  
4
7
0
IO  
AG17  
AH17  
B24  
NA  
NA  
NA  
NA  
I
I
L
L
L
L
L
L
L
L
7
7
7
7
VDDS  
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
Yes  
4
4
4
4
PD  
PD  
LVDS/  
CMOS  
gpio_99  
safe_mode  
cam_d1  
4
7
0
I
I
LVDS/  
CMOS  
gpio_100  
safe_mode  
cam_d2  
4
7
0
I
PU/  
PD  
LVCMOS  
LVCMOS  
gpio_101  
safe_mode  
cam_d3  
4
7
0
IO  
C24  
I
PU/  
PD  
gpio_102  
4
IO  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
19  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-1. Ball Characteristics (CBB Pkg.)(1) (continued)  
BALL  
BOTTOM TOP  
BALL  
PIN  
NAME [3]  
MODE TYPE BALL  
BALL RESET POWER [9] HYS  
BUFFER  
PULL  
IO  
U/D CELL [13]  
TYPE  
[4]  
[5]  
RESET RESET  
REL.  
MODE  
[8]  
[10] STRENGTH  
(mA) [11]  
[1]  
[2]  
STATE  
[6]  
REL.  
STATE  
[7]  
[12]  
safe_mode  
cam_d4  
7
0
D24  
NA  
I
L
L
L
7
7
VDDS  
VDDS  
Yes  
Yes  
4
4
PU/  
PD  
LVCMOS  
LVCMOS  
gpio_103  
safe_mode  
cam_d5  
4
7
0
IO  
A25  
NA  
I
L
PU/  
PD  
gpio_104  
safe_mode  
cam_d6  
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
IO  
K28  
L28  
K27  
L27  
B25  
NA  
NA  
NA  
NA  
NA  
I
L
L
L
L
L
L
L
L
L
L
7
7
7
7
7
VDDS  
VDDS  
VDDS  
VDDS  
VDDS  
NA  
NA  
NA  
NA  
Yes  
4
4
4
4
4
PD  
PD  
PD  
PD  
LVDS/  
CMOS  
gpio_105  
safe_mode  
cam_d7  
IO  
I
LVDS/  
CMOS  
gpio_106  
safe_mode  
cam_d8  
IO  
I
LVDS/  
CMOS  
gpio_107  
safe_mode  
cam_d9  
IO  
I
LVDS/  
CMOS  
gpio_108  
safe_mode  
cam_d10  
IO  
I
PU/  
PD  
LVCMOS  
gpio_109  
safe_mode  
cam_d11  
4
7
0
4
7
0
4
7
0
2
IO  
C26  
B26  
B23  
NA  
NA  
NA  
I
L
L
L
L
L
L
7
7
7
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
4
4
4
PU/  
PD  
LVCMOS  
LVCMOS  
LVCMOS  
gpio_110  
IO  
safe_mode  
cam_ xclkb  
gpio_111  
O
PU/  
PD  
IO  
safe_mode  
cam_wen  
I
PU/  
PD  
cam_  
O
shutter  
gpio_167  
4
7
0
IO  
safe_mode  
D25  
NA  
cam_  
O
L
L
7
VDDS  
Yes  
4
PU/  
PD  
LVCMOS  
strobe  
gpio_126  
safe_mode  
gpio_112  
4
7
4
IO  
AG19  
AH19  
NA  
NA  
I
I
L
L
L
L
7
7
VDDS  
VDDS  
Yes  
Yes  
4
4
PD  
PD  
LVDS/  
CMOS  
safe_mode  
gpio_113  
7
4
LVDS/  
CMOS  
safe_mode  
7
20  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-1. Ball Characteristics (CBB Pkg.)(1) (continued)  
BALL  
BALL  
PIN  
MODE TYPE BALL  
BALL RESET POWER [9] HYS  
BUFFER  
PULL  
IO  
BOTTOM TOP  
NAME [3]  
[4]  
[5]  
RESET RESET  
REL.  
MODE  
[8]  
[10] STRENGTH  
(mA) [11]  
U/D CELL [13]  
TYPE  
[12]  
[1]  
[2]  
STATE  
[6]  
REL.  
STATE  
[7]  
AG18  
NA  
gpio_114  
4
I
I
L
L
L
L
L
7
7
7
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
4
4
PD  
PD  
LVDS/  
CMOS  
safe_mode  
gpio_115  
7
4
AH18  
P21  
NA  
NA  
LVDS/  
CMOS  
safe_mode  
mcbsp2_fsx  
gpio_116  
7
0
4
7
0
IO  
IO  
PGM  
4(2)  
PU/  
PD  
LVCMOS  
LVCMOS  
safe_mode  
N21  
NA  
mcbsp2_  
clkx  
IO  
IO  
PGM  
L
7
VDDS  
Yes  
4(2)  
PU/  
PD  
gpio_117  
safe_mode  
mcbsp2_dr  
gpio_118  
safe_mode  
mcbsp2_dx  
gpio_119  
safe_mode  
mmc1_clk  
ms_clk  
4
7
0
4
7
0
4
7
0
1
4
7
0
1
4
7
0
1
4
7
0
1
4
7
0
1
4
7
0
1
4
7
0
4
R21  
M21  
N28  
NA  
NA  
NA  
I
PGM  
PGM  
L
L
L
L
7
7
7
VDDS  
VDDS  
Yes  
Yes  
Yes  
4(2)  
4(2)  
8
PU/  
PD  
LVCMOS  
LVCMOS  
LVCMOS  
IO  
IO  
IO  
PU/  
PD  
O
O
MMC1_  
VDDS  
PU/  
PD  
gpio_120  
safe_mode  
mmc1_cmd  
ms_bs  
IO  
M27  
N27  
N26  
N25  
P28  
P27  
NA  
NA  
NA  
NA  
NA  
NA  
IO  
O
L
L
L
L
L
L
L
L
L
L
L
L
7
7
7
7
7
7
MMC1_  
VDDS  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
8
8
8
8
8
8
PU/  
PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
gpio_121  
safe_mode  
mmc1_dat0  
ms_dat0  
IO  
IO  
IO  
IO  
MMC1_  
VDDS  
PU/  
PD  
gpio_122  
safe_mode  
mmc1_dat1  
ms_dat1  
IO  
IO  
IO  
MMC1_  
VDDS  
PU/  
PD  
gpio_123  
safe_mode  
mmc1_dat2  
ms_dat2  
IO  
IO  
IO  
MMC1_  
VDDS  
PU/  
PD  
gpio_124  
safe_mode  
mmc1_dat3  
ms_dat3  
IO  
IO  
IO  
MMC1_  
VDDS  
PU/  
PD  
gpio_125  
safe_mode  
mmc1_dat4  
gpio_126  
IO  
IO  
VDDS  
PD  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
21  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-1. Ball Characteristics (CBB Pkg.)(1) (continued)  
BALL  
BOTTOM TOP  
BALL  
PIN  
NAME [3]  
MODE TYPE BALL  
BALL RESET POWER [9] HYS  
BUFFER  
PULL  
IO  
U/D CELL [13]  
TYPE  
[4]  
[5]  
RESET RESET  
REL.  
MODE  
[8]  
[10] STRENGTH  
(mA) [11]  
[1]  
[2]  
STATE  
[6]  
REL.  
STATE  
[7]  
[12]  
safe_mode  
mmc1_dat5  
gpio_127  
7
0
4
7
0
4
7
0
4
7
0
1
4
7
0
1
P26  
R27  
R25  
AE2  
NA  
NA  
NA  
NA  
IO  
IO  
L
L
L
L
L
L
L
L
7
7
7
7
VDDS  
VDDS  
VDDS  
VDDS  
No  
No  
8
8
8
4
PD  
PD  
PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
safe_mode  
mmc1_dat6  
gpio_128  
IO  
IO  
safe_mode  
mmc1_dat7  
gpio_129  
IO  
IO  
No  
safe_mode  
mmc2_clk  
mcspi3_clk  
gpio_130  
O
Yes  
PU/  
PD  
IO  
IO  
safe_mode  
mmc2_ cmd  
AG5  
AH5  
NA  
NA  
IO  
IO  
H
H
H
H
7
7
VDDS  
VDDS  
Yes  
Yes  
4
4
PU/  
PD  
LVCMOS  
LVCMOS  
mcspi3_  
simo  
gpio_131  
4
7
0
IO  
safe_mode  
mmc2_  
dat0  
IO  
IO  
IO  
PU/  
PD  
mcspi3_  
somi  
1
gpio_132  
4
7
0
safe_mode  
AH4  
AG4  
NA  
NA  
mmc2_  
dat1  
IO  
IO  
H
H
H
H
7
7
VDDS  
VDDS  
Yes  
Yes  
4
4
PU/  
PD  
LVCMOS  
LVCMOS  
gpio_133  
4
7
0
safe_mode  
mmc2_  
dat2  
IO  
PU/  
PD  
mcspi3_cs1  
gpio_134  
1
4
7
0
O
IO  
safe_mode  
AF4  
AE4  
NA  
NA  
mmc2_  
dat3  
IO  
H
L
H
L
7
7
VDDS  
VDDS  
Yes  
Yes  
4
4
PU/  
PD  
LVCMOS  
LVCMOS  
mcspi3_cs0  
gpio_135  
1
4
7
0
IO  
IO  
safe_mode  
mmc2_  
dat4  
IO  
O
PU/  
PD  
mmc2_dir_  
dat0  
1
mmc3_dat0  
gpio_136  
3
4
7
IO  
IO  
safe_mode  
22  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-1. Ball Characteristics (CBB Pkg.)(1) (continued)  
BALL  
BALL  
PIN  
MODE TYPE BALL  
BALL RESET POWER [9] HYS  
BUFFER  
PULL  
IO  
BOTTOM TOP  
NAME [3]  
[4]  
[5]  
RESET RESET  
REL.  
MODE  
[8]  
[10] STRENGTH  
(mA) [11]  
U/D CELL [13]  
TYPE  
[12]  
[1]  
[2]  
STATE  
[6]  
REL.  
STATE  
[7]  
AH3  
NA  
mmc2_  
dat5  
0
1
2
IO  
O
L
L
7
VDDS  
Yes  
4
PU/  
PD  
LVCMOS  
mmc2_dir_  
dat1  
cam_global  
_reset  
IO  
mmc3_dat1  
gpio_137  
3
4
5
IO  
IO  
IO  
hsusb3_tll_  
stp  
mm3_rxdp  
safe_mode  
6
7
0
IO  
AF3  
NA  
mmc2_  
dat6  
IO  
O
L
L
7
VDDS  
Yes  
4
PU/  
PD  
LVCMOS  
mmc2_dir_  
cmd  
1
2
cam_  
O
shutter  
mmc3_dat2  
gpio_138  
3
4
5
IO  
IO  
IO  
hsusb3_tll_  
dir  
safe_mode  
7
0
AE3  
NA  
mmc2_  
dat7  
IO  
I
L
L
7
VDDS  
Yes  
4
PU/  
PD  
LVCMOS  
mmc2_  
clkin  
1
mmc3_dat3  
gpio_139  
3
4
5
IO  
IO  
IO  
hsusb3_tll_  
nxt  
mm3_rxdm  
safe_mode  
mcbsp3_dx  
uart2_cts  
6
7
0
1
4
5
IO  
AF6  
AE6  
NA  
NA  
IO  
I
L
L
L
L
7
7
VDDS  
VDDS  
Yes  
Yes  
4
4
PU/  
PD  
LVCMOS  
LVCMOS  
gpio_140  
IO  
IO  
hsusb3_tll_  
data4  
safe_mode  
mcbsp3_dr  
uart2_rts  
7
0
1
4
5
I
PU/  
PD  
O
gpio_141  
IO  
IO  
hsusb3_tll_  
data5  
safe_mode  
7
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
23  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-1. Ball Characteristics (CBB Pkg.)(1) (continued)  
BALL  
BOTTOM TOP  
BALL  
PIN  
NAME [3]  
MODE TYPE BALL  
BALL RESET POWER [9] HYS  
BUFFER  
PULL  
IO  
U/D CELL [13]  
TYPE  
[4]  
[5]  
RESET RESET  
REL.  
MODE  
[8]  
[10] STRENGTH  
(mA) [11]  
[1]  
[2]  
STATE  
[6]  
REL.  
STATE  
[7]  
[12]  
AF5  
NA  
mcbsp3_  
clkx  
0
IO  
L
L
7
VDDS  
Yes  
4
PU/  
PD  
LVCMOS  
uart2_tx  
1
4
5
O
gpio_142  
IO  
IO  
hsusb3_tll_  
data6  
safe_mode  
mcbsp3_fsx  
uart2_rx  
7
0
1
4
5
AE5  
AB26  
AB25  
AA25  
NA  
NA  
NA  
NA  
IO  
I
L
H
H
H
L
H
H
H
7
7
7
7
VDDS  
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
Yes  
4
4
4
4
PU/  
PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
gpio_143  
IO  
IO  
hsusb3_tll_  
data7  
safe_mode  
uart2_cts  
7
0
1
2
I
PU/  
PD  
mcbsp3_dx  
IO  
IO  
gpt9_pwm_  
evt  
gpio_144  
safe_mode  
uart2_rts  
4
7
0
1
2
IO  
O
I
PU/  
PD  
mcbsp3_dr  
gpt10_pwm  
_evt  
IO  
gpio_145  
safe_mode  
uart2_tx  
4
7
0
1
IO  
O
PU/  
PD  
mcbsp3_  
clkx  
IO  
gpt11_pwm  
_evt  
2
IO  
IO  
gpio_146  
safe_mode  
uart2_rx  
4
7
0
1
2
AD25  
NA  
I
H
H
7
VDDS  
Yes  
4
PU/  
PD  
LVCMOS  
mcbsp3_fsx  
IO  
IO  
gpt8_pwm_  
evt  
gpio_147  
safe_mode  
uart1_tx  
4
7
0
IO  
AA8  
AA9  
NA  
NA  
O
L
L
L
L
7
7
VDDS  
VDDS  
Yes  
Yes  
4
4
PU/  
PD  
LVCMOS  
LVCMOS  
gpio_148  
safe_mode  
uart1_rts  
4
7
0
IO  
O
PU/  
PD  
gpio_149  
4
7
IO  
safe_mode  
24  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-1. Ball Characteristics (CBB Pkg.)(1) (continued)  
BALL  
BALL  
PIN  
MODE TYPE BALL  
BALL RESET POWER [9] HYS  
BUFFER  
PULL  
IO  
BOTTOM TOP  
NAME [3]  
[4]  
[5]  
RESET RESET  
REL.  
MODE  
[8]  
[10] STRENGTH  
(mA) [11]  
U/D CELL [13]  
TYPE  
[12]  
[1]  
[2]  
STATE  
[6]  
REL.  
STATE  
[7]  
W8  
NA  
uart1_cts  
gpio_150  
0
4
5
I
L
L
L
L
7
7
VDDS  
VDDS  
Yes  
Yes  
4
4
PU/  
PD  
LVCMOS  
LVCMOS  
IO  
O
hsusb3_tll_  
clk  
safe_mode  
uart1_rx  
7
0
2
Y8  
NA  
NA  
I
PU/  
PD  
mcbsp1_  
clkr  
IO  
mcspi4_clk  
gpio_151  
3
4
7
0
IO  
IO  
safe_mode  
AE1  
mcbsp4_  
clkx  
IO  
L
L
L
L
L
L
L
L
7
7
7
7
VDDS  
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
Yes  
4
4
4
4
PU/  
PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
gpio_152  
4
5
IO  
IO  
hsusb3_tll_  
data1  
mm3_txse0  
safe_mode  
mcbsp4_dr  
6
7
0
IO  
I
AD1  
AD2  
AC1  
NA  
NA  
NA  
PU/  
PD  
gpio_153  
4
5
IO  
IO  
hsusb3_tll_  
data0  
mm3_rxrcv  
safe_mode  
mcbsp4_dx  
6
7
0
IO  
IO  
PU/  
PD  
gpio_154  
4
5
IO  
IO  
hsusb3_tll_  
data2  
mm3_txdat  
safe_mode  
mcbsp4_fsx  
6
7
0
IO  
IO  
PU/  
PD  
gpio_155  
4
5
IO  
IO  
hsusb3_tll_  
data3  
mm3_txen_  
n
6
IO  
IO  
safe_mode  
7
0
Y21  
NA  
mcbsp1_  
clkr  
L
L
7
VDDS  
Yes  
4
PU/  
PD  
LVCMOS  
mcspi4_clk  
gpio_156  
1
4
7
IO  
IO  
safe_mode  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
25  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-1. Ball Characteristics (CBB Pkg.)(1) (continued)  
BALL  
BOTTOM TOP  
BALL  
PIN  
NAME [3]  
MODE TYPE BALL  
BALL RESET POWER [9] HYS  
BUFFER  
PULL  
IO  
U/D CELL [13]  
TYPE  
[4]  
[5]  
RESET RESET  
REL.  
MODE  
[8]  
[10] STRENGTH  
(mA) [11]  
[1]  
[2]  
STATE  
[6]  
REL.  
STATE  
[7]  
[12]  
AA21  
NA  
mcbsp1_fsr  
0
1
IO  
I
L
L
7
VDDS  
Yes  
4
PU/  
PD  
LVCMOS  
adpllv2d_dit  
hering_en1  
cam_global  
_reset  
2
IO  
IO  
gpio_157  
safe_mode  
mcbsp1_dx  
4
7
0
1
V21  
U21  
T21  
NA  
NA  
NA  
IO  
IO  
L
L
L
L
L
L
7
7
7
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
4
4
4
PU/  
PD  
LVCMOS  
LVCMOS  
LVCMOS  
mcspi4_  
simo  
mcbsp3_dx  
gpio_158  
2
4
7
0
1
IO  
IO  
safe_mode  
mcbsp1_dr  
I
PU/  
PD  
mcspi4_  
somi  
IO  
mcbsp3_dr  
gpio_159  
2
4
7
0
2
O
IO  
safe_mode  
mcbsp_clks  
I
PU/  
PD  
cam_  
O
shutter  
gpio_160  
uart1_cts  
4
5
7
0
1
2
4
7
0
IO  
I
safe_mode  
mcbsp1_fsx  
mcspi4_cs0  
mcbsp3_fsx  
gpio_161  
K26  
NA  
NA  
IO  
IO  
IO  
IO  
L
L
L
L
7
7
VDDS  
VDDS  
Yes  
Yes  
4
4
PU/  
PD  
LVCMOS  
LVCMOS  
safe_mode  
W21  
mcbsp1_  
clkx  
IO  
IO  
IO  
PU/  
PD  
mcbsp3_  
clkx  
2
gpio_162  
4
7
0
safe_mode  
H18  
H19  
H20  
NA  
NA  
NA  
uart3_cts_  
rctx  
IO  
IO  
H
H
H
H
H
H
7
7
7
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
4
4
4
PU/  
PD  
LVCMOS  
LVCMOS  
LVCMOS  
gpio_163  
4
7
0
safe_mode  
uart3_rts_  
sd  
O
PU/  
PD  
gpio_164  
4
7
0
IO  
safe_mode  
uart3_rx_  
irrx  
I
PU/  
PD  
gpio_165  
4
IO  
26  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-1. Ball Characteristics (CBB Pkg.)(1) (continued)  
BALL  
BALL  
PIN  
MODE TYPE BALL  
BALL RESET POWER [9] HYS  
BUFFER  
PULL  
IO  
BOTTOM TOP  
NAME [3]  
[4]  
[5]  
RESET RESET  
REL.  
MODE  
[8]  
[10] STRENGTH  
(mA) [11]  
U/D CELL [13]  
TYPE  
[12]  
[1]  
[2]  
STATE  
[6]  
REL.  
STATE  
[7]  
safe_mode  
7
0
H21  
NA  
uart3_tx_  
irtx  
O
H
H
7
VDDS  
Yes  
4
PU/  
PD  
LVCMOS  
gpio_166  
safe_mode  
hsusb0_clk  
gpio_120  
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
IO  
T28  
T25  
R28  
T26  
T27  
NA  
NA  
NA  
NA  
NA  
I
L
H
L
L
L
L
H
L
L
L
7
7
7
7
7
VDDS  
VDDS  
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
Yes  
Yes  
4
4
4
4
4
PU/  
PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
IO  
safe_mode  
hsusb0_stp  
gpio_121  
O
PU/  
PD  
IO  
safe_mode  
hsusb0_dir  
gpio_122  
I
PU/  
PD  
IO  
safe_mode  
hsusb0_nxt  
gpio_124  
I
PU/  
PD  
IO  
safe_mode  
hsusb0_  
data0  
IO  
O
PU/  
PD  
uart3_tx_  
irtx  
2
gpio_125  
4
7
0
IO  
safe_mode  
U28  
U27  
U26  
NA  
NA  
NA  
hsusb0_  
data1  
IO  
I
L
L
L
L
L
L
7
7
7
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
4
4
4
PU/  
PD  
LVCMOS  
LVCMOS  
LVCMOS  
uart3_rx_  
irrx  
2
gpio_130  
4
7
0
IO  
safe_mode  
hsusb0_  
data2  
IO  
O
PU/  
PD  
uart3_rts_  
sd  
2
gpio_131  
4
7
0
IO  
safe_mode  
hsusb0_  
data3  
IO  
IO  
IO  
PU/  
PD  
uart3_cts_  
rctx  
2
gpio_169  
4
7
0
safe_mode  
U25  
V28  
NA  
NA  
hsusb0_  
data4  
IO  
IO  
L
L
L
L
7
7
VDDS  
VDDS  
Yes  
Yes  
4
4
PU/  
PD  
LVCMOS  
LVCMOS  
gpio_188  
4
7
0
safe_mode  
hsusb0_  
data5  
IO  
IO  
PU/  
PD  
gpio_189  
4
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
27  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-1. Ball Characteristics (CBB Pkg.)(1) (continued)  
BALL  
BOTTOM TOP  
BALL  
PIN  
NAME [3]  
MODE TYPE BALL  
BALL RESET POWER [9] HYS  
BUFFER  
PULL  
IO  
U/D CELL [13]  
TYPE  
[4]  
[5]  
RESET RESET  
REL.  
MODE  
[8]  
[10] STRENGTH  
(mA) [11]  
[1]  
[2]  
STATE  
[6]  
REL.  
STATE  
[7]  
[12]  
safe_mode  
7
0
V27  
NA  
hsusb0_  
data6  
IO  
IO  
L
L
L
7
7
VDDS  
VDDS  
Yes  
Yes  
4
4
PU/  
PD  
LVCMOS  
LVCMOS  
gpio_190  
4
7
0
safe_mode  
V26  
NA  
hsusb0_  
data7  
IO  
IO  
L
PU/  
PD  
gpio_191  
safe_mode  
i2c1_scl  
4
7
0
K21  
J21  
NA  
NA  
NA  
IOD  
IOD  
H
H
H
H
H
H
0
0
7
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
4
4
4
PU/  
PD  
Open  
Drain  
i2c1_sda  
0
PU/  
PD  
Open  
Drain  
AF15  
i2c2_scl  
gpio_168  
safe_mode  
i2c2_sda  
gpio_183  
safe_mode  
i2c3_scl  
0
4
7
0
4
7
0
4
7
0
4
7
0
1
IOD  
IO  
PU/  
PD  
Open  
Drain  
AE15  
AF14  
AG14  
AD26  
NA  
NA  
NA  
NA  
IOD  
IO  
H
H
H
H
H
H
H
H
7
7
7
0
VDDS  
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
Yes  
4
4
4
4
PU/  
PD  
Open  
Drain  
IOD  
IO  
PU/  
PD  
Open  
Drain  
gpio_184  
safe_mode  
i2c3_sda  
gpio_185  
safe_mode  
i2c4_scl  
IOD  
IO  
PU/  
PD  
Open  
Drain  
IOD  
O
PU/  
PD  
Open  
Drain  
sys_  
nvmode1  
safe_mode  
i2c4_sda  
7
0
1
AE26  
J25  
NA  
NA  
IOD  
O
H
H
H
H
0
7
VDDS  
VDDS  
Yes  
Yes  
4
4
PU/  
PD  
Open  
Drain  
sys_  
nvmode2  
safe_mode  
hdq_sio  
7
0
1
2
3
4
7
0
1
4
7
IOD  
I
PU/  
PD  
LVCMOS  
sys_altclk  
i2c2_sccbe  
i2c3_sccbe  
gpio_170  
O
O
IO  
safe_mode  
mcspi1_clk  
mmc2_dat4  
gpio_171  
AB3  
NA  
IO  
IO  
IO  
PGM  
L
7
VDDS  
Yes  
4(2)  
PU/  
PD  
LVCMOS  
safe_mode  
28  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-1. Ball Characteristics (CBB Pkg.)(1) (continued)  
BALL  
BALL  
PIN  
MODE TYPE BALL  
BALL RESET POWER [9] HYS  
BUFFER  
PULL  
IO  
BOTTOM TOP  
NAME [3]  
[4]  
[5]  
RESET RESET  
REL.  
MODE  
[8]  
[10] STRENGTH  
(mA) [11]  
U/D CELL [13]  
TYPE  
[12]  
[1]  
[2]  
STATE  
[6]  
REL.  
STATE  
[7]  
AB4  
NA  
mcspi1_  
simo  
0
IO  
PGM  
PGM  
L
L
7
7
VDDS  
VDDS  
Yes  
Yes  
4(2)  
PU/  
PD  
LVCMOS  
LVCMOS  
mmc2_dat5  
gpio_172  
1
4
7
0
IO  
IO  
safe_mode  
AA4  
NA  
mcspi1_  
somi  
IO  
4(2)  
PU/  
PD  
mmc2_dat6  
gpio_173  
1
4
7
0
1
4
7
0
1
IO  
IO  
safe_mode  
mcspi1_cs0  
mmc2_dat7  
gpio_174  
AC2  
AC3  
NA  
NA  
IO  
IO  
IO  
PGM  
PGM  
H
H
7
7
VDDS  
VDDS  
Yes  
Yes  
4(2)  
PU/  
PD  
LVCMOS  
LVCMOS  
safe_mode  
mcspi1_cs1  
O
I
4(2)  
PU/  
PD  
adpllv2d_dit  
hering_en2  
mmc3_cmd  
gpio_175  
3
4
7
0
3
4
7
0
2
IO  
IO  
safe_mode  
mcspi1_cs2  
mmc3_clk  
gpio_176  
AB1  
AB2  
NA  
NA  
O
O
PGM  
H
H
7
7
VDDS  
VDDS  
Yes  
Yes  
4(2)  
PU/  
PD  
LVCMOS  
LVCMOS  
IO  
safe_mode  
mcspi1_cs3  
O
H
4
PU/  
PD  
hsusb2_tll_  
data2  
IO  
hsusb2_  
data2  
3
IO  
gpio_177  
mm2_txdat  
safe_mode  
mcspi2_clk  
4
5
7
0
2
IO  
IO  
AA3  
NA  
IO  
IO  
L
L
7
VDDS  
Yes  
4
PU/  
PD  
LVCMOS  
hsusb2_tll_  
data7  
hsusb2_  
data7  
3
O
gpio_178  
4
7
0
IO  
safe_mode  
Y2  
NA  
mcspi2_  
simo  
IO  
IO  
IO  
I
L
L
7
VDDS  
Yes  
4
PU/  
PD  
LVCMOS  
gpt9_pwm_  
evt  
1
2
3
4
hsusb2_tll_  
data4  
hsusb2_  
data4  
gpio_179  
IO  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
29  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-1. Ball Characteristics (CBB Pkg.)(1) (continued)  
BALL  
BOTTOM TOP  
BALL  
PIN  
NAME [3]  
MODE TYPE BALL  
BALL RESET POWER [9] HYS  
BUFFER  
PULL  
IO  
U/D CELL [13]  
TYPE  
[4]  
[5]  
RESET RESET  
REL.  
MODE  
[8]  
[10] STRENGTH  
(mA) [11]  
[1]  
[2]  
STATE  
[6]  
REL.  
STATE  
[7]  
[12]  
safe_mode  
7
0
Y3  
NA  
mcspi2_  
somi  
IO  
IO  
IO  
O
L
L
7
VDDS  
Yes  
4
PU/  
PD  
LVCMOS  
gpt10_pwm  
_evt  
1
2
3
hsusb2_tll_  
data5  
hsusb2_  
data5  
gpio_180  
safe_mode  
mcspi2_cs0  
4
7
0
1
IO  
Y4  
NA  
IO  
IO  
H
H
7
VDDS  
Yes  
4
PU/  
PD  
LVCMOS  
gpt11_pwm  
_evt  
hsusb2_tll_  
data6  
2
3
IO  
O
hsusb2_  
data6  
gpio_181  
safe_mode  
mcspi2_cs1  
4
7
0
1
IO  
V3  
NA  
O
L
L
7
VDDS  
Yes  
4
PU/  
PD  
LVCMOS  
gpt8_pwm_  
evt  
IO  
hsusb2_tll_  
data3  
2
3
IO  
IO  
hsusb2_  
data3  
gpio_182  
4
5
IO  
IO  
mm2_txen_  
n
safe_mode  
sys_32k  
7
0
0
0
0
4
7
0
4
7
0
AE25  
AE17  
AF17  
AF25  
NA  
NA  
NA  
NA  
I
Z
Z
Z
0
I
I
NA  
NA  
NA  
0
VDDS  
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
Yes  
NA  
4
NA  
NA  
NA  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
sys_xtalin  
sys_xtalout  
sys_clkreq  
gpio_1  
I
O
IO  
IO  
O
1
PU/  
PD  
safe_mode  
sys_nirq  
AF26  
NA  
I
H
H
7
VDDS  
Yes  
4
PU/  
PD  
LVCMOS  
gpio_0  
IO  
safe_mode  
AH25  
AF24  
NA  
NA  
sys_  
nrespwron  
I
Z
0
I
NA  
0
VDDS  
VDDS  
Yes  
Yes  
NA  
4
NA  
LVCMOS  
LVCMOS  
sys_  
nreswarm  
0
IOD  
IO  
1 (PU)  
PU/  
PD  
gpio_30  
safe_mode  
sys_boot0  
gpio_2  
4
7
0
4
AH26  
NA  
I
Z
Z
0
VDDS  
Yes  
4
PU/  
PD  
LVCMOS  
IO  
30  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-1. Ball Characteristics (CBB Pkg.)(1) (continued)  
BALL  
BALL  
PIN  
MODE TYPE BALL  
BALL RESET POWER [9] HYS  
BUFFER  
PULL  
IO  
BOTTOM TOP  
NAME [3]  
[4]  
[5]  
RESET RESET  
REL.  
MODE  
[8]  
[10] STRENGTH  
(mA) [11]  
U/D CELL [13]  
TYPE  
[12]  
[1]  
[2]  
STATE  
[6]  
REL.  
STATE  
[7]  
safe_mode  
sys_boot1  
gpio_3  
7
0
4
7
0
4
7
0
4
7
0
1
AG26  
AE14  
AF18  
AF19  
NA  
NA  
NA  
NA  
I
Z
Z
Z
Z
Z
Z
Z
Z
0
0
0
0
VDDS  
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
Yes  
4
4
4
4
PU/  
PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
IO  
safe_mode  
sys_boot2  
gpio_4  
I
PU/  
PD  
IO  
safe_mode  
sys_boot3  
gpio_5  
I
PU/  
PD  
IO  
safe_mode  
sys_boot4  
I
PU/  
PD  
mmc2_dir_  
dat2  
O
gpio_6  
4
7
0
1
IO  
safe_mode  
sys_boot5  
AE21  
NA  
I
Z
Z
0
VDDS  
Yes  
4
PU/  
PD  
LVCMOS  
mmc2_dir_  
dat3  
O
gpio_7  
safe_mode  
sys_boot6  
gpio_8  
4
7
0
4
7
0
IO  
AF21  
AF22  
NA  
NA  
I
Z
0
Z
L
0
7
VDDS  
VDDS  
Yes  
Yes  
4
4
PU/  
PD  
LVCMOS  
LVCMOS  
IO  
safe_mode  
sys_off_  
mode  
O
PU/  
PD  
gpio_9  
4
7
0
4
7
0
4
7
0
IO  
safe_mode  
sys_clkout1  
gpio_10  
AG25  
AE22  
NA  
NA  
O
L
L
L
L
7
7
VDDS  
VDDS  
Yes  
Yes  
4
4
PU/  
PD  
LVCMOS  
LVCMOS  
IO  
safe_mode  
sys_clkout2  
gpio_186  
O
PU/  
PD  
IO  
safe_mode  
B1  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
sys_  
ipmcsws  
AI  
AO  
I
Z
0
AI  
AO  
L
NA  
NA  
0
VDDS  
VDDS  
VDDS  
VDDS  
VDDS  
VDDS  
VDDS  
NA  
No  
NA  
NA  
NA  
NA  
4
NA  
NA  
Analog  
A1  
sys_  
opmcsws  
0
0
0
0
0
0
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
AA17  
AA13  
AA12  
AA18  
AA20  
jtag_ntrst  
jtag_tck  
jtag_rtck  
L
Yes  
Yes  
Yes  
Yes  
Yes  
PU/  
PD  
I
L
L
0
PU/  
PD  
O
IO  
I
L
0
0
PU/  
PD  
jtag_tms_tm  
sc  
H
H
H
0
4
PU/  
PD  
jtag_tdi  
H
0
NA  
PU/  
PD  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
31  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-1. Ball Characteristics (CBB Pkg.)(1) (continued)  
BALL  
BOTTOM TOP  
BALL  
PIN  
NAME [3]  
MODE TYPE BALL  
BALL RESET POWER [9] HYS  
BUFFER  
PULL  
IO  
U/D CELL [13]  
TYPE  
[4]  
[5]  
RESET RESET  
REL.  
MODE  
[8]  
[10] STRENGTH  
(mA) [11]  
[1]  
[2]  
STATE  
[6]  
REL.  
STATE  
[7]  
[12]  
AA19  
AA11  
NA  
NA  
jtag_tdo  
0
O
L
Z
0
0
VDDS  
VDDS  
Yes  
Yes  
4
4
PU/  
PD  
LVCMOS  
LVCMOS  
jtag_emu0  
gpio_11  
0
4
7
0
4
7
0
1
IO  
IO  
H
H
PU/  
PD  
safe_mode  
jtag_emu1  
gpio_31  
AA10  
AF10  
NA  
NA  
IO  
IO  
H
H
H
H
0
4
VDDS  
VDDS  
Yes  
Yes  
4
4
PU/  
PD  
LVCMOS  
LVCMOS  
safe_mode  
etk_clk  
O
PU/  
PD  
mcbsp5_  
clkx  
IO  
mmc3_clk  
hsusb1_stp  
gpio_12  
2
3
4
5
6
O
O
IO  
IO  
I
mm1_rxdp  
hsusb1_tll_  
stp  
AE10  
AF11  
NA  
NA  
etk_ctl  
0
2
3
4
6
O
IO  
O
H
H
H
H
4
4
VDDS  
VDDS  
Yes  
Yes  
4
4
PU/  
PD  
LVCMOS  
LVCMOS  
mmc3_cmd  
hsusb1_clk  
gpio_13  
IO  
O
hsusb1_tll_  
clk  
etk_d0  
0
1
O
PU/  
PD  
mcspi3_  
simo  
IO  
mmc3_dat4  
2
3
IO  
IO  
hsusb1_  
data0  
gpio_14  
4
5
6
IO  
IO  
IO  
mm1_rxrcv  
hsusb1_tll_  
data0  
AG12  
NA  
etk_d1  
0
1
O
H
H
4
VDDS  
Yes  
4
PU/  
PD  
LVCMOS  
mcspi3_  
somi  
IO  
hsusb1_  
data1  
3
IO  
gpio_15  
4
5
6
IO  
IO  
IO  
mm1_txse0  
hsusb1_tll_  
data1  
32  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-1. Ball Characteristics (CBB Pkg.)(1) (continued)  
BALL  
BALL  
PIN  
MODE TYPE BALL  
BALL RESET POWER [9] HYS  
BUFFER  
PULL  
IO  
BOTTOM TOP  
NAME [3]  
[4]  
[5]  
RESET RESET  
REL.  
MODE  
[8]  
[10] STRENGTH  
(mA) [11]  
U/D CELL [13]  
TYPE  
[12]  
[1]  
[2]  
STATE  
[6]  
REL.  
STATE  
[7]  
AH12  
NA  
etk_d2  
0
1
3
O
H
H
L
L
L
L
H
H
L
L
L
L
4
4
4
4
4
4
VDDS  
VDDS  
VDDS  
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
4
4
4
4
4
4
PU/  
PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
mcspi3_cs0  
IO  
IO  
hsusb1_  
data2  
gpio_16  
4
5
6
IO  
IO  
IO  
mm1_txdat  
hsusb1_tll_  
data2  
AE13  
AE11  
AH9  
NA  
NA  
NA  
NA  
NA  
etk_d3  
0
1
2
3
O
PU/  
PD  
mcspi3_clk  
mmc3_dat3  
IO  
IO  
IO  
hsusb1_  
data7  
gpio_17  
4
6
IO  
IO  
hsusb1_tll_  
data7  
etk_d4  
0
1
2
3
O
I
PU/  
PD  
mcbsp5_dr  
mmc3_dat0  
IO  
IO  
hsusb1_  
data4  
gpio_18  
4
6
IO  
IO  
hsusb1_tll_  
data4  
etk_d5  
0
1
2
3
O
PU/  
PD  
mcbsp5_fsx  
mmc3_dat1  
IO  
IO  
IO  
hsusb1_  
data5  
gpio_19  
4
6
IO  
IO  
hsusb1_tll_  
data5  
AF13  
etk_d6  
0
1
2
3
O
PU/  
PD  
mcbsp5_dx  
mmc3_dat2  
IO  
IO  
IO  
hsusb1_  
data6  
gpio_20  
4
6
IO  
IO  
hsusb1_tll_  
data6  
AH14  
etk_d7  
0
1
2
3
O
O
PU/  
PD  
mcspi3_cs1  
mmc3_dat7  
IO  
IO  
hsusb1_  
data3  
gpio_21  
4
5
IO  
IO  
mm1_txen_  
n
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
33  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-1. Ball Characteristics (CBB Pkg.)(1) (continued)  
BALL  
BOTTOM TOP  
BALL  
PIN  
NAME [3]  
MODE TYPE BALL  
BALL RESET POWER [9] HYS  
BUFFER  
PULL  
IO  
U/D CELL [13]  
TYPE  
[4]  
[5]  
RESET RESET  
REL.  
MODE  
[8]  
[10] STRENGTH  
(mA) [11]  
[1]  
[2]  
STATE  
[6]  
REL.  
STATE  
[7]  
[12]  
hsusb1_tll_  
data3  
6
IO  
AF9  
NA  
etk_d8  
0
1
O
O
L
L
4
VDDS  
Yes  
4
PU/  
PD  
LVCMOS  
sys_drm_  
msecure  
mmc3_dat6  
hsusb1_dir  
gpio_22  
2
3
4
6
IO  
I
IO  
O
hsusb1_tll_  
dir  
AG9  
NA  
etk_d9  
0
1
O
O
L
L
4
VDDS  
Yes  
4
PU/  
PD  
LVCMOS  
sys_secure  
_indicator  
mmc3_dat5  
hsusb1_nxt  
gpio_23  
2
3
4
5
6
IO  
I
IO  
IO  
O
mm1_rxdm  
hsusb1_tll_  
nxt  
AE7  
AF7  
NA  
NA  
etk_d10  
uart1_rx  
0
2
3
4
6
O
I
L
L
L
L
4
4
VDDS  
VDDS  
Yes  
Yes  
4
4
PU/  
PD  
LVCMOS  
LVCMOS  
hsusb2_clk  
gpio_24  
O
IO  
O
hsusb2_tll_  
clk  
etk_d11  
hsusb2_stp  
gpio_25  
0
3
4
5
6
O
O
IO  
IO  
I
PU/  
PD  
mm2_rxdp  
hsusb2_tll_  
stp  
AG7  
AH7  
NA  
NA  
etk_d12  
hsusb2_dir  
gpio_26  
0
3
4
6
O
I
L
L
L
L
4
4
VDDS  
VDDS  
Yes  
Yes  
4
4
PU/  
PD  
LVCMOS  
LVCMOS  
IO  
O
hsusb2_tll_  
dir  
etk_d13  
hsusb2_nxt  
gpio_27  
0
3
4
5
6
O
I
PU/  
PD  
IO  
IO  
O
mm2_rxdm  
hsusb2_tll_  
nxt  
34  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-1. Ball Characteristics (CBB Pkg.)(1) (continued)  
BALL  
BALL  
PIN  
MODE TYPE BALL  
BALL RESET POWER [9] HYS  
BUFFER  
PULL  
IO  
BOTTOM TOP  
NAME [3]  
[4]  
[5]  
RESET RESET  
REL.  
MODE  
[8]  
[10] STRENGTH  
(mA) [11]  
U/D CELL [13]  
TYPE  
[12]  
[1]  
[2]  
STATE  
[6]  
REL.  
STATE  
[7]  
AG8  
NA  
etk_d14  
0
3
O
L
L
4
VDDS  
Yes  
4
PU/  
PD  
LVCMOS  
hsusb2_  
data0  
IO  
gpio_28  
4
5
6
IO  
IO  
IO  
mm2_rxrcv  
hsusb2_tll_  
data0  
AH8  
NA  
etk_d15  
0
3
O
L
L
4
VDDS  
Yes  
4
PU/  
PD  
LVCMOS  
hsusb2_  
data1  
IO  
gpio_29  
4
5
6
IO  
IO  
IO  
mm2_txse0  
hsusb2_tll_  
data1  
(1) NA in this table stands for Not Applicable.  
(2) The buffer strength of this IO cell is programmable (2, 4, 6, or 8 mA) according to the selected mode; the default value is described in  
the above table.  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
35  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-2. Ball Characteristics (CUS Pkg.)(1)  
BALL  
BOTTOM  
[1]  
PIN  
NAME [3]  
MODE TYPE  
BALL  
RESET RESET  
STATE  
[6]  
BALL RESET  
POWER [9]  
HYS  
[10]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
U/D  
TYPE  
[12]  
IO  
[4]  
[5]  
REL.  
MODE  
[8]  
CELL [13]  
REL.  
STATE  
[7]  
D7  
C5  
sdrc_d0  
sdrc_d1  
sdrc_d2  
sdrc_d3  
sdrc_d4  
sdrc_d5  
sdrc_d6  
sdrc_d7  
sdrc_d8  
sdrc_d9  
sdrc_d10  
sdrc_d11  
sdrc_d12  
sdrc_d13  
sdrc_d14  
sdrc_d15  
sdrc_d16  
sdrc_d17  
sdrc_d18  
sdrc_d19  
sdrc_d20  
sdrc_d21  
sdrc_d22  
sdrc_d23  
sdrc_d24  
sdrc_d25  
sdrc_d26  
sdrc_d27  
sdrc_d28  
sdrc_d29  
sdrc_d30  
sdrc_d31  
sdrc_ba0  
sdrc_ba1  
sdrc_a0  
sdrc_a1  
sdrc_a2  
sdrc_a3  
sdrc_a4  
sdrc_a5  
sdrc_a6  
sdrc_a7  
sdrc_a8  
sdrc_a9  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
O
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
0
0
0
0
0
0
0
0
0
0
0
0
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
NA  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
C6  
B5  
D9  
D10  
C7  
B7  
B11  
C12  
B12  
D13  
C13  
B14  
A14  
B15  
C9  
E12  
B8  
B9  
C10  
B10  
D12  
E13  
E15  
D15  
C15  
B16  
C16  
D16  
B17  
B18  
C18  
D18  
A4  
O
No  
NA  
O
No  
NA  
B4  
O
No  
NA  
D6  
O
No  
NA  
B3  
O
No  
NA  
B2  
O
No  
NA  
C3  
O
No  
NA  
E3  
O
No  
NA  
F6  
O
No  
NA  
E10  
E9  
O
No  
NA  
O
No  
NA  
36  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-2. Ball Characteristics (CUS Pkg.)(1) (continued)  
BALL  
BOTTOM  
[1]  
PIN  
NAME [3]  
MODE TYPE  
BALL  
RESET RESET  
STATE  
[6]  
BALL RESET  
POWER [9]  
HYS  
[10]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
U/D  
TYPE  
[12]  
IO  
[4]  
[5]  
REL.  
MODE  
[8]  
CELL [13]  
REL.  
STATE  
[7]  
E7  
G6  
sdrc_a10  
sdrc_a11  
sdrc_a12  
sdrc_a13  
sdrc_a14  
sdrc_ncs0  
sdrc_ncs1  
sdrc_clk  
0
0
0
0
0
0
0
0
0
0
7
0
7
0
0
0
0
0
0
0
0
0
0
0
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
4
O
O
O
O
O
O
O
IO  
O
O
0
0
0
0
0
1
1
L
1
H
0
0
0
0
0
1
1
0
1
1
0
0
0
0
0
0
0
0
0
7
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
No  
No  
No  
No  
No  
No  
No  
Yes  
No  
Yes  
4
4
4
4
4
4
4
4
4
4
NA  
NA  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
G7  
NA  
F7  
NA  
F9  
NA  
A19  
B19  
A10  
A11  
B20  
NA  
NA  
PU/ PD  
NA  
sdrc_nclk  
sdrc_cke0  
safe_mode  
sdrc_cke1  
safe_mode  
sdrc_nras  
sdrc_ncas  
sdrc_nwe  
sdrc_dm0  
sdrc_dm1  
sdrc_dm2  
sdrc_dm3  
sdrc_dqs0  
sdrc_dqs1  
sdrc_dqs2  
sdrc_dqs3  
gpmc_a1  
gpio_34  
PU/ PD  
C20  
O
H
1
7
VDDS_ MEM  
Yes  
4
PU/ PD  
LVCMOS  
D19  
C19  
A20  
B6  
O
O
1
1
1
0
0
0
0
L
L
L
L
L
1
1
1
0
0
0
0
Z
Z
Z
Z
L
0
0
0
0
0
0
0
0
0
0
0
7
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
No  
No  
4
4
4
4
4
4
4
4
4
4
4
4
NA  
NA  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
O
No  
NA  
O
No  
NA  
B13  
A7  
O
No  
NA  
O
No  
NA  
A16  
A5  
O
No  
NA  
IO  
IO  
IO  
IO  
O
Yes  
Yes  
Yes  
Yes  
Yes  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
A13  
A8  
A17  
K4  
IO  
safe_mode  
gpmc_a2  
gpio_35  
K3  
K2  
J4  
J3  
J2  
J1  
O
L
L
L
L
7
7
7
7
7
7
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
4
4
4
4
4
4
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
IO  
safe_mode  
gpmc_a3  
gpio_36  
O
IO  
safe_mode  
gpmc_a4  
gpio_37  
O
L
L
IO  
safe_mode  
gpmc_a5  
gpio_38  
O
L
L
IO  
safe_mode  
gpmc_a6  
gpio_39  
O
H
H
H
H
IO  
safe_mode  
gpmc_a7  
gpio_40  
O
IO  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
37  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-2. Ball Characteristics (CUS Pkg.)(1) (continued)  
BALL  
BOTTOM  
[1]  
PIN  
NAME [3]  
MODE TYPE  
BALL  
RESET RESET  
STATE  
[6]  
BALL RESET  
POWER [9]  
HYS  
[10]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
U/D  
TYPE  
[12]  
IO  
[4]  
[5]  
REL.  
MODE  
[8]  
CELL [13]  
REL.  
STATE  
[7]  
safe_mode  
gpmc_a8  
gpio_41  
7
0
4
7
0
1
H1  
H2  
O
H
H
H
H
7
7
VDDS_ MEM  
VDDS_ MEM  
Yes  
Yes  
4
4
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
IO  
safe_mode  
gpmc_a9  
O
I
sys_  
ndmareq2  
gpio_42  
safe_mode  
gpmc_a10  
4
7
0
1
IO  
G2  
O
I
H
H
7
VDDS_ MEM  
Yes  
4
PU/ PD  
LVCMOS  
sys_  
ndmareq3  
gpio_43  
safe_mode  
gpmc_d0  
gpmc_d1  
gpmc_d2  
gpmc_d3  
gpmc_d4  
gpmc_d5  
gpmc_d6  
gpmc_d7  
gpmc_d8  
gpio_44  
4
7
0
0
0
0
0
0
0
0
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
4
IO  
L2  
M1  
M2  
N2  
M3  
P1  
P2  
R1  
R2  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
0
0
0
0
0
0
0
0
0
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
4
4
4
4
4
4
4
4
4
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
safe_mode  
gpmc_d9  
gpio_45  
T2  
U1  
R3  
T3  
U2  
V1  
V2  
IO  
IO  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
0
0
0
0
0
0
0
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
4
4
4
4
4
4
4
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
safe_mode  
gpmc_d10  
gpio_46  
IO  
IO  
safe_mode  
gpmc_d11  
gpio_47  
IO  
IO  
safe_mode  
gpmc_d12  
gpio_48  
IO  
IO  
safe_mode  
gpmc_d13  
gpio_49  
IO  
IO  
safe_mode  
gpmc_d14  
gpio_50  
IO  
IO  
safe_mode  
gpmc_d15  
gpio_51  
IO  
IO  
38  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-2. Ball Characteristics (CUS Pkg.)(1) (continued)  
BALL  
BOTTOM  
[1]  
PIN  
NAME [3]  
MODE TYPE  
BALL  
RESET RESET  
STATE  
[6]  
BALL RESET  
POWER [9]  
HYS  
[10]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
U/D  
TYPE  
[12]  
IO  
[4]  
[5]  
REL.  
MODE  
[8]  
CELL [13]  
REL.  
STATE  
[7]  
safe_mode  
gpmc_ncs0  
gpmc_ncs3  
7
0
0
1
E2  
D2  
O
O
I
1
1
0
7
VDDS_ MEM  
VDDS_ MEM  
No  
4
4
NA  
LVCMOS  
LVCMOS  
H
H
Yes  
PU/ PD  
sys_  
ndmareq0  
gpio_54  
4
7
0
1
IO  
safe_mode  
gpmc_ncs4  
F4  
O
I
H
H
7
VDDS_ MEM  
Yes  
4
PU/ PD  
LVCMOS  
sys_  
ndmareq1  
mcbsp4_  
clkx  
2
3
IO  
IO  
IO  
gpt9_pwm_  
evt  
gpio_55  
4
7
0
1
safe_mode  
gpmc_ncs5  
G5  
F3  
G4  
O
I
H
H
H
H
H
H
7
7
7
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
Yes  
Yes  
Yes  
4
4
4
PU/ PD  
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
LVCMOS  
sys_  
ndmareq2  
mcbsp4_dr  
2
3
I
gpt10_pwm  
_evt  
IO  
gpio_56  
4
7
0
1
IO  
safe_mode  
gpmc_ncs6  
O
I
sys_  
ndmareq3  
mcbsp4_dx  
2
3
IO  
IO  
gpt11_pwm  
_evt  
gpio_57  
4
7
0
1
2
3
IO  
safe_mode  
gpmc_ncs7  
gpmc_io_dir  
mcbsp4_fsx  
O
O
IO  
IO  
gpt8_pwm_  
evt  
gpio_58  
safe_mode  
gpmc_clk  
gpio_59  
4
7
0
4
7
0
IO  
W2  
F1  
O
L
0
0
0
0
0
VDDS_ MEM  
VDDS_ MEM  
Yes  
No  
4
4
PU/ PD  
NA  
LVCMOS  
LVCMOS  
IO  
safe_mode  
gpmc_nadv  
_ale  
O
F2  
gpmc_noe  
gpmc_nwe  
0
0
O
O
1
1
1
1
0
0
VDDS_ MEM  
VDDS_ MEM  
No  
No  
4
4
NA  
NA  
LVCMOS  
LVCMOS  
G3  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
39  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-2. Ball Characteristics (CUS Pkg.)(1) (continued)  
BALL  
BOTTOM  
[1]  
PIN  
NAME [3]  
MODE TYPE  
BALL  
RESET RESET  
STATE  
[6]  
BALL RESET  
POWER [9]  
HYS  
[10]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
U/D  
TYPE  
[12]  
IO  
[4]  
[5]  
REL.  
MODE  
[8]  
CELL [13]  
REL.  
STATE  
[7]  
K5  
gpmc_nbe0  
_cle  
0
O
L
0
0
VDDS_ MEM  
Yes  
4
PU/ PD  
LVCMOS  
gpio_60  
safe_mode  
gpmc_nbe1  
gpio_61  
4
7
0
4
7
0
4
7
0
0
1
IO  
L1  
E1  
O
L
L
L
0
7
0
VDDS_ MEM  
VDDS_ MEM  
Yes  
Yes  
4
4
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
IO  
safe_mode  
gpmc_nwp  
gpio_62  
O
IO  
safe_mode  
gpmc_wait0  
gpmc_wait3  
C1  
C2  
I
I
I
H
H
H
H
0
7
VDDS_ MEM  
VDDS_ MEM  
Yes  
Yes  
NA  
4
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
sys_  
ndmareq1  
gpio_65  
safe_mode  
dss_pclk  
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
IO  
G22  
E22  
O
H
H
H
L
H
H
H
L
7
7
7
7
7
VDDS  
VDDS  
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
Yes  
No  
4
4
4
8
4
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
gpio_66  
IO  
safe_mode  
dss_hsync  
gpio_67  
O
IO  
safe_mode  
dss_vsync  
gpio_68  
F22  
O
IO  
safe_mode  
dss_acbias  
gpio_69  
J21  
O
IO  
safe_mode  
dss_data0  
AC19  
IO  
L
L
LVDS/  
CMOS  
uart1_cts  
gpio_70  
2
4
7
0
I
IO  
safe_mode  
dss_data1  
AB19  
IO  
L
L
7
VDDS  
No  
4
PU/ PD  
LVDS/  
CMOS  
uart1_rts  
gpio_71  
2
4
7
0
O
IO  
safe_mode  
dss_data2  
AD20  
AC20  
IO  
IO  
L
L
L
L
7
7
VDDS  
VDDS  
No  
No  
4
4
PU/ PD  
PU/ PD  
LVDS/  
CMOS  
gpio_72  
safe_mode  
dss_data3  
4
7
0
IO  
IO  
LVDS/  
CMOS  
gpio_73  
4
7
safe_mode  
40  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-2. Ball Characteristics (CUS Pkg.)(1) (continued)  
BALL  
BOTTOM  
[1]  
PIN  
NAME [3]  
MODE TYPE  
BALL  
RESET RESET  
STATE  
[6]  
BALL RESET  
POWER [9]  
HYS  
[10]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
U/D  
TYPE  
[12]  
IO  
[4]  
[5]  
REL.  
MODE  
[8]  
CELL [13]  
REL.  
STATE  
[7]  
AD21  
AC21  
dss_data4  
0
2
IO  
I
L
L
7
7
VDDS  
No  
No  
4
4
PU/ PD  
PU/ PD  
LVDS/  
CMOS  
uart3_rx_  
irrx  
gpio_74  
safe_mode  
dss_data5  
4
7
0
IO  
IO  
O
L
L
VDDS  
LVDS/  
CMOS  
uart3_tx_  
irtx  
2
gpio_75  
safe_mode  
dss_data6  
uart1_tx  
4
7
0
2
4
7
0
2
4
7
0
4
7
0
4
7
0
IO  
D24  
E23  
IO  
O
L
L
L
L
7
7
VDDS  
VDDS  
Yes  
Yes  
8
8
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
gpio_76  
IO  
safe_mode  
dss_data7  
uart1_rx  
IO  
I
gpio_77  
IO  
safe_mode  
dss_data8  
gpio_78  
E24  
F23  
IO  
IO  
L
L
L
L
L
L
7
7
7
VDDS  
VDDS  
VDDS  
Yes  
Yes  
NA  
8
8
4
PU/ PD  
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
safe_mode  
dss_data9  
gpio_79  
IO  
IO  
safe_mode  
dss_data10  
AC22  
IO  
IO  
LVDS/  
CMOS  
gpio_80  
4
7
0
safe_mode  
dss_data11  
AC23  
AB22  
Y22  
IO  
IO  
L
L
L
L
L
L
L
L
7
7
7
7
VDDS  
VDDS  
VDDS  
VDDS  
NA  
NA  
NA  
NA  
4
4
4
4
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
LVDS/  
CMOS  
gpio_81  
4
7
0
safe_mode  
dss_data12  
IO  
IO  
LVDS/  
CMOS  
gpio_82  
4
7
0
safe_mode  
dss_data13  
IO  
IO  
LVDS/  
CMOS  
gpio_83  
4
7
0
safe_mode  
dss_data14  
W22  
IO  
IO  
LVDS/  
CMOS  
gpio_84  
4
7
safe_mode  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
41  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-2. Ball Characteristics (CUS Pkg.)(1) (continued)  
BALL  
BOTTOM  
[1]  
PIN  
NAME [3]  
MODE TYPE  
BALL  
RESET RESET  
STATE  
[6]  
BALL RESET  
POWER [9]  
HYS  
[10]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
U/D  
TYPE  
[12]  
IO  
[4]  
[5]  
REL.  
MODE  
[8]  
CELL [13]  
REL.  
STATE  
[7]  
V22  
dss_data15  
0
IO  
IO  
L
L
7
VDDS  
NA  
4
PU/ PD  
LVDS/  
CMOS  
gpio_85  
safe_mode  
dss_data16  
gpio_86  
4
7
0
4
7
0
4
7
0
2
3
4
7
0
2
J22  
G23  
G24  
IO  
IO  
L
L
L
L
L
L
7
7
7
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
8
8
8
PU/ PD  
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
LVCMOS  
safe_mode  
dss_data17  
gpio_87  
IO  
IO  
safe_mode  
dss_data18  
mcspi3_clk  
dss_data0  
gpio_88  
IO  
IO  
IO  
IO  
safe_mode  
dss_data19  
H23  
D23  
IO  
IO  
L
L
7
7
VDDS  
VDDS  
Yes  
Yes  
8
4
PU/ PD  
LVCMOS  
LVCMOS  
LVCMOS  
mcspi3_  
simo  
dss_data1  
gpio_89  
3
4
7
0
2
IO  
IO  
safe_mode  
dss_data20  
O
H
H
PU/ PD  
mcspi3_  
somi  
IO  
dss_data2  
gpio_90  
3
4
7
0
2
3
4
7
0
IO  
IO  
safe_mode  
dss_data21  
mcspi3_cs0  
dss_data3  
gpio_91  
K22  
V21  
O
L
L
L
L
7
7
VDDS  
VDDS  
Yes  
NA  
8
4
PU/ PD  
PU/ PD  
IO  
IO  
IO  
safe_mode  
dss_data22  
O
LVDS/  
CMOS  
mcspi3_cs1  
dss_data4  
gpio_92  
2
3
4
7
0
O
IO  
IO  
safe_mode  
dss_data23  
W21  
O
L
L
7
VDDS  
NA  
4
PU/ PD  
LVDS/  
CMOS  
dss_data5  
gpio_93  
safe_mode  
tv_out2  
3
4
7
0
0
0
IO  
IO  
AA23  
AB24  
AB23  
O
O
O
Z
Z
Z
0
0
0
0
0
VDDADAC  
VDDADAC  
VDDADAC  
8
8
NA  
NA  
NA  
10-bit DAC  
10-bit DAC  
10-bit DAC  
tv_out1  
tv_vfb1  
NA  
42  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-2. Ball Characteristics (CUS Pkg.)(1) (continued)  
BALL  
BOTTOM  
[1]  
PIN  
NAME [3]  
MODE TYPE  
BALL  
RESET RESET  
STATE  
[6]  
BALL RESET  
POWER [9]  
HYS  
[10]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
U/D  
TYPE  
[12]  
IO  
[4]  
[5]  
REL.  
MODE  
[8]  
CELL [13]  
REL.  
STATE  
[7]  
Y23  
Y24  
A22  
tv_vfb2  
tv_vref  
0
0
0
4
7
0
4
7
0
4
7
0
4
7
0
2
O
I
Z
Z
L
NA  
NA  
L
0
0
7
VDDADAC  
VDDADAC  
VDDS  
NA  
NA  
10-bit DAC  
10-bit DAC  
LVCMOS  
cam_hs  
IO  
IO  
Yes  
Yes  
Yes  
Yes  
Yes  
4
4
4
4
4
PU/ PD  
gpio_94  
safe_mode  
cam_vs  
E18  
B22  
J19  
H24  
IO  
IO  
L
L
L
L
L
L
L
L
7
7
7
7
VDDS  
VDDS  
VDDS  
VDDS  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
gpio_95  
safe_mode  
cam_ xclka  
gpio_96  
O
IO  
safe_mode  
cam_pclk  
gpio_97  
I
IO  
safe_mode  
cam_fld  
IO  
IO  
cam_global  
_reset  
gpio_98  
safe_mode  
cam_d0  
4
7
0
IO  
AB18  
AC18  
I
I
L
L
L
L
7
7
VDDS  
VDDS  
Yes  
Yes  
4
4
PD  
PD  
LVDS/  
CMOS  
gpio_99  
safe_mode  
cam_d1  
4
7
0
I
I
LVDS/  
CMOS  
gpio_100  
safe_mode  
cam_d2  
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
G19  
F19  
G20  
B21  
L24  
K24  
I
L
L
L
L
L
L
L
L
L
L
L
L
7
7
7
7
7
7
VDDS  
VDDS  
VDDS  
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
Yes  
NA  
4
4
4
4
4
4
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
gpio_101  
safe_mode  
cam_d3  
IO  
I
gpio_102  
safe_mode  
cam_d4  
IO  
I
gpio_103  
safe_mode  
cam_d5  
IO  
I
gpio_104  
safe_mode  
cam_d6  
IO  
I
LVDS/  
CMOS  
gpio_105  
safe_mode  
cam_d7  
IO  
I
NA  
PD  
LVDS/  
CMOS  
gpio_106  
safe_mode  
IO  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
43  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-2. Ball Characteristics (CUS Pkg.)(1) (continued)  
BALL  
BOTTOM  
[1]  
PIN  
NAME [3]  
MODE TYPE  
BALL  
RESET RESET  
STATE  
[6]  
BALL RESET  
POWER [9]  
HYS  
[10]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
U/D  
TYPE  
[12]  
IO  
[4]  
[5]  
REL.  
MODE  
[8]  
CELL [13]  
REL.  
STATE  
[7]  
J23  
K23  
F21  
G21  
C22  
F18  
cam_d8  
gpio_107  
safe_mode  
cam_d9  
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
2
I
L
L
L
L
L
L
L
L
L
L
L
L
7
7
7
7
7
7
VDDS  
VDDS  
VDDS  
VDDS  
VDDS  
VDDS  
NA  
NA  
4
4
4
4
4
4
PD  
LVDS/  
CMOS  
IO  
I
PD  
LVDS/  
CMOS  
gpio_108  
safe_mode  
cam_d10  
gpio_109  
safe_mode  
cam_d11  
gpio_110  
safe_mode  
cam_ xclkb  
gpio_111  
safe_mode  
cam_wen  
IO  
I
Yes  
Yes  
Yes  
Yes  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
IO  
I
IO  
O
IO  
I
cam_  
O
shutter  
gpio_167  
safe_mode  
cam_ strobe  
gpio_126  
4
7
0
4
7
0
4
7
0
IO  
J20  
V20  
T21  
O
L
L
L
L
7
7
7
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
4
PU/ PD  
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
LVCMOS  
IO  
safe_mode  
mcbsp2_fsx  
gpio_116  
IO  
IO  
PGM  
PGM  
4(2)  
safe_mode  
mcbsp2_  
clkx  
IO  
IO  
4(2)  
gpio_117  
safe_mode  
mcbsp2_dr  
gpio_118  
safe_mode  
mcbsp2_dx  
gpio_119  
safe_mode  
mmc1_clk  
ms_clk  
4
7
0
4
7
0
4
7
0
1
4
7
0
1
4
7
V19  
R20  
M23  
I
PGM  
PGM  
L
L
L
L
7
7
7
VDDS  
VDDS  
Yes  
Yes  
4(2)  
4(2)  
8
PU/ PD  
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
LVCMOS  
IO  
IO  
IO  
O
O
MMC1_ VDDS Yes  
MMC1_ VDDS Yes  
gpio_120  
safe_mode  
mmc1_cmd  
ms_bs  
IO  
L23  
IO  
O
L
L
7
8
PU/ PD  
LVCMOS  
gpio_121  
safe_mode  
IO  
44  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-2. Ball Characteristics (CUS Pkg.)(1) (continued)  
BALL  
BOTTOM  
[1]  
PIN  
NAME [3]  
MODE TYPE  
BALL  
RESET RESET  
STATE  
[6]  
BALL RESET  
POWER [9]  
HYS  
[10]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
U/D  
TYPE  
[12]  
IO  
[4]  
[5]  
REL.  
MODE  
[8]  
CELL [13]  
REL.  
STATE  
[7]  
M22  
M21  
M20  
N23  
mmc1_dat0  
ms_dat0  
0
1
4
7
0
1
4
7
0
1
4
7
0
1
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
1
4
7
0
1
IO  
IO  
IO  
L
L
L
L
L
L
L
L
7
7
7
7
MMC1_ VDDS Yes  
MMC1_ VDDS Yes  
MMC1_ VDDS Yes  
MMC1_ VDDS Yes  
8
8
8
8
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
gpio_122  
safe_mode  
mmc1_dat1  
ms_dat1  
IO  
IO  
IO  
gpio_123  
safe_mode  
mmc1_dat2  
ms_dat2  
IO  
IO  
IO  
gpio_124  
safe_mode  
mmc1_dat3  
ms_dat3  
IO  
IO  
IO  
gpio_125  
safe_mode  
mmc1_dat4  
gpio_126  
N22  
N21  
N20  
P24  
Y1  
IO  
IO  
L
L
L
L
L
L
L
L
L
L
7
7
7
7
7
VDDS  
VDDS  
VDDS  
VDDS  
VDDS  
No  
No  
8
8
8
8
4
PD  
PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
safe_mode  
mmc1_dat5  
gpio_127  
IO  
IO  
safe_mode  
mmc1_dat6  
gpio_128  
IO  
IO  
No  
PD  
safe_mode  
mmc1_dat7  
gpio_129  
IO  
IO  
No  
PD  
safe_mode  
mmc2_clk  
mcspi3_clk  
gpio_130  
O
Yes  
PU/ PD  
IO  
IO  
safe_mode  
mmc2_ cmd  
AB5  
AB3  
Y3  
IO  
IO  
H
H
H
H
H
H
7
7
7
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
4
4
4
PU/ PD  
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
LVCMOS  
mcspi3_  
simo  
gpio_131  
safe_mode  
mmc2_ dat0  
4
7
0
1
IO  
IO  
IO  
mcspi3_  
somi  
gpio_132  
safe_mode  
mmc2_ dat1  
gpio_133  
4
7
0
4
7
IO  
IO  
IO  
safe_mode  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
45  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-2. Ball Characteristics (CUS Pkg.)(1) (continued)  
BALL  
BOTTOM  
[1]  
PIN  
NAME [3]  
MODE TYPE  
BALL  
RESET RESET  
STATE  
[6]  
BALL RESET  
POWER [9]  
HYS  
[10]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
U/D  
TYPE  
[12]  
IO  
[4]  
[5]  
REL.  
MODE  
[8]  
CELL [13]  
REL.  
STATE  
[7]  
W3  
V3  
mmc2_ dat2  
mcspi3_cs1  
gpio_134  
0
1
4
7
0
1
4
7
0
1
IO  
O
H
H
L
H
H
L
7
7
7
VDDS  
Yes  
Yes  
Yes  
4
4
4
PU/ PD  
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
LVCMOS  
IO  
safe_mode  
mmc2_ dat3  
mcspi3_cs0  
gpio_135  
IO  
IO  
IO  
VDDS  
VDDS  
safe_mode  
mmc2_ dat4  
AB2  
IO  
O
mmc2_dir_d  
at0  
mmc3_dat0  
gpio_136  
3
4
7
0
1
IO  
IO  
safe_mode  
mmc2_ dat5  
AA2  
IO  
O
L
L
L
L
L
L
7
7
7
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
4
4
4
PU/ PD  
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
LVCMOS  
mmc2_dir_d  
at1  
cam_global  
_reset  
2
IO  
mmc3_dat1  
gpio_137  
3
4
7
0
1
IO  
IO  
safe_mode  
mmc2_ dat6  
Y2  
IO  
O
mmc2_dir_  
cmd  
cam_  
shutter  
2
O
mmc3_dat2  
gpio_138  
3
4
7
0
1
3
4
7
0
1
4
7
0
1
4
7
IO  
IO  
safe_mode  
mmc2_ dat7  
mmc2_ clkin  
mmc3_dat3  
gpio_139  
AA1  
IO  
I
IO  
IO  
safe_mode  
mcbsp3_dx  
uart2_cts  
V6  
V5  
IO  
I
L
L
L
L
7
7
VDDS  
VDDS  
Yes  
Yes  
4
4
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
gpio_140  
IO  
safe_mode  
mcbsp3_dr  
uart2_rts  
I
O
IO  
gpio_141  
safe_mode  
46  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-2. Ball Characteristics (CUS Pkg.)(1) (continued)  
BALL  
BOTTOM  
[1]  
PIN  
NAME [3]  
MODE TYPE  
BALL  
RESET RESET  
STATE  
[6]  
BALL RESET  
POWER [9]  
HYS  
[10]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
U/D  
TYPE  
[12]  
IO  
[4]  
[5]  
REL.  
MODE  
[8]  
CELL [13]  
REL.  
STATE  
[7]  
W4  
V4  
mcbsp3_  
clkx  
0
IO  
L
L
L
L
7
7
VDDS  
Yes  
Yes  
4
4
PU/ PD  
LVCMOS  
LVCMOS  
uart2_tx  
gpio_142  
safe_mode  
mcbsp3_fsx  
uart2_rx  
1
4
7
0
1
4
7
0
4
7
0
4
7
0
4
7
0
2
O
IO  
IO  
I
VDDS  
PU/ PD  
gpio_143  
safe_mode  
uart1_tx  
IO  
W7  
W6  
AC2  
V7  
O
L
L
L
L
L
L
L
L
7
7
7
7
VDDS  
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
Yes  
4
4
4
4
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
gpio_148  
safe_mode  
uart1_rts  
IO  
O
gpio_149  
safe_mode  
uart1_cts  
gpio_150  
safe_mode  
uart1_rx  
IO  
I
IO  
I
mcbsp1_  
clkr  
IO  
mcspi4_clk  
gpio_151  
3
4
7
0
IO  
IO  
safe_mode  
W19  
mcbsp1_  
clkr  
IO  
L
L
L
L
7
7
VDDS  
VDDS  
Yes  
Yes  
4
4
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
mcspi4_clk  
gpio_156  
1
4
7
0
1
IO  
IO  
safe_mode  
mcbsp1_fsr  
AB20  
IO  
I
adpllv2d_dit  
hering_en1  
cam_global  
_reset  
2
IO  
IO  
gpio_157  
safe_mode  
mcbsp1_dx  
4
7
0
1
W18  
IO  
IO  
L
L
L
L
7
7
VDDS  
VDDS  
Yes  
Yes  
4
4
PU/ PD  
LVCMOS  
LVCMOS  
mcspi4_  
simo  
mcbsp3_dx  
gpio_158  
2
4
7
0
1
IO  
IO  
safe_mode  
mcbsp1_dr  
Y18  
I
PU/ PD  
mcspi4_  
somi  
IO  
mcbsp3_dr  
2
O
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
47  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-2. Ball Characteristics (CUS Pkg.)(1) (continued)  
BALL  
BOTTOM  
[1]  
PIN  
NAME [3]  
MODE TYPE  
BALL  
RESET RESET  
STATE  
[6]  
BALL RESET  
POWER [9]  
HYS  
[10]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
U/D  
TYPE  
[12]  
IO  
[4]  
[5]  
REL.  
MODE  
[8]  
CELL [13]  
REL.  
STATE  
[7]  
gpio_159  
safe_mode  
mcbsp_clks  
4
7
0
2
IO  
AA18  
I
L
L
7
VDDS  
Yes  
4
PU/ PD  
LVCMOS  
cam_  
O
shutter  
gpio_160  
uart1_cts  
4
5
7
0
1
2
4
7
0
IO  
I
safe_mode  
mcbsp1_fsx  
mcspi4_cs0  
mcbsp3_fsx  
gpio_161  
AA19  
V18  
IO  
IO  
IO  
IO  
L
L
L
L
7
7
VDDS  
VDDS  
Yes  
Yes  
4
4
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
safe_mode  
mcbsp1_  
clkx  
IO  
IO  
IO  
mcbsp3_  
clkx  
2
gpio_162  
4
7
0
safe_mode  
A23  
B23  
B24  
C23  
uart3_cts_  
rctx  
IO  
IO  
H
H
H
H
H
H
H
H
7
7
7
7
VDDS  
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
Yes  
4
4
4
4
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
gpio_163  
4
7
0
safe_mode  
uart3_rts_  
sd  
O
gpio_164  
4
7
0
IO  
safe_mode  
uart3_rx_  
irrx  
I
gpio_165  
4
7
0
IO  
safe_mode  
uart3_tx_  
irtx  
O
gpio_166  
safe_mode  
hsusb0_clk  
gpio_120  
4
7
0
4
7
0
4
7
0
4
7
0
4
IO  
R21  
R23  
P23  
R22  
I
L
H
L
L
H
L
7
7
7
7
VDDS  
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
Yes  
4
4
4
4
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
IO  
safe_mode  
hsusb0_stp  
gpio_121  
O
IO  
safe_mode  
hsusb0_dir  
gpio_122  
I
IO  
safe_mode  
hsusb0_nxt  
gpio_124  
I
L
L
IO  
48  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-2. Ball Characteristics (CUS Pkg.)(1) (continued)  
BALL  
BOTTOM  
[1]  
PIN  
NAME [3]  
MODE TYPE  
BALL  
RESET RESET  
STATE  
[6]  
BALL RESET  
POWER [9]  
HYS  
[10]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
U/D  
TYPE  
[12]  
IO  
[4]  
[5]  
REL.  
MODE  
[8]  
CELL [13]  
REL.  
STATE  
[7]  
safe_mode  
7
0
T24  
T23  
U24  
U23  
hsusb0_  
data0  
IO  
O
L
L
L
L
L
L
L
L
7
7
7
7
VDDS  
Yes  
Yes  
Yes  
Yes  
4
4
4
4
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
uart3_tx_  
irtx  
2
gpio_125  
4
7
0
IO  
safe_mode  
hsusb0_  
data1  
IO  
I
VDDS  
VDDS  
VDDS  
uart3_rx_  
irrx  
2
gpio_130  
4
7
0
IO  
safe_mode  
hsusb0_  
data2  
IO  
O
uart3_rts_  
sd  
2
gpio_131  
4
7
0
IO  
safe_mode  
hsusb0_  
data3  
IO  
IO  
IO  
uart3_cts_  
rctx  
2
gpio_169  
4
7
0
safe_mode  
W24  
V23  
W23  
T22  
hsusb0_  
data4  
IO  
IO  
L
L
L
L
L
L
L
L
7
7
7
7
VDDS  
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
Yes  
4
4
4
4
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
gpio_188  
4
7
0
safe_mode  
hsusb0_  
data5  
IO  
IO  
gpio_189  
4
7
0
safe_mode  
hsusb0_  
data6  
IO  
IO  
gpio_190  
4
7
0
safe_mode  
hsusb0_  
data7  
IO  
IO  
gpio_191  
safe_mode  
i2c1_scl  
4
7
0
0
0
4
7
0
4
K20  
K21  
IOD  
IOD  
IOD  
IO  
H
H
H
H
H
H
0
0
7
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
4
4
4
PU/ PD Open Drain  
PU/ PD Open Drain  
PU/ PD Open Drain  
i2c1_sda  
i2c2_scl  
AC15  
gpio_168  
safe_mode  
i2c2_sda  
gpio_183  
AC14  
IOD  
IO  
H
H
7
VDDS  
Yes  
4
PU/ PD Open Drain  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
49  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-2. Ball Characteristics (CUS Pkg.)(1) (continued)  
BALL  
BOTTOM  
[1]  
PIN  
NAME [3]  
MODE TYPE  
BALL  
RESET RESET  
STATE  
[6]  
BALL RESET  
POWER [9]  
HYS  
[10]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
U/D  
TYPE  
[12]  
IO  
[4]  
[5]  
REL.  
MODE  
[8]  
CELL [13]  
REL.  
STATE  
[7]  
safe_mode  
i2c3_scl  
7
0
4
7
0
4
7
0
1
AC13  
AC12  
Y16  
IOD  
IO  
H
H
H
H
H
H
7
7
0
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
4
4
4
PU/ PD Open Drain  
PU/ PD Open Drain  
PU/ PD Open Drain  
gpio_184  
safe_mode  
i2c3_sda  
gpio_185  
safe_mode  
i2c4_scl  
IOD  
IO  
IOD  
O
sys_  
nvmode1  
safe_mode  
i2c4_sda  
7
0
1
Y15  
A24  
IOD  
O
H
H
H
H
0
7
VDDS  
VDDS  
Yes  
Yes  
4
4
PU/ PD Open Drain  
sys_  
nvmode2  
safe_mode  
hdq_sio  
7
0
1
2
3
4
7
0
1
4
7
0
IOD  
I
PU/ PD  
LVCMOS  
sys_altclk  
i2c2_sccbe  
i2c3_sccbe  
gpio_170  
O
O
IO  
safe_mode  
mcspi1_clk  
mmc2_dat4  
gpio_171  
T5  
R4  
IO  
IO  
IO  
PGM  
PGM  
L
L
7
7
VDDS  
VDDS  
Yes  
Yes  
4(2)  
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
safe_mode  
mcspi1_  
simo  
IO  
4(2)  
mmc2_dat5  
gpio_172  
1
4
7
0
IO  
IO  
safe_mode  
T4  
mcspi1_  
somi  
IO  
PGM  
L
7
VDDS  
Yes  
4(2)  
PU/ PD  
LVCMOS  
mmc2_dat6  
gpio_173  
1
4
7
0
1
4
7
0
2
IO  
IO  
safe_mode  
mcspi1_cs0  
mmc2_dat7  
gpio_174  
T6  
R5  
IO  
IO  
IO  
PGM  
H
H
7
7
VDDS  
VDDS  
Yes  
Yes  
4(2)  
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
safe_mode  
mcspi1_cs3  
O
H
4
hsusb2_tll_  
data2  
IO  
hsusb2_  
data2  
3
IO  
gpio_177  
4
5
IO  
IO  
mm2_txdat  
50  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-2. Ball Characteristics (CUS Pkg.)(1) (continued)  
BALL  
BOTTOM  
[1]  
PIN  
NAME [3]  
MODE TYPE  
BALL  
RESET RESET  
STATE  
[6]  
BALL RESET  
POWER [9]  
HYS  
[10]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
U/D  
TYPE  
[12]  
IO  
[4]  
[5]  
REL.  
MODE  
[8]  
CELL [13]  
REL.  
STATE  
[7]  
safe_mode  
mcspi2_clk  
7
0
2
N5  
IO  
IO  
L
L
7
VDDS  
Yes  
4
PU/ PD  
LVCMOS  
hsusb2_tll_  
data7  
hsusb2_  
data7  
3
O
gpio_178  
4
7
0
IO  
safe_mode  
N4  
mcspi2_  
simo  
IO  
IO  
IO  
I
L
L
7
VDDS  
Yes  
4
PU/ PD  
LVCMOS  
gpt9_pwm_  
evt  
1
2
3
hsusb2_tll_  
data4  
hsusb2_  
data4  
gpio_179  
4
7
0
IO  
safe_mode  
N3  
mcspi2_  
somi  
IO  
IO  
IO  
O
L
L
7
VDDS  
Yes  
4
PU/ PD  
LVCMOS  
gpt10_pwm  
_evt  
1
2
3
hsusb2_tll_  
data5  
hsusb2_  
data5  
gpio_180  
safe_mode  
mcspi2_cs0  
4
7
0
1
IO  
M5  
IO  
IO  
H
H
7
VDDS  
Yes  
4
PU/ PD  
LVCMOS  
gpt11_pwm  
_evt  
hsusb2_tll_  
data6  
2
3
IO  
O
hsusb2_  
data6  
gpio_181  
safe_mode  
mcspi2_cs1  
4
7
0
1
IO  
M4  
O
L
L
7
VDDS  
Yes  
4
PU/ PD  
LVCMOS  
gpt8_pwm_  
evt  
IO  
hsusb2_tll_  
data3  
2
3
IO  
IO  
hsusb2_  
data3  
gpio_182  
4
5
IO  
IO  
mm2_txen_  
n
safe_mode  
sys_32k  
7
0
0
AA16  
AD15  
I
I
Z
Z
I
I
NA  
NA  
VDDS  
VDDS  
Yes  
Yes  
NA  
NA  
NA  
LVCMOS  
LVCMOS  
sys_xtalin  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
51  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-2. Ball Characteristics (CUS Pkg.)(1) (continued)  
BALL  
BOTTOM  
[1]  
PIN  
NAME [3]  
MODE TYPE  
BALL  
RESET RESET  
STATE  
[6]  
BALL RESET  
POWER [9]  
HYS  
[10]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
U/D  
TYPE  
[12]  
IO  
[4]  
[5]  
REL.  
MODE  
[8]  
CELL [13]  
REL.  
STATE  
[7]  
AD14  
Y13  
sys_xtalout  
sys_clkreq  
gpio_1  
0
0
4
7
0
4
7
0
O
Z
0
O
1
NA  
0
VDDS  
VDDS  
Yes  
Yes  
NA  
LVCMOS  
LVCMOS  
IO  
IO  
4
4
PU/ PD  
safe_mode  
sys_nirq  
W16  
I
H
H
7
VDDS  
Yes  
PU/ PD  
LVCMOS  
gpio_0  
IO  
safe_mode  
AA10  
Y10  
sys_  
nrespwron  
I
Z
0
I
NA  
0
VDDS  
VDDS  
Yes  
Yes  
NA  
4
NA  
LVCMOS  
LVCMOS  
sys_  
nreswarm  
0
IOD  
IO  
1 (PU)  
PU/ PD  
gpio_30  
safe_mode  
sys_boot0  
gpio_2  
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
1
AB12  
AC16  
AD17  
AD18  
AC17  
I
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
0
0
0
0
0
VDDS  
VDDS  
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
Yes  
Yes  
4
4
4
4
4
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
IO  
safe_mode  
sys_boot1  
gpio_3  
I
IO  
safe_mode  
sys_boot2  
gpio_4  
I
IO  
safe_mode  
sys_boot3  
gpio_5  
I
IO  
safe_mode  
sys_boot4  
I
mmc2_dir_d  
at2  
O
gpio_6  
4
7
0
1
IO  
safe_mode  
sys_boot5  
AB16  
I
Z
Z
0
VDDS  
Yes  
4
PU/ PD  
LVCMOS  
mmc2_dir_d  
at3  
O
gpio_7  
safe_mode  
sys_boot6  
gpio_8  
4
7
0
4
7
0
IO  
AA15  
AD23  
I
Z
0
Z
L
0
7
VDDS  
VDDS  
Yes  
Yes  
4
4
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
IO  
safe_mode  
sys_off_  
mode  
O
gpio_9  
4
7
0
4
7
IO  
safe_mode  
sys_clkout1  
gpio_10  
Y7  
O
L
L
7
VDDS  
Yes  
4
PU/ PD  
LVCMOS  
IO  
safe_mode  
52  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-2. Ball Characteristics (CUS Pkg.)(1) (continued)  
BALL  
BOTTOM  
[1]  
PIN  
NAME [3]  
MODE TYPE  
BALL  
RESET RESET  
STATE  
[6]  
BALL RESET  
POWER [9]  
HYS  
[10]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
U/D  
TYPE  
[12]  
IO  
[4]  
[5]  
REL.  
MODE  
[8]  
CELL [13]  
REL.  
STATE  
[7]  
AA6  
sys_clkout2  
gpio_186  
0
4
7
0
O
L
L
7
VDDS  
Yes  
4
PU/ PD  
LVCMOS  
IO  
safe_mode  
A1  
A2  
sys_  
ipmcsws  
AI  
Z
0
AI  
NA  
NA  
VDDS  
VDDS  
NA  
No  
NA  
NA  
NA  
NA  
Analog  
sys_  
0
AO  
AO  
LVCMOS  
opmcsws  
AB7  
AB6  
AA7  
AA9  
jtag_ntrst  
jtag_tck  
jtag_rtck  
0
0
0
0
I
I
L
L
L
L
0
0
0
0
VDDS  
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
Yes  
NA  
NA  
4
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
O
IO  
L
0
jtag_tms_tm  
sc  
H
H
4
AB10  
AB9  
jtag_tdi  
jtag_tdo  
0
0
0
4
7
0
4
7
0
1
I
H
L
H
Z
0
0
0
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
NA  
4
PU/ PD  
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
LVCMOS  
O
AC24  
jtag_emu0  
gpio_11  
IO  
IO  
H
H
4
safe_mode  
jtag_emu1  
gpio_31  
AD24  
AC1  
IO  
IO  
H
H
H
H
0
4
VDDS  
VDDS  
Yes  
Yes  
4
4
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
safe_mode  
etk_clk  
O
mcbsp5_  
clkx  
IO  
mmc3_clk  
hsusb1_stp  
gpio_12  
2
3
4
5
6
O
O
IO  
IO  
I
mm1_rxdp  
hsusb1_tll_s  
tp  
AD3  
AD6  
etk_ctl  
0
2
3
4
6
O
IO  
O
H
H
H
H
4
4
VDDS  
VDDS  
Yes  
Yes  
4
4
PU/ PD  
LVCMOS  
LVCMOS  
mmc3_cmd  
hsusb1_clk  
gpio_13  
IO  
O
hsusb1_tll_c  
lk  
etk_d0  
0
1
O
PU/ PD  
mcspi3_  
simo  
IO  
mmc3_dat4  
2
3
IO  
IO  
hsusb1_  
data0  
gpio_14  
4
5
6
IO  
IO  
IO  
mm1_rxrcv  
hsusb1_tll_  
data0  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
53  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-2. Ball Characteristics (CUS Pkg.)(1) (continued)  
BALL  
BOTTOM  
[1]  
PIN  
NAME [3]  
MODE TYPE  
BALL  
RESET RESET  
STATE  
[6]  
BALL RESET  
POWER [9]  
HYS  
[10]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
U/D  
TYPE  
[12]  
IO  
[4]  
[5]  
REL.  
MODE  
[8]  
CELL [13]  
REL.  
STATE  
[7]  
AC6  
etk_d1  
0
1
O
H
H
4
VDDS  
Yes  
4
PU/ PD  
LVCMOS  
mcspi3_  
somi  
IO  
hsusb1_  
data1  
3
IO  
gpio_15  
4
5
6
IO  
IO  
IO  
mm1_txse0  
hsusb1_tll_  
data1  
AC7  
AD8  
AC5  
AD2  
AC8  
etk_d2  
0
1
3
O
H
H
L
H
H
L
4
4
4
4
4
VDDS  
VDDS  
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
Yes  
Yes  
4
4
4
4
4
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
mcspi3_cs0  
IO  
IO  
hsusb1_  
data2  
gpio_16  
4
5
6
IO  
IO  
IO  
mm1_txdat  
hsusb1_tll_  
data2  
etk_d3  
0
1
2
3
O
mcspi3_clk  
mmc3_dat3  
IO  
IO  
IO  
hsusb1_  
data7  
gpio_17  
4
6
IO  
IO  
hsusb1_tll_  
data7  
etk_d4  
0
1
2
3
O
I
mcbsp5_dr  
mmc3_dat0  
IO  
IO  
hsusb1_  
data4  
gpio_18  
4
6
IO  
IO  
hsusb1_tll_  
data4  
etk_d5  
0
1
2
3
O
L
L
mcbsp5_fsx  
mmc3_dat1  
IO  
IO  
IO  
hsusb1_  
data5  
gpio_19  
4
6
IO  
IO  
hsusb1_tll_  
data5  
etk_d6  
0
1
2
3
O
L
L
mcbsp5_dx  
mmc3_dat2  
IO  
IO  
IO  
hsusb1_  
data6  
gpio_20  
4
IO  
54  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-2. Ball Characteristics (CUS Pkg.)(1) (continued)  
BALL  
BOTTOM  
[1]  
PIN  
NAME [3]  
MODE TYPE  
BALL  
RESET RESET  
STATE  
[6]  
BALL RESET  
POWER [9]  
HYS  
[10]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
U/D  
TYPE  
[12]  
IO  
[4]  
[5]  
REL.  
MODE  
[8]  
CELL [13]  
REL.  
STATE  
[7]  
hsusb1_tll_  
data6  
6
IO  
AD9  
etk_d7  
0
1
2
3
O
O
L
L
4
VDDS  
Yes  
4
PU/ PD  
LVCMOS  
mcspi3_cs1  
mmc3_dat7  
IO  
IO  
hsusb1_  
data3  
gpio_21  
4
5
IO  
IO  
mm1_txen_  
n
hsusb1_tll_  
data3  
6
IO  
AC4  
etk_d8  
0
1
O
O
L
L
4
VDDS  
Yes  
4
PU/ PD  
LVCMOS  
sys_drm_  
msecure  
mmc3_dat6  
hsusb1_dir  
gpio_22  
2
3
4
6
IO  
I
IO  
O
hsusb1_tll_  
dir  
AD5  
etk_d9  
0
1
O
O
L
L
4
VDDS  
Yes  
4
PU/ PD  
LVCMOS  
sys_secure_  
indicator  
mmc3_dat5  
hsusb1_nxt  
gpio_23  
2
3
4
5
6
IO  
I
IO  
IO  
O
mm1_rxdm  
hsusb1_tll_  
nxt  
AC3  
AC9  
etk_d10  
uart1_rx  
0
2
3
4
6
O
I
L
L
L
L
L
L
4
4
4
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
4
4
4
PU/ PD  
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
LVCMOS  
hsusb2_clk  
gpio_24  
O
IO  
O
hsusb2_tll_c  
lk  
etk_d11  
hsusb2_stp  
gpio_25  
0
3
4
5
6
O
O
IO  
IO  
I
mm2_rxdp  
hsusb2_tll_s  
tp  
AC10  
etk_d12  
hsusb2_dir  
gpio_26  
0
3
4
6
O
I
IO  
O
hsusb2_tll_  
dir  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
55  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-2. Ball Characteristics (CUS Pkg.)(1) (continued)  
BALL  
BOTTOM  
[1]  
PIN  
NAME [3]  
MODE TYPE  
BALL  
RESET RESET  
STATE  
[6]  
BALL RESET  
POWER [9]  
HYS  
[10]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
U/D  
TYPE  
[12]  
IO  
[4]  
[5]  
REL.  
MODE  
[8]  
CELL [13]  
REL.  
STATE  
[7]  
AD11  
AC11  
etk_d13  
hsusb2_nxt  
gpio_27  
0
3
4
5
6
O
I
L
L
L
4
4
VDDS  
Yes  
Yes  
4
4
PU/ PD  
LVCMOS  
LVCMOS  
IO  
IO  
O
mm2_rxdm  
hsusb2_tll_  
nxt  
etk_d14  
0
3
O
L
VDDS  
PU/ PD  
hsusb2_  
data0  
IO  
gpio_28  
4
5
6
IO  
IO  
IO  
mm2_rxrcv  
hsusb2_tll_  
data0  
AD12  
etk_d15  
0
3
O
L
L
4
VDDS  
Yes  
4
PU/ PD  
LVCMOS  
hsusb2_  
data1  
IO  
gpio_29  
4
5
6
IO  
IO  
IO  
mm2_txse0  
hsusb2_tll_  
data1  
(1) NA in this table stands for Not Applicable.  
(2) The buffer strength of this IO cell is programmable (2, 4, 6, or 8 mA) according to the selected mode; the default value is described in  
the above table.  
56  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
2.3 Multiplexing Characteristics  
Table 2-3 and Table 2-4 provide a description of the OMAP3515/03 multiplexing on the CBB and CUS  
packages, respectively.  
Note: Table 2-3 and Table 2-4 do not take into account subsystem pin multiplexing options. Subsystem  
pin multiplexing options are described in Section 2.4, Signal Description.  
Table 2-3. Multiplexing Characteristics (CBB Pkg.)(1)  
Ball  
Bottom  
Ball  
Top  
Mode 0  
Mode 1  
Mode 2  
Mode 3  
Mode 4  
Mode 5  
Mode 6  
Mode 7  
D6  
C6  
J2  
J1  
sdrc_d0  
sdrc_d1  
sdrc_d2  
sdrc_d3  
sdrc_d4  
sdrc_d5  
sdrc_d6  
sdrc_d7  
sdrc_d8  
sdrc_d9  
sdrc_d10  
sdrc_d11  
sdrc_d12  
sdrc_d13  
sdrc_d14  
sdrc_d15  
sdrc_d16  
sdrc_d17  
sdrc_d18  
sdrc_d19  
sdrc_d20  
sdrc_d21  
sdrc_d22  
sdrc_d23  
sdrc_d24  
sdrc_d25  
sdrc_d26  
sdrc_d27  
sdrc_d28  
sdrc_d29  
sdrc_d30  
sdrc_d31  
sdrc_ba0  
sdrc_ba1  
sdrc_a0  
sdrc_a1  
sdrc_a2  
sdrc_a3  
sdrc_a4  
sdrc_a5  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
B6  
G2  
C8  
G1  
C9  
F2  
A7  
F1  
B9  
D2  
A9  
D1  
C14  
B14  
C15  
B16  
D17  
C17  
B17  
D18  
D11  
B10  
C11  
D12  
C12  
A11  
B13  
D14  
C18  
A19  
B19  
B20  
D20  
A21  
B21  
C21  
H9  
B13  
A13  
B14  
A14  
B16  
A16  
B19  
A19  
B3  
A3  
B5  
A5  
B8  
A8  
B9  
A9  
B21  
A21  
D22  
D23  
E22  
E23  
G22  
G23  
AB21  
AC21  
N22  
N 23  
P22  
P23  
R22  
R23  
H10  
A4  
B4  
B3  
C5  
C4  
D5  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
57  
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-3. Multiplexing Characteristics (CBB Pkg.)(1) (continued)  
Ball  
Bottom  
Ball  
Top  
Mode 0  
Mode 1  
Mode 2  
Mode 3  
Mode 4  
Mode 5  
Mode 6  
Mode 7  
C3  
C2  
T22  
T23  
sdrc_a6  
sdrc_a7  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
C1  
U22  
U23  
V22  
V23  
W22  
W23  
Y22  
M22  
M23  
A11  
B11  
J22  
sdrc_a8  
-
-
D4  
sdrc_a9  
-
-
D3  
sdrc_a10  
sdrc_a11  
sdrc_a12  
sdrc_a13  
sdrc_a14  
sdrc_ncs0  
sdrc_ncs1  
sdrc_clk  
-
-
D2  
-
-
D1  
-
-
E2  
-
-
E1  
-
-
H11  
H12  
A13  
A14  
H16  
H17  
H14  
H13  
H15  
B7  
-
-
-
-
-
-
sdrc_nclk  
sdrc_cke0  
sdrc_cke1  
sdrc_nras  
sdrc_ncas  
sdrc_nwe  
sdrc_dm0  
sdrc_dm1  
sdrc_dm2  
sdrc_dm3  
sdrc_dqs0  
sdrc_dqs1  
sdrc_dqs2  
sdrc_dqs3  
gpmc_a1  
gpmc_a2  
gpmc_a3  
gpmc_a4  
gpmc_a5  
gpmc_a6  
gpmc_a7  
gpmc_a8  
gpmc_a9  
-
-
-
safe_mode  
J23  
-
safe_mode  
L23  
-
-
L22  
-
-
K23  
C1  
-
-
-
-
A16  
B11  
C20  
A6  
A17  
A6  
-
-
-
-
A20  
C2  
-
-
-
-
A17  
A10  
A20  
N4  
B17  
B6  
-
-
-
-
B20  
AC15  
AB15  
AC16  
AB16  
AC17  
AB17  
AC18  
AB18  
AC19  
-
-
gpio_34  
gpio_35  
gpio_36  
gpio_37  
gpio_38  
gpio_39  
gpio_40  
gpio_41  
gpio_42  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
M4  
L4  
K4  
T3  
R3  
N3  
M3  
L3  
sys_  
ndmareq2  
K3  
AB19  
gpmc_a10  
sys_  
-
-
gpio_43  
-
-
safe_mode  
ndmareq3  
K1  
L1  
M2  
M1  
N2  
gpmc_d0  
gpmc_d1  
gpmc_d2  
gpmc_d3  
gpmc_d4  
gpmc_d5  
gpmc_d6  
gpmc_d7  
gpmc_d8  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
L2  
-
-
P2  
T1  
V1  
V2  
W2  
H2  
N 1  
R2  
-
-
-
-
R1  
-
-
T2  
-
-
T1  
-
-
AB3  
gpio_44  
safe_mode  
58  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-3. Multiplexing Characteristics (CBB Pkg.)(1) (continued)  
Ball  
Bottom  
Ball  
Top  
Mode 0  
Mode 1  
Mode 2  
Mode 3  
Mode 4  
Mode 5  
Mode 6  
Mode 7  
K2  
AC3  
AB4  
AC4  
AB6  
AC6  
AB7  
AC7  
Y2  
gpmc_d9  
gpmc_d10  
gpmc_d11  
gpmc_d12  
gpmc_d13  
gpmc_d14  
gpmc_d15  
gpmc_ncs0  
gpmc_ncs1  
gpmc_ncs2  
gpmc_ncs3  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
gpio_45  
gpio_46  
gpio_47  
gpio_48  
gpio_49  
gpio_50  
gpio_51  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
-
P1  
R1  
R2  
T2  
W1  
Y1  
G4  
H3  
Y1  
gpio_52  
gpio_53  
gpio_54  
safe_mode  
safe_mode  
safe_mode  
V8  
NA  
U8  
NA  
sys_  
ndmareq0  
T8  
R8  
P8  
N8  
NA  
NA  
NA  
NA  
gpmc_ncs4  
gpmc_ncs5  
gpmc_ncs6  
sys_  
ndmareq1  
mcbsp4_clkx gpt9_pwm_  
evt  
gpio_55  
gpio_56  
gpio_57  
gpio_58  
-
-
-
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
sys_  
ndmareq2  
mcbsp4_dr gpt10_pwm_  
evt  
sys_  
ndmareq3  
mcbsp4_dx gpt11_pwm_  
evt  
gpmc_ncs7 gpmc_io_dir mcbsp4_fsx gpt8_pwm_  
evt  
T4  
F3  
W2  
W1  
gpmc_clk  
-
-
-
-
-
-
gpio_59  
-
-
-
-
-
safe_mode  
-
gpmc_nadv_  
ale  
G2  
F4  
G3  
V2  
V1  
gpmc_noe  
gpmc_nwe  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
AC12 gpmc_nbe0_  
cle  
gpio_60  
safe_mode  
U3  
H1  
M8  
L8  
NA  
AB10  
AB12  
AC10  
NA  
gpmc_nbe1  
gpmc_nwp  
gpmc_wait0  
gpmc_wait1  
gpmc_wait2  
gpmc_wait3  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
gpio_61  
gpio_62  
-
-
-
-
-
-
-
-
-
-
-
-
-
safe_mode  
safe_mode  
-
gpio_63  
gpio_64  
gpio_65  
safe_mode  
safe_mode  
safe_mode  
K8  
J8  
NA  
sys_  
ndmareq1  
D28  
D26  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
dss_pclk  
dss_hsync  
dss_vsync  
dss_acbias  
dss_data0  
dss_data1  
dss_data2  
dss_data3  
dss_data4  
dss_data5  
dss_data6  
dss_data7  
dss_data8  
dss_data9  
dss_data10  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
gpio_66  
gpio_67  
gpio_68  
gpio_69  
gpio_70  
gpio_71  
gpio_72  
gpio_73  
gpio_74  
gpio_75  
gpio_76  
gpio_77  
gpio_78  
gpio_79  
gpio_80  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
-
D27  
-
E27  
-
AG22  
AH22  
AG23  
AH23  
AG24  
AH24  
E26  
uart1_cts  
uart1_rts  
-
-
uart3_rx_irrx  
uart3_tx_irtx  
uart1_tx  
F28  
uart1_rx  
F27  
-
-
-
G26  
AD28  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
59  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-3. Multiplexing Characteristics (CBB Pkg.)(1) (continued)  
Ball  
Bottom  
Ball  
Top  
Mode 0  
Mode 1  
Mode 2  
Mode 3  
Mode 4  
Mode 5  
Mode 6  
Mode 7  
AD27  
AB28  
AB27  
AA28  
AA27  
G25  
H27  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
dss_data11  
dss_data12  
dss_data13  
dss_data14  
dss_data15  
dss_data16  
dss_data17  
dss_data18  
dss_data19  
dss_data20  
dss_data21  
dss_data22  
dss_data23  
tv_out2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
gpio_81  
gpio_82  
gpio_83  
gpio_84  
gpio_85  
gpio_86  
gpio_87  
gpio_88  
gpio_89  
gpio_90  
gpio_91  
gpio_92  
gpio_93  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
-
-
-
-
-
-
-
-
-
-
-
-
-
H26  
mcspi3_clk  
dss_data0  
H25  
mcspi3_simo  
dss_data1  
E28  
mcspi3_somi  
dss_data2  
J26  
mcspi3_cs0  
dss_data3  
AC27  
AC28  
W28  
Y28  
mcspi3_cs1  
dss_data4  
-
-
-
-
-
-
-
-
-
-
dss_data5  
-
-
-
-
-
-
-
-
-
-
tv_out1  
-
-
Y27  
tv_vfb1  
-
-
W27  
W26  
A24  
tv_vfb2  
-
-
tv_vref  
-
-
cam_hs  
gpio_94  
gpio_95  
gpio_96  
gpio_97  
gpio_98  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
A23  
cam_vs  
C25  
cam_xclka  
cam_pclk  
cam_fld  
C27  
C23  
cam_global_  
reset  
AG17  
AH17  
B24  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
cam_d0  
cam_d1  
cam_d2  
cam_d3  
cam_d4  
cam_d5  
cam_d6  
cam_d7  
cam_d8  
cam_d9  
cam_d10  
cam_d11  
cam_xclkb  
cam_wen  
cam_strobe  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
gpio_99  
gpio_100  
gpio_101  
gpio_102  
gpio_103  
gpio_104  
gpio_105  
gpio_106  
gpio_107  
gpio_108  
gpio_109  
gpio_110  
gpio_111  
gpio_167  
gpio_126  
gpio_112  
gpio_113  
gpio_114  
gpio_115  
gpio_116  
gpio_117  
gpio_118  
gpio_119  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
-
-
C24  
D24  
A25  
-
-
-
K28  
-
L28  
-
K27  
-
L27  
-
B25  
-
C26  
B26  
-
-
B23  
cam_shutter  
D25  
AG19  
AH19  
AG18  
AH18  
P21  
-
-
-
-
-
-
-
-
-
-
-
-
mcbsp2_fsx  
mcbsp2_clkx  
mcbsp2_dr  
mcbsp2_dx  
N21  
R21  
M21  
60  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-3. Multiplexing Characteristics (CBB Pkg.)(1) (continued)  
Ball  
Ball  
Top  
Mode 0  
Mode 1  
Mode 2  
Mode 3  
Mode 4  
Mode 5  
Mode 6  
Mode 7  
Bottom  
N28  
M27  
N27  
N26  
N25  
P28  
N A  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
mmc1_clk  
mmc1_cmd  
mmc1_dat0  
mmc1_dat1  
mmc1_dat2  
mmc1_dat3  
mmc1_dat4  
mmc1_dat5  
mmc1_dat6  
mmc1_dat7  
mmc2_clk  
ms_clk  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
gpio_120  
gpio_121  
gpio_122  
gpio_123  
gpio_124  
gpio_125  
gpio_126  
gpio_127  
gpio_128  
gpio_129  
gpio_130  
gpio_131  
gpio_132  
gpio_133  
gpio_134  
gpio_135  
gpio_136  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
ms_bs  
-
ms_dat0  
-
ms_dat1  
-
ms_dat2  
-
ms_dat3  
-
P27  
-
-
P26  
-
-
R27  
R25  
AE2  
AG5  
AH5  
AH4  
AG4  
AF4  
AE4  
-
-
-
-
mcspi3_clk  
-
mmc2_cmd mcspi3_simo  
mmc2_dat0 mcspi3_somi  
-
-
mmc2_dat1  
-
-
mmc2_dat2 mcspi3_cs1  
mmc2_dat3 mcspi3_cs0  
-
-
mmc2_dat4  
mmc2_dat5  
mmc2_dat6  
mmc2_dir_  
dat0  
mmc3_dat0  
AH3  
AF3  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
mmc2_dir_ cam_global_ mmc3_dat1  
gpio_137  
gpio_138  
gpio_139  
gpio_140  
gpio_141  
gpio_142  
gpio_143  
gpio_144  
gpio_145  
gpio_146  
gpio_147  
hsusb3_tll_  
stp  
mm3_rxdp  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
dat1  
reset  
mmc2_dir_  
cmd  
cam_shutter mmc3_dat2  
hsusb3_tll_  
dir  
-
AE3  
mmc2_dat7 mmc2_clkin  
-
-
-
-
-
mmc3_dat3  
hsusb3_tll_  
nxt  
mm3_rxdm  
AF6  
mcbsp3_dx  
mcbsp3_dr  
mcbsp3_clkx  
mcbsp3_fsx  
uart2_cts  
uart2_cts  
uart2_rts  
uart2_tx  
-
-
-
-
-
-
-
-
hsusb3_tll_  
data4  
-
-
-
-
-
-
-
-
AE6  
hsusb3_tll_  
data5  
AF5  
hsusb3_tll_  
data6  
AE5  
uart2_rx  
hsusb3_tll_  
data7  
AB26  
AB25  
AA25  
AD25  
mcbsp3_dx  
gpt9_pwm_  
evt  
-
-
-
-
uart2_rts  
mcbsp3_dr gpt10_pwm_  
evt  
uart2_tx  
mcbsp3_clkx gpt11_pwm_  
evt  
uart2_rx  
mcbsp3_fsx gpt8_pwm_  
evt  
AA8  
AA9  
W8  
NA  
NA  
NA  
uart1_tx  
uart1_rts  
uart1_cts  
-
-
-
-
-
-
-
-
-
gpio_148  
gpio_149  
gpio_150  
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
hsusb3_tll_  
clk  
Y8  
NA  
NA  
uart1_rx  
-
-
mcbsp1_clkr mcspi4_clk  
gpio_151  
gpio_152  
-
-
safe_mode  
safe_mode  
AE1  
mcbsp4_clkx  
-
-
-
-
-
-
hsusb3_tll_  
data1  
mm3_txse0  
AD1  
AD2  
NA  
NA  
mcbsp4_dr  
mcbsp4_dx  
-
-
gpio_153  
gpio_154  
hsusb3_tll_  
data0  
mm3_rxrcv  
mm3_txdat  
safe_mode  
safe_mode  
hsusb3_tll_  
data2  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
61  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-3. Multiplexing Characteristics (CBB Pkg.)(1) (continued)  
Ball  
Bottom  
Ball  
Top  
Mode 0  
Mode 1  
Mode 2  
Mode 3  
Mode 4  
Mode 5  
Mode 6  
Mode 7  
AC1  
NA  
mcbsp4_fsx  
-
-
-
-
gpio_155  
hsusb3_tll_ mm3_txen_n safe_mode  
data3  
Y21  
NA  
NA  
mcbsp1_clkr mcspi4_clk  
-
-
gpio_156  
gpio_157  
-
-
-
-
safe_mode  
safe_mode  
AA21  
mcbsp1_fsr  
adpllv2d_  
dithering_en  
1
cam_global_  
reset  
V21  
U21  
T21  
K26  
W21  
H18  
NA  
NA  
NA  
NA  
NA  
NA  
mcbsp1_dx mcspi4_simo mcbsp3_dx  
mcbsp1_dr mcspi4_somi mcbsp3_dr  
-
-
-
-
-
-
gpio_158  
gpio_159  
gpio_160  
gpio_161  
gpio_162  
gpio_163  
-
-
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
-
mcbsp_clks  
-
cam_shutter  
uart1_cts  
mcbsp1_fsx mcspi4_cs0 mcbsp3_fsx  
-
-
-
mcbsp1_clkx  
-
-
mcbsp3_clkx  
-
uart3_cts_rct  
x
H19  
H20  
H21  
T28  
T25  
R28  
T26  
T27  
NA  
N A  
NA  
NA  
NA  
NA  
NA  
NA  
uart3_rts_sd  
uart3_rx_irrx  
uart3_tx_irtx  
hsusb0_clk  
hsusb0_stp  
hsusb0_dir  
hsusb0_nxt  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
gpio_164  
gpio_165  
gpio_166  
gpio_120  
gpio_121  
gpio_122  
gpio_124  
gpio_125  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
-
-
-
-
-
-
hsusb0_  
data0  
uart3_tx_irtx  
U28  
U27  
U26  
U25  
V28  
V27  
V26  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
hsusb0_  
data1  
-
-
-
-
-
-
-
uart3_rx_irrx  
uart3_rts_sd  
-
-
-
-
-
-
-
gpio_130  
gpio_131  
gpio_169  
gpio_188  
gpio_189  
gpio_190  
gpio_191  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
hsusb0_  
data2  
hsusb0_  
data3  
uart3_cts_  
rctx  
hsusb0_  
data4  
-
-
-
-
hsusb0_  
data5  
hsusb0_  
data6  
hsusb0_  
data7  
K21  
J21  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
i2c1_scl  
i2c1_sda  
i2c2_scl  
i2c2_sda  
i2c3_scl  
i2c3_sda  
i2c4_scl  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
AF15  
AE15  
AF14  
AG14  
AD26  
gpio_168  
gpio_183  
gpio_184  
gpio_185  
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
sys_  
nvmode1  
AE26  
NA  
i2c4_sda  
sys_  
-
-
-
-
-
safe_mode  
nvmode2  
J25  
AB3  
AB4  
AA4  
AC2  
NA  
NA  
NA  
NA  
NA  
hdq_sio  
sys_altclk  
i2c2_sccbe  
i2c3_sccbe  
gpio_170  
gpio_171  
gpio_172  
gpio_173  
gpio_174  
-
-
-
-
-
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
mcspi1_clk  
mmc2_dat4  
-
-
-
-
-
-
-
-
mcspi1_simo mmc2_dat5  
mcspi1_somi mmc2_dat6  
mcspi1_cs0 mmc2_dat7  
62  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-3. Multiplexing Characteristics (CBB Pkg.)(1) (continued)  
Ball  
Bottom  
Ball  
Top  
Mode 0  
Mode 1  
Mode 2  
Mode 3  
Mode 4  
Mode 5  
Mode 6  
Mode 7  
AC3  
NA  
mcspi1_cs1  
adpllv2d_  
dithering_en  
2
-
mmc3_cmd  
gpio_175  
-
-
safe_mode  
AB1  
AB2  
NA  
NA  
mcspi1_cs2  
mcspi1_cs3  
-
-
-
mmc3_clk  
gpio_176  
gpio_177  
-
-
-
safe_mode  
safe_mode  
hsusb2_tll_  
data2  
hsusb2_  
data2  
mm2_txdat  
AA3  
Y2  
NA  
NA  
NA  
NA  
NA  
mcspi2_clk  
-
hsusb2_tll_  
data7  
hsusb2_  
data7  
gpio_178  
gpio_179  
gpio_180  
gpio_181  
gpio_182  
-
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
mcspi2_simo gpt9_pwm_  
evt  
hsusb2_tll_  
data4  
hsusb2_  
data4  
-
Y3  
mcspi2_somi gpt10_pwm_ hsusb2_tll_  
evt data5  
hsusb2_  
data5  
-
Y4  
mcspi2_cs0 gpt11_pwm_ hsusb2_tll_  
hsusb2_  
data6  
-
evt  
data6  
V3  
mcspi2_cs1  
gpt8_pwm_  
evt  
hsusb2_tll_  
data3  
hsusb2_  
data3  
mm2_txen_n  
AE25  
AE17  
AF17  
AF25  
AF26  
AH25  
NA  
NA  
NA  
NA  
NA  
NA  
sys_32k  
sys_xtalin  
sys_xtalout  
sys_clkreq  
sys_nirq  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
gpio_1  
gpio_0  
-
safe_mode  
safe_mode  
-
sys_nrespwr  
on  
AF24  
NA  
sys_nreswar  
m
-
-
-
gpio_30  
-
-
safe_mode  
AH26  
AG26  
AE14  
AF18  
AF19  
NA  
NA  
NA  
NA  
NA  
sys_boot0  
sys_boot1  
sys_boot2  
sys_boot3  
sys_boot4  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
gpio_2  
gpio_3  
gpio_4  
gpio_5  
gpio_6  
-
-
-
-
-
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
mmc2_dir_  
dat2  
AE21  
NA  
sys_boot5  
sys_boot6  
mmc2_dir_  
dat3  
-
-
gpio_7  
-
-
safe_mode  
AF21  
AF22  
N A  
NA  
-
-
-
-
-
-
gpio_8  
gpio_9  
-
-
-
-
safe_mode  
safe_mode  
sys_off_  
mode  
AG25  
AE22  
B1  
NA  
NA  
NA  
NA  
sys_clkout1  
sys_clkout2  
sys_ipmcsws  
-
-
-
-
-
-
-
-
-
-
-
-
gpio_10  
-
-
-
-
-
-
-
-
safe_mode  
gpio_186  
safe_mode  
-
-
-
-
A1  
sys_  
opmcsws  
AA17  
AA13  
AA12  
AA18  
NA  
NA  
NA  
NA  
jtag_ntrst  
jtag_tck  
jtag_rtck  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
jtag_tms_  
tmsc  
AA20  
AA19  
AA11  
AA10  
NA  
NA  
NA  
NA  
jtag_tdi  
jtag_tdo  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
jtag_emu0  
jtag_emu1  
gpio_11  
gpio_31  
safe_mode  
safe_mode  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
63  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-3. Multiplexing Characteristics (CBB Pkg.)(1) (continued)  
Ball  
Bottom  
Ball  
Top  
Mode 0  
etk_clk  
etk_ctl  
Mode 1  
Mode 2  
mmc3_clk  
mmc3_cmd  
Mode 3  
Mode 4  
gpio_12  
gpio_13  
gpio_14  
gpio_15  
gpio_16  
gpio_17  
gpio_18  
gpio_19  
gpio_20  
gpio_21  
gpio_22  
gpio_23  
gpio_24  
gpio_25  
gpio_26  
gpio_27  
gpio_28  
gpio_29  
Mode 5  
Mode 6  
Mode 7  
AF10  
AE10  
AF11  
AG12  
AH12  
AE13  
AE11  
AH9  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
mcbsp5_clkx  
-
hsusb1_stp  
hsusb1_clk  
mm1_rxdp  
hsusb1_tll_  
stp  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
hsusb1_tll_  
clk  
etk_d0  
etk_d1  
etk_d2  
etk_d3  
etk_d4  
etk_d5  
etk_d6  
etk_d7  
etk_d8  
etk_d9  
etk_d10  
etk_d11  
etk_d12  
etk_d13  
etk_d14  
etk_d15  
mcspi3_simo mmc3_dat4  
hsusb1_  
data0  
mm1_rxrcv  
hsusb1_tll_  
data0  
mcspi3_somi  
mcspi3_cs0  
mcspi3_clk  
mcbsp5_dr  
-
hsusb1_  
data1  
mm1_txse0  
hsusb1_tll_  
data1  
-
hsusb1_  
data2  
mm1_txdat  
hsusb1_tll_  
data2  
mmc3_dat3  
mmc3_dat0  
hsusb1_  
data7  
-
-
-
-
hsusb1_tll_  
data7  
hsusb1_  
data4  
hsusb1_tll_  
data4  
mcbsp5_fsx mmc3_dat1  
mcbsp5_dx mmc3_dat2  
mcspi3_cs1 mmc3_dat7  
hsusb1_  
data5  
hsusb1_tll_  
data5  
AF13  
AH14  
AF9  
hsusb1_  
data6  
hsusb1_tll_  
data6  
hsusb1_  
data3  
mm1_txen_n hsusb1_tll_  
data3  
sys_drm_  
msecure  
mmc3_dat6  
hsusb1_dir  
hsusb1_nxt  
hsusb2_clk  
hsusb2_stp  
hsusb2_dir  
hsusb2_nxt  
-
hsusb1_tll_  
dir  
AG9  
AE7  
sys_secure_ mmc3_dat5  
indicator  
mm1_rxdm  
-
hsusb1_tll_  
nxt  
-
-
-
-
-
-
uart1_rx  
hsusb2_tll_  
clk  
AF7  
-
-
-
-
-
mm2_rxdp  
-
hsusb2_tll_  
stp  
AG7  
AH7  
hsusb2_tll_  
dir  
mm2_rxdm  
mm2_rxrcv  
mm2_txse0  
hsusb2_tll_  
nxt  
AG8  
AH8  
hsusb2_  
data0  
hsusb2_tll_  
data0  
hsusb2_  
data1  
hsusb2_tll_  
data1  
(1) NA in table stands for Not Applicable.  
64  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-4. Multiplexing Characteristics (CUS Pkg.)(1)  
Ball  
Mode 0  
Mode 1  
Mode 2  
Mode 3  
Mode 4  
Mode 5  
Mode 6  
Mode 7  
Bottom  
D7  
sdrc_d0  
sdrc_d1  
sdrc_d2  
sdrc_d3  
sdrc_d4  
sdrc_d5  
sdrc_d6  
sdrc_d7  
sdrc_d8  
sdrc_d9  
sdrc_d10  
sdrc_d11  
sdrc_d12  
sdrc_d13  
sdrc_d14  
sdrc_d15  
sdrc_d16  
sdrc_d17  
sdrc_d18  
sdrc_d19  
sdrc_d20  
sdrc_d21  
sdrc_d22  
sdrc_d23  
sdrc_d24  
sdrc_d25  
sdrc_d26  
sdrc_d27  
sdrc_d28  
sdrc_d29  
sdrc_d30  
sdrc_d31  
sdrc_ba0  
sdrc_ba1  
sdrc_a0  
sdrc_a1  
sdrc_a2  
sdrc_a3  
sdrc_a4  
sdrc_a5  
sdrc_a6  
sdrc_a7  
sdrc_a8  
sdrc_a9  
sdrc_a10  
sdrc_a11  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
C5  
C6  
B5  
D9  
D10  
C7  
B7  
B11  
C12  
B12  
D13  
C13  
B14  
A14  
B15  
C9  
E12  
B8  
B9  
C10  
B10  
D12  
E13  
E15  
D15  
C15  
B16  
C16  
D16  
B17  
B18  
C18  
D18  
A4  
B4  
D6  
B3  
B2  
C3  
E3  
F6  
E10  
E9  
E7  
G6  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
65  
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-4. Multiplexing Characteristics (CUS Pkg.)(1) (continued)  
Ball  
Mode 0  
Mode 1  
Mode 2  
Mode 3  
Mode 4  
Mode 5  
Mode 6  
Mode 7  
Bottom  
G7  
F7  
sdrc_a12  
sdrc_a13  
sdrc_a14  
sdrc_ncs0  
sdrc_ncs1  
sdrc_clk  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
F9  
-
-
A19  
B19  
A10  
A11  
B20  
C20  
D19  
C19  
A20  
B6  
-
-
-
-
-
-
sdrc_nclk  
sdrc_cke0  
sdrc_cke1  
sdrc_nras  
sdrc_ncas  
sdrc_nwe  
sdrc_dm0  
sdrc_dm1  
sdrc_dm2  
sdrc_dm3  
sdrc_dqs0  
sdrc_dqs1  
sdrc_dqs2  
sdrc_dqs3  
gpmc_a1  
gpmc_a2  
gpmc_a3  
gpmc_a4  
gpmc_a5  
gpmc_a6  
gpmc_a7  
gpmc_a8  
gpmc_a9  
-
-
-
safe_mode  
-
safe_mode  
-
-
-
-
-
-
-
-
B13  
A7  
-
-
-
-
A16  
A5  
-
-
-
-
A13  
A8  
-
-
-
-
A17  
K4  
-
-
gpio_34  
gpio_35  
gpio_36  
gpio_37  
gpio_38  
gpio_39  
gpio_40  
gpio_41  
gpio_42  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
K3  
K2  
J4  
J3  
J2  
J1  
H1  
H2  
sys_  
ndmareq2  
G2  
gpmc_a10  
sys_  
-
-
gpio_43  
-
-
safe_mode  
ndmareq3  
L2  
M1  
M2  
N2  
M3  
P1  
P2  
R1  
R2  
T2  
U1  
R3  
T3  
U2  
V1  
gpmc_d0  
gpmc_d1  
gpmc_d2  
gpmc_d3  
gpmc_d4  
gpmc_d5  
gpmc_d6  
gpmc_d7  
gpmc_d8  
gpmc_d9  
gpmc_d10  
gpmc_d11  
gpmc_d12  
gpmc_d13  
gpmc_d14  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
gpio_44  
gpio_45  
gpio_46  
gpio_47  
gpio_48  
gpio_49  
gpio_50  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
66  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-4. Multiplexing Characteristics (CUS Pkg.)(1) (continued)  
Ball  
Mode 0  
Mode 1  
Mode 2  
Mode 3  
Mode 4  
Mode 5  
Mode 6  
Mode 7  
Bottom  
V2  
gpmc_d15  
gpmc_ncs0  
gpmc_ncs3  
-
-
-
-
-
-
-
-
gpio_51  
-
-
-
-
-
-
-
safe_mode  
-
E2  
D2  
sys_  
gpio_54  
safe_mode  
ndmareq0  
F4  
G5  
F3  
G4  
gpmc_ncs4  
gpmc_ncs5  
gpmc_ncs6  
gpmc_ncs7  
gpmc_clk  
sys_  
ndmareq1  
mcbsp4_clkx  
mcbsp4_dr  
mcbsp4_dx  
mcbsp4_fsx  
gpt9_pwm_  
evt  
gpio_55  
gpio_56  
gpio_57  
gpio_58  
-
-
-
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
sys_  
ndmareq2  
gpt10_pwm_  
evt  
sys_  
ndmareq3  
gpt11_pwm_  
evt  
gpmc_io_dir  
gpt8_pwm_  
evt  
W2  
F1  
-
-
-
-
-
-
gpio_59  
-
-
-
-
-
safe_mode  
-
gpmc_nadv_a  
le  
F2  
G3  
K5  
gpmc_noe  
gpmc_nwe  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
gpmc_nbe0_c  
le  
gpio_60  
safe_mode  
L1  
E1  
C1  
C2  
gpmc_nbe1  
gpmc_nwp  
gpmc_wait0  
gpmc_wait3  
-
-
-
-
-
-
-
-
-
-
-
gpio_61  
gpio_62  
-
-
-
-
-
-
-
-
-
safe_mode  
safe_mode  
-
sys_  
gpio_65  
safe_mode  
ndmareq1  
G22  
E22  
dss_pclk  
dss_hsync  
dss_vsync  
dss_acbias  
dss_data0  
dss_data1  
dss_data2  
dss_data3  
dss_data4  
dss_data5  
dss_data6  
dss_data7  
dss_data8  
dss_data9  
dss_data10  
dss_data11  
dss_data12  
dss_data13  
dss_data14  
dss_data15  
dss_data16  
dss_data17  
dss_data18  
dss_data19  
dss_data20  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
gpio_66  
gpio_67  
gpio_68  
gpio_69  
gpio_70  
gpio_71  
gpio_72  
gpio_73  
gpio_74  
gpio_75  
gpio_76  
gpio_77  
gpio_78  
gpio_79  
gpio_80  
gpio_81  
gpio_82  
gpio_83  
gpio_84  
gpio_85  
gpio_86  
gpio_87  
gpio_88  
gpio_89  
gpio_90  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
-
-
F22  
-
-
J21  
-
-
AC19  
AB19  
AD20  
AC20  
AD21  
AC21  
D24  
uart1_cts  
-
uart1_rts  
-
-
-
-
-
uart3_rx_irrx  
-
uart3_tx_irtx  
-
uart1_tx  
-
E23  
uart1_rx  
-
E24  
-
-
F23  
-
-
AC22  
AC23  
AB22  
Y22  
-
-
-
-
-
-
-
-
W22  
V22  
-
-
-
-
J22  
-
-
G23  
G24  
H23  
-
-
mcspi3_clk  
mcspi3_simo  
mcspi3_somi  
dss_data0  
dss_data1  
dss_data2  
D23  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
67  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-4. Multiplexing Characteristics (CUS Pkg.)(1) (continued)  
Ball  
Mode 0  
Mode 1  
Mode 2  
Mode 3  
Mode 4  
Mode 5  
Mode 6  
Mode 7  
Bottom  
K22  
V21  
dss_data21  
dss_data22  
dss_data23  
tv_out2  
-
-
-
-
-
-
-
-
-
-
-
-
-
mcspi3_cs0  
dss_data3  
gpio_91  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
safe_mode  
mcspi3_cs1  
dss_data4  
gpio_92  
safe_mode  
W21  
AA23  
AB24  
AB23  
Y23  
-
-
-
-
-
-
-
-
-
-
dss_data5  
gpio_93  
safe_mode  
-
-
-
-
-
-
-
-
-
-
-
-
tv_out1  
-
-
tv_vfb1  
-
-
tv_vfb2  
-
-
Y24  
tv_vref  
-
-
A22  
cam_hs  
gpio_94  
gpio_95  
gpio_96  
gpio_97  
gpio_98  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
E18  
cam_vs  
B22  
cam_xclka  
cam_pclk  
cam_fld  
J19  
H24  
cam_global_r  
eset  
AB18  
AC18  
G19  
F19  
G20  
B21  
L24  
K24  
J23  
cam_d0  
cam_d1  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
gpio_99  
gpio_100  
gpio_101  
gpio_102  
gpio_103  
gpio_104  
gpio_105  
gpio_106  
gpio_107  
gpio_108  
gpio_109  
gpio_110  
gpio_111  
gpio_167  
gpio_126  
gpio_116  
gpio_117  
gpio_118  
gpio_119  
gpio_120  
gpio_121  
gpio_122  
gpio_123  
gpio_124  
gpio_125  
gpio_126  
gpio_127  
gpio_128  
gpio_129  
gpio_130  
gpio_131  
gpio_132  
gpio_133  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
-
-
cam_d2  
-
-
cam_d3  
-
-
cam_d4  
-
-
cam_d5  
-
-
cam_d6  
-
-
cam_d7  
-
-
cam_d8  
-
-
K23  
F21  
G21  
C22  
F18  
J20  
cam_d9  
-
-
cam_d10  
-
-
cam_d11  
-
-
cam_xclkb  
cam_wen  
cam_strobe  
mcbsp2_fsx  
mcbsp2_clkx  
mcbsp2_dr  
mcbsp2_dx  
mmc1_clk  
mmc1_cmd  
mmc1_dat0  
mmc1_dat1  
mmc1_dat2  
mmc1_dat3  
mmc1_dat4  
mmc1_dat5  
mmc1_dat6  
mmc1_dat7  
mmc2_clk  
mmc2_cmd  
mmc2_dat0  
mmc2_dat1  
-
-
-
cam_shutter  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
V20  
T21  
V19  
R20  
M23  
L23  
M22  
M21  
M20  
N23  
N22  
N21  
N20  
P24  
Y1  
-
-
-
-
ms_clk  
ms_bs  
ms_dat0  
ms_dat1  
ms_dat2  
ms_dat3  
-
-
-
-
mcspi3_clk  
mcspi3_simo  
mcspi3_somi  
-
AB5  
AB3  
Y3  
68  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-4. Multiplexing Characteristics (CUS Pkg.)(1) (continued)  
Ball  
Mode 0  
Mode 1  
Mode 2  
Mode 3  
Mode 4  
Mode 5  
Mode 6  
Mode 7  
Bottom  
W3  
mmc2_dat2  
mmc2_dat3  
mmc2_dat4  
mcspi3_cs1  
mcspi3_cs0  
-
-
-
-
gpio_134  
gpio_135  
gpio_136  
-
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
V3  
-
AB2  
mmc2_dir_  
dat0  
mmc3_dat0  
AA2  
Y2  
mmc2_dat5  
mmc2_dat6  
mmc2_dir_  
dat1  
cam_global_r  
eset  
mmc3_dat1  
mmc3_dat2  
gpio_137  
gpio_138  
-
-
-
-
safe_mode  
safe_mode  
mmc2_dir_  
cmd  
cam_shutter  
AA1  
V6  
mmc2_dat7  
mcbsp3_dx  
mcbsp3_dr  
mcbsp3_clkx  
mcbsp3_fsx  
uart1_tx  
mmc2_clkin  
-
mmc3_dat3  
gpio_139  
gpio_140  
gpio_141  
gpio_142  
gpio_143  
gpio_148  
gpio_149  
gpio_150  
gpio_151  
gpio_156  
gpio_157  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
uart2_cts  
-
-
V5  
uart2_rts  
-
-
W4  
V4  
uart2_tx  
-
-
uart2_rx  
-
-
W7  
W6  
AC2  
V7  
-
-
-
uart1_rts  
-
-
-
uart1_cts  
-
-
-
uart1_rx  
-
mcbsp1_clkr  
-
mcspi4_clk  
W19  
AB20  
mcbsp1_clkr  
mcbsp1_fsr  
mcspi4_clk  
-
-
adpllv2d_  
dithering_en1  
cam_global_r  
eset  
W18  
Y18  
AA18  
AA19  
V18  
A23  
B23  
B24  
C23  
R21  
R23  
P23  
R22  
T24  
mcbsp1_dx  
mcbsp1_dr  
mcbsp_clks  
mcbsp1_fsx  
mcbsp1_clkx  
uart3_cts_rctx  
uart3_rts_sd  
uart3_rx_irrx  
uart3_tx_irtx  
hsusb0_clk  
hsusb0_stp  
hsusb0_dir  
mcspi4_simo  
mcbsp3_dx  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
gpio_158  
gpio_159  
gpio_160  
gpio_161  
gpio_162  
gpio_163  
gpio_164  
gpio_165  
gpio_166  
gpio_120  
gpio_121  
gpio_122  
gpio_124  
gpio_125  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
mcspi4_somi  
mcbsp3_dr  
-
-
cam_shutter  
uart1_cts  
mcspi4_cs0  
mcbsp3_fsx  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
mcbsp3_clkx  
-
-
-
-
-
-
-
hsusb0_nxt  
-
hsusb0_  
data0  
uart3_tx_irtx  
T23  
U24  
U23  
W24  
V23  
W23  
T22  
K20  
hsusb0_  
data1  
-
-
-
-
-
-
-
-
uart3_rx_irrx  
uart3_rts_sd  
-
-
-
-
-
-
-
-
gpio_130  
gpio_131  
gpio_169  
gpio_188  
gpio_189  
gpio_190  
gpio_191  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
-
hsusb0_  
data2  
hsusb0_  
data3  
uart3_cts_  
rctx  
hsusb0_  
data4  
-
-
-
-
-
hsusb0_  
data5  
hsusb0_  
data6  
hsusb0_  
data7  
i2c1_scl  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
69  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-4. Multiplexing Characteristics (CUS Pkg.)(1) (continued)  
Ball  
Mode 0  
Mode 1  
Mode 2  
Mode 3  
Mode 4  
Mode 5  
Mode 6  
Mode 7  
Bottom  
K21  
AC15  
AC14  
AC13  
AC12  
Y16  
i2c1_sda  
i2c2_scl  
i2c2_sda  
i2c3_scl  
i2c3_sda  
i2c4_scl  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
gpio_168  
gpio_183  
gpio_184  
gpio_185  
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
sys_  
nvmode1  
Y15  
i2c4_sda  
sys_  
-
-
-
-
-
safe_mode  
nvmode2  
A24  
T5  
hdq_sio  
sys_altclk  
mmc2_dat4  
mmc2_dat5  
mmc2_dat6  
mmc2_dat7  
-
i2c2_sccbe  
i2c3_sccbe  
gpio_170  
gpio_171  
gpio_172  
gpio_173  
gpio_174  
gpio_177  
-
-
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
mcspi1_clk  
mcspi1_simo  
mcspi1_somi  
mcspi1_cs0  
mcspi1_cs3  
-
-
-
-
-
-
-
-
-
R4  
T4  
-
-
T6  
-
R5  
hsusb2_tll_  
data2  
hsusb2_  
data2  
mm2_txdat  
N5  
N4  
N3  
M5  
M4  
mcspi2_clk  
-
hsusb2_tll_  
data7  
hsusb2_  
data7  
gpio_178  
gpio_179  
gpio_180  
gpio_181  
gpio_182  
-
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
mcspi2_simo  
gpt9_pwm_  
evt  
hsusb2_tll_  
data4  
hsusb2_  
data4  
-
mcspi2_somi gpt10_pwm_  
evt  
hsusb2_tll_  
data5  
hsusb2_  
data5  
-
mcspi2_cs0  
gpt11_pwm_  
evt  
hsusb2_tll_  
data6  
hsusb2_  
data6  
-
mcspi2_cs1  
gpt8_pwm_  
evt  
hsusb2_tll_  
data3  
hsusb2_  
data3  
mm2_txen_n  
AA16  
AD15  
AD14  
Y13  
sys_32k  
sys_xtalin  
sys_xtalout  
sys_clkreq  
sys_nirq  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
gpio_1  
gpio_0  
-
safe_mode  
safe_mode  
-
W16  
AA10  
sys_nrespwro  
n
Y10  
sys_nreswar  
m
-
-
-
gpio_30  
-
-
safe_mode  
AB12  
AC16  
AD17  
AD18  
AC17  
sys_boot0  
sys_boot1  
sys_boot2  
sys_boot3  
sys_boot4  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
gpio_2  
gpio_3  
gpio_4  
gpio_5  
gpio_6  
-
-
-
-
-
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
mmc2_dir_  
dat2  
AB16  
sys_boot5  
sys_boot6  
mmc2_dir_  
dat3  
-
-
gpio_7  
-
-
safe_mode  
AA15  
AD23  
-
-
-
-
-
-
gpio_8  
gpio_9  
-
-
-
-
safe_mode  
safe_mode  
sys_off_  
mode  
Y7  
AA6  
A1  
sys_clkout1  
sys_clkout2  
sys_ipmcsws  
-
-
-
-
-
-
-
-
-
-
-
-
gpio_10  
-
-
-
-
-
-
-
-
safe_mode  
gpio_186  
safe_mode  
-
-
-
-
A2  
sys_  
opmcsws  
70  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-4. Multiplexing Characteristics (CUS Pkg.)(1) (continued)  
Ball  
Mode 0  
Mode 1  
Mode 2  
Mode 3  
Mode 4  
Mode 5  
Mode 6  
Mode 7  
Bottom  
AB7  
jtag_ntrst  
jtag_tck  
jtag_rtck  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
AB6  
AA7  
AA9  
jtag_tms_  
tmsc  
AB10  
AB9  
jtag_tdi  
jtag_tdo  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
AC24  
AD24  
AC1  
jtag_emu0  
jtag_emu1  
etk_clk  
-
-
-
gpio_11  
gpio_31  
gpio_12  
-
safe_mode  
safe_mode  
-
-
-
-
-
mcbsp5_clkx  
mmc3_clk  
hsusb1_stp  
mm1_rxdp  
hsusb1_tll_  
stp  
AD3  
AD6  
AC6  
AC7  
AD8  
AC5  
AD2  
AC8  
AD9  
AC4  
AD5  
AC3  
AC9  
AC10  
AD11  
AC11  
AD12  
etk_ctl  
etk_d0  
etk_d1  
etk_d2  
etk_d3  
etk_d4  
etk_d5  
etk_d6  
etk_d7  
etk_d8  
etk_d9  
etk_d10  
etk_d11  
etk_d12  
etk_d13  
etk_d14  
etk_d15  
-
mmc3_cmd  
hsusb1_clk  
gpio_13  
gpio_14  
gpio_15  
gpio_16  
gpio_17  
gpio_18  
gpio_19  
gpio_20  
gpio_21  
gpio_22  
gpio_23  
gpio_24  
gpio_25  
gpio_26  
gpio_27  
gpio_28  
gpio_29  
-
hsusb1_tll_  
clk  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
mcspi3_simo  
mcspi3_somi  
mcspi3_cs0  
mcspi3_clk  
mcbsp5_dr  
mcbsp5_fsx  
mcbsp5_dx  
mcspi3_cs1  
mmc3_dat4  
hsusb1_  
data0  
mm1_rxrcv  
hsusb1_tll_  
data0  
-
hsusb1_  
data1  
mm1_txse0  
hsusb1_tll_  
data1  
-
hsusb1_  
data2  
mm1_txdat  
hsusb1_tll_  
data2  
mmc3_dat3  
hsusb1_  
data7  
-
hsusb1_tll_  
data7  
mmc3_dat0  
hsusb1_  
data4  
-
hsusb1_tll_  
data4  
mmc3_dat1  
hsusb1_  
data5  
-
hsusb1_tll_  
data5  
mmc3_dat2  
hsusb1_  
data6  
-
hsusb1_tll_  
data6  
mmc3_dat7  
hsusb1_  
data3  
mm1_txen_n  
-
hsusb1_tll_  
data3  
sys_drm_  
msecure  
mmc3_dat6  
hsusb1_dir  
hsusb1_nxt  
hsusb2_clk  
hsusb2_stp  
hsusb2_dir  
hsusb2_nxt  
hsusb1_tll_  
dir  
sys_secure_  
indicator  
mmc3_dat5  
mm1_rxdm  
-
hsusb1_tll_  
nxt  
-
-
-
-
-
-
uart1_rx  
hsusb2_tll_  
clk  
-
-
-
-
-
mm2_rxdp  
-
hsusb2_tll_  
stp  
hsusb2_tll_  
dir  
mm2_rxdm  
mm2_rxrcv  
mm2_txse0  
hsusb2_tll_  
nxt  
hsusb2_  
data0  
hsusb2_tll_  
data0  
hsusb2_  
data1  
hsusb2_tll_  
data1  
(1) NA in table stands for Not Applicable.  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
71  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
2.4 Signal Description  
Many signals are available on multiple pins according to the software configuration of the pin multiplexing  
options.  
1. SIGNAL NAME: The signal name  
2. DESCRIPTION: Description of the signal  
3. TYPE: Type = Ball type for this specific function:  
I = Input  
O = Output  
Z = High-impedance  
D = Open Drain  
DS = Differential  
A = Analog  
4. BALL BOTTOM: Associated ball(s) bottom  
5. BALL TOP: Associated ball(s) top  
6. SUBSYSTEM PIN MULTIPLEXING: Contains a list of the pin multiplexing options at the  
module/subsystem level. The pin function is selected at the module/system level.  
Note: The Subsystem Multiplexing Signals are not described in Table 2-1 through Table 2-4.  
2.4.1 External Memory Interfaces  
Table 2-5. External Memory Interfaces – GPMC Signals Description  
SIGNAL  
NAME [1]  
DESCRIPTION [2]  
TYPE [3]  
BALL  
BOTTOM  
(CBB Pkg.)  
[4]  
BALL TOP  
(CBB Pkg.)  
[5]  
BALL  
BOTTOM  
(CUS Pkg.)  
[4]  
SUBSYSTEM PIN  
MULTIPLEXING  
[6]  
gpmc_a1  
General-purpose memory address bit 1  
General-purpose memory address bit 2  
General-purpose memory address bit 3  
General-purpose memory address bit 4  
General-purpose memory address bit 5  
General-purpose memory address bit 6  
General-purpose memory address bit 7  
General-purpose memory address bit 8  
General-purpose memory address bit 9  
General-purpose memory address bit 10  
O
O
O
O
O
O
O
O
O
O
N4 / K1  
M4 / L1  
L4 / L2  
K4 / P2  
T3 / T1  
R3 / V1  
N3 / V2  
M3 / W2  
L3 / H2  
K3 / K2  
AC15 / M2  
AB15 / M1  
AC16 / N2  
AB16 / N1  
AC17 / R2  
AB17 / R1  
AC18 / T2  
AB18 / T1  
AC19 / AB3  
AB19 / AC3  
K4/ L2  
K3/ M1  
K2/ M2  
J4/ N2  
J3/ M3  
J2/ P1  
J1/ P2  
H1/ R1  
H2/ R2  
G2/ T2  
gpmc_a17/  
gpmc_d0  
gpmc_a2  
gpmc_a3  
gpmc_a4  
gpmc_a5  
gpmc_a6  
gpmc_a7  
gpmc_a8  
gpmc_a9  
gpmc_a10  
gpmc_a18/  
gpmc_d1  
gpmc_a19/  
gpmc_d2  
gpmc_a20/  
gpmc_d3  
gpmc_a21/  
gpmc_d4  
gpmc_a22/  
gpmc_d5  
gpmc_a23/  
gpmc_d6  
gpmc_a24/  
gpmc_d7  
gpmc_a25/  
gpmc_d8  
gpmc_a26/  
gpmc_d9  
gpmc_a11  
gpmc_a12  
gpmc_a13  
gpmc_a14  
gpmc_a15  
gpmc_a16  
gpmc_a17  
General-purpose memory address bit 11  
General-purpose memory address bit 12  
General-purpose memory address bit 13  
General-purpose memory address bit 14  
General-purpose memory address bit 15  
General-purpose memory address bit 16  
General-purpose memory address bit 17  
O
O
O
O
O
O
O
P1  
R1  
R2  
T2  
AB4  
AC4  
AB6  
AC6  
AB7  
AC7  
AC15  
U1  
R3  
T3  
U2  
V1  
V2  
K4  
gpmc_d10  
gpmc_d11  
gpmc_d12  
gpmc_d13  
gpmc_d14  
gpmc_d15  
gpmc_a1  
W1  
Y1  
N4  
72  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-5. External Memory Interfaces – GPMC Signals Description (continued)  
SIGNAL  
NAME [1]  
DESCRIPTION [2]  
TYPE [3]  
BALL  
BOTTOM  
(CBB Pkg.)  
[4]  
BALL TOP  
(CBB Pkg.)  
[5]  
BALL  
BOTTOM  
(CUS Pkg.)  
[4]  
SUBSYSTEM PIN  
MULTIPLEXING  
[6]  
gpmc_a18  
gpmc_a19  
gpmc_a20  
gpmc_a21  
gpmc_a22  
gpmc_a23  
gpmc_a24  
gpmc_a25  
gpmc_a26  
gpmc_d0  
gpmc_d1  
gpmc_d2  
gpmc_d3  
gpmc_d4  
gpmc_d5  
gpmc_d6  
gpmc_d7  
gpmc_d8  
gpmc_d9  
General-purpose memory address bit 18  
General-purpose memory address bit 19  
General-purpose memory address bit 20  
General-purpose memory address bit 21  
General-purpose memory address bit 22  
General-purpose memory address bit 23  
General-purpose memory address bit 24  
General-purpose memory address bit 25  
General-purpose memory address bit 26  
GPMC Data bit 0  
O
O
M4  
L4  
AB15  
AC16  
AB16  
AC17  
AB17  
AC18  
AB18  
AC19  
AB19  
M2  
K3  
K2  
J4  
gpmc_a2  
gpmc_a3  
O
K4  
T3  
R3  
N3  
M3  
L3  
gpmc_a4  
O
J3  
gpmc_a5  
O
J2  
gpmc_a6  
O
J1  
gpmc_a7  
O
H1  
H2  
G2  
L2  
gpmc_a8  
O
gpmc_a9  
O
K3  
K1  
L1  
gpmc_a10  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
gpmc_a1/ gpmc_d0  
gpmc_a2/ gpmc_d1  
gpmc_a3/ gpmc_d2  
gpmc_a4/ gpmc_d3  
gpmc_a5/ gpmc_d4  
gpmc_a6/ gpmc_d5  
gpmc_a7 /gpmc_d6  
gpmc_a8/ gpmc_d7  
gpmc_a9/ gpmc_d8  
GPMC Data bit 1  
M1  
M1  
M2  
N2  
M3  
P1  
P2  
R1  
R2  
T2  
GPMC Data bit 2  
L2  
N2  
GPMC Data bit 3  
P2  
T1  
V1  
V2  
W2  
H2  
K2  
N1  
GPMC Data bit 4  
R2  
GPMC Data bit 5  
R1  
GPMC Data bit 6  
T2  
GPMC Data bit 7  
T1  
GPMC Data bit 8  
AB3  
AC3  
GPMC Data bit 9  
gpmc_a10/  
gpmc_d9  
gpmc_d10  
gpmc_d11  
gpmc_d12  
gpmc_d13  
gpmc_d14  
gpmc_d15  
GPMC Data bit 10  
GPMC Data bit 11  
GPMC Data bit 12  
GPMC Data bit 13  
GPMC Data bit 14  
GPMC Data bit 15  
IO  
IO  
IO  
IO  
IO  
IO  
P1  
R1  
R2  
T2  
AB4  
AC4  
AB6  
AC6  
AB7  
AC7  
U1  
R3  
T3  
U2  
V1  
V2  
gpmc_a11/  
gpmc_d10  
gpmc_a12/  
gpmc_d11  
gpmc_a13/  
gpmc_d12  
gpmc_a14/  
gpmc_d13  
W1  
Y1  
gpmc_a15/  
gpmc_d14  
gpmc_a16/  
gpmc_d15  
gpmc_ncs0  
gpmc_ncs1  
gpmc_ncs2  
gpmc_ncs3  
gpmc_ncs4  
gpmc_ncs5  
gpmc_ncs6  
gpmc_ncs7  
gpmc_io_dir  
GPMC Chip Select bit 0  
GPMC Chip Select bit 1  
GPMC Chip Select bit 2  
GPMC Chip Select bit 3  
GPMC Chip Select bit 4  
GPMC Chip Select bit 5  
GPMC Chip Select bit 6  
GPMC Chip Select bit 7  
O
O
O
O
O
O
O
O
O
G4  
H3  
V8  
U8  
T8  
R8  
P8  
N8  
N8  
Y2  
Y1  
E2  
NA  
NA  
D2  
F4  
-
-
-
-
-
-
-
-
-
NA  
NA  
NA  
NA  
NA  
NA  
NA  
G5  
F3  
G4  
G4  
GPMC IO direction control for use with  
external transceivers  
gpmc_clk  
GPMC clock  
O
O
T4  
F3  
W2  
W1  
W2  
F1  
-
-
gpmc_nadv_al Address Valid or Address Latch Enable  
e
gpmc_noe  
gpmc_nwe  
Output Enable  
Write Enable  
O
O
G2  
F4  
V2  
V1  
F2  
-
-
G3  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
73  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-5. External Memory Interfaces – GPMC Signals Description (continued)  
SIGNAL  
NAME [1]  
DESCRIPTION [2]  
TYPE [3]  
BALL  
BOTTOM  
(CBB Pkg.)  
[4]  
BALL TOP  
(CBB Pkg.)  
[5]  
BALL  
BOTTOM  
(CUS Pkg.)  
[4]  
SUBSYSTEM PIN  
MULTIPLEXING  
[6]  
gpmc_nbe0_cl Lower Byte Enable. Also used for  
O
G3  
AC12  
K5  
-
e
Command Latch Enable  
gpmc_nbe1  
gpmc_nwp  
gpmc_wait0  
gpmc_wait1  
gpmc_wait2  
gpmc_wait3  
Upper Byte Enable  
O
O
I
U3  
H1  
M8  
L8  
NA  
AB10  
AB12  
AC10  
NA  
L1  
E1  
C1  
NA  
NA  
C2  
-
-
-
-
-
-
Flash Write Protect  
External indication of wait  
External indication of wait  
External indication of wait  
External indication of wait  
I
I
K8  
J8  
I
NA  
Table 2-6. External Memory Interfaces – SDRC Signals Description  
SIGNAL NAME  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM  
(CBB Pkg.)  
BALL TOP  
(CBB Pkg.)  
BALL BOTTOM  
(CUS Pkg.)  
sdrc_d0  
SDRAM data bit 0  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
O
D6  
C6  
J2  
J1  
D7  
C5  
sdrc_d1  
SDRAM data bit 1  
SDRAM data bit 2  
SDRAM data bit 3  
SDRAM data bit 4  
SDRAM data bit 5  
SDRAM data bit 6  
SDRAM data bit 7  
SDRAM data bit 8  
SDRAM data bit 9  
SDRAM data bit 10  
SDRAM data bit 11  
SDRAM data bit 12  
SDRAM data bit 13  
SDRAM data bit 14  
SDRAM data bit 15  
SDRAM data bit 16  
SDRAM data bit 17  
SDRAM data bit 18  
SDRAM data bit 19  
SDRAM data bit 20  
SDRAM data bit 21  
SDRAM data bit 22  
SDRAM data bit 23  
SDRAM data bit 24  
SDRAM data bit 25  
SDRAM data bit 26  
SDRAM data bit 27  
SDRAM data bit 28  
SDRAM data bit 29  
SDRAM data bit 30  
SDRAM data bit 31  
SDRAM bank select 0  
sdrc_d2  
B6  
G2  
C6  
sdrc_d3  
C8  
G1  
B5  
sdrc_d4  
C9  
F2  
D9  
sdrc_d5  
A7  
F1  
D10  
C7  
sdrc_d6  
B9  
D2  
sdrc_d7  
A9  
D1  
B7  
sdrc_d8  
C14  
B14  
C15  
B16  
D17  
C17  
B17  
D18  
D11  
B10  
C11  
D12  
C12  
A11  
B13  
D14  
C18  
A19  
B19  
B20  
D20  
A21  
B21  
C21  
H9  
B13  
A13  
B14  
A14  
B16  
A16  
B19  
A19  
B3  
B11  
C12  
B12  
D13  
C13  
B14  
A14  
B15  
C9  
sdrc_d9  
sdrc_d10  
sdrc_d11  
sdrc_d12  
sdrc_d13  
sdrc_d14  
sdrc_d15  
sdrc_d16  
sdrc_d17  
sdrc_d18  
sdrc_d19  
sdrc_d20  
sdrc_d21  
sdrc_d22  
sdrc_d23  
sdrc_d24  
sdrc_d25  
sdrc_d26  
sdrc_d27  
sdrc_d28  
sdrc_d29  
sdrc_d30  
sdrc_d31  
sdrc_ba0  
A3  
E12  
B8  
B5  
A5  
B9  
B8  
C10  
B10  
D12  
E13  
E15  
D15  
C15  
B16  
C16  
D16  
B17  
B18  
C18  
A8  
B9  
A9  
B21  
A21  
D22  
D23  
E22  
E23  
G22  
G23  
AB21  
74  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-6. External Memory Interfaces – SDRC Signals Description (continued)  
SIGNAL NAME  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM  
(CBB Pkg.)  
BALL TOP  
(CBB Pkg.)  
BALL BOTTOM  
(CUS Pkg.)  
sdrc_ba1  
sdrc_a0  
SDRAM bank select 1  
SDRAM address bit 0  
SDRAM address bit 1  
SDRAM address bit 2  
SDRAM address bit 3  
SDRAM address bit 4  
SDRAM address bit 5  
SDRAM address bit 6  
SDRAM address bit 7  
SDRAM address bit 8  
SDRAM address bit 9  
SDRAM address bit 10  
SDRAM address bit 11  
SDRAM address bit 12  
SDRAM address bit 13  
SDRAM address bit 14  
Chip select 0  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
IO  
O
O
O
O
O
H10  
A4  
AC21  
N22  
N23  
P22  
P23  
R22  
R23  
T22  
T23  
U22  
U23  
V22  
V23  
W22  
W23  
Y22  
M22  
M23  
A11  
B11  
J22  
D18  
A4  
sdrc_a1  
B4  
B4  
sdrc_a2  
B3  
D6  
sdrc_a3  
C5  
B3  
sdrc_a4  
C4  
B2  
sdrc_a5  
D5  
C3  
sdrc_a6  
C3  
E3  
sdrc_a7  
C2  
F6  
sdrc_a8  
C1  
E10  
E9  
sdrc_a9  
D4  
sdrc_a10  
sdrc_a11  
sdrc_a12  
sdrc_a13  
sdrc_a14  
sdrc_ncs0  
sdrc_ncs1  
sdrc_clk  
sdrc_nclk  
sdrc_cke0  
sdrc_cke1  
sdrc_nras  
sdrc_ncas  
D3  
E7  
D2  
G6  
D1  
G7  
E2  
F7  
E1  
F9  
H11  
H12  
A13  
A14  
H16  
H17  
H14  
H13  
A19  
B19  
A10  
A11  
B20  
C20  
D19  
C19  
Chip select 1  
Clock  
Clock Invert  
Clock Enable 0  
Clock Enable 1  
J23  
SDRAM Row Access  
L23  
L22  
SDRAM column address  
strobe  
sdrc_nwe  
sdrc_dm0  
sdrc_dm1  
sdrc_dm2  
sdrc_dm3  
sdrc_dqs0  
sdrc_dqs1  
sdrc_dqs2  
sdrc_dqs3  
SDRAM write enable  
Data Mask 0  
O
O
H15  
B7  
K23  
C1  
A20  
B6  
Data Mask 1  
O
A16  
B11  
C20  
A6  
A17  
A6  
B13  
A7  
Data Mask 2  
O
Data Mask 3  
O
A20  
C2  
A16  
A5  
Data Strobe 0  
Data Strobe 1  
Data Strobe 2  
Data Strobe 3  
IO  
IO  
IO  
IO  
A17  
A10  
A20  
B17  
B6  
A13  
A8  
B20  
A17  
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog).  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
75  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
2.4.2 Video Interfaces  
Table 2-7. Video Interfaces – CAM Signals Description  
SIGNAL NAME  
cam_hs  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CUS Pkg.)  
Camera Horizontal Synchronization  
Camera Vertical Synchronization  
Camera Clock Output a  
IO  
IO  
O
O
I
A24  
A23  
A22  
E18  
cam_vs  
cam_xclka  
cam_xclkb  
cam_d0  
C25  
B22  
Camera Clock Output b  
B26  
C22  
Camera digital image data bit 0  
Camera digital image data bit 1  
Camera digital image data bit 2  
Camera digital image data bit 3  
Camera digital image data bit 4  
Camera digital image data bit 5  
Camera digital image data bit 6  
Camera digital image data bit 7  
Camera digital image data bit 8  
Camera digital image data bit 9  
Camera digital image data bit 10  
Camera digital image data bit 11  
Camera field identification  
AG17  
AH17  
B24  
AB18  
AC18  
G19  
cam_d1  
I
cam_d2  
I
cam_d3  
I
C24  
F19  
cam_d4  
I
D24  
G20  
cam_d5  
I
A25  
B21  
cam_d6  
I
K28  
L24  
cam_d7  
I
L28  
K24  
cam_d8  
I
K27  
J23  
cam_d9  
I
L27  
K23  
cam_d10  
cam_d11  
cam_fld  
I
B25  
F21  
I
C26  
G21  
IO  
I
C23  
H24  
cam_pclk  
cam_wen  
cam_strobe  
cam_global_reset  
Camera pixel clock  
C27  
J19  
Camera Write Enable  
I
B23  
F18  
Flash strobe control signal  
O
IO  
D25  
J20  
Global reset is used strobe  
synchronization  
C23 / AH3 / AA21  
H24/ AA2/ AB20  
cam_shutter  
Mechanical shutter control signal  
O
B23 / AF3 / T21  
F18/ Y2/ AA18  
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog).  
Table 2-8. Video Interfaces – DSS Signals Description  
SIGNAL NAME  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CUS Pkg.)  
dss_pclk  
LCD Pixel Clock  
O
O
D28  
D26  
G22  
E22  
dss_hsync  
dss_vsync  
dss_acbias  
dss_data0  
dss_data1  
dss_data2  
dss_data3  
dss_data4  
dss_data5  
dss_data6  
dss_data7  
dss_data8  
dss_data9  
dss_data10  
dss_data11  
LCD Horizontal Synchronization  
LCD Vertical Synchronization  
AC bias control (STN) or pixel data enable (TFT) output  
LCD Pixel Data bit 0  
O
D27  
F22  
O
E27  
J21  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
AG22 / H26  
AH22 / H25  
AG23 / E28  
AH23 / J26  
AG24 / AC27  
AH24 / AC28  
E26  
AC19  
AB19  
AD20  
AC20  
AD21  
AC21  
D24  
LCD Pixel Data bit 1  
LCD Pixel Data bit 2  
LCD Pixel Data bit 3  
LCD Pixel Data bit 4  
LCD Pixel Data bit 5  
LCD Pixel Data bit 6  
LCD Pixel Data bit 7  
F28  
E23  
LCD Pixel Data bit 8  
F27  
E24  
LCD Pixel Data bit 9  
G26  
F23  
LCD Pixel Data bit 10  
AD28  
AC22  
AC23  
LCD Pixel Data bit 11  
AD27  
76  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-8. Video Interfaces – DSS Signals Description (continued)  
SIGNAL NAME  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CUS Pkg.)  
dss_data12  
dss_data13  
dss_data14  
dss_data15  
dss_data16  
dss_data17  
dss_data18  
dss_data19  
dss_data20  
dss_data21  
dss_data22  
dss_data23  
LCD Pixel Data bit 12  
LCD Pixel Data bit 13  
LCD Pixel Data bit 14  
LCD Pixel Data bit 15  
LCD Pixel Data bit 16  
LCD Pixel Data bit 17  
LCD Pixel Data bit 18  
LCD Pixel Data bit 19  
LCD Pixel Data bit 20  
LCD Pixel Data bit 21  
LCD Pixel Data bit 22  
LCD Pixel Data bit 23  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
O
AB28  
AB27  
AA28  
AA27  
G25  
AB22  
Y22  
W22  
V22  
J22  
H27  
G23  
G24  
H23  
D23  
K22  
V21  
W21  
H26  
H25  
E28  
O
J26  
O
AC27  
AC28  
O
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog).  
Table 2-9. Video Interfaces – RFBI Signals Description  
SIGNAL  
NAME  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CUS Pkg.)  
SUBSYSTEM PIN  
MULTIPLEXING(2)  
rfbi_a0  
RFBI command/data control  
1st LCD chip select  
RFBI data bus 0  
O
O
E27  
D26  
J21  
E22  
dss_acbias  
dss_hsync  
dss_data0  
dss_data1  
dss_data2  
dss_data3  
dss_data4  
dss_data5  
dss_data6  
dss_data7  
dss_data8  
dss_data9  
dss_data10  
dss_data11  
dss_data12  
dss_data13  
dss_data14  
dss_data15  
dss_pclk  
rfbi_cs0  
rfbi_da0  
rfbi_da1  
rfbi_da2  
rfbi_da3  
rfbi_da4  
rfbi_da5  
rfbi_da6  
rfbi_da7  
rfbi_da8  
rfbi_da9  
rfbi_da10  
rfbi_da11  
rfbi_da12  
rfbi_da13  
rfbi_da14  
rfbi_da15  
rfbi_rd  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
O
AG22  
AH22  
AG23  
AH23  
AG24  
AH24  
E26  
AC19  
AB19  
AD20  
AC20  
AD21  
AC21  
D24  
RFBI data bus 1  
RFBI data bus 2  
RFBI data bus 3  
RFBI data bus 4  
RFBI data bus 5  
RFBI data bus 6  
RFBI data bus 7  
F28  
E23  
RFBI data bus 8  
F27  
E24  
RFBI data bus 9  
G26  
F23  
RFBI data bus 10  
RFBI data bus 11  
RFBI data bus 12  
RFBI data bus 13  
RFBI data bus 14  
RFBI data bus 15  
Read enable for RFBI  
Write Enable for RFBI  
AD28  
AD27  
AB28  
AB27  
AA28  
AA27  
D28  
AC22  
AC23  
AB22  
Y22  
W22  
V22  
G22  
rfbi_wr  
O
D27  
F22  
dss_vsync  
dss_data16  
rfbi_te_vsync0 tearing effect removal and Vsync input  
from 1st LCD  
I
G25  
J22  
rfbi_hsync0  
Hsync for 1st LCD  
I
H27  
G23  
dss_data17  
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog).  
(2) The subsystem pin multiplexing options are not described in Table 2-1 and Table 2-3.  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
77  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-10. Video Interfaces – TV Signals Description  
SIGNAL NAME  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CUS Pkg.)  
tv_out1  
tv_out2  
tv_vfb1  
TV analog output Composite: tv_out1  
TV analog output S-VIDEO: tv_out2  
O
O
O
Y28  
W28  
Y27  
AB24  
AA23  
AB23  
tv_vfb1: Feedback through external  
resistorto composite  
tv_vfb2  
tv_vref  
tv_vfb2: Feedback through external  
resistorto S-VIDEO  
O
I
W27  
W26  
Y23  
Y24  
External capacitor  
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog).  
78  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
2.4.3 Serial Communication Interfaces  
Table 2-11. Serial Communication Interfaces – HDQ/1-Wire Signals Description  
SIGNAL NAME  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CUS Pkg.)  
hdq_sio  
Bidirectional HDQ 1-Wire control and data  
Interface. Output is open drain.  
IOD  
J25  
A24  
1. Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain,  
DS = Differential, A = Analog).  
Table 2-12. Serial Communication Interfaces – I2C Signals Description  
SIGNAL NAME  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CUS Pkg.)  
INTER-INTEGRATED CIRCUIT INTERFACE (I2C1)  
i2c1_scl  
I2C Master Serial clock. Output is open  
drain.  
I2C Serial Bidirectional Data. Output is open  
drain.  
IOD  
IOD  
K21  
J21  
K20  
K21  
i2c1_sda  
INTER-INTEGRATED CIRCUIT INTERFACE (I2C3)  
i2c3_scl  
I2C Master Serial clock. Output is open  
drain.  
I2C Serial Bidirectional Data. Output is open  
drain.  
IOD  
IOD  
O
AF14  
AG14  
J25  
AC13  
AC12  
A24  
i2c3_sda  
i2c3_sccbe  
TBD  
INTER-INTEGRATED CIRCUIT INTERFACE (I2C2)  
i2c2_scl  
I2C Master Serial clock. Output is open  
drain.  
I2C Serial Bidirectional Data. Output is open  
drain.  
IOD  
IOD  
AF15  
AE15  
AC15  
AC14  
i2c2_sda  
i2c2_sccbe  
i2c4_scl  
TBD  
O
J25  
A24  
Y16  
I2C Master Serial clock. Output is open  
drain.  
IOD  
AD26  
i2c4_sda  
I2C Serial Bidirectional Data. Output is open  
drain.  
IOD  
AE26  
Y15  
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog).  
Table 2-13. Serial Communication Interfaces – McBSP LP Signals Description  
SIGNAL NAME  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CUS Pkg.)  
MULTICHANNEL SERIAL (McBSP LP 1)  
mcbsp1_dr  
mcbsp1_clkr  
mcbsp1_fsr  
mcbsp1_dx  
mcbsp1_clkx  
mcbsp1_fsx  
mcbsp_clks  
Received serial data  
Receive Clock  
I
U21  
Y8 / Y21  
AA21  
V21  
Y18  
V7 / W19  
AB20  
W18  
IO  
IO  
IO  
IO  
IO  
I
Receive frame synchronization  
Transmitted serial data  
Transmit clock  
W21  
V18  
Transmit frame synchronization  
K26  
AA19  
AA18  
External clock input (shared by McBSP1, 2,  
3, 4, and 5)  
T21  
MULTICHANNEL SERIAL (McBSP LP 2)  
mcbsp2_dr  
mcbsp2_dx  
mcbsp2_clkx  
Received serial data  
Transmitted serial data  
Combined serial clock  
I
R21  
M21  
N21  
V19  
R20  
T2  
IO  
IO  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
79  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-13. Serial Communication Interfaces – McBSP LP Signals Description (continued)  
SIGNAL NAME  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CUS Pkg.)  
mcbsp2_fsx  
Combined frame synchronization  
IO  
P21  
V20  
MULTICHANNEL SERIAL (McBSP LP 3)  
mcbsp3_dr  
mcbsp3_dx  
mcbsp3_clkx  
mcbsp3_fsx  
Received serial data  
I
AE6 / AB25 / U21  
AF6 / AB26 / V21  
AF5 / AA25 / W21  
AE5 / AD25 / K26  
V5 / Y18  
V6 / W18  
W4 / V18  
V4 / AA19  
Transmitted serial data  
Combined serial clock  
IO  
IO  
IO  
Combined frame synchronization  
MULTICHANNEL SERIAL (McBSP LP 4)  
mcbsp4_dr  
mcbsp4_dx  
mcbsp4_clkx  
mcbsp4_fsx  
Received serial data  
I
R8 / AD1  
P8 / AD2  
T8 / AE1  
N8 / AC1  
G5  
F3  
F4  
G4  
Transmitted serial data  
Combined serial clock  
IO  
IO  
IO  
Combined frame synchronization  
MULTICHANNEL SERIAL (McBSP LP 5)  
mcbsp5_dr  
mcbsp5_dx  
mcbsp5_clkx  
mcbsp5_fsx  
Received serial data  
I
AE11  
AF13  
AF10  
AH9  
AC5  
AC8  
AC1  
AD2  
Transmitted serial data  
Combined serial clock  
IO  
IO  
IO  
Combined frame synchronization  
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)  
Table 2-14. Serial Communication Interfaces – McSPI Signals Description  
SIGNAL NAME  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CUS Pkg.)  
MULTICHANNEL SERIAL PORT INTERFACE (McSPI1)  
mcspi1_clk  
SPI Clock  
IO  
IO  
IO  
IO  
AB3  
AB4  
AA4  
AC2  
T5  
R4  
T4  
T6  
mcspi1_simo  
mcspi1_somi  
mcspi1_cs0  
Slave data in, master data out  
Slave data out, master data in  
SPI Enable 0, polarity configured by  
software  
mcspi1_cs1  
mcspi1_cs2  
mcspi1_cs3  
SPI Enable 1, polarity configured by  
software  
O
O
O
AC3  
AB1  
AB2  
NA  
NA  
R5  
SPI Enable 2, polarity configured by  
software  
SPI Enable 3, polarity configured by  
software  
MULTICHANNEL SERIAL PORT INTERFACE (McSPI2)  
mcspi2_clk  
SPI Clock  
IO  
IO  
IO  
IO  
AA3  
Y2  
N5  
N4  
N3  
M5  
mcspi2_simo  
mcspi2_somi  
mcspi2_cs0  
Slave data in, master data out  
Slave data out, master data in  
Y3  
SPI Enable 0, polarity configured by  
software  
Y4  
mcspi2_cs1  
SPI Enable 1, polarity configured by  
software  
O
V3  
M4  
MULTICHANNEL SERIAL PORT INTERFACE (McSPI3)  
mcspi3_clk  
SPI Clock  
IO  
IO  
IO  
IO  
H26 / AE2 / AE13  
H25 / AG5 / AF11  
E28 / AH5 / AG12  
J26 / AF4 / AH12  
G24 / Y1 / AD8  
H23 / AB5 / AD6  
D23 / AB3 / AC6  
K22 / V3 / AC7  
mcspi3_simo  
mcspi3_somi  
mcspi3_cs0  
Slave data in, master data out  
Slave data out, master data in  
SPI Enable 0, polarity configured by  
software  
mcspi3_cs1  
SPI Enable 1, polarity configured by  
software  
O
AC27 / AG4 / AH14  
V21 / W3 / AD9  
80  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-14. Serial Communication Interfaces – McSPI Signals Description (continued)  
SIGNAL NAME  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CUS Pkg.)  
MULTICHANNEL SERIAL PORT INTERFACE (McSPI4)  
mcspi4_clk  
SPI Clock  
IO  
IO  
IO  
IO  
Y8 / Y21  
V21  
V7 / W19  
W18  
mcspi4_simo  
mcspi4_somi  
mcspi4_cs0  
Slave data in, master data out  
Slave data out, master data in  
U21  
Y18  
SPI Enable 0, polarity configured by  
software  
K26  
AA19  
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)  
Table 2-15. Serial Communication Interfaces – UARTs Signals Description  
SIGNAL NAME  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CUS Pkg.)  
UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART1)  
uart1_cts  
uart1_rts  
uart1_rx  
uart1_tx  
UART1 Clear To Send  
UART1 Request To Send  
UART1 Receive data  
UART1 Transmit data  
I
AG22 / W8 / T21  
AH22 / AA9  
AC19 / AC2 / AA18  
W6 / AB19  
O
I
F28 / Y8 / AE7  
E26 / AA8  
E23 / V7 / AC3  
D24 / W7  
O
UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART2)  
uart2_cts  
uart2_rts  
uart2_rx  
uart2_tx  
UART2 Clear To Send  
UART2 Request To Send  
UART2 Receive data  
UART2 Transmit data  
I
AF6 / AB26  
AE6 / AB25  
AE5 / AD25  
AF5 / AA25  
V6  
V5  
V4  
W4  
O
I
O
UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART3) / IrDA  
uart3_cts_rctx  
UART3 Clear To Send (input), Remote  
TX (output)  
IO  
H18 / U26  
A23 / U23  
uart3_rts_sd  
uart3_rx_irrx  
UART3 Request To Send, IR enable  
O
I
H19 / U27  
B23 / U24  
UART3 Receive data, IR and Remote  
RX  
AG24 / H20 / U28  
AD21 / B24 / T23  
uart3_tx_irtx  
UART3 Transmit data, IR TX  
O
AH24 / H21 / T27  
AC21 / C23 / T24  
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)  
Table 2-16. Serial Communication Interfaces – USB Signals Description  
SIGNAL NAME  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CUS Pkg.)  
HIGH-SPEED UNIVERSAL SERIAL BUS INTERFACE (HSUSB0)  
hsusb0_clk  
Dedicated for external transceiver 60-MHz clock input from  
PHY  
I
T28  
R21  
hsusb0_stp  
hsusb0_dir  
Dedicated for external transceiver Stop signal  
O
I
T25  
R28  
R23  
P23  
Dedicated for external transceiver Data direction control from  
PHY  
hsusb0_nxt  
Dedicated for external transceiver Next signal from PHY  
Dedicated for external transceiver Bidirectional data bus  
Dedicated for external transceiver Bidirectional data bus  
Dedicated for external transceiver Bidirectional data bus  
Dedicated for external transceiver Bidirectional data bus  
I
T26  
T27  
U28  
U27  
U26  
U25  
R22  
T24  
T23  
U24  
U23  
W24  
hsusb0_data0  
hsusb0_data1  
hsusb0_data2  
hsusb0_data3  
hsusb0_data4  
IO  
IO  
IO  
IO  
IO  
Dedicated for external transceiver Bidirectional data bus  
additional signals for 12-pin ULPI operation  
hsusb0_data5  
Dedicated for external transceiver Bidirectional data bus  
additional signals for 12-pin ULPI operation  
IO  
V28  
V23  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
81  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-16. Serial Communication Interfaces – USB Signals Description (continued)  
SIGNAL NAME  
hsusb0_data6  
hsusb0_data7  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CUS Pkg.)  
Dedicated for external transceiver Bidirectional data bus  
additional signals for 12-pin ULPI operation  
IO  
V27  
W23  
Dedicated for external transceiver Bidirectional data bus  
additional signals for 12-pin ULPI operation  
IO  
V26  
T22  
MM_FSUSB3  
mm3_rxdm  
mm3_rxdp  
Vminus receive data (not used in 3- or 4-pin configurations)  
Vplus receive data (not used in 3- or 4-pin configurations)  
Differential receiver signal input (not used in 3-pin mode)  
Single-ended zero. Used as VM in 4-pin VP_VM mode.  
USB data. Used as VP in 4-pin VP_VM mode.  
Transmit enable  
IO  
IO  
IO  
IO  
IO  
IO  
AE3  
AH3  
AD1  
AE1  
AD2  
AC1  
NA  
NA  
NA  
NA  
NA  
NA  
mm3_rxrcv  
mm3_txse0  
mm3_txdat  
mm3_txen_n  
MM_FSUSB2  
mm2_rxdm  
mm2_rxdp  
Vminus receive data (not used in 3- or 4-pin configurations)  
Vplus receive data (not used in 3- or 4-pin configurations)  
Differential receiver signal input (not used in 3-pin mode)  
Single-ended zero. Used as VM in 4-pin VP_VM mode.  
USB data. Used as VP in 4-pin VP_VM mode.  
Transmit enable  
IO  
IO  
IO  
IO  
IO  
IO  
AH7  
AF7  
AG8  
AH8  
AB2  
V3  
AD11  
AC9  
AC11  
AD12  
R5  
mm2_rxrcv  
mm2_txse0  
mm2_txdat  
mm2_txen_n  
MM_FSUSB1  
mm1_rxdm  
mm1_rxdp  
M4  
Vminus receive data (not used in 3- or 4-pin configurations)  
Vplus receive data (not used in 3- or 4-pin configurations)  
Differential receiver signal input (not used in 3-pin mode)  
Single-ended zero. Used as VM in 4-pin VP_VM mode.  
USB data. Used as VP in 4-pin VP_VM mode.  
Transmit enable  
IO  
IO  
IO  
IO  
IO  
IO  
AG9  
AF10  
AF11  
AG12  
AH12  
AH14  
AD5  
AC1  
AD6  
AC6  
AC7  
AD9  
mm1_rxrcv  
mm1_txse0  
mm1_txdat  
mm1_txen_n  
HSUSB3_TLL  
hsusb3_tll_clk  
Dedicated for external transceiver 60-MHz clock input from  
PHY  
O
W8  
NA  
hsusb3_tll_stp  
hsusb3_tll_dir  
Dedicated for external transceiver Stop signal  
I
AH3  
AF3  
NA  
NA  
dedicated for external transceiver Data direction control from  
PHY  
O
hsusb3_tll_nxt  
hsusb3_tll_data0  
hsusb3_tll_data1  
hsusb3_tll_data2  
hsusb3_tll_data3  
hsusb3_tll_data4  
hsusb3_tll_data5  
hsusb3_tll_data6  
hsusb3_tll_data7  
HSUSB2  
Dedicated for external transceiver Next signal from PHY  
Dedicated for external transceiver Bidirectional data bus  
Dedicated for external transceiver Bidirectional data bus  
Dedicated for external transceiver Bidirectional data bus  
Dedicated for external transceiver Bidirectional data bus  
Dedicated for external transceiver Bidirectional data bus  
Dedicated for external transceiver Bidirectional data bus  
Dedicated for external transceiver Bidirectional data bus  
Dedicated for external transceiver Bidirectional data bus  
O
AE3  
AD1  
AE1  
AD2  
AC1  
AF6  
AE6  
AF5  
AE5  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
hsusb2_clk  
Dedicated for external transceiver 60-MHz clock input from  
PHY  
O
AE7  
AC3  
hsusb2_stp  
hsusb2_dir  
Dedicated for external transceiver Stop signal  
O
I
AF7  
AG7  
AC9  
Dedicated for external transceiver Data direction control from  
PHY  
AC10  
hsusb2_nxt  
Dedicated for external transceiver Next signal from PHY  
Dedicated for external transceiver Bidirectional data bus  
I
AH7  
AG8  
AD11  
AC11  
hsusb2_data0  
IO  
82  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-16. Serial Communication Interfaces – USB Signals Description (continued)  
SIGNAL NAME  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CUS Pkg.)  
hsusb2_data1  
hsusb2_data2  
hsusb2_data3  
hsusb2_data4  
Dedicated for external transceiver Bidirectional data bus  
Dedicated for external transceiver Bidirectional data bus  
Dedicated for external transceiver Bidirectional data bus  
IO  
IO  
IO  
IO  
AH8  
AB2  
V3  
AD12  
R5  
M4  
Dedicated for external transceiver Bidirectional data bus  
additional signals for 12-pin ULPI operation  
Y2  
N4  
hsusb2_data5  
hsusb2_data6  
hsusb2_data7  
Dedicated for external transceiver Bidirectional data bus  
additional signals for 12-pin ULPI operation  
IO  
IO  
IO  
Y3  
Y4  
N3  
M5  
N5  
Dedicated for external transceiver Bidirectional data bus  
additional signals for 12-pin ULPI operation  
Dedicated for external transceiver Bidirectional data bus  
additional signals for 12-pin ULPI operation  
AA3  
HSUSB2_TLL  
hsusb2_tll_clk  
Dedicated for external transceiver 60-MHz clock input from  
PHY  
O
AE7  
AC3  
hsusb2_tll_stp  
hsusb2_tll_dir  
Dedicated for external transceiver Stop signal  
I
AF7  
AG7  
AC9  
Dedicated for external transceiver data direction control from  
PHY  
O
AC10  
hsusb2_tll_nxt  
Dedicated for external transceiver Next signal from PHY  
Dedicated for external transceiver Bidirectional data bus  
Dedicated for external transceiver Bidirectional data bus  
Dedicated for external transceiver Bidirectional data bus  
Dedicated for external transceiver Bidirectional data bus  
O
AH7  
AG8  
AH8  
AB2  
V3  
AD11  
AC11  
AD12  
R5  
hsusb2_tll_data0  
hsusb2_tll_data1  
hsusb2_tll_data2  
hsusb2_tll_data3  
hsusb2_tll_data4  
IO  
IO  
IO  
IO  
IO  
M4  
Dedicated for external transceiver Bidirectional data bus  
additional signals for 12-pin ULPI operation  
Y2  
N4  
hsusb2_tll_data5  
hsusb2_tll_data6  
hsusb2_tll_data7  
Dedicated for external transceiver Bidirectional data bus  
additional signals for 12-pin ULPI operation  
IO  
IO  
IO  
Y3  
Y4  
N3  
M5  
N5  
Dedicated for external transceiver Bidirectional data bus  
additional signals for 12-pin ULPI operation  
Dedicated for external transceiver Bidirectional data bus  
additional signals for 12-pin ULPI operation  
AA3  
HSUSB1  
hsusb1_clk  
Dedicated for external transceiver 60-MHz clock input from  
PHY  
O
AE10  
AD3  
hsusb1_stp  
hsusb1_dir  
Dedicated for external transceiver Stop signal  
O
I
AF10  
AF9  
AC1  
AC4  
Dedicated for external transceiver data direction control from  
PHY  
hsusb1_nxt  
Dedicated for external transceiver Next signal from PHY  
Dedicated for external transceiver Bidirectional data bus  
Dedicated for external transceiver Bidirectional data bus  
Dedicated for external transceiver Bidirectional data bus  
Dedicated for external transceiver Bidirectional data bus  
I
AG9  
AF11  
AG12  
AH12  
AH14  
AE11  
AD5  
AD6  
AC6  
AC7  
AD9  
AC5  
hsusb1_data0  
hsusb1_data1  
hsusb1_data2  
hsusb1_data3  
hsusb1_data4  
IO  
IO  
IO  
IO  
IO  
Dedicated for external transceiver Bidirectional data bus  
additional signals for 12-pin ULPI operation  
hsusb1_data5  
hsusb1_data6  
hsusb1_data7  
Dedicated for external transceiver Bidirectional data bus  
additional signals for 12-pin ULPI operation  
IO  
IO  
IO  
AH9  
AF13  
AE13  
AD2  
AC8  
AD8  
Dedicated for external transceiver Bidirectional data bus  
additional signals for 12-pin ULPI operation  
Dedicated for external transceiver Bidirectional data bus  
additional signals for 12-pin ULPI operation  
HSUSB1_TLL  
hsusb1_tll_clk  
Dedicated for external transceiver 60-MHz clock input from  
PHY  
O
AE10  
AD3  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
83  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-16. Serial Communication Interfaces – USB Signals Description (continued)  
SIGNAL NAME  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CUS Pkg.)  
hsusb1_tll_stp  
hsusb1_tll_dir  
Dedicated for external transceiver Stop signal  
I
AF10  
AF9  
AC1  
AC4  
Dedicated for external transceiver data direction control from  
PHY  
O
hsusb1_tll_nxt  
Dedicated for external transceiver Next signal from PHY  
Dedicated for external transceiver Bidirectional data bus  
Dedicated for external transceiver Bidirectional data bus  
Dedicated for external transceiver Bidirectional data bus  
Dedicated for external transceiver Bidirectional data bus  
O
AG9  
AF11  
AG12  
AH12  
AH14  
AE11  
AD5  
AD6  
AC6  
AC7  
AD9  
AC5  
hsusb1_tll_data0  
hsusb1_tll_data1  
hsusb1_tll_data2  
hsusb1_tll_data3  
hsusb1_tll_data4  
IO  
IO  
IO  
IO  
IO  
Dedicated for external transceiver Bidirectional data bus  
additional signals for 12-pin ULPI operation  
hsusb1_tll_data5  
hsusb1_tll_data6  
hsusb1_tll_data7  
Dedicated for external transceiver Bidirectional data bus  
additional signals for 12-pin ULPI operation  
IO  
IO  
IO  
AH9  
AF13  
AE13  
AD2  
AC8  
AD8  
Dedicated for external transceiver Bidirectional data bus  
additional signals for 12-pin ULPI operation  
Dedicated for external transceiver Bidirectional data bus  
additional signals for 12-pin ULPI operation  
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)  
84  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
2.4.4 Removable Media Interfaces  
Table 2-17. Removable Media Interfaces – MMC/SDIO Signals Description  
SIGNAL NAME  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CUS Pkg.)  
MULTIMEDIA MEMORY CARD (MMC1) / SECURE DIGITAL IO (SDIO1)  
mmc1_clk  
MMC/SD Output Clock  
O
N28  
M27  
N27  
N26  
N25  
P28  
P27  
P26  
R27  
R25  
M23  
L23  
mmc1_cmd  
mmc1_dat0  
mmc1_dat1  
mmc1_dat2  
mmc1_dat3  
mmc1_dat4  
mmc1_dat5  
mmc1_dat6  
mmc1_dat7  
MMC/SD command signal  
MMC/SD Card Data bit 0 / SPI Serial Input  
MMC/SD Card Data bit 1  
MMC/SD Card Data bit 2  
MMC/SD Card Data bit 3  
MMC/SD Card Data bit 4  
MMC/SD Card Data bit 5  
MMC/SD Card Data bit 6  
MMC/SD Card Data bit 7  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
M22  
M21  
M20  
N23  
N22  
N21  
N20  
P24  
MULTIMEDIA MEMORY CARD (MMC2) / SECURE DIGITAL IO (SDIO2)  
mmc2_clk  
MMC/SD Output Clock  
O
O
AE2  
AE4  
Y1  
mmc2_dir_dat0  
Direction control for DAT0 signal case an external transceiver  
used  
AB2  
mmc2_dir_dat1  
mmc2_dir_dat2  
mmc2_dir_dat3  
Direction control for DAT1 and DAT3 signals case an external  
transceiver used  
O
O
O
AH3  
AF19  
AE21  
AA2  
AC17  
AB16  
Direction control for DAT2 signal case an external transceiver  
used  
Direction control for DAT4, DAT5, DAT6, and DAT7 signals  
case an external transceiver used  
mmc2_clkin  
mmc2_dat0  
mmc2_dat1  
mmc2_dat2  
mmc2_dat3  
mmc2_dat4  
mmc2_dat5  
mmc2_dat6  
mmc2_dat7  
mmc2_dir_cmd  
MMC/SD input Clock  
I
AE3  
AH5  
AA1  
AB3  
MMC/SD Card Data bit 0  
MMC/SD Card Data bit 1  
MMC/SD Card Data bit 2  
MMC/SD Card Data bit 3  
MMC/SD Card Data bit 4  
MMC/SD Card Data bit 5  
MMC/SD Card Data bit 6  
MMC/SD Card Data bit 7  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
O
AH4  
Y3  
AG4  
W3  
AF4  
V3  
AE4 / AB3  
AH3 / AB4  
AF3 / AA4  
AE3 / AC2  
AF3  
AB2 / T5  
AA2 / R4  
Y2 / T4  
AA1 / T6  
Y2  
Direction control for CMD signal case an external transceiver  
is used  
mmc2_cmd  
MMC/SD command signal  
IO  
AG5  
AB5  
MULTIMEDIA MEMORY CARD (MMC3) / SECURE DIGITAL IO (SDIO3)  
mmc3_clk  
MMC/SD Output Clock  
O
AB1 / AF10  
AC3 / AE10  
AE4 / AE11  
AH3 / AH9  
AF3 / AF13  
AE3 / AE13  
AF11  
AC1  
AD3  
mmc3_cmd  
mmc3_dat0  
mmc3_dat1  
mmc3_dat2  
mmc3_dat3  
mmc3_dat4  
mmc3_dat5  
mmc3_dat6  
mmc3_dat7  
MMC/SD command signal  
MMC/SD Card Data bit 0 / SPI Serial Input  
MMC/SD Card Data bit 1  
MMC/SD Card Data bit 2  
MMC/SD Card Data bit 3  
MMC/SD Card Data bit 4  
MMC/SD Card Data bit 5  
MMC/SD Card Data bit 6  
MMC/SD Card Data bit 7  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
AB2 / AC5  
AA2 / AD2  
Y2 / AC8  
AA1 / AD8  
AD6  
AG9  
AD5  
AF9  
AC4  
AH14  
AD9  
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
85  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
2.4.5 Test Interfaces  
Table 2-18. Test Interfaces – ETK Signals Description  
SIGNAL NAME  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CUS Pkg.)  
etk_ctl  
etk_clk  
etk_d0  
etk_d1  
etk_d2  
etk_d3  
etk_d4  
etk_d5  
etk_d6  
etk_d7  
etk_d8  
etk_d9  
etk_d10  
etk_d11  
etk_d12  
etk_d13  
etk_d14  
etk_d15  
ETK trace ctl  
ETK trace clock  
ETK data 0  
ETK data 1  
ETK data 2  
ETK data 3  
ETK data 4  
ETK data 5  
ETK data 6  
ETK data 7  
ETK data 8  
ETK data 9  
ETK data 10  
ETK data 11  
ETK data 12  
ETK data 13  
ETK data 14  
ETK data 15  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
AE10  
AF10  
AF11  
AG12  
AH12  
AE13  
AE11  
AH9  
AD3  
AC1  
AD6  
AC6  
AC7  
AD8  
AC5  
AD2  
AF13  
AH14  
AF9  
AC8  
AD9  
AC4  
AG9  
AE7  
AD5  
AC3  
AF7  
AC9  
AG7  
AH7  
AC10  
AD11  
AC11  
AD12  
AG8  
AH8  
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)  
86  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-19. Test Interfaces – JTAG Signals Description  
SIGNAL NAME  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CUS Pkg.)  
jtag_ntrst  
jtag_tck  
Test Reset  
Test Clock  
I
AA17  
AA13  
AA12  
AA18  
AA20  
AA19  
AA11  
AA10  
AB7  
AB6  
I
jtag_rtck  
ARM Clock Emulation  
Test Mode Select  
Test Data Input  
Test Data Output  
Test emulation 0  
Test emulation 1  
O
IO  
I
AA7  
jtag_tms_tmsc  
jtag_tdi  
AA9  
AB10  
AB9  
jtag_tdo  
O
IO  
IO  
jtag_emu0  
jtag_emu1  
AC24  
AD24  
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)  
Table 2-20. Test Interfaces – SDTI Signals Description  
SIGNAL  
NAME  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CUS Pkg.)  
SUBSYSTEM  
SIGNAL  
MULTIPLEXING(2)  
sdti_clk  
sdti_txd0  
sdti_txd1  
sdti_txd2  
sdti_txd3  
Serial clock dual edge  
O
O
O
O
O
AF7 / AA11 / AG8  
AC9 / AC24 / AC11  
etk_d11 / jtag_emu0 /  
etk_d14  
Serial data out (System Trace  
messages)  
AG7 / AA10 / AA11 AC10 / AD24 / AC24  
etk_d12 / jtag_emu1 /  
jtag_emu0  
Serial data out (System Trace  
messages)  
AH7 / AA10  
AG8  
AD11 / AD24  
AC11  
etk_d13 / jtag_emu1  
Serial data out (System Trace  
messages)  
etk_d14  
Serial data out (System Trace  
messages)  
AH8  
AD12  
etk_d15  
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)  
(2) The subsystem pin multiplexing options are not described in Table 2-1 and Table 2-3  
2.4.6 Miscellaneous  
Table 2-21. Miscellaneous – GP Timer Signals Description  
SIGNAL NAME  
gpt8_pwm_evt  
gpt9_pwm_evt  
gpt10_pwm_evt  
gpt11_pwm_evt  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CUS Pkg.)  
PWM or event for GP  
timer 8  
IO  
N8 / AD25 / V3  
T8 / AB26 / Y2  
R8 / AB25 / Y3  
P8 / AA25 / Y4  
G4/ M4  
F4 / N4  
G5 / N3  
F3 / M5  
PWM or event for GP  
timer 9  
IO  
PWM or event for GP  
timer 10  
IO  
PWM or event for GP  
timer 11  
IO  
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
87  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
2.4.7 General-Purpose IOs  
Table 2-22. General-Purpose IOs Signals Description(2)  
SIGNAL NAME  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CUS Pkg.)  
gpio_0  
gpio_1  
General-purpose IO 0  
General-purpose IO 1  
General-purpose IO 2  
General-purpose IO 3  
General-purpose IO 4  
General-purpose IO 5  
General-purpose IO 6  
General-purpose IO 7  
General-purpose IO 8  
General-purpose IO 9  
General-purpose IO 10  
General-purpose IO 11  
General-purpose IO 12  
General-purpose IO 13  
General-purpose IO 14  
General-purpose IO 15  
General-purpose IO 16  
General-purpose IO 17  
General-purpose IO 18  
General-purpose IO 19  
General-purpose IO 20  
General-purpose IO 21  
General-purpose IO 22  
General-purpose IO 23  
General-purpose IO 24  
General-purpose IO 25  
General-purpose IO 26  
General-purpose IO 27  
General-purpose IO 28  
General-purpose IO 29  
General-purpose IO 30  
General-purpose IO 31  
General-purpose IO 34  
General-purpose IO 35  
General-purpose IO 36  
General-purpose IO 37  
General-purpose IO 38  
General-purpose IO 39  
General-purpose IO 40  
General-purpose IO 41  
General-purpose IO 42  
General-purpose IO 43  
General-purpose IO 44  
General-purpose IO 45  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
AF26  
AF25  
AH26  
AG26  
AE14  
AF18  
AF19  
AE21  
AF21  
AF22  
AG25  
AA11  
AF10  
AE10  
AF11  
AG12  
AH12  
AE13  
AE11  
AH9  
AF13  
AH14  
AF9  
AG9  
AE7  
AF7  
AG7  
AH7  
AG8  
AH8  
AF24  
AA10  
N4  
W16  
Y13  
AB12  
AC16  
AD17  
AD18  
AC17  
AB16  
AA15  
AD23  
Y7  
gpio_2  
gpio_3  
gpio_4  
gpio_5  
gpio_6  
gpio_7  
gpio_8  
gpio_9  
gpio_10  
gpio_11  
gpio_12  
gpio_13  
gpio_14  
gpio_15  
gpio_16  
gpio_17  
gpio_18  
gpio_19  
gpio_20  
gpio_21  
gpio_22  
gpio_23  
gpio_24  
gpio_25  
gpio_26  
gpio_27  
gpio_28  
gpio_29  
gpio_30  
gpio_31  
gpio_34  
gpio_35  
gpio_36  
gpio_37  
gpio_38  
gpio_39  
gpio_40  
gpio_41  
gpio_42  
gpio_43  
gpio_44  
gpio_45  
AC24  
AC1  
AD3  
AD6  
AC6  
AC7  
AD8  
AC5  
AD2  
AC8  
AD9  
AC4  
AD5  
AC3  
AC9  
AC10  
AD11  
AC11  
AD12  
Y10  
AD24  
K4  
M4  
K3  
L4  
K2  
K4  
J4  
T3  
J3  
R3  
J2  
N3  
J1  
M3  
H1  
L3  
H2  
K3  
G2  
H2  
R2  
K2  
T2  
88  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-22. General-Purpose IOs Signals Description(2) (continued)  
SIGNAL NAME  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CUS Pkg.)  
gpio_46  
gpio_47  
gpio_48  
gpio_49  
gpio_50  
gpio_51  
gpio_52  
gpio_53  
gpio_54  
gpio_55  
gpio_56  
gpio_57  
gpio_58  
gpio_59  
gpio_60  
gpio_61  
gpio_62  
gpio_63  
gpio_64  
gpio_65  
gpio_66  
gpio_67  
gpio_68  
gpio_69  
gpio_70  
gpio_71  
gpio_72  
gpio_73  
gpio_74  
gpio_75  
gpio_76  
gpio_77  
gpio_78  
gpio_79  
gpio_80  
gpio_81  
gpio_82  
gpio_83  
gpio_84  
gpio_85  
gpio_86  
gpio_87  
gpio_88  
gpio_89  
gpio_90  
gpio_91  
General-purpose IO 46  
General-purpose IO 47  
General-purpose IO 48  
General-purpose IO 49  
General-purpose IO 50  
General-purpose IO 51  
General-purpose IO 52  
General-purpose IO 53  
General-purpose IO 54  
General-purpose IO 55  
General-purpose IO 56  
General-purpose IO 57  
General-purpose IO 58  
General-purpose IO 59  
General-purpose IO 60  
General-purpose IO 61  
General-purpose IO 62  
General-purpose IO 63  
General-purpose IO 64  
General-purpose IO 65  
General-purpose IO 66  
General-purpose IO 67  
General-purpose IO 68  
General-purpose IO 69  
General-purpose IO 70  
General-purpose IO 71  
General-purpose IO 72  
General-purpose IO 73  
General-purpose IO 74  
General-purpose IO 75  
General-purpose IO 76  
General-purpose IO 77  
General-purpose IO 78  
General-purpose IO 79  
General-purpose IO 80  
General-purpose IO 81  
General-purpose IO 82  
General-purpose IO 83  
General-purpose IO 84  
General-purpose IO 85  
General-purpose IO 86  
General-purpose IO 87  
General-purpose IO 88  
General-purpose IO 89  
General-purpose IO 90  
General-purpose IO 91  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
P1  
R1  
U1  
R3  
R2  
T3  
T2  
U2  
W1  
V1  
Y1  
V2  
H3  
NA  
V8  
NA  
U8  
D2  
T8  
F4  
R8  
G5  
P8  
F3  
N8  
G4  
T4  
W2  
G3  
K5  
U3  
L1  
H1  
E1  
L8  
NA  
K8  
NA  
J8  
C2  
D28  
D26  
D27  
E27  
AG22  
AH22  
AG23  
AH23  
AG24  
AH24  
E26  
F28  
F27  
G26  
AD28  
AD27  
AB28  
AB27  
AA28  
AA27  
G25  
H27  
H26  
H25  
E28  
J26  
G22  
E22  
F22  
J21  
AC19  
AB19  
AD20  
AC20  
AD21  
AC21  
D24  
E23  
E24  
F23  
AC22  
AC23  
AB22  
Y22  
W22  
V22  
J22  
G23  
G24  
H23  
D23  
K22  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
89  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-22. General-Purpose IOs Signals Description(2) (continued)  
SIGNAL NAME  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CUS Pkg.)  
gpio_92  
gpio_93  
General-purpose IO 92  
General-purpose IO 93  
General-purpose IO 94  
General-purpose IO 95  
General-purpose IO 96  
General-purpose IO 97  
General-purpose IO 98  
General-purpose IO 99  
General-purpose IO 100  
General-purpose IO 101  
General-purpose IO 102  
General-purpose IO 103  
General-purpose IO 104  
General-purpose IO 105  
General-purpose IO 106  
General-purpose IO 107  
General-purpose IO 108  
General-purpose IO 109  
General-purpose IO 110  
General-purpose IO 111  
General-purpose IO 112  
General-purpose IO 113  
General-purpose IO 114  
General-purpose IO 115  
General-purpose IO 116  
General-purpose IO 117  
General-purpose IO 118  
General-purpose IO 119  
General-purpose IO 120  
General-purpose IO 121  
General-purpose IO 122  
General-purpose IO 123  
General-purpose IO 124  
General-purpose IO 125  
General-purpose IO 126  
General-purpose IO 127  
General-purpose IO 128  
General-purpose IO 129  
General-purpose IO 130  
General-purpose IO 131  
General-purpose IO 132  
General-purpose IO 133  
General-purpose IO 134  
General-purpose IO 135  
General-purpose IO 136  
General-purpose IO 137  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
I
AC27  
AC28  
A24  
V21  
W21  
A22  
gpio_94  
gpio_95  
A23  
E18  
gpio_96  
C25  
B22  
gpio_97  
C27  
J19  
gpio_98  
C23  
H24  
gpio_99  
AG17  
AH17  
B24  
AB18  
AC18  
G19  
gpio_100  
gpio_101  
gpio_102  
gpio_103  
gpio_104  
gpio_105  
gpio_106  
gpio_107  
gpio_108  
gpio_109  
gpio_110  
gpio_111  
gpio_112  
gpio_113  
gpio_114  
gpio_115  
gpio_116  
gpio_117  
gpio_118  
gpio_119  
gpio_120  
gpio_121  
gpio_122  
gpio_123  
gpio_124  
gpio_125  
gpio_126  
gpio_127  
gpio_128  
gpio_129  
gpio_130  
gpio_131  
gpio_132  
gpio_133  
gpio_134  
gpio_135  
gpio_136  
gpio_137  
I
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
I
C24  
F19  
D24  
G20  
A25  
B21  
K28  
L24  
L28  
K24  
K27  
J23  
L27  
K23  
B25  
F21  
C26  
G21  
B26  
C22  
AG19  
AH19  
AG18  
AH18  
P21  
NA  
I
NA  
I
NA  
I
NA  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
V20  
N21  
T21  
R21  
V19  
M21  
R20  
N28 / T28  
M27 / T25  
N27 / R28  
N26  
M23 / R21  
L23 / R23  
M22 / P23  
M21  
N25 / T26  
P28 / T27  
D25 / P27  
P26  
M20  
N23  
J20 / N22  
N21  
R27  
N20  
R25  
P24  
AE2 / U28  
AG5 / U27  
AH5  
Y1 / T23  
AB5 / U24  
AB3  
AH4  
Y3  
AG4  
W3  
AF4  
V3  
AE4  
AB2  
AH3  
AA2  
90  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-22. General-Purpose IOs Signals Description(2) (continued)  
SIGNAL NAME  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CUS Pkg.)  
gpio_138  
gpio_139  
gpio_140  
gpio_141  
gpio_142  
gpio_143  
gpio_144  
gpio_145  
gpio_146  
gpio_147  
gpio_148  
gpio_149  
gpio_150  
gpio_151  
gpio_152  
gpio_153  
gpio_154  
gpio_155  
gpio_156  
gpio_157  
gpio_158  
gpio_159  
gpio_160  
gpio_161  
gpio_162  
gpio_163  
gpio_164  
gpio_165  
gpio_166  
gpio_167  
gpio_168  
gpio_169  
gpio_170  
gpio_171  
gpio_172  
gpio_173  
gpio_174  
gpio_175  
gpio_176  
gpio_177  
gpio_178  
gpio_179  
gpio_180  
gpio_181  
gpio_182  
gpio_183  
General-purpose IO 138  
General-purpose IO 139  
General-purpose IO 140  
General-purpose IO 141  
General-purpose IO 142  
General-purpose IO 143  
General-purpose IO 144  
General-purpose IO 145  
General-purpose IO 146  
General-purpose IO 147  
General-purpose IO 148  
General-purpose IO 149  
General-purpose IO 150  
General-purpose IO 151  
General-purpose IO 152  
General-purpose IO 153  
General-purpose IO 154  
General-purpose IO 155  
General-purpose IO 156  
General-purpose IO 157  
General-purpose IO 158  
General-purpose IO 159  
General-purpose IO 160  
General-purpose IO 161  
General-purpose IO 162  
General-purpose IO 163  
General-purpose IO 164  
General-purpose IO 165  
General-purpose IO 166  
General-purpose IO 167  
General-purpose IO 168  
General-purpose IO 169  
General-purpose IO 170  
General-purpose IO 171  
General-purpose IO 172  
General-purpose IO 173  
General-purpose IO 174  
General-purpose IO 175  
General-purpose IO 176  
General-purpose IO 177  
General-purpose IO 178  
General-purpose IO 179  
General-purpose IO 180  
General-purpose IO 181  
General-purpose IO 182  
General-purpose IO 183  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
AF3  
AE3  
AF6  
AE6  
AF5  
AE5  
AB26  
AB25  
AA25  
AD25  
AA8  
AA9  
W8  
Y2  
AA1  
V6  
V5  
W4  
V4  
NA  
NA  
NA  
NA  
W7  
W6  
AC2  
V7  
Y8  
AE1  
AD1  
AD2  
AC1  
Y21  
AA21  
V21  
U21  
T21  
K26  
W21  
H18  
H19  
H20  
H21  
B23  
AF15  
U26  
J25  
NA  
NA  
NA  
NA  
W19  
AB20  
W18  
Y18  
AA18  
AA19  
V18  
A23  
B23  
B24  
C23  
F18  
AC15  
U23  
A24  
T5  
AB3  
AB4  
AA4  
AC2  
AC3  
AB1  
AB2  
AA3  
Y2  
R4  
T4  
T6  
NA  
NA  
R5  
N5  
N4  
Y3  
N3  
Y4  
M5  
V3  
M4  
AE15  
AC14  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
91  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-22. General-Purpose IOs Signals Description(2) (continued)  
SIGNAL NAME  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CUS Pkg.)  
gpio_184  
gpio_185  
gpio_186  
gpio_188  
gpio_189  
gpio_190  
gpio_191  
General-purpose IO 184  
General-purpose IO 185  
General-purpose IO 186  
General-purpose IO 188  
General-purpose IO 189  
General-purpose IO 190  
General-purpose IO 191  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
AF14  
AG14  
AE22  
U25  
AC13  
AC12  
AE6  
W24  
V23  
V28  
V27  
W23  
T22  
V26  
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)  
(2) NA in table stands for Not Applicable.  
(3) The subsystem pin multiplexing options are not described in Table 2-1 and Table 2-3  
92  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
2.4.8 System and Miscellaneous Terminals  
Table 2-23. System and Miscellaneous Signals Description  
SIGNAL NAME  
DESCRIPTION  
TYPE(1) BALL BOTTOM  
(CBB Pkg.)  
BALL TOP  
(CBB Pkg.)  
BALL BOTTOM  
(CUS Pkg.)  
sys_32k  
32-kHz clock input  
I
I
AE25  
AE17  
NA  
NA  
AA16  
AD15  
sys_xtalin  
Main input clock. Oscillator input or LVCMOS at 19.2,  
13, or 12 MHz.  
sys_xtalout  
sys_altclk  
Output of oscillator  
O
I
AF17  
J25  
NA  
NA  
AD14  
A24  
Alternate clock source selectable for GPTIMERs  
(maximum 54 MHz), USB (48 MHz), or NTSC/PAL  
(54 MHz)  
sys_clkreq  
Request from OMAP3515/03 device for system clock  
(open source type)  
IO  
AF25  
NA  
Y13  
sys_clkout1  
sys_clkout2  
sys_boot0  
Configurable output clock1  
Configurable output clock2  
Boot configuration mode bit 0  
Boot configuration mode bit 1  
Boot configuration mode bit 2  
Boot configuration mode bit 3  
Boot configuration mode bit 4  
Boot configuration mode bit 5  
Boot configuration mode bit 6  
Power On Reset  
O
AG25  
AE22  
AH26  
AG26  
AE14  
AF18  
AF19  
AE21  
AF21  
AH25  
AF24  
AF26  
AD26  
AE26  
AF22  
U8  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
Y7  
O
AA6  
I
AB12  
AC16  
AD17  
AD18  
AC17  
AB16  
AA15  
AA10  
Y10  
sys_boot1  
I
sys_boot2  
I
sys_boot3  
I
sys_boot4  
I
sys_boot5  
I
sys_boot6  
I
I
sys_nrespwron  
sys_nreswarm  
sys_nirq  
Warm Boot Reset (open drain output)  
External FIQ input  
IOD  
I
W16  
Y16  
sys_nvmode1  
sys_nvmode2  
sys_off_mode  
sys_ndmareq0  
Indicates the voltage mode  
Indicates the voltage mode  
Indicates the voltage mode  
O
O
O
I
Y15  
AD23  
D2  
External DMA request 0 (system expansion). Level  
(active low) or edge (falling) selectable.  
sys_ndmareq1  
sys_ndmareq2  
sys_ndmareq3  
External DMA request 1 (system expansion). Level  
(active low) or edge (falling) selectable.  
I
I
T8 / J8  
L3 / R8  
K3 / P8  
AG9  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
F4 / C2  
H2 / G5  
G2 / F3  
AD5  
External DMA request 2 (system expansion). Level  
(active low) or edge (falling) selectable.  
External DMA request 3 (system expansion). Level  
(active low) or edge (falling) selectable.  
I
sys_secure_  
indicator  
MSECURE transactions indicator  
O
O
I
sys_drm_  
msecure  
MSECURE output  
AF9  
AC4  
adpllv2d_  
dithering_en1  
adpll dithering enable  
adpll dithering enable  
AA21  
AC3  
AB20  
NA  
adpllv2d_  
I
dithering_en2  
sys_ipmcsws  
sys_opmcsws  
pop_int0_ft  
Reserved  
AI  
AO  
O
B1  
NA  
NA  
A1  
A2  
Reserved  
A1  
POP dedicated control signal  
POP dedicated control signal  
POP dedicated control signal  
AG11  
AH11  
AH16  
AB9  
AC9  
AC14  
TBD  
TBD  
TBD  
pop_int1_ft  
O
pop_tq_temp_  
sense_ft  
NA  
pop_reset_rp_ft  
POP dedicated control signal  
NA  
AG13  
AB11  
TBD  
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
93  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
2.4.9 Power Supplies  
Table 2-24. Power Supplies Signals Description(1)  
SIGNAL NAME  
vdd_mpu  
DESCRIPTION  
BALL BOTTOM  
(CBB Pkg.)  
BALL TOP  
(CBB Pkg.)  
BALL BOTTOM  
(CUS Pkg.)  
ARM power domain  
Y9 / W9 / T9 / R9 / M9 /  
L9 / J9 / Y10 / U10 / T10 /  
R10 / N10 / M10 / L10 /  
J10 / Y11 / W11 / K11 /  
J11 / W12 / K13 / Y14 /  
K14 / J14 / Y15 / W15 /  
J15  
NA  
W13/ W12/ V13/ V12/  
U13/ U12/ T8/ T7/ R8/ R7/  
R6/ N8/ N7/ N6/ M12/ M8/  
M7/ M6/ L12/ L11/ J10/  
J9/ H10/ H9/ G10/ G9/F10  
vdd_core  
Core power domain  
AC4 / J4 / H4 / D8 / AE9 /  
D9 / D15 / Y16 / AE18 /  
Y18 / W18 / K18 / J18 /  
AE19 / Y19 / U19 / T19 /  
N19 / M19 / J19 / Y20 /  
W20 / V20 / U20 / P20 /  
N20 / K20 / J20 / D22 /  
D23 / AE24 / M25 / L25 /  
E25  
NA  
T20/ T19/ T18/ T17/ R19/  
R18/ R17/ M15/ M14/ L15/  
L14/ K19/ K18/ K17/ J18/  
J17/ H13/ H12/ G13/ G12/  
F13/ F12  
cap_vdd_wkup  
Wakeup/EMU/memory  
AA15  
NA  
Y12  
domains, connect capacitor  
bg_testout  
Used for band gap test  
U4  
NA  
NA  
AD1  
G18  
vdds_dpll_dll  
DLL IO power domain (1.8  
V): internal connection to  
PLL_VDDS, power supply for  
3PLL (1.8 V)  
K15  
vpp  
eFuse programmation  
Video DAC power plane  
Video DAC ground plane  
IO power plane  
G1  
V25  
Y26  
NA  
NA  
NA  
NA  
B1  
vdda_dac  
vssa_dac  
vdds  
AB13  
AB15  
AD3 / AD4 / W4 / AF8 /  
AE8 / AF16 / AE16 / AF23  
/ AE23 / F25 / F26 /  
AG27/ AE27/ AG20/ H28/  
AG21/P25  
Y9 / W10 / W9 / V10 / V9  
/ U10 / N19 / N18 / N17 /  
M19 / M18 / M17 / H8  
vdds_mem  
Memory IO power plane  
U1 / J1 / F1 / J2 / F2 / R4 AC5 / P1 / H1 / F23 / E1 / K8 / K7 / K6 / J8 / J7 / J6 /  
/ B5 / A5 / AH6 / B8 / A8 / C23 / A4 / A7 / A10 / A15  
H15 / G16 / G15 / F16 /  
F15 / E16  
B12 / A12 / D16 / C16 /  
B18 / A18 / B22 / A22 /  
G28 / C28  
/ A18  
vdds_dpll_per  
vdds_wkup_bg  
Peripheral DPLLs power rail  
AA16  
AA14  
NA  
NA  
U17  
For wakeup LDO and VDDA  
(2 LDOs SRAM and BG)  
AA13  
vss  
Ground  
AG2 / U2 / B2 / AG3 / W3  
/ P3 / J3 / E3 / A3 / P4 /  
H2 / B18 / AC20 / AB5 /  
AB14 / AB20 / P2 / F22 /  
W15/ V16/ V15/ U16/  
U15/ U14/ U11/ U9/T16/  
E4 / AG6 / D7 / C7 / V9 / E2 / C22 / B4 / B7 / B10 / T15/ T14/ T13/ T12/ T11/  
U9 / P9 / N9 / K9 / W10 /  
V10 / P10 / K10 / D10 /  
C10 / AF12 / AE12 / Y12 /  
K12 / J12 / Y13 / W13 /  
J13 / D13 / C13 / W14 /  
K16 / J16 / Y17 / W17 /  
K17 / J17 / W19 / V19 /  
R19 / P19 / L19 / K19 /  
D19 / C19 / AF20 / AE20 /  
T20 / R20 / M20 / L20 /  
D21 / C22 / AC25 / Y25 /  
W25 / AC26 / R26 / L26 /  
A26 / G27 / B27/ AA26/  
M28/ AG16/ AH21  
B15  
T10/ T9/ R15/ R14/ R11/  
R10/ P17/ P15/ P14/  
P13/P12/ P11/ P10/ P8/  
N16/ N15/ N14/ N13/ N12/  
N11/ N10/ N9/ M16/ M13/  
M11/ M10/ M9/ L17/ L13/  
L10/ L8/ K15/ K14/ K11/  
K10/ J16/ J15/ J14/ J13/  
J12/ J11/H16/ H14/ H11  
vdds_sram  
SRAM LDOs  
W16  
NA  
AA12  
94  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 2-24. Power Supplies Signals Description(1) (continued)  
SIGNAL NAME  
DESCRIPTION  
BALL BOTTOM  
(CBB Pkg.)  
BALL TOP  
(CBB Pkg.)  
BALL BOTTOM  
(CUS Pkg.)  
vdds_mmc1  
MMC IO power domain for  
CMD, CLK, and DAT(0..7)  
K25  
NA  
NA  
NA  
N24  
cap_vdd_sram_mpu  
cap_vdd_sram_core  
pop_ddr_vdd_ft  
SRAM LDO capacitance for  
VDDRAM1  
V4  
U8  
SRAM LDO capacitance for  
VDDRAM2  
L21  
H17  
TBD  
POPed SDRAM power  
A15 / J28 / M1 / AF28 /  
AE28  
AA23 / Y23 / K1 / H23 /  
A12  
pop_flash_vpp_ft  
pop_flash_vdd_ft  
POPed flash vpp  
AH13  
AC11  
TBD  
TBD  
POPed flash power  
N1 / AA1 / AF1 / AH10 /  
AH15  
AC8 / AC13 / AA1 / U1 /  
L1  
pop_vss_ft  
POPed devices ground  
B15 / J27 / M2 / M26 / N2 AB8 / AB13 / AA2 / AA22  
TBD  
/ AA2 / AF2 / AF27 /  
AG10 / AG15  
/ U2 / L2 / K2 / K22 / H22  
/ B12  
(1) NA = Not Applicable.  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
95  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
3 ELECTRICAL CHARACTERISTICS  
3.1 Power Domains  
The OMAP3515/03 device integrates enhanced features that dynamically adapt energy consumption  
according to application needs and performance requirements.  
The OMAP3515/03 device includes an enhanced power-management scheme based on:  
Nine independent functional voltage domains on chip partitioning  
Multiple voltage domains  
Voltage scaling support  
Enhanced memory retention support  
Optimized device off mode  
Centralized management of power, reset, and clock  
The external power supplies of OMAP3515/03 are:  
vdd_mpu for the ARM  
vdd_core for macros  
vdds for IO macros  
vdds_mem for memory macros  
vdds_sram for SRAM LDOs  
vdds_dpll_dll for DLL IO  
vdds_dpll_per for peripheral DPLLs  
vdds_wkup_bg for wakeup LDO and VDDA (2 LDOs: SRAM and BandGap)  
vdda_dac for video DAC  
vdds_mmc1 for MMC IO  
vpp for eFuse  
The supply voltages are detailed in Table 3-3.  
Figure 3-1 illustrates the power domains:  
96  
ELECTRICAL CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
vdd_mpu  
vdds_dpll_dll  
DLL/DCDL  
BandGap  
vdds_wkup_bg  
LDO3  
1.0 V/1.2 V  
SRAM1  
ARRAY  
WKUP  
EMU  
LDO  
cap_vdd_wkup  
vdds_mem  
MPU  
in 1.8 V  
out 1.2 V  
BCK  
MEM  
cap_vdd_sram_mpu  
DPLL_MPU  
SRAM 1 LDO  
0 V/1.0 V/1.2 V  
vdds  
vdd_mpu domain  
vdds_sram  
vpp  
vdd_core  
eFUSE  
LDO  
SRAM2  
in 1.8 V  
out 1.2 V  
ARRAY  
SRAM 2 LDO  
Core  
0 V/1.0 V/1.2 V  
cap_vdd_sram_core  
DPLL_CORE  
vdds_mmc1  
MMC1  
LDO  
LDO  
in 1.8 V  
out 1.2 V  
tv_ref  
(for capacitor)  
HSDIVIDER  
Periph1  
DPLL4  
vdds_dpll_per  
vdda_dac  
LDO  
HSDIVIDER  
Dual Video DAC  
LDO  
Periph2  
in 1.8 V  
out 1.2 V  
DPLL5  
vdd_core domain  
vss  
vssa_dac  
OMAP Device  
030-003  
Figure 3-1. OMAP3515/03 Power Domains  
This power domain segmentation switches off (or places in retention state) domains that are unused while  
keeping others active. This implementation is based on internal switches that independently control each  
power domain.  
A power domain regular logic is attached to one of the device VDD supplies through a primary domain  
switch. When the primary switch is open, most of the logic supply is off, resulting in a low-leakage state of  
the domain. Embedded switches are implemented for all power domains except the wake-up domain. This  
allows the domain to be powered off, if not being used, to give maximum power savings. For more  
information, see the PRCM chapter of the OMAP35xx ES2.0 Technical Reference Manual (TRM)  
[literature number SPRUFA5].  
All domain output signals at the interface between power domains are connected through isolation latch  
cells. These cells ensure a proper electrical isolation between the domains and an appropriate interface  
state at the domain boundaries.  
Submit Documentation Feedback  
ELECTRICAL CHARACTERISTICS  
97  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
3.2 Absolute Maximum Ratings  
The following list of absolute maximum ratings is specified over operating junction temperature range.  
Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the  
device. These are stress ratings only and functional operation of the device at these or any other  
conditions beyond those indicated under recommended operating conditions is not implied. Exposure to  
absolute-maximum-rated conditions for extended periods may affect device reliability.  
The OMAP3515/03 device adheres to EIA/JESD22–A114, Electrostatic Discharge (ESD) Sensitivity  
Testing Human Body Model (HBM). Minimum pass level for HBM is ±2 kV.  
Table 3-1. Absolute Maximum Ratings Over Operating Junction Temperature Range  
PARAMETER  
MIN  
MAX  
UNIT  
vdd_mpu  
vdd_core  
Supply voltage range for core macros  
–0.5  
1.6  
V
vdds  
Second supply voltage range for 1.8-V I/O macros  
–0.5  
2.25  
V
vdds_mem  
VPAD  
vdda  
VESD  
Voltage range at PAD  
–0.5  
–0.5  
Vdds + 0.5  
2.43  
V
V
V
Supply voltage range for analog macros  
ESD stress voltage(1)  
HBM (human body model)(4)  
CDM (charged device model)(5)  
2000  
500  
IIOI  
Current-pulse injection on each I/O pin(3)  
Clamp current for an input or output  
Storage temperature range(2)  
200  
mA  
mA  
°C  
Iclamp  
Tstg  
–20  
–65  
20  
150  
(1) Electrostatic discharge (ESD) to measure device sensitivity/immunity to damage caused by electrostatic discharges into the device.  
(2) These temperatures extreme do not simulate actual operating conditions but exaggerate any faults that might exist.  
(3) Each device is tested with I/O pin injection of 200 mA with a stress voltage of 1.5 times maximum vdd at room temperature.  
(4) JEDEC JESD22–A114 D with the following exception-no connect pins are not stressed. 2000V Human Body Model (HBM)  
(5) JEDEC JESD22–C101C with the following exception-split out pin groupings to eliminate cumulative stress effect  
This section includes the maximum power consumption for each power domain (core, etc.). Table 3-2  
summarizes the power consumption at the ball level.  
98  
ELECTRICAL CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 3-2. Estimated Maximum Power Consumption At Ball Level  
PARAMETER  
MAX  
UNIT  
Signal  
Description  
vdd_mpu  
Processors  
OMAP3515 (SmartReflex™ Enabled)  
OMAP3515 (SmartReflex™ Disabled)  
OMAP3503 (SmartReflex™ Enabled)  
OMAP3503 (SmartReflex™ Disabled)  
OMAP3515 (SmartReflex™ Enabled)  
OMAP3515 (SmartReflex™ Disabled)  
OMAP3503 (SmartReflex™ Enabled)  
OMAP3503 (SmartReflex™ Disabled)  
680  
850  
680  
850  
430  
500  
320  
370  
65  
mA  
vdd_core  
Core  
mA  
vdda_dac  
vdss_dpll_dll  
vdds_dpll_per  
vdds_sram  
vdds_wkup_bg  
vdds_mem  
vdds  
Video DAC  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
DLL + DPLL MPU, and core  
25  
DPLL peripheral 1 and peripheral 2  
15  
Processors and core LDO (LDO1 and LDO2)  
Bandgap, wakeup + LDO, EMU off  
Standard I/Os (SRDC+GPMC)  
Standard I/Os (all excluding SRDC and GPMC)  
MMC I/O(1)  
41  
6
37  
63  
vdds_mmc1  
vpp  
20  
eFuse  
50  
(1) MMC card and I/O card are not included.  
Submit Documentation Feedback  
ELECTRICAL CHARACTERISTICS  
99  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
3.3 Recommended Operating Conditions  
All OMAP3515/03 modules are used under the operating conditions contained in Table 3-3.  
Table 3-3. Recommended Operating Conditions(3)  
PARAMETER  
DESCRIPTION  
MIN  
NOM  
MAX  
UNIT  
VDD1 (vdd_mpu)(1)  
OMAP processor OPP5: Overdrive  
core supply  
VDD1NOM  
-
1.19 - 1.35  
VDD1NOM  
+
V
V
V
V
V
V
V
V
(0.04*VDD1NOM  
VDD1NOM  
(0.04*VDD1NOM  
VDD1NOM  
(0.04*VDD1NOM  
VDD1NOM  
(0.04*VDD1NOM  
VDD1NOM  
(0.04*VDD1NOM  
VDD2NOM  
(0.04*VDD2NOM  
VDD2NOM  
(0.04*VDD2NOM  
VDD2NOM  
)
)
)
)
)
)
)
)
(0.04*VDD1NOM  
VDD1NOM  
(0.04*VDD1NOM  
VDD1NOM  
(0.04*VDD1NOM  
VDD1NOM  
(0.04*VDD1NOM  
VDD1NOM  
(0.04*VDD1NOM  
VDD2NOM  
(0.04*VDD2NOM  
VDD2NOM  
(0.04*VDD2NOM  
VDD2NOM  
)
)
)
)
)
)
)
)
OPP4: Mid-Overdrive  
-
1.07 - 1.27  
1.00 - 1.20  
0.90 - 1.00  
0.80 - 0.90  
0.95-1.15  
0.85-1.00  
0.80-0.90  
+
OPP3: Nominal  
-
+
OPP2: Low-Power  
OPP1: Ultra Low-Power  
-
+
-
+
VDD2 (vdd_core)(1)  
OMAP processor OPP3: Nominal  
core logic supply  
-
+
OPP2: Low-Power  
-
+
OPP1: Ultra Low-Power  
-
+
(0.04*VDD2NOM  
(0.04*VDD2NOM  
vdds  
Supply voltage for I/O macros  
Supply voltage for memory I/O macros  
Supply voltage for MMC1 macro in 1.8-V mode  
Supply voltage for MMC1 macro in 3-V mode  
Wakeup LDO  
1.71  
1.8  
1.8  
1.8  
3
1.89  
V
V
V
V
V
V
V
V
V
V
V
V
°C  
vdds_mem  
vdds_mmc1  
1.71  
1.89  
1.71  
1.89  
2.7  
3.3  
vdds_wkup_bg  
vdda_dac  
vdds_sram  
vdds_dpll_per  
vdds_dpll_dll  
vpp(2)  
1.71  
1.8  
1.8  
1.8  
1.8  
1.8  
1.89  
Analog supply voltage for video DAC  
SRAM LDOs  
1.71  
1.89  
1.71  
1.89  
Peripherals DPLLs power supply  
Supply voltage for DPLLs I/Os  
eFuse programming  
1.71  
1.89  
1.71  
1.89  
vss  
Ground  
0
0
0
0
0
0
0
vssa_dac  
TJ  
Dedicated ground for DAC  
Operating junction temperature range  
90  
(1) Voltage can be adapted using SmartReflex™. When not using SmartReflex™, the highest nominal voltage must be used for the OPP  
selected. For example, vdd_mpu must be set to 1.20V+/-4% when using OPP3. OPP = operating point.  
(2) It is recommended not to connect this pin. It is just used for eFuse programming on package unit.  
(3) Using the device at OPP5 (Overdrive) or using multiple OPPs may impact product lifetime. For assistance in understanding the  
relationship between actual application conditions, temperature, and Power on Hours (POH) see the OMAP 35xx Use Conditions and  
Product Life applications note (literature number SPRATBD).  
100  
ELECTRICAL CHARACTERISTICS  
Submit Documentation Feedback  
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
3.4 DC Electrical Characteristics  
Table 3-4 summarizes the dc electrical characteristics.  
Table 3-4. DC Electrical Characteristics  
PARAMETER  
MIN  
NOM  
MAX  
UNIT  
LVCMOS Pin Buffers - CBB: N28, M27, N27, N26, N25, P28 / CUS: M23, L23, M22, M21, M20, N23  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
High-level output voltage(3)  
vdds = 1.8 V  
vdds = 3.0 V  
vdds = 1.8 V  
vdds = 3.0 V  
vdds = 1.8 V  
vdds = 3.0 V  
0.65 × vdds  
0.625 × vdds  
–0.3  
vdds + 0.3  
vdds + 0.3  
0.35 × vdds  
0.25 × vdds  
V
V
V
–0.3  
VOH  
vdds – 0.2  
0.75 × vdds  
VOH  
VOL  
Low-level output voltage(3)  
vdds = 1.8 V  
vdds = 3.0 V  
0.2  
V
0.125 × vdds  
VOL  
tT  
Input transition time (rise time, tR or fall time, Normal Mode  
10  
3
ns  
tF evaluated between 10% and 90% at PAD)  
High-Speed  
Mode  
LVDS/CMOS Pin Buffers - CBB: AG19, AH19, AG18, AH18, AG17, AH17/ CUS: AB18, AC18  
Low-Power Receiver (LP-RX)  
VIL  
Low-level input threshold  
500  
300  
mV  
mV  
mV  
VIH  
High-level input threshold  
Input hysteresis  
800  
25  
VHYS  
Ultralow-Power Receiver (ULP-RX)  
VIL-ULPM Low-level input threshold, ULPM  
VIH High-level input threshold  
High-Speed Receiver (HS-RX)  
mV  
mV  
880  
70  
VIDTH  
Differential input high threshold  
mV  
mV  
mV  
mV  
mV  
mV  
VIDTL  
Differential input low threshold  
Maximum differential input voltage  
Single-ended input low voltage  
Single-ended input high voltage  
Common-mode voltage  
–70  
270  
VIDMAX  
VILHS  
–40  
70  
VIHHS  
460  
330  
VCMRXDC  
LVDS/CMOS Pin Buffers - CBB: K28, L28, K27, L27/ CUS: L24, K24, J23, K23  
VCM  
Vos  
Vid  
tT  
Input common mode voltage range  
Receiver Input dc offset  
600  
–20  
140  
267  
900  
1200  
20  
mV  
mV  
Receiver input differential amplitude  
200  
400  
533  
mVpp  
ps  
Input transition time (rise time, tR or fall time, tF evaluated  
between 10% and 90% at PAD)  
LVDS/CMOS Pin Buffers - CBB: AG22, AH22, AG23, AH23, AG24, AH24/ CUS: AC19, AB19, AD20, AC20, AD21, AC21  
High-Speed Transceiver (HS-TX)  
VOHHS  
|VOD  
VCMTX  
HS output high voltage  
360  
270  
250  
mV  
mV  
mV  
|
HS transmit differential voltage  
HS transmit static common mode voltage  
140  
150  
200  
200  
Low-Power Transceiver (LP-TX)  
VOL  
VOH  
Thevenin output low level  
Thevenin output high level  
–50  
1.1  
50  
mV  
V
1.2  
1.3  
Low-Power Receiver (LP-RX)  
Submit Documentation Feedback  
ELECTRICAL CHARACTERISTICS  
101  
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 3-4. DC Electrical Characteristics (continued)  
PARAMETER  
Low-level input threshold  
MIN  
NOM  
MAX  
UNIT  
mV  
VIL  
550  
VIH  
High-level input threshold  
Input hysteresis  
880  
25  
mV  
VHYST  
mV  
Ultralow-Power Receiver (ULP-RX)  
VIL-ULPS Low-level input threshold, ULPM  
VIH High-level input threshold  
300  
mV  
mV  
880  
subLVDS/CMOS Pin Buffers - CBB: AA27, AA28, AB27, AB28, AD27, AD28, AC28, AC27/ CUS: V22, W22, Y22, AB22, AC23, AC22,  
W21, V21  
Vod  
Vocm  
tT  
Differential voltage range @ RL = 100 Ω  
100  
0.8  
150  
0.9  
200  
1
mV  
V
Common mode voltage range  
Input transition time (Vod rise time, tR or Vod fall time, tF  
evaluated between 20% and 80% at PAD)  
200  
500  
ps  
Standard LVCMOS Pin Buffers  
VIH  
High-level input voltage (Standard LVCMOS)  
Low-level input voltage (Standard LVCMOS)  
Hysteresis voltage at an input(1)  
0.65 × vdds  
V
V
V
V
VIL  
0
0.35 × vdds  
VHYS  
VOH  
0.1  
High-level output voltage, driver enabled,  
pullup or pulldown disabled  
IO = IOH or  
IO = –2 mA  
vdds – 0.45  
vdds – 0.40  
IO = IOH < |–2|  
mA  
VOL  
Low-level output voltage with , driver enabled, IO = IOL or  
0.45  
V
pullup or pulldown disabled  
IO = 2 mA  
IO = IOL < 2 mA  
0.40  
10(2)  
tT  
Input transition time (rise time, tR or fall time, tF evaluated  
between 10% and 90% at PAD)  
0
ns  
II  
Input current with VI = VI max  
–1  
1
µA  
µA  
IOZ  
Off-state output current for output in high impedance with driver  
only, driver disabled  
–20  
20  
Off-state output current for output in high impedance with  
driver/receiver/pullup only, driver disabled, pullup not inhibited  
–100  
100  
Off-state output current for output in high impedance with  
driver/receiver/pulldown only, driver disabled, pulldown not  
inhibited  
IZ  
Total leakage current through the PAD connection of a  
driver/receiver combination that may include a pullup or pulldown.  
The driver output is disabled and the pullup or pulldown is  
inhibited.  
–20  
20  
µA  
(1) Vhys is the magnitude of the difference between the positive-going threshold voltage VT+ and the negative-going voltage VT-  
.
(2) This global value may be overridden on a per interface basis if another value is explicitly defined for that interface (for example, I2C).  
(3) With 100 µA sink / source current at vdds_min.  
102  
ELECTRICAL CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
3.5 Core Voltage Decoupling  
For module performance, decoupling capacitors are required to suppress the switching noise generated  
by high frequency and to stabilize the supply voltage. A decoupling capacitor is most effective when it is  
close to the device because this minimizes the inductance of the circuit board wiring and interconnects.  
Table 3-5 summarizes the power supplies decoupling characteristics.  
Table 3-5. Core Voltage Decoupling Characteristics  
PARAMETER  
MIN  
50  
TYP  
100  
100  
100  
1
MAX  
120  
UNIT  
nF  
nF  
nF  
µF  
µF  
µF  
nF  
nF  
nF  
nF  
nF  
Cvdd_mpu(1)  
Cvdd_core(1)  
50  
120  
Cvdds_sram  
Ccap_vdd_sram_mpu  
Ccap_vdd_sram_core  
Cvdd_wkup  
0.7  
0.7  
0.7  
1.3  
1.3  
1.3  
1
1
Cvdds_wkup_bg  
Cvdds_dpll_dll  
Cvdds_dpll_per  
Cvdda_dac  
100  
100  
100  
100  
100  
Cvdds_mmc1  
(1) 1 capacitor per 2 to 4 balls  
Figure 3-2 illustrates an example of power supply decoupling.  
Submit Documentation Feedback  
ELECTRICAL CHARACTERISTICS  
103  
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
OMAP Device  
vdds_sram  
Cvdds_sram  
vdds_sram  
vdda_dac  
vdda_dac  
cap_vdd_sram_mpu  
Ccap_vdd_sram_mpu  
Ccap_vdd_sram_core  
Cvdda_dac  
SRAM_LDO1  
Video DAC  
vssa_dac  
cap_vdd_sram_core  
vdds_wkup_bg  
SRAM_LDO2  
BG  
vdds_wkup_bg  
Cvdds_wkup_bg  
WKUP_LDO  
DPLL_MPU  
vdds_mmc1  
Cvdds_mmc1  
vdds_mmc1  
cap_vdd_wkup  
MMC IOs  
Cvdd_wkup  
vdds_dpll_dll  
vdds_dpll_dll  
Cvdds_dpll_dll  
DPLL_CORE  
DPLL5  
vdds_dpll_per  
vdds_dpll_per  
Cvdds_dpll_per  
DPLL4  
Core  
Vdd_core  
vdd_mpu  
Cvdd_mpu  
Vdd_mpu  
vdd_core  
VSS  
MPU  
Cvdd_core  
030-004  
(1) Decoupling capacitors must be placed as closed as possible to the power ball. Choose the ground located closest to the power pin  
for each decoupling capacitor. Place the decoupling capacitor Ci in a group of 1, 2, or 3 balls; the total must be equal to the  
decoupling requirement. In case you interconnect powers, first insert the decoupling capacitor and then interconnect the powers.  
(2) The decoupling capacitor value depends on the board characteristics.  
Figure 3-2. Power Supply Decoupling  
104  
ELECTRICAL CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
3.6 Power-up and Power-down  
This section provides the timing requirements for the OMAP3515/03 hardware signals.  
3.6.1 Power-up Sequence  
The following steps give an example of power-up sequence supported by the OMAP3515/03 device.  
1. VDDS and VDDS_MEM are ramped ensuring a level on the IO domain and sys_nrespwron must be  
low. At the same time, VDDS_SRAM and VDDS_WKUP_BG can also be ramped.  
2. Once VDDS_WKUP_BG rail is stabilized, VDD_CORE can be ramped.  
3. Once VDD_CORE is stabilized, then VDD_MPU can be ramped.  
4. VDDS_DPLL_DLL and VDDS_DPLL_PER rails can be ramped at any time during the above  
sequence.  
5. sys_nrespwron can be released as soon as the VDDS_PLL_DLL rail is stabilized, and sys_xtalin and  
sys_32k clocks are stabilized.  
6. During the whole sequence above, sys_nreswarm is held low by OMAP3515/03. sys_nreswarm is  
released after the eFuse check has been performed; that is, after sys_nrespwron is released.  
7. The other power supplies can then be turned on upon software request.  
Figure 3-3 shows the power-up sequence.  
Note: If an external square clock is provided, it could be started after sys_nrespwron release provided it is  
clean: no glitch, stable frequency, and duty cycle.  
Submit Documentation Feedback  
ELECTRICAL CHARACTERISTICS  
105  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
1.8 V  
VDDS_WKUP_BG  
1.8 V  
VDDS_MEM, VDDS,  
VDDS_SRAM,  
1.2 V  
VDD_CORE  
VDD_MPU  
1.2 V  
1.8 V  
VDDS_DPLL_DLL  
VDDS_DPLL_PER  
1.8 V  
sys_32k  
sys_nrespwron  
Sys_xtalin  
EFUSE.RSTPWRON (internal)  
sys_nreswarm  
VDDS_MMC1,  
VDDA_DAC, VPP  
030-005  
Figure 3-3. Power-up Sequence  
106  
ELECTRICAL CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
3.6.2 Power-down Sequence  
The OMAP3515/03 device proceeds with the power-down sequence shown in Figure 3-4.  
sys_nrespwron  
VDDS_MMC1,  
VDDA_DAC  
VDDS_WKUP_BG  
VDD_MPU  
VDD_CORE  
VDDS_MEM, VDDS,  
VDDS_SRAM  
VDDS_DPLL_DLL,  
VDDS_DPLL_PER  
sys_32kin  
Sys.clk  
030-006  
Figure 3-4. Power-down Sequence  
Submit Documentation Feedback  
ELECTRICAL CHARACTERISTICS  
107  
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
4 CLOCK SPECIFICATIONS  
The OMAP3515/03 device has three external input clocks, a low frequency (sys_32k), a high frequency  
(sys_xtalin), and an optional (sys_altclk). The OMAP3515/03 device has two configurable output clocks,  
sys_clkout1 and sys_clkout2.  
Figure 4-1 shows the interface to the external clock sources and clock outputs.  
OMAP  
sys_32k  
Power IC  
Alternate Clock Source Selectable (54, 48 MHz or other [up  
to 54 MHz])  
sys_altclk  
To Peripherals (From OSC_CLK: 12, 13,16.8, 19.2, 26, or  
38.4 MHz)  
sys_clkout1  
sys_clkout2  
sys_xtalout  
To Peripherals (From OSC_CLK: 12,13, 16.8, 19.2, 26, or  
38.4 MHz, core_clk [DPLL, up to 332 MHz], DPLL-96 MHz  
or DPLL-54 MHz outputs with a divider of 1, 2, 4, 8, or 16)  
To Quartz (Oscillator output) or Unconnected  
sys_xtalin  
sys_clkreq  
sys_xtalout  
sys_xtalin  
To Quartz (Oscillator input) or Square Clock  
Clock Request. To Square Clock Source or from Peripherals  
sys_xtalout  
Unconnected  
Oscillator  
is Bypassed  
Oscillator  
is Used  
sys_xtalin  
Square  
Clock  
Source  
sys_clkreq  
sys_clkreq  
GPin  
030-007  
Figure 4-1. Clock Interface  
The OMAP3515/03 device operation requires the following three input clocks:  
The 32-kHz frequency is used for low frequency operation. It supplies the wake-up domain for  
operation in lowest power mode (off mode). This clock is provided through the sys_32k pin.  
The system alternative clock can be used (through the sys_altclk pin) to provide alternative 48 or 54  
MHz or other clock source (up to 54 MHz).  
The system clock input (12, 13, 16.8, 19.2, 26, or 38.4 MHz) is used to generate the main source clock  
of the OMAP3515/03 device. It supplies the DPLLs as well as several OMAP modules. The system  
clock input can be connected to either:  
A crystal oscillator clock managed by sys_xtalin and sys_xtalout. In this case, the sys_clkreq is  
used as an input (GPIN).  
A CMOS digital clock through the sys_xtalin pin. In this case, the sys_clkreq is used as an output to  
request the external system clock.  
The OMAP3515/03 outputs externally two clocks:  
sys_clkout1 can output the oscillator clock (12, 13, 16.8, 19.2, 26, or 38.4 MHz) at any time. It can be  
controlled by software or externally using sys_clkreq control. When the device is in the off state, the  
sys_clkreq can be asserted to enable the oscillator and activate the sys_clkout1 without waking up the  
device. The off state polarity of sys_clkout1 is programmable.  
108  
CLOCK SPECIFICATIONS  
Submit Documentation Feedback  
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
sys_clkout2 can output the oscillator clock (12, 13, 16.8, 19.2, 26, or 38.4 MHz), core_clk (core DPLL  
output), 96 MHz or 54 MHz. It can be divided by 2, 4, 8, or 16 and its off state polarity is  
programmable. This output is active only when the core power domain is active.  
For more information on the OMAP3515/03 Applications Processor clocking structure, see the Power,  
Reset, and Clock management (PRCM) chapter of the OMAP35xx Applications Processor TRM (literature  
number SPRUFA5).  
4.1 Input Clock Specifications  
The clock system accepts three input clock sources:  
32-kHz digital CMOS clock  
Crystal oscillator clock or CMOS digital clock (12, 13, 16.8, 19.2, 26, or 38.4 MHz)  
Alternate clock (48 or 54 MHz, or other up to 54 MHz)  
4.1.1 Clock Source Requirements  
Table 4-1 illustrates the requirements to supply a clock to the OMAP3515/03 device.  
Table 4-1. Clock Source Requirements  
PAD  
CLOCK FREQUENCY  
STABILITY  
± 200 ppm  
± 50 ppm  
± 25 ppm  
± 50 ppm  
DUTY CYCLE  
40% to 60%  
45% to 55%  
JITTER  
< 1%  
TRANSITION  
< 20 ns  
sys_32k  
32.768 kHz  
sys_xtalout 12, 13, 16.8, 19.2, 26, or 38.4 MHz Crystal  
< 3.6 ns  
sys_xtalin  
sys_altclk  
Square  
48 or 54 MHz  
40% to 60%  
< 1%  
< 5 ns  
4.1.2 External Crystal Description  
To supply a 12-, 13-, 16.8-, or 19.2-MHz clock to the OMAP3515/03, an external crystal can be connected  
to the sys_xtalin and sys_xtalout pins. Figure 4-2 describes the crystal implementation.  
OMAP Device  
sys_xtalin  
sys_xtalout  
Optional Rbias  
Optional Rd  
Cf2  
Cf1  
Crystal  
030-008  
Figure 4-2. Crystal Implementation(1)(2)(3)(4)  
(1) On the PCB, the oscillator components (crystal, foot capacitors, optional Rbias and Rd) must be located close to the package. All these  
components must be routed first with the lowest possible number of board vias.  
(2) An optional resistor Rd can be added in series with the crystal to debug or filter the harmonics; a footprint must be reserved on the PCB  
for use with 10-MHz crystals and feature low-drive levels.  
Submit Documentation Feedback  
CLOCK SPECIFICATIONS  
109  
 
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
(3) A 120-kinternal bias resistor Rbias is used. The feedback resistor Rbias provides negative feedback to the oscillator to put it in the  
linear operating region; thus oscillation begins when power is applied.  
(4) Cf1 and Cf2 represent the total capacitance of the PCB and components excluding the power IC and crystal. Their values in fact depend  
on the crystal datasheet. In the datasheet of the crystal, the frequency is specified at a specific load capacitor value which is the  
equivalent capacitor of the two capacitors Cf1 and Cf2 connected to sys_xtalin and sys_xtalout. The frequency of the oscillations  
depends on the value of the capacitors (10 pF corresponds to a load capacitor of 5 pF for the crystal).  
The crystal must be in the fundamental mode of operation and parallel resonant. Table 4-2 summarizes  
the required electrical constraints.  
Table 4-2. Crystal Electrical Characteristics  
NAME  
DESCRIPTION  
Parallel resonance crystal frequency(1)  
Load capacitance for crystal parallel resonance  
Crystal ESR (12 and 13 MHz)(1)  
MIN  
TYP  
MAX  
UNIT  
MHz  
pF  
fp  
12, 13, 16.8, or 19.2  
5
CL  
20  
80  
50  
7
ESR12&13  
ESR16.8&19.2 Crystal ESR (16.8 and 19.2 MHz)(1)  
Co  
Crystal shunt capacitance  
Crystal motional inductance for fp = 12 MHz  
Crystal motional capacitance  
Crystal drive level  
1
5
pF  
Lm  
35  
100  
0.5  
300  
5
mH  
fF  
Cm  
DL  
mW  
kΩ  
kΩ  
Rbias  
RpdXI  
Internal bias resistor  
30  
120  
Pulldown resistor on sys_xtalin when oscillator is  
disabled  
(1) Measured with the load capacitance specified by the crystal manufacturer. This load is defined by the foot capacitances tied in series. If  
CL = 20 pF, then both foot capacitors will be Cf1 = Cf2 = 40 pF. Parasitic capacitance from package and board must also be taken in  
account.  
(2) The crystal motional resistance Rm is related to the equivalent series resistance (ESR) by the following formula:  
2
C
0
ESR=R 1+  
m
C
L
When selecting a crystal, the system design must take into account the temperature and aging  
characteristics of a crystal versus the user environment and expected lifetime of the system. Table 4-3  
details the switching characteristics of the oscillator and the input requirements of the 12-, 13-, 16.8-, or  
19.2-MHz input clock.  
Table 4-3. Base Oscillator Switching Characteristics  
NAME  
fp  
tsX  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
MHz  
ms  
Oscillation frequency  
Start-up time(1)(2)  
12, 13, 16.8, or 19.2  
8
(1) Start-up time defined as time interval between oscillator control signal release and sys_xtalin amplitude at 50% of its final value (vdd and  
vdds supplies ramped and stable). The start-up time can be performed in function of the crystal characteristics. 8-ms minimum only  
when using the internal oscillator; it is programmable after reset for wake-up. At power-on reset, the time is adjustable using the pin  
itself. The reset must be released when the oscillator or clock source is stable. Before the processor boots up and the oscillator is set to  
bypass mode, there is a start-up time when the internal oscillator is in application mode and receives a square wave. The start-up time  
in this case is about 100 µs.  
(2) For fp = 12 or 13 MHz: CL = 13.5 pF and Lm = 35 mH  
For fp = 16.8 or 19.2 MHz: CL = 9 pF and Lm = 15 mH  
4.1.3 Clock Squarer Input Description  
A 1.8-V CMOS clock squarer is another source that can supply a 12-, 13-, 16.8-, 19.2-, 26-, or 38.4-MHz  
clock to the OMAP3515/03. An analog clock squarer function converts a low-amplitude sinusoidal clock  
into a low-jitter digital signal. It can be connected to input pin sys_xtalin (sys_xtalout unconnected).  
Figure 4-3 illustrates the effective connections.  
110  
CLOCK SPECIFICATIONS  
Submit Documentation Feedback  
 
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
OMAP Device  
Oscillator  
In Bypass Mode  
sys_clkreq  
sys_xtalin  
sys_xtalout  
Clock Squarer Source  
030-010  
Figure 4-3. Clock Squarer Source Connection  
To connect a digital clock source, the oscillator is configured in bypass mode(1). The sys_clkreq(2) pin is an  
OMAP3515/03 output which can be used to switch the clock source on or off.  
1. Pin sys_xtalout is not used in this mode. It must be left unconnected.  
2. Once the system is powered up, the clock squarer source or crystal oscillator source can be applied;  
however, this affects the performance. The input source must be configured after power up to attain  
the desired system requirements.  
Table 4-4 summarizes the electrical constraints required by the clock squarer used in the fundamental  
mode of operation.  
Table 4-4. Base Oscillator Electrical Characteristics (in Bypass Mode)  
NAME  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
MHz  
ms  
f
Frequency(1)  
Start-up time  
12, 13, 16.8, 19.2, 26, or 38.4  
(2)  
tsX  
RpdXI  
IDDQ  
Pulldown resistor on sys_xtalin when oscillator is disabled  
5
1
kΩ  
Current consumption on VDDS when sys_xtalin = 0 and in  
power-down mode  
µA  
(1) Measured with the load capacitance specified by the manufacturer. Parasitic capacitance from package and board must also be taken in  
account.  
(2) Before the processor boots up and the oscillator is set to bypass mode, there is a start-up time when the internal oscillator is in  
application mode and receives a square wave. The start-up time in this case is about 100 µs.  
Table 4-5 details the input requirements of the 12-, 13-, 16.8-, 19.2-, 26-, or 38.4-MHz input clock.  
Table 4-5. 12-, 13-, 16.8-, 19.2-, 26-, or 38.4-MHz Input Clock Squarer Timing Requirements  
NAME  
OCS0  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
MHz  
ns  
1 / tc(xtalin)  
tw(xtalin)  
tJ(xtalin)  
Frequency, sys_xtalin  
12, 13, 16.8, 19.2, 26, or 38.4  
OCS1  
OCS2  
OCS3  
OCS4  
OCS5  
Pulse duration, sys_xtalin low or high  
Peak-to-peak jitter(1), sys_xtalin  
Rise time, sys_xtalin  
0.45 * tc(xtalin)  
–1%  
0.55 * tc(xtalin)  
1%  
3.6  
3.6  
±25  
tR(xtalin)  
tF(xtalin)  
tJ(xtalin)  
ns  
ns  
Fall time, sys_xtalin  
Frequency stability, sys_xtalin  
ppm  
(1) Peak-to-peak jitter is defined as the difference between the maximum and the minimum output periods on a statistical population of 300  
period samples. The sinusoidal noise is added on top of the vdds supply voltage.  
Submit Documentation Feedback  
CLOCK SPECIFICATIONS  
111  
 
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
OCS0  
OCS1  
OCS1  
sys.xtalin  
030-011  
Figure 4-4. Crystal Oscillator in Bypass Mode  
4.1.4 External 32-kHz CMOS Input Clock  
A 32.768-kHz clock signal (often abbreviated to 32-kHz) can be supplied by an external 1.8-V CMOS  
signal on pin sys_32k.  
Table 4-6 summarizes the electrical constraints imposed to the clock source.  
Table 4-6. 32-kHz Input Clock Source Electrical Characteristics  
NAME  
DESCRIPTION  
Frequency  
MIN  
TYP  
MAX  
UNIT  
kHz  
pF  
f
32.768  
CI  
Input capacitance  
0.44  
Amplitude of input clock  
1.71  
1.8(1)  
1.89  
V
(1) Voltage stress up to the maximum voltage values shown above operation at TJ of 25°C.  
Table 4-7 details the input requirements of the 32-kHz input clock.  
Table 4-7. 32-kHz Input Clock Source Timing Requirements  
NAME  
CK0  
DESCRIPTION  
Frequency, sys_32k  
MIN  
TYP  
MAX  
UNIT  
1 / tc(32k)  
tw(32k)  
tR(32k)  
tF(32k)  
32.768  
kHz  
ns  
CK1  
CK3  
CK4  
CK5  
Pulse duration, sys_32k low or high  
Rise time, sys_32k  
0.40 * tc(32k)  
0.60 * tc(32k)  
20  
20  
ns  
Fall time, sys_32k  
ns  
tJ(32k)  
Frequency stability, sys_32k  
±200  
ppm  
CK0  
CK1  
CK1  
sys_32k  
030-012  
Figure 4-5. 32-kHz CMOS Clock  
4.1.5 External sys_altclk CMOS Input Clock  
A 48- or 54-MHz clock signal can be supplied by an external 1.8-V CMOS signal on pin sys_altclk.  
Table 4-8 summarizes the electrical constraints imposed by the clock source.  
Table 4-8. 48- or 54-MHz Input Clock Source Electrical Characteristics  
NAME  
DESCRIPTION  
Frequency  
MIN  
TYP  
MAX  
UNIT  
MHz  
pF  
f
48 or 54  
CI  
Input capacitance  
0.74  
Amplitude of input clock  
1.71  
1.8(1)  
1.89  
V
(1) Voltage stress up to the maximum voltage values shown above operation at TJ of 25°C.  
Table 4-9 details the input requirements of the 48- or 54-MHz input clock.  
112  
CLOCK SPECIFICATIONS  
Submit Documentation Feedback  
 
 
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 4-9. 48- or 54-MHz Input Clock Source Timing Requirements  
NAME  
ALT0  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
MHz  
ns  
1 / tc(altclk)  
tw(altclk)  
Frequency, sys_altclk  
48 or 54  
ALT1  
Pulse duration, sys_altclk low or  
high  
0.40 * tc(altclk)  
0.60 * tc(altclk)  
ALT2  
ALT3  
ALT4  
ALT5  
tJ(altclk)  
tR(altclk)  
tF(altclk)  
tJ(altclk)  
Peak-to-peak jitter(1), sys_altclk  
–1%  
1%  
5
Rise time, sys_altclk  
ns  
ns  
Fall time, sys_altclk  
5
Frequency stability, sys_altclk  
± 50  
ppm  
(1) Peak-to-peak jitter is defined as the difference between the maximum and the minimum output periods on a statistical population of 300  
period samples. The sinusoidal noise is added on top of the vdds supply voltage.  
ALT0  
ALT1  
ALT1  
sys_altclk  
030-013  
Figure 4-6. Alternate CMOS Clock  
Submit Documentation Feedback  
CLOCK SPECIFICATIONS  
113  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
4.2 Output Clock Specifications  
Two output clocks (pin sys_clkout1 and pin sys_clkout2) are available:  
sys_clkout1 can output the oscillator clock (12, 13, 16.8, 19.2, 26, or 38.4 MHz) at any time. It can be  
controlled by software or externally using sys_clkreq control. When the device is in the off state, the  
sys_clkreq can be asserted to enable the oscillator and activate the sys_clkout1 without waking up the  
device. The off state polarity of sys_clkout1 is programmable.  
sys_clkout2 can output sys_clk (12, 13, 16.8, 19.2, 26, or 38.4 MHz), CORE_CLK (core DPLL output,  
332 MHz maximum), APLL-96 MHz, or APLL-54 MHz. It can be divided by 2, 4, 8, or 16 and its off  
state polarity is programmable. This output is active only when the core domain is active.  
Table 4-10 summarizes the sys_clkout1 output clock electrical characteristics.  
Table 4-10. sys_clkout1 Output Clock Electrical Characteristics  
NAME  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
MHz  
pF  
f
Frequency  
12, 13, 16.8, 19.2, 26, or 38.4  
CI  
Load capacitance(1)  
f(max) = 38.4 MHz  
f(max) = 26 MHz  
70  
125  
Amplitude of output clock  
1.71  
1.8(2)  
1.89  
V
(1) The load capacitance is adapted to a frequency.  
(2) Voltage stress up to the maximum voltage values shown above operation at TJ of 25°C.  
Table 4-11 details the sys_clkout1 output clock timing characteristics.  
Table 4-11. sys_clkout1 Output Clock Switching Characteristics  
NAME  
DESCRIPTION  
Frequency  
MIN  
TYP  
12, 13, 16.8, 19.2, 26, or 38.4  
0.60 *  
tc(CLKOUT1)  
3.31  
MAX  
UNIT  
MHz  
ns  
f
1 / CO0  
CO1  
tw(CLKOUT1)  
Pulse duration, sys_clkout1 low or high  
0.40 *  
tc(CLKOUT1)  
CO2  
CO3  
tR(CLKOUT1)  
tF(CLKOUT1)  
Rise time, sys_clkout1(1)  
Fall time, sys_clkout1(1)  
ns  
ns  
3.31  
(1) With a load capacitance of 25 pF.  
CO0  
CO1  
CO1  
sys_clkout  
030-014  
Figure 4-7. sys_clkout1 System Output Clock  
Table 4-12 summarizes the sys_clkout2 output clock electrical characteristics.  
Table 4-12. sys_clkout2 Output Clock Electrical Characteristics  
NAME  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
MHz  
pF  
f
Frequency  
322  
Cl  
Load capacitance(1)  
f(max) = 166 MHz  
f(max) = 96 MHz  
f(max) = 65 MHz  
8
20  
25  
Amplitude of output clock  
1.71  
1.8(2)  
1.89  
V
(1) The load capacitance is adapted to a frequency.  
(2) Voltage stress up to the maximum voltage values shown above, operation at TJ = 25°C.  
Table 4-13 details the sys_clkout2 output clock timing characteristics.  
114  
CLOCK SPECIFICATIONS  
Submit Documentation Feedback  
 
 
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 4-13. sys_clkout2 Output Clock Switching Characteristics  
NAME  
DESCRIPTION  
Frequency  
MIN  
TYP  
MAX  
UNIT  
MHz  
ns  
f
1 / CO0  
322  
CO1  
CO2  
CO3  
tw(CLKOUT2)  
tR(CLKOUT2)  
tF(CLKOUT2)  
Pulse duration, sys_clkout2 low or high  
Rise time, sys_clkout2(1)  
Fall time, sys_clkout2(1)  
0.40 * tc(CLKOUT2)  
0.60 * tc(CLKOUT2)  
3.7  
4.3  
ns  
ns  
(1) With a load capacitance of 25 pF.  
CO0  
CO1  
CO1  
sys_clkout  
030-015  
Figure 4-8. sys_clkout2 System Output Clock  
Submit Documentation Feedback  
CLOCK SPECIFICATIONS  
115  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
4.3 DPLL and DLL Specifications  
The OMAP3515/03 integrates six DPLLs and a DLL. The PRM and CM drive five of them, while the sixth  
(not supported) is controlled by the display controller.  
The five main DPLLs are:  
DPLL1 (MPU)  
DPLL2 (not supported on OMAP3515/03 devices)  
DPLL3 (Core)  
DPLL4 (Peripherals)  
DPLL5 (Second Peripherals DPLL)  
Figure 4-9 illustrates the DLL and DPLL implementation.  
OMAP  
vdds_dpll_dll  
Power Rail  
DPLL1  
DPLL2  
DPLL3  
DPLL4  
DLL  
DPLL5  
vdds_dpll_per  
030-016  
(1) DPLL2 is not supported on OMAP3515/03 devices.  
Figure 4-9. DPLL and DLL Implementation  
For more information on the OMAP3530/25 Applications Processor DPLLs and clocking structure, see the  
Power, Reset, and Clock management (PRCM) chapter of the OMAP35xx Applications Processor TRM  
(literature number SPRUFA5).  
4.3.1 Digital Phase-Locked Loop (DPLL)  
The DPLL provides all interface clocks and some functional clocks (such as the processor clocks) of the  
OMAP3515/03 device.  
DPLL1 and DPLL2 get an always-on clock used to produce the synthesized clock. They get a high-speed  
bypass clock used to switch the DPLL output clock on this high-speed clock during bypass mode.  
The high-speed bypass clock is an L3 divided clock (programmable by 1 or 2) that saves DPLL processor  
power consumption when the processor does not need to run faster than the L3 clock speed, or optimizes  
performance during frequency scaling.  
Each DPLL synthesized frequency is set by programming M (multiplier) and N (divider) factors. In addition,  
all DPLL outputs can be controlled by an independent divider (M2 to M6).  
The clock generating DPLLs of the OMAP3515/03 device have following features:  
Independent power domain per DPLL  
Controlled by clock-manager (CM)  
116  
CLOCK SPECIFICATIONS  
Submit Documentation Feedback  
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Fed with always-on system clock with independent gating control per DPLL  
Analog part supplied through dedicated power supply (1.8 V) and an embedded LDO to get rid of  
1-MHz noise  
Up to five independent output dividers for simultaneous generation of multiple clock frequencies  
4.3.1.1 DPLL1 (MPU)  
DPLL1 is located in the MPU subsystem and supplies all clocks of the subsystem. All MPU subsystem  
clocks are internally generated in the subsystem. When the core domain is on, it can use the DPLL3  
(CORE DPLL) output as a high-frequency bypass input clock.  
4.3.1.2 DPLL3 (CORE)  
DPLL3 supplies all interface clocks and also a few module functional clocks. It can be also source of the  
emulation trace clock. It is located in the core domain area. All interface clocks and a few module  
functional clocks are generated in the CM. When the core domain is on, it can be used as a bypass input  
to DPLL1 and DPLL2.  
4.3.1.3 DPLL4 (Peripherals)  
DPLL4 generates clocks for the peripherals. It supplies five clock sources: 96-MHz functional clocks to  
subsystems and peripherals, 54 MHz to TV DAC, display functional clock, camera sensor clock, and  
emulation trace clock. It is located in the core domain area. All interface clocks and few module functional  
clocks are generated in the CM. Its outputs to the DSS, PER, and EMU domains are propagated with  
always-on clock trees.  
4.3.1.4 DPLL5 (Second peripherals DPLL)  
DPLL5 supplies the 120-MHz functional clock to the CM.  
4.3.2 Delay-Locked Loops (DLL)  
The SDRC includes analog-controlled delay technology for interfacing high-speed mobile DDR memory  
components. For more information, see the SDRC-GPMC chapter of the OMAP35xx ES2.0 Technical  
Reference Manual (TRM) [literature number TBD]. A DLL is a calibration module used on dynamic track of  
voltage and temperature variations, as well as to compensate the silicon process dispersion.  
The SDRC DLL has four modes of operation:  
1. APPLICATION MODE 0: used to generate 72° delay  
2. APPLICATION MODE 1: used to generate 90° delay  
3. MODEMAXDELAY: used for low frequency operation where we do not have the requirement of  
accurate 72° or 90° phase shift  
4. IDLE MODE: a low-power state that allows the DLL to gain lock quickly on exit from this mode  
Submit Documentation Feedback  
CLOCK SPECIFICATIONS  
117  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
4.3.3 DPLLs and DLL Characteristics  
Several specifications characterize the six DPLLs.  
Table 4-14 summarizes the DPLL characteristics and assumes testing over recommended operating  
conditions.  
Table 4-14. DPLL Characteristics  
NAME  
vdds_dpll_per  
vdds_dpll_dll  
TJ  
PARAMETER  
MIN  
1.71  
1.71  
–40  
TYP  
1.8  
1.8  
25  
MAX  
1.89  
1.89  
107  
UNIT  
V
COMMENTS(4)  
At module pins (+5%, –10%)  
V
Junction temperature  
Frequency lock time(2)  
°C  
Will not unlock after lock over this range for  
slow temperature drifts  
tlock  
71.4  
37.1  
166.7  
46.7  
4.8  
200  
104  
µs  
µs  
µs  
µs  
µs  
150 FINT cycles; FREQSEL3 = 0  
780 FINT cycles; FREQSEL3 = 1  
350 FINT cycles; FREQSEL3 = 0  
980 FINT cycles; FREQSEL3 = 1  
10 FINT cycles  
plock  
Phase lock time  
466.7  
130.7  
13.3  
trelock  
Relock time – frequency  
lock(3)  
Lowcurrstby = 0; FREQSEL3 = 0  
100 FINT cycles  
4.8  
19  
13.3  
53.3  
53.3  
200  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
Lowcurrstby = 0; FREQSEL3 = 1  
40 FINT cycles  
Lowcurrstby = 1; FREQSEL3 = 0  
400 FINT cycles  
19  
Lowcurrstby = 1; FREQSEL3 = 1  
150 FINT cycles  
prelock  
Relock time – Phase lock(3)  
71.4  
11.9  
95.2  
26.7  
Lowcurrstby = 0; FREQSEL3 = 0  
250 FINT cycles  
33.3  
266.7  
74.7  
Lowcurrstby = 0; FREQSEL3 = 1  
200 FINT cycles  
Lowcurrstby = 1; FREQSEL3 = 0  
560 FINT cycles  
Lowcurrstby = 1; FREQSEL3 = 1  
(1) Input frequencies below 0.75 MHz are possible with performance penalty.  
(2) Maximum frequency for nominal conditions. Speed binning possible above fmax.  
(3) Relock time assumes typical operating conditions, 4°C maximum temperature drift (see the Functional Specification for more detailed  
information).  
(4) freqsel needs to be programmed accordingly to reference clock and DPLL divider (register setting), Lowcurrstdby depends on the targeted  
DPLL power state (dynamic).  
Lowcurrstdby = 0 then DPLL is in normal mode  
Lowcurrstdby = 1 then DPLL is in low-power mode  
Table 4-15 shows the DPLL1 clock frequency ranges.  
Note: The DPLL1 clock frequency ranges depend on the VDD1 (vdd_mpu) operating point.  
Table 4-15. DPLL1 Clock Frequency Ranges  
Clock Signal  
Description  
Max  
Unit  
DPLL1_ALWON  
_FCLK  
DPLL1 reference clock input,  
taken from PRM SYS_CLK.  
TBD  
MHz  
DPLL1 high-frequency bypass  
clock input, taken from CM  
CORE_CLK.  
DPLL1_FCLK  
TBD  
MHz  
118  
CLOCK SPECIFICATIONS  
Submit Documentation Feedback  
 
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 4-15. DPLL1 Clock Frequency Ranges (continued)  
Clock Signal  
Description  
Max  
600  
550  
500  
500  
500  
600  
550  
500  
250  
125  
Unit  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
OPP5  
OPP4  
OPP3  
OPP2  
OPP1  
OPP5  
OPP4  
OPP3  
OPP2  
OPP1  
DPLL1 internal clock signal,  
generated through DPLL1  
Multiplier and Divider.  
DPLL1:  
CLKOUTX2  
DPLL1 output clock, generated  
from CLKOUT_M2X2.  
MPU_CLK  
Table 4-16 through Table 4-18 show the DPLL3 clock frequency ranges.  
Note: The DPLL3 clock frequency ranges depend on the VDD2 (vdd_core) operating point and the L3  
clock speed configuration.  
Table 4-16. DPLL3 Clock Frequency Ranges, VDD2 OPP3  
Config 1  
Config 2  
Config 3  
(166 MHz)  
(133 MHz)  
(100 MHz)  
Unit  
Clock Signal  
Description  
Min  
Max  
Min  
Max  
Min  
Max  
DPLL3 input reference clock, generated  
by PRM.  
DPLL3_ALWON_FCLK  
TBD  
50  
TBD  
TBD  
50  
TBD  
TBD  
50  
TBD  
MHz  
MHz  
MHz  
DPLL3 internal clock signal, generated  
through DPLL3 Multiplier and Divider.  
DPLL3: CLKOUTX2  
DPLL3: CLKOUT  
664  
332  
532  
266  
400  
200  
DPLL3 internal clock signal, generated  
by dividing DPLL3 CLKOUTX2 by 2.  
25  
25  
25  
Output of clock manager (CM),  
generated directly from DPLL3  
CLKOUT_M2.  
CM: CORE_CLK  
CM: L3_ICLK  
CM: L4_ICLK  
-
-
-
332  
166  
83  
-
-
-
266  
133  
66.5  
-
-
-
200  
100  
50  
MHz  
MHz  
MHz  
Output of clock manager (CM),  
generated using DPLL3 CLKOUT_M2X2  
and divider.  
Output of clock manager (CM),  
generated using CM L3_ICLK and  
divider.  
SGX input clock, taken from CM  
CORE_CLK.  
SGX  
-
-
-
110.67  
166  
-
-
-
88.67  
133  
-
-
-
66.67  
100  
MHz  
MHz  
MHz  
SDRC input clock, taken from CM  
L3_ICLK.  
SDRC  
GPMC  
GPMC input clock, taken from CM  
L3_ICLK.  
83  
66.5  
100  
Table 4-17. DPLL3 Clock Frequency Ranges, VDD2 OPP2  
Config 1  
(83 MHz)  
Config 2  
(100 MHz)  
Unit  
Clock Signal  
Description  
Min  
Max  
Min  
Max  
DPLL3 input reference clock, generated by  
PRM.  
DPLL3_ALWON_FCLK  
TBD  
TBD  
TBD  
50  
TBD  
400  
200  
MHz  
MHz  
MHz  
DPLL3 internal clock signal, generated through  
DPLL3 Multiplier and Divider.  
DPLL3: CLKOUTX2  
DPLL3: CLKOUT  
50  
25  
664  
332  
DPLL3 internal clock signal, generated by  
dividing DPLL3 CLKOUTX2 by 2.  
25  
Submit Documentation Feedback  
CLOCK SPECIFICATIONS  
119  
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 4-17. DPLL3 Clock Frequency Ranges, VDD2 OPP2 (continued)  
Config 1  
(83 MHz)  
Config 2  
(100 MHz)  
Unit  
Clock Signal  
Description  
Min  
Max  
Min  
Max  
Output of clock manager (CM), generated  
directly from DPLL3 CLKOUT_M2.  
CM: CORE_CLK  
-
-
-
166  
-
-
-
200  
MHz  
MHz  
MHz  
Output of clock manager (CM), generated using  
DPLL3 CLKOUT_M2X2 and divider.  
CM: L3_ICLK  
CM: L4_ICLK  
83  
100  
50  
Output of clock manager (CM), generated using  
CM L3_ICLK and divider.  
41.5  
SGX  
SGX input clock, taken from CM CORE_CLK.  
SDRC input clock, taken from CM L3_ICLK.  
GPMC input clock, taken from CM L3_ICLK.  
-
-
-
55.53  
83  
-
-
-
66.67  
100  
50  
MHz  
MHz  
MHz  
SDRC  
GPMC  
83  
Table 4-18. DPLL3 Clock Frequency Ranges, VDD2 OPP1  
Config 1  
(400 MHz)  
Unit  
Clock Signal  
Description  
Min Max  
DPLL3_ALWON_FCLK  
DPLL3 input reference clock, generated by PRM.  
TBD  
50  
TBD  
664  
MHz  
MHz  
DPLL3 internal clock signal, generated through DPLL3  
Multiplier and Divider.  
DPLL3: CLKOUTX2  
DPLL3: CLKOUT  
CM: CORE_CLK  
CM: L3_ICLK  
DPLL3 internal clock signal, generated by dividing DPLL3  
CLKOUTX2 by 2.  
25  
-
332  
83  
MHz  
MHz  
MHz  
MHz  
Output of clock manager (CM), generated directly from DPLL3  
CLKOUT_M2.  
Output of clock manager (CM), generated using DPLL3  
CLKOUT_M2X2 and divider.  
-
41.5  
20.75  
Output of clock manager (CM), generated using CM L3_ICLK  
and divider.  
CM: L4_ICLK  
-
SGX  
SGX input clock, taken from CM CORE_CLK.  
SDRC input clock, taken from CM L3_ICLK.  
GPMC input clock, taken from CM L3_ICLK.  
-
-
-
N/A  
41.5  
41.5  
MHz  
MHz  
MHz  
SDRC  
GPMC  
Table 4-19 summarizes the DLL characteristics.  
Table 4-19. DLL Characteristics  
PARAMETER  
MIN  
1.71  
–40  
66  
NOM  
1.8  
MAX  
1.89  
107  
133  
166  
15  
UNIT  
V
COMMENTS  
Supply voltage vdds_dpll_dll  
Junction operating temperature  
Input clock frequency  
25  
°C  
120  
120  
MHz  
APPLICATION MODE 0  
APPLICATION MODE 1  
83  
Input load(2)  
Lock time(3)  
fF  
Clocks  
ns  
500  
500  
372  
2
Relock time  
IDLE to MODEMAXDELAY  
(Mode transitions through idle mode)  
150  
1
Clocks  
µs  
IDLE to APPLICATION MODE 1 or 0  
IDLE to APPLICATION MODE @133 MHz  
IDLE to APPLICATION MODE @166 MHz  
1
1.5  
µs  
(1) May be lower due to SmartReflex operation.  
(2) This parameter is design goal and is not tested on silicon.  
(3) Lock signal would go high from power down within 500 clocks. Lock signal switches to low state when the input clock is switched off  
after 3 µs.  
120  
CLOCK SPECIFICATIONS  
Submit Documentation Feedback  
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
4.3.4 DPLL and DLL Noise Isolation  
The DPLL and DLL require dedicated power supply pins to isolate the core analog circuit from the  
switching noise generated by the core logic that can cause jitter on the clock output signal. Guard rings  
are added to the cell to isolate it from substrate noise injection.  
The vdd supplies are the most sensitive to noise; decoupling capacitance is recommended below the  
supply rails. The maximum input noise level allowed is 30 mVPP for frequencies below 1 MHz.  
Figure 4-10 illustrates an example of a noise filter.  
OMAP Device  
Noise Filter  
vdds_dpll_dll  
C
DPLL_MPU  
DPLL_CORE  
DPLL2  
DLL  
Noise Filter  
vdds_dpll_per  
C
DPLL5  
DPLL4  
030-017  
(1) DPLL2 is not supported on OMAP3515/03 devices.  
Figure 4-10. DPLL and DLL Noise Filter(1)  
Table 4-20 specifies the noise filter requirements.  
Table 4-20. DPLL and DLL Noise Filter Requirements  
NAME  
MIN  
TYP  
MAX  
UNIT  
nF  
Filtering capacitor  
100  
(1) The capacitors must be inserted between power and ground as close as possible.  
(2) This circuit is provided only as an example.  
(3) The filter must be located as close as possible to the device.  
(4) No filtering required if noise is below 10 mVPP  
.
Submit Documentation Feedback  
CLOCK SPECIFICATIONS  
121  
 
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
5 VIDEO DAC SPECIFICATIONS  
A dual-display interface equips the OMAP3515/03 processor. This display subsystem provides the  
necessary control signals to interface the memory frame buffer directly to the external displays (TV-set).  
Two (one per channel) 10-bit current steering DACs are inserted between the DSS and the TV set to  
generate the video analog signal. One of the video DACs also includes TV detection and power-down  
mode. Figure 5-1 illustrates the OMAP3515/03 DAC architecture. For more information, see the DSS  
chapter of the OMAP35xx ES2.0 Technical Reference Manual (TRM) [literature number TBD].  
OMAP Device  
TV DCT  
tv_vfb1  
DIN1[9:0]  
TVOUT  
BUFFER  
Video DAC 1  
tv_out1  
DSS  
tv_vfb2  
DIN2[9:0]  
TVOUT  
Video DAC 2  
BUFFER  
tv_out2  
V_ref  
vdda_dac  
vssa_dac  
tv_vref  
CBG  
030-018  
Figure 5-1. Video DAC Architecture  
The following paragraphs detail the 10-bit DAC interface pinout, static and dynamic specifications, and  
noise requirements. The operating conditions and absolute maximum ratings are detailed in Table 5-2 and  
Table 5-4.  
5.1 Interface Description  
Table 5-1 summarizes the external pins of the video DAC.  
Table 5-1. External Pins of 10-bit Video DAC  
PIN NAME  
I/O  
DESCRIPTION  
tv_out1  
O
TV analog output composite  
DAC1 video output. An external resistor is connected between this  
node and tv_vfb1. The nominal value of ROUT1 is 1650 . Finally,  
note that this is the output node that drives the load (75 ).  
122  
VIDEO DAC SPECIFICATIONS  
Submit Documentation Feedback  
 
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 5-1. External Pins of 10-bit Video DAC (continued)  
PIN NAME  
I/O  
DESCRIPTION  
tv_out2  
O
TV analog output S-VIDEO  
DAC2 video output. An external resistor is connected between this  
node and tv_vfb2. The nominal value of ROUT2 is 1650 . Finally,  
note that this is the output node that drives the load (75 ).  
tv_vref  
tv_vfb1  
tv_vfb2  
I
Reference output voltage from internal  
bandgap  
A decoupling capacitor (CBG) needs to be connected for optimum  
performance.  
O
O
Amplifier feedback node  
Amplifier feedback node. An external resistor is connected between  
this node and tv_out1. The nominal value of ROUT1 is 1650 (1%).  
Amplifier feedback node  
Amplifier feedback node. An external resistor is connected between  
this node and tv_out2. The nominal value of ROUT2 is 1650 (1%).  
Submit Documentation Feedback  
VIDEO DAC SPECIFICATIONS  
123  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
5.2 Electrical Specifications Over Recommended Operating Conditions  
(TMIN to TMAX, vdda_dac = 1.8 V, ROUT1/2 = 1650 , RLOAD = 75 , unless otherwise noted)  
Table 5-2. DAC – Static Electrical Specification  
PARAMETER  
Resolution  
DC ACCURACY  
CONDITIONS/ASSUMPTIONS  
MIN  
TYP  
MAX  
UNIT  
R
10  
Bits  
INL(1)  
DNL(2)  
Integral nonlinearity  
–1  
–1  
1
1
LSB  
LSB  
Differential nonlinearity  
ANALOG OUTPUT  
-
Full-scale output voltage  
RLOAD = 75 Ω  
0,7  
0.88  
50  
1
V
mV  
-
Output offset voltage  
Output offset voltage drift  
Gain error  
-
20  
mV/°C  
% FS  
-
–17  
19  
RVOUT  
Output impedance  
67.5  
75  
82.5  
REFERENCE  
VREF  
-
Reference voltage range  
Reference noise density  
0.525  
3700  
0.55  
129  
0.575  
4200  
V
100-kHz reference noise  
bandwidth  
RSET  
PSRR  
Full-scale current adjust resistor  
Reference PSRR(3) (Up to 6 MHz)  
4000  
40  
dB  
POWER CONSUMPTION  
Ivdda-up  
Analog Supply Current(4)  
-
2 channels, no load  
2 channels  
8
mA  
mA  
Analog supply driving a 75-load  
50  
(RMS)  
Ivdda-up (peak) Peak analog supply current:  
Lasts less than 1 ns  
60  
2
mA  
mA  
Ivdd-up  
Digital supply current(5)  
Measured at fCLK = 54 MHz, fOUT  
= 2 MHz sine wave, vdd = 1.3 V  
Ivdd-up (peak)  
Ivdda-down  
Ivdd-down  
Peak digital supply current(6)  
Analog power at power-down  
Digital power at power-down  
Lasts less than 1 ns  
T = 30°C, vdda = 1.8 V  
T = 30°C, vdd = 1.3 V  
2.5  
1.5  
1
mA  
mA  
mA  
(1) The INL is measured at the output of the DAC (accessible at an external pin during bypass mode).  
(2) The DNL is measured at the output of the DAC (accessible at an external pin during bypass mode).  
(3) Assuming a capacitor of 0.1 µF at the tv_ref node.  
(4) The analog supply current Ivdda is directly proportional to the full-scale output current IFS and is insensitive to fCLK  
.
(5) The digital supply current IVDD is dependent on the digital input waveform, the DAC update rate fCLK, and the digital supply VDD.  
(6) The peak digital supply current occurs at full-scale transition for duration less than 1 ns.  
124  
VIDEO DAC SPECIFICATIONS  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
(TMIN to TMAX, vdda_dac = 1.8 V, ROUT1/2 = 1650 , RLOAD = 75 , unless otherwise noted)  
Table 5-3. Video DAC – Dynamic Electrical Specification  
PARAMETER  
Output update rate  
Clock jitter  
CONDITIONS/ASSUMPTIONS  
MIN  
TYP  
MAX  
UNIT  
MHz  
ps  
(1)  
fCLK  
Equal to input clock frequency  
54  
rms clock jitter required in order to assure  
10-bit accuracy  
40  
Attenuation at 5.1 MHz  
Attenuation at 54 MHz(1)  
Output settling time  
Corner frequency for signal  
Image frequency  
0.1  
25  
0.5  
30  
85  
1.5  
33  
dB  
dB  
ns  
tST  
Time from the start of the output transition to  
output within ± 1 LSB of final value.  
tRout  
tFout  
BW  
Output rise time  
Output fall time  
Measured from 10% to 90% of full-scale  
transition  
25  
25  
ns  
ns  
Measured from 10% to 90% of full-scale  
transition  
Signal bandwidth  
Differential gain(2)  
Differential phase(2)  
Within bandwidth  
6
1.5%  
1
MHz  
deg.  
dB  
SFDR  
SNR  
fCLK = 54 MHz, fOUT = 1 MHz  
fCLK = 54 MHz, fOUT = 1 MHz  
45  
55(3)  
Signal-to-noise ratio  
dB  
1 kHz to 6 MHz bandwidth  
PSRR  
Power supply rejection ratio Up to 6 MHz  
20(4)  
–50  
dB  
dB  
Crosstalk Between the two video  
channels  
–40  
(1) For internal input clock information, For more information, see the DSS chapter of the OMAP35xx ES2.0 Technical Reference Manual  
(TRM) [literature number TBD].  
(2) The differential gain and phase value is for dc coupling. Note that there is degradation for the ac coupling.  
(3) The SNR value is for dc coupling. Note that there is a 6-dB degradation for ac coupling.  
(4) The PSSR value is for dc coupling. Note that there is a 10-dB degradation for ac coupling.  
Submit Documentation Feedback  
VIDEO DAC SPECIFICATIONS  
125  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
5.3 Analog Supply (vdda_dac) Noise Requirements  
In order to assure 10-bit accuracy of the DAC analog output, the analog supply vdda_dac has to meet the  
noise requirements stated in this section.  
The DAC Power Supply Rejection Ratio is defined as the relative variation of the full-scale output current  
divided by the supply variation. Thus, it is expressed in percentage of Full-Scale Range (FSR) per volt of  
DIOUT  
100×  
IOUTFS  
% FSR  
PSRRDAC  
=
V
VAC  
supply variation as shown in the following equation:  
Depending on frequency, the PSRR is defined in Table 5-4.  
Table 5-4. Video DAC – Power Supply Rejection Ratio  
Supply Noise Frequency  
PSRR % FSR/V  
0 to 100 kHz  
> 100 kHz  
1
The rejection decreases 20 dB/dec.  
Example: at 1 MHz the PSRR is 10% of FSR/V  
A graphic representation is shown in Figure 5-2.  
PSRR (% FSR/V)  
First pole of  
DAC output load  
10  
1
f
1 MHz  
100 kHz  
030-019  
Figure 5-2. Video DAC – Power Supply Rejection Ratio  
To ensure that the DAC SFDR specification is met, the PSRR values and the clock jitter requirements  
translate to the following limits on vdda_dac (for the Video DAC).  
The maximum peak-to-peak noise on vdda (ripple) is defined in Table 5-5:  
Table 5-5. Video DAC – Maximum Peak-to-Peak Noise on vdda_dac  
Tone Frequency  
0 to 100 kHz  
> 100 kHz  
Maximum Peak-to-Peak Noise on vdda_dac  
< 30 mVpp  
Decreases 20 dB/dec.  
Example: at 1 MHz the maximum is 3 mVpp  
The maximum noise spectral density (white noise) is defined in Table 5-6:  
Table 5-6. Video DAC – Maximum Noise Spectral Density  
Supply Noise Bandwidth  
0 to 100 kHz  
Maximum Supply Noise Density  
< 20 µV / Hz  
> 100 kHz  
Decreases 20 dB/dec.  
Example: at 1 MHz the maximum noise density is 2 µ / Hz  
126  
VIDEO DAC SPECIFICATIONS  
Submit Documentation Feedback  
 
 
 
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Because the DAC PSRR deteriorates at a rate of 20 dB/dec after 100 kHz, it is highly recommended to  
have vdda_dac low pass filtered (proper decoupling) (see the illustrated application: Section 5.4, External  
Component Value Choice).  
5.4 External Component Value Choice  
The full-scale output voltage VOUTMAX is regulated by the reference amplifier, and is set by an internal  
resistor RSET. IOUTMAX can be expressed as:  
IOUTMAX = IREF /8 * (63 + 15/16)  
Where:  
VREF = 0.5V  
IREF = VREF/RSET  
The output current IOUT appearing at DAC output is a function of both the input code and IOUTMAX and can  
be expressed as:  
IOUT = (DAC_CODE/1023) * IOUTMAX  
Where:  
DAC_CODE = 0 to 1023 is the DAC input code in decimal.  
The output voltage is:  
VOUT = IOUT *N* RCABLE  
Where:  
(N = amplifier gain = 21)  
RCABLE = 75 (cable typical impedance)  
The TV-out buffer requires a per channel external resistors: ROUT1/2. The equation below can be used to  
select different resistor values (if necessary):  
ROUT = (N+1) RCABLE = 1650 Ω  
Recommended parameter values are:  
Table 5-7. Video DAC – Recommended External Components Values  
Recommended Value  
UNIT  
nF  
CBG  
100  
ROUT1/2  
1650  
In order to limit the reference noise bandwidth and to suppress transients on VREF, it is necessary to  
connect a large decoupling capacitor BG) between the tv_vref and vssa_dac pins.  
Submit Documentation Feedback  
VIDEO DAC SPECIFICATIONS  
127  
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
6 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
6.1 Timing Test Conditions  
All timing requirements and switching characteristics are valid over the recommended operating conditions  
of Table 3-3, unless otherwise specified.  
6.2 Interface Clock Specifications  
6.2.1 Interface Clock Terminology  
The Interface clock is used at the system level to sequence the data and/or control transfers accordingly  
with the interface protocol.  
6.2.2 Interface Clock Frequency  
The two interface clock characteristics are:  
The maximum clock frequency  
The maximum operating frequency  
The interface clock frequency documented in this document is the maximum clock frequency, which  
corresponds to the maximum frequency programmable on this output clock. This frequency defines the  
maximum limit supported by the OMAP3515/03 IC and doesn’t take into account any system consideration  
(PCB, peripherals).  
The system designer will have to consider these system considerations and OMAP3515/03 IC timings  
characteristics as well, to define properly the maximum operating frequency, which corresponds to the  
maximum frequency supported to transfer the data on this interface.  
6.2.3 Clock Jitter Specifications  
Jitter is a phase noise, which may alter different characteristics of a clock signal. The jitter specified in this  
document is the time difference between the typical cycle period and the actual cycle period affected by  
noise sources on the clock. The cycle (or period) jitter terminology identifies this type of jitter.  
Cycle (or Period) Jitter  
Tn-1  
Tn  
Tn+1  
Max. Cycle Jitter = Max (Ti)  
Min. Cycle Jitter = Min (Ti)  
Jitter Standard Deviation (or rms Jitter) = Standard Deviation (Ti)  
030-020  
Figure 6-1. Cycle (or Period) Jitter  
6.2.4 Clock Duty Cycle Error  
The duty cycle error is the ratio between either the high-level pulse duration or the low-level pulse duration  
and the cycle time of a clock signal.  
128  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
6.3 Timing Parameters  
The timing parameter symbols used in the timing requirement and switching characteristic tables are  
created in accordance with JEDEC Standard 100. To shorten the symbols, some pin names and other  
related terminologies have been abbreviated as follows:  
Table 6-1. Timing Parameters  
LOWERCASE SUBSCRIPTS  
Symbols  
Parameter  
Cycle time (period)  
Delay time  
c
d
dis  
en  
h
Disable time  
Enable time  
Hold time  
su  
START  
t
Setup time  
Start bit  
Transition time  
Valid time  
v
w
Pulse duration (width)  
Unknown, changing, or don’t care level  
High  
X
H
L
Low  
V
Valid  
IV  
AE  
FE  
LE  
Z
Invalid  
Active Edge  
First Edge  
Last Edge  
High impedance  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
129  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
6.4 External Memory Interfaces  
The OMAP3515/03 processor includes the following external memory interfaces:  
General-purpose memory controller (GPMC)  
SDRAM controller (SDRC)  
6.4.1 General-Purpose Memory Controller (GPMC)  
The GPMC is the OMAP3515/03 unified memory controller used to interface external memory devices  
such as:  
Asynchronous SRAM-like memories and ASIC devices  
Asynchronous page mode and synchronous burst NOR flash  
NAND flash  
6.4.1.1 GPMC/NOR Flash Interface Synchronous Timing  
Table 6-3 and Table 6-4 assume testing over the recommended operating conditions (see Figure 6-2  
through Figure 6-5) and electrical characteristic conditions.  
Table 6-2. GPMC/NOR Flash Synchronous Mode Timing Conditions  
TIMING CONDITION PARAMETER  
Input Conditions  
VALUE  
UNIT  
tR  
Input signal rise time  
Input signal fall time  
1.8  
1.8  
ns  
ns  
tF  
Output Conditions  
CLOAD  
Output load capacitance  
15.94  
pF  
Table 6-3. GPMC/NOR Flash Interface Timing Requirements – Synchronous Mode  
NO.  
PARAMETER  
1.15 V  
MAX  
1.0 V  
0.9 V  
UNIT  
MIN  
MIN  
MAX  
MIN  
MAX  
F12 tsu(DV-CLKH)  
F13 th(CLKH-DV)  
F21 tsu(WAITV-CLKH)  
F22 th(CLKH-WAITV)  
Setup time, read gpmc_d[15:0]  
valid before gpmc_clk high  
1.9  
1.9  
3.2  
ns  
ns  
ns  
ns  
Hold time, read gpmc_d[15:0]  
valid after gpmc_clk high  
Setup time, gpmc_waitx(1) valid  
before gpmc_clk high  
Hold Time, gpmc_waitx(1) valid  
after gpmc_clk high  
2.5  
1.9  
2.5  
2.5  
1.9  
2.5  
2.5  
3.2  
2.5  
(1) Wait monitoring support is limited to a WaitMonitoringTime value > 0. For a full description of wait monitoring feature, see the  
OMAP35xx Technical Reference Manual (literature number ).  
Table 6-4. GPMC/NOR Flash Interface Switching Characteristics – Synchronous Mode  
NO.  
PARAMETER  
1.15 V  
1.0 V  
0.9 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
F0  
F1  
tc(CLK)  
Cycle time(15), output  
clock gpmc_clk period  
10  
12.05  
25  
ns  
ns  
tw(CLKH)  
Typical pulse duration,  
output clock gpmc_clk  
high  
0.5 P(12)  
0.5 P(12)  
0.5 P(12)  
0.5 P(12)  
0.5 P(12)  
0.5 P(12)  
F1  
tw(CLKL)  
tdc(CLK)  
Typical pulse duration,  
output clock gpmc_clk low  
0.5 P(12)  
–500  
0.5 P(12)  
500  
0.5 P(12)  
–602  
0.5 P(12)  
602  
0.5 P(12)  
–1250  
0.5 P(12)  
1250  
ns  
ps  
Duty cycle error, output  
clk gpmc_clk  
130  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
 
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 6-4. GPMC/NOR Flash Interface Switching Characteristics – Synchronous Mode (continued)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
0.9 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
tj(CLK)  
Jitter standard  
33.3  
33.3  
33.3  
ps  
deviation(16), output clock  
gpmc_clk  
tR(CLK)  
tF(CLK)  
Rise time, output clock  
gpmc_clk  
1.6  
1.6  
2
2
2
2
ns  
ns  
Fall time, output clock  
gpmc_clk  
tR(DO)  
Rise time, output data  
Fall time, output data  
2
2
2
2
2
2
ns  
ns  
ns  
tF(DO)  
F2  
F3  
F4  
F5  
F6  
td(CLKH-nCSV)  
Delay time, gpmc_clk  
rising edge to  
F(6) – 1.9  
E(5) – 1.9  
B(2) – 4.1  
–2.1  
F(6) + 3.3  
F(6) – 1.8  
E(5) – 1.8  
B(2) – 4.1  
–2.1  
F(6) + 4.1 F(6) – 2.6 F(6) + 4.9  
E(5) + 4.1 E(5) – 2.6 E(5) + 4.9  
B(2) + 2.1 B(2) – 4.9 B(2) + 2.6  
–2.6  
gpmc_ncsx(11) transition  
td(CLKH-nCSIV)  
td(ADDV-CLK)  
td(CLKH-ADDIV)  
td(nBEV-CLK)  
Delay time, gpmc_clk  
rising edge to  
E(5) + 3.3  
B(2) + 2.1  
ns  
ns  
ns  
ns  
gpmc_ncsx(11) invalid  
Delay time, address bus  
valid to gpmc_clk first  
edge  
Delay time, gpmc_clk  
rising edge to  
gpmc_a[16:1] invalid  
Delay time,  
B(2) – 1.1  
B(2) + 2.1  
B(2) – 0.9  
B(2) + 1.9 B(2) – 2.6 B(2) + 2.6  
gpmc_nbe0_cle,  
gpmc_nbe1 valid to  
gpmc_clk first edge  
F7  
td(CLKH-nBEIV)  
Delay time, gpmc_clk  
rising edge to  
D(4) – 2.1 D(4) + 1.1 D(4) – 1.9 D(4) + 0.9 D(4) – 2.6 D(4) + 2.6  
ns  
gpmc_nbe0_cle,  
gpmc_nbe1 invalid  
F8  
td(CLKH-nADV)  
Delay time, gpmc_clk  
rising edge to  
gpmc_nadv_ale transition  
G(7) – 1.9 G(7) + 4.1 G(7) – 2.1 G(7) + 4.1 G(7) – 2.6 G(7) + 4.9  
D(4) – 1.9 D(4) + 4.1 D(4) – 2.1 D(4) + 4.1 D(4) – 2.6 D(4) + 4.9  
H(8) – 2.1 H(8) + 2.1 H(8) – 2.1 H(8) + 2.1 H(8) – 2.6 H(8) + 4.9  
ns  
ns  
ns  
F9  
td(CLKH-nADVIV) Delay time, gpmc_clk  
rising edge to  
gpmc_nadv_ale invalid  
F10  
td(CLKH-nOE)  
Delay time, gpmc_clk  
rising edge to gpmc_noe  
transition  
F11  
F14  
td(CLKH-nOEIV)  
td(CLKH-nWE)  
Delay time, gpcm rising  
edge to gpmc_noe invalid  
E(5) – 2.1  
I(9) – 1.9  
E(5) + 2.1  
I(9) + 4.1  
E(5) – 2.1  
I(9) – 2.1  
E(5) + 2.1 E(5) – 2.6 E(5) + 4.9  
ns  
ns  
Delay time, gpmc_clk  
rising edge to gpmc_nwe  
transition  
I(9) + 4.1  
I(9) – 2.6  
I(9) + 4.9  
J(10) + 2.6  
J(10) + 2.6  
F15  
F17  
F18  
F19  
F20  
td(CLKH-Data)  
td(CLKH-nBE)  
tW(nCSV)  
Delay time, gpmc_clk  
rising edge to data bus  
transition  
J(10) – 2.1 J(10) + 1.1 J(10) – 1.9 J(10) + 0.9  
J(10)  
2.6  
ns  
ns  
Delay time, gpmc_clk  
rising edge to  
gpmc_nbex_cle transition  
J(10) – 2.1 J(10) + 1.1 J(10) – 1.9 J(10) + 0.9  
J(10)  
2.6  
Pulse duration, Read  
A(1)  
A(1)  
A(1)  
A(1)  
A(1)  
A(1)  
ns  
ns  
gpmc_ncsx(11)  
Write  
low  
tW(nBEV)  
Pulse duration, Read  
C(3)  
C(3)  
C(3)  
C(3)  
C(3)  
C(3)  
ns  
ns  
gpmc_nbe0_cle,  
gpmc_nbe1 low  
Write  
tW(nADVV)  
Pulse duration, Read  
K(13)  
K(13)  
K(13)  
K(13)  
K(13)  
K(13)  
ns  
ns  
gpmc_nadv_ale  
Write  
low  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
131  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
(1) For single read: A = (CSRdOffTime – CSOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK period  
For burst read: A = (CSRdOffTime – CSOnTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK period  
For burst write: A = (CSWrOffTime – CSOnTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK period  
with n being the page burst access number.  
(2) B = ClkActivationTime * GPMC_FCLK  
(3) For single read: C = RdCycleTime * (TimeParaGranularity + 1) * GPMC_FCLK  
For burst read: C = (RdCycleTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK  
For burst write: C = (WrCycleTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK with n being the  
page burst access number.  
(4) For single read: D = (RdCycleTime – AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK  
For burst read: D = (RdCycleTime – AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK  
For burst write: D = (WrCycleTime – AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK  
(5) For single read: E = (CSRdOffTime – AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK  
For burst read: E = (CSRdOffTime – AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK  
For burst write: E = (CSWrOffTime – AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK  
(6) For nCS falling edge (CS activated):  
Case GpmcFCLKDivider = 0:  
F = 0.5 * CSExtraDelay * GPMC_FCLK  
Case GpmcFCLKDivider = 1:  
F = 0.5 * CSExtraDelay * GPMC_FCLK if (ClkActivationTime and CSOnTime are odd) or (ClkActivationTime and CSOnTime  
are even)  
F = (1 + 0.5 * CSExtraDelay) * GPMC_FCLK otherwise  
Case GpmcFCLKDivider = 2:  
F = 0.5 * CSExtraDelay * GPMC_FCLK if ((CSOnTime – ClkActivationTime) is a multiple of 3)  
F = (1 + 0.5 * CSExtraDelay) * GPMC_FCLK if ((CSOnTime – ClkActivationTime – 1) is a multiple of 3)  
F = (2 + 0.5 * CSExtraDelay) * GPMC_FCLK if ((CSOnTime – ClkActivationTime – 2) is a multiple of 3)  
(7) For ADV falling edge (ADV activated):  
Case GpmcFCLKDivider = 0:  
G = 0.5 * ADVExtraDelay * GPMC_FCLK  
Case GpmcFCLKDivider = 1:  
G = 0.5 * ADVExtraDelay * GPMC_FCLK if (ClkActivationTime and ADVOnTime are odd) or (ClkActivationTime and  
ADVOnTime are even)  
G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK otherwise  
Case GpmcFCLKDivider = 2:  
G = 0.5 * ADVExtraDelay * GPMC_FCLK if ((ADVOnTime – ClkActivationTime) is a multiple of 3)  
G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVOnTime – ClkActivationTime – 1) is a multiple of 3)  
G = (2 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVOnTime – ClkActivationTime – 2) is a multiple of 3)  
For ADV rising edge (ADV deactivated) in Reading mode:  
Case GpmcFCLKDivider = 0:  
G = 0.5 * ADVExtraDelay * GPMC_FCLK  
Case GpmcFCLKDivider = 1:  
G = 0.5 * ADVExtraDelay * GPMC_FCLK if (ClkActivationTime and ADVRdOffTime are odd) or (ClkActivationTime and  
ADVRdOffTime are even)  
G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK otherwise  
Case GpmcFCLKDivider = 2:  
G = 0.5 * ADVExtraDelay * GPMC_FCLK if ((ADVRdOffTime – ClkActivationTime) is a multiple of 3)  
G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVRdOffTime – ClkActivationTime – 1) is a multiple of 3)  
G = (2 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVRdOffTime – ClkActivationTime – 2) is a multiple of 3)  
For ADV rising edge (ADV deactivated) in Writing mode:  
Case GpmcFCLKDivider = 0:  
G = 0.5 * ADVExtraDelay * GPMC_FCLK  
Case GpmcFCLKDivider = 1:  
G = 0.5 * ADVExtraDelay * GPMC_FCLK if (ClkActivationTime and ADVWrOffTime are odd) or (ClkActivationTime and  
ADVWrOffTime are even)  
G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK otherwise  
Case GpmcFCLKDivider = 2:  
G = 0.5 * ADVExtraDelay * GPMC_FCLK if ((ADVWrOffTime – ClkActivationTime) is a multiple of 3)  
G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVWrOffTime – ClkActivationTime – 1) is a multiple of 3)  
G = (2 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVWrOffTime – ClkActivationTime – 2) is a multiple of 3)  
(8) For OE falling edge (OE activated):  
Case GpmcFCLKDivider = 0:  
H = 0.5 * OEExtraDelay * GPMC_FCLK  
Case GpmcFCLKDivider = 1:  
H = 0.5 * OEExtraDelay * GPMC_FCLK if (ClkActivationTime and OEOnTime are odd) or (ClkActivationTime and OEOnTime  
are even)  
H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK otherwise  
Case GpmcFCLKDivider = 2:  
132  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
H = 0.5 * OEExtraDelay * GPMC_FCLK if ((OEOnTime – ClkActivationTime) is a multiple of 3)  
H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK if ((OEOnTime – ClkActivationTime – 1) is a multiple of 3)  
H = (2 + 0.5 * OEExtraDelay) * GPMC_FCLK if ((OEOnTime – ClkActivationTime – 2) is a multiple of 3)  
For OE rising edge (OE deactivated):  
GpmcFCLKDivider = 0:  
H = 0.5 * OEExtraDelay * GPMC_FCLK  
Case GpmcFCLKDivider = 1:  
H = 0.5 * OEExtraDelay * GPMC_FC if (ClkActivationTime and OEOffTime are odd) or (ClkActivationTime and OEOffTime are  
even)  
H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK otherwise  
Case GpmcFCLKDivider = 2:  
H = 0.5 * OEExtraDelay * GPMC_FCLK if ((OEOffTime – ClkActivationTime) is a multiple of 3)  
H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK if ((OEOffTime – ClkActivationTime – 1) is a multiple of 3)  
H = (2 + 0.5 * OEExtraDelay) * GPMC_FCLK if ((OEOffTime – ClkActivationTime – 2) is a multiple of 3)  
(9) For WE falling edge (WE activated):  
Case GpmcFCLKDivider = 0:  
I = 0.5 * WEExtraDelay * GPMC_FCLK  
Case GpmcFCLKDivider = 1:  
I = 0.5 * WEExtraDelay * GPMC_FCLK if (ClkActivationTime and WEOnTime are odd) or (ClkActivationTime and WEOnTime  
are even)  
I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK otherwise  
Case GpmcFCLKDivider = 2:  
I = 0.5 * WEExtraDelay * GPMC_FCLK if ((WEOnTime – ClkActivationTime) is a multiple of 3)  
I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK if ((WEOnTime – ClkActivationTime – 1) is a multiple of 3)  
I = (2 + 0.5 * WEExtraDelay) * GPMC_FCLK if ((WEOnTime – ClkActivationTime – 2) is a multiple of 3)  
For WE rising edge (WE deactivated):  
Case GpmcFCLKDivider = 0:  
I = 0.5 * WEExtraDelay * GPMC_FCLK  
Case GpmcFCLKDivider = 1:  
I = 0.5 * WEExtraDelay * GPMC_FCLK if (ClkActivationTime and WEOffTime are odd) or (ClkActivationTime and WEOffTime  
are even)  
I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK otherwise  
Case GpmcFCLKDivider = 2:  
I = 0.5 * WEExtraDelay * GPMC_FCLK if ((WEOffTime – ClkActivationTime) is a multiple of 3)  
I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK if ((WEOffTime – ClkActivationTime – 1) is a multiple of 3)  
I = (2 + 0.5 * WEExtraDelay) * GPMC_FCLK if ((WEOffTime – ClkActivationTime – 2) is a multiple of 3)  
(10) J = GPMC_FCLK period  
(11) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.  
(12) P = gpmc_clk period  
(13) For read: K = (ADVRdOffTime – ADVOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK  
For write: K = (ADVWrOffTime – ADVOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK  
(14) GPMC_FCLK is General-Purpose Memory Controller internal functional clock.  
(15) Related to the gpmc_clk output clock maximum and minimum frequencies programmable in the I/F module by setting the  
GPMC_CONFIG1_CSx configuration register bit field GpmcFCLKDivider.  
(16) The jitter probability density can be approximated by a Gaussian function.  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
133  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
F1  
F0  
F1  
gpmc_clk  
F2  
F3  
F18  
gpmc_ncsx  
F4  
gpmc_a[10:1]  
Valid Address  
F19  
F6  
F7  
gpmc_nbe0_cle  
F19  
gpmc_nbe1  
F6  
F8  
F8  
F20  
F9  
gpmc_nadv_ale  
gpmc_noe  
F10  
F11  
F13  
F12  
D 0  
gpmc_d[15:0]  
gpmc_waitx  
gpmc_io_dir  
OUT  
IN  
OUT  
030-021  
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.  
Figure 6-2. GPMC/NOR Flash – Synchronous Single Read – (GpmcFCLKDivider = 0)  
134  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
F1  
F0  
F1  
gpmc_clk  
F2  
F3  
gpmc_ncsx  
gpmc_a[10:1]  
gpmc_nbe0_cle  
gpmc_nbe1  
F4  
F6  
Valid Address  
F7  
F7  
F6  
F8  
F8  
F9  
gpmc_nadv_ale  
gpmc_noe  
F10  
F11  
F13  
F13  
F12  
F12  
D 3  
gpmc_d[15:0]  
gpmc_waitx  
gpmc_io_dir  
D 0  
F22  
D 1  
D 2  
F21  
OUT  
IN  
OUT  
030-022  
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.  
Figure 6-3. GPMC/NOR Flash – Synchronous Burst Read – 4x16-bit (GpmcFCLKDivider = 0)  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
135  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
F1  
F1  
F0  
gpmc_clk  
F2  
F3  
gpmc_ncsx  
F4  
gpmc_a[10:1]  
Valid Address  
F17  
F17  
F6  
F17  
F17  
F17  
F17  
gpmc_nbe0_cle  
gpmc_nbe1  
gpmc_nadv_ale  
gpmc_nwe  
F6  
F8  
F8  
F9  
F14  
F14  
F15  
D 1  
F15  
D 2  
F15  
gpmc_d[15:0]  
gpmc_waitx  
D 0  
D 3  
gpmc_io_dir  
OUT  
030-023  
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.  
Figure 6-4. GPMC/NOR Flash – Synchronous Burst Write – (GpmcFCLKDivider = 0)  
136  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
F1  
F0  
F1  
gpmc_clk  
F2  
F3  
gpmc_ncsx  
gpmc_nbe0_cle  
gpmc_nbe1  
F6  
F6  
F4  
F7  
Valid  
F7  
Valid  
gpmc_a[26:17]  
Address (MSB)  
F5  
F12  
F13  
F4  
F12  
gpmc_a[16:1]_d[15:0]  
gpmc_nadv_ale  
gpmc_noe  
Address (LSB)  
F8  
D0  
D1 D2  
D3  
F8  
F9  
F10  
F11  
gpmc_waitx  
gpmc_io_dir  
OUT  
IN  
OUT  
030-024  
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.  
Figure 6-5. GPMC/Multiplexed NOR Flash – Synchronous Burst Read  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
137  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
F1  
F1  
F0  
gpmc_clk  
F2  
F3  
gpmc_ncsx  
F4  
gpmc_a[26:17]  
Address (MSB)  
F17  
F17  
F6  
F17  
F17  
F17  
F17  
gpmc_nbe0_cle  
gpmc_nbe1  
F6  
F8  
F8  
F9  
gpmc_nadv_ale  
gpmc_nwe  
F14  
F14  
F15  
D 1  
F15  
D 2  
F15  
gpmc_d[15:0]  
gpmc_waitx  
Address (LSB)  
D 0  
D 3  
gpmc_io_dir  
OUT  
030-025  
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.  
Figure 6-6. GPMC/Multiplexed NOR Flash – Synchronous Burst Write  
6.4.1.2 GPMC/NOR Flash Interface Asynchronous Timing  
Table 6-7 and Table 6-8 assume testing over the recommended operating conditions (see Figure 6-7  
through Figure 6-12) and electrical characteristic conditions.  
Table 6-5. GPMC/NOR Flash Asynchronous Mode Timing Conditions  
TIMING CONDITION PARAMETER  
Input Conditions  
VALUE  
UNIT  
tR  
Input signal rise time  
Input signal fall time  
1.8  
1.8  
ns  
ns  
tF  
Output Conditions  
CLOAD  
Output load capacitance  
15.94  
pF  
Table 6-6. GPMC/NOR Flash Interface Asynchronous Timing – Internal Parameters(1)(2)  
NO.  
PARAMETER  
1.15 V  
MAX  
1.0 V  
0.9 V  
UNIT  
MIN  
MIN  
MAX  
MIN  
MAX  
FI1  
FI2  
FI3  
FI4  
Maximum output data generation delay from internal  
functional clock  
6.5  
9.1  
13.7  
ns  
ns  
ns  
ns  
Maximum input data capture delay by internal  
functional clock  
4
5.6  
9.1  
9.1  
8.1  
Maximum device select generation delay from internal  
functional clock  
6.5  
6.5  
13.7  
13.7  
Maximum address generation delay from internal  
functional clock  
138  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 6-6. GPMC/NOR Flash Interface Asynchronous Timing – Internal Parameters(1)(2) (continued)  
NO.  
PARAMETER  
1.15 V  
MAX  
1.0 V  
0.9 V  
UNIT  
MIN  
MIN  
MAX  
MIN  
MAX  
FI5  
FI6  
FI7  
FI8  
FI9  
Maximum address valid generation delay from internal  
functional clock  
6.5  
6.5  
6.5  
6.5  
100  
9.1  
13.7  
ns  
ns  
ns  
ns  
ps  
Maximum byte enable generation delay from internal  
functional clock  
9.1  
9.1  
9.1  
170  
13.7  
13.7  
13.7  
200  
Maximum output enable generation delay from internal  
functional clock  
Maximum write enable generation delay from internal  
functional clock  
Maximum functional clock skew  
(1) The internal parameters table must be used to calculate Data Access Time stored in the corresponding CS register bit field. Internal  
parameters are referred to the GPMC functional internal clock which is not provided externally.  
(2) Internal parameters are referred to the GPMC functional internal clock which is not provided externally.  
Table 6-7. GPMC/NOR Flash Interface Timing Requirements – Asynchronous Mode  
NO.  
PARAMETER  
1.15 V  
1.0 V  
0.9 V  
UNIT  
MIN MAX  
MIN  
MAX  
MIN  
MAX  
FA5(1)  
tacc(DAT)  
Data maximum access  
time  
H(5)  
P(4)  
H(5)  
H(5)  
GPMC_FCLK cycles  
GPMC_FCLK cycles  
FA20(3) tacc1-pgmode(DAT) Page mode successive  
P(4)  
P(4)  
data maximum access  
time  
FA21(2) tacc2-pgmode(DAT) Page mode first data  
maximum access time  
H(5)  
H(5)  
H(5)  
GPMC_FCLK cycles  
(1) The FA5 parameter illustrates the amount of time required to internally sample input Data. It is expressed in number of GPMC functional  
clock cycles. From start of read cycle and after FA5 functional clock cycles, input Data is internally sampled by active functional clock  
edge. FA5 value must be stored inside the AccessTime register bit field.  
(2) The FA21 parameter illustrates amount of time required to internally sample first input Page Data. It is expressed in number of GPMC  
functional clock cycles. From start of read cycle and after FA21 functional clock cycles, First input Page Data is internally sampled by  
active functional clock edge. FA21 value must be stored inside the AccessTime register bit field.  
(3) The FA20 parameter illustrates amount of time required to internally sample successive input Page Data. It is expressed in number of  
GPMC functional clock cycles. After each access to input Page Data, next input Page Data is internally sampled by active functional  
clock edge after FA20 functional clock cycles. The FA20 value must be stored in the PageBurstAccessTime register bit field.  
(4) P = PageBurstAccessTime * (TimeParaGranularity + 1)  
(5) H = AccessTime * (TimeParaGranularity + 1)  
Table 6-8. GPMC/NOR Flash Interface Switching Characteristics – Asynchronous Mode  
NO.  
PARAMETER  
1.15 V  
1.0 V  
0.9 V  
UNIT  
MIN  
MAX  
2.0  
MIN  
MAX  
2.0  
MIN  
MAX  
2.0  
tR(DO)  
Rise time, output data  
ns  
ns  
ns  
ns  
tF(DO)  
Fall time, output data  
Pulse duration, Read  
2.0  
2.0  
2.0  
FA0  
tW(nBEV)  
N(12)  
N(12)  
N(12)  
N(12)  
N(12)  
N(12)  
gpmc_nbe0_cl  
e, gpmc_nbe1  
Write  
valid time  
FA1  
FA3  
tW(nCSV)  
Pulse duration, Read  
A(1)  
A(1)  
A(1)  
A(1)  
A(1)  
A(1)  
ns  
ns  
gpmc_ncsx(13)  
Write  
v low  
td(nCSV-nADVIV)  
Delay time,  
gpmc_ncsx(13)  
valid to  
Read  
Write  
B(2) – 0.2  
B(2) – 0.2  
B(2) + 2.0  
B(2) + 2.0  
B(2) – 0.2  
B(2) – 0.2  
B(2) + 2.6  
B(2) + 2.6  
B(2) – 0.2  
B(2) – 0.2  
B(2) + 3.7  
B(2) + 3.7  
ns  
ns  
gpmc_nadv_al  
e invalid  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
139  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 6-8. GPMC/NOR Flash Interface Switching Characteristics – Asynchronous Mode (continued)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
0.9 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
FA4  
td(nCSV-nOEIV)  
Delay time,  
C(3) – 0.2  
C(3) + 2.0  
C(3) – 0.2  
C(3) + 2.6  
C(3) – 0.2  
C(3) + 3.7  
ns  
gpmc_ncsx(13) valid to  
gpmc_noe invalid  
(Single read)  
FA9  
td(AV-nCSV)  
Delay time, address  
bus valid to  
J(9) – 0.2  
J(9) – 0.2  
J(9) + 2.0  
J(9) + 2.0  
J(9) – 0.2  
J(9) – 0.2  
J(9) + 2.6  
J(9) + 2.6  
J(9) – 0.2  
J(9) – 0.2  
J(9) + 3.7  
J(9) + 3.7  
ns  
ns  
gpmc_ncsx(13) valid  
FA10 td(nBEV-nCSV)  
Delay time,  
gpmc_nbe0_cle,  
gpmc_nbe1 valid to  
gpmc_ncsx(13) valid  
FA12 td(nCSV-nADVV)  
FA13 td(nCSV-nOEV)  
FA16 tw(AIV)  
Delay time,  
K(10) – 0.2 K(10) + 2.0 K(10) – 0.2 K(10) + 2.6 K(10) – 0.2 K(10) + 3.7  
ns  
ns  
ns  
gpmc_ncsx(13) valid to  
gpmc_nadv_ale valid  
Delay time,  
L(11) – 0.2 L(11) + 2.0 L(11) – 0.2 L(11) + 2.6 L(11) – 0.2 L(11) + 3.7  
gpmc_ncsx(13) valid to  
gpmc_noe valid  
Address invalid  
duration between 2  
successive R/W  
accesses  
G(7)  
G(7)  
G(7)  
FA18 td(nCSV-nOEIV)  
Delay time,  
I(8) – 0.2  
I(8) + 2.0  
I(8) – 0.2  
I(8) + 2.6  
I(8) – 0.2  
I(8) + 3.7  
ns  
gpmc_ncsx(13) valid to  
gpmc_noe invalid  
(Burst read)  
FA20 tw(AV)  
Pulse duration, address  
valid – 2nd, 3rd, and  
4th accesses  
D(4)  
D(4)  
D(4)  
ns  
ns  
ns  
FA25 td(nCSV-nWEV)  
Delay time,  
E(5) – 0.2  
F(6) – 0.2  
E(5) + 2.0  
F(6) + 2.0  
E(5) – 0.2  
F(6) – 0.2  
E(5) + 2.6  
F(6) + 2.6  
E(5) – 0.2  
F(6) – 0.2  
E(5) + 3.7  
F(6) + 3.7  
gpmc_ncsx(13) valid to  
gpmc_nwe valid  
FA27 td(nCSV-nWEIV)  
Delay time,  
gpmc_ncsx(13) valid to  
gpmc_nwe invalid  
FA28 td(nWEV-DV)  
FA29 td(DV-nCSV)  
Delay time, gpmc_ new  
valid to data bus valid  
2.0  
2.6  
3.7  
ns  
ns  
Delay time, data bus  
valid to gpmc_ncsx(13)  
valid  
J(9) – 0.2  
J(9) + 2.0  
J(9) – 0.2  
J(9) + 2.6  
J(9) – 0.2  
J(9) + 3.7  
FA37 td(nOEV-AIV)  
Delay time, gpmc_noe  
valid to  
2.0  
2.6  
3.7  
ns  
gpmc_a[16:1]_d[15:0]  
address phase end  
(1) For single read: A = (CSRdOffTime – CSOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK  
For single write: A = (CSWrOffTime – CSOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK  
For burst read: A = (CSRdOffTime – CSOnTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK  
For burst write: A = (CSWrOffTime – CSOnTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK with n  
being the page burst access number  
(2) For reading: B = ((ADVRdOffTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay – CSExtraDelay)) * GPMC_FCLK  
For writing: B = ((ADVWrOffTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay – CSExtraDelay)) * GPMC_FCLK  
(3) C = ((OEOffTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay – CSExtraDelay)) * GPMC_FCLK  
(4) D = PageBurstAccessTime * (TimeParaGranularity + 1) * GPMC_FCLK  
(5) E = ((WEOnTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay – CSExtraDelay)) * GPMC_FCLK  
(6) F = ((WEOffTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay – CSExtraDelay)) * GPMC_FCLK  
(7) G = Cycle2CycleDelay * GPMC_FCLK  
(8) I = ((OEOffTime + (n – 1) * PageBurstAccessTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay – CSExtraDelay)) *  
GPMC_FCLK  
(9) J = (CSOnTime * (TimeParaGranularity + 1) + 0.5 * CSExtraDelay) * GPMC_FCLK  
140  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
(10) K = ((ADVOnTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay – CSExtraDelay)) * GPMC_FCLK  
(11) L = ((OEOnTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay – CSExtraDelay)) * GPMC_FCLK  
(12) For single read: N = RdCycleTime * (TimeParaGranularity + 1) * GPMC_FCLK  
For single write: N = WrCycleTime * (TimeParaGranularity + 1) * GPMC_FCLK  
For burst read: N = (RdCycleTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK  
For burst write: N = (WrCycleTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK  
(13) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7.  
GPMC_FCLK  
gpmc_clk  
FA5  
FA1  
gpmc_ncsx  
FA9  
gpmc_a[10:1]  
Valid Address  
FA0  
FA10  
gpmc_nbe0_cle  
gpmc_nbe1  
Valid  
FA0  
Valid  
FA10  
FA3  
FA12  
gpmc_nadv_ale  
FA4  
FA13  
gpmc_noe  
gpmc_d[15:0]  
Data IN 0  
Data IN 0  
gpmc_waitx  
gpmc_io_dir  
OUT  
IN  
OUT  
030-026  
Figure 6-7. GPMC/NOR Flash – Asynchronous Read – Single Word Timing(1)(2)(3)  
(1) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.  
(2) FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock  
cycles. From start of read cycle and after FA5 functional clock cycles, input data is internally sampled by active functional clock edge.  
FA5 value must be stored inside AccessTime register bit field.  
(3) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
141  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
GPMC_FCLK  
gpmc_clk  
FA5  
FA5  
FA1  
FA1  
gpmc_ncsx  
FA16  
FA9  
FA9  
gpmc_a[10:1]  
Address 0  
FA0  
Address 1  
FA0  
FA10  
FA10  
gpmc_nbe0_cle  
gpmc_nbe1  
Valid  
FA0  
Valid  
FA0  
Valid  
Valid  
FA10  
FA10  
FA3  
FA12  
FA3  
FA12  
gpmc_nadv_ale  
FA4  
FA4  
FA13  
FA13  
gpmc_noe  
Data Upper  
gpmc_d[15:0]  
gpmc_waitx  
gpmc_io_dir  
OUT  
IN  
OUT  
IN  
030-027  
Figure 6-8. GPMC/NOR Flash – Asynchronous Read – 32-bit Timing(1)(2)(3)  
(1) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.  
(2) FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock  
cycles. From start of read cycle and after FA5 functional clock cycles, input data is internally sampled by active functional clock edge.  
FA5 value must be stored inside AccessTime register bit field.  
(3) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.  
142  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
GPMC_FCLK  
gpmc_clk  
FA21  
FA20  
FA20  
FA20  
FA1  
gpmc_ncsx  
FA9  
gpmc_a[10:1]  
Add0  
Add1  
Add2  
Add3  
Add4  
FA0  
FA10  
FA10  
gpmc_nbe0_cle  
FA0  
gpmc_nbe1  
FA12  
gpmc_nadv_ale  
FA18  
FA13  
gpmc_noe  
D3  
gpmc_d[15:0]  
D0  
D1  
D2  
D3  
gpmc_waitx  
gpmc_io_dir  
OUT  
OUUTT  
IN  
030-028  
Figure 6-9. GPMC/NOR Flash – Asynchronous Read – Page Mode 4x16-bit Timing(1)(2)(3)(4)  
(1) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.  
(2) FA21 parameter illustrates amount of time required to internally sample first input page data. It is expressed in number of GPMC  
functional clock cycles. From start of read cycle and after FA21 functional clock cycles, first input page data is internally sampled by  
active functional clock edge. FA21 value must be stored inside AccessTime register bit field.  
(3) FA20 parameter illustrates amount of time required to internally sample successive input page data. It is expressed in number of GPMC  
functional clock cycles. After each access to input page data, next input page data is internally sampled by active functional clock edge  
after FA20 functional clock cycles. FA20 is also the duration of address phases for successive input page data (excluding first input  
page data). FA20 value must be stored in PageBurstAccessTime register bit field.  
(4) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
143  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
gpmc_fclk  
gpmc_clk  
FA1  
gpmc_ncsx  
FA9  
gpmc_a[10:1]  
Valid Address  
FA0  
FA10  
gpmc_nbe0_cle  
FA0  
FA10  
gpmc_nbe1  
FA3  
FA12  
gpmc_nadv_ale  
FA27  
FA25  
gpmc_nwe  
FA29  
gpmc_d[15:0]  
gpmc_waitx  
gpmc_io_dir  
Data OUT  
OUT  
030-029  
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.  
Figure 6-10. GPMC/NOR Flash – Asynchronous Write – Single Word Timing  
144  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
GPMC_FCLK  
gpmc_clk  
FA1  
FA5  
gpmc_ncsx  
FA9  
gpmc_a[26:17]  
Address (MSB)  
FA0  
FA10  
FA10  
gpmc_nbe0_cle  
gpmc_nbe1  
Valid  
FA0  
Valid  
FA3  
FA12  
gpmc_nadv_ale  
FA4  
FA13  
gpmc_noe  
gpmc_a[16:1]_d[15:0]  
gpmc_io_dir  
FA29  
FA37  
Data IN  
Data IN  
Address (LSB)  
OUT  
OUT  
IN  
gpmc_waitx  
030-030  
Figure 6-11. GPMC/Multiplexed NOR Flash – Asynchronous Read – Single Word Timing(1)(2)(3)  
(1) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.  
(2) FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock  
cycles. From start of read cycle and after FA5 functional clock cycles, input data is internally sampled by active functional clock edge.  
FA5 value must be stored inside AccessTime register bit field.  
(3) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
145  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
gpmc_fclk  
gpmc_clk  
FA1  
gpmc_ncsx  
FA9  
gpmc_a[26:17]  
Address (MSB)  
FA0  
FA10  
gpmc_nbe0_cle  
FA0  
FA10  
gpmc_nbe1  
FA3  
FA12  
gpmc_nadv_ale  
FA27  
FA25  
gpmc_nwe  
gpmc_a[16:1]_d[15:0]  
gpmc_waitx  
FA29  
Valid Address (LSB)  
FA28  
Data OUT  
gpmc_io_dir  
OUT  
030-031  
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.  
Figure 6-12. GPMC/Multiplexed NOR Flash – Asynchronous Write – Single Word Timing  
6.4.1.3 GPMC/NAND Flash Interface Timing  
Table 6-10 through Table 6-12 assume testing over the recommended operating conditions (see  
Figure 6-13 through Figure 6-16) and electrical characteristic conditions.  
Table 6-9. GPMC/NAND Flash Asynchronous Mode Timing Conditions  
TIMING CONDITION PARAMETER  
Input Conditions  
VALUE  
UNIT  
tR  
Input signal rise time  
Input signal fall time  
1.8  
1.8  
ns  
ns  
tF  
Output Conditions  
CLOAD  
Output load capacitance  
15.94  
pF  
Table 6-10. GPMC/NAND Flash Interface Asynchronous Timing – Internal Parameters(1)(2)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
0.9 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
GNFI1  
GNFI2  
GNFI3  
Maximum output data generation delay from  
internal functional clock  
6.5  
9.1  
13.7  
ns  
ns  
ns  
Maximum input data capture delay by internal  
functional clock  
4
5.6  
9.1  
8.1  
Maximum device select generation delay from  
internal functional clock  
6.5  
13.7  
146  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 6-10. GPMC/NAND Flash Interface Asynchronous Timing – Internal Parameters(1)(2) (continued)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
0.9 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
GNFI4  
GNFI5  
GNFI6  
GNFI7  
GNFI8  
Maximum address latch enable generation delay  
from internal functional clock  
6.5  
9.1  
13.7  
ns  
ns  
ns  
ns  
ps  
Maximum command latch enable generation  
delay from internal functional clock  
6.5  
6.5  
6.5  
100  
9.1  
9.1  
9.1  
170  
13.7  
13.7  
13.7  
200  
Maximum output enable generation delay from  
internal functional clock  
Maximum write enable generation delay from  
internal functional clock  
Maximum functional clock skew  
(1) Internal parameters table must be used to calculate data access time stored in the corresponding CS register bit field.  
(2) Internal parameters are referred to the GPMC functional internal clock which is not provided externally.  
Table 6-11. GPMC/NAND Flash Interface Timing Requirements  
NO.  
PARAMETER  
1.15 V  
1.0 V  
0.9 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
GNF12(1) tacc(DAT)  
Data maximum access time  
J(2)  
J(2)  
J(2)  
GPMC_FCLK  
cycles  
(1) The GNF12 parameter illustrates the amount of time required to internally sample input data. It is expressed in number of GPMC  
functional clock cycles. From start of the read cycle and after GNF12 functional clock cycles, input data is internally sampled by the  
active functional clock edge. The GNF12 value must be stored inside AccessTime register bit field.  
(2) J = AccessTime * (TimeParaGranularity + 1)  
Table 6-12. GPMC/NAND Flash Interface Switching Characteristics  
NO.  
PARAMETER  
1.15 V  
1.0 V  
0.9 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
tR(DO)  
Rise time, output  
data  
2.0  
2.0  
2.0  
ns  
ns  
ns  
tF(DO)  
Fall time, output  
data  
2.0  
2.0  
2.0  
GNF0  
GNF1  
tw(nWEV)  
Pulse duration,  
gpmc_nwe valid  
time  
A(1)  
A(1)  
A(1)  
td(nCSV-nWEV)  
tw(CLEH-nWEV)  
tw(nWEV-DV)  
Delay time,  
gpmc_ncsx(13)  
valid to  
B(2) – 0.2  
C(3) – 0.2  
D(4) – 0.2  
E(5) – 0.2  
F(6) – 0.2  
B(2) + 2.0  
C(3) + 2.0  
D(4) + 2.0  
E(5) + 2.0  
F(6) + 2.0  
B(2) – 0.2  
C(3) – 0.2  
D(4) – 0.2  
E(5) – 0.2  
F(6) – 0.2  
B(2) + 2.6  
C(3) + 2.6  
D(4) + 2.6  
E(5) + 2.6  
F(6) + 2.6  
B(2) – 0.2  
C(3) – 0.2  
D(4) – 0.2  
E(5) – 0.2  
F(6) – 0.2  
B(2) + 3.7  
C(3) + 3.7  
D(4) + 3.7  
E(5) + 3.7  
F(6) + 3.7  
ns  
ns  
ns  
ns  
ns  
gpmc_nwe valid  
GNF2  
GNF3  
GNF4  
GNF5  
Delay time,  
gpmc_nbe0_cle  
high to gpmc_nwe  
valid  
Delay time,  
gpmc_d[15:0]  
valid to  
gpmc_nwe valid  
tw(nWEIV-DIV)  
Delay time,  
gpmc_nwe invalid  
to gpmc_d[15:0]  
invalid  
tw(nWEIV-CLEIV)  
Delay time,  
gpmc_nwe invalid  
to  
gpmc_nbe0_cle  
invalid  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
147  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 6-12. GPMC/NAND Flash Interface Switching Characteristics (continued)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
0.9 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
GNF6  
tw(nWEIV-nCSIV)  
tw(ALEH-nWEV)  
tw(nWEIV-ALEIV)  
Delay time,  
G(7) – 0.2 G(7) + 2.0  
G(7) – 0.2  
G(7) + 2.6 G(7) – 0.2 G(7) + 3.7  
ns  
gpmc_nwe invalid  
to gpmc_ncsx(13)  
invalid  
GNF7  
GNF8  
Delay time,  
gpmc_nadv_ale  
High to  
C(3) – 0.2  
F(6) – 0.2  
C(3) + 2.0  
F(6) + 2.0  
C(3) – 0.2  
F(6) – 0.2  
C(3) + 2.6  
F(6) + 2.6  
C(3) – 0.2  
F(6) – 0.2  
C(3) + 3.7  
F(6) + 3.7  
ns  
ns  
gpmc_nwe valid  
Delay time,  
gpmc_nwe invalid  
to  
gpmc_nadv_ale  
invalid  
GNF9  
tc(nWE)  
Cycle time, Write  
cycle time  
H(8)  
H(8)  
H(8)  
ns  
ns  
GNF10  
td(nCSV-nOEV)  
Delay time,  
gpmc_ncsx(13)  
valid to gpmc_noe  
valid  
I(9) – 0.2  
I(9) + 2.0  
I(9) – 0.2  
I(9) + 2.6  
I(9) – 0.2  
I(9) + 3.7  
GNF13  
tw(nOEV)  
Pulse duration,  
gpmc_noe valid  
time  
K(10)  
K(10)  
K(10)  
ns  
GNF14  
GNF15  
tc(nOE)  
Cycle time, Read  
cycle time  
L(11)  
L(11)  
L(11)  
ns  
ns  
tw(nOEIV-nCSIV)  
Delay time,  
M(12) – 0.2 M(12) + 2.0 M(12) – 0.2 M(12) + 2.6 M(12) – 0.2 M(12) + 3.7  
gpmc_noe invalid  
to gpmc_ncsx(13)  
invalid  
(1) A = (WEOffTime – WEOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK  
(2) B = ((WEOnTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay – CSExtraDelay)) * GPMC_FCLK  
(3) C = ((WEOnTime – ADVOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay – ADVExtraDelay)) * GPMC_FCLK  
(4) D = (WEOnTime * (TimeParaGranularity + 1) + 0.5 * WEExtraDelay ) * GPMC_FCLK  
(5) E = (WrCycleTime – WEOffTime * (TimeParaGranularity + 1) – 0.5 * WEExtraDelay ) * GPMC_FCLK  
(6) F = (ADVWrOffTime – WEOffTime * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay – WEExtraDelay ) * GPMC_FCLK  
(7) G = (CSWrOffTime – WEOffTime * (TimeParaGranularity + 1) + 0.5 * (CSExtraDelay – WEExtraDelay ) * GPMC_FCLK  
(8) H = WrCycleTime * (1 + TimeParaGranularity) * GPMC_FCLK  
(9) I = ((OEOnTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay – CSExtraDelay)) * GPMC_FCLK  
(10) K = (OEOffTime – OEOnTime) * (1 + TimeParaGranularity) * GPMC_FCLK  
(11) L = RdCycleTime * (1 + TimeParaGranularity) * GPMC_FCLK  
(12) M = (CSRdOffTime – OEOffTime * (TimeParaGranularity + 1) + 0.5 * (CSExtraDelay – OEExtraDelay ) * GPMC_FCLK  
(13) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7.  
148  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
GPMC_FCLK  
gpmc_ncsx  
GNF1  
GNF2  
GNF6  
GNF5  
gpmc_nbe0_cle  
gpmc_nadv_ale  
gpmc_noe  
GNF0  
gpmc_nwe  
GNF3  
GNF4  
gpmc_a[16:1]_d[15:0]  
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7.  
Command  
030-032  
Figure 6-13. GPMC/NAND Flash – Command Latch Cycle Timing  
GPMC_FCLK  
gpmc_ncsx  
GNF1  
GNF6  
gpmc_nbe0_cle  
gpmc_nadv_ale  
gpmc_noe  
GNF7  
GNF8  
GNF9  
GNF0  
gpmc_nwe  
GNF3  
GNF4  
gpmc_a[16:1]_d[15:0]  
Address  
030-033  
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7.  
Figure 6-14. GPMC/NAND Flash – Address Latch Cycle Timing  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
149  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
GPMC_FCLK  
GNF12  
GNF10  
GNF15  
gpmc_ncsx  
gpmc_nbe0_cle  
gpmc_nadv_ale  
GNF14  
GNF13  
gpmc_noe  
gpmc_a[16:1]_d[15:0]  
DATA  
gpmc_waitx  
030-034  
Figure 6-15. GPMC/NAND Flash – Data Read Cycle Timing(1)(2)(3)  
(1) The GNF12 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional  
clock cycles. From start of read cycle and after GNF12 functional clock cycles, input data is internally sampled by active functional clock  
edge. The GNF12 value must be stored inside AccessTime register bit field.  
(2) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.  
(3) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0 ,1, 2, or 3.  
GPMC_FCLK  
GNF1  
GNF6  
gpmc_ncsx  
gpmc_nbe0_cle  
gpmc_nadv_ale  
gpmc_noe  
GNF9  
GNF0  
gpmc_nwe  
GNF3  
GNF4  
gpmc_a[16:1]_d[15:0]  
DATA  
030-035  
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0 or 1.  
Figure 6-16. GPMC/NAND Flash – Data Write Cycle Timing  
150  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
6.4.2 SDRAM Controller Subsystem (SDRC)  
The SDRAM controller subsystem (SDRC) module provides connectivity between the  
OMAP3530/2530/2530/2530/25 Applications Processor and external DRAM memory components. The  
SDRC module only supports low-power double-data-rate (LPDDR) SDRAM devices. Memory devices can  
be interfaced to the SDRC using a stacked-memory approach or through the printed circuit board (PCB).  
The stacked-memory approach uses the package-on-package memory interface pins (available only on  
CBB package).  
The approach to specifying interface timing for the SDRC memory bus is different than on other interfaces  
such as the general-purpose memory controller (GPMC) and the multi-channel buffered serial ports  
(McBSPs). For these other interfaces the device timing was specified in terms of data manual  
specifications and I/O buffer information specification (IBIS) models.  
For the SDRC memory bus, the approach is to specify compatible memory devices and provide the  
printed circuit board (PCB) solution and guidelines directly to the user. Texas Instruments (TI) has  
performed the simulation and system characterization to ensure all interface timings in this solution are  
met. The complete PCB memory system solution is documented in the TBD application report (literature  
number SPRATBD). Guidelines on using the stacked-memory approach are described in the TBD  
application report (literature number SPRATBD).  
TI only supports designs that use supported memory devices and follow the board design guidelines  
outlined in the SPRATBD application report.  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
151  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
6.5 Video Interfaces  
6.5.1 Camera Interface  
The camera subsystem provides the system interfaces and the processing capability to connect raw, YUV,  
or JPEG image sensor modules to the OMAP3515/03 device for video-preview, video-record, and  
still-image-capture applications. The camera subsystem supports up to two simultaneous pixel flows but  
only one of them can use the video processing hardware:  
PARALLEL: the parallel interface data must go through the video processing hardware.  
6.5.1.1 Parallel Camera Interface Timing  
The parallel camera interface is a 12-bit interface which can be used in two modes:  
1. SYNC mode: progressive and interlaced image sensor modules for 8-, 10-, 11-, and 12-bit data. The  
pixel clock can be up to 75 MHz in 12-bit mode. The pixel clock can be up to 130 MHz in 8-bit packed  
mode.  
2. ITU mode provides an ITU-R BT 656 compatible data stream with progressive image sensor modules  
only in 8- and 10-bit configurations. The pixel clock can be up to 150 MHz in 8-bit packed mode (up to  
75 MHz in 10-bit mode)  
6.5.1.1.1 SYNC Normal Mode  
6.5.1.1.1.1 12-Bit SYNC Normal – Progressive Mode  
Table 6-14 and Table 6-15 assume testing over the recommended operating conditions and electrical  
characteristic conditions (see Figure 6-17).  
Table 6-13. ISP Timing Conditions – 12-Bit SYNC Normal – Progressive Mode  
TIMING CONDITION PARAMETER  
Input Conditions  
VALUE  
UNIT  
tR  
Input signal rise time  
Input signal fall time  
2.7  
2.7  
ns  
ns  
tF  
Output Condition  
CLOAD  
Output load capacitance  
8.6  
pF  
Table 6-14. ISP Timing Requirements – 12-Bit SYNC Normal – Progressive Mode(4)  
NO.  
PARAMETER  
1.15 V  
MAX  
1.0 V  
UNIT  
MIN  
MIN  
MAX  
ISP17  
ISP18  
ISP18  
tc(pclk)  
Cycle time(1), cam_pclk period  
Typical pulse duration, cam_pclk high  
Typical pulse duration, cam_pclk low  
Duty cycle error, cam_pclk  
13.3  
22.2  
ns  
ns  
ns  
ps  
ps  
ns  
tW(pclkH)  
tW(pclkL)  
tdc(pclk)  
tj(pclk)  
0.5*P(2)  
0.5*P(2)  
0.5*P(2)  
0.5*P(2)  
667  
133  
1111  
200  
Cycle jitter(3), cam_pclk  
ISP19  
ISP20  
ISP21  
tsu(dV-pclkH)  
Setup time, cam_d[11:0] valid before cam_pclk rising  
edge  
1.82  
1.82  
1.82  
3.25  
3.25  
3.25  
th(pclkH-dV)  
tsu(dV-vsH)  
Hold time, cam_d[11:0] valid after cam_pclk rising  
edge  
ns  
ns  
Setup time, cam_vs valid before cam_pclk rising  
edge  
ISP22  
ISP23  
th(pclkH-vsV)  
tsu(dV-hsH)  
Hold time, cam_vs valid after cam_pclk rising edge  
1.82  
1.82  
3.25  
3.25  
ns  
ns  
Setup time, cam_hs valid before cam_pclk rising  
edge  
ISP24  
ISP25  
th(pclkH-hsV)  
tsu(dV-hsH)  
Hold time, cam_hs valid after cam_pclk rising edge  
1.82  
1.82  
3.25  
3.25  
ns  
ns  
Setup time, cam_wen valid before cam_pclk rising  
edge  
152  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 6-14. ISP Timing Requirements – 12-Bit SYNC Normal – Progressive Mode(4) (continued)  
NO.  
PARAMETER  
1.15 V  
MAX  
1.0 V  
UNIT  
MIN  
MIN  
MAX  
ISP26  
th(pclkH-hsV)  
Hold time, cam_wen valid after cam_pclk rising edge  
1.82  
3.25  
ns  
(1) Related with the input maximum frequency supported by the ISP module.  
(2) P = cam_pclk period in ns  
(3) Maximum cycle jitter supported by cam_pclk input clock.  
(4) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified.  
Table 6-15. ISP Switching Characteristics – 12-Bit SYNC Normal – Progressive Mode  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
ISP15  
ISP16  
ISP16  
tc(xclk)  
Cycle time(1), cam_xclk period  
Typical pulse duration, cam_xclk high  
Typical pulse duration, cam_xclk low  
Duty cycle error, cam_xclk  
4.6  
4.6  
ns  
ns  
ns  
ps  
ps  
ns  
ns  
tW(xclkH)  
tW(xclkL)  
tdc(xclk)  
tj(xclk)  
0.5*PO(2)  
0.5*PO(2)  
0.5*PO(2)  
0.5*PO(2)  
231  
231  
Jitter standard deviation(3), cam_xclk  
33  
33  
tR(xclk)  
tF(xclk)  
Rise time, cam_xclk  
0.93  
0.93  
0.93  
0.93  
Fall time, cam_xclk  
(1) Related with the cam_xclk maximum and minimum frequencies programmable in the ISP module.  
Warning: The camera sensor or the camera module must be disabled to change the frequency configuration. For more information, see  
the OMAP35xx ES2.0 Technical Reference Manual (TRM) [literature number SPRUF98].  
(2) PO = cam_xclk period in ns  
(3) The jitter probability density can be approximated by a Gaussian function.  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
153  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
ISP16  
ISP15  
ISP16  
cam_xclki  
ISP17  
ISP18  
ISP18  
cam_pclk  
ISP19  
ISP20  
ISP22  
cam_vs  
ISP21  
cam_hs  
ISP23  
D(n-1)  
ISP24  
D(1)  
cam_d[11:0]  
D(0)  
D(n-3) D(n-2)  
D(0)  
D(n-1)  
ISP25  
ISP26  
cam_wen  
cam_fld  
030-056  
Figure 6-17. ISP – 12-Bit SYNC Normal – Progressive Mode(1)(2)(3)(4)(5)(6)(7)(8)  
(1) The polarity of cam_pclk, cam_fld, cam_vs, and cam_hs are configurable. If the cam_hs, cam_vs, and cam_fld signals are output, the  
signal length can be set.  
(2) The parallel camera in SYNC mode supports progressive image sensor modules and 8-, 10-, 11-, or 12-bit data.  
(3) When the image sensor has fewer than 12 data lines, it must be connected to the lower data lines and the unused lines must be  
grounded.  
(4) However, it is possible to shift the data to 0, 2, or 4 data internal lanes.  
(5) The bit configurations are: cam_d[11:4] or cam_d[7:0] in 8-bit mode, cam_d[11:2] or cam_d[9:0] in 10-bit mode, cam_d[10:0] in 11-bit  
mode, and cam_d[11:0] in 12-bit mode.  
(6) Optionally, the data write to memory can be qualified by the external cam_wen signal.  
(7) The cam_wen signal can be used as a external memory write-enable signal. The data is stored to memory only if cam_hs, cam_vs, and  
cam_wen signals are asserted.  
(8) In cam_xclki; I is equal to a or b.  
6.5.1.1.1.2 8-bit Packed SYNC – Progressive Mode  
Table 6-17 and Table 6-18 assume testing over the recommended operating conditions and electrical  
characteristic conditions (see Figure 6-18).  
Table 6-16. ISP Timing Conditions – 8-bit Packed SYNC – Progressive Mode  
TIMING CONDITION PARAMETER  
Input Conditions  
VALUE  
UNIT  
tR  
Input signal rise time  
Input signal fall time  
2.5  
2.5  
ns  
ns  
tF  
Output Conditions  
154  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 6-16. ISP Timing Conditions – 8-bit Packed SYNC – Progressive Mode (continued)  
TIMING CONDITION PARAMETER  
Output load capacitance  
VALUE  
UNIT  
CLOAD  
8.6  
pF  
Table 6-17. ISP Timing Requirements – 8-bit Packed SYNC – Progressive Mode(4)  
NO.  
PARAMETER  
1.15 V  
MAX  
1.0 V  
UNIT  
MIN  
MIN  
MAX  
ISP3  
ISP4  
ISP4  
tc(pclk)  
Cycle time(1), cam_pclk period  
Typical pulse duration, cam_pclk high  
Typical pulse duration, cam_pclk low  
Duty cycle error, cam_pclk  
7.7  
15.4  
ns  
ns  
ns  
ps  
ps  
ns  
tW(pclkH)  
tW(pclkL)  
tdc(pclk)  
tj(pclk)  
0.5*P(2)  
0.5*P(2)  
0.5*P(2)  
0.5*P(2)  
385  
83  
769  
167  
Cycle jitter(3), cam_pclk  
ISP5  
ISP6  
ISP7  
tsu(dV-pclkH)  
Setup time, cam_d[11:0] valid before cam_pclk  
rising edge  
1.08  
1.08  
1.08  
2.27  
2.27  
2.27  
th(pclkH-dV)  
tsu(dV-vsH)  
Hold time, cam_d[11:0] valid after cam_pclk rising  
edge  
ns  
ns  
Setup time, cam_vs valid before cam_pclk rising  
edge  
ISP8  
ISP9  
th(pclkH-vsV)  
tsu(dV-hsH)  
Hold time, cam_vs valid after cam_pclk rising edge  
1.08  
1.08  
2.27  
2.27  
ns  
ns  
Setup time, cam_hs valid before cam_pclk rising  
edge  
ISP10  
ISP11  
th(pclkH-hsV)  
tsu(dV-hsH)  
Hold time, cam_hs valid after cam_pclk rising edge  
1.08  
1.08  
2.27  
2.27  
ns  
ns  
Setup time, cam_wen valid before cam_pclk rising  
edge  
ISP12  
th(pclkH-hsV)  
Hold time, cam_wen valid after cam_pclk rising edge  
1.08  
2.27  
ns  
(1) Related with the input maximum frequency supported by the ISP module.  
(2) P = cam_pclk period in ns.  
(3) Maximum cycle jitter supported by cam_pclk input clock.  
(4) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified.  
Table 6-18. ISP Switching Characteristics – 8-bit packed SYNC – Progressive Mode  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
ISP1  
ISP2  
ISP2  
tc(xclk)  
Cycle time(1), cam_xclk period  
Typical pulse duration, cam_xclk high  
Typical pulse duration, cam_xclk low  
Duty cycle error, cam_xclk  
4.6  
4.6  
ns  
ns  
ns  
ps  
ps  
ns  
ns  
tW(xclkH)  
tW(xclkL)  
tdc(xclk)  
tj(xclk)  
0.5*PO(2)  
0.5*PO(2)  
0.5*PO(2)  
0.5*PO(2)  
231  
67  
231  
67  
Jitter standard deviation(3), cam_xclk  
tR(xclk)  
tF(xclk)  
Rise time, cam_xclk  
0.93  
0.93  
0.93  
0.93  
Fall time, cam_xclk  
(1) Related with the cam_xclk maximum and minimum frequencies programmable in the ISP module.  
Warning: You must disable the camera sensor or the camera module to change the frequency configuration. For more information, see  
the OMAP35xx ES2.0 Technical Reference Manual (TRM) [literature number SPRUF98].  
(2) PO = cam_xclk period in ns  
(3) The jitter probability density can be approximated by a Gaussian function.  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
155  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
ISP1  
ISP2  
ISP2  
cam_xclki  
ISP4  
ISP3  
ISP4  
cam_pclk  
ISP5  
ISP6  
cam_vs  
ISP7  
ISP8  
cam_hs  
ISP9  
D(n-1)  
ISP10  
D(1)  
cam_d[7:0]  
D(0)  
D(n-3) D(n-2)  
D(0)  
D(n-1)  
ISP12  
ISP11  
cam_wen  
cam_fld  
030-059  
Figure 6-18. ISP – 8-bit Packed SYNC – Progressive Mode(1)(2)(3)(4)(5)  
(1) The polarity of cam_pclk, cam_fld, cam_vs, and cam_hs are configurable.  
(2) The image sensor must be connected to the lower data lines and the unused lines must be grounded. However, it is possible to shift the  
data to 0, 2, or 4 data internal lanes. The bit configurations are: cam_d[11:4] or cam_d[7:0] in 8-bit packed mode.  
(3) Optionally, the data write to memory can be qualified by the external cam_wen signal. The cam_wen signal can be used as a external  
memory write-enable signal. The data is stored to memory only if cam_hs, cam_vs, and cam_wen signals are asserted. The polarity of  
cam_fld is programmable.  
(4) The camera module can pack 8-bit data into 16 bits. It doubles the maximum pixel clock. This mode can be particularly useful to transfer  
a YCbCr data stream or compressed stream to memory at very high speed.  
(5) In cam_xclki; I is equal to a or b.  
6.5.1.1.1.3 12-Bit SYNC Normal – Interlaced Mode  
Table 6-20 and Table 6-21 assume testing over the recommended operating conditions and electrical  
characteristic conditions (see Figure 6-19).  
Table 6-19. ISP Timing Conditions – 12-Bit SYNC Normal – Interlaced Mode  
TIMING CONDITION PARAMETER  
Input Conditions  
VALUE  
UNIT  
tR  
Input signal rise time  
Input signal fall time  
2.7  
2.7  
ns  
ns  
tF  
Output Conditions  
156  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 6-19. ISP Timing Conditions – 12-Bit SYNC Normal – Interlaced Mode (continued)  
TIMING CONDITION PARAMETER  
Output load capacitance  
VALUE  
UNIT  
CLOAD  
8.6  
pF  
Table 6-20. ISP Timing Requirements – 12-Bit SYNC Normal – Interlaced Mode(4)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
ISP17  
ISP18  
ISP18  
tc(pclk)  
Cycle time(1), cam_pclk period  
Typical pulse duration, cam_pclk high  
Typical pulse duration, cam_pclk low  
Duty cycle error, cam_pclk  
13.3  
22.2  
ns  
ns  
ns  
ps  
ps  
ns  
tW(pclkH)  
tW(pclkL)  
tdc(pclk)  
tj(pclk)  
0.5*P(2)  
0.5*P(2)  
0.5*P(2)  
0.5*P(2)  
667  
133  
1111  
200  
Cycle jitter(3), cam_pclk  
ISP19  
ISP20  
ISP21  
tsu(dV-pclkH)  
Setup time, cam_d[11:0] valid before cam_pclk  
rising edge  
1.82  
1.82  
1.82  
3.25  
th(pclkH-dV)  
tsu(dV-vsH)  
Hold time, cam_d[11:0] valid after cam_pclk rising  
edge  
3.25  
3.25  
ns  
ns  
Setup time, cam_vs valid before cam_pclk rising  
edge  
ISP22  
ISP23  
th(pclkH-vsV)  
tsu(dV-hsH)  
Hold time, cam_vs valid after cam_pclk rising edge  
1.82  
1.82  
3.25  
3.25  
ns  
ns  
Setup time, cam_hs valid before cam_pclk rising  
edge  
ISP24  
ISP25  
th(pclkH-hsV)  
tsu(dV-hsH)  
Hold time, cam_hs valid after cam_pclk rising edge  
1.82  
1.82  
3.25  
3.25  
ns  
ns  
Setup time, cam_wen valid before cam_pclk rising  
edge  
ISP26  
ISP27  
ISP28  
th(pclkH-hsV)  
tsu(dV-fldH)  
th(pclkH-fldV)  
Hold time, cam_wen valid after cam_pclk rising  
edge  
1.82  
1.82  
1.82  
3.25  
3.25  
3.25  
ns  
ns  
ns  
Setup time, cam_fld valid before cam_pclk rising  
edge  
Hold time, cam_fld valid after cam_pclk rising edge  
(1) Related with the input maximum frequency supported by the ISP module.  
(2) P = cam_lclk period in ns.  
(3) Maximum cycle jitter supported by cam_pclk input clock.  
(4) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified.  
Table 6-21. ISP Switching Characteristics – 12-Bit SYNC Normal – Interlaced Mode  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
ISP15  
ISP16  
ISP16  
tc(xclk)  
Cycle time(1), cam_xclk period  
Typical pulse duration, cam_xclk high  
Typical pulse duration, cam_xclk low  
Duty cycle error, cam_xclk  
4.6  
4.6  
ns  
ns  
ns  
ps  
ps  
ns  
ns  
tW(xclkH)  
tW(xclkL)  
tdc(xclk)  
tj(xclk)  
0.5*PO(2)  
0.5*PO(2)  
0.5*PO(2)  
0.5*PO(2)  
231  
231  
Jitter standard deviation(3), cam_xclk  
33  
33  
tR(xclk)  
tF(xclk)  
Rise time, cam_xclk  
0.93  
0.93  
0.93  
0.93  
Fall time, cam_xclk  
(1) Related with the cam_xclk maximum and minimum frequencies programmable in the ISP module.  
Warning: You must disable the camera sensor or the camera module to change the frequency configuration. For more information, see  
the OMAP35xx ES2.0 Technical Reference Manual (TRM) [literature number SPRUF98].  
(2) PO = cam_xclk period in ns.  
(3) The jitter probability density can be approximated by a Gaussian function.  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
157  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
ISP16  
ISP15  
ISP16  
cam_xclki  
ISP18  
ISP18  
ISP17  
cam_pclk  
ISP20  
ISP19  
cam_vs  
cam_hs  
FRAME(0)  
FRAME(0)  
ISP21  
ISP22  
L(0)  
L(n-1)  
L(0)  
ISP23  
D(1)  
ISP24  
D(n-1)  
cam_d[11:0]  
D(0)  
D(n-3) D(n-2)  
D(n-1)  
D(0)  
D(2)  
ISP25  
ISP26  
cam_wen  
ISP28  
ISP27  
cam_fld  
PAIR  
IMPAIR  
030-057  
Figure 6-19. ISP – 12-Bit SYNC Normal – Interlaced Mode(1)(2)(3)(4)(5)(6)(7)(8)  
(1) The polarity of cam_pclk, cam_fld, cam_vs, and cam_hs are configurable. If the cam_hs, cam_vs, and cam_fld signals are output, the  
signal length can be set.  
(2) The parallel camera in SYNC mode supports interlaced image sensor modules and 8-, 10-, 11-, or 12-bit data.  
(3) When the image sensor has fewer than 12 data lines, it must be connected to the lower data lines and the unused lines must be  
grounded.  
(4) It is possible to shift the data to 0, 2, or 4 data internal lanes.  
(5) The bit configurations are: cam_d[11:4] or cam_d[7:0] in 8-bit mode, cam_d[11:2] or cam_d[9:0] in 10-bit mode, cam_d[10:0] in 11-bit  
mode, and cam_d[11:0] in 12-bit mode.  
(6) Optionally, the data write to memory can be qualified by the external cam_wen signal.  
(7) The cam_wen signal can be used as a external memory write-enable signal. The data is stored to memory only if cam_hs, cam_vs, and  
cam_wen signals are asserted.  
(8) In cam_xclki; I is equal to a or b.  
6.5.1.1.1.4 8-bit Packed SYNC – Interlaced Mode  
Table 6-23 and Table 6-24 assume testing over the recommended operating conditions and electrical  
characteristic conditions (see Figure 6-20).  
158  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 6-22. ISP Timing Conditions – 8-bit Packed SYNC – Interlaced Mode  
TIMING CONDITION PARAMETER  
VALUE  
UNIT  
Input Conditions  
tR  
Input signal rise time  
Input signal fall time  
2.5  
2.5  
ns  
ns  
tF  
Output Conditions  
CLOAD  
Output load capacitance  
8.6  
pF  
Table 6-23. ISP Timing Requirements – 8-bit Packed SYNC – Interlaced Mode(4)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
ISP3  
ISP4  
ISP4  
tc(pclk)  
Cycle time(1), cam_pclk period  
Typical pulse duration, cam_pclk high  
Typical pulse duration, cam_pclk low  
Duty cycle error, cam_pclk  
7.7  
15.4  
ns  
ns  
ns  
ps  
ps  
ns  
tW(pclkH)  
tW(pclkL)  
tdc(pclk)  
tj(pclk)  
0.5*P(2)  
0.5*P(2)  
0.5*P(2)  
0.5*P(2)  
385  
83  
769  
167  
Cycle jitter(3), cam_pclk  
ISP5  
ISP6  
ISP7  
tsu(dV-pclkH)  
Setup time, cam_d[11:0] valid before cam_pclk  
rising edge  
1.08  
1.08  
1.08  
2.27  
2.27  
2.27  
th(pclkH-dV)  
tsu(dV-vsH)  
Hold time, cam_d[11:0] valid after cam_pclk rising  
edge  
ns  
ns  
Setup time, cam_vs valid before cam_pclk rising  
edge  
ISP8  
ISP9  
th(pclkH-vsV)  
tsu(dV-hsH)  
Hold time, cam_vs valid after cam_pclk rising edge  
1.08  
1.08  
2.27  
2.27  
ns  
ns  
Setup time, cam_hs valid before cam_pclk rising  
edge  
ISP10 th(pclkH-hsV)  
ISP11 tsu(dV-hsH)  
Hold time, cam_hs valid after cam_pclk rising edge  
1.08  
1.08  
2.27  
2.27  
ns  
ns  
Setup time, cam_wen valid before cam_pclk rising  
edge  
ISP12 th(pclkH-hsV)  
ISP13 tsu(dV-fldH)  
Hold time, cam_wen valid after cam_pclk rising edge  
1.08  
1.08  
2.27  
2.27  
ns  
ns  
Setup time, cam_fld valid before cam_pclk rising  
edge  
ISP14 th(pclkH-fldV)  
Hold time, cam_fld valid after cam_pclk rising edge  
1.08  
2.27  
ns  
(1) Related with the input maximum frequency supported by the ISP module.  
(2) P = cam_lclk period in ns.  
(3) Maximum cycle jitter supported by cam_pclk input clock.  
(4) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified.  
Table 6-24. ISP Switching Characteristics – 8-bit Packed SYNC – Interlaced Mode  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
ISP16  
ISP2  
ISP2  
tc(xclk)  
Cycle time(1), cam_xclk period  
Typical pulse duration, cam_xclk high  
Typical pulse duration, cam_xclk low  
Duty cycle error, cam_xclk  
4.6  
4.6  
ns  
ns  
ns  
ps  
ps  
ns  
ns  
tW(xclkH)  
tW(xclkL)  
tdc(xclk)  
tj(xclk)  
0.5*PO(2)  
0.5*PO(2)  
0.5*PO(2)  
0.5*PO(2)  
231  
67  
231  
67  
Jitter standard deviation(3), cam_xclk  
tR(xclk)  
tF(xclk)  
Rise time, cam_xclk  
0.93  
0.93  
0.93  
0.93  
Fall time, cam_xclk  
(1) Related with the cam_xclk maximum and minimum frequencies programmable in the ISP module.  
Warning: You must disable the camera sensor or the camera module to change the frequency configuration. For more information, see  
the OMAP35xx ES2.0 Technical Reference Manual (TRM) [literature number SPRUF98].  
(2) PO = cam_xclk period in ns.  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
159  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
(3) The jitter probability density can be approximated by a Gaussian function.  
ISP2  
ISP1  
ISP2  
cam_xclki  
ISP4  
ISP3  
ISP4  
cam_pclk  
ISP6  
ISP5  
cam_vs  
cam_hs  
FRAME(0)  
FRAME(0)  
ISP7  
ISP8  
L(0)  
L(n-1)  
L(0)  
ISP9  
D(1)  
ISP10  
D(n-1)  
cam_d[7:0]  
cam_wen  
D(0)  
D(n-3)  
D(n-2)  
D(n-1)  
D(0)  
D(2)  
ISP11  
ISP12  
ISP14  
ISP13  
cam_fld  
PAIR  
IMPAIR  
030-060  
Figure 6-20. ISP – 8-bit Packed SYNC – Interlaced Mode(1)(2)(3)(4)(5)  
(1) The polarity of cam_pclk, cam_fld, cam_vs, and cam_hs are configurable.  
(2) The image sensor must be connected to the lower data lines and the unused lines must be grounded. However, it is possible to shift the  
data to 0, 2, or 4 data internal lanes. The bit configurations are: cam_d[11:4] or cam_d[7:0] in 8-bit packed mode.  
(3) Optionally, the data write to memory can be qualified by the external cam_wen signal. The cam_wen signal can be used as a external  
memory write-enable signal. The data is stored to memory only if cam_hs, cam_vs, and cam_wen signals are asserted.  
(4) The camera module can pack 8-bit data into 16 bits. It doubles the maximum pixel clock. This mode can be particularly useful to transfer  
a YCbCr data stream or compressed stream to memory at very high speed.  
(5) In cam_xclki; I is equal to a or b.  
6.5.1.1.2 ITU Mode  
Table 6-26 and Table 6-27 assume testing over the recommended operating conditions and electrical  
characteristic conditions (see Figure 6-21).  
160  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 6-25. ISP Timing Conditions – ITU Mode  
TIMING CONDITION PARAMETER  
VALUE  
UNIT  
Input Conditions  
tR  
Input signal rise time  
Input signal fall time  
2.7  
2.7  
ns  
ns  
tF  
Output Conditions  
CLOAD  
Output load capacitance  
8.6  
pF  
Table 6-26. ISP Timing Requirements – ITU Mode(4)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
ISP17  
ISP18  
ISP18  
tc(pclk)  
Cycle time(1), cam_pclk period  
Typical pulse duration, cam_pclk high  
Typical pulse duration, cam_pclk low  
Duty cycle error, cam_pclk  
13.3  
22.2  
ns  
ns  
ns  
ps  
ps  
ns  
tW(pclkH)  
tW(pclkL)  
tdc(pclk)  
tj(pclk)  
0.5*P(2)  
0.5*P(2)  
0.5*P(2)  
0.5*P(2)  
667  
133  
1111  
200  
Cycle jitter(3), cam_pclk  
ISP23  
ISP24  
tsu(dV-pclkH)  
Setup time, cam_d[9:0] valid before cam_pclk  
rising edge  
1.82  
1.82  
3.25  
3.25  
th(pclkH-dV)  
Hold time, cam_d[9:0] valid after cam_pclk rising  
edge  
ns  
(1) Related with the input maximum frequency supported by the ISP module.  
(2) P = cam_lclk period in ns.  
(3) Maximum cycle jitter supported by cam_lclk input clock.  
(4) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified.  
Table 6-27. ISP Switching Characteristics – ITU Mode  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
ISP15  
ISP16  
ISP16  
tc(xclk)  
Cycle time(1), cam_xclk period  
Typical pulse duration, cam_xclk high  
Typical pulse duration, cam_xclk low  
Duty cycle error, cam_xclk  
4.6  
4.6  
ns  
ns  
ns  
ps  
ps  
ns  
ns  
tW(xclkH)  
tW(xclkL)  
tdc(xclk)  
tj(xclk)  
0.5*PO(2)  
0.5*PO(2)  
0.5*PO(2)  
0.5*PO(2)  
231  
231  
Jitter standard deviation(3), cam_xclk  
33  
33  
tR(xclk)  
tF(xclk)  
Rise time, cam_xclk  
0.93  
0.93  
0.93  
0.93  
Fall time, cam_xclk  
(1) Related with the cam_xclk maximum and minimum frequencies programmable in the ISP module.  
Warning: The camera sensor or the camera module must be disabled to change the frequency configuration. For more information, see  
the OMAP35xx ES2.0 Technical Reference Manual (TRM) [literature number SPRUF98].  
(2) PO = cam_xclk period in ns  
(3) The jitter probability density can be approximated by a Gaussian function.  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
161  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
ISP16  
ISP15  
ISP16  
cam_xclki  
cam_pclk  
ISP17  
ISP18  
ISP18  
ISP23  
D (0)  
ISP24  
D(0)  
D(n-1)  
D(n-1)  
cam_d[9:0]  
SOF  
EOF  
SOF  
EOF  
030-058  
Figure 6-21. ISP – ITU Mode(1)(2)  
(1) The unused lines must be grounded and the data bus must be connected to the lower data lines. It is possible to shift the data to 0, 2, or  
4 data internal lanes. The different configurations are: cam_d[11:4] or cam_d[7:0] in 8-bit mode and cam_d[11:2] or cam_d[9:0] in 10-bit  
mode.  
(2) The parallel camera in ITU mode supports progressive camera modules.  
162  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
6.5.2 Display Subsystem (DSS)  
The display subsystem (DSS) provides the logic to display the video frame from external (SDRAM) or  
internal (SRAM) memory on an LCD panel or a TV set. The DSS integrates a display controller, a remote  
frame buffer module (RFBI), and a TV-out module. It can be used in two configurations:  
LCD display support in:  
Bypass mode (RFBI module bypassed)  
RFBI mode (through RFBI module)  
TV display support (not discussed in this document because of its analog IO signals)  
The two display supports can be active at the same time.  
6.5.2.1 LCD Display Support in Bypass Mode  
Two types of LCD panel are supported:  
Thin film transistor (TFT) or active matrix technology  
Supertwisted nematic (STN) or passive matrix technology  
Both configurations are discussed in the following paragraphs.  
6.5.2.1.1 LCD Display in TFT Mode  
Table 6-28 assumes testing over the recommended operating conditions (see Figure 6-22).  
Table 6-28. LCD Display Interface Switching Characteristics in TFT Mode(3)(4)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
DL0 td(PCLKA-HSYNCT)  
DL1 td(PCLKA-VSYNCT)  
DL2 td(PCLKA-ACBIASA)  
DL3 td(PCLKA-DATAV)  
Delay time, dss_pclk active edge to dss_hsync  
transition  
–3.9  
3.9  
–4.6  
4.6  
ns  
ns  
ns  
ns  
Delay time, dss_pclk active edge to dss_vsync  
transition  
–3.9  
–3.9  
–3.9  
3.9  
3.9  
3.9  
–4.6  
–4.6  
–4.6  
13.5  
4.6  
4.6  
4.6  
Delay time, dss_pclk active edge to dss_acbias  
active level  
Delay time, dss_pclk active edge to dss_data bus  
valid  
Cycle time(2), dss_pclk  
DL4 tc(PCLK)  
DL5 tw(PCLK)  
13.5  
0.45*P(1)  
ns  
ns  
Pulse duration, dss_pclk low or high  
0.55*P(1) 0.45*P(1) 0.55*P(1)  
(1) P = dss_pclk period.  
(2) The pixel clock frequency is software programmable via the pixel clock divider configuration from 1 to 255 division range in the  
DISPC_DIVISOR register.  
(3) The capacitive load is equivalent to 25 pF at 1.15 V and 30 pF at 1.0 V.  
(4) For more information, see the DSS chapter of the OMAP35xx ES2.0 Technical Reference Manual (TRM) [literature number TBD].  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
163  
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
DL5  
DL4  
dss_pclk  
DL1  
dss_vsync  
DL0  
dss_hsync  
DL2  
dss_acbias  
DL3  
dss_data[23:0]  
030-061  
Figure 6-22. LCD Display in TFT Mode(1)(2)(3)(4)  
(1) The pixel data bus depends on the use of 8-, 9-, 12-, 16-, 18-, or 24-bit per pixel data output pins.  
(2) The pixel clock frequency is programmable.  
(3) All timings not illustrated in the waveform are programmable by software, control signal polarity, and driven edge of dss_pclk.  
(4) For more information, see the DSS chapter of the OMAP35xx ES2.0 Technical Reference Manual (TRM) [literature number TBD].  
6.5.2.1.2 LCD Display in STN Mode  
Table 6-29 assumes testing over the recommended operating conditions (see Figure 6-23).  
Table 6-29. LCD Display Interface Switching Characteristics in STN Mode(3)(4)(5)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
DL3 td(PCLKA-DATAV)  
Delay time, dss_pclk active edge to dss_data bus  
valid  
–7  
7
–7  
7
ns  
DL4 tc(PCLK)  
DL5 tw(PCLK)  
Cycle time(2), dss_pclk  
22.7  
0.45*P(1)  
22.7  
0.45*P(1)  
ns  
ns  
Pulse duration, dss_pclk low or high  
0.55*P(1)  
0.55*P(1)  
(1) P = dss_pclk period.  
(2) The pixel clock frequency is software programmable via the pixel clock divider configuration from 1 to 255 division range in the  
DISPC_DIVISOR register.  
(3) The DSS in STN mode is used with 4 or 8 pins only; unused pixel data bits always remain low.  
(4) The capacitive load is equivalent to 40 pF.  
(5) For more information, see the DSS chapter of the OMAP35xx ES2.0 Technical Reference Manual (TRM) [literature number TBD].  
164  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
DL5  
DL4  
dss_pclk  
dss_vsync  
dss_hsync  
dss_acbias  
DL3  
dss_data[23:0]  
030-062  
Figure 6-23. LCD Display in STN Mode(1)(2)(3)(4)(5)  
(1) The pixel data bus depends on the use 4-, 8-, 12-, 16-, 18-, or 24-bit per pixel data output pins.  
(2) All timings not illustrated in the waveform are programmable by software, control signal polarity, and driven edge of dss_pclk.  
(3) dss_vsync width must be programmed to be as small as possible.  
(4) The pixel clock frequency is programmable.  
(5) For more information, see the DSS chapter of the OMAP35xx ES2.0 Technical Reference Manual (TRM) [literature number TBD].  
6.5.2.2 LCD Display Support in RFBI Mode  
Table 6-31 and Table 6-32 assume testing over the recommended operating conditions (see Figure 6-24  
through Figure 6-26).  
Table 6-30. LCD Timing Conditions – RFBI Mode  
TIMING CONDITION PARAMETER  
Input Conditions  
VALUE  
UNIT  
tR  
Input signal rise time  
Input signal fall time  
15  
15  
ns  
ns  
tF  
Output Conditions  
CLOAD  
Output load capacitance  
30  
pF  
Table 6-31. LCD Display Interface Timing Requirements in RFBI Mode  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
2.5  
MAX  
MIN  
2.5  
MAX  
DR16 ts(DAV-RDH)  
DR17 th(RDH-DAIV)  
Setup time, rfbi_da[15:0] valid to rfbi_rd high  
Hold time, rfbi_rd high to rfbi_da[15:0] invalid  
2.5 + I(1)  
2.5 + I(1)  
2.5 + I(1)  
2.5 + I(1)  
ns  
ns  
2.5  
2.5  
(1) I = ((REOffTime – AccessTime) * (TimeParaGranularity + 1) * L4CLK  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
165  
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 6-32. LCD Display Interface Switching Characteristics in RFBI Mode  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
DR2  
tw(rfbi_wrH)  
Pulse duration, rfbi_wr high  
Pulse duration, rfbi_wr low  
Delay time, rfbi_a0 transition to rfbi_wr low  
Delay time, rfbi_a0 transition to rfbi_wr high  
Delay time, rfbi_csx(10) low to rfbi_wr low  
Delay time, rfbi_wr high to rfbi_csx(10) high  
Delay time, rfbi_wr low to rfbi_da[15:0] valid  
Delay time, rfbi_a0 high to rfbi_rd low  
Delay time, rfbi_csx(10) low to rfbi_rd low  
Pulse duration, rfbi_rd high  
Pulse duration, rfbi_rd low  
A(1)  
B(2)  
A(1)  
B(2)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DR3  
tw(rfbi_wrL)  
DR4  
td(rfbi_a0-rfbi_wrL)  
td(rfbi_a0-rfbi_wrH)  
td(rfbi_csx-rfbi_wrL)  
td(rfbi_wrH-rfbi_csH)  
td(rfbi_wrL-rfbi_daV)  
td(rfbi_a0H-rfbi_rdL)  
td(rfbi_csL-rfbi_rdL)  
tw(rfbi_rdH)  
A(1) – 2.5  
C(3) – 2.5  
C(3) – 2.5  
D(4) – 2.5  
B(2) – 2.5  
F(6) – 2.5  
A(1) + 2.5  
C(3) + 2.5  
C(3) + 2.5  
D(4) + 2.5  
B(2) + 2.5  
F(6) + 2.5  
A(1) – 2.5  
C(3) – 2.5  
C(3) – 2.5  
D(4) – 2.5  
B(2) – 2.5  
F(6) – 2.5  
A(1) + 2.5  
C(3) + 2.5  
C(3) + 2.5  
D(4) + 2.5  
B(2) + 2.5  
F(6) + 2.5  
DR5  
DR6  
DR7  
DR8  
DR9  
DR10  
DR12  
DR13  
DR14  
DR15  
G(7) – 2.5 G(7) + 2.5 G(7) – 2.5 G(7) + 2.5  
J(9)  
E(5)  
J(9)  
E(5)  
tw(rfbi_rdL)  
td(rfbi_rdL-rfbi_csL)  
td(rfbi_rdH-rfbi_csH)  
tR(rfbi_wr)  
Delay time, rfbi_rd low to rfbi_csx(10) low  
Delay time, rfbi_rd high to rfbi_csx(10) high  
Rise time, rfbi_wr  
H(8) – 2.5  
H(8) – 2.5  
H(8) + 2.5  
H(8) + 2.5  
H(8) – 2.5  
H(8) – 2.5  
H(8) + 2.5  
H(8) + 2.5  
15  
15  
tF(rfbi_wr)  
Fall time, rfbi_wr  
15  
15  
tR(rfbi_a0)  
Rise time, rfbi_a0  
15  
15  
tF(rfbi_a0)  
Fall time, rfbi_a0  
15  
15  
tR(rfbi_csx)  
Rise time, rfbi_csx  
15  
15  
tF(rfbi_csx)  
Fall time, rfbi_csx  
15  
15  
tR(rfbi_da[15:0])  
tF(rfbi_da[15:0])  
tR(rfbi_rd)  
Rise time, rfbi_da[15:0]  
15  
15  
Fall time, rfbi_da[15:0]  
15  
15  
Rise time, rfbi_rd  
15  
15  
tF(rfbi_rd)  
Fall time, rfbi_rd  
15  
15  
(1) A = (WEOnTime) * (TimeParaGranularity + 1) * L4CLK  
(2) B = (WEOffTime – WEOnTime) * (TimeParaGranularity + 1) * L4CLK  
(3) C = (WEOnTime – CSOnTime) * (TimeParaGranularity + 1) * L4CLK  
(4) D = (CSOffTime – WEOffTime) * (TimeParaGranularity + 1) * L4CLK  
(5) E = (REOffTime – REOnTime) * (TimeParaGranularity + 1) * L4CLK  
(6) F = REOnTime * (TimeParaGranularity + 1) * L4CLK  
(7) G = (REOnTime – CSOnTime) * (TimeParaGranularity + 1) * L4CLK  
(8) H = (CSOffTime – REOffTime) * (TimeParaGranularity + 1) * L4CLK  
(9) J = (REOnTime) * L4CLK  
(10) In RFBI_nCSx, x stands for 0 or 1.  
166  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
WECycleTime  
CSOffTime  
WEOnTime  
CSOffTime  
CSOnTime  
DR4  
DR5  
rfbi_a0  
rfbi_csx  
rfbi_wr  
DR6  
DR7  
DR1  
DR3  
DR2  
DR8  
rfbi_da[15:0]  
rfbi_rd  
DATA0  
030-063  
Figure 6-24. LCD Display Interface in RFBI Mode – Command / Data Write Mode(1)(2)  
(1) In rfbi_csx, x is equal to 0 or 1.  
(2) For more information, see the DSS chapter of the OMAP35xx ES2.0 Technical Reference Manual (TRM) [literature number TBD].  
RECycleTime  
CSOffTime  
REOffTime  
REOnTime  
CSOnTime  
DR9  
DR10  
rfbi_a0  
DR14  
DR15  
rfbi_csx  
DR11  
DR12  
DR13  
rfbi_rd  
DR16  
DATA0  
DR17  
rfbi_da[15:0]  
rfbi_wd  
030-064  
Figure 6-25. LCD Display Interface in RFBI Mode – Data Read Mode(1)(2)  
(1) In rfbi_csx, x is equal to 0 or 1.  
(2) For more information, see the DSS chapter of the OMAP35xx ES2.0 Technical Reference Manual (TRM) [literature number TBD].  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
167  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
WECycleTime  
CSOffTime  
WEOnTime  
CSOnTime  
CSOffTime  
DR4  
DR5  
rfbi_a0  
DR6  
DR7  
rfbi_csx  
rfbi_wr  
DR1  
DR3  
DR2  
DR8  
rfbi_da[15:0]  
rfbi_rd  
DATA0  
030-065  
Figure 6-26. LCD Display Interface in RFBI Mode – Data Read-to-Write and Write-to-Read Modes(1)(2)  
(1) In rfbi_csx, x is equal to 0 or 1.  
(2) For more information, see the DSS chapter of the OMAP35xx ES2.0 Technical Reference Manual (TRM) [literature number TBD].  
168  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
6.6 Serial Communications Interfaces  
6.6.1 Multichannel Buffered Serial Port (McBSP) Timing  
There are five McBSP modules called McBSP1 through McBSP5. McBSP provides a full-duplex, direct  
serial interface between the OMAP3515/03 device and other devices in a system such as other  
application devices or codecs. It can accommodate a wide range of peripherals and clocked  
frame-oriented protocols (I2S, PCM, and TDM) due to its high level of versatility.  
The McBSP1-5 modules may support two types of data transfer at the system level:  
The full-cycle mode, for which one clock period is used to transfer the data, generated on one edge  
and captured on the same edge (one clock period later).  
The half-cycle mode, for which one half clock period is used to transfer the data, generated on one  
edge and captured on the opposite edge (one half clock period later). Note that a new data is  
generated only every clock period, which secures the required hold time.  
The interface clock (CLKX/CLKR) activation edge (data/frame sync capture and generation) has to be  
configured accordingly with the external peripheral (activation edge capability) and the type of data  
transfer required at the system level.  
The OMAP3515/03 McBSP1-5 timing characteristics are described for both rising and falling activation  
edges. McBSP1 supports:  
6-pin mode: dx and dr as data pins; clkx, clkr, fsx, and fsr as control pins.  
4-pin mode: dx and dr as data pins; clkx and fsx pins as control pins. The clkx and fsx pins are  
internally looped back via software configuration, respectively, to the clkr and fsr internal signals for  
data receive.  
McBSP2, 3, 4, and 5 support only the 4-pin mode.  
The following sections describe the timing characteristics for applications in normal mode (that is,  
OMAP3515/03 McBSPx connected to one peripheral) and TDM applications in multipoint mode.  
6.6.1.1 McBSP in Normal Mode  
Table 6-33. McBSP Timing Conditions—Normal Mode  
TIMING CONDITION PARAMETER  
Input Conditions  
VALUE  
UNIT  
tR  
Input signal rise time  
Input signal fall time  
2
2
ns  
ns  
tF  
Output Conditions  
CLOAD  
Output load capacitance  
10  
pF  
Table 6-34. McBSP Output Clock Pulse Duration  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
tW(CLKH)  
tW(CLKL)  
tdc(CLK)  
Typical pulse duration, mcbsp1_clkr / mcbspx_clkx  
high(2)  
0.5*P(1)  
0.5*P(1)  
ns  
ns  
ns  
Typical pulse duration, mcbsp1_clkr / mcbspx_clkx  
low(2)  
Duty cycle error, mcbsp1_clkr / mcbspx_clkx(2)  
0.5*P(1)  
0.5*P(1)  
–0.75  
0.75  
–0.75  
0.75  
(1) P = mcbsp1_clkr / mcbspx_clkx clock period.  
(2) In mcbspx, x identifies the McBSP number: 1, 2, 3, 4, or 5.  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
169  
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
6.6.1.1.1 Receive Timing with Rising Edge as Activation Edge  
Table 6-35 through Table 6-40 assume testing over the recommended operating conditions (see  
Figure 6-27 through Figure 6-28).  
Table 6-35. McBSP1, 2, and 3 (Sets #2 and #3) Timing Requirements – Rising Edge and Receive Mode(1)  
NO.  
PARAMETER  
1.15 V  
MIN MAX  
1.0 V  
MIN MAX  
UNIT  
B3  
tsu(DRV-CLKAE)  
Setup time, mcbspx_dr valid before mcbsp1_clkr /  
mcbspx_clkx active edge  
Master  
Slave  
3.5  
3.7  
1
7.7  
7.9  
1
ns  
ns  
ns  
ns  
ns  
B4  
th(CLKAE-DRV)  
Hold time, mcbspx_dr valid after mcbsp1_clkr /  
mcbspx_clkx active edge  
Master  
Slave  
0.4  
3.7  
0.4  
7.9  
B5  
B6  
tsu(FSV-CLKAE)  
th(CLKAE-FSV)  
Setup time, mcbsp1_fsr / mcbspx_fsx valid before mcbsp1_clkr /  
mcbspx_clkx active edge  
Hold time, mcbsp1_fsr / mcbspx_fsx valid after mcbsp1_clkr /  
mcbspx_clkx active edge  
0.5  
0.5  
ns  
Table 6-36. McBSP1, 2, and 3 (Sets #2 and #3) Switching Characteristics – Rising Edge and Receive  
Mode(1)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
0.7  
MAX  
MIN  
0.7  
MAX  
B2  
td(CLKAE-FSV)  
Delay time, mcbsp1_clkr / mcbspx_clkx active edge to mcbsp1_fsr /  
mcbspx_fsx valid  
14.8  
29.6  
ns  
(1) In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode  
on UART pins) and Set #3 (multiplexing mode on McBSP1 pins).  
Table 6-37. McBSP4 (Set #1) Timing Requirements – Rising Edge and Receive Mode(1)  
NO.  
B3  
PARAMETER  
1.15 V  
MIN MAX  
1.0 V  
MIN MAX  
UNIT  
tsu(DRV-CLKXAE)  
Setup time, mcbspx_dr valid before  
mcbspx_clkx active edge  
Master  
Slave  
2.7  
3.7  
1
7.7  
7.9  
1
ns  
ns  
ns  
ns  
ns  
ns  
B4  
th(CLKXAE-DRV)  
Hold time, mcbspx_dr valid after mcbspx_clkx  
active edge  
Master  
Slave  
0.4  
3.7  
0.5  
0.4  
7.9  
0.5  
B5  
B6  
tsu(FSXV-CLKXAE)  
th(CLKXAE-FSXV)  
Setup time mcbspx_fsx valid before mcbspx_clkx active edge  
Hold Time mcbspx_fsx valid after mcbspx_clkx active edge  
Table 6-38. McBSP4 (Set #1) Switching Characteristics – Rising Edge and Receive Mode(1)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
0.7  
MAX  
MIN MAX  
B2  
td(CLKXAE-FSXV)  
Delay time, mcbspx_clkx active edge to mcbspx_fsx valid  
16.6  
0.7  
33.1  
ns  
(1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by  
default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-39 and Table 6-40.  
Table 6-39. McBSP3 (Set #1), 4 (Set #2), and 5 Timing Requirements – Rising Edge and Receive Mode(1)  
NO.  
PARAMETER  
1.15 V  
MIN MAX  
1.0 V  
MIN MAX  
UNIT  
B3  
tsu(DRV-CLKXAE)  
Setup time, mcbspx_dr valid before  
mcbspx_clkx active edge  
Master  
Slave  
5.6  
5.8  
1
12  
12.2  
1
ns  
ns  
ns  
ns  
B4  
th(CLKXAE-DRV)  
Hold time, mcbspx_dr valid after mcbspx_clkx Master  
active edge  
Slave  
0.4  
0.4  
170  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
 
 
 
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 6-39. McBSP3 (Set #1), 4 (Set #2), and 5 Timing Requirements – Rising Edge and Receive Mode(1)  
(continued)  
NO.  
PARAMETER  
1.15 V  
MIN MAX  
1.0 V  
MIN MAX  
UNIT  
B5  
B6  
tsu(FSXV-CLKXAE)  
th(CLKXAE-FSXV)  
Setup time, mcbspx_fsx valid before mcbspx_clkx active edge  
Hold time, mcbspx_fsx valid after mcbspx_clkx active edge  
5.8  
0.5  
12.2  
0.5  
ns  
ns  
Table 6-40. McBSP3 (Set #1), 4 (Set #2), and 5 Switching Requirements – Rising Edge and Receive  
Mode(1)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
MAX  
44.4  
UNIT  
MIN  
0.7  
MAX  
MIN  
B2  
td(CLKXAE-FSXV)  
Delay time, mcbspx_clkx active edge to mcbspx_fsx valid  
22.2  
0.7  
ns  
(1) In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode  
by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are  
specified in Table 6-37 and Table 6-38.  
For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins).  
mcbspx_clkr  
B2  
B2  
mcbspx_fsr  
mcbspx_dr  
B3  
B4  
D7  
D6  
D5  
030-068  
Figure 6-27. McBSP Rising Edge Receive Timing in Master Mode  
mcbspx_clkr  
mcbspx_fsr  
mcbspx_dr  
B5  
B6  
B3  
B4  
D7  
D6  
D5  
030-069  
Figure 6-28. McBSP Rising Edge Receive Timing in Slave Mode  
6.6.1.1.2 Transmit Timing with Rising Edge as Activation Edge  
Table 6-41 through Table 6-46 assume testing over the recommended operating conditions (see  
Figure 6-29 and Figure 6-30).  
Table 6-41. McBSP1, 2, and 3 (Sets #2 and #3) Timing Requirements – Rising Edge and Transmit Mode(1)  
NO.  
PARAMETER  
1.15 V  
MAX  
1.0 V  
UNIT  
MIN  
MIN  
MAX  
B5  
B6  
tsu(FSXV-CLKXAE)  
th(CLKXAE-FSXV)  
Setup time, mcbspx_fsx valid before mcbspx_clkx  
active edge  
3.7  
7.9  
ns  
ns  
Hold time, mcbspx_fsx valid after mcbspx_clkx active  
edge  
0.5  
0.5  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
171  
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 6-42. McBSP1, 2, and 3 (Sets #2 and #3) Switching Characteristics – Rising Edge and Transmit  
Mode(1)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
B2  
B8  
td(CLKXAE-FSXV)  
td(CLKXAE-DXV)  
Delay time, mcbspx_clkx active edge to mcbspx_fsx  
valid  
0.7  
14.8  
0.7  
29.6  
ns  
Delay time, mcbspx_clkx active edge to Master  
0.6  
0.6  
14.8  
14.8  
0.6  
0.6  
29.6  
29.6  
ns  
ns  
mcbspx_dx valid  
Slave  
(1) In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode  
on UART pins) and Set #3 (multiplexing mode on McBSP1 pins).  
Table 6-43. McBSP4 (Set #1) Timing Requirements – Rising Edge and Transmit Mode(1)  
NO.  
PARAMETER  
1.15 V  
MAX  
1.0 V  
UNIT  
MIN  
MIN  
MAX  
B5  
B6  
tsu(FSXV-CLKXAE)  
th(CLKXAE-FSXV)  
Setup time, mcbspx_fsx valid before mcbspx_clkx  
active edge  
3.7  
7.9  
ns  
ns  
Hold time, mcbspx_fsx valid after mcbspx_clkx active  
edge  
0.5  
0.5  
Table 6-44. McBSP4 (Set #1) Switching Characteristics – Rising Edge and Transmit Mode(1)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
B2  
B8  
td(CLKXAE-FSXV)  
td(CLKXAE-DXV)  
Delay time, mcbspx_clkx active edge to  
mcbspx_fsx valid  
0.7  
16.6  
0.7  
33.1  
ns  
Delay time, mcbspx_clkx active edge  
to mcbspx_dx valid  
Master  
Slave  
0.6  
0.6  
16.6  
17.3  
0.6  
0.6  
33.1  
33.1  
ns  
ns  
(1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by  
default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-45.  
Table 6-45. McBSP3 (Set #1), 4 (Set #2), and 5 Timing Requirements – Rising Edge and Transmit Mode(1)  
NO.  
PARAMETER  
1.15 V  
MAX  
1.0 V  
UNIT  
MIN  
MIN  
MAX  
B5  
B6  
tsu(FSXV-CLKXAE)  
th(CLKXAE-FSXV)  
Setup time, mcbspx_fsx valid before mcbspx_clkx  
active edge  
5.8  
12.2  
ns  
ns  
Hold time, mcbspx_fsx valid after mcbspx_clkx active  
edge  
0.5  
0.5  
Table 6-46. McBSP 3 (Set #1), 4 (Set #2), and 5 Switching Requirements – Rising Edge and Transmit  
Mode(1)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
B2  
B8  
td(CLKXAE-FSXV)  
td(CLKXAE-DXV)  
Delay time, mcbspx_clkx active edge to mcbspx_fsx  
valid  
0.7  
22.2  
0.7  
44.4  
ns  
Delay time, mcbspx_clkx active edge to Master  
0.6  
0.6  
22.2  
22.2  
0.6  
0.6  
44.4  
44.4  
ns  
ns  
mcbspx_dx valid  
Slave  
(1) In mcbspx, x identifies the McBSP number: 3, 4 or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode  
by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are  
specified in the table above. For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins).  
172  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
mcbspx_clkx  
B2  
B2  
B8  
mcbspx_fsx  
mcbspx_dx  
D7  
D6  
D5  
030-070  
Figure 6-29. McBSP Rising Edge Transmit Timing in Master Mode  
mcbspx_clkx  
mcbspx_fsx  
mcbspx_dx  
B5  
B6  
B8  
D7  
D6  
D5  
030-071  
Figure 6-30. McBSP Rising Edge Transmit Timing in Slave Mode  
6.6.1.1.3 Receive Timing with Falling Edge as Activation Edge  
Table 6-47 through Table 6-52 assume testing over the recommended operating conditions (see  
Figure 6-31 and Figure 6-32).  
Table 6-47. McBSP1, 2, and 3 (Sets #2 and #3) Timing Requirements – Falling Edge and Receive Mode(1)  
NO.  
PARAMETER  
1.15 V  
MAX  
1.0 V  
UNIT  
MIN  
3.5  
3.7  
1
MIN  
7.7  
7.9  
1
MAX  
B3  
tsu(DRV-CLKAE)  
Setup time, mcbspx_dr valid before  
mcbsp1_clkr / mcbspx_clkx active edge  
Master  
Slave  
ns  
ns  
ns  
ns  
ns  
B4  
th(CLKAE-DRV)  
Hold time, mcbspx_dr valid after  
mcbsp1_clkr / mcbspx_clkx active edge  
Master  
Slave  
0.4  
3.7  
0.4  
7.9  
B5  
B6  
tsu(FSV-CLKAE)  
th(CLKAE-FSV)  
Setup time, mcbsp1_fsr / mcbspx_fsx valid before  
mcbsp1_clkr /mcbspx_clkx active edge  
Hold time, mcbsp1_fsr / mcbspx_fsx valid after  
mcbsp1_clkr /mcbspx_clkx active edge  
0.5  
0.5  
ns  
Table 6-48. McBSP1, 2, and 3 (Sets #2 and #3) Switching Characteristics – Falling Edge and Receive  
Mode(1)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
B2  
td(CLKAE-FSV)  
Delay time, mcbsp1_clkr / mcbspx_clkx active edge to  
mcbsp1_fsr / mcbspx_fsx valid  
0.7  
14.8  
0.7  
29.6  
ns  
(1) In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode  
on UART pins) and Set #3 (multiplexing mode on McBSP1 pins).  
Table 6-49. McBSP4 (Set #1) Timing Requirements – Falling Edge and Receive Mode(1)  
NO.  
B3  
PARAMETER  
1.15 V  
MAX  
1.0 V  
UNIT  
MIN  
2.7  
3.7  
1
MIN  
7.7  
7.9  
1
MAX  
tsu(DRV-CLKXAE)  
Setup time, mcbspx_dr valid before  
mcbspx_clkx active edge  
Master  
Slave  
ns  
ns  
ns  
ns  
B4  
th(CLKXAE-DRV)  
Hold time, mcbspx_dr valid after  
mcbspx_clkx active edge  
Master  
Slave  
0.4  
0.4  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
173  
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 6-49. McBSP4 (Set #1) Timing Requirements – Falling Edge and Receive Mode(1) (continued)  
NO.  
PARAMETER  
1.15 V  
MAX  
1.0 V  
UNIT  
MIN  
MIN  
MAX  
B5  
B6  
tsu(FSXV-CLKXAE)  
th(CLKXAE-FSXV)  
Setup time mcbspx_fsx valid before mcbspx_clkx active  
edge  
3.7  
7.9  
ns  
ns  
Hold time mcbspx_fsx valid after mcbspx_clkx active  
edge  
0.5  
0.5  
Table 6-50. McBSP4 (Set #1) Switching Characteristics – Falling Edge and Receive Mode(1)  
NO.  
PARAMETER  
1.15 V  
MAX  
16.6  
1.0 V  
UNIT  
MIN  
MIN  
MAX  
B2  
td(CLKXAE-FSXV)  
Delay time, mcbspx_clkx active edge to mcbspx_fsx valid  
0.7  
0.7  
33.1  
ns  
(1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by  
default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-51.  
Table 6-51. McBSP3 (Set #1), 4 (Set #2), and 5 Timing Requirements – Falling Edge and Receive Mode(1)  
NO.  
PARAMETER  
1.15 V  
MAX  
1.0 V  
UNIT  
MIN  
5.6  
5.8  
1
MIN  
12  
MAX  
B3  
tsu(DRV-CLKXAE)  
Setup time, mcbspx_dr valid before  
mcbspx_clkx active edge  
Master  
Slave  
ns  
ns  
ns  
ns  
ns  
12.2  
1
B4  
th(CLKXAE-DRV)  
Hold time, mcbspx_dr valid after mcbspx_clkx Master  
active edge  
Slave  
0.4  
5.8  
0.4  
12.2  
B5  
B6  
tsu(FSXV-CLKXAE) Setup time, mcbspx_fsx valid before mcbspx_clkx active  
edge  
th(CLKXAE-FSXV)  
Hold time, mcbspx_fsx valid after mcbspx_clkx active  
edge  
0.5  
0.5  
ns  
Table 6-52. McBSP3 (Set #1), 4 (Set #2), and 5 Switching Requirements – Falling Edge and Receive  
Mode(1)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
B2  
td(CLKXAE-FSXV)  
Delay time, mcbspx_clkx active edge to mcbspx_fsx  
valid  
0.7  
22.2  
0.7  
44.4  
ns  
(1) In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode  
by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are  
specified in the table above. For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins).  
mcbspx_clkr  
B2  
B2  
mcbspx_fsr  
mcbspx_dr  
B3  
B4  
D7  
D6  
D5  
030-072  
Figure 6-31. McBSP Falling Edge Receive Timing in Master Mode  
174  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
mcbspx_clkr  
B5  
B6  
mcbspx_fsr  
mcbspx_dr  
B3  
B4  
D7  
D6  
D5  
030-073  
Figure 6-32. McBSP Falling Edge Receive Timing in Slave Mode  
6.6.1.1.4 Transmit Timing with Falling Edge as Activation Edge  
Table 6-53 through Table 6-58 assume testing over the recommended operating conditions (see  
Figure 6-33 and Figure 6-34).  
Table 6-53. McBSP1, 2, and 3 (Sets #2 and #3) Timing Requirements – Falling Edge and Transmit Mode(1)  
NO.  
PARAMETER  
1.15 V  
MAX  
1.0 V  
UNIT  
MIN  
MIN  
MAX  
B5  
B6  
tsu(FSXV-CLKXAE)  
th(CLKXAE-FSXV)  
Setup time, mcbspx_fsx valid before mcbspx_clkx  
active edge  
3.7  
7.9  
ns  
ns  
Hold time, mcbspx_fsx valid after mcbspx_clkx  
active edge  
0.5  
0.5  
Table 6-54. McBSP1, 2, and 3 (Sets #2 and #3) Switching Characteristics – Falling Edge and Transmit  
Mode(1)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
B2  
B8  
td(CLKXAE-FSXV)  
td(CLKXAE-DXV)  
Delay time, mcbspx_clkx active edge to mcbspx_fsx  
valid  
0.7  
14.8  
0.7  
29.6  
ns  
Delay time, mcbspx_clkx active edge to Master  
0.6  
0.6  
14.8  
14.8  
0.6  
0.6  
29.6  
29.6  
ns  
ns  
mcbspx_dx valid  
Slave  
(1) In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode  
on UART pins) and Set #3 (multiplexing mode on McBSP1 pins).  
Table 6-55. McBSP4 (Set #1) Timing Requirements – Falling Edge and Transmit Mode(1)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
B5  
B6  
tsu(FSXV-CLKXAE)  
th(CLKXAE-FSXV)  
Setup time, mcbspx_fsx valid before  
mcbspx_clkx active edge  
3.7  
7.9  
ns  
ns  
Hold time, mcbspx_fsx valid after mcbspx_clkx  
active edge  
0.5  
0.5  
Table 6-56. McBSP4 (Set #1) Switching Characteristics – Falling Edge and Transmit Mode(1)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
B2  
B8  
td(CLKXAE-FSXV)  
td(CLKXAE-DXV)  
Delay time, mcbspx_clkx active edge to mcbspx_fsx  
valid  
0.7  
16.6  
0.7  
33.1  
ns  
Delay time, mcbspx_clkx active edge to  
mcbspx_dx valid  
Master  
Slave  
0.6  
0.6  
16.6  
17.3  
0.6  
0.6  
33.1  
33.1  
ns  
ns  
(1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by  
default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-57.  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
175  
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 6-57. McBSP3 (Set #1), 4 (Set #2), and 5 Timing Requirements – Falling Edge and Transmit Mode(1)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
B5  
B6  
tsu(FSXV-CLKXAE)  
th(CLKXAE-FSXV)  
Setup time, mcbspx_fsx valid before mcbspx_clkx  
active edge  
5.8  
12.2  
ns  
ns  
Hold time, mcbspx_fsx valid after mcbspx_clkx  
active edge  
0.5  
0.5  
Table 6-58. McBSP3 (Set #1), 4 (Set #2), and 5 Switching Requirements – Falling Edge and Transmit  
Mode(1)  
NO.  
PARAMETER  
1.15 V  
MIN  
1.0 V  
MAX  
UNIT  
MAX  
22.2  
22.2  
22.2  
MIN  
0.7  
0.6  
0.6  
B2  
B8  
td(CLKXAE-FSXV)  
td(CLKXAE-DXV)  
Delay time, mcbspx_clkx active edge to mcbspx_fsx valid  
0.7  
0.6  
0.6  
44.4  
44.4  
44.4  
ns  
ns  
ns  
Delay time, mcbspx_clkx active edge to  
mcbspx_dx valid  
Master  
Slave  
(1) In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode  
by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are  
specified in Table 6-57. For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins).  
mcbspx_clkx  
B2  
B2  
mcbspx_fsx  
mcbspx_dx  
B8  
D7  
D6  
D5  
030-074  
Figure 6-33. McBSP Falling Edge Transmit Timing in Master Mode  
mcbspx_clkx  
mcbspx_fsx  
mcbspx_dx  
B5  
B6  
B8  
D7  
D6  
D5  
030-075  
Figure 6-34. McBSP Falling Edge Transmit Timing in Slave Mode  
6.6.1.2 McBSP in TDM—Multipoint Mode (McBSP3)  
For TDM application in multipoint mode, OMAP3515/03 is considered as a slave. Table 6-60 and  
Table 6-61 assume testing over the operating conditions and electrical characteristic conditions described  
below.  
Table 6-59. McBSP3 Timing Conditions—TDM in Multipoint Mode  
TIMING CONDITION PARAMETER  
VALUE  
UNIT  
MIN  
MAX  
Input Conditions  
tR  
tF  
Input signal rising time  
Input signal falling time  
1.0  
1.0  
8.5  
8.5  
ns  
ns  
Output Conditions  
CLOAD Output Load Capacitance  
40  
pF  
176  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 6-60. McBSP3 Timing Requirements—TDM in Multipoint Mode(2)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
tW(CLKH)  
Cycle Time, mcbsp3_clkx  
162.8  
162.8  
ns  
ns  
ns  
ns  
ns  
tW(CLKH)  
Typical Pulse duration, mcbsp3_clkx high  
Typical Pulse duration, mcbsp3_clkx low  
Duty cycle error, mcbsp3_clkx  
0.5*P(1)  
0.5*P(1)  
0.5*P(1)  
0.5*P(1)  
tW(CLKL)  
tdc(CLK)  
–8.14  
8.14  
–8.14  
8.14  
B3(3)  
tsu(DRV-CLKAE)  
Setup time, mcbsp3_dr valid before  
mcbsp3_clkx active edge  
9
9
B4(3)  
B5(3)  
B6(3)  
th(CLKAE-DRV)  
tsu(FSV-CLKAE)  
th(CLKAE-FSV)  
Hold time, mcbsp3_dr valid after mcbsp3_clkx  
active edge  
2.4  
9
2.4  
9
ns  
ns  
ns  
Setup time, mcbsp3_fsx valid before  
mcbsp3_clkx active edge  
Hold time, mcbsp3_fsx valid after  
mcbsp3_clkx active edge  
2.4  
2.4  
(1) P = mcbsp3_clkx period in ns  
(2) For McBSP3, these timings concern only Set #3 (multiplexing mode in McBSP1 pins).  
(3) See Section 6.6.1.1, McBSP in Normal Mode for corresponding figures.  
Table 6-61. McBSP3 Switching Characteristics—TDM in Multipoint Mode(1)  
NO.  
B8(2)  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
td(CLKXAE-DXV) Delay time, mcbsp3_clkx active edge to  
mcbsp3_dx valid  
0.6  
16.8  
0.6  
29.6  
ns  
(1) For McBSP3, these timings concern only Set #3 (multiplexing mode in McBSP1 pins).  
(2) See Section 6.6.1.1, McBSP in Normal Mode for corresponding figures.  
6.6.2 Multichannel Serial Port Interface (McSPI) Timing  
The multichannel SPI is a master/slave synchronous serial bus. The McSPI1 module supports up to four  
peripherals and the others (McSPI2, McSPI3, and McSPI4) support up to two peripherals. The following  
timings are applicable to the different configurations of McSPI in master/slave mode for any McSPI and  
any channel (n).  
6.6.2.1 McSPI in Slave Mode  
Table 6-62 and Table 6-63 assume testing over the recommended operating conditions (see Figure 6-35).  
Table 6-62. McSPI Interface Timing Requirements – Slave Mode(1)(4)  
NO.  
PARAMETER  
1.15 V  
MAX  
1.0 V  
UNIT  
MIN  
MIN  
MAX  
SS0 tc(CLK)  
Cycle time, mcspix_clk  
41.7  
83.3  
ns  
ns  
ns  
SS1 tw(CLK)  
Pulse duration, mcspix_clk high or low  
0.45*P(3) 0.55*P(3) 0.45*P(3)  
0.55*P(3)  
SS2 tsu(SIMOV-CLKAE)  
Setup time, mcspix_simo valid before mcspix_clk  
active edge  
4.2  
9.5  
SS3 th(SIMOV-CLKAE)  
SS4 tsu(CS0V-CLKFE)  
SS5 th(CS0I-CLKLE)  
Hold time, mcspix_simo valid after mcspix_clk active  
edge  
4.6  
9.9  
ns  
ns  
ns  
Setup time, mcspix_cs0 valid before mcspix_clk first  
edge  
13.8  
13.8  
28.6  
28.6  
Hold time, mcspix_cs0 invalid after mcspix_clk last  
edge  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
177  
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 6-63. McSPI Interface Switching Requirements(2)(4)(5)(6)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
SS6 td(CLKAE-SOMIV)  
SS7 td(CS0AE-SOMIV)  
Delay time, mcspix_clk active edge to mcspix_somi  
shifted  
1.8  
15.9  
3.2  
31.7  
ns  
ns  
Delay time, mcspix_cs0 active edge to Modes 0 and 2  
mcspix_somi shifted  
15.9  
31.7  
(1) The input timing requirements are given by considering a rise time and a fall time of 4 ns.  
(2) The capacitive load is equivalent to 20 pF.  
(3) P = mcspix_clk clock period  
(4) In mcspix, x is equal to 1, 2, 3, or 4.  
(5) The polarity of mcspix_clk and the active edge (rising or falling) on which mcspix_simo is driven and mcspix_somi is latched is all  
software configurable.  
(6) This timing applies to all configurations regardless of mcspix_clk polarity and which clock edges are used to drive output data and  
capture input data.  
Mode 0 & 2  
mcspix_cs0(EPOL=1)  
SS0  
SS4  
SS1  
SS5  
mcspix_clk(POL=0)  
mcspix_clk(POL=1)  
SS0  
SS1  
SS2  
SS3  
Bit n-1  
SS7  
Bit n-1  
mcspix_simo  
mcspix_somi  
Bit n-2  
SS6  
Bit n-3  
Bit n-4  
Bit n-4  
Bit 0  
Bit n-2  
Bit n-3  
Bit 0  
Mode 1 & 3  
mcspix_cs0(EPOL=1)  
mcspix_clk(POL=0)  
mcspix_clk(POL=1)  
SS0  
SS1  
SS0  
SS1  
SS4  
SS5  
SS3  
SS2  
Bit n-1  
SS6  
Bit n-1  
mcspix_simo  
mcspix_somi  
Bit n-2  
Bit n-2  
Bit n-3  
Bit 1  
Bit 0  
Bit 0  
Bit n-3  
Bit 1  
030-076  
Figure 6-35. McSPI Interface – Transmit and Receive in Slave Mode(1)(2)  
(1) The active clock edge (rising or falling) on which mcspi_somi is driven and mcspi_simo data is latched is software configurable with the  
bit MSPI_CHCONFx[0] = PHA and the bit MSPI_CHCONFx[1] = POL.  
(2) The polarity of mcspix_csi is software configurable with the bit MSPI_CHCONFx[6] = EPOL In mcspix, x is equal to 1, 2, 3, or 4.  
178  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
6.6.2.2 McSPI in Master Mode  
Table 6-64 and Table 6-65 assume testing over the recommended operating conditions (see Figure 6-36).  
Table 6-64. McSPI1, 2, and 4 Interface Timing Requirements – Master Mode(1)(4)  
NO.  
PARAMETER  
1.15 V  
MAX  
1.0 V  
UNIT  
MIN  
MIN  
MAX  
SM2 tsu(SOMIV-CLKAE)  
SM3 th(SOMIV-CLKAE)  
Setup time, mcspix_somi valid before mcspix_clk  
active edge  
1.1  
1.5  
ns  
ns  
Hold time, mcspix_somi valid after mcspix_clk active  
edge  
1.9  
2.8  
Table 6-65. McSPI1, 2, and 4 Interface Switching Characteristics – Master Mode(2)(4)(5)  
NO.  
PARAMETER  
1.15 V  
MAX  
1.0 V  
MAX  
UNIT  
MIN  
MIN  
SM0  
SM1  
tc(CLK)  
tw(CLK)  
Cycle time, mcspix_clk  
20.8  
41.7  
ns  
ns  
Pulse duration, mcspix_clk high or low  
0.45*P(3) 0.55*P(3) 0.45*P( 0.55*P(3)  
3)  
SM4  
SM5  
td(CLKAE-SIMOV)  
td(CSnA-CLKFE)  
Delay time, mcspix_clk active edge to mcspix_simo  
shifted  
–2.1  
5
–2.1  
11.3  
ns  
ns  
ns  
ns  
ns  
ns  
Delay time, mcspix_csi active to  
mcspix_clk first edge  
Modes 1  
and 3  
A(7) – 3.1  
B(8) – 3.1  
B(8) – 3.1  
A(7) – 3.1  
A(7)  
4.4  
Modes 0  
and 2  
B(8)  
4.4  
SM6  
SM7  
td(CLKLE-CSnI)  
Delay time, mcspix_clk last edge to  
mcspix_csi inactive  
Modes 1  
and 3  
B(8)  
4.4  
Modes 0  
and 2  
A(7)  
4.4  
td(CSnAE-SIMOV)  
Delay time, mcspix_csi active edge to Modes 0  
mcspix_simo shifted and 2  
5.0  
11.3  
(1) The input timing requirements are given by considering a rise time and a fall time of 4 ns.  
(2) Timings are given for a maximum load capacitance of 20 pF for spix_csn signals, 30 pF for spix_clk and spix_simo signals with x = 1 or  
2, and 20 pF for spi4_clk and spi4_simo signals.  
(3) P = mcspix_clk clock period  
(4) In mcspix, x is equal to 1, 2, or 4. In mcspix_csn, n is equal to 0, 1, 2, or 3 for x equal to 1, n is equal to 0 or 1 for x equal to 2 and 4.  
(5) The polarity of mcspix_clk and the active edge (rising or falling) on which mcspix_simo is driven and mcspix_somi is latched is all  
software configurable.  
(6) This timing applies to all configurations regardless of mcspix_clk polarity and which clock edges are used to drive output data and  
capture input data.  
(7) Case P = 20.8 ns, A = (TCS+0.5)*P(3) (TCS is a bit field of MSPI_CHCONFx[26:25] register). Case P > 20.8 ns, A = TCS*P(3) (TCS is a  
bitfield of MSPI_CHCONFx[26:25] register). For more information, see the McSPI chapter of the OMAP35xx ES2.0 Technical Reference  
Manual (TRM) [literature number TBD].  
(8) B = TCS*P (TCS is a bit field of MSPI_CHCONFx[26:25] register). For more information, see the McSPI chapter of the OMAP35xx  
ES2.0 Technical Reference Manual (TRM) [literature number TBD].  
Table 6-66 and Table 6-67 assume testing over the recommended operating conditions (see Figure 6-36).  
Table 6-66. McSPI 3 Interface Timing Requirements – Master Mode(1)(4)  
NO.  
PARAMETER  
1.15 V  
MAX  
1.0 V  
UNIT  
MIN  
MIN  
MAX  
SM2 tsu(SOMIV-CLKAE)  
SM3 th(SOMIV-CLKAE)  
Setup time, mcspi3_somi valid before  
mcspi3_clk active edge  
1.5  
4.3  
ns  
ns  
Hold time, mcspi3_somi valid after mcspi3_clk  
active edge  
2.8  
5.9  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
179  
 
 
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 6-67. McSPI3 Interface Switching Requirements – Master Mode(2)(4)(5)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
83.3  
MAX  
SM0 tc(CLK)  
Cycle time, mcspix_clk  
41.7  
ns  
ns  
ns  
SM1 tw(CLK)  
Pulse duration, mcspix_clk high or low  
0.45*P(3)  
0.55*P(3)  
11.3  
0.45*P(3)  
0.55*P(3)  
23.6  
SM4 td(CLKAE-SIMOV)  
Delay time, mcspix_clk active edge to  
mcspix_simo shifted  
–2.1  
–5.3  
SM5 td(CSnA-CLKFE)  
SM6 td(CLKLE-CSnI)  
SM7 td(CSnAE-SIMOV)  
Delay time, mcspix_csi active Modes 1  
–4.4 + A(6)  
–4.4 + B(7)  
–4.4 + A(6)  
–4.4 + B(7)  
–10.1 + A(6)  
–10.1 + B(7)  
–10.1 + A(6)  
–10.1 + B(7)  
ns  
ns  
ns  
ns  
ns  
to mcspix_clk first edge  
and 3  
Modes 0  
and 2  
Delay time, mcspix_clk last  
edge to mcspix_csi inactive  
Modes 1  
and 3  
Modes 0  
and 2  
Delay time, mcspix_csi active Modes 0  
edge to mcspix_simo shifted and 2  
11.3  
23.6  
(1) The input timing requirements are given by considering a rise time and a fall time of 4 ns.  
(2) The capacitive load is equivalent to 20 pF.  
(3) P = mcspi3_clk clock period  
(4) In mcspi3_csn, n is equal to 0 or 1. The polarity of mcspi3_clk and the active edge (rising or falling) on which mcspi3_simo is driven and  
mcspi3_somi is latched is all software configurable.  
(5) This timing applies to all configurations regardless of McSPI3_CLK polarity and which clock edges are used to drive output data and  
capture input data.  
(6) Case P = 20.8 ns, A = (TCS + 0.5)*P(3) (TCS is a bit field of MSPI_CHCONFx[26:25] register). Case P > 20.8 ns, A = TCS*P(3) (TCS is  
a bit field of MSPI_CHCONFx[26:25] register). For more information, see the McSPI chapter of the OMAP35xx ES2.0 Technical  
Reference Manual (TRM) [literature number TBD].  
(7) B = TCS*P (TCS is a bit field of MSPI_CHCONFx[26:25] register). For more information, see the McSPI chapter of the OMAP35xx  
ES2.0 Technical Reference Manual (TRM) [literature number TBD].  
180  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Mode 0 & 2  
mcspix_csn(EPOL=1)  
mcspix_clk(POL=0)  
mcspix_clk(POL=1)  
mcspix_simo  
SM0  
SM1  
SM5  
SM6  
SM0  
SM1  
SM7  
SM4  
Bit n-2  
Bit n-1  
SM2  
Bit n-3  
Bit n-4  
Bit n-4  
Bit 0  
SM3  
Bit n-1  
mcspix_somi  
Bit n-2  
Bit n-3  
Bit 0  
Mode 1 & 3  
mcspix_csn(EPOL=1)  
mcspix_clk(POL=0)  
SM0  
SM1  
SM0  
SM1  
SM5  
SM6  
mcspix_clk(POL=1)  
mcspix_simo  
SM4  
Bit n-1  
SM2  
Bit n-2  
Bit n-2  
Bit n-3  
Bit 1  
Bit 0  
SM3  
mcspix_somi  
Bit n-1  
Bit n-3  
Bit 1  
Bit 0  
030-077  
Figure 6-36. McSPI Interface – Transmit and Receive in Master Mode(1)(2)(3)  
(1) The active clock edge (rising or falling) on which mcspix_simo is driven and mcspi_somi data is latched is software configurable with the  
bit MSPI_CHCONFx[0] = PHA and the bit MSPI_CHCONFx[1] = POL.  
(2) The polarity of mcspix_csi is software configurable with the bit MSPI_CHCONFx[6] = EPOL.  
(3) In mcspix, x is equal to 1. In mcspix_csn, n is equal to 0, 1, 2, or 3.  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
181  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
6.6.3 Multiport Full-Speed Universal Serial Bus (USB) Interface  
The OMAP3515/03 processor provides three USB ports working in full- and low-speed data transactions  
(up to 12Mbit/s).  
Connected to either a serial link controller (TLL modes) or a serial PHY (PHY interface modes) it supports:  
6-pin (Tx: Dat/Se0 or Tx: Dp/Dm) unidirectional mode  
4-pin bidirectional mode  
3-pin bidirectional mode  
6.6.3.1 Multiport Full-Speed Universal Serial Bus (USB) – Unidirectional Standard 6-pin Mode  
Table 6-69 and Table 6-70 assume testing over the recommended operating conditions (see Figure 6-37).  
Table 6-68. Low-/Full-Speed USB Timing Conditions – Unidirectional Standard 6-pin Mode  
TIMING CONDITION PARAMETER  
Input Conditions  
VALUE  
UNIT  
tR  
Input signal rise time  
Input signal fall time  
2.0  
2.0  
ns  
ns  
tF  
Output Conditions  
CLOAD  
Output load capacitance  
15.0  
pF  
Table 6-69. Low-/Full-Speed USB Timing Requirements – Unidirectional Standard 6-pin Mode  
NO.  
PARAMETER  
1.15 V  
MIN MAX  
1.0 V  
UNIT  
MIN  
MAX  
FSU1  
FSU2  
FSU3  
FSU4  
td(Vp,Vm)  
td(Vp,Vm)  
td(RCVU0)  
td(RCVU1)  
Time duration, mmx_rxdp and mmx_rxdm low together during  
transition  
14.0  
14.0  
ns  
ns  
ns  
ns  
Time duration, mmx_rxdp and mmx_rxdm high together during  
transition  
8.0  
8.0  
14.0  
8.0  
Time duration, mmx_rrxcv undefine during a single end 0  
(mmx_rxdp and mmx_rxdm low together)  
14.0  
8.0  
Time duration, mmx_rxrcv undefine during a single end 1  
(mmx_rxdp and mmx_rxdm high together)  
(1) In mmx, x is equal to 0, 1, or 2.  
Table 6-70. Low-/Full-Speed USB Switching Characteristics – Unidirectional Standard 6-pin Mode  
NO.  
PARAMETER  
1.15 V  
MIN  
1.0 V  
UNIT  
MAX  
84.8  
84.8  
1.5  
MIN  
81.8  
81.8  
MAX  
84.8  
84.8  
1.5  
FSU5  
FSU6  
FSU7  
FSU8  
FSU9  
td(TXENL-DATV)  
td(TXENL-SE0V)  
ts(DAT-SE0)  
td(DATI-TXENH)  
td(SE0I-TXENH)  
tR(do)  
Delay time, mmx_txen_n low to mmx_txdat valid  
Delay time, mmx_txen_n low to mmx_txse0 valid  
Skew between mmx_txdat and mmx_txse0 transition  
Delay time, mmx_txdat invalid to mmx_txen_n high  
Delay time, mmx_txse0 invalid to mmx_txen_n high  
Rise time, mmx_txen_n  
81.8  
81.8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
81.8  
81.8  
81.8  
81.8  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
tF(do)  
Fall time, mmx_txen_n  
tR(do)  
Rise time, mmx_txdat  
tF(do)  
Fall time, mmx_txdat  
tR(do)  
Rise time, mmx_txse0  
tF(do)  
Fall time, mmx_txse0  
(1) In mmx, x is equal to 0, 1, or 2.  
182  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
 
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Transmit  
mmx_txen_n  
Receive  
FSU5  
FSU6  
FSU8  
mmx_txdat  
mmx_txse0  
mmx_rxdp  
mmx_rxdm  
mmx_rxrcv  
FSU7  
FSU9  
FSU1  
FSU1  
FSU3  
FSU2  
FSU2  
FSU4  
030-080  
In mmx, x is equal to 0, 1, or 2.  
Figure 6-37. Low-/Full-Speed USB – Unidirectional Standard 6-pin Mode  
6.6.3.2 Multiport Full-Speed Universal Serial Bus (USB) – Bidirectional Standard 4-pin Mode  
Table 6-72 and Table 6-73 assume testing over the recommended operating conditions (see Figure 6-38).  
Table 6-71. Low-/Full-Speed USB Timing Conditions – Bidirectional Standard 4-pin Mode  
TIMING CONDITION PARAMETER  
VALUE  
UNIT  
Input Conditions  
tR  
Input signal rise time  
Input signal fall time  
2.0  
2.0  
ns  
ns  
tF  
Output Conditions  
CLOAD  
Output load capacitance  
15.0  
pF  
Table 6-72. Low-/Full-Speed USB Timing Requirements – Bidirectional Standard 4-pin Mode  
NO.  
PARAMETER  
1.15 V  
MAX  
1.0 V  
UNIT  
MIN  
MIN  
MAX  
FSU10 td(DAT,SE0)  
FSU11 td(DAT,SE0)  
FSU12 td(RCVU0)  
FSU13 td(RCVU1)  
Time duration, mmx_txdat and mmx_txse0 low together  
during transition  
14.0  
14.0  
ns  
ns  
ns  
ns  
Time duration, mmx_txdat and mmx_txse0 high together  
during transition  
8.0  
8.0  
14.0  
8.0  
Time duration, mmx_rrxcv undefine during a single end 0  
(mmx_txdat and mmx_txse0 low together)  
14.0  
8.0  
Time duration, mmx_rxrcv undefine during a single end 1  
(mmx_txdat and mmx_txse0 high together)  
(1) In mmx, x is equal to 0, 1, or 2.  
Table 6-73. Low-/Full-Speed USB Switching Characteristics – Bidirectional Standard 4-pin Mode  
NO.  
PARAMETER  
1.15 V  
MAX  
1.0 V  
UNIT  
MIN  
81.8  
81.8  
MIN  
81.8  
81.8  
MAX  
84.8  
84.8  
1.5  
FSU14  
FSU15  
FSU16  
td(TXENL-DATV)  
td(TXENL-SE0V)  
ts(DAT-SE0)  
Delay time, mmx_txen_n low to mmx_txdat valid  
Delay time, mmx_txen_n low to mmx_txse0 valid  
84.8  
84.8  
1.5  
ns  
ns  
ns  
Skew between mmx_txdat and mmx_txse0  
transition  
FSU17  
td(DATV-TXENH)  
Delay time, mmx_txdat invalid before mmx_txen_n  
high  
81.8  
81.8  
ns  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
183  
 
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 6-73. Low-/Full-Speed USB Switching Characteristics – Bidirectional Standard 4-pin Mode  
(continued)  
NO.  
PARAMETER  
1.15 V  
MAX  
1.0 V  
UNIT  
MIN  
MIN  
MAX  
FSU18  
td(SE0V-TXENH)  
Delay time, mmx_txse0 invalid before mmx_txen_n  
high  
81.8  
81.8  
ns  
tR(txen)  
tF(txen)  
tR(dat)  
tF(dat)  
tR(se0)  
tF(se0)  
Rise time, mmx_txen_n  
Fall time, mmx_txen_n  
Rise time, mmx_txdat  
Fall time, mmx_txdat  
Rise time, mmx_txse0  
Fall time, mmx_txse0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
ns  
ns  
ns  
ns  
ns  
ns  
(1) In mmx, x is equal to 0, 1, or 2.  
Transmit  
FSU16  
mmx_txen_n  
mmx_txdat  
mmx_txse0  
mmx_rxrcv  
Receive  
FSU10  
FSU14  
FSU15  
FSU17  
FSU18  
FSU11  
FSU11  
FSU13  
FSU10  
FSU12  
030-081  
In mmx, x is equal to 0, 1, or 2.  
Figure 6-38. Low-/Full-Speed USB – Bidirectional Standard 4-pin Mode  
6.6.3.3 Multiport Full-Speed Universal Serial Bus (USB) – Bidirectional Standard 3-pin Mode  
Table 6-75 and Table 6-76 assume testing over the recommended operating conditions below (see  
Figure 6-39).  
Table 6-74. Low-/Full-Speed USB Timing Conditions – Bidirectional Standard 3-pin Mode  
TIMING CONDITION PARAMETER  
VALUE  
UNIT  
Input Conditions  
tR  
Input signal rise time  
Input signal fall time  
2.0  
2.0  
ns  
ns  
tF  
Output Conditions  
CLOAD  
Output load capacitance  
15.0  
pF  
Table 6-75. Low-/Full-Speed USB Timing Requirements – Bidirectional Standard 3-pin Mode  
NO.  
PARAMETER  
1.15 V  
MAX  
1.0 V  
UNIT  
MIN  
MIN  
MAX  
FSU19  
FSU20  
td(DAT,SE0)  
td(DAT,SE0)  
Time duration, mmx_txdat and mmx_txse0 low together  
during transition  
14.0  
14.0  
ns  
ns  
Time duration, mmx_tsdat and mmx_txse0 high  
together during transition  
8.0  
8.0  
184  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
(1) In mmx, x is equal to 0, 1, or 2.  
Table 6-76. Low-/Full-Speed USB Switching Characteristics – Bidirectional Standard 3-pin Mode  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
81.8  
81.8  
MAX  
84.8  
84.8  
1.5  
MIN  
81.8  
81.8  
MAX  
84.8  
84.8  
1.5  
FSU21  
FSU22  
FSU23  
td(TXENL-DATV)  
td(TXENL-SE0V)  
ts(DAT-SE0)  
Delay time, mmx_txen_n low to mmx_txdat valid  
Delay time, mmx_txen_n low to mmx_txse0 valid  
ns  
ns  
ns  
Skew between mmx_txdat and mmx_txse0  
transition  
FSU24  
FSU25  
td(DATI-TXENH)  
td(SE0I-TXENH)  
Delay time, mmx_txdat invalid to mmx_txen_n  
high  
81.8  
81.8  
81.8  
81.8  
ns  
ns  
Delay time, mmx_txse0 invalid to mmx_txen_n  
high  
tR(do)  
tF(do)  
tR(do)  
tF(do)  
tR(do)  
tF(do)  
Rise time, mmx_txen_n  
Fall time, mmx_txen_n  
Rise time, mmx_txdat  
Fall time, mmx_txdat  
Rise time, mmx_txse0  
Fall time, mmx_txse0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
ns  
ns  
ns  
ns  
ns  
ns  
(1) In mmx, x is equal to 0, 1, or 2.  
Transmit  
mmx_txen_n  
mmx_txdat  
mmx_txse0  
Receive  
FSU21  
FSU22  
FSU24  
FSU19  
FSU20  
FSU20  
FSU23  
FSU25  
FSU19  
030-082  
In mmx, x is equal to 0, 1, or 2.  
Figure 6-39. Low-/Full-Speed USB – Bidirectional Standard 3-pin Mode  
6.6.3.4 Multiport Full-Speed Universal Serial Bus (USB) – Unidirectional TLL 6-pin Mode  
Table 6-78 and Table 6-79 assume testing over the recommended operating conditions (see Figure 6-40).  
Table 6-77. Low-/Full-Speed USB Timing Conditions – Unidirectional TLL 6-pin Mode  
TIMING CONDITION PARAMETER  
VALUE  
UNIT  
Input Conditions  
tR  
Input signal rise time  
Input signal fall time  
2
2
ns  
ns  
tF  
Output Conditions  
CLOAD  
Output load capacitance  
15  
pF  
Table 6-78. Low-/Full-Speed USB Timing Requirements – Unidirectional TLL 6-pin Mode  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
FSUT1  
FSUT2  
td(SE0,DAT)  
td(SE0,DAT)  
Time duration, mmx_txse0 and mmx_txdat low  
together during transition  
14  
14  
ns  
ns  
Time duration, mmx_txse0 and mmx_txdat high  
together during transition  
8
8
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
185  
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
(1) In mmx, x is equal to 0, 1, or 2.  
Table 6-79. Low-/Full-Speed USB Switching Characteristics – Unidirectional TLL 6-pin Mode  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
81.8  
81.8  
81.8  
81.8  
MAX  
84.8  
84.8  
MIN  
81.8  
81.8  
81.8  
81.8  
MAX  
84.8  
84.8  
FSUT3  
FSUT4  
FSUT5  
FSUT6  
FSUT7  
td(TXENH-DPV)  
td(TXENH-DMV)  
td(DPI-TXENL)  
td(DMI-TXENL)  
ts(DP-DM)  
Delay time, mmx_txen_n high to mmx_rxdp valid  
Delay time, mmx_txen_n high to mmx_rxdm valid  
Delay time, mmx_rxdp invalid mmx_txen_n low  
Delay time, mmx_rxdm invalid mmx_txen_n low  
ns  
ns  
ns  
ns  
ns  
Skew between mmx_rxdp and mmx_rxdm  
transition  
1.5  
1.5  
1.5  
1.5  
FSUT8  
ts(DP,DM-RCV)  
Skew between mmx_rxdp, mmx_rxdm, and  
mmx_rxrcv transition  
ns  
tR(rxrcv)  
tF(rxrcv)  
tR(dp)  
Rise time, mmx_rxrcv  
Fall time, mmx_rxrcv  
Rise time, mmx_rxdp  
Fall time, mmx_rxdp  
Rise time, mmx_rxdm  
Fall time, mmx_rxdm  
4
4
4
4
4
4
4
4
4
4
4
4
ns  
ns  
ns  
ns  
ns  
ns  
tF(dp)  
tR(dm)  
tF(dm)  
1. In mmx, x is equal to 0, 1, or 2.  
mmx_txen_n  
mmx_txdat  
mmx_txse0  
mmx_rxdp  
mmx_rxdm  
mmx_rxrcv  
Transmit  
Receive  
FSUT1  
FSUT2  
FSUT1  
FSUT2  
FSUT3  
FSUT4  
FSUT5  
FSUT6  
FSUT7  
FSUT8  
030-083  
In mmx, x is equal to 0, 1, or 2.  
Figure 6-40. Low-/Full-Speed USB – Unidirectional TLL 6-pin Mode  
6.6.3.5 Multiport Full-Speed Universal Serial Bus (USB) – Bidirectional TLL 4-pin Mode  
Table 6-81 and Table 6-82 assume testing over the recommended operating conditions (see Figure 6-41).  
Table 6-80. Low-/Full-Speed USB Timing Conditions – Bidirectional TLL 4-pin Mode  
TIMING CONDITION PARAMETER  
VALUE  
UNIT  
Input Conditions  
tR  
Input signal rise time  
Input signal fall time  
2
2
ns  
ns  
tF  
Output Conditions  
CLOAD  
Output load capacitance  
15  
pF  
186  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 6-81. Low-/Full-Speed USB Timing Requirements – Bidirectional TLL 4-pin Mode  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
FSUT9  
td(DAT,SE0)  
Time duration, mmx_txdat and mmx_txse0 low  
together during transition  
14  
14  
ns  
ns  
FSUT10 td(DAT,SE0)  
Time duration, mmx_tsdat and mmx_txse0 high  
together during transition  
8
8
(1) In mmx, x is equal to 0, 1, or 2.  
Table 6-82. Low-/Full-Speed USB Switching Characteristics – Bidirectional TLL 4-pin Mode  
NO.  
PARAMETER  
1.15 V  
MAX  
1.0 V  
UNIT  
MIN  
81.8  
81.8  
MIN  
81.8  
81.8  
MAX  
84.8  
84.8  
1.5  
FSUT11 td(TXENL-DATV)  
FSUT12 td(TXENL-SE0V)  
FSUT13 ts(DAT-SE0)  
Delay time, mmx_txen_n active to mmx_txdat valid  
Delay time, mmx_txen_n active to mmx_txse0 valid  
84.8  
84.8  
1.5  
ns  
ns  
ns  
Skew between mmx_txdat and mmx_txse0  
transition  
FSUT14 ts(DP,DM-RCV)  
Skew between mmx_rxdp, mmx_rxdm, and  
mmx_rxrcv transition  
1.5  
1.5  
ns  
FSUT15 td(DATI-TXENL)  
Delay time, mmx_txse0 invalid to mmx_txen_n Low  
Delay time, mmx_txdat invalid to mmx_txen_n Low  
Rise time, mmx_rxrcv  
81.8  
81.8  
81.8  
81.8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
FSUT16 td(SE0I-TXENL)  
tR(rcv)  
tF(rcv)  
tR(dat)  
tF(dat)  
tR(se0)  
tF(se0)  
4
4
4
4
4
4
4
4
4
4
4
4
Fall time, mmx_rxrcv  
Rise time, mmx_txdat  
Fall time, mmx_txdat  
Rise time, mmx_txse0  
Fall time, mmx_txse0  
(1) In mmx, x is equal to 0, 1, or 2.  
mmx_txen_n  
Transmit  
Receive  
FSUT9  
FSUT11  
FSUT15  
FSUT16  
FSUT10  
mmx_txdat  
mmx_txse0  
mmx_rxrcv  
FSUT12  
FSUT13  
FSUT9  
FSUT10  
FSUT14  
030-084  
In mmx, x is equal to 0, 1, or 2.  
Figure 6-41. Low-/Full-Speed USB – Bidirectional TLL 4-pin Mode  
6.6.3.6 Multiport Full-Speed Universal Serial Bus (USB) – Bidirectional TLL 3-pin Mode  
Table 6-84 and Table 6-85 assume testing over the recommended operating conditions (see Figure 6-42).  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
187  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 6-83. Low-/Full-Speed USB Timing Conditions – Bidirectional TLL 3-pin Mode  
TIMING CONDITION PARAMETER  
VALUE  
UNIT  
Input Conditions  
tR  
Input signal rise time  
Input signal fall time  
2
2
ns  
ns  
tF  
Output Conditions  
CLOAD  
Output load capacitance  
15  
pF  
Table 6-84. Low-/Full-Speed USB Timing Requirements – Bidirectional TLL 3-pin Mode  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
FSUT17 td(DAT,SE0) Time duration, mmx_txdat and mmx_txse0 low  
together during transition  
14  
14  
ns  
ns  
FSUT18 td(DAT,SE0) Time duration, mmx_tsdat and mmx_txse0 high  
together during transition  
8
8
(1) In mmx, x is equal to 0, 1, or 2.  
Table 6-85. Low-/Full-Speed USB Switching Characteristics – Bidirectional TLL 3-pin Mode  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
81.8  
81.8  
MAX  
84.8  
84.8  
1.5  
MIN  
81.8  
81.8  
MAX  
84.8  
84.8  
1.5  
FSUT19 td(TXENH-DATV)  
FSUT20 td(TXENH-SE0V)  
FSUT21 ts(DAT-SE0)  
Delay time, mmx_txen_n high to mmx_txdat valid  
Delay time, mmx_txen_n high to mmx_txse0 valid  
ns  
ns  
ns  
Skew between mmx_txdat and mmx_txse0  
transition  
FSUT22 td(DATI-TXENL)  
Delay time, mmx_txdat invalid mmx_txen_n low  
Delay time, mmx_txse0 invalid mmx_txen_n low  
Rise time, mmx_txdat  
81.8  
81.8  
81.8  
81.8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
FSUT23 td(SE0I-TXENL)  
tR(dat)  
tF(dat)  
tR(se0)  
tF(se0)  
tR(do)  
tF(do)  
4
4
4
4
4
4
4
4
4
4
4
4
Fall time, mmx_txdat  
Rise time, mmx_txse0  
Fall time, mmx_txse0  
Rise time, mmx_txse0  
Fall time, mmx_txse0  
(1) In mmx, x is equal to 0, 1, or 2.  
Receive  
FSUT17  
mmx_txen_n  
Transmit  
FSUT19  
FSUT22  
FSUT23  
FSUT18  
mmx_txdat  
mmx_txse0  
FSUT20  
FSUT21  
FSUT17  
FSUT18  
030-085  
In mmx, x is equal to 0, 1, or 2.  
Figure 6-42. Low-/Full-Speed USB – Bidirectional TLL 3-pin Mode  
6.6.4 Multiport High-Speed Universal Serial Bus (USB) Timing  
In addition to the full-speed USB controller, a high-speed (HS) USB OTG controller is instantiated inside  
OMAP3515/03. It allows high-speed transactions (up to 480 Mbit/s) on the USB ports 0, 1, 2, and 3.  
188  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Port 0:  
12-bit slave mode (SDR)  
Port 1 and port 2:  
12-bit master mode (SDR)  
12-bit TLL master mode (SDR)  
8-bit TLL master mode (DDR)  
Port 3:  
12-bit TLL master mode (SDR)  
8-bit TLL master mode (DDR)  
6.6.4.1 High-Speed Universal Serial Bus (USB) on Port 0 – 12-bit Slave Mode  
Table 6-87 and Table 6-88 assume testing over the recommended operating conditions (see Figure 6-43).  
Table 6-86. High-Speed USB Timing Conditions – 12-bit Slave Mode  
TIMING CONDITION PARAMETER  
VALUE  
UNIT  
Input Conditions  
tr  
Input Signal Rising Time  
Input Signal Falling Time  
2.00  
2.00  
ns  
ns  
tf  
Output Conditions  
Cload  
Output Load Capacitance  
3.50  
pF  
Table 6-87. High-Speed USB Timing Requirements – 12-bit Slave Mode(3)  
NO.  
PARAMETER  
1.15 V  
UNIT  
MIN  
MAX  
60.03  
500.00  
HSU0  
HSU3  
HSU4  
fp(CLK)  
hsusb0_clk clock frequency(1)(2)  
Cycle Jitter(2), hsusb0_clk  
MHz  
ps  
tj(CLK)  
ts(DIRV-CLKH)  
ts(NXTV-CLKH)  
th(CLKH-DIRIV)  
th(CLKH-NXT/IV)  
ts(DATAV-CLKH)  
th(CLKH-DATIV)  
Setup time, hsusb0_dir valid before hsusb0_clk rising edge  
Setup time, hsusb0_nxt valid before hsusb0_clk rising edge  
Hold time, hsusb0_dir valid after hsusb0_clk rising edge  
Hold time, hsusb0_nxt valid after hsusb0_clk rising edge  
Setup time, hsusb0_data[0:7] valid before hsusb0_clk rising edge  
Hold time, hsusb0_data[0:7] valid after hsusb0_clk rising edge  
6.7  
6.7  
0.0  
0.0  
6.7  
0.0  
ns  
ns  
ns  
ns  
HSU5  
HSU6  
ns  
ns  
(1) Related with the input maximum frequency supported by the I/F module.  
(2) Maximum cycle jitter supported by clk input clock.  
(3) The timing requirements are assured for the cycle jitter error condition specified.  
Table 6-88. High-Speed USB Switching Characteristics – 12-bit Slave Mode  
NO.  
PARAMETER  
1.15 V  
UNIT  
MIN  
0.5  
MAX  
HSU1 td(clkL-STPV)  
td(clkL-STPIV)  
HSU2 td(clkL-DV)  
td(clkL-DIV)  
Delay time, hsusb0_clk high to output usb0_stp valid  
Delay time, hsusb0_clk high to output usb0_stp invalid  
Delay time, hsusb0_clk high to output hsusb0_data[0:7] valid  
Delay time, hsusb0_clk high to output hsusb0_data[0:7] invalid  
Rising time, output signals  
9.0  
ns  
ns  
ns  
ns  
ns  
ns  
9.0  
0.5  
tr(do)  
2.0  
2.0  
tf(do)  
Falling time, output signals  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
189  
 
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
HSU0  
hsusb0_clk  
hsusb0_stp  
HSU1  
HSU1  
HSU3  
HSU4  
HSU6  
hsusb0_dir_&_nxt  
hsusb0_data[7:0]  
HSU5  
HSU2  
HSU2  
Data_OUT  
Data_IN  
030-086  
Figure 6-43. High-Speed USB – 12-bit Slave Mode  
6.6.4.2 High-Speed Universal Serial Bus (USB) on Ports 1 and 2 – 12-bit Master Mode  
Table 6-90 and Table 6-91 assume testing over the recommended operating conditions (see Figure 6-44).  
Table 6-89. High-Speed USB Timing Conditions – 12-bit Master Mode  
TIMING CONDITION PARAMETER  
VALUE  
UNIT  
Input Conditions  
tR  
Input signal rise time  
Input signal fall time  
2
2
ns  
ns  
tF  
Output Conditions  
CLOAD  
Output load capacitance  
3
pF  
Table 6-90. High-Speed USB Timing Requirements – 12-bit Master Mode(1)  
NO.  
PARAMETER  
1.15 V  
UNIT  
MIN  
9.3  
9.3  
0.2  
0.2  
9.3  
0.2  
MAX  
HSU3 ts(DIRV-CLKH)  
ts(NXTV-CLKH)  
HSU4 th(CLKH-DIRIV)  
th(CLKH-NXT/IV)  
Setup time, hsusbx_dir valid before hsusbx_clk rising edge  
Setup time, hsusbx_nxt valid before hsusbx_clk rising edge  
Hold time, hsusbx_dir valid after hsusbx_clk rising edge  
Hold time, hsusbx_nxt valid after hsusbx_clk rising edge  
Setup time, hsusbx_data[0:7] valid before hsusbx_clk rising edge  
Hold time, hsusbx_data[0:7] valid after hsusbx_clk rising edge  
ns  
ns  
ns  
ns  
ns  
ns  
HSU5 ts(DATAV-CLKH)  
HSU6 th(CLKH-DATIV)  
(1) In hsusbx, x is equal to 1 or 2.  
Table 6-91. High-Speed USB Switching Characteristics – 12-bit Master Mode(1)  
N O.  
PARAMETER  
1.15 V  
UNIT  
MIN  
MAX  
60  
HSU0  
HSU1  
HSU2  
fp(CLK)  
hsusbx_clk clock frequency  
Jitter standard deviation(2), hsusbx_clk  
MHz  
ps  
tj(CLK)  
200  
13  
td(clkL-STPV)  
td(clkL-STPIV)  
td(clkL-DV)  
td(clkL-DIV)  
tR(do)  
Delay time, hsusbx_clk high to output hsusbx_stp valid  
Delay time, hsusbx_clk high to output hsusbx_stp invalid  
Delay time, hsusbx_clk high to output hsusbx_data[0:7] valid  
Delay time, hsusbx_clk high to output hsusbx_data[0:7] invalid  
Rise time, output signals  
ns  
2
2
ns  
13  
ns  
ns  
2
2
ns  
tF(do)  
Fall time, output signals  
ns  
(1) In hsusbx, x is equal to 1 or 2.  
190 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
 
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
(2) The jitter probability density can be approximated by a Gaussian function.  
HSU0  
hsusbx_clk  
HSU1  
HSU1  
hsusbx_stp  
hsusbx_dir_&_nxt  
hsusbx_data[7:0]  
HSU3  
HSU4  
HSU5  
HSU2  
HSU2  
HSU6  
Data_OUT  
Data_IN  
030-087  
In hsusbx, x is equal to 1 or 2.  
Figure 6-44. High-Speed USB – 12-bit Master Mode  
6.6.4.3 High-Speed Universal Serial Bus (USB) on Ports 1, 2, and 3 – 12-bit TLL Master Mode  
Table 6-93 and Table 6-94 assume testing over the recommended operating conditions (see Figure 6-45).  
Table 6-92. High-Speed USB Timing Conditions – 12-bit TLL Master Mode  
TIMING CONDITION PARAMETER  
Input Conditions  
VALUE  
UNIT  
tR  
Input signal rise time  
Input signal fall time  
2
2
ns  
ns  
tF  
Output Conditions  
CLOAD  
Output load capacitance  
3
pF  
Table 6-93. High-Speed USB Timing Requirements – 12-bit TLL Master Mode(1)  
NO.  
PARAMETER  
1.15 V  
UNIT  
MIN  
6
MAX  
HSU2 ts(STPV-CLKH)  
HSU3 ts(CLKH-STPIV)  
HSU4 ts(DATAV-CLKH)  
HSU5 th(CLKH-DATIV)  
Setup time, hsusbx_tll_stp valid before hsusbx_tll_clk rising edge  
Hold time, hsusbx_tll_stp valid after hsusbx_tll_clk rising edge  
Setup time, hsusbx_tll_data[7:0] valid before hsusbx_tll_clk rising edge  
Hold time, hsusbx_tll_data[7:0] valid after hsusbx_tll_clk rising edge  
ns  
ns  
ns  
ns  
0
6
0
(1) In hsusbx, x is equal to 1, 2, or 3.  
Table 6-94. High-Speed USB Switching Characteristics – 12-bit TLL Master Mode(1)  
NO.  
PARAMETER  
1.15 V  
UNIT  
MIN  
MAX  
60  
HSU0 fp(CLK)  
tj(CLK)  
hsusbx_tll_clk clock frequency  
Jitter standard deviation(2), hsusbx_tll_clk  
MHz  
ps  
200  
9
HSU6 td(CLKL-DIRV)  
td(CLKL-DIRIV)  
Delay time, hsusbx_tll_clk high to output hsusbx_tll_dir valid  
Delay time, hsusbx_tll_clk high to output hsusbx_tll_dir invalid  
Delay time, hsusbx_tll_clk high to output hsusbx_tll_nxt valid  
Delay time, hsusbx_tll_clk high to output hsusbx_tll_nxt invalid  
Delay time, hsusbx_tll_clk high to output hsusbx_tll_data[7:0] valid  
Delay time, hsusbx_tll_clk high to output hsusbx_tll_data[7:0] invalid  
ns  
0
0
0
ns  
td(CLKL-NXTV)  
9
9
ns  
td(CLKL-NXTIV)  
HSU7 td(CLKL-DV)  
td(CLKL-DIV)  
ns  
ns  
ns  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
191  
 
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 6-94. High-Speed USB Switching Characteristics – 12-bit TLL Master Mode(1) (continued)  
NO.  
PARAMETER  
1.15 V  
UNIT  
MIN  
MAX  
tR(do)  
tF(do)  
Rise time, output signals  
Fall time, output signals  
2
2
ns  
ns  
(1) In hsusbx, x is equal to 1, 2, or 3.  
(2) The jitter probability density can be approximated by a Gaussian function.  
HSU0  
hsusbx_tll_clk  
HSU3  
HSU2  
hsusbx_tll_stp  
HSU6  
HSU6  
HSU7  
hsusbx_tll_dir_&_nxt  
HSU4  
HSU7  
HSU5  
Data_IN  
Data_OUT  
hsusbx_tll_data[7:0]  
030-088  
In hsusbx, x is equal to 1, 2, or 3.  
Figure 6-45. High-Speed USB – 12-bit TLL Master Mode  
6.6.4.4 High-Speed Universal Serial Bus (USB) on Ports 1, 2, and 3 – 8-bit TLL Master Mode  
Table 6-96 and Table 6-97 assume testing over the recommended operating conditions (see Figure 6-46).  
Table 6-95. High-Speed USB Timing Conditions – 8-bit TLL Master Mode  
TIMING CONDITION PARAMETER  
Input Conditions  
VALUE  
UNIT  
tR  
Input signal rise time  
Input signal fall time  
2
2
ns  
ns  
tF  
Output Conditions  
CLOAD  
Output load capacitance  
3
pF  
Table 6-96. High-Speed USB Timing Requirements – 8-bit TLL Master Mode(1)  
NO.  
PARAMETER  
1.15 V  
UNIT  
MIN  
6
MAX  
HSU2 ts(STPV-CLKH)  
HSU3 ts(CLKH-STPIV)  
HSU4 ts(DATAV-CLKH)  
HSU5 th(CLKH-DATIV)  
Setup time, hsusbx_tll_stp valid before hsusbx_tll_clk rising edge  
Hold time, hsusbx_tll_stp valid after hsusbx_tll_clk rising edge  
Setup time, hsusbx_tll_data[3:0] valid before hsusbx_tll_clk rising edge  
Hold time, hsusbx_tll_data[3:0] valid after hsusbx_tll_clk rising edge  
ns  
ns  
ns  
ns  
0
3
–0.8  
(1) In hsusbx, x is equal to 1, 2, or 3.  
Table 6-97. High-Speed USB Switching Characteristics – 8-bit TLL Master Mode(1)  
NO.  
PARAMETER  
1.15 V  
UNIT  
MIN  
MAX  
60  
HSU0  
fp(CLK)  
tj(CLK)  
hsusbx_tll_clk clock frequency  
Jitter standard deviation(2), hsusbx_tll_clk  
MHz  
ps  
200  
192  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
 
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 6-97. High-Speed USB Switching Characteristics – 8-bit TLL Master Mode(1) (continued)  
NO.  
PARAMETER  
1.15 V  
UNIT  
MIN  
MAX  
52.4%  
9
HSU1  
HSU6  
tj(CLK)  
Duty cycle, hsusbx_tll_clk pulse duration (low and high)  
Delay time, hsusbx_tll_clk high to output hsusbx_tll_dir valid  
Delay time, hsusbx_tll_clk high to output hsusbx_tll_dir invalid  
Delay time, hsusbx_tll_clk high to output hsusbx_tll_nxt valid  
Delay time, hsusbx_tll_clk high to output hsusbx_tll_nxt invalid  
Delay time, hsusbx_tll_clk high to output hsusbx_tll_data[3:0] valid  
Delay time, hsusbx_tll_clk high to output hsusbx_tll_data[3:0] invalid  
Rise time, output signals  
47.6%  
td(CLKL-DIRV)  
td(CLKL-DIRIV)  
td(CLKL-NXTV)  
td(CLKL-NXTIV)  
td(CLKL-DV)  
td(CLKL-DIV)  
tR(do)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0
0
0
9
4
HSU7  
HSU8  
2
2
tF(do)  
Fall time, output signals  
(1) In hsusbx, x is equal to 1, 2, or 3.  
(2) The jitter probability density can be approximated by a Gaussian function.  
HSU0  
HSU1  
HSU1  
hsusbx_tll_clk  
HSU3  
HSU2  
hsusbx_tll_stp  
HSU6  
HSU6  
hsusbx_tll_dir_&_nxt  
HSU5  
HSU4  
HSU5  
HSU8  
HSU7  
HSU4  
HSU7  
Data_IN  
Data_IN_(n+1)  
Data_IN_(n+2)  
Data_OUT  
Data_OUT_(n+1)  
hsusbx_tll_data[3:0]  
030-089  
In hsusbx, x is equal to 1, 2, or 3.  
Figure 6-46. High-Speed USB – 8-bit TLL Master Mode  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
193  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
6.6.5 I2C Interface  
The multimaster I2C peripheral provides an interface between two or more devices via an I2C serial bus.  
The I2C controller supports the multimaster mode which allows more than one device capable of  
controlling the bus to be connected to it. Each I2C device is recognized by a unique address and can  
operate as either transmitter or receiver, according to the function of the device. In addition to being a  
transmitter or receiver, a device connected to the I2C bus can also be considered as master or slave when  
performing data transfers. This data transfer is carried out via two serial bidirectional wires:  
An SDA data line  
An SCL clock line  
The following sections illustrate the data transfer is in master or slave configuration with 7-bit addressing  
format. The I2C interface is compliant with Philips I2C specification version 2.1. It supports standard mode  
(up to 100K bits/s), fast mode (up to 400K bits/s) and high-speed mode (up to 3.4Mb/s) .  
6.6.5.1 I2C Standard/Fast-Speed Mode  
Table 6-98. I2C Standard/Fast-Speed Mode Timings  
NO.  
PARAMETER(4)  
Standard Mode  
Fast Mode  
UNIT  
MIN  
MAX  
MIN  
MAX  
fSCL  
Clock Frequency, i2cX_scl  
100  
400  
kHz  
µs  
µs  
ns  
I1  
I2  
I3  
I4  
I5  
tw(SCLH)  
Pulse Duration, i2cX_scl high  
4
0.6  
1.3  
100(1)  
0(2)  
tw(SCLL)  
Pulse Duration, i2cX_scl low  
4.7  
250  
0(2)  
4.7  
tsu(SDAV-SCLH)  
th(SCLH–SDAV)  
tsu(SDAL-SCLH)  
Setup time, i2cX_sda valid before i2cX_scl active level  
Hold time, i2cX_sda valid after i2cX_scl active level  
3.45(3)  
0.9(3)  
µs  
µs  
Setup time, i2cX_scl high after i2cX_sda low (for a  
START(5) condition or a repeated START condition)  
0.6  
I6  
I7  
I8  
th(SCLH–SDAH)  
th(SCLH–RSTART)  
tw(SDAH)  
Hold time, i2cX_sda low level after i2cX_scl high level  
(STOP condition)  
4
4
0.6  
0.6  
1.3  
µs  
µs  
µs  
Hold time, i2cX_sda low level after i2cX_scl high level (for  
a repeated START condition)  
Pulse duration, i2cX_sda high between STOP and START  
conditions  
4.7  
tR(SCL)  
tF(SCL)  
tR(SDA)  
tF(SDA)  
CB  
Rise time, i2cX_scl  
1000  
300  
300  
300  
300  
300  
400  
ns  
ns  
ns  
ns  
pF  
Fall time, i2cX_scl  
Rise time, i2cX_sda  
Fall time, i2cX_sda  
1000  
300  
Capacitive load for each bus line  
400  
(1) A fast-mode I2C-bus device can be used in a standard-mode I2C-bus system, but the requirement tsu(SDAV-SCLH) 250 ns must then be  
met. This is automatically the case if the device does not stretch the low period of the i2cx_scl. If such a device does stretch the low  
period of the i2cx_scl, it must output the next data bit to the i2cx_sda line tr(SDA) max + tsu(SDAV-SCLH) = 1000 + 250 = 1250 ns (according  
to the standard-mode I2C-bus specification) before the i2cx_scl line is released.  
(2) The device provides (via the I2C bus) a hold time of at least 300 ns for the i2cx_sda signal (refer to the fall and rise time of i2cx_scl) to  
bridge the undefined region of the falling edge of i2cx_scl.  
(3) The maximum th(SCLH-SDA) has only to be met if the device does not stretch the low period of the i2cx_scl signal.  
(4) In i2cX, X is equal to 1, 2, 3, or 4. Note that I2C4 is master transmitter only.  
(5) After this time, the first clock is generated.  
194  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
START REPEAT  
START  
START  
STOP  
i2cX_sda  
I2  
I5  
I6  
I8  
I7  
I6  
I1  
I3  
I4  
i2cX_scl  
030-093  
Figure 6-47. I2C – Standard/Fast Mode  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
195  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
6.6.5.2 I2C High-Speed Mode  
Table 6-99. I2C HighSpeed Mode Timings(3)(4)  
NO.  
PARAMETER  
CB = 100 pF MAX  
CB = 400 pF MAX  
UNIT  
MIN  
MAX  
MIN  
MAX  
fSCL  
Clock frequency, i2cX_scl  
Pulse duration, i2cX_scl high  
Pulse duration, i2cX_scl low  
3.4  
1.7  
MHz  
µs  
I1  
I2  
I3  
tw(SCLH)  
tw(SCLL)  
60(1)  
160(1)  
10  
120(1)  
320(1)  
10  
µs  
tsu(SDAV-SCLH)  
Setup time, i2cX_sda valid before i2cX_scl  
active level  
ns  
I4  
I5  
th(SCLH–SDAV)  
tsu(SDAL-SCLH)  
Hold time, i2cX_sda valid after i2cX_scl active  
level  
0(4)  
70  
0(4)  
150  
µs  
µs  
Setup time, i2cX_scl high after i2cX_sda low  
(for a START(2) condition or a repeated START  
condition)  
160  
160  
I6  
I7  
th(SCLH–SDAH)  
Hold time, i2cX_sda low level after i2cX_scl high  
level (STOP condition)  
160  
160  
160  
160  
µs  
th(SCLH–RSTART)  
Hold time, i2cX_sda low level after i2cX_scl high  
level (for a repeated START condition)  
ns  
tR(SCL)  
tR(SCL)  
Rise time, i2cX_scl  
40  
80  
80  
ns  
ns  
Rise time, i2cX_scl after a repeated START  
condition and after a bit acknowledge  
160  
tF(SCL)  
tR(SDA)  
tF(SDA)  
Fall time, i2cX_scl  
Rise time, i2cX_sda  
Fall time, i2cX_sda  
40  
80  
80  
80  
ns  
ns  
ns  
160  
160  
(1) HS-mode master devices generate a serial clock signal with a high to low ratio of 1 to 2. tw(SCLL) > 2 × tw(SCLH)  
.
(2) After this time, the first clock is generated.  
(3) In i2cX, X is equal to 1, 2, 3, or 4. Note that I2C4 is master transmitter only.  
(4) The device provides (via the I2C bus) a hold time of at least 300 ns for the i2cx_sda signal (refer to the fall and rise time of i2cx_scl) to  
bridge the undefined region of the falling edge of i2cx_scl.  
START REPEAT  
STOP  
I7  
i2cX_sda  
i2cX_scl  
I5  
I6  
I1  
I2  
I3  
I4  
030-094  
Figure 6-48. I2C – High-Speed Mode(1)(2)(3)  
(1) HS-mode master devices generate a serial clock signal with a high-to-low ratio of 1 to 2. tw(SCLL) > 2 x tw(SCLH)  
(2) In i2cX, X is equal to 1, 2, 3, or 4. Note that I2C4 is master transmitter only.  
(3) After this time, the first clock is generated.  
.
Table 6-100. Correspondence Standard vs. TI Timing References  
TI-OMAP  
STANDARD-I2C  
S/F Mode  
FSCL  
HS Mode  
FSCLH  
fSCL  
I1  
I2  
I3  
I4  
I5  
I6  
tw(SCLH)  
THIGH  
THIGH  
tw(SCLL)  
TLOW  
TLOW  
tsu(SDAV-SCLH)  
th(SCLH-SDAV)  
tsu(SDAL-SCLH)  
th(SCLH-SDAH)  
TSU;DAT  
TSU;DAT  
TSU;STA  
THD;STA  
TSU;DAT  
TSU;DAT  
TSU;STA  
THD;STA  
196  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 6-100. Correspondence Standard vs. TI Timing References (continued)  
TI-OMAP  
STANDARD-I2C  
S/F Mode  
TSU;STO  
TBUF  
HS Mode  
I7  
I8  
th(SCLH-RSTART)  
tw(SDAH)  
TSU;STO  
6.6.6 HDQ / 1-Wire Interfaces  
This module is intended to work with both the HDQ and the 1-Wire protocols. The protocols use a single  
wire to communicate between the master and the slave. The protocols employ an asynchronous return to  
1 mechanism where, after any command, the line is pulled high.  
6.6.6.1 HDQ Protocol  
Table 6-101 and Table 6-102 assume testing over the recommended operating conditions (see  
Figure 6-49 through Figure 6-52).  
Table 6-101. HDQ Timing Requirements  
PARAMETER  
tCYCD  
DESCRIPTION  
Bit window  
MIN  
MAX  
UNIT  
253  
µs  
tHW1  
Reads 1  
68  
tHW0  
Reads 0  
180  
tRSPS  
Command to host respond time(1)  
(1) Defined by software.  
Table 6-102. HDQ Switching Characteristics  
PARAMETER  
DESCRIPTION  
MIN  
TYP  
193  
63  
MAX  
UNIT  
tB  
Break timing  
Break recovery  
Bit window  
µs  
tBR  
tCYCH  
tDW1  
tDW0  
253  
1.3  
Sends1 (write)  
Sends0 (write)  
101  
tB  
tBR  
HDQ  
030-095  
Figure 6-49. HDQ Break (Reset) Timing  
tCYCH  
tHW0  
tHW1  
HDQ  
030-096  
Figure 6-50. HDQ Read Bit Timing (Data)  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
197  
 
 
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
tCYCD  
tDW0  
tDW1  
HDQ  
030-097  
Figure 6-51. HDQ Write Bit Timing (Command/Address or Data)  
Command _byte_written  
0_(LSB)  
Data_byte_received  
tRSPS  
1
Break  
1
6
7_(MSB)  
0_(LSB)  
6
HDQ  
030-098  
Figure 6-52. HDQ Communication Timing  
6.6.6.2 1-Wire Protocol  
Table 6-103 and Table 6-104 assume testing over the recommended operating conditions (see  
Figure 6-53 through Figure 6-55).  
Table 6-103. 1-Wire Timing Requirements  
PARAMETER  
tPDH  
DESCRIPTION  
MIN  
MAX  
UNIT  
Presence pulse delay high  
Presence pulse delay low  
Read bit-zero time  
68  
µs  
tPDL  
68 – tPDH  
tRDV + tREL  
102  
Table 6-104. 1-Wire Switching Characteristics  
PARAMETER  
tRSTL  
DESCRIPTION  
MIN  
TYP  
484  
484  
102  
1.3  
MAX  
UNIT  
Reset time low  
µs  
tRSTH  
Reset time high  
Write bit cycle time  
Write bit-one time  
Write bit-zero time  
Recovery time  
tSLOT  
tLOW1  
tLOW0  
101  
134  
13  
tREC  
tLOWR  
Read bit strobe time  
tRSTH  
tPDL  
tRTSL  
tPDH  
1-WIRE  
030-099  
Figure 6-53. 1-Wire Break (Reset) Timing  
198  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
 
 
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
tSLOT_and_ tREC  
tRDV_and_ tREL  
tLOWR  
1-WIRE  
030-100  
Figure 6-54. 1-Wire Read Bit Timing (Data)  
tSLOT_and_tREC  
tLOW0  
1-WIRE  
tLOW1  
030-101  
Figure 6-55. 1-Wire Write Bit Timing (Command/Address or Data)  
6.6.7 UART IrDA Interface  
The IrDA module can operate in three different modes:  
Slow infrared (SIR) (115.2 Kbits/s)  
Medium infrared (MIR) (0.576 Mbits/s and 1.152 Mbits/s)  
Fast infrared (FIR) (4 Mbits/s)  
For more information about this interface, see the UART/IrDA chapter in the OMAP35xx ES2.0 Technical  
Reference Manual (TRM) [literature number TBD].  
Pulse duration  
90%  
90%  
50%  
50%  
10%  
10%  
tr  
tf  
030-118  
Figure 6-56. UART IrDA Pulse Parameters  
6.6.7.1 IrDA—Receive Mode  
Table 6-105. UART IrDA—Signaling Rate and Pulse Duration—Receive Mode  
ELECTRICAL PULSE DURATION  
SIGNALING RATE  
UNIT  
MIN  
NOMINAL  
SIR  
MAX  
2.4 Kbit/s  
9.6 Kbit/s  
19.2 Kbit/s  
1.41  
1.41  
1.41  
78.1  
19.5  
9.75  
88.55  
22.13  
11.07  
µs  
µs  
µs  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
199  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 6-105. UART IrDA—Signaling Rate and Pulse Duration—Receive Mode  
(continued)  
ELECTRICAL PULSE DURATION  
SIGNALING RATE  
UNIT  
MIN  
1.41  
1.41  
1.41  
NOMINAL  
4.87  
3.25  
1.62  
MIR  
MAX  
5.96  
4.34  
2.23  
38.4 Kbit/s  
57.6 Kbit/s  
115.2 Kbit/s  
µs  
µs  
µs  
0.576 Mbit/s  
1.152 Mbit/s  
297.2  
149.6  
416  
518.8  
258.4  
ns  
ns  
208  
FIR  
4.0 Mbit/s (Single pulse)  
4.0 Mbit/s (Double pulse)  
67  
125  
164  
289  
ns  
ns  
190  
250  
Table 6-106. UART IrDA—Rise and Fall Time—Receive  
Mode  
PARAMETER  
MAX  
UNIT  
tR  
tF  
Rising time,  
uart3_rx_irrx  
200  
ns  
Falling time,  
uart3_rx_irrx  
200  
ns  
6.6.7.2 IrDA—Transmit Mode  
Table 6-107. UART IrDA—Signaling Rate and Pulse Duration—Transmit Mode  
SIGNALING RATE  
ELECTRICAL PULSE DURATION  
UNIT  
MIN  
NOMINAL  
SIR  
MAX  
2.4 Kbit/s  
9.6 Kbit/s  
78.1  
19.5  
9.75  
4.87  
3.25  
1.62  
78.1  
19.5  
9.75  
4.87  
3.25  
1.62  
MIR  
78.1  
19.5  
9.75  
4.87  
3.25  
1.62  
µs  
µs  
µs  
µs  
µs  
µs  
19.2 Kbit/s  
38.4 Kbit/s  
57.6 Kbit/s  
115.2 Kbit/s  
0.576 Mbit/s  
1.152 Mbit/s  
414  
206  
416  
419  
211  
ns  
ns  
208  
FIR  
4.0 Mbit/s (Single pulse)  
4.0 Mbit/s (Double pulse)  
123  
248  
125  
128  
253  
ns  
ns  
250  
200  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
6.7 Removable Media Interfaces  
6.7.1 High-Speed Multimedia Memory Card (MMC) and Secure  
Digital IO Card (SDIO) Timing  
The MMC/SDIO host controller provides an interface to high-speed and  
standard MMC, SD memory cards, or SDIO cards. The application interface is  
responsible for managing transaction semantics. The MMC/SDIO host  
controller deals with MMC/SDIO protocol at transmission level, packing data,  
adding CRC, start/end bit, and checking for syntactical correctness.  
There are three MMC interfaces on the OMAP3515/03:  
MMC/SD/SDIO Interface 1:  
1.8 V/3 V support  
8 bits  
MMC/SD/SDIO Interface 2:  
1.8 V support  
8 bits  
4 bits with external transceiver allowing to support 3 V peripherals.  
Transceiver direction control signals are multiplexed with the upper four  
data bits.  
MMC/SD/SDIO Interface 3:  
1.8 V support  
8 bits  
6.7.1.1 MMC/SD/SDIO in SD Identification Mode  
Table 6-109 and Table 6-110 assume testing over the recommended operating conditions and electrical  
characteristic conditions.  
Table 6-108. MMC/SD/SDIO Timing Conditions – SD Identification Mode  
TIMING CONDITION PARAMETER  
VALUE  
UNIT  
SD Identification Mode  
Input Conditions  
tR  
Input signal rise time  
Input signal fall time  
10  
10  
ns  
ns  
tF  
Output Conditions  
CLOAD  
Output load capacitance  
40  
pF  
Table 6-109. MMC/SD/SDIO Timing Requirements – SD Identification Mode(1)(2)(3)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
SD Identification Mode  
MMC/SD/SDIO Interface 1 (1.8 V IO)  
HSSD3/SD3 tsu(CMDV-CLKIH)  
Setup time, mmc1_cmd valid before  
mmc1_clk rising clock edge  
1198.4  
1249.2  
1198.4  
1249.2  
ns  
ns  
HSSD4/SD4 tsu(CLKIH-CMDIV)  
Hold time, mmc1_cmd valid after  
mmc1_clk rising clock edge  
MMC/SD/SDIO Interface 1 (3.0 V IO)  
HSSD3/SD3 tsu(CMDV-CLKIH)  
HSSD4/SD4 tsu(CLKIH-CMDIV)  
MMC/SD/SDIO Interface 2  
Setup time, mmc1_cmd valid before  
mmc1_clk rising clock edge  
1198.4  
1249.2  
1198.4  
1249.2  
ns  
ns  
Hold time, mmc1_cmd valid after  
mmc1_clk rising clock edge  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
201  
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 6-109. MMC/SD/SDIO Timing Requirements – SD Identification Mode(1)(2)(3) (continued)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
HSSD3/SD3 tsu(CMDV-CLKIH)  
HSSD4/SD4 tsu(CLKIH-CMDIV)  
Setup time, mmc2_cmd valid before  
mmc2_clk rising clock edge  
1198.4  
1198.4  
ns  
ns  
Hold time, mmc2_cmd valid after  
mmc2_clk rising clock edge  
1249.2  
1249.2  
MMC/SD/SDIO Interface 3  
HSSD3/SD3 tsu(CMDV-CLKIH)  
Setup time, mmc3_cmd valid before  
mmc3_clk rising clock edge  
1198.4  
1249.2  
1198.4  
1249.2  
ns  
ns  
HSSD4/SD4 tsu(CLKIH-CMDIV)  
Hold time, mmc3_cmd valid after  
mmc3_clk rising clock edge  
(1) Timing parameters are referred to output clock specified in Table 6-110.  
(2) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified in Table 6-110.  
(3) Corresponding figures showing timing parameters are common with other interface modes. (See SD and HS SD modes).  
Table 6-110. MMC/SD/SDIO Switching Characteristics – SD Identification Mode(4)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
SD Identification Mode  
HSSD1/SD1 tc(clk)  
HSSD2/SD2 tW(clkH)  
HSSD2/SD2 tW(clkL)  
tdc(clk)  
Cycle time(1), output clk period  
2500  
2500  
ns  
ns  
ns  
ns  
ps  
Typical pulse duration, output clk high  
Typical pulse duration, output clk low  
Duty cycle error, output clk  
X(5)*PO(2)  
Y(6)*PO(2)  
X(5)*PO(2)  
Y(6)*PO(2)  
125  
125  
tj(clk)  
Jitter standard deviation(3), output clk  
200  
200  
MMC/SD/SDIO Interface 1 (1.8 V IO)  
tc(clk)  
Rise time, output clk  
10  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
tW(clkH)  
tW(clkL)  
tdc(clk)  
Fall time, output clk  
Rise time, output data  
Fall time, output data  
10  
10  
10  
10  
HSSD5/SD5 td(CLKOH-CMD) Delay time, mmc1_clk rising clock edge to  
mmc1_cmd transition  
6.3  
6.3  
6.3  
2492.7  
6.3  
6.3  
6.3  
2492.7  
MMC/SD/SDIO Interface 1 (3.0 V IO)  
tc(clk)  
Rise time, output clk  
Fall time, output clk  
Rise time, output data  
Fall time, output data  
10  
10  
0
0
ns  
ns  
ns  
ns  
ns  
tW(clkH)  
tW(clkL)  
tdc(clk)  
10  
10  
10  
10  
HSSD5/SD5 td(CLKOH-CMD) Delay time, mmc1_clk rising clock edge to  
mmc1_cmd transition  
2492.7  
2492.7  
MMC/SD/SDIO Interface 2  
tc(clk)  
Rise time, output clk  
Fall time, output clk  
Rise time, output data  
Fall time, output data  
10  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
tW(clkH)  
tW(clkL)  
tdc(clk)  
10  
10  
10  
10  
HSSD5/SD5 td(CLKOH-CMD) Delay time, mmc2_clk rising clock edge to  
mmc2_cmd transition  
2492.7  
2492.7  
MMC/SD/SDIO Interface 3  
tc(clk)  
Rise time, output clk  
Fall time, output clk  
Rise time, output data  
Fall time, output data  
10  
10  
10  
10  
10  
10  
10  
10  
ns  
ns  
ns  
ns  
tW(clkH)  
tW(clkL)  
tdc(clk)  
202  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 6-110. MMC/SD/SDIO Switching Characteristics – SD Identification Mode(4) (continued)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
2492.7  
MIN  
MAX  
HSSD5/SD5 td(CLKOH-CMD) Delay time, mmc3_clk rising clock edge to  
mmc3_cmd transition  
6.3  
6.3  
2492.7  
ns  
(1) Related with the output clk maximum and minimum frequencies programmable in I/F module.  
(2) PO = output clk period in ns.  
(3) The jitter probability density can be approximated by a Gaussian function.  
(4) Corresponding figures showing timing parameters are common with other interface modes (see SD and HS SD modes).  
(5) The X parameter is defined as follows.  
CLKD  
1 or Even  
Odd  
X
0.5  
(trunk[CLKD/2]+1)/CLKD  
For details about clock division factor CLKD, see the OMAP35xx ES2.0 Technical Reference Manual (TRM) [literature number  
SPRUF98].  
(6) The Y parameter is defined as follows.  
CLKD  
1 or Even  
Odd  
Y
0.5  
(trunk[CLKD/2])/CLKD  
For details about clock division factor CLKD, see the OMAP35xx ES2.0 Technical Reference Manual (TRM) [literature number  
SPRUF98].  
6.7.1.2 MMC/SD/SDIO in High-Speed MMC Mode  
Table 6-112 and Table 6-113 assume testing over the recommended operating conditions and electrical  
characteristic conditions (see Figure 6-57 and Figure 6-58).  
Table 6-111. MMC/SD/SDIO Timing Conditions – High-Speed MMC Mode  
TIMING CONDITION PARAMETER  
VALUE  
UNIT  
High-Speed MMC Mode  
Input Conditions  
tR  
Input signal rise time  
Input signal fall time  
3
3
ns  
ns  
tF  
Output Conditions  
CLOAD  
Output load capacitance  
30  
pF  
Table 6-112. MMC/SD/SDIO Timing Requirements – High-Speed MMC Mode(1)(2)(3)(4)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
High-Speed MMC Mode  
MMC/SD/SDIO Interface 1 (1.8 V IO)  
MMC3 tsu(CMDV-CLKIH)  
MMC4 tsu(CLKIH-CMDIV)  
MMC7 tsu(DATxV-CLKIH)  
MMC8 tsu(CLKIH-DATxIV)  
Setup time, mmc1_cmd valid before mmc1_clk  
rising clock edge  
5.6  
2.3  
5.6  
2.3  
26  
1.9  
26  
ns  
ns  
ns  
ns  
Hold time, mmc1_cmd valid after mmc1_clk  
rising clock edge  
Setup time, mmc1_datx valid before mmc1_clk  
rising clock edge  
Hold time, mmc1_datx valid after mmc1_clk  
rising clock edge  
1.9  
MMC/SD/SDIO Interface 1 (3.0 V IO)  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
203  
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 6-112. MMC/SD/SDIO Timing Requirements – High-Speed MMC Mode(1)(2)(3)(4) (continued)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
MMC3 tsu(CMDV-CLKIH)  
MMC4 tsu(CLKIH-CMDIV)  
MMC7 tsu(DATxV-CLKIH)  
MMC8 tsu(CLKIH-DATxIV)  
Setup time, mmc1_cmd valid before mmc1_clk  
rising clock edge  
5.6  
26  
ns  
ns  
ns  
ns  
Hold time, mmc1_cmd valid after mmc1_clk  
rising clock edge  
2.3  
5.6  
2.3  
1.9  
26  
Setup time, mmc1_datx valid before mmc1_clk  
rising clock edge  
Hold time, mmc1_datx valid after mmc1_clk  
rising clock edge  
1.9  
MMC/SD/SDIO Interface 2  
MMC3 tsu(CMDV-CLKIH)  
Setup time, mmc2_cmd valid before mmc2_clk  
rising clock edge  
5.6  
2.3  
5.6  
2.3  
26  
1.9  
26  
ns  
ns  
ns  
ns  
MMC4 tsu(CLKIH-CMDIV)  
MMC7 tsu(DATxV-CLKIH)  
MMC8 tsu(CLKIH-DATxIV)  
Hold time, mmc2_cmd valid after mmc2_clk  
rising clock edge  
Setup time, mmc2_datx valid before mmc2_clk  
rising clock edge  
Hold time, mmc2_datx valid after mmc2_clk  
rising clock edge  
1.9  
MMC/SD/SDIO Interface 3  
MMC3 tsu(CMDV-CLKIH)  
Setup time, mmc3_cmd valid before mmc3_clk  
rising clock edge  
5.6  
2.3  
5.6  
2.3  
26  
1.9  
26  
ns  
ns  
ns  
ns  
MMC4 tsu(CLKIH-CMDIV)  
MMC7 tsu(DATxV-CLKIH)  
MMC8 tsu(CLKIH-DATxIV)  
Hold time, mmc3_cmd valid after mmc3_clk  
rising clock edge  
Setup time, mmc3_datx valid before mmc3_clk  
rising clock edge  
Hold time, mmc3_datx valid after mmc3_clk  
rising clock edge  
1.9  
(1) Timing parameters are referred to output clock specified in Table 6-113.  
(2) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified in Table 6-113.  
(3) Corresponding figures showing timing parameters are common with Standard MMC mode (See Figure 6-57 and Figure 6-58)  
(4) In datx, x is equal to 1, 2, 3, 4, 5, 6, or 7.  
Table 6-113. MMC/SD/SDIO Switching Characteristics – High-Speed MMC Mode(4)(7)  
N O.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
High-Speed MMC Mode  
MMC1  
MMC2  
MMC2  
tc(clk)  
Cycle time(1), output clk period  
20.8  
41.7  
ns  
ns  
ns  
ps  
ps  
tW(clkH)  
tW(clkL)  
tdc(clk)  
tj(clk)  
Typical pulse duration, output clk high  
Typical pulse duration, output clk low  
Duty cycle error, output clk  
X(5)*PO(2)  
Y(6)*PO(2)  
X(5)*PO(2)  
Y(6)*PO(2)  
1041.7  
200  
2083.3  
200  
Jitter standard deviation(3), output clk  
MMC/SD/SDIO Interface 1 (1.8 V IO)  
tc(clk)  
Rise time, output clk  
3
3
3
3
ns  
ns  
ns  
ns  
ns  
tW(clkH)  
tW(clkL)  
Fall time, output clk  
Rise time, output data  
Fall time, output data  
3
3
tdc(clk)  
3
3
MMC5  
MMC6  
td(CLKOH-CMD)  
Delay time, mmc1_clk rising clock edge to  
mmc1_cmd transition  
3.7  
3.7  
14.1  
4.1  
4.1  
34.5  
td(CLKOH-DATx)  
Delay time, mmc1_clk rising clock edge to  
mmc1_datx transition  
14.1  
34.5  
ns  
MMC/SD/SDIO Interface 1 (3.0 V IO)  
204  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 6-113. MMC/SD/SDIO Switching Characteristics – High-Speed MMC Mode(4)(7) (continued)  
N O.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
tc(clk)  
Rise time, output clk  
3
3
3
3
ns  
ns  
ns  
ns  
ns  
tW(clkH)  
tW(clkL)  
Fall time, output clk  
Rise time, output data  
Fall time, output data  
3
3
tdc(clk)  
3
3
MMC5  
MMC6  
td(CLKOH-CMD)  
Delay time, mmc1_clk rising clock edge to  
mmc1_cmd transition  
3.7  
3.7  
14.1  
4.1  
4.1  
34.5  
td(CLKOH-DATx)  
Delay time, mmc1_clk rising clock edge to  
mmc1_datx transition  
14.1  
34.5  
ns  
MMC/SD/SDIO Interface 2  
tc(clk)  
Rise time, output clk  
Fall time, output clk  
Rise time, output data  
Fall time, output data  
3
3
3
3
ns  
ns  
ns  
ns  
ns  
tW(clkH)  
tW(clkL)  
tdc(clk)  
3
3
3
3
MMC5  
MMC6  
td(CLKOH-CMD)  
Delay time, mmc2_clk rising clock edge to  
mmc2_cmd transition  
3.7  
3.7  
14.1  
4.1  
4.1  
34.5  
td(CLKOH-DATx)  
Delay time, mmc2_clk rising clock edge to  
mmc2_datx transition  
16.5  
36.9  
ns  
MMC/SD/SDIO Interface 3  
tc(clk)  
Rise time, output clk  
Fall time, output clk  
Rise time, output data  
Fall time, output data  
3
3
3
3
ns  
ns  
ns  
ns  
ns  
tW(clkH)  
tW(clkL)  
tdc(clk)  
3
3
3
3
MMC5  
MMC6  
td(CLKOH-CMD)  
Delay time, mmc3_clk rising clock edge to  
mmc3_cmd transition  
3.7  
3.7  
14.1  
4.1  
4.1  
34.5  
td(CLKOH-DATx)  
Delay time, mmc3_clk rising clock edge to  
mmc3_datx transition  
14.1  
34.5  
ns  
(1) Related with the output clk maximum and minimum frequencies programmable in I/F module.  
(2) PO = output clk period in ns.  
(3) The jitter probability density can be approximated by a Gaussian function.  
(4) In datx, x is equal to 1, 2, 3, 4, 5, 6, or 7.  
(5) The X parameter is defined as follows.  
CLKD  
1 or Even  
Odd  
X
0.5  
(trunk[CLKD/2]+1)/CLKD  
For details about clock division factor CLKD, see the OMAP35xx ES2.0 Technical Reference Manual (TRM) [literature number  
SPRUF98].  
(6) The Y parameter is defined as follows.  
CLKD  
1 or Even  
Odd  
Y
0.5  
(trunk[CLKD/2])/CLKD  
For details about clock division factor CLKD, see the OMAP35xx ES2.0 Technical Reference Manual (TRM) [literature number  
SPRUF98].  
(7) Corresponding figures showing timing parameters are common with Standard MMC mode (See Figure 6-57 and Figure 6-58)  
6.7.1.3 MMC/SD/SDIO in Standard MMC Mode and MMC Identification Mode  
Table 6-115 and Table 6-116 assume testing over the recommended operating conditions and electrical  
characteristic conditions.  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
205  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 6-114. MMC/SD/SDIO Timing Conditions – Standard MMC Mode and MMC Identification Mode  
TIMING CONDITION PARAMETER  
Standard MMC Mode and MMC Identification Mode  
Input Conditions  
VALUE  
UNIT  
tR  
Input signal rise time  
Input signal fall time  
10  
10  
ns  
ns  
tF  
Output Conditions  
CLOAD  
Output load capacitance  
30  
pF  
206  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 6-115. MMC/SD/SDIO Timing Requirements – Standard MMC Mode and MMC Identification Mode(1)(2)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
Standard MMC Mode and MMC Identification Mode  
MMC/SD/SDIO Interface 1 (1.8 V IO)  
MMC3 tsu(CMDV-CLKIH)  
MMC4 tsu(CLKIH-CMDIV)  
MMC7 tsu(DATxV-CLKIH)  
MMC8 tsu(CLKIH-DATxIV)  
Setup time, mmc1_cmd valid before  
mmc1_clk rising clock edge  
13.6  
8.9  
65.7  
8.9  
ns  
ns  
ns  
ns  
Hold time, mmc1_cmd valid after mmc1_clk  
rising clock edge  
Setup time, mmc1_datx valid before  
mmc1_clk rising clock edge  
13.6  
8.9  
65.7  
8.9  
Hold time, mmc1_datx valid after mmc1_clk  
rising clock edge  
MMC/SD/SDIO Interface 1 (3.0 V IO)  
MMC3 tsu(CMDV-CLKIH)  
MMC4 tsu(CLKIH-CMDIV)  
MMC7 tsu(DATxV-CLKIH)  
MMC8 tsu(CLKIH-DATxIV)  
Setup time, mmc1_cmd valid before  
mmc1_clk rising clock edge  
13.6  
8.9  
65.7  
8.9  
ns  
ns  
ns  
ns  
Hold time, mmc1_cmd valid after mmc1_clk  
rising clock edge  
Setup time, mmc1_datx valid before  
mmc1_clk rising clock edge  
13.6  
8.9  
65.7  
8.9  
Hold time, mmc1_datx valid after mmc1_clk  
rising clock edge  
MMC/SD/SDIO Interface 2  
MMC3 tsu(CMDV-CLKIH)  
Setup time, mmc2_cmd valid before  
mmc2_clk rising clock edge  
13.6  
8.9  
65.7  
8.9  
ns  
ns  
ns  
ns  
MMC4 tsu(CLKIH-CMDIV)  
MMC7 tsu(DATxV-CLKIH)  
MMC8 tsu(CLKIH-DATxIV)  
Hold time, mmc2_cmd valid after mmc2_clk  
rising clock edge  
Setup time, mmc2_datx valid before  
mmc2_clk rising clock edge  
13.6  
8.9  
65.7  
8.9  
Hold time, mmc2_datx valid after mmc2_clk  
rising clock edge  
MMC/SD/SDIO Interface 3  
MMC3 tsu(CMDV-CLKIH)  
Setup time, mmc3_cmd valid before  
mmc3_clk rising clock edge  
13.6  
8.9  
65.7  
8.9  
ns  
ns  
ns  
ns  
MMC4 tsu(CLKIH-CMDIV)  
MMC7 tsu(DATxV-CLKIH)  
MMC8 tsu(CLKIH-DATxIV)  
Hold time, mmc3_cmd valid after mmc3_clk  
rising clock edge  
Setup time, mmc3_datx valid before  
mmc3_clk rising clock edge  
13.6  
8.9  
65.7  
8.9  
Hold time, mmc3_datx valid after mmc3_clk  
rising clock edge  
(1) Timing parameters are referred to output clock specified in Table 6-116.  
(2) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified in Table 6-116.  
(3) In datx, x is equal to 1, 2, 3, 4, 5, 6, or 7.  
Table 6-116. MMC/SD/SDIO Switching Characteristics – Standard MMC Mode and MMC Identification  
Mode  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
MMC Identification Mode  
MMC1  
MMC2  
MMC2  
tc(clk)  
Cycle time(1), output clk period  
2500  
2500  
ns  
ns  
ns  
ns  
ps  
tW(clkH)  
tW(clkL)  
tdc(clk)  
tj(clk)  
Typical pulse duration, output clk high  
Typical pulse duration, output clk low  
Duty cycle error, output clk  
X(5)*PO(2)  
Y(6)*PO(2)  
X(5)*PO(2)  
Y(6)*PO(2)  
125  
200  
125  
200  
Jitter standard deviation(3), output clk  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
207  
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 6-116. MMC/SD/SDIO Switching Characteristics – Standard MMC Mode and MMC Identification  
Mode (continued)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
Standard MMC Mode  
MMC1  
MMC2  
MMC2  
tc(clk)  
Cycle time(1), output clk period  
52.1  
104.2  
ns  
ns  
ns  
ps  
ps  
tW(clkH)  
tW(clkL)  
tdc(clk)  
tj(clk)  
Typical pulse duration, output clk high  
Typical pulse duration, output clk low  
Duty cycle error, output clk  
X(5)*PO(2)  
Y(6)*PO(2)  
X(5)*PO(2)  
Y(6)*PO(2)  
2604.2  
200  
5208.3  
200  
Jitter standard deviation(3), output clk  
MMC/SD/SDIO Interface 1 (1.8 V IO)  
tc(clk)  
Rise time, output clk  
10  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
tW(clkH)  
tW(clkL)  
Fall time, output clk  
Rise time, output data  
Fall time, output data  
10  
10  
tdc(clk)  
10  
10  
MMC5  
MMC6  
td(CLKOH-CMD)  
Delay time, mmc1_clk rising clock edge to  
mmc1_cmd transition  
4.3  
4.3  
47.8  
4.3  
4.3  
99.9  
td(CLKOH-DATx)  
Delay time, mmc1_clk rising clock edge to  
mmc1_datx transition  
47.8  
99.9  
ns  
MMC/SD/SDIO Interface 1 (3.0 V IO)  
tc(clk)  
Rise time, output clk  
10  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
tW(clkH)  
tW(clkL)  
Fall time, output clk  
Rise time, output data  
Fall time, output data  
10  
10  
tdc(clk)  
10  
10  
MMC5  
MMC6  
td(CLKOH-CMD)  
Delay time, mmc1_clk rising clock edge to  
mmc1_cmd transition  
4.3  
4.3  
47.8  
4.3  
4.3  
99.9  
td(CLKOH-DATx)  
Delay time, mmc1_clk rising clock edge to  
mmc1_datx transition  
47.8  
99.9  
ns  
MMC/SD/SDIO Interface 2  
tc(clk)  
Rise time, output clk  
Fall time, output clk  
Rise time, output data  
Fall time, output data  
10  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
tW(clkH)  
tW(clkL)  
tdc(clk)  
10  
10  
10  
10  
MMC5  
MMC6  
td(CLKOH-CMD)  
Delay time, mmc2_clk rising clock edge to  
mmc2_cmd transition  
4.3  
4.3  
47.8  
4.3  
4.3  
99.9  
td(CLKOH-DATx)  
Delay time, mmc2_clk rising clock edge to  
mmc2_datx transition  
47.8  
99.9  
ns  
MMC/SD/SDIO Interface 3  
tc(clk)  
Rise time, output clk  
Fall time, output clk  
Rise time, output data  
Fall time, output data  
10  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
tW(clkH)  
tW(clkL)  
tdc(clk)  
10  
10  
10  
10  
MMC5  
MMC6  
td(CLKOH-CMD)  
Delay time, mmc3_clk rising clock edge to  
mmc3_cmd transition  
4.3  
4.3  
47.8  
4.3  
4.3  
99.9  
td(CLKOH-DATx)  
Delay time, mmc3_clk rising clock edge to  
mmc3_datx transition  
47.8  
99.9  
ns  
(1) Related with the output clk maximum and minimum frequencies programmable in I/F module.  
(2) PO = output clk period in ns.  
(3) The jitter probability density can be approximated by a Gaussian function.  
(4) In datx, x is equal to 1, 2, 3, 4, 5, 6, or 7.  
(5) The X parameter is defined as follows.  
208  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
CLKD  
X
1 or Even  
Odd  
0.5  
(trunk[CLKD/2]+1)/CLKD  
For details about clock division factor CLKD, see the OMAP35xx ES2.0 Technical Reference Manual (TRM) [literature number  
SPRUF98].  
(6) The Y parameter is defined as follows.  
CLKD  
1 or Even  
Odd  
Y
0.5  
(trunk[CLKD/2])/CLKD  
For details about clock division factor CLKD, see the OMAP35xx ES2.0 Technical Reference Manual (TRM) [literature number  
SPRUF98].  
MMC1  
MMC2  
mmcx_clk  
MMC3  
MMC7  
MMC4  
mmcx_cmd  
MMC8  
mmcx_dat[3:0]  
030-104  
In mmcx, x is equal to 1, 2, or 3.  
Figure 6-57. MMC/SD/SDIO – High-Speed and Standard MMC Modes – Data/Command Receive  
MMC1  
MMC2  
mmcx_clk  
MMC5  
MMC6  
MMC5  
mmcx_cmd  
MMC6  
mmcx_dat[3:0]  
030-105  
In mmcx, x is equal to 1, 2, or 3.  
Figure 6-58. MMC/SD/SDIO – High-Speed and Standard MMC Modes – Data/Command Transmit  
6.7.1.4 MMC/SD/SDIO in High-Speed SD Mode  
Table 6-118 and Table 6-119 assume testing over the recommended operating conditions and electrical  
characteristic conditions.  
Table 6-117. MMC/SD/SDIO Timing Conditions – High-Speed SD Mode  
TIMING CONDITION PARAMETER  
VALUE  
UNIT  
High-Speed SD Mode  
Input Conditions  
tR  
Input signal rise time  
Input signal fall time  
3
3
ns  
ns  
tF  
Output Conditions  
CLOAD  
Output load capacitance  
40  
pF  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
209  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 6-118. MMC/SD/SDIO Timing Requirements – High-Speed SD Mode(1)(2)(3)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
High-Speed SD Mode  
MMC/SD/SDIO Interface 1 (1.8 V IO)  
HSSD3 tsu(CMDV-CLKIH)  
HSSD4 tsu(CLKIH-CMDIV)  
HSSD7 tsu(DATxV-CLKIH)  
HSSD8 tsu(CLKIH-DATxIV)  
Setup time, mmc1_cmd valid before  
mmc1_clk rising clock edge  
5.6  
2.3  
5.6  
2.3  
26  
1.9  
26  
ns  
ns  
ns  
ns  
Hold time, mmc1_cmd valid after mmc1_clk  
rising clock edge  
Setup time, mmc1_datx valid before  
mmc1_clk rising clock edge  
Hold time, mmc1_datx valid after mmc1_clk  
rising clock edge  
1.9  
MMC/SD/SDIO Interface 1 (3.0 V IO)  
HSSD3 tsu(CMDV-CLKIH)  
HSSD4 tsu(CLKIH-CMDIV)  
HSSD7 tsu(DATxV-CLKIH)  
HSSD8 tsu(CLKIH-DATxIV)  
Setup time, mmc1_cmd valid before  
mmc1_clk rising clock edge  
5.6  
2.3  
5.6  
2.3  
26  
1.9  
26  
ns  
ns  
ns  
ns  
Hold time, mmc1_cmd valid after mmc1_clk  
rising clock edge  
Setup time, mmc1_datx valid before  
mmc1_clk rising clock edge  
Hold time, mmc1_datx valid after mmc1_clk  
rising clock edge  
1.9  
MMC/SD/SDIO Interface 2  
HSSD3 tsu(CMDV-CLKIH)  
Setup time, mmc2_cmd valid before  
mmc2_clk rising clock edge  
5.6  
2.3  
5.6  
2.3  
26  
1.9  
26  
ns  
ns  
ns  
ns  
HSSD4 tsu(CLKIH-CMDIV)  
HSSD7 tsu(DATxV-CLKIH)  
HSSD8 tsu(CLKIH-DATxIV)  
Hold time, mmc2_cmd valid after mmc2_clk  
rising clock edge  
Setup time, mmc2_datx valid before  
mmc2_clk rising clock edge  
Hold time, mmc2_datx valid after mmc2_clk  
rising clock edge  
1.9  
MMC/SD/SDIO Interface 3  
HSSD3 tsu(CMDV-CLKIH)  
Setup time, mmc3_cmd valid before  
mmc3_clk rising clock edge  
5.6  
2.3  
5.6  
2.3  
26  
1.9  
26  
ns  
ns  
ns  
ns  
HSSD4 tsu(CLKIH-CMDIV)  
HSSD7 tsu(DATxV-CLKIH)  
HSSD8 tsu(CLKIH-DATxIV)  
Hold time, mmc3_cmd valid after mmc3_clk  
rising clock edge  
Setup time, mmc3_datx valid before  
mmc3_clk rising clock edge  
Hold time, mmc3_datx valid after mmc3_clk  
rising clock edge  
1.9  
(1) Timing Parameters are referred to output clock specified in Table 6-119.  
(2) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified in Table 6-119.  
(3) In datx, x is equal to 1, 2, 3, 4, 5, 6, or 7.  
Table 6-119. MMC/SD/SDIO Switching Characteristics – High-Speed SD Mode  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
High-Speed SD Mode  
HSSD1 tc(clk)  
HSSD2 tW(clkH)  
HSSD2 tW(clkL)  
tdc(clk)  
Cycle time(1), output clk period  
20.8  
41.7  
ns  
ns  
ns  
ps  
ps  
Typical pulse duration, output clk high  
Typical pulse duration, output clk low  
Duty cycle error, output clk  
X(5)*PO(2)  
Y(6)*PO(2)  
X(5)*PO(2)  
Y(6)*PO(2)  
1041.7  
200  
2083.3  
200  
tj(clk)  
Jitter standard deviation(3), output clk  
210  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 6-119. MMC/SD/SDIO Switching Characteristics – High-Speed SD Mode (continued)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
MMC/SD/SDIO Interface 1 (1.8 V IO)  
tc(clk) Rise time, output clk  
tW(clkH)  
3
3
3
3
ns  
ns  
ns  
ns  
ns  
Fall time, output clk  
Rise time, output data  
Fall time, output data  
tW(clkL)  
3
3
tdc(clk)  
3
3
HSSD5 td(CLKOH-CMD)  
Delay time, mmc1_clk rising clock edge to  
mmc1_cmd transition  
3.7  
3.7  
14.1  
4.1  
4.1  
34.5  
HSSD6 td(CLKOH-DATx)  
Delay time, mmc1_clk rising clock edge to  
mmc1_datx transition  
14.1  
34.5  
ns  
MMC/SD/SDIO Interface 1 (3.0 V IO)  
tc(clk) Rise time, output clk  
tW(clkH)  
3
3
3
3
ns  
ns  
ns  
ns  
ns  
Fall time, output clk  
Rise time, output data  
Fall time, output data  
tW(clkL)  
3
3
tdc(clk)  
3
3
HSSD5 td(CLKOH-CMD)  
Delay time, mmc1_clk rising clock edge to  
mmc1_cmd transition  
3.7  
3.7  
14.1  
4.1  
4.1  
34.5  
HSSD6 td(CLKOH-DATx)  
Delay time, mmc1_clk rising clock edge to  
mmc1_datx transition  
14.1  
34.5  
ns  
MMC/SD/SDIO Interface 2  
tc(clk)  
tW(clkH)  
Rise time, output clk  
Fall time, output clk  
Rise time, output data  
Fall time, output data  
3
3
3
3
ns  
ns  
ns  
ns  
ns  
tW(clkL)  
3
3
tdc(clk)  
3
3
HSSD5 td(CLKOH-CMD)  
Delay time, mmc2_clk rising clock edge to  
mmc2_cmd transition  
3.7  
3.7  
14.1  
4.1  
4.1  
34.5  
HSSD6 td(CLKOH-DATx)  
Delay time, mmc2_clk rising clock edge to  
mmc2_datx transition  
14.1  
34.5  
ns  
MMC/SD/SDIO Interface 3  
tc(clk)  
tW(clkH)  
Rise time, output clk  
Fall time, output clk  
Rise time, output data  
Fall time, output data  
3
3
3
3
ns  
ns  
ns  
ns  
ns  
tW(clkL)  
3
3
tdc(clk)  
3
3
HSSD5 td(CLKOH-CMD)  
Delay time, mmc3_clk rising clock edge to  
mmc3_cmd transition  
3.7  
3.7  
14.1  
4.1  
4.1  
34.5  
HSSD6 td(CLKOH-DATx)  
Delay time, mmc3_clk rising clock edge to  
mmc3_datx transition  
14.1  
34.5  
ns  
(1) Related with the output clk maximum and minimum frequencies programmable in I/F module.  
(2) PO = output clk period in ns.  
(3) The jitter probability density can be approximated by a Gaussian function.  
(4) In datx, x is equal to 1, 2, 3, 4, 5, 6, or 7.  
(5) The X parameter is defined as follows.  
CLKD  
1 or Even  
Odd  
X
0.5  
(trunk[CLKD/2]+1)/CLKD  
For details about clock division factor CLKD, see the OMAP35xx ES2.0 Technical Reference Manual (TRM) [literature number  
SPRUF98].  
(6) The Y parameter is defined as follows.  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
211  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
CLKD  
1 or Even  
Odd  
Y
0.5  
(trunk[CLKD/2])/CLKD  
For details about clock division factor CLKD, see the OMAP35xx ES2.0 Technical Reference Manual (TRM) [literature number  
SPRUF98].  
HSSD1  
HSSD2  
mmcx_clk  
HSSD3  
HSSD7  
HSSD4  
mmcx_cmd  
HSSD8  
mmcx_dat[3:0]  
030-106  
In mmcx, x is equal to 1, 2, or 3.  
Figure 6-59. MMC/SD/SDIO – High-Speed SD Mode – Data/Command Receive  
HSSD1  
HSSD2  
mmcx_clk  
HSSD5  
HSSD6  
HSSD5  
mmcx_cmd  
HSSD6  
mmcx_dat[3:0]  
030-107  
In mmcx, x is equal to 1, 2, or 3.  
Figure 6-60. MMC/SD/SDIO – High-Speed SD Mode – Data/Command Transmit  
6.7.1.5 MMC/SD/SDIO in Standard SD Mode  
Table 6-121 and Table 6-122 assume testing over the recommended operating conditions and electrical  
characteristic conditions (see Figure 6-61).  
Table 6-120. MMC/SD/SDIO Timing Conditions – Standard SD Mode  
TIMING CONDITION PARAMETER  
VALUE  
UNIT  
Standard SD Mode  
Input Conditions  
tR  
Input signal rise time  
Input signal fall time  
10  
10  
ns  
ns  
tF  
Output Conditions  
CLOAD  
Output load capacitance  
40  
pF  
212  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 6-121. MMC/SD/SDIO Timing Requirements – Standard SD Mode(1)(2)(3)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
Standard SD Mode  
MMC/SD/SDIO Interface 1 (1.8 V IO)  
SD3 tsu(CMDV-CLKIH)  
SD4 tsu(CLKIH-CMDIV)  
SD7 tsu(DATxV-CLKIH)  
SD8 tsu(CLKIH-DATxIV)  
Setup time, mmc1_cmd valid before mmc1_clk  
rising clock edge  
6.2  
19.4  
6.2  
47.7  
19.2  
47.7  
19.2  
ns  
ns  
ns  
ns  
Hold time, mmc1_cmd valid after mmc1_clk  
rising clock edge  
Setup time, mmc1_datx valid before mmc1_clk  
rising clock edge  
Hold time, mmc1_datx valid after mmc1_clk  
rising clock edge  
19.4  
MMC/SD/SDIO Interface 1 (3.0 V IO)  
SD3 tsu(CMDV-CLKIH)  
SD4 tsu(CLKIH-CMDIV)  
SD7 tsu(DATxV-CLKIH)  
SD8 tsu(CLKIH-DATxIV)  
Setup time, mmc1_cmd valid before mmc1_clk  
rising clock edge  
6.2  
19.4  
6.2  
47.7  
19.2  
47.7  
19.2  
ns  
ns  
ns  
ns  
Hold time, mmc1_cmd valid after mmc1_clk  
rising clock edge  
Setup time, mmc1_datx valid before mmc1_clk  
rising clock edge  
Hold time, mmc1_datx valid after mmc1_clk  
rising clock edge  
19.4  
MMC/SD/SDIO Interface 2  
SD3 tsu(CMDV-CLKIH)  
Setup time, mmc2_cmd valid before mmc2_clk  
rising clock edge  
6.2  
19.4  
6.2  
47.7  
19.2  
47.7  
19.2  
ns  
ns  
ns  
ns  
SD4 tsu(CLKIH-CMDIV)  
SD7 tsu(DATxV-CLKIH)  
SD8 tsu(CLKIH-DATxIV)  
Hold time, mmc2_cmd valid after mmc2_clk  
rising clock edge  
Setup time, mmc2_datx valid before mmc2_clk  
rising clock edge  
Hold time, mmc2_datx valid after mmc2_clk  
rising clock edge  
19.4  
MMC/SD/SDIO Interface 3  
SD3 tsu(CMDV-CLKIH)  
Setup time, mmc3_cmd valid before mmc3_clk  
rising clock edge  
6.2  
19.4  
6.2  
47.7  
19.2  
47.7  
19.2  
ns  
ns  
ns  
ns  
SD4 tsu(CLKIH-CMDIV)  
SD7 tsu(DATxV-CLKIH)  
SD8 tsu(CLKIH-DATxIV)  
Hold time, mmc3_cmd valid after mmc3_clk  
rising clock edge  
Setup time, mmc3_datx valid before mmc3_clk  
rising clock edge  
Hold time, mmc3_datx valid after mmc3_clk  
rising clock edge  
19.4  
(1) Timing parameters are referred to output clock specified in Table 6-122.  
(2) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified in Table 6-122.  
(3) In datx, x is equal to 1, 2, 3, 4, 5, 6, or 7.  
Table 6-122. MMC/SD/SDIO Switching Characteristics – Standard SD Mode  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
Standard SD Mode  
SD1 tc(clk)  
SD2 tW(clkH)  
SD2 tW(clkL)  
tdc(clk)  
Cycle time(1), output clk period  
41.7  
83.3  
ns  
ns  
ns  
ps  
ps  
Typical pulse duration, output clk high  
Typical pulse duration, output clk low  
Duty cycle error, output clk  
X(5)*PO(2)  
Y(6)*PO(2)  
X(5)*PO(2)  
Y(6)*PO(2)  
2083.3  
200  
4166.7  
200  
tj(clk)  
Jitter standard deviation(3), output clk  
MMC/SD/SDIO Interface 1 (1.8 V IO)  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
213  
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 6-122. MMC/SD/SDIO Switching Characteristics – Standard SD Mode (continued)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
10  
MIN  
MAX  
10  
tc(clk)  
Rise time, output clk  
ns  
ns  
ns  
ns  
ns  
tW(clkH)  
tW(clkL)  
tdc(clk)  
Fall time, output clk  
Rise time, output data  
Fall time, output data  
10  
10  
10  
10  
10  
10  
SD5 td(CLKOH-CMD)  
Delay time, mmc1_clk rising clock edge to  
mmc1_cmd transition  
6.1  
6.1  
35.5  
6.3  
6.3  
77  
SD6 td(CLKOH-DATx)  
Delay time, mmc1_clk rising clock edge to  
mmc1_datx transition  
35.5  
77  
ns  
MMC/SD/SDIO Interface 1 (3.0 V IO)  
tc(clk) Rise time, output clk  
tW(clkH)  
10  
10  
10  
10  
10  
10  
77  
ns  
ns  
ns  
ns  
ns  
Fall time, output clk  
Rise time, output data  
Fall time, output data  
tW(clkL)  
10  
tdc(clk)  
10  
SD5 td(CLKOH-CMD)  
Delay time, mmc1_clk rising clock edge to  
mmc1_cmd transition  
6.1  
6.1  
35.5  
6.3  
6.3  
SD6 td(CLKOH-DATx)  
Delay time, mmc1_clk rising clock edge to  
mmc1_datx transition  
35.5  
77  
ns  
MMC/SD/SDIO Interface 2  
tc(clk) Rise time, output clk  
tW(clkH)  
10  
10  
10  
10  
10  
10  
77  
ns  
ns  
ns  
ns  
ns  
Fall time, output clk  
Rise time, output data  
Fall time, output data  
tW(clkL)  
10  
tdc(clk)  
10  
SD5 td(CLKOH-CMD)  
Delay time, mmc2_clk rising clock edge to  
mmc2_cmd transition  
6.1  
6.1  
35.5  
6.3  
6.3  
SD6 td(CLKOH-DATx)  
Delay time, mmc2_clk rising clock edge to  
mmc2_datx transition  
35.5  
77  
ns  
MMC/SD/SDIO Interface 3  
tc(clk) Rise time, output clk  
tW(clkH)  
10  
10  
10  
10  
10  
10  
77  
ns  
ns  
ns  
ns  
ns  
Fall time, output clk  
Rise time, output data  
Fall time, output data  
tW(clkL)  
10  
tdc(clk)  
10  
SD5 td(CLKOH-CMD)  
Delay time, mmc3_clk rising clock edge to  
mmc3_cmd transition  
6.1  
6.1  
35.5  
6.3  
6.3  
SD6 td(CLKOH-DATx)  
Delay time, mmc3_clk rising clock edge to  
mmc3_datx transition  
35.5  
77  
ns  
(1) Related with the output clk maximum and minimum frequencies programmable in I/F module.  
(2) PO = output clk period in ns.  
(3) The jitter probability density can be approximated by a Gaussian function.  
(4) In datx, x is equal to 1, 2, 3, 4, 5, 6, or 7.  
(5) The X parameter is defined as follows.  
CLKD  
1 or Even  
Odd  
X
0.5  
(trunk[CLKD/2]+1)/CLKD  
For details about clock division factor CLKD, see the OMAP35xx ES2.0 Technical Reference Manual (TRM) [literature number  
SPRUF98].  
(6) The Y parameter is defined as follows.  
214  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
CLKD  
Y
1 or Even  
Odd  
0.5  
(trunk[CLKD/2])/CLKD  
For details about clock division factor CLKD, see the OMAP35xx ES2.0 Technical Reference Manual (TRM) [literature number  
SPRUF98].  
SD1  
SD2  
mmcx_clk  
SD3  
SD4  
mmcx_cmd  
SD7  
SD8  
mmcx_dat[3:0]  
030-108  
In mmcx, x is equal to 1, 2, or 3.  
Figure 6-61. MMC/SD/SDIO – Standard SD Mode – Data/Command Receive  
SD1  
SD2  
mmcx_clk  
SD5  
SD6  
SD5  
mmcx_cmd  
SD6  
mmcx_dat[3:0]  
030-109  
In mmcx, x is equal to 1, 2, or 3.  
Figure 6-62. MMC/SD/SDIO – Standard SD Mode – Data/Command Transmit  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
215  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
6.8 Test Interfaces  
The emulation and trace interfaces allow tracing activities of the following CPUs:  
ARM1136JF-STM through an Embedded Trace Macro-cell (ETM11) dedicated to enable real-time  
trace of the ARM subsystem operations and a Serial Debug Trace Interface (SDTI)  
All processors can be emulated via JTAG ports.  
6.8.1 Embedded Trace Macro Interface (ETM)  
Table 6-123 assumes testing over the recommended operating conditions (see Figure 6-63).  
Table 6-123. Embedded Trace Macro Interface Switching Characteristics(1)  
NO.  
PARAMETER  
1.15 V  
UNIT  
MIN  
MAX  
f
1/tc(CLK)  
Frequency, etk_clk  
Cycle time(2), etk_clk  
166  
MHz  
ns  
ETM0 tc(CLK)  
6
ETM1 tW(CLK)  
ETM2 td(CLK-CTL)  
ETM3 td(CLK-D)  
Clock pulse width, etk_clk  
2.7  
ns  
Delay time, etk_clk clock edge to etk_ctl transition  
Delay time, etk_clk clock high to etk_d[15:0] transition  
–0.5  
–0.5  
0.5  
0.5  
ns  
ns  
(1) The capacitive load is equivalent to 25 pF.  
(2) Cycle time is given by considering a jitter of 5%.  
ETM0  
ETM1  
etk_clk  
ETM2  
etk_ctl  
ETM2  
ETM3  
ETM3  
etk_d[15:0]  
030-110  
Figure 6-63. Embedded Trace Macro Interface  
6.8.2 System Debug Trace Interface (SDTI)  
The system debug trace interface (SDTI) module provides real-time software tracing functionality to the  
OMAP3515/03 device.  
The trace interface has four trace data pins and a trace clock pin.  
This interface is a dual-edge interface: the data are available on rising and falling edges of sdti_clk but can  
be also configured in single edge mode where data are available on falling edge of sdti_clk.  
Serial interface operates in clock stop regime: serial clock is not free running, when there is no trace data  
there is no trace clock.  
6.8.2.1 System Debug Trace Interface in Dual-Edge Mode  
Table 6-125 assumes testing over the recommended operating conditions and electrical characteristic  
conditions (see Figure 6-64).  
216  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
 
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 6-124. System Debug Trace Interface Timing Conditions – Dual-Edge Mode  
TIMING CONDITION PARAMETER  
VALUE  
UNIT  
Output Conditions  
CLOAD  
Output load capacitance  
25  
pF  
Table 6-125. System Debug Trace Interface Switching Characteristics – Dual-Edge Mode  
NO.  
PARAMETER  
1.15 V  
MAX  
1.0 V  
UNIT  
MIN  
MIN  
MAX  
SD1 tc(CLK)  
SD2 tw(CLK)  
tdc(CLK)  
Cycle time, sdti_clk period  
29  
29  
ns  
ns  
ns  
ns  
ns  
ns  
Typical pulse duration, sdti_clk high or low  
Duty cycle error, sdti_clk  
Rise time, sdti_clk  
0.5*P(1)  
0.5*P(1)  
–1.2  
1.2  
5
–1.2  
1.2  
5
tR(CLK)  
tF(CLK)  
Fall time, sdti_clk  
5
5
SD3 td(CLK-TxD)  
Delay time, sdti_clk  
transition to sdti_txd[3:0]  
transition  
Multiplexing mode on etk pins  
2.3  
2.3  
10.9  
13.9  
2.3  
2.3  
10.9  
13.9  
Multiplexing mode on  
jtag_emu pins  
tR(CLK)  
tF(CLK)  
Rise time, sdti_txd[3:0]  
Fall time, sdti_txd[3:0]  
5
5
5
5
ns  
ns  
(1) P = sdti_clk clock period  
SD1  
SD2  
sdti_clk  
SD3  
SD3  
sdti_txd[3:0]  
Header Header Ad[7:4]  
Ad[3:0] Da[15:12] Da[11:8] Da[7:4]  
Da[3:0]  
030-111  
Figure 6-64. System Debug Trace Interface – Dual-Edge Mode  
6.8.2.2 System Debug Trace Interface in Single-Edge Mode  
Table 6-127 assumes testing over the recommended operating conditions and electrical characteristic  
conditions (see Figure 6-65).  
Table 6-126. System Debug Trace Interface Timing Conditions – Single-Edge Mode  
TIMING CONDITION PARAMETER  
Output Conditions  
VALUE  
UNIT  
CLOAD  
Output load capacitance  
25  
pF  
Table 6-127. System Debug Trace Interface Switching Characteristics – Single-Edge Mode  
NO.  
PARAMETER  
1.15 V  
MAX  
1.0 V  
UNIT  
MIN  
MIN  
MAX  
SD1 tc(CLK)  
SD2 tw(CLK)  
tdc(CLK)  
Cycle time, sdti_clk period  
29  
29  
ns  
ns  
ns  
ns  
ns  
ns  
Typical pulse duration, sdti_clk high or low  
Duty cycle error, sdti_clk  
Rise time, sdti_clk  
0.5*P(1)  
0.5*P(1)  
–1.2  
1.2  
5
–1.2  
1.2  
5
tR(CLK)  
tF(CLK)  
Fall time, sdti_clk  
5
5
SD3 td(CLK-TxD)  
Delay time, sdti_clk  
transition to sdti_txd[3:0]  
transition  
Multiplexing mode on etk pins  
2.3  
2.3  
26.5  
33.2  
2.3  
2.3  
26.5  
33.2  
Multiplexing mode on jtag_emu  
pins  
tR(CLK)  
Rise time, sdti_txd[3:0]  
5
5
ns  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
217  
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 6-127. System Debug Trace Interface Switching Characteristics – Single-Edge Mode (continued)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
tF(CLK)  
Fall time, sdti_txd[3:0]  
5
5
ns  
(1) P = sdti_clk clock period.  
SD1  
SD3  
SD2  
sdti_clk  
SD3  
Ad[7:4]  
sdti_txd[3:0]  
Header  
Header  
Ad[3:0]  
Da[15:12]  
Da[11:8]  
Da[7:4]  
Da[3:0]  
030-112  
Figure 6-65. System Debug Trace Interface – Single-Edge Mode  
6.8.3 JTAG Interfaces  
OMAP3515/03 JTAG TAP controller handles standard IEEE JTAG interfaces. The following sections  
define the timing requirements for several tools used to test the OMAP3515/03 processors as:  
Free running clock tool, like XDS560 and XDS510 tools  
Adaptive clock tool, like RealView® ICE tool and Lauterbach™ tool  
6.8.3.1 JTAG – Free Running Clock Mode  
Table 6-129 and Table 6-130 assume testing over the recommended operating conditions and electrical  
characteristic conditions (see Figure 6-66).  
Table 6-128. JTAG Timing Conditions – Free Running Clock Mode  
TIMING CONDITION PARAMETER  
VALUE  
UNIT  
Input Conditions  
tR  
Input signal rise time  
Input signal fall time  
5
5
ns  
ns  
tF  
Output Conditions  
CLOAD  
Output load capacitance  
30  
pF  
Table 6-129. JTAG Timing Requirements – Free Running Clock Mode(5)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
JT4 tc(tck)  
Cycle time(1), jtag_tck period  
25  
33  
ns  
ns  
ns  
ps  
ps  
ns  
ns  
ns  
ns  
ns  
JT5 tw(tckL)  
JT6 tw(tckH)  
tdc(tck)  
Typical pulse duration, jtag_tck low  
Typical pulse duration, jtag_tck high  
Duty cycle error, jtag_tck  
0.5*P(2)  
0.5*P(2)  
0.5*P(2)  
0.5*P(2)  
–1250  
–1250  
1.8  
1250  
1250  
–1667  
–1667  
1.8  
1667  
1667  
tj(tck)  
Cycle jitter(3), jtag_tck  
JT7 tsu(tdiV-rtckH)  
JT8 th(tdiV-rtckH)  
JT9 tsu(tmsV-rtckH)  
JT10 th(tmsV-rtckH)  
JT12 tsu(emuxV-rtckH)  
Setup time, jtag_tdi valid before jtag_rtck high  
Hold time, jtag_tdi valid after jtag_rtck high  
Setup time, jtag_tms valid before jtag_rtck high  
Hold time, jtag_tms valid after jtag_rtck high  
Setup time, jtag_emux(4) valid before jtag_rtck  
high  
0.7  
1
1.8  
1.8  
0.7  
1
14.6  
19.8  
JT13 th(emuxV-rtckH)  
Hold time,jtag_emux(4) valid after jtag_rtck high  
2
2.7  
ns  
(1) Related with the input maximum frequency supported by the JTAG module.  
(2) P = jtag _tck period in ns.  
(3) Maximum cycle jitter supported by jtag _tck input clock.  
218  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
(4) x = 0 to 1  
(5) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified.  
Table 6-130. JTAG Switching Characteristics – Free Running Clock Mode  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
JT1 tc(rtck)  
JT2 tw(rtckL)  
JT3 tw(rtckH)  
tdc(rtck)  
Cycle time(1), jtag_rtck period  
Typical pulse duration, jtag_rtck low  
Typical pulse duration, jtag_rtck high  
Duty cycle error, jtag_rtck  
25  
33  
ns  
ns  
ns  
ps  
ps  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.5*PO(2)  
0.5*PO(2)  
0.5*PO(2)  
0.5*PO(2)  
–1250  
1250  
–1667  
1667  
tj(rtck)  
Jitter standard deviation(3), jtag_rtck  
33.3  
4
33.3  
4
tR(rtck)  
Rise time, jtag_rtck  
tF(rtck)  
Fall time, jtag_rtck  
4
4
JT11 td(rtckL-tdoV)  
tR(tdo)  
Delay time, jtag_rtck low to jtag_tdo valid  
Rise time, jtag_tdo  
–5.8  
2.7  
5.8  
4
–7.9  
2.7  
7.9  
4
tF(tdo)  
Fall time, jtag_tdo  
4
4
JT14 td(rtckH-emuxV)  
tR(emux)  
Delay time, jtag_rtck high to ,jtag_emux(4) valid  
Rise time, jtag_emux(4)  
Fall time, jtag_emux(4)  
15.1  
6
20.4  
6
tF(emux)  
6
6
(1) Related with the jtag_rtck maximum frequency.  
(2) PO = jtag _rtck period in ns.  
(3) The jitter probability density can be approximated by a Gaussian function.  
(4) x = 0 to 1  
JT4  
JT1  
JT5  
JT6  
JT3  
jtag_tck  
JT2  
jtag_rtck  
JT7  
JT8  
jtag_tdi  
JT9  
JT10  
JT13  
jtag_tms  
JT12  
jtag_emux(IN)  
JT11  
jtag_tdo  
JT14  
jtag_emux(OUT)  
030-113  
In jtag_emux, x is equal to 0 to 1.  
Figure 6-66. JTAG Interface Timing – Free Running Clock Mode  
6.8.3.2 JTAG – Adaptive Clock Mode  
Table 6-132 and Table 6-133 assume testing over the recommended operating conditions and electrical  
characteristic conditions (see Figure 6-67):  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
219  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
Table 6-131. JTAG Timing Conditions – Adaptive Clock Mode  
TIMING CONDITION PARAMETER  
VALUE  
UNIT  
Input Conditions  
tR  
Input signal rise time  
Input signal fall time  
5
5
ns  
ns  
tF  
Output Conditions  
CLOAD  
Output load capacitance  
30  
pF  
Table 6-132. JTAG Timing Requirements – Adaptive Clock Mode(4)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
JA4  
JA5  
JA6  
tc(tck)  
Cycle time(1), jtag_tck period  
50  
50  
ns  
ns  
ns  
ps  
ps  
ns  
ns  
ns  
ns  
tw(tckL)  
Typical pulse duration, jtag_tck low  
Typical pulse duration, jtag_tck high  
Duty cycle error, jtag_tck  
0.5*P(2)  
0.5*P(2)  
0.5*P(2)  
0.5*P(2)  
tw(tckH)  
tdc(lclk)  
–2500  
–1500  
13.8  
2500  
1500  
–2500  
–1500  
13.8  
2500  
1500  
tj(lclk)  
Cycle jitter(3), jtag_tck  
JA7  
JA8  
JA9  
tsu(tdiV-tckH)  
th(tdiV-tckH)  
tsu(tmsV-tckH)  
Setup time, jtag_tdi valid before jtag_tck high  
Hold time, jtag_tdi valid after jtag_tck high  
Setup time, jtag_tms valid before jtag_tck high  
Hold time, jtag_tms valid after jtag_tck high  
13.8  
13.8  
13.8  
13.8  
JA10 th(tmsV-tckH)  
13.8  
13.8  
(1) Related with the input maximum frequency supported by the JTAG module.  
(2) P = jtag _tck period in ns.  
(3) Maximum cycle jitter supported by jtag _tck input clock.  
(4) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified.  
Table 6-133. JTAG Switching Characteristics – Adaptive Clock Mode  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
JA1  
JA2  
JA3  
tc(rtck)  
Cycle time(1), jtag_rtck period  
Typical pulse duration, jtag_rtck low  
Typical pulse duration, jtag_rtck high  
Duty cycle error, jtag_rtck  
Jitter standard deviation(3), jtag_rtck  
Rise time, jtag_rtck  
50  
50  
ns  
ns  
ns  
ps  
ps  
ns  
ns  
ns  
ns  
ns  
tw(rtckL)  
tw(rtckH)  
tdc(rtck)  
tj(rtck)  
0.5*PO(2)  
0.5*PO(2)  
0.5*PO(2)  
0.5*PO(2)  
2500  
–2500  
2500  
–2500  
33.3  
4
33.3  
4
tR(rtck)  
tF(rtck)  
Fall time, jtag_rtck  
4
4
JA11 td(rtckL-tdoV)  
Delay time, jtag_rtck low to jtag_tdo valid  
Rise time, jtag_tdo,  
–14.6  
14.6  
4
–14.6  
14.6  
4
tR(tdo)  
tF(tdo)  
Fall time, jtag_tdo  
4
4
(1) Related with the jtag _rtck maximum frequency programmable.  
(2) PO = jtag _rtck period in ns.  
(3) The jitter probability density can be approximated by a Gaussian function.  
220  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
JA4  
JA5  
JA6  
jtag_tck  
jtag_tdi  
JA7  
JA9  
JA8  
JA10  
jtag_tms  
JA1  
JA2  
JA3  
jtag_rtck  
jtag_tdo  
JA11  
030-114  
Figure 6-67. JTAG Interface Timing – Adaptive Clock Mode  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
221  
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
7 PACKAGE CHARACTERISTICS  
7.1 Package Thermal Resistance  
Table 7-1 provides the thermal resistance characteristics for the recommended package types used on the  
OMAP3515/03 Applications Processor.  
Table 7-1. OMAP3515/03 Thermal Resistance Characteristics (3)  
Package  
Power (W)  
RθJA(°C/W)  
RθJB(°C/W)  
RθJC(°C/W)  
Board Type  
OMAP3515/03  
(CBB Pkg.)  
TBD  
24.46  
10.94  
0.01  
2S2P(1)  
OMAP35 15/03  
(CUS Pkg.)  
TBD  
TBD  
TBD  
TBD  
TBD  
(1) The board types are defined by JEDEC (reference JEDEC standard JESD51-9, Test Board for Area Array Surface Mount Package  
Thermal Measurements).  
(2) Not applicable since the POP package has a memory package on top, no heat sink can be used. (TBD)  
(3) RθJA (Theta-JA) = Thermal Resistance Junction-to-Ambient, °C/W  
RθJB (Theta-JB) = Thermal Resistance Junction-to-Board, °C/W  
RθJC (Theta-JC) = Thermal Resistance Junction-to-Case, °C/W  
7.2 Device Support  
7.2.1 Development Support (TBD)  
7.2.2 Device and Development-Support Tool Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all  
OMAP™ processors and support tools. Each commercial OMAP platform member has one of three  
prefixes: X, P, or null (no prefix). Texas Instruments recommends two of three possible prefix designators  
for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product  
development from engineering prototypes (TMDX) through fully qualified production devices/tools (TMDS).  
Device development evolutionary flow:  
X
Experimental device that is not necessarily representative of the final device’s electrical  
specifications and may not use production assembly flow. (TMX definition)  
P
Prototype device that is not necessarily the final silicon die and may not necessarily meet  
final electrical specifications. (TMP definition)  
null  
Production version of the silicon die that is fully qualified. (TMS definition)  
Support tool development evolutionary flow:  
TMDX  
TMDS  
Development support product that has not yet completed Texas Instruments internal  
qualification testing.  
Fully qualified development support product.  
TMX and TMP devices and TMDX development-support tools are shipped against the following  
disclaimer:  
“Developmental product is intended for internal evaluation purposes.”  
Production devices and TMDS development-support tools have been characterized fully, and the quality  
and reliability of the device have been demonstrated fully. TI’s standard warranty applies.  
Predictions show that prototype devices (X or P), have a greater failure rate than the standard production  
devices. Texas Instruments recommends that these devices not be used in any production system  
because their expected end-use failure rate still is undefined. Only qualified production devices are to be  
used.  
222  
PACKAGE CHARACTERISTICS  
Submit Documentation Feedback  
 
OMAP3515/03 Applications Processor  
www.ti.com  
SPRS505FEBRUARY 2008  
For additional description of the device nomenclature markings, see the OMAP35xx Applications  
Processor Silicon Errata (literature number SPRZ278).  
X
OMAP3530  
B
CBB  
PREFIX  
X
P
= Experimental Device  
= Prototype Device  
null = Production Device  
PACKAGE TYPE  
DEVICE  
CBB = 515 pin PBGA  
CUS = 423 pin PBGA  
SILICON REVISION  
Figure 7-1. Device Nomenclature  
7.2.3 Documentation Support  
7.2.3.1 Related Documentation from Texas Instruments  
The following documents describe the OMAP3515/03 Applications Processor. Copies of these documents  
are available on the Internet at www.ti.com. Tip: Enter the literature number in the search box provided at  
www.ti.com.  
The current documentation that describes the OMAP3515/03 Applications Processor, related peripherals,  
and other technical collateral, is available in the TBD product folder at: www.ti.com/tbd.  
SPRUF98 OMAP35xx Technical Reference Manual. Collection of documents providing detailed  
information on the OMAP3 architecture including power, reset, and clock control, interrupts,  
memory map, and switch fabric interconnect. Detailed information on the microprocessor unit  
(MPU) subsystem, the image, video, and audio (IVA2.2) subsystem, as well a functional  
description of the peripherals supported on OMAP35xx devices is also included.  
SPRU889  
High-Speed DSP Systems Design Reference Guide. Provides recommendations for  
meeting the many challenges of high-speed DSP system design. These recommendations  
include information about DSP audio, video, and communications systems for the C5000 and  
C6000 DSP platforms.  
7.2.3.2 Related Documentation from Other Sources  
The following documents are related to the OMAP3515/03 Applications Processor. Copies of these  
documents can be obtained directly from the internet or from your Texas Instruments representative.  
Cortex™-A8 Technical Reference Manual. This is the technical reference manual for the Cortex-A8  
processor. A copy of this document can be obtained via the internet at http://infocenter.arm.com. Please  
see the OMAP35xx Applications Processor Silicon Errata (literature number SPRZ278) to determine the  
revision of the Cortex-A8 core used on your device.  
ARM Core CortexTM-A8 (AT400/AT401) Errata Notice. Provides a list of advisories for the different  
revisions of the Cortex-A8 processor. Contact your TI representative for a copy of this document. Please  
see the OMAP35xx Applications Processor Silicon Errata (literature number SPRZ278) to determine the  
revision of the Cortex-A8 core used on your device.  
Submit Documentation Feedback  
PACKAGE CHARACTERISTICS  
223  
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-Feb-2008  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
XOMAP3503BCBB  
XOMAP3515BCBB  
ACTIVE  
ACTIVE  
FCBGA  
FCBGA  
CBB  
515  
515  
168  
168  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
CBB  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Amplifiers  
Data Converters  
DSP  
Clocks and Timers  
Interface  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/audio  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
Logic  
Military  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Optical Networking  
Security  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2008, Texas Instruments Incorporated  

相关型号:

OMAP3503ECUSA

暂无描述
TI

OMAP3515

Applications Processor
TI

OMAP3515BCUS

IC,GRAPHICS PROCESSOR,CMOS,BGA,423PIN,PLASTIC
TI

OMAP3515DCBC

OMAP3515/03 Applications Processor
TI

OMAP3515DCBCA

Applications Processor 515-POP-FCBGA -40 to 105
TI

OMAP3515DCUS

Applications Processor 423-FCBGA 0 to 90
TI

OMAP3515DCUSA

Applications Processor 423-FCBGA -40 to 105
TI

OMAP3515DCUSR

IC,GRAPHICS PROCESSOR,CMOS,BGA,423PIN,PLASTIC
TI

OMAP3515ECBB

Sitara 处理器:Arm Cortex-A8、3D 图形、LPDDR | CBB | 515 | 0 to 0
TI

OMAP3515ECBBA

Sitara Processor: Arm Cortex-A8, 3D Graphics, LPDDR 515-POP-FCBGA -40 to 105
TI

OMAP3515ECUS

Sitara Processor: Arm Cortex-A8, 3D Graphics, LPDDR 423-FCBGA 0 to 90
TI

OMAP3515ECUS72

Sitara 处理器:Arm Cortex-A8、3D 图形、LPDDR | CUS | 423 | 0 to 90
TI