MUX506 [TI]

1pA 开路泄漏电流、36V、16:1、单通道精密模拟多路复用器;
MUX506
型号: MUX506
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

1pA 开路泄漏电流、36V、16:1、单通道精密模拟多路复用器

复用器
文件: 总43页 (文件大小:1822K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
MUX506, MUX507  
ZHCSFU9A NOVEMBER 2016REVISED NOVEMBER 2017  
MUX50x 36V 低电容、低泄漏电流、高精度模拟多路复用器  
1 特性  
3 说明  
1
低导通电容  
MUX506 MUX507 (MUX50x) 是现代互补金属氧化  
物半导体 (CMOS) 模拟多路复用器 (MUX)MUX506  
提供 16:1 单端通道,而 MUX507 提供 8:1 差分通道  
或双 8:1 单端通道。MUX506 MUX507 在由双电源  
±5V ±18V)或单电源(10V 36V)供电时均能  
MUX50613.5pF  
MUX5078.7pF  
低输入泄漏:1pA  
低电荷注入:0.31pC  
轨到轨运行  
正常运行。这些器件在由对称电源(如 VDD  
12VVSS = –12V)和非对称电源(如 VDD  
=
=
宽电源电压范围:±5V ±18V 10V 36V  
低导通电阻:125Ω  
12VVSS = –5V)供电时也能保证优异性能。所有数  
字输入具有兼容晶体管-晶体管逻辑电路 (TTL) 的阈  
值。当器件在有效电源电压范围内运行时,该阈值可保  
TTL CMOS 逻辑电路的兼容性。  
转换时间:97ns  
先断后合开关操作  
EN 引脚与 VDD 相连  
逻辑电平:2V VDD  
低电源电流:45µA  
MUX507 MUX507 的导通和关断泄漏电流较低,允  
许此类多路复用器以最小误差转换高输入阻抗源传输的  
信号。电源电流低至 45µA,支持其应用于功耗敏感型  
应用。  
ESD 保护 HBM2000V  
行业标准 TSSOP/SOIC 封装  
器件信息(1)  
2 应用  
器件型号  
MUX506  
封装  
TSSOP (28)  
SOIC (28)  
封装尺寸(标称值)  
9.70mm × 6.40mm  
17.9mm × 7.50mm  
工厂自动化和工业过程控制  
可编程逻辑控制器 (PLC)  
模拟输入模块  
MUX507  
(1) 要了解所有可用封装,请参见数据表末尾的封装选项附录。  
自动测试设备 (ATE)  
数字万用表  
电池监控系统  
简化电路原理图  
泄漏电流与温度间的关系  
1000  
ID(ON)+  
IS(OFF)+  
500  
ID(OFF)+  
Bridge Sensor  
Thermocouple  
0
œ
VINP  
ADC  
PGA/INA  
+
MUX507  
-500  
IS(OFF)-  
VINM  
-1000  
ID(OFF)-  
Current  
Sensing  
-1500  
ID(ON)-  
Photo  
LED  
Detector  
Optical Sensor  
-2000  
Copyright © 2017, Texas Instruments Incorporated  
-75  
-50  
-25  
0
25  
50  
75  
100 125 150  
Analog Inputs  
Temperature (èC)  
D006  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBAS803  
 
 
 
 
 
MUX506, MUX507  
ZHCSFU9A NOVEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
目录  
7.11 Bandwidth ............................................................. 23  
7.12 THD + Noise ......................................................... 23  
Detailed Description ............................................ 24  
8.1 Overview ................................................................. 24  
8.2 Functional Block Diagram ....................................... 24  
8.3 Feature Description................................................. 25  
8.4 Device Functional Modes........................................ 27  
Application and Implementation ........................ 28  
9.1 Application Information............................................ 28  
9.2 Typical Application ................................................. 28  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 6  
6.1 Absolute Maximum Ratings ...................................... 6  
6.2 ESD Ratings.............................................................. 6  
6.3 Recommended Operating Conditions....................... 6  
6.4 Thermal Information.................................................. 7  
6.5 Electrical Characteristics: Dual Supply ..................... 7  
6.6 Electrical Characteristics: Single Supply................... 9  
6.7 Typical Characteristics............................................ 11  
Parameter Measurement Information ................ 16  
7.1 Truth Tables............................................................ 16  
7.2 On-Resistance ........................................................ 17  
7.3 Off Leakage............................................................. 17  
7.4 On-Leakage Current ............................................... 18  
7.5 Transition Time ....................................................... 18  
7.6 Break-Before-Make Delay....................................... 19  
7.7 Turn-On and Turn-Off Time .................................... 20  
7.8 Charge Injection...................................................... 21  
7.9 Off Isolation............................................................. 22  
7.10 Channel-to-Channel Crosstalk.............................. 22  
8
9
10 Power Supply Recommendations ..................... 30  
11 Layout................................................................... 31  
11.1 Layout Guidelines ................................................. 31  
11.2 Layout Example .................................................... 31  
12 器件和文档支持 ..................................................... 33  
12.1 文档支持................................................................ 33  
12.2 相关链接................................................................ 33  
12.3 接收文档更新通知 ................................................. 33  
12.4 社区资源................................................................ 33  
12.5 ....................................................................... 33  
12.6 静电放电警告......................................................... 33  
12.7 Glossary................................................................ 33  
13 机械、封装和可订购信息....................................... 33  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (November 2016) to Revision A  
Page  
已更改 将特性 列表中的转换时间从 85ns 更改成了 97ns ...................................................................................................... 1  
已添加 在特性 器件信息 部分中添加了 SOIC 封装 ............................................................................................................. 1  
Added the DW (SOIC) package to the Pin Configuration and Functions section .................................................................. 3  
Added SOIC package to the Thermal Information table ........................................................................................................ 7  
Changed Transition time Typ value From 85: ns To: 97ns for ±15 V supplies in the Electrical Characteristics: Dual  
Supply table............................................................................................................................................................................ 8  
Added additional specifications for the SOIC packages (QJ, Off-isolation, and channel-to-channel crosstalk) for ±15  
V supplies in Electrical Characteristics: Dual Supply ............................................................................................................. 8  
Changed Transition time Typ value From: 91 To: 102 ns for 12 V supply in the Electrical Characteristics: Single  
Supply table.......................................................................................................................................................................... 10  
Added additional specifications for the SOIC packages (QJ, Off-isolation, and channel-to-channel crosstalk) for 12 V  
supply in Electrical Characteristics: Single Supply............................................................................................................... 10  
Added NOTE to the Application and Implementation section .............................................................................................. 28  
2
Copyright © 2016–2017, Texas Instruments Incorporated  
 
MUX506, MUX507  
www.ti.com.cn  
ZHCSFU9A NOVEMBER 2016REVISED NOVEMBER 2017  
5 Pin Configuration and Functions  
MUX506: PW and DW Packages  
28-Pin TSSOP and SOIC  
Top View  
VDD  
NC  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
D
2
VSS  
S8  
S7  
S6  
S5  
S4  
S3  
S2  
S1  
EN  
A0  
A1  
A2  
NC  
3
S16  
S15  
S14  
S13  
S12  
S11  
S10  
S9  
4
5
6
7
8
9
10  
11  
12  
13  
14  
GND  
NC  
A3  
Not to scale  
Pin Functions: MUX506  
PIN  
FUNCTION  
DESCRIPTION  
NAME  
A0  
NO.  
17  
16  
15  
14  
28  
Digital input  
Digital input  
Digital input  
Digital input  
Address line 0  
A1  
Address line 1  
Address line 2  
Address line 3  
A2  
A3  
D
Analog input or output Drain pin. Can be an input or output.  
Active high digital input. When this pin is low, all switches are turned off. When this pin is  
high, the A[3:0] logic inputs determine which switch is turned on.  
EN  
18  
Digital input  
GND  
NC  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
S9  
12  
2, 3, 13  
19  
Power supply  
No connect  
Ground (0 V) reference  
Do not connect  
Analog input or output Source pin 1. Can be an input or output.  
Analog input or output Source pin 2. Can be an input or output.  
Analog input or output Source pin 3. Can be an input or output.  
Analog input or output Source pin 4. Can be an input or output.  
Analog input or output Source pin 5. Can be an input or output.  
Analog input or output Source pin 6. Can be an input or output.  
Analog input or output Source pin 7. Can be an input or output.  
Analog input or output Source pin 8. Can be an input or output.  
Analog input or output Source pin 9. Can be an input or output.  
20  
21  
22  
23  
24  
25  
26  
11  
Copyright © 2016–2017, Texas Instruments Incorporated  
3
MUX506, MUX507  
ZHCSFU9A NOVEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
Pin Functions: MUX506 (continued)  
PIN  
FUNCTION  
DESCRIPTION  
NAME  
S10  
S11  
S12  
S13  
S14  
S15  
S16  
NO.  
10  
9
Analog input or output Source pin 10. Can be an input or output.  
Analog input or output Source pin 11. Can be an input or output.  
Analog input or output Source pin 12. Can be an input or output.  
Analog input or output Source pin 13. Can be an input or output.  
Analog input or output Source pin 14. Can be an input or output.  
Analog input or output Source pin 15. Can be an input or output.  
Analog input or output Source pin 16. Can be an input or output.  
8
7
6
5
4
Positive power supply. This pin is the most positive power-supply potential. For reliable  
operation, connect a decoupling capacitor ranging from 0.1 µF to 10 µF between VDD  
and GND.  
VDD  
VSS  
1
Power supply  
Power supply  
Negative power supply. This pin is the most negative power-supply potential. In single-  
supply applications, this pin can be connected to ground. For reliable operation, connect a  
decoupling capacitor ranging from 0.1 µF to 10 µF between VSS and GND.  
27  
MUX507: PW and DW Package  
28-Pin TSSOP and SOIC  
Top View  
VDD  
DB  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
DA  
2
VSS  
S8A  
S7A  
S6A  
S5A  
S4A  
S3A  
S2A  
S1A  
EN  
NC  
3
S8B  
S7B  
S6B  
S5B  
S4B  
S3B  
S2B  
S1B  
GND  
NC  
4
5
6
7
8
9
10  
11  
12  
13  
14  
A0  
A1  
NC  
A2  
Not to scale  
Pin Functions: MUX507  
PIN  
FUNCTION  
DESCRIPTION  
NAME  
A0  
NO.  
17  
Digital input  
Digital input  
Digital input  
Address line 0  
A1  
16  
Address line 1  
Address line 2  
A2  
15  
DA  
28  
Analog input or output Drain pin A. Can be an input or output.  
4
Copyright © 2016–2017, Texas Instruments Incorporated  
MUX506, MUX507  
www.ti.com.cn  
ZHCSFU9A NOVEMBER 2016REVISED NOVEMBER 2017  
Pin Functions: MUX507 (continued)  
PIN  
NAME  
FUNCTION  
DESCRIPTION  
NO.  
DB  
2
Analog input or output Drain pin B. Can be an input or output.  
Active high digital input. When this pin is low, all switches are turned off. When this pin is  
high, the A[2:0] logic inputs determine which pair of switches is turned on.  
EN  
18  
Digital input  
GND  
NC  
12  
Power supply  
No connect  
Ground (0 V) reference  
Do not connect  
3, 13, 14  
S1A  
S2A  
S3A  
S4A  
S5A  
S6A  
S7A  
S8A  
S1B  
S2B  
S3B  
S4B  
S5B  
S6B  
S7B  
S8B  
19  
20  
21  
22  
23  
24  
25  
26  
11  
10  
9
Analog input or output Source pin 1A. Can be an input or output.  
Analog input or output Source pin 2A. Can be an input or output.  
Analog input or output Source pin 3A. Can be an input or output.  
Analog input or output Source pin 4A. Can be an input or output.  
Analog input or output Source pin 5A. Can be an input or output.  
Analog input or output Source pin 6A. Can be an input or output.  
Analog input or output Source pin 7A. Can be an input or output.  
Analog input or output Source pin 8A. Can be an input or output.  
Analog input or output Source pin 1B. Can be an input or output.  
Analog input or output Source pin 2B. Can be an input or output.  
Analog input or output Source pin 3B. Can be an input or output.  
Analog input or output Source pin 4B. Can be an input or output.  
Analog input or output Source pin 5B. Can be an input or output.  
Analog input or output Source pin 6B. Can be an input or output.  
Analog input or output Source pin 7B. Can be an input or output.  
Analog input or output Source pin 8B. Can be an input or output.  
8
7
6
5
4
Positive power supply. This pin is the most positive power supply potential. For reliable  
VDD  
VSS  
1
Power supply  
Power supply  
operation, connect a decoupling capacitor ranging from 0.1 µF to 10 µF between VDD  
and GND.  
Negative power supply. This pin is the most negative power supply potential. In single-  
supply applications, this pin can be connected to ground. For reliable operation, connect a  
decoupling capacitor ranging from 0.1 µF to 10 µF between VSS and GND.  
27  
Copyright © 2016–2017, Texas Instruments Incorporated  
5
MUX506, MUX507  
ZHCSFU9A NOVEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–40  
MAX  
40  
UNIT  
VDD  
Supply  
VSS  
0.3  
Voltage  
VDD – VSS  
40  
V
Digital pins(2): EN, A0, A1, A2, A3  
Analog pins(2): Sx, SxA, SxB, D, DA, DB  
VSS – 0.3  
VSS – 2  
–30  
VDD + 0.3  
VDD + 2  
30  
Current(3)  
mA  
°C  
Operating, TA  
Junction, TJ  
Storage, Tstg  
–55  
150  
Temperature  
150  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Voltage limits are valid if current is limited to ±30 mA.  
(3) Only one pin at a time.  
6.2 ESD Ratings  
VALUE  
2000  
500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
MIN  
5
NOM  
MAX  
18  
UNIT  
Dual supply  
(1)  
(2)  
VDD  
VSS  
Positive power-supply voltage  
V
Single supply  
10  
36  
Negative power-supply voltage (dual supply)  
–5  
–18  
36  
V
V
VDD – VSS  
Supply voltage  
10  
VS  
Source pins voltage(3)  
Drain pins voltage  
VSS  
VSS  
VSS  
VSS  
–25  
–40  
VDD  
VDD  
VDD  
VDD  
25  
V
VD  
VEN  
VA  
V
Enable pin voltage  
V
Address pins voltage  
V
ICH  
TA  
Channel current (TA = 25°C)  
Operating temperature  
mA  
°C  
125  
(1) When VSS = 0 V, VDD can range from 10 V to 36 V.  
(2) VDD and VSS can be any value as long as 10 V (VDD – VSS) 36 V.  
(3) VS is the voltage on all the S pins.  
6
Copyright © 2016–2017, Texas Instruments Incorporated  
MUX506, MUX507  
www.ti.com.cn  
ZHCSFU9A NOVEMBER 2016REVISED NOVEMBER 2017  
6.4 Thermal Information  
MUX50x  
THERMAL METRIC(1)  
PW (TSSOP)  
28 PINS  
79.8  
DW (SOIC)  
28 PINS  
53.6  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
24.0  
30.1  
37.6  
28.5  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.2  
9.0  
ψJB  
37.1  
28.4  
RθJC(bot)  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics: Dual Supply  
at TA = 25°C, VDD = 15 V, and VSS = –15 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ANALOG SWITCH  
Analog signal range  
On-resistance  
TA = –40°C to +125°C  
VS = 0 V, IS = –1 mA  
VSS  
VDD  
170  
200  
230  
250  
9
V
125  
145  
RON  
Ω
Ω
VS = ±10 V, IS = –1 mA  
VS = ±10 V, IS = –1 mA  
VS = 10 V, 0 V, –10 V  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
6
On-resistance  
mismatch between  
channels  
ΔRON  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
14  
16  
20  
45  
On-resistance  
flatness  
RFLAT  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
53  
Ω
58  
On-resistance drift  
VS = 0 V  
0.62  
Ω/°C  
nA  
–1  
–10  
–25  
–1  
–0.001  
1
10  
25  
1
Switch state is off,  
IS(OFF)  
ID(OFF)  
ID(ON)  
Input leakage current VS = ±10 V, VD = ±10  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
V(1)  
–0.01  
–0.01  
Switch state is off,  
Output off-leakage  
VS = ±10 V, VD = ±10  
current  
TA = -40°C to +85°C  
TA = -40°C to +125°C  
–10  
–25  
–1  
10  
25  
1
nA  
nA  
V(1)  
Output on-leakage  
current  
Switch state is on,  
VD = ±10 V, VS = floating  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
–10  
–50  
10  
50  
LOGIC INPUT  
VIH  
VIL  
ID  
Logic voltage high  
2
V
V
Logic voltage low  
Input current  
0.8  
0.1  
µA  
(1) When VS is positive, VD is negative, and vice versa.  
Copyright © 2016–2017, Texas Instruments Incorporated  
7
MUX506, MUX507  
ZHCSFU9A NOVEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
Electrical Characteristics: Dual Supply (continued)  
at TA = 25°C, VDD = 15 V, and VSS = –15 V (unless otherwise noted)  
PARAMETER  
SWITCH DYNAMICS(2)  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ns  
82  
136  
145  
151  
78  
VS = ±10 V, RL = 300 Ω,  
CL= 35 pF  
tON  
Enable turn-on time  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
63  
97  
VS = ±10 V, RL = 300 Ω,  
CL= 35 pF  
tOFF  
Enable turn-off time  
Transition time  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
89  
ns  
97  
143  
151  
157  
VS = 10 V, RL = 300 Ω,  
CL= 35 pF,  
tt  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
ns  
ns  
Break-before-make  
time delay  
tBBM  
VS = 10 V, RL = 300 Ω, CL= 35 pF, TA = –40°C to +125°C  
30  
54  
TSSOP package  
SOIC package  
TSSOP package  
SOIC package  
TSSOP package  
SOIC package  
TSSOP package  
SOIC package  
TSSOP package  
SOIC package  
TSSOP package  
SOIC package  
0.31  
0.67  
±0.9  
±1.1  
–98  
–94  
–94  
–88  
–100  
–96  
–88  
–83  
2.1  
VS = 0 V  
CL = 1 nF, RS = 0 Ω  
QJ  
Charge injection  
Off-isolation  
pC  
dB  
dB  
VS = –15 V to +15 V  
Nonadjacent channel to D,  
DA, DB  
RL = 50 Ω, VS = 1 VRMS  
,
f = 1 MHz  
Adjacent channel to D, DA,  
DB  
Nonadjacent channels  
Adjacent channels  
Channel-to-channel  
crosstalk  
RL = 50 Ω, VS = 1 VRMS  
f = 1 MHz  
,
CS(OFF)  
CD(OFF)  
Input off-capacitance f = 1 MHz, VS = 0 V  
3
12.2  
7.5  
pF  
pF  
MUX506  
MUX507  
MUX506  
MUX507  
11.1  
6.4  
Output off-  
f = 1 MHz, VS = 0 V  
capacitance  
13.5  
8.7  
15  
CS(ON)  
CD(ON)  
,
Output on-  
f = 1 MHz, VS = 0 V  
capacitance  
pF  
10.2  
POWER SUPPLY  
45  
26  
59  
62  
85  
34  
37  
58  
All VA = 0 V or 3.3 V,  
VS = 0 V, VEN = 3.3 V,  
VDD supply current  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
µA  
µA  
All VA = 0 V or 3.3 V,  
VS = 0 V, VEN = 3.3 V,  
VSS supply current  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
(2) Specified by design; not subject to production testing.  
8
Copyright © 2016–2017, Texas Instruments Incorporated  
MUX506, MUX507  
www.ti.com.cn  
ZHCSFU9A NOVEMBER 2016REVISED NOVEMBER 2017  
6.6 Electrical Characteristics: Single Supply  
at TA = 25°C, VDD = 12 V, and VSS = 0 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
235  
7
MAX  
UNIT  
V
ANALOG SWITCH  
Analog signal range  
On-resistance  
TA = –40°C to +125°C  
VS = 10 V, IS = –1 mA  
VSS  
VDD  
340  
390  
430  
20  
RON  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
Ω
ΔRON  
On-resistance match VS = 10 V, IS = –1 mA  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
35  
Ω
40  
On-resistance drift  
VS = 10 V  
1.07  
Ω/°C  
nA  
–1  
–10  
–25  
–1  
0.001  
1
10  
25  
1
Switch state is off,  
VS = 1 V and VD = 10 V,  
or VS = 10 V and VD = 1  
V(1)  
IS(OFF)  
ID(OFF)  
ID(ON)  
Input leakage current  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
0.01  
0.02  
Switch state is off,  
VS = 1 V and VD = 10 V,  
or VS = 10 V and VD = 1  
V(1)  
Output off leakage  
current  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
–10  
–25  
–1  
10  
25  
1
nA  
nA  
Switch state is on,  
VD = 1 V and 10 V, VS  
floating  
Output on leakage  
current  
=
TA = –40°C to +85°C  
TA = –40°C to +125°C  
–10  
–50  
10  
50  
LOGIC INPUT  
VIH  
VIL  
ID  
Logic voltage high  
2.0  
V
V
Logic voltage low  
Input current  
0.8  
0.1  
µA  
(1) When VS is 1 V, VD is 10 V, and vice versa.  
Copyright © 2016–2017, Texas Instruments Incorporated  
9
MUX506, MUX507  
ZHCSFU9A NOVEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
Electrical Characteristics: Single Supply (continued)  
at TA = 25°C, VDD = 12 V, and VSS = 0 V (unless otherwise noted)  
PARAMETER  
SWITCH DYNAMIC CHARACTERISTICS(2)  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ns  
90  
145  
145  
149  
84  
VS = 8 V, RL = 300 Ω,  
CL= 35 pF  
tON  
Enable turn-on time  
Enable turn-off time  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
66  
VS = 8 V, RL = 300 Ω,  
CL= 35 pF  
tOFF  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
94  
ns  
102  
147  
VS = 8 V, CL= 35 pF  
107  
VS = 8 V, RL = 300 Ω,  
CL= 35 pF,  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
153  
155  
tt  
Transition time  
ns  
VS = 8 V, RL = 300 Ω,  
CL= 35 pF,  
Break-before-make  
time delay  
tBBM  
VS = 8 V, RL = 300 Ω, CL= 35 pF, TA = –40°C to +125°C  
30  
54  
ns  
TSSOP package  
SOIC package  
TSSOP  
0.12  
0.38  
±0.17  
±0.48  
–97  
–94  
–94  
–88  
–100  
–99  
-88  
VS = 6 V  
CL = 1 nF, RS = 0 Ω  
pC  
QJ  
Charge injection  
Off-isolation  
VS = 0 V to 12 V  
SOIC package  
TSSOP package  
SOIC package  
TSSOP package  
SOIC package  
TSSOP package  
SOIC package  
TSSOP  
Nonadjacent channel to D,  
DA, DB  
RL = 50 Ω, VS = 1 VRMS  
,
dB  
dB  
f = 1 MHz  
Adjacent channel to D, DA,  
DB  
Nonadjacent channels  
Adjacent channels  
Channel-to-channel  
crosstalk  
RL = 50 Ω, VS = 1 VRMS  
f = 1 MHz  
,
SOIC package  
-83  
CS(OFF)  
CD(OFF)  
Input off-capacitance f = 1 MHz, VS = 6 V  
2.4  
3.4  
15.4  
9.1  
pF  
pF  
MUX506  
MUX507  
MUX506  
MUX507  
14  
Output off-  
f = 1 MHz, VS = 6 V  
capacitance  
7.8  
16.2  
9.9  
18  
CS(ON)  
,
Output on-  
f = 1 MHz, VS = 6 V  
capacitance  
pF  
CD(ON)  
11.6  
POWER SUPPLY  
41  
22  
59  
62  
83  
34  
37  
57  
All VA = 0 V or 3.3 V,  
VS= 0 V, VEN = 3.3 V  
VDD supply current  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
µA  
µA  
All VA = 0 V or 3.3 V,  
VS = 0 V, VEN = 3.3 V  
VSS supply current  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
(2) Specified by design, not subject to production test.  
10  
版权 © 2016–2017, Texas Instruments Incorporated  
MUX506, MUX507  
www.ti.com.cn  
ZHCSFU9A NOVEMBER 2016REVISED NOVEMBER 2017  
6.7 Typical Characteristics  
at TA = 25°C, VDD = 15 V, and VSS = –15 V (unless otherwise noted)  
400  
350  
300  
250  
200  
150  
100  
50  
TA = 90èC  
VDD = 10 V, VSS = -10 V  
350  
TA = 125èC  
TA = 25èC  
VDD = 16.5 V, VSS = -16.5 V  
300  
250  
200  
150  
100  
50  
VDD = 13.5 V, VSS = -13.5 V  
TA = 0èC  
VDD = 15 V, VSS = -15 V  
TA = -40èC  
-6 -2  
VDD = 18 V, VSS = -18 V  
0
-18  
-18  
-14  
-10  
-6  
-2  
2
6
10  
14  
18  
-14  
-10  
2
6
10  
14  
18  
Source or Drain Voltage (V)  
Source or Drain Voltage (V)  
D001  
D002  
VDD = 15 V, VSS = –15 V  
2. On-Resistance vs Source or Drain Voltage  
1. On-Resistance vs Source or Drain Voltage  
700  
600  
500  
400  
300  
200  
100  
700  
600  
500  
400  
300  
200  
100  
0
TA = 85èC  
TA = 125èC  
VDD = 5 V, VSS = -5 V  
VDD = 6 V, VSS = -6 V  
TA = 25èC  
VDD = 7 V, VSS = -7 V  
TA = 0èC  
TA = -40èC  
-8  
-6  
-4  
-2  
0
2
4
6
8
0
2
4
6
8
10  
12  
Source or Drain Voltage (V)  
Source or Drain Voltage (V)  
D003  
D004  
VDD = 12 V, VSS = 0 V  
3. On-Resistance vs Source or Drain Voltage  
4. On-Resistance vs Source or Drain Voltage  
250  
200  
150  
100  
50  
700  
600  
500  
400  
300  
200  
100  
0
VDD = 14 V, VSS = 0 V  
VDD = 33 V, VSS = 0 V  
VDD = 36 V, VSS = 0 V  
VDD = 30 V, VSS = 0 V  
VDD = 12 V, VSS = 0 V  
VDD = 10 V, VSS = 0 V  
0
0
6
12  
18  
24  
30  
36  
0
2
4
6
8
10  
12  
14  
Source or Drain Voltage (V)  
Source or Drain Voltage (V)  
D024  
D005  
5. On-Resistance vs Source or Drain Voltage  
6. On-Resistance vs Source or Drain Voltage  
版权 © 2016–2017, Texas Instruments Incorporated  
11  
MUX506, MUX507  
ZHCSFU9A NOVEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VDD = 15 V, and VSS = –15 V (unless otherwise noted)  
250  
250  
200  
150  
100  
50  
200  
150  
100  
50  
0
0
0
6
12  
18  
24  
-12  
-6  
0
6
12  
Source or Drain Voltage (V)  
Source or Drain Voltage (V)  
D025  
D026  
VDD = 24 V, VSS = 0 V  
VDD = 12 V, VSS = –12 V  
7. On-Resistance vs Source or Drain Voltage  
8. On-Resistance vs Source or Drain Voltage  
1000  
900  
600  
300  
0
ID(ON)+  
IS(OFF)+  
IS(OFF)+  
500  
0
ID(OFF)+  
ID(ON)+  
IS(OFF)-  
-500  
-1000  
-1500  
-2000  
IS(OFF)-  
ID(OFF)-  
ID(OFF)+  
-300  
-600  
-900  
ID(OFF)-  
ID(ON)-  
ID(ON)-  
75 100 125 150  
-75  
-50  
-25  
0
25  
50  
75  
100 125 150  
-75  
-50  
-25  
0
25  
50  
Temperature (èC)  
Temperature (èC)  
D006  
D007  
Þ
VDD = 15 V, VSS = –15 V  
9. Leakage Current vs Temperature  
VDD = 12 V, VSS = 0 V  
10. Leakage Current vs Temperature  
2
1
2
1
VDD = 5 V, VSS = -5 V  
VDD = 12 V, VSS = 0 V  
VDD = 5 V, VSS = -5 V  
VDD = 12 V, VSS = 0 V  
0
0
VDD = 10 V, VSS = -10 V  
VDD = 10 V, VSS = -10 V  
-1  
-1  
VDD = 15 V, VSS = -15 V  
VDD = 15 V, VSS = -15 V  
-2  
-2  
-15  
-10  
-5  
0
5
10  
15  
-15  
-10  
-5  
0
5
10  
15  
Source Voltage (V)  
Source Voltage (V)  
D011  
D027  
MUX506, source-to-drain  
11. Charge Injection vs Source Voltage  
MUX507, source-to-drain  
12. Charge Injection vs Source Voltage  
12  
版权 © 2016–2017, Texas Instruments Incorporated  
MUX506, MUX507  
www.ti.com.cn  
ZHCSFU9A NOVEMBER 2016REVISED NOVEMBER 2017  
Typical Characteristics (接下页)  
at TA = 25°C, VDD = 15 V, and VSS = –15 V (unless otherwise noted)  
150  
120  
90  
60  
30  
0
9
VDD = 10 V, VSS = -10 V  
tON (VDD = 12 V, VSS = 0 V)  
tON (VDD = 15 V, VSS = -15 V)  
6
VDD = 15 V, VSS = -15 V  
3
0
-3  
tOFF (VDD = 12 V, VSS = 0 V)  
tOFF (VDD = 15 V, VSS = -15 V)  
-6  
VDD = 12 V, VSS = 0 V  
-9  
-15  
-10  
-5  
0
5
10  
15  
-75  
-50  
-25  
0
25  
50  
75  
100 125 150  
Drain voltage (V)  
Temperature (èC)  
D008  
D010  
Drain-to-source  
13. Charge Injection vs Drain Voltage  
14. Turn-On and Turn-Off Times vs Temperature  
0
0
-20  
-20  
-40  
Adjacent Channel to D (Output)  
Adjacent Channels  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
Non-Adjacent Channel to D (Output)  
Non-Adjacent Channels  
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
Frequency (Hz)  
Frequency (Hz)  
D012  
D013  
15. Off Isolation vs Frequency  
16. Crosstalk vs Frequency  
5
0
100  
10  
-5  
VDD = 5 V, VSS = -5 V  
-10  
-15  
-20  
-25  
-30  
1
0.1  
VDD = 15 V, VSS = -15 V  
0.01  
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
100k  
1M  
10M  
Frequency (Hz)  
100M  
1G  
D014  
D021  
17. THD+N vs Frequency  
18. On Response vs Frequency  
版权 © 2016–2017, Texas Instruments Incorporated  
13  
MUX506, MUX507  
ZHCSFU9A NOVEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VDD = 15 V, and VSS = –15 V (unless otherwise noted)  
30  
30  
24  
18  
12  
6
24  
CD(ON)  
CS(OFF)  
CD(OFF)  
18  
CD(OFF)  
12  
CD(ON)  
6
CS(OFF)  
0
0
-15  
-10  
-5  
0
5
10  
15  
-15  
-10  
-5  
0
5
10  
15  
Source or Drain Voltage (V)  
Source or Drain Voltage (V)  
D015  
D016  
MUX506, VDD = 15 V, VSS = –15 V  
MUX507, VDD = 15 V, VSS = –15 V  
19. Capacitance vs Source Voltage  
20. Capacitance vs Source Voltage  
30  
30  
24  
18  
12  
6
24  
18  
12  
6
CS(OFF)  
CD(ON)  
CD(OFF)  
CD(ON)  
CD(OFF)  
CS(OFF)  
0
0
0
6
12  
18  
24  
30  
0
6
12  
18  
24  
30  
Source or Drain Voltage (V)  
Source or Drain Voltage (V)  
D017  
D018  
MUX506, VDD = 30 V, VSS = 0 V  
MUX507, VDD = 30 V, VSS = 0 V  
21. Capacitance vs Source Voltage  
22. Capacitance vs Source Voltage  
30  
24  
18  
12  
6
30  
24  
18  
12  
6
CD(ON)  
CD(OFF)  
CD(ON)  
CS(OFF)  
CS(OFF)  
CD(OFF)  
0
0
0
3
6
9
12  
0
3
6
9
12  
Source or Drain Voltage (V)  
Source or Drain Voltage (V)  
D019  
D020  
MUX506, VDD = 12 V, VSS = 0 V  
MUX507, VDD = 12 V, VSS = 0 V  
23. Capacitance vs Source Voltage  
24. Capacitance vs Source Voltage  
14  
版权 © 2016–2017, Texas Instruments Incorporated  
MUX506, MUX507  
www.ti.com.cn  
ZHCSFU9A NOVEMBER 2016REVISED NOVEMBER 2017  
Typical Characteristics (接下页)  
at TA = 25°C, VDD = 15 V, and VSS = –15 V (unless otherwise noted)  
25  
20  
15  
10  
5
0
-5  
-10  
-15  
-20  
-25  
-25 -20 -15 -10  
-5  
0
5
10  
15  
20  
25  
Source Current (mA)  
D028  
25. Source Current vs Drain Current  
版权 © 2016–2017, Texas Instruments Incorporated  
15  
MUX506, MUX507  
ZHCSFU9A NOVEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
7 Parameter Measurement Information  
7.1 Truth Tables  
1. MUX506  
EN  
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
A3  
X(1)  
0
A2  
X(1)  
0
A1  
X(1)  
0
A0  
X(1)  
0
ON-CHANNEL  
All channels are off  
Channel 1  
0
0
0
1
Channel 2  
0
0
1
0
Channel 3  
0
0
1
1
Channel 4  
0
1
0
0
Channel 5  
0
1
0
1
Channel 6  
0
1
1
0
Channel 7  
0
1
1
1
Channel 8  
1
0
0
0
Channel 9  
1
0
0
1
Channel 10  
Channel 11  
Channel 12  
Channel 13  
Channel 14  
Channel 15  
Channel 16  
1
0
1
0
1
0
1
1
1
1
0
0
1
1
0
1
1
1
1
0
1
1
1
1
(1) X denotes don't care..  
2. MUX507  
EN  
0
A2  
X(1)  
0
A1  
X(1)  
A0  
X(1)  
ON-CHANNEL  
All channels are off  
Channels 1A and 1B  
Channels 2A and 2B  
Channels 3A and 3B  
Channels 4A and 4B  
Channels 5A and 5B  
Channels 6A and 6B  
Channels 7A and 7B  
Channels 8A and 8B  
1
0
0
1
0
0
1
1
0
1
0
1
0
1
1
1
1
0
0
1
1
0
1
1
1
1
0
1
1
1
1
(1) X denotes don't care.  
16  
版权 © 2016–2017, Texas Instruments Incorporated  
MUX506, MUX507  
www.ti.com.cn  
ZHCSFU9A NOVEMBER 2016REVISED NOVEMBER 2017  
7.2 On-Resistance  
The on-resistance of the MUX50x is the ohmic resistance across the source (Sx, SxA, or SxB) and drain (D, DA,  
or DB) pins of the device. The on-resistance varies with input voltage and supply voltage. The symbol RON is  
used to denote on-resistance. The measurement setup used to measure RON is shown in 26. Voltage (V) and  
current (ICH) are measured using this setup, and RON is computed as shown in 公式 1:  
RON = V / ICH  
(1)  
V
S
D
ICH  
VS  
Copyright © 2017, Texas Instruments Incorporated  
26. On-Resistance Measurement Setup  
7.3 Off Leakage  
There are two types of leakage currents associated with a switch during the OFF state:  
1. Source off-leakage current  
2. Drain off-leakage current  
Source leakage current is defined as the leakage current flowing into or out of the source pin when the switch is  
off. This current is denoted by the symbol IS(OFF)  
.
Drain leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is off.  
This current is denoted by the symbol ID(OFF)  
.
The setup used to measure both off-leakage currents is shown in 27  
Is (OFF)  
ID (OFF)  
A
S
D
A
VS  
VD  
Copyright © 2017, Texas Instruments Incorporated  
27. Off-Leakage Measurement Setup  
版权 © 2016–2017, Texas Instruments Incorporated  
17  
 
 
 
MUX506, MUX507  
ZHCSFU9A NOVEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
7.4 On-Leakage Current  
On-leakage current is defined as the leakage current that flows into or out of the drain pin when the switch is in  
the ON state. The source pin is left floating during the measurement. 28 shows the circuit used for measuring  
the on-leakage current, denoted by ID(ON)  
.
ID (ON)  
A
S
D
NC  
NC = No Connection  
VD  
Copyright © 2017, Texas Instruments Incorporated  
28. On-Leakage Measurement Setup  
7.5 Transition Time  
Transition time is defined as the time taken by the output of the MUX50x to rise or fall to 90% of the transition  
after the digital address signal has fallen or risen to 50% of the transition. 29 shows the setup used to  
measure transition time, denoted by the symbol tt.  
VDD  
VSS  
3 V  
VDD  
VSS  
Address  
Signal (VIN  
50%  
50%  
)
S1  
VS1  
A0  
A1  
A2  
A3  
0 V  
S2-S15  
S16  
D
VIN  
tt  
tt  
VS16  
VS1  
90%  
Output  
MUX506  
Output  
EN  
2 V  
GND  
300 Ω  
35 pF  
90%  
VS16  
Copyright © 2016, Texas Instruments Incorporated  
29. Transition-Time Measurement Setup  
18  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
MUX506, MUX507  
www.ti.com.cn  
ZHCSFU9A NOVEMBER 2016REVISED NOVEMBER 2017  
7.6 Break-Before-Make Delay  
Break-before-make delay is a safety feature that prevents two inputs from connecting when the MUX50x is  
switching. The MUX50x output first breaks from the ON-state switch before making the connection with the next  
ON-state switch. The time delay between the break and the make is known as break-before-make delay. 30  
shows the setup used to measure break-before-make delay, denoted by the symbol tBBM  
.
VDD  
VSS  
3 V  
VSS  
VDD  
Address  
Signal (VIN  
)
S1  
VS  
A0  
A1  
A2  
A3  
0 V  
S2-S15  
S16  
D
VIN  
Output  
MUX506  
80%  
80%  
Output  
2 V  
EN  
GND  
300 Ω  
35 pF  
tBBM  
Copyright © 2016, Texas Instruments Incorporated  
30. Break-Before-Make Delay Measurement Setup  
版权 © 2016–2017, Texas Instruments Incorporated  
19  
 
MUX506, MUX507  
ZHCSFU9A NOVEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
7.7 Turn-On and Turn-Off Time  
Turn-on time is defined as the time taken by the output of the MUX50x to rise to 90% final value after the enable  
signal has risen to 50% final value. 31 shows the setup used to measure turn-on time. Turn-on time is  
denoted by the symbol tON  
.
Turn off time is defined as the time taken by the output of the MUX50x to fall to 10% initial value after the enable  
signal has fallen to 50% initial value. 31 shows the setup used to measure turn-off time. Turn-off time is  
denoted by the symbol tOFF  
.
VDD  
VSS  
3 V  
VDD  
VSS  
Enable  
Drive (VIN)  
50%  
50%  
S1  
VS  
A0  
A1  
A2  
A3  
S2-S16  
0 V  
tOFF (EN)  
MUX506  
tON (EN)  
VS  
0.9 VS  
Output  
Output  
EN  
D
GND  
300 Ω  
35 pF  
0.1 VS  
VIN  
0 V  
Copyright © 2016, Texas Instruments Incorporated  
31. Turn-On and Turn-Off Time Measurement Setup  
20  
版权 © 2016–2017, Texas Instruments Incorporated  
 
MUX506, MUX507  
www.ti.com.cn  
ZHCSFU9A NOVEMBER 2016REVISED NOVEMBER 2017  
7.8 Charge Injection  
The MUX50x have a simple transmission-gate topology. Any mismatch in capacitance between the NMOS and  
PMOS transistors results in a charge injected into the drain or source during the falling or rising edge of the gate  
signal. The amount of charge injected into the source or drain of the device is known as charge injection, and is  
denoted by the symbol QINJ. 32 shows the setup used to measure charge injection.  
VSS  
VDD  
VDD  
VSS  
A0  
A1  
A2  
A3  
3 V  
VEN  
MUX506  
0 V  
RS  
S1  
D
VOUT  
EN  
VOUT  
CL  
1 nF  
VOUT  
VS  
GND  
QINJ = CL  
×
VOUT  
VEN  
Copyright © 2016, Texas Instruments Incorporated  
32. Charge-Injection Measurement Setup  
版权 © 2016–2017, Texas Instruments Incorporated  
21  
 
MUX506, MUX507  
ZHCSFU9A NOVEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
7.9 Off Isolation  
Off isolation is defined as the voltage at the drain pin (D, DA, or DB) of the MUX50x when a 1-VRMS signal is  
applied to the source pin (Sx, SxA, or SxB) of an off-channel. 33 shows the setup used to measure off  
isolation. Use 公式 2 to compute off isolation.  
VDD  
VSS  
0.1 µF  
0.1 µF  
Network Analyzer  
VSS  
VDD  
50  
S
50 Ω  
VS  
D
VOUT  
RL  
50 Ω  
GND  
Copyright © 2017, Texas Instruments Incorporated  
33. Off Isolation Measurement Setup  
÷
VOUT  
VS  
Off Isolation = 20 Log  
«
(2)  
7.10 Channel-to-Channel Crosstalk  
Channel-to-channel crosstalk is defined as the voltage at the source pin (Sx, SxA, or SxB) of an off-channel,  
when a 1-VRMS signal is applied at the source pin of an on-channel. 34 shows the setup used to measure  
channel-to-channel crosstalk. Use 公式 3 to compute, channel-to-channel crosstalk.  
VDD  
VSS  
0.1 µF  
0.1 µF  
VSS  
VDD  
Network Analyzer  
VOUT  
S1  
RL  
50  
R
S2  
50 Ω  
VS  
GND  
Copyright © 2017, Texas Instruments Incorporated  
34. Channel-to-Channel Crosstalk Measurement Setup  
«
÷
VOUT  
VS  
Channel-to-Channel Crosstalk = 20 Log  
(3)  
22  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
 
 
MUX506, MUX507  
www.ti.com.cn  
ZHCSFU9A NOVEMBER 2016REVISED NOVEMBER 2017  
7.11 Bandwidth  
Bandwidth is defined as the range of frequencies that are attenuated by less than 3 dB when the input is applied  
to the source pin of an on-channel, and the output measured at the drain pin of the MUX50x. 35 shows the  
setup used to measure bandwidth of the mux. Use 公式 4 to compute the attenuation.  
VDD  
VSS  
0.1 µF  
0.1 µF  
Network Analyzer  
VSS  
VDD  
V1  
50  
S
VS  
V2  
D
VOUT  
RL  
50  
GND  
Copyright © 2017, Texas Instruments Incorporated  
35. Bandwidth Measurement Setup  
«
÷
V2  
Attenuation = 20 Log  
V
1
(4)  
7.12 THD + Noise  
The total harmonic distortion (THD) of a signal is a measurement of the harmonic distortion, and is defined as the  
ratio of the sum of the powers of all harmonic components to the power of the fundamental frequency at the mux  
output. The on-resistance of the MUX50x varies with the amplitude of the input signal and results in distortion  
when the drain pin is connected to a low-impedance load. Total harmonic distortion plus noise is denoted as  
THD+N. 36 shows the setup used to measure THD+N of the MUX50x.  
VDD  
VSS  
0.1 µF  
0.1 µF  
Audio Precision  
VSS  
VDD  
RS  
S
IN  
VS  
5 VRMS  
D
VIN  
VOUT  
RL  
10 kΩ  
GND  
Copyright © 2017, Texas Instruments Incorporated  
36. THD+N Measurement Setup  
版权 © 2016–2017, Texas Instruments Incorporated  
23  
 
 
 
MUX506, MUX507  
ZHCSFU9A NOVEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The MUX50x are a family of analog multiplexers. The Functional Block Diagram section provides a top-level  
block diagram of both the MUX506 and MUX507. The MUX506 is a 16-channel, single-ended, analog mux. The  
MUX507 is an 8-channel, differential or dual 8:1, single-ended, analog mux. Each channel is turned on or turned  
off based on the state of the address lines and enable pin.  
8.2 Functional Block Diagram  
MUX507  
MUX506  
S1  
S2  
S3  
S1A  
S2A  
S7A  
S8A  
DA  
DB  
S8  
S9  
D
S1B  
S2B  
S14  
S7B  
S8B  
S15  
S16  
1-of-8  
Decoder  
1-of-16  
Decoder  
A0  
A1  
EN  
A2  
A3  
A0  
A1  
A2  
EN  
Copyright © 2016, Texas Instruments Incorporated  
24  
版权 © 2016–2017, Texas Instruments Incorporated  
 
MUX506, MUX507  
www.ti.com.cn  
ZHCSFU9A NOVEMBER 2016REVISED NOVEMBER 2017  
8.3 Feature Description  
8.3.1 Ultralow Leakage Current  
The MUX50x provide extremely low on- and off-leakage currents. The MUX50x are capable of switching signals  
from high source-impedance inputs into a high input-impedance op amp with minimal offset error because of the  
ultra-low leakage currents. 37 shows typical leakage currents of the MUX50x versus temperature.  
1000  
ID(ON)+  
IS(OFF)+  
500  
ID(OFF)+  
0
-500  
IS(OFF)-  
-1000  
ID(OFF)-  
-1500  
ID(ON)-  
-2000  
-75  
-50  
-25  
0
25  
50  
75  
100 125 150  
Temperature (èC)  
D006  
37. Leakage Current vs Temperature  
8.3.2 Ultralow Charge Injection  
The MUX50x have a simple transmission gate topology, as shown in 38. Any mismatch in the stray  
capacitance associated with the NMOS and PMOS causes an output level change whenever the switch is  
opened or closed.  
OFF ON  
CGDN  
CGSN  
D
S
CGSP  
CGDP  
OFF ON  
Copyright © 2017, Texas Instruments Incorporated  
38. Transmission Gate Topology  
版权 © 2016–2017, Texas Instruments Incorporated  
25  
 
 
MUX506, MUX507  
ZHCSFU9A NOVEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
Feature Description (接下页)  
The MUX50x have special charge-injection cancellation circuitry that reduces the source-to-drain charge injection  
to as low as 0.31 pC at VS = 0 V, and ±0.9 pC in the full signal range, as shown in 39.  
2
VDD = 5 V, VSS = -5 V  
VDD = 12 V, VSS = 0 V  
1
0
VDD = 10 V, VSS = -10 V  
-1  
VDD = 15 V, VSS = -15 V  
-2  
-15  
-10  
-5  
0
5
10  
15  
Source Voltage (V)  
D011  
39. Source-to-Drain Charge Injection  
The drain-to-source charge injection becomes important when the device is used as a demultiplexer (demux),  
where D becomes the input and Sx becomes the output. 40 shows the drain-to-source charge injection across  
the full signal range.  
9
VDD = 10 V, VSS = -10 V  
6
VDD = 15 V, VSS = -15 V  
3
0
-3  
-6  
VDD = 12 V, VSS = 0 V  
-9  
-15  
-10  
-5  
0
5
10  
15  
Drain voltage (V)  
D008  
40. Drain-to-Source Charge Injection  
26  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
MUX506, MUX507  
www.ti.com.cn  
ZHCSFU9A NOVEMBER 2016REVISED NOVEMBER 2017  
Feature Description (接下页)  
8.3.3 Bidirectional Operation  
The MUX50x are operable as both a mux and demux. The source (Sx, SxA, SxB) and drain (D, DA, DB) pins of  
the MUX50x are used either as input or output. Each MUX50x channel has very similar characteristics in both  
directions.  
8.3.4 Rail-to-Rail Operation  
The valid analog signal for the MUX50x ranges from VSS to VDD. The input signal to the MUX50x swings from VSS  
to VDD without any significant degradation in performance. The on-resistance of the MUX50x varies with input  
signal, as shown in 41  
400  
VDD = 10 V, VSS = -10 V  
350  
VDD = 16.5 V, VSS = -16.5 V  
300  
250  
200  
150  
100  
50  
VDD = 13.5 V, VSS = -13.5 V  
VDD = 15 V, VSS = -15 V  
VDD = 18 V, VSS = -18 V  
-18  
-14  
-10  
-6  
-2  
2
6
10  
14  
18  
Source or Drain Voltage (V)  
D001  
41. On-resistance vs Source or Drain Voltage  
8.4 Device Functional Modes  
When the EN pin of the MUX50x is pulled high, one of the switches is closed based on the state of the address  
lines. When the EN pin is pulled low, all the switches are in an open state irrespective of the state of the address  
lines. The EN pin can be connected to VDD (as high as 36 V).  
版权 © 2016–2017, Texas Instruments Incorporated  
27  
 
MUX506, MUX507  
ZHCSFU9A NOVEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The MUX50x family offers outstanding input/output leakage currents and ultra-low charge injection. These  
devices operate up to 36 V, and offer true rail-to-rail input and output. The on-capacitance of the MUX50x is very  
low. These features makes the MUX50x a family of precision, robust, high-performance analog multiplexer for  
high-voltage, industrial applications.  
9.2 Typical Application  
42 shows a 16-bit, differential, 8-channel, multiplexed, data-acquisition system. This example is typical in  
industrial applications that require low distortion and a high-voltage differential input. The circuit uses the  
ADS8864, a 16-bit, 400-kSPS successive-approximation-resistor (SAR) analog-to-digital converter (ADC), along  
with a precision, high-voltage, signal-conditioning front end, and a 4-channel differential mux. This TI Precision  
Design details the process for optimizing the precision, high-voltage, front-end drive circuit using the MUX507,  
OPA192 and OPA140 to achieve excellent dynamic performance and linearity with the ADS8864.  
Analog Inputs  
REF3140  
RC Filter  
OPA350  
RC Filter  
Bridge Sensor  
Thermocouple  
Reference Driver  
Gain Network  
Gain Network  
OPA192  
+
REF  
+
OPA140  
VINP  
Charge  
Kickback  
Filter  
Gain Network  
OPA192  
+
ADS8864  
Current Sensing  
Photo  
VINM  
Detector  
LED  
High-Voltage Multiplexed Input  
High-Voltage Level Translation  
VCM  
Optical Sensor  
Copyright © 2016, Texas Instruments Incorporated  
42. 16-Bit Precision Multiplexed Data-Acquisition System for High-Voltage Inputs With Lowest  
Distortion  
9.2.1 Design Requirements  
The primary objective is to design a ±20 V, differential, 8-channel, multiplexed, data-acquisition system with  
lowest distortion using the 16-bit ADS8864 at a throughput of 400 kSPS for a 10-kHz, full-scale, pure, sine-wave  
input. The design requirements for this block design are:  
System supply voltage: ±15 V  
ADC supply voltage: 3.3 V  
ADC sampling rate: 400 kSPS  
ADC reference voltage (REFP): 4.096 V  
System input signal: A high-voltage differential input signal with a peak amplitude of 20 V and frequency  
(fIN) of 10 kHz are applied to each differential input of the mux.  
28  
版权 © 2016–2017, Texas Instruments Incorporated  
 
MUX506, MUX507  
www.ti.com.cn  
ZHCSFU9A NOVEMBER 2016REVISED NOVEMBER 2017  
Typical Application (接下页)  
9.2.2 Detailed Design Procedure  
The purpose of this precision design is to design an optimal, high-voltage, multiplexed, data-acquisition system  
for highest system linearity and fast settling. The overall system block diagram is illustrated in 42. The circuit  
is a multichannel, data-acquisition signal chain consisting of an input low-pass filter, mux, mux output buffer,  
attenuating SAR ADC driver, and the reference driver. The architecture allows fast sampling of multiple channels  
using a single ADC, providing a low-cost solution. This design systematically approaches each analog circuit  
block to achieve a 16-bit settling for a full-scale input stage voltage and linearity for a 10-kHz sinusoidal input  
signal at each input channel. Detailed design considerations and component selection procedure can be found in  
the TI Precision Design TIPD151, 16-Bit, 400-kSPS, 4-Channel Multiplexed Data-Acquisition System for High-  
Voltage Inputs with Lowest Distortion.  
9.2.3 Application Curve  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
œ0.2  
œ0.4  
œ0.6  
œ0.8  
œ1.0  
0
5
10  
15  
20  
œ20  
œ15  
œ10  
œ5  
C030  
ADC Differential Peak-to-Peak Input (V)  
43. ADC 16-Bit Linearity Error for the Multiplexed Data-Acquisition Block  
版权 © 2016–2017, Texas Instruments Incorporated  
29  
MUX506, MUX507  
ZHCSFU9A NOVEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
10 Power Supply Recommendations  
The MUX50x operates across a wide supply range of ±5 V to ±18 V (10 V to 36 V in single-supply mode). The  
devices also perform well with unsymmetric supplies such as VDD = 12 V and VSS= –5 V. For reliable operation,  
use a supply decoupling capacitor ranging between 0.1 µF to 10 µF at both the VDD and VSS pins to ground.  
The on-resistance of the MUX50x varies with supply voltage, as illustrated in 44  
400  
VDD = 10 V, VSS = -10 V  
350  
VDD = 16.5 V, VSS = -16.5 V  
300  
250  
200  
150  
100  
50  
VDD = 13.5 V, VSS = -13.5 V  
VDD = 15 V, VSS = -15 V  
VDD = 18 V, VSS = -18 V  
-18  
-14  
-10  
-6  
-2  
2
6
10  
14  
18  
Source or Drain Voltage (V)  
D001  
44. On-Resistance Variation With Supply and Input Voltage  
30  
版权 © 2016–2017, Texas Instruments Incorporated  
 
MUX506, MUX507  
www.ti.com.cn  
ZHCSFU9A NOVEMBER 2016REVISED NOVEMBER 2017  
11 Layout  
11.1 Layout Guidelines  
45 illustrates an example of a PCB layout with the MUX506IPW, and 46 illustrates an example of a PCB  
layout with MUX507IPW.  
Some key considerations are:  
1. Decouple the VDD and VSS pins with a 0.1-µF capacitor, placed as close to the pin as possible. Make sure  
that the capacitor voltage rating is sufficient for the VDD and VSS supplies.  
2. Keep the input lines as short as possible. In case of the differential signal, make sure the A inputs and B  
inputs are as symmetric as possible.  
3. Use a solid ground plane to help distribute heat and reduce electromagnetic interference (EMI) noise pickup.  
4. Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if  
possible, and only make perpendicular crossings when necessary.  
11.2 Layout Example  
VDD  
NC  
D
C
Via to  
GND Plane  
Via to  
GND Plane  
C
VSS  
S8  
S7  
S6  
S5  
S4  
S3  
S2  
S1  
EN  
A0  
A1  
A2  
NC  
S16  
S15  
S14  
S13  
S12  
S11  
S10  
S9  
MUX506IPW  
Via to  
GND Plane  
GND  
NC  
A3  
45. MUX506IPW Layout Example  
版权 © 2016–2017, Texas Instruments Incorporated  
31  
 
MUX506, MUX507  
ZHCSFU9A NOVEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
Layout Example (接下页)  
VDD  
DB  
DA  
VSS  
S8A  
S7A  
S6A  
S5A  
S4A  
S3A  
S2A  
S1A  
EN  
C
Via to  
GND Plane  
Via to  
GND Plane  
C
NC  
S8B  
S7B  
S6B  
S5B  
S4B  
S3B  
S2B  
S1B  
GND  
NC  
MUX507IPW  
Via to  
GND Plane  
A0  
A1  
NC  
A2  
46. MUX507IPW Layout Example  
32  
版权 © 2016–2017, Texas Instruments Incorporated  
MUX506, MUX507  
www.ti.com.cn  
ZHCSFU9A NOVEMBER 2016REVISED NOVEMBER 2017  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
请参阅如下相关文档:  
ADS8864  
号:SBAS572)  
16  
位、400kSPS  
串行接口、微功耗、微型、单端输入、SAR  
模数转换器》(文献编  
《采用 e-trim 技术的 36V、轨到轨输入/输出、低失调电压、低输入偏置电流 OPAx192 运算放大器》(文献编  
号:SBOS620)  
OPAx140 高精度、低噪声、轨到轨输出、11MHz JFET 运算放大器》(文献编号:SBOS498)  
12.2 相关链接  
下面的表格中列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品  
的快速链接。  
3. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具和软件  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
MUX506  
MUX507  
12.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更,恕不另行通知  
和修订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
版权 © 2016–2017, Texas Instruments Incorporated  
33  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
MUX506IDWR  
MUX506IPW  
MUX506IPWR  
MUX507IDWR  
MUX507IPW  
MUX507IPWR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
TSSOP  
TSSOP  
SOIC  
DW  
PW  
PW  
DW  
PW  
PW  
28  
28  
28  
28  
28  
28  
1000 RoHS & Green  
50 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
MUX506DA  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
MUX506A  
MUX506A  
MUX507DA  
MUX507A  
MUX507A  
2000 RoHS & Green  
1000 RoHS & Green  
TSSOP  
TSSOP  
50  
RoHS & Green  
2000 RoHS & Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
MUX506IDWR  
MUX506IPWR  
MUX507IDWR  
MUX507IPWR  
SOIC  
TSSOP  
SOIC  
DW  
PW  
DW  
PW  
28  
28  
28  
28  
1000  
2000  
1000  
2000  
330.0  
330.0  
330.0  
330.0  
32.4  
16.4  
32.4  
16.4  
11.35 18.67  
6.9 10.2  
11.35 18.67  
6.9 10.2  
3.1  
1.8  
3.1  
1.8  
16.0  
12.0  
16.0  
12.0  
32.0  
16.0  
32.0  
16.0  
Q1  
Q1  
Q1  
Q1  
TSSOP  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
MUX506IDWR  
MUX506IPWR  
MUX507IDWR  
MUX507IPWR  
SOIC  
TSSOP  
SOIC  
DW  
PW  
DW  
PW  
28  
28  
28  
28  
1000  
2000  
1000  
2000  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
66.0  
43.0  
66.0  
43.0  
TSSOP  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
MUX506IPW  
MUX507IPW  
PW  
PW  
TSSOP  
TSSOP  
28  
28  
50  
50  
530  
530  
10.2  
10.2  
3600  
3600  
3.5  
3.5  
Pack Materials-Page 3  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

MUX506IDWR

1pA 开路泄漏电流、36V、16:1、单通道精密模拟多路复用器 | DW | 28 | -40 to 125
TI

MUX506IPW

1pA 开路泄漏电流、36V、16:1、单通道精密模拟多路复用器 | PW | 28 | -40 to 125
TI

MUX506IPWR

1pA 开路泄漏电流、36V、16:1、单通道精密模拟多路复用器 | PW | 28 | -40 to 125
TI

MUX507

1pA 开路泄漏电流、36V、8:1、2 通道精密模拟多路复用器
TI

MUX507IDWR

1pA 开路泄漏电流、36V、8:1、2 通道精密模拟多路复用器 | DW | 28 | -40 to 125
TI

MUX507IPW

1pA 开路泄漏电流、36V、8:1、2 通道精密模拟多路复用器 | PW | 28 | -40 to 125
TI

MUX507IPWR

1pA 开路泄漏电流、36V、8:1、2 通道精密模拟多路复用器 | PW | 28 | -40 to 125
TI

MUX508

9.4pF 导通状态电容、36V、8:1、单通道模拟多路复用器
TI

MUX508ID

9.4pF 导通状态电容、36V、8:1、单通道模拟多路复用器 | D | 16 | -40 to 125
TI

MUX508IDR

9.4pF 导通状态电容、36V、8:1、单通道模拟多路复用器 | D | 16 | -40 to 125
TI

MUX508IPW

9.4pF 导通状态电容、36V、8:1、单通道模拟多路复用器 | PW | 16 | -40 to 125
TI

MUX508IPWR

9.4pF 导通状态电容、36V、8:1、单通道模拟多路复用器 | PW | 16 | -40 to 125
TI