MSP430G2210ID [TI]

MIXED SIGNAL MICROCONTROLLER; 混合信号微控制器
MSP430G2210ID
型号: MSP430G2210ID
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

MIXED SIGNAL MICROCONTROLLER
混合信号微控制器

微控制器
文件: 总44页 (文件大小:627K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MSP430G22x0  
www.ti.com  
SLAS753D JANUARY 2012REVISED AUGUST 2012  
MIXED SIGNAL MICROCONTROLLER  
1
FEATURES  
23  
Low Supply Voltage Range: 1.8 V to 3.6 V  
(A/D) Conversion (MSP430G2210 Only)  
Ultra-Low Power Consumption  
10-Bit 200-ksps Analog-to-Digital (A/D)  
Converter With Internal Reference, Sample-  
and-Hold, and Autoscan (MSP430G2230 Only)  
Active Mode: 220 µA at 1 MHz, 2.2 V  
Standby Mode: 0.5 µA  
Universal Serial Interface (USI) Supports SPI  
and I2C (MSP430G2230 Only)  
Off Mode (RAM Retention): 0.1 µA  
Five Power-Saving Modes  
Brownout Detector  
Ultra-Fast Wake-Up From Standby Mode in  
Less Than 1 µs  
Serial Onboard Programming, No External  
Programming Voltage Needed, Programmable  
Code Protection by Security Fuse  
16-Bit RISC Architecture, 62.5-ns Instruction  
Cycle Time  
On-Chip Emulation Logic With Spy-Bi-Wire  
Interface  
Basic Clock Module Configurations  
Internal Frequencies up to 16 MHz With  
Four Calibrated Frequencies to ±1%  
Family Members:  
MSP430G22x0  
Internal Very-Low-Power Low-Frequency  
Oscillator  
2KB + 256B Flash Memory  
128B RAM  
16-Bit Timer_A With Two Capture/Compare  
Registers  
Available in 8-Pin Plastic Packages (D)  
For Complete Module Descriptions, See the  
MSP430x2xx Family User's Guide (SLAU144)  
On-Chip Comparator for Analog Signal  
Compare Function or Slope Analog-to-Digital  
DESCRIPTION  
The Texas Instruments MSP430™ family of ultra-low-power microcontrollers consist of several devices featuring  
different sets of peripherals targeted for various applications. The architecture, combined with five low-power  
modes, is optimized to achieve extended battery life in portable measurement applications. The device features a  
powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency.  
The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 1 µs.  
The MSP430G22x0 series is an ultra-low-power mixed signal microcontroller with a built-in 16-bit timer and four  
I/O pins. In addition, the MSP430G2230 has a built-in communication capability using synchronous protocols  
(SPI or I2C) and a 10-bit A/D converter. The MSP430G2210 has a versatile analog comparator.  
Table 1. Available Options(1)  
PACKAGED DEVICES(2)  
TA  
PLASTIC 8-PIN (D)  
MSP430G2230ID  
-40°C to 85°C  
MSP430G2210ID  
(1) For the most current package and ordering information, see the  
Package Option Addendum at the end of this document, or see the  
TI web site at www.ti.com.  
(2) Package drawings, thermal data, and symbolization are available at  
www.ti.com/packaging  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
3
MSP430 is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2012, Texas Instruments Incorporated  
 
MSP430G22x0  
SLAS753D JANUARY 2012REVISED AUGUST 2012  
www.ti.com  
Device Pinout and Functional Block Diagram, MSP430G2210  
See Application Information for detailed I/O information.  
D PACKAGE  
(TOP VIEW)  
DVSS  
DVCC  
8
7
6
5
1
2
3
4
TEST/SBWTCK  
RST/NMI/SBWTDIO  
P1.7/CAOUT/CA7  
P1.2/TA0.1/CA2  
P1.5/TA0.0/CA5  
P1.6/TA0.1/CA6  
Figure 1. Device Pinout, MSP430G2210  
P1.2, P1.5,  
P1.6, P1.7  
4
VCC  
VSS  
XIN  
XOUT  
Port P1  
ACLK  
Basic Clock  
System+  
COMP_A+  
Flash  
2kB  
RAM  
128B  
4 I/O  
Interrupt  
SMCLK  
4 Channel  
input MUX  
capability,  
pullup/down  
resistors  
MCLK  
MAB  
16MHz  
CPU  
incl. 16  
Registers  
MDB  
Emulation  
(2BP)  
Watchdog  
WDT+  
Timer_A2  
JTAG  
Interface  
Brownout  
Protection  
2 CC  
Registers  
15/16Bit  
SpyBi Wire  
RST/NMI  
Figure 2. Functional Block Diagram, MSP430G2210  
2
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
MSP430G22x0  
www.ti.com  
SLAS753D JANUARY 2012REVISED AUGUST 2012  
Device Pinout and Functional Block Diagram, MSP430G2230  
See Application Information for detailed I/O information.  
D PACKAGE  
(TOP VIEW)  
DVSS  
TEST/SBWTCK  
DVCC  
8
7
6
5
1
2
3
4
P1.2/TA0.1/A2  
P1.5/TA0.0/A5/SCLK  
RST/NMI/SBWTDIO  
P1.7/A7/SDI/SDA  
P1.6/TA0.1/A6/SDO/SCL  
Figure 3. Device Pinout, MSP430G2230  
P1.2, P1.5,  
P1.6, P1.7  
4
VCC  
VSS  
XIN  
XOUT  
Port P1  
ADC  
ACLK  
Basic Clock  
System+  
Flash  
2kB  
RAM  
128B  
4 I/O  
Interrupt  
10-Bit  
SMCLK  
4 Channel  
Autoscan  
1 ch DMA  
capability,  
pullup/down  
resistors  
MCLK  
MAB  
16MHz  
CPU  
incl. 16  
Registers  
MDB  
Emulation  
(2BP)  
USI  
Watchdog  
WDT+  
Timer_A2  
JTAG  
Interface  
Brownout  
Protection  
Universal  
Serial  
2 CC  
Registers  
15/16Bit  
Interface  
SPI, I2C  
SpyBi Wire  
RST/NMI  
Figure 4. Functional Block Diagram, MSP430G2230  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
MSP430G22x0  
SLAS753D JANUARY 2012REVISED AUGUST 2012  
www.ti.com  
Table 2. Terminal Functions, MSP430G2210(1)  
TERMINAL  
NO.  
DESCRIPTION  
NAME  
I/O  
D
P1.2/  
TA0.1/  
CA2  
General-purpose digital I/O pin  
2
I/O  
Timer_A, capture: CCI1A input, compare Out1 output  
Comparator_A+, CA2 input  
P1.5/  
TA0.0/  
CA5  
General-purpose digital I/O pin  
Timer_A, compare Out0 output  
Comparator_A+, CA5 input  
3
4
5
I/O  
I/O  
I/O  
P1.6/  
TA0.1/  
CA6  
General-purpose digital I/O pin  
Timer_A, compare: Out1 output  
Comparator_A+, CA6 input  
P1.7/  
General-purpose digital I/O pin  
Comparator_A+, output  
CAOUT/  
CA7  
Comparator_A+, CA7 input  
RST/  
Reset input  
6
7
I
I
NMI/  
Nonmaskable interrupt input  
SBWTDIO  
Spy-Bi-Wire test data input/output during programming and test  
TEST/  
Selects test mode for JTAG pins on Port 1. The device protection fuse is connected to TEST.  
Spy-Bi-Wire test clock input during programming and test  
Digital supply voltage  
SBWTCK  
DVCC  
1
8
DVSS  
Digital ground reference  
(1) The GPIOs P1.0, P1.1, P1.3, P1.4, P2.6, and P2.7 are implemented but not available on the device pinout. To avoid floating inputs,  
these digital I/Os should be properly configured. The pullup or pulldown resistors of the unbounded P1.x GPIOs should be enabled, and  
the VLO should be selected as the ACLK source (see the MSP430x2xx Family User's Guide (SLAU144)).  
4
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
MSP430G22x0  
www.ti.com  
SLAS753D JANUARY 2012REVISED AUGUST 2012  
Table 3. Terminal Functions, MSP430G2230(1)  
TERMINAL  
NO.  
D
DESCRIPTION  
NAME  
I/O  
P1.2/  
General-purpose digital I/O pin  
2
I/O  
TA0.1/  
A2  
Timer_A, capture: CCI1A input, compare Out1 output  
ADC10 analog input A2  
P1.5/  
TA0.0/  
A5/  
General-purpose digital I/O pin  
Timer_A, compare Out0 output  
3
I/O  
I/O  
I/O  
ADC10 analog input A5  
SCLK  
USI: clock input in I2C mode; clock input/output in SPI mode  
P1.6/  
TA0.1/  
A6/  
General-purpose digital I/O pin  
Timer_A, capture: CCI1B input, compare: Out1 output  
ADC10 analog input A6  
4
5
SDO/  
SCL  
USI: Data output in SPI mode  
USI: I2C clock in I2C mode  
P1.7/  
A7/  
General-purpose digital I/O pin  
ADC10 analog input A7  
SDI/  
SDA  
USI: Data input in SPI mode  
USI: Data input in I2C mode  
RST/  
Reset input  
6
7
I
I
NMI/  
Nonmaskable interrupt input  
SBWTDIO  
Spy-Bi-Wire test data input/output during programming and test  
TEST/  
Selects test mode for JTAG pins on Port 1. The device protection fuse is connected to TEST.  
Spy-Bi-Wire test clock input during programming and test  
Digital supply voltage  
SBWTCK  
DVCC  
1
8
DVSS  
Digital ground reference  
(1) The GPIOs P1.0, P1.1, P1.3, P1.4, P2.6, and P2.7 are implemented but not available on the device pinout. To avoid floating inputs,  
these digital I/Os should be properly configured. The pullup or pulldown resistors of the unbounded P1.x GPIOs should be enabled, and  
the VLO should be selected as the ACLK source (see the MSP430x2xx Family User's Guide (SLAU144)).  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
MSP430G22x0  
SLAS753D JANUARY 2012REVISED AUGUST 2012  
www.ti.com  
SHORT-FORM DESCRIPTION  
Program Counter  
Stack Pointer  
PC/R0  
CPU  
The MSP430 CPU has a 16-bit RISC architecture  
that is highly transparent to the application. All  
operations, other than program-flow instructions, are  
performed as register operations in conjunction with  
seven addressing modes for source operand and four  
addressing modes for destination operand.  
SP/R1  
SR/CG1/R2  
CG2/R3  
R4  
Status Register  
Constant Generator  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
The CPU is integrated with 16 registers that provide  
reduced instruction execution time. The register-to-  
register operation execution time is one cycle of the  
CPU clock.  
R5  
R6  
R7  
Four of the registers, R0 to R3, are dedicated as  
program counter, stack pointer, status register, and  
constant generator, respectively. The remaining  
registers are general-purpose registers.  
R8  
R9  
Peripherals are connected to the CPU using data,  
address, and control buses, and can be handled with  
all instructions.  
R10  
R11  
Instruction Set  
The instruction set consists of 51 instructions with  
three formats and seven address modes. Each  
instruction can operate on word and byte data.  
Table 4 shows examples of the three types of  
instruction formats; Table 5 shows the address  
modes.  
R12  
R13  
R14  
R15  
Table 4. Instruction Word Formats  
INSTRUCTION FORMAT  
Dual operands, source-destination  
Single operands, destination only  
Relative jump, un/conditional  
EXAMPLE  
ADD R4,R5  
CALL R8  
JNE  
OPERATION  
R4 + R5 ---> R5  
PC -->(TOS), R8--> PC  
Jump-on-equal bit = 0  
Table 5. Address Mode Descriptions  
ADDRESS MODE  
Register  
S(1)  
D(1)  
SYNTAX  
MOV Rs,Rd  
EXAMPLE  
MOV R10,R11  
MOV 2(R5),6(R6)  
OPERATION  
R10 --> R11  
Indexed  
MOV X(Rn),Y(Rm)  
MOV EDE,TONI  
MOV &MEM,&TCDAT  
MOV @Rn,Y(Rm)  
M(2+R5)--> M(6+R6)  
M(EDE) --> M(TONI)  
M(MEM) --> M(TCDAT)  
M(R10) --> M(Tab+R6)  
Symbolic (PC relative)  
Absolute  
Indirect  
MOV @R10,Tab(R6)  
MOV @R10+,R11  
MOV #45,TONI  
M(R10) --> R11  
R10 + 2--> R10  
Indirect autoincrement  
Immediate  
MOV @Rn+,Rm  
MOV #X,TONI  
#45 --> M(TONI)  
(1) S = source, D = destination  
6
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
 
 
MSP430G22x0  
www.ti.com  
SLAS753D JANUARY 2012REVISED AUGUST 2012  
Operating Modes  
The MSP430 has one active mode and five software-selectable low-power modes of operation. An interrupt  
event can wake the device from any of the five low-power modes, service the request, and restore back to the  
low-power mode on return from the interrupt program.  
The following six operating modes can be configured by software:  
Active mode (AM)  
All clocks are active  
Low-power mode 0 (LPM0)  
CPU is disabled  
ACLK and SMCLK remain active  
MCLK is disabled  
Low-power mode 1 (LPM1)  
CPU is disabled  
ACLK and SMCLK remain active. MCLK is disabled  
DCO's dc-generator is disabled if DCO not used in active mode  
Low-power mode 2 (LPM2)  
CPU is disabled  
MCLK and SMCLK are disabled  
DCO's dc-generator remains enabled  
ACLK remains active  
Low-power mode 3 (LPM3)  
CPU is disabled  
MCLK and SMCLK are disabled  
DCO's dc-generator is disabled  
ACLK remains active  
Low-power mode 4 (LPM4)  
CPU is disabled  
ACLK is disabled  
MCLK and SMCLK are disabled  
DCO's dc-generator is disabled  
Crystal oscillator is stopped  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
MSP430G22x0  
SLAS753D JANUARY 2012REVISED AUGUST 2012  
www.ti.com  
Interrupt Vector Addresses  
The interrupt vectors and the power-up starting address are located in the address range of 0x0FFFF to  
0x0FFC0. The vector contains the 16-bit address of the appropriate interrupt handler instruction sequence.  
If the reset vector (located at address 0x0FFFE) contains 0x0FFFF (for example, flash is not programmed) the  
CPU goes into LPM4 immediately after power-up.  
Table 6. Interrupt Sources  
SYSTEM  
INTERRUPT  
INTERRUPT SOURCE  
INTERRUPT FLAG  
WORD ADDRESS  
PRIORITY  
Power-up  
External reset  
Watchdog Timer+  
Flash key violation  
PC out-of-range(1)  
PORIFG  
RSTIFG  
WDTIFG  
KEYV(2)  
Reset  
0xFFFE  
31, highest  
NMI  
Oscillator fault  
Flash memory access violation  
NMIIFG  
OFIFG  
(non)-maskable,  
(non)-maskable,  
(non)-maskable  
0xFFFC  
30  
ACCVIFG(2)(3)  
0xFFFA  
0xFFF8  
29  
28  
Comparator_A+  
(MSP430G2210 Only)  
(4)  
CAIFG  
0xFFF6  
27  
Watchdog Timer+  
Timer_A2  
WDTIFG  
TACCR0 CCIFG(4)  
TACCR1 CCIFG, TAIFG(2)(4)  
maskable  
maskable  
maskable  
0xFFF4  
0xFFF2  
0xFFF0  
0xFFEE  
0xFFEC  
0xFFEA  
0xFFE8  
0xFFE6  
26  
25  
24  
23  
22  
21  
20  
19  
Timer_A2  
ADC10 (MSP430G2230 Only)  
USI (MSP430G2230 Only)  
ADC10IFG(4)  
USIIFG, USISTTIFG(2)(4)  
maskable  
maskable  
P1IFG.2, P1IFG.5, P1IFG.6, and  
P1IFG.7(2)(4)(5)  
I/O Port P1(four flags)  
maskable  
0xFFE4  
18  
0xFFE2  
0xFFE0  
17  
16  
(6)  
See  
0xFFDE to 0xFFC0  
15 to 0, lowest  
(1) A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h to 01FFh) or from  
within unused address ranges.  
(2) Multiple source flags  
(3) (non)-maskable: the individual interrupt-enable bit can disable an interrupt event, but the general interrupt enable cannot.  
(4) Interrupt flags are located in the module.  
(5) All eight interrupt flags P1IFG.0 to P1IFG.7 are implemented while four are connected to pins.  
(6) The interrupt vectors at addresses 0xFFDE to 0xFFC0 are not used in this device and can be used for regular program code if  
necessary.  
8
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
MSP430G22x0  
www.ti.com  
SLAS753D JANUARY 2012REVISED AUGUST 2012  
Special Function Registers  
Most interrupt and module enable bits are collected into the lowest address space. Special function register bits  
not allocated to a functional purpose are not physically present in the device. Simple software access is provided  
with this arrangement.  
Legend  
rw:  
Bit can be read and written.  
rw-0,1:  
rw-(0,1):  
Bit can be read and written. It is reset or set by PUC.  
Bit can be read and written. It is reset or set by POR.  
SFR bit is not present in device.  
Table 7. Interrupt Enable Register 1 and 2  
Address  
00h  
7
6
5
4
3
2
1
0
ACCVIE  
rw-0  
NMIIE  
rw-0  
OFIE  
rw-0  
WDTIE  
rw-0  
WDTIE  
Watchdog Timer interrupt enable. Inactive if watchdog mode is selected. Active if Watchdog Timer is configured in interval  
timer mode.  
OFIE  
Oscillator fault interrupt enable. Set to 0.  
(Non)maskable interrupt enable  
NMIIE  
ACCVIE  
Flash access violation interrupt enable  
Address  
7
6
5
4
3
2
1
0
01h  
Table 8. Interrupt Flag Register 1 and 2  
Address  
02h  
7
6
5
4
3
2
1
0
NMIIFG  
rw-0  
RSTIFG  
rw-(0)  
PORIFG  
rw-(1)  
OFIFG  
rw-1  
WDTIFG  
rw-(0)  
WDTIFG  
Set on watchdog timer overflow (in watchdog mode) or security key violation.  
Reset on VCC power-on or a reset condition at the RST/NMI pin in reset mode.  
OFIFG  
Flag set on oscillator fault. The XIN/XOUT pins are not available as device terminals.  
Power-On Reset interrupt flag. Set on VCC power-up.  
PORIFG  
RSTIFG  
NMIIFG  
External reset interrupt flag. Set on a reset condition at RST/NMI pin in reset mode. Reset on VCC power-up.  
Set by RST/NMI pin  
Address  
03h  
7
6
5
4
3
2
1
0
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
MSP430G22x0  
SLAS753D JANUARY 2012REVISED AUGUST 2012  
www.ti.com  
Memory Organization  
Table 9. Memory Organization  
MSP430G22x0  
Memory  
Main: interrupt vector  
Main: code memory  
Size  
Flash  
Flash  
2KB Flash  
0xFFFF-0xFFC0  
0xFFFF-0xF800  
Size  
Flash  
256 Byte  
0x10FF - 0x1000  
Information memory  
RAM  
128 Byte  
0x027F - 0x0200  
Size  
16-bit  
8-bit  
8-bit SFR  
0x01FF - 0x0100  
0x00FF - 0x0010  
0x000F - 0x0000  
Peripherals  
Flash Memory  
The flash memory can be programmed by the Spy-Bi-Wire or JTAG port, or in-system by the CPU. The CPU can  
perform single-byte and single-word writes to the flash memory. Features of the flash memory include:  
Flash memory has n segments of main memory and four segments of information memory (A to D) of  
64 bytes each. Each segment in main memory is 512 bytes in size.  
Segments 0 to n may be erased in one step, or each segment may be individually erased.  
Segments A to D can be erased individually, or as a group with segments 0 to n. Segments A to D are also  
called information memory.  
Segment A contains calibration data. After reset segment A is protected against programming and erasing. It  
can be unlocked but care should be taken not to erase this segment if the device-specific calibration data is  
required.  
10  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
MSP430G22x0  
www.ti.com  
SLAS753D JANUARY 2012REVISED AUGUST 2012  
Peripherals  
Peripherals are connected to the CPU through data, address, and control buses and can be handled using all  
instructions. For complete module descriptions, see the MSP430x2xx Family User's Guide (SLAU144).  
Oscillator and System Clock  
The clock system is supported by the basic clock module that includes support for a 32768-Hz watch crystal  
oscillator, an internal very-low-power low-frequency oscillator and an internal digitally-controlled oscillator (DCO).  
The basic clock module is designed to meet the requirements of both low system cost and low power  
consumption. The internal DCO provides a fast turn-on clock source and stabilizes in less than 1 µs. The basic  
clock module provides the following clock signals:  
Auxiliary clock (ACLK), sourced either from a 32768-Hz watch crystal or the internal LF (VLOCLK) oscillator.  
Main clock (MCLK), the system clock used by the CPU.  
Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules.  
NOTE  
The LFXT1 oscillator is not available. LFXT1Sx bits of the BCSCTL3 register should be  
configured to use VLOCLK (see the MSP430x2xx Family User's Guide (SLAU144)).  
Table 10. DCO Calibration Data (Provided From  
Factory in Flash Information Memory Segment A)  
DCO  
FREQUENCY  
CALIBRATION  
REGISTER  
SIZE  
ADDRESS  
CALBC1_1MHZ  
CALDCO_1MHZ  
CALBC1_8MHZ  
CALDCO_8MHZ  
CALBC1_12MHZ  
CALDCO_12MHZ  
CALBC1_16MHZ  
CALDCO_16MHZ  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
010FFh  
010FEh  
010FDh  
010FCh  
010FBh  
010FAh  
010F9h  
010F8h  
1 MHz  
8 MHz  
12 MHz  
16 MHz  
Brownout  
The brownout circuit is implemented to provide the proper internal reset signal to the device during power on and  
power off.  
Digital I/O  
There are four pins of one 8-bit I/O port implemented—port P1:  
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt condition is possible.  
Edge-selectable interrupt input capability for all the four bits of port P1.  
Read/write access to port-control registers is supported by all instructions.  
Each I/O has an individually programmable pullup/pulldown resistor.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
MSP430G22x0  
SLAS753D JANUARY 2012REVISED AUGUST 2012  
www.ti.com  
Watchdog Timer (WDT+)  
The primary function of the watchdog timer (WDT+) module is to perform a controlled system restart after a  
software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog  
function is not needed in an application, the module can be disabled or configured as an interval timer and can  
generate interrupts at selected time intervals.  
Timer_A2  
Timer_A2 is a 16-bit timer/counter with two capture/compare registers. Timer_A2 can support multiple  
capture/compares, PWM outputs, and interval timing. Timer_A2 also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare  
registers.  
Table 11. Timer_A2 Signal Connections - MSP430G2210  
INPUT PIN  
NUMBER  
OUTPUT PIN  
NUMBER  
MODULE  
OUTPUT  
SIGNAL  
DEVICE INPUT  
SIGNAL  
MODULE  
INPUT NAME  
MODULE  
BLOCK  
D
D
-
TACLK  
ACLK  
TACLK  
ACLK  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
Timer  
CCR0  
CCR1  
NA  
TA0  
TA1  
SMCLK  
TACLK  
TA0  
-
-
3 - P1.5  
ACLK (internal)  
VSS  
VCC  
VCC  
2 - P1.2  
TA1  
CCI1A  
2 - P1.2  
4 - P1.6  
CAOUT  
(internal)  
CCI1B  
VSS  
VCC  
GND  
VCC  
Table 12. Timer_A2 Signal Connections - MSP430G2230  
INPUT PIN  
NUMBER  
OUTPUT PIN  
NUMBER  
MODULE  
OUTPUT  
SIGNAL  
DEVICE INPUT  
SIGNAL  
MODULE  
INPUT NAME  
MODULE  
BLOCK  
D
D
-
TACLK  
ACLK  
SMCLK  
TACLK  
TA0  
TACLK  
ACLK  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
Timer  
CCR0  
CCR1  
NA  
TA0  
TA1  
-
-
ACLK (internal)  
VSS  
VCC  
VCC  
2 - P1.2  
4 - P1.6  
TA1  
CCI1A  
CCI1B  
GND  
2 - P1.2  
4 - P1.6  
TA1  
VSS  
VCC  
VCC  
12  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
 
 
MSP430G22x0  
www.ti.com  
SLAS753D JANUARY 2012REVISED AUGUST 2012  
USI (MSP430G2230 Only)  
The universal serial interface (USI) module is used for serial data communication and provides the basic  
hardware for synchronous communication protocols like SPI and I2C.  
ADC10 (MSP430G2230 Only)  
The ADC10 module supports fast 10-bit analog-to-digital conversions. The module implements a 10-bit SAR  
core, sample select control, reference generator, and data transfer controller (DTC) for automatic conversion  
result handling, allowing ADC samples to be converted and stored without any CPU intervention.  
Comparator_A+ (MSP430G2210 Only)  
The primary function of the comparator_A+ module is to support precision slope analog-to-digital conversions,  
battery-voltage supervision, and monitoring of external analog signals  
Peripheral File Map  
Table 13. Peripherals With Word Access  
ADC10  
(MSP430G2230 Only)  
ADC control 0  
ADC10 control 1  
ADC memory  
ADC10CTL0  
ADC10CTL1  
ADC10MEM  
01B0h  
01B2h  
01B4h  
Timer_A  
Capture/compare register  
Capture/compare register  
Timer_A register  
Capture/compare control  
Capture/compare control  
Timer_A control  
TACCR1  
TACCR0  
TAR  
TACCTL1  
TACCTL0  
TACTL  
0174h  
0172h  
0170h  
0164h  
0162h  
0160h  
012Eh  
Timer_A interrupt vector  
TAIV  
Flash Memory  
Flash control 3  
Flash control 2  
Flash control 1  
FCTL3  
FCTL2  
FCTL1  
012Ch  
012Ah  
0128h  
Watchdog Timer+  
Watchdog/timer control  
WDTCTL  
0120h  
Table 14. Peripherals With Byte Access  
ADC10  
(MSP430G2230 Only)  
Analog Enable  
ADC10AE  
04Ah  
USI  
USI control 0  
USI control 1  
USI clock control  
USI bit counter  
USI shift register  
USICTL0  
USICTL1  
USICKCTL  
USICNT  
USISR  
078h  
079h  
07Ah  
07Bh  
07Ch  
(MSP430G2230 Only)  
Comparator_A+  
(MSP430G2210 Only)  
Comparator_A+ port disable  
Comparator_A+ control 2  
Comparator_A+ control 1  
CAPD  
CACTL2  
CACTL1  
05Bh  
05Ah  
059h  
Basic Clock System+  
Port P1  
Basic clock system control 3  
Basic clock system control 2  
Basic clock system control 1  
DCO clock frequency control  
BCSCTL3  
BCSCTL2  
BCSCTL1  
DCOCTL  
053h  
058h  
057h  
056h  
Port P1 resistor enable  
Port P1 selection  
Port P1 interrupt enable  
Port P1 interrupt edge select  
Port P1 interrupt flag  
Port P1 direction  
P1REN  
P1SEL  
P1IE  
P1IES  
P1IFG  
P1DIR  
P1OUT  
P1IN  
027h  
026h  
025h  
024h  
023h  
022h  
021h  
020h  
Port P1 output  
Port P1 input  
Special Function  
SFR interrupt flag 2  
SFR interrupt flag 1  
SFR interrupt enable 2  
SFR interrupt enable 1  
IFG2  
IFG1  
IE2  
003h  
002h  
001h  
000h  
IE1  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
MSP430G22x0  
SLAS753D JANUARY 2012REVISED AUGUST 2012  
www.ti.com  
Absolute Maximum Ratings(1)  
Voltage applied at VCC to VSS  
-0.3 V to 4.1 V  
Voltage applied to any pin(2)  
-0.3 V to VCC + 0.3 V  
±2 mA  
Diode current at any device terminal  
Unprogrammed device  
Programmed device  
-55°C to 150°C  
-40°C to 150°C  
Tstg  
Storage temperature(3)  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages referenced to VSS. The JTAG fuse-blow voltage, VFB, is allowed to exceed the absolute maximum rating. The voltage is  
applied to the TEST pin when blowing the JTAG fuse.  
(3) Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow  
temperatures not higher than classified on the device label on the shipping boxes or reels.  
Recommended Operating Conditions  
MIN NOM  
MAX UNIT  
During program execution  
During flash program/erase  
1.8  
2.2  
0
3.6  
V
VCC  
Supply voltage  
3.6  
VSS  
TA  
Supply voltage  
V
Operating free-air temperature  
-40  
85  
6
°C  
VCC = 1.8 V,  
Duty cycle = 50% ± 10%  
dc  
dc  
dc  
VCC = 2.7 V,  
Duty cycle = 50% ± 10%  
fSYSTEM  
Processor frequency (maximum MCLK frequency)(1)(2)  
12 MHz  
16  
VCC 3.3 V,  
Duty cycle = 50% ± 10%  
(1) The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse duration of the  
specified maximum frequency.  
(2) Modules might have a different maximum input clock specification. See the specification of the respective module in this data sheet.  
Legend :  
16 MHz  
Supply voltage range,  
during flash memory  
programming  
12 MHz  
Supply voltage range,  
during program execution  
6 MHz  
1.8 V  
2.2 V  
2.7 V  
3.3 V 3.6 V  
Supply Voltage −V  
Note: Minimum processor frequency is defined by system clock. Flash program or erase operations require a minimum VCC  
of 2.2 V.  
Figure 5. Safe Operating Area  
14  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
MSP430G22x0  
www.ti.com  
SLAS753D JANUARY 2012REVISED AUGUST 2012  
Electrical Characteristics  
Active Mode Supply Current Into VCC Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN  
TYP  
MAX UNIT  
fDCO = fMCLK = fSMCLK = 1 MHz,  
fACLK = 0 Hz,  
2.2 V  
220  
Program executes in flash,  
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
CPUOFF = 0, SCG0 = 0,  
SCG1 = 0, OSCOFF = 0  
Active mode (AM)  
current (1 MHz)  
IAM,1MHz  
µA  
3 V  
300  
370  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
Typical Characteristics – Active Mode Supply Current (Into VCC)  
ACTIVE MODE CURRENT  
vs  
VCC  
ACTIVE MODE CURRENT  
vs  
(TA = 25°C)  
DCO FREQUENCY  
4.0  
3.0  
2.0  
1.0  
0.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
f
= 16 MHz  
DCO  
TA = 85°C  
TA = 25°C  
f
= 12 MHz  
DCO  
TA = 85°C  
VCC = 3 V  
f
= 8 MHz  
DCO  
2.0  
TA = 25°C  
VCC = 2.2 V  
f
= 1 MHz  
DCO  
0.0  
4.0  
f
8.0  
12.0  
16.0  
1.5  
2.5  
3.0  
3.5  
4.0  
− DCO Frequency − MHz  
V
CC  
− Supply Voltage − V  
DCO  
Figure 6.  
Figure 7.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
MSP430G22x0  
SLAS753D JANUARY 2012REVISED AUGUST 2012  
www.ti.com  
Low-Power Mode Supply Currents (Into VCC) Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN  
TYP  
MAX UNIT  
fMCLK = 0 MHz,  
fSMCLK = fDCO = 1 MHz,  
fACLK = 32,768 Hz,  
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
CPUOFF = 1, SCG0 = 0,  
SCG1 = 0, OSCOFF = 0  
Low-power mode 0  
(LPM0) current(2)  
ILPM0,1MHz  
25°C  
2.2 V  
65  
µA  
fMCLK = fSMCLK = 0 MHz, fDCO = 1  
MHz,  
fACLK = 32,768 Hz,  
Low-power mode 2  
(LPM2) current(3)  
ILPM2  
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
CPUOFF = 1, SCG0 = 0,  
SCG1 = 1, OSCOFF = 0  
25°C  
25°C  
2.2 V  
22  
29  
µA  
fDCO = fMCLK = fSMCLK = 0 MHz,  
fACLK from internal LF oscillator  
(VLO),  
CPUOFF = 1, SCG0 = 1,  
SCG1 = 1, OSCOFF = 0  
Low-power mode 3  
(LPM3) current(3)  
ILPM3,VLO  
2.2 V  
2.2 V  
0.5  
0.7  
µA  
µA  
fDCO = fMCLK = fSMCLK = 0 MHz,  
fACLK = 0 Hz,  
CPUOFF = 1, SCG0 = 1,  
SCG1 = 1, OSCOFF = 1  
25°C  
85°C  
0.1  
0.8  
0.5  
1.5  
Low-power mode 4  
(LPM4) current(4)  
ILPM4  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) Current for brownout and WDT clocked by SMCLK included.  
(3) Current for brownout and WDT clocked by ACLK included.  
(4) Current for brownout included.  
16  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
MSP430G22x0  
www.ti.com  
SLAS753D JANUARY 2012REVISED AUGUST 2012  
Schmitt-Trigger Inputs (Port P1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
0.45 VCC  
1.35  
TYP  
MAX UNIT  
0.75 VCC  
V
VIT+  
Positive-going input threshold voltage  
3 V  
2.25  
0.55 VCC  
1.65  
0.25 VCC  
0.75  
VIT-  
Negative-going input threshold voltage  
Input voltage hysteresis  
V
V
3 V  
3 V  
Vhys  
0.3  
20  
1.0  
50  
(VIT+ - VIT-  
)
For pullup: VIN = VSS  
,
RPull  
CI  
Pullup/pulldown resistor  
Input capacitance  
35  
5
kΩ  
For pulldown: VIN = VCC  
VIN = VSS or VCC  
pF  
Leakage Current (Port P1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
±50 nA  
(1) (2)  
Ilkg(Px.y)  
High-impedance leakage current  
/3 V  
(1) The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.  
(2) The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup/pulldown resistor is  
disabled.  
Outputs (Port P1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
High-level output voltage  
Low-level output voltage  
TEST CONDITIONS  
I(OHmax) = -6 mA(1)  
I(OLmax) = 6 mA(1)  
VCC  
3 V  
3 V  
MIN  
VCC - 0.6  
VSS  
TYP  
MAX UNIT  
VOH  
VOL  
VCC  
V
V
VSS + 0.6  
(1) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop  
specified.  
Output Frequency (Port P1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
CL = 20 pF, RL = 1 kΩ(1) (2)  
CL = 20 pF(2)  
VCC  
3 V  
3 V  
MIN  
TYP  
MAX UNIT  
12 MHz  
16 MHz  
Port output frequency  
(with load)  
fPx.y  
fPort°CLK  
Clock output frequency  
(1) A resistive divider with two 0.5-kΩ resistors between VCC and VSS is used as load. The output is connected to the center tap of the  
divider.  
(2) The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
MSP430G22x0  
SLAS753D JANUARY 2012REVISED AUGUST 2012  
www.ti.com  
Typical Characteristics – Outputs  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
LOW-LEVEL OUTPUT CURRENT  
vs  
LOW-LEVEL OUTPUT CURRENT  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
V
CC  
= 2.2 V  
V
CC  
= 3 V  
T
A
= 25°C  
T
= 25°C  
= 85°C  
P1.7  
A
P1.7  
T
T
A
= 85°C  
A
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
OL  
− Low-Level Output Voltage − V  
V
OL  
− Low-Level Output Voltage − V  
Figure 8.  
Figure 9.  
HIGH-LEVEL OUTPUT CURRENT  
vs  
HIGH-LEVEL OUTPUT CURRENT  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
HIGH-LEVEL OUTPUT VOLTAGE  
0.0  
−5.0  
0.0  
−10.0  
−20.0  
−30.0  
−40.0  
−50.0  
V
= 2.2 V  
V
= 3 V  
CC  
CC  
P1.7  
P1.7  
−10.0  
−15.0  
−20.0  
−25.0  
T
A
= 85°C  
T
= 85°C  
A
T
A
= 25°C  
0.5  
T
= 25°C  
0.5  
A
0.0  
1.0  
1.5  
2.0  
2.5  
0.0  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
OH  
− High-Level Output Voltage − V  
V
OH  
− High-Level Output Voltage − V  
Figure 10.  
Figure 11.  
18  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
MSP430G22x0  
www.ti.com  
SLAS753D JANUARY 2012REVISED AUGUST 2012  
POR/Brownout Reset (BOR)(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
0.7 ×  
V(B_IT–)  
VCC(start)  
See Figure 12  
dVCC/dt 3 V/s  
V
V(B_IT–)  
Vhys(B_IT–)  
td(BOR)  
See Figure 12 through Figure 14  
See Figure 12  
dVCC/dt 3 V/s  
dVCC/dt 3 V/s  
1.35  
140  
1
V
mV  
µs  
See Figure 12  
2000  
Pulse duration needed at RST/NMI pin to  
accept reset internally  
t(reset)  
3 V  
2
µs  
(1) The current consumption of the brownout module is already included in the ICC current consumption data. The voltage level V(B_IT–)  
+
Vhys(B_IT–)is 1.8 V.  
V
CC  
V
hys(B_IT−)  
V
(B_IT−)  
V
CC(start)  
1
0
t
d(BOR)  
Figure 12. POR/Brownout Reset (BOR) vs Supply Voltage  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
 
MSP430G22x0  
SLAS753D JANUARY 2012REVISED AUGUST 2012  
www.ti.com  
Typical Characteristics – POR/Brownout Reset (BOR)  
V
t
CC  
pw  
2
3 V  
V
= 3 V  
Typical Conditions  
CC  
1.5  
1
V
CC(drop)  
0.5  
0
0.001  
1
1000  
1 ns  
1 ns  
− Pulse Width − µs  
t
− Pulse Width − µs  
t
pw  
pw  
Figure 13. VCC(drop) Level With a Square Voltage Drop to Generate a POR/Brownout Signal  
V
t
CC  
pw  
2
1.5  
1
3 V  
V
= 3 V  
CC  
Typical Conditions  
V
CC(drop)  
0.5  
t = t  
f
r
0
0.001  
1
1000  
t
t
r
f
t
− Pulse Width − µs  
t
− Pulse Width − µs  
pw  
pw  
Figure 14. VCC(drop) Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal  
20  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
MSP430G22x0  
www.ti.com  
SLAS753D JANUARY 2012REVISED AUGUST 2012  
Main DCO Characteristics  
All ranges selected by RSELx overlap with RSELx + 1: RSELx = 0 overlaps RSELx = 1, ... RSELx = 14  
overlaps RSELx = 15.  
DCO control bits DCOx have a step size as defined by parameter SDCO.  
Modulation control bits MODx select how often fDCO(RSEL,DCO+1) is used within the period of 32 DCOCLK  
cycles. The frequency fDCO(RSEL,DCO) is used for the remaining cycles. The frequency is an average equal to:  
32 × f  
× f  
DCO(RSEL,DCO+1)  
DCO(RSEL,DCO)  
f
=
average  
MOD × f  
+ (32 – MOD) × f  
DCO(RSEL,DCO+1)  
DCO(RSEL,DCO)  
DCO Frequency  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
1.8  
TYP  
MAX UNIT  
RSELx < 14  
RSELx = 14  
RSELx = 15  
3.6  
VCC  
Supply voltage  
2.2  
3.6  
3.6  
V
3.0  
fDCO(0,0)  
fDCO(0,3)  
fDCO(1,3)  
fDCO(2,3)  
fDCO(3,3)  
fDCO(4,3)  
fDCO(5,3)  
fDCO(6,3)  
fDCO(7,3)  
fDCO(8,3)  
fDCO(9,3)  
fDCO(10,3)  
fDCO(11,3)  
fDCO(12,3)  
fDCO(13,3)  
fDCO(14,3)  
fDCO(15,3)  
fDCO(15,7)  
DCO frequency (0, 0)  
DCO frequency (0, 3)  
DCO frequency (1, 3)  
DCO frequency (2, 3)  
DCO frequency (3, 3)  
DCO frequency (4, 3)  
DCO frequency (5, 3)  
DCO frequency (6, 3)  
DCO frequency (7, 3)  
DCO frequency (8, 3)  
DCO frequency (9, 3)  
DCO frequency (10, 3)  
DCO frequency (11, 3)  
DCO frequency (12, 3)  
DCO frequency (13, 3)  
DCO frequency (14, 3)  
DCO frequency (15, 3)  
DCO frequency (15, 7)  
RSELx = 0, DCOx = 0, MODx = 0  
RSELx = 0, DCOx = 3, MODx = 0  
RSELx = 1, DCOx = 3, MODx = 0  
RSELx = 2, DCOx = 3, MODx = 0  
RSELx = 3, DCOx = 3, MODx = 0  
RSELx = 4, DCOx = 3, MODx = 0  
RSELx = 5, DCOx = 3, MODx = 0  
RSELx = 6, DCOx = 3, MODx = 0  
RSELx = 7, DCOx = 3, MODx = 0  
RSELx = 8, DCOx = 3, MODx = 0  
RSELx = 9, DCOx = 3, MODx = 0  
RSELx = 10, DCOx = 3, MODx = 0  
RSELx = 11, DCOx = 3, MODx = 0  
RSELx = 12, DCOx = 3, MODx = 0  
RSELx = 13, DCOx = 3, MODx = 0  
RSELx = 14, DCOx = 3, MODx = 0  
RSELx = 15, DCOx = 3, MODx = 0  
RSELx = 15, DCOx = 7, MODx = 0  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
0.06  
0.14 MHz  
MHz  
0.12  
0.15  
0.21  
0.30  
0.41  
0.58  
0.80  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
0.80  
1.50 MHz  
MHz  
1.6  
2.3  
MHz  
3.4  
MHz  
4.25  
MHz  
4.3  
8.6  
7.30 MHz  
MHz  
7.8  
13.9 MHz  
MHz  
15.25  
21  
MHz  
Frequency step between  
range RSEL and RSEL+1  
SRSEL  
SDCO  
SRSEL = fDCO(RSEL+1,DCO)/fDCO(RSEL,DCO)  
SDCO = fDCO(RSEL,DCO+1)/fDCO(RSEL,DCO)  
3 V  
1.35  
ratio  
Frequency step between tap  
DCO and DCO+1  
3 V  
3 V  
1.08  
50  
ratio  
%
Duty cycle  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
MSP430G22x0  
SLAS753D JANUARY 2012REVISED AUGUST 2012  
www.ti.com  
Calibrated DCO Frequencies - Tolerance Over Temperature 0°C to 85°C  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN  
TYP  
MAX  
UNIT  
BCSCTL1= CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
calibrated at 30°C and 3 V  
1-MHz tolerance over temperature  
0°C to 85°C  
3 V  
-3  
±0.5  
3
3
3
3
%
BCSCTL1= CALBC1_8MHZ,  
DCOCTL = CALDCO_8MHZ,  
calibrated at 30°C and 3 V  
8-MHz tolerance over temperature  
12-MHz tolerance over temperature  
16-MHz tolerance over temperature  
0°C to 85°C  
0°C to 85°C  
0°C to 85°C  
3 V  
3 V  
3 V  
-3  
-3  
-3  
±1.0  
±1.0  
±2.0  
%
%
%
BCSCTL1= CALBC1_12MHZ,  
DCOCTL = CALDCO_12MHZ,  
calibrated at 30°C and 3 V  
BCSCTL1= CALBC1_16MHZ,  
DCOCTL = CALDCO_16MHZ,  
calibrated at 30°C and 3 V  
Calibrated DCO Frequencies - Tolerance Over Supply Voltage VCC  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN  
TYP  
MAX UNIT  
BCSCTL1= CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
calibrated at 30°C and 3 V  
1-MHz tolerance over VCC  
25°C  
1.8 V to 3.6 V  
-3  
±2  
+3  
+3  
+3  
+3  
%
%
%
%
BCSCTL1= CALBC1_8MHZ,  
DCOCTL = CALDCO_8MHZ,  
calibrated at 30°C and 3 V  
8-MHz tolerance over VCC  
12-MHz tolerance over VCC  
16-MHz tolerance over VCC  
25°C  
25°C  
25°C  
1.8 V to 3.6 V  
2.2 V to 3.6 V  
3 V to 3.6 V  
-3  
-3  
-6  
±2  
±2  
±2  
BCSCTL1= CALBC1_12MHZ,  
DCOCTL = CALDCO_12MHZ,  
calibrated at 30°C and 3 V  
BCSCTL1= CALBC1_16MHZ,  
DCOCTL = CALDCO_16MHZ,  
calibrated at 30°C and 3 V  
Calibrated DCO Frequencies - Overall Tolerance  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN  
TYP  
MAX UNIT  
BCSCTL1= CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
calibrated at 30°C and 3 V  
1-MHz tolerance overall  
I: -40°C to 85°C  
1.8 V to 3.6 V  
-5  
±2  
+5  
+5  
+5  
+6  
%
%
%
%
BCSCTL1= CALBC1_8MHZ,  
DCOCTL = CALDCO_8MHZ,  
calibrated at 30°C and 3 V  
8-MHz tolerance overall  
12-MHz tolerance overall  
16-MHz tolerance overall  
I: -40°C to 85°C  
I: -40°C to 85°C  
I: -40°C to 85°C  
1.8 V to 3.6 V  
2.2 V to 3.6 V  
3 V to 3.6 V  
-5  
-5  
-6  
±2  
±2  
±3  
BCSCTL1= CALBC1_12MHZ,  
DCOCTL = CALDCO_12MHZ,  
calibrated at 30°C and 3 V  
BCSCTL1= CALBC1_16MHZ,  
DCOCTL = CALDCO_16MHZ,  
calibrated at 30°C and 3 V  
22  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
MSP430G22x0  
www.ti.com  
SLAS753D JANUARY 2012REVISED AUGUST 2012  
Wake-Up From Lower-Power Modes (LPM3/4)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ  
2
BCSCTL1 = CALBC1_8MHZ,  
DCOCTL = CALDCO_8MHZ  
2.2 V, 3 V  
1.5  
1
DCO clock wake-up time  
tDCO,LPM3/4  
µs  
from LPM3/4(1)  
BCSCTL1 = CALBC1_12MHZ,  
DCOCTL = CALDCO_12MHZ  
BCSCTL1 = CALBC1_16MHZ,  
DCOCTL = CALDCO_16MHZ  
3 V  
1
CPU wake-up time from  
LPM3/4(2)  
1 / fMCLK  
tClock,LPM3/4  
+
tCPU,LPM3/4  
(1) The DCO clock wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt) to the first clock  
edge observable externally on a clock pin (MCLK or SMCLK).  
(2) Parameter applicable only if DCOCLK is used for MCLK.  
Typical Characteristics – DCO Clock Wake-Up Time From LPM3/4  
DCO WAKE-UP TIME FROM LPM3  
vs  
DCO FREQUENCY  
10.00  
RSELx = 0...11  
RSELx = 12...15  
1.00  
0.10  
0.10  
1.00  
10.00  
DCO Frequency − MHz  
Figure 15.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
MSP430G22x0  
SLAS753D JANUARY 2012REVISED AUGUST 2012  
www.ti.com  
Internal Very-Low-Power Low-Frequency Oscillator (VLO)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TA  
VCC  
3 V  
MIN  
TYP  
12  
MAX UNIT  
20 kHz  
%/°C  
fVLO  
VLO frequency  
-40°C to 85°C  
-40°C to 85°C  
25°C  
4
dfVLO/dT  
dfVLO/dVCC  
VLO frequency temperature drift(1)  
VLO frequency supply voltage drift(2)  
3 V  
0.5  
4
1.8 V to 3.6 V  
%/V  
(1) Calculated using the box method: (MAX(-40 to 85°C) – MIN(-40 to 85°C)) / MIN(-40 to 85°C) / (85°C – (–40°C))  
(2) Calculated using the box method: (MAX(1.8 to 3.6 V) – MIN(1.8 to 3.6 V)) / MIN(1.8 to 3.6 V) / (3.6 V – 1.8 V)  
Timer_A  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK  
fTA  
Timer_A clock frequency  
External: TACLK, INCLK  
Duty cycle = 50% ± 10%  
fSYSTEM  
MHz  
ns  
tTA,cap Timer_A capture timing  
TAx  
3 V  
20  
USI, Universal Serial Interface (MSP430G2230 Only)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
fUSI  
USI clock frequency  
External: SCLK,  
fSYSTEM  
MHz  
Duty cycle = 50% ±10%,  
SPI slave mode USI module in I2C mode,  
I(OLmax) = 1.5 mA  
VOL,I2 Low-level output voltage on SDA  
3 V  
VSS  
VSS + 0.4  
V
and SCL  
C
Typical Characteristics, USI Low-Level Output Voltage on SDA and SCL (MSP430G2230 Only)  
USI LOW-LEVEL OUTPUT VOLTAGE  
USI LOW-LEVEL OUTPUT VOLTAGE  
vs  
vs  
OUTPUT CURRENT  
OUTPUT CURRENT  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
T
A
= 25°C  
= 85°C  
V
CC  
= 2.2 V  
V
CC  
= 3 V  
T
= 25°C  
= 85°C  
A
T
A
T
A
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
V
OL  
− Low-Level Output Voltage − V  
V
OL  
− Low-Level Output V oltage − V  
Figure 16.  
Figure 17.  
24  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
MSP430G22x0  
www.ti.com  
SLAS753D JANUARY 2012REVISED AUGUST 2012  
Comparator_A+ (MSP430G2210 Only)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
(1)  
I(DD)  
CAON = 1, CARSEL = 0, CAREF = 0  
3 V  
45  
µA  
I(Refladder/  
RefDiode)  
V(IC)  
CAON = 1, CARSEL = 0, CAREF = 1/2/3,  
No load at CA0 and CA1  
3 V  
3 V  
3 V  
45  
µA  
Common–mode input voltage  
CAON = 1  
0
VCC-1  
V
PCA0 = 1, CARSEL = 1, CAREF = 1,  
No load at CA0 and CA1  
V(Ref025)  
V(Ref050)  
V(RefVT)  
(Voltage at 0.25 VCC node) / VCC  
0.24  
0.48  
490  
PCA0 = 1, CARSEL = 1, CAREF = 2,  
No load at CA0 and CA1  
(Voltage at 0.5 VCC node) / VCC  
See Figure 18 and Figure 19  
3 V  
3 V  
PCA0 = 1, CARSEL = 1, CAREF = 3,  
No load at CA0 and CA1, TA = 85°C  
mV  
V(offset)  
Vhys  
Offset voltage(2)  
Input hysteresis  
3 V  
3 V  
±10  
0.7  
mV  
mV  
CAON = 1  
TA = 25°C, Overdrive 10 mV,  
Without filter: CAF = 0  
120  
1.5  
ns  
µs  
Response time  
(low-to-high and high-to-low)  
t(response)  
3 V  
TA = 25°C, Overdrive 10 mV,  
With filter: CAF = 1  
(1) The leakage current for the Comparator_A+ terminals is identical to Ilkg(Px.y) specification.  
(2) The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A+ inputs on successive measurements. The  
two successive measurements are then summed together.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
MSP430G22x0  
SLAS753D JANUARY 2012REVISED AUGUST 2012  
www.ti.com  
Typical Characteristics – Comparator_A+ (MSP430G2210 Only)  
650  
600  
550  
500  
450  
400  
650  
600  
550  
500  
450  
400  
V
CC  
= 3 V  
V
CC  
= 2.2 V  
Typical  
Typical  
−45 −25  
−5  
T − Free-Air Temperature − °C  
A
15  
35  
55  
75  
95  
115  
−45 −25  
−5  
15  
35  
55  
75  
95  
115  
T
− Free-Air Temperature − °C  
A
Figure 18. V(RefVT) vs Temperature, VCC = 3 V  
Figure 19. V(RefVT) vs Temperature, VCC = 2.2 V  
100.00  
V
CC  
= 1.8V  
V
= 2.2V  
= 3.0V  
CC  
V
CC  
10.00  
V
CC  
= 3.6V  
1.00  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
V /V − Normalized Input Voltage − V/V  
IN CC  
Figure 20. Short Resistance vs VIN/VCC  
26  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
MSP430G22x0  
www.ti.com  
SLAS753D JANUARY 2012REVISED AUGUST 2012  
10-Bit ADC, Power Supply and Input Range Conditions (MSP430G2230 Only)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VSS = 0 V  
TA  
VCC  
3 V  
3 V  
MIN  
TYP  
MAX UNIT  
VCC  
VAx  
Analog supply voltage  
2.2  
3.6  
V
All Ax terminals, Analog inputs  
selected in ADC10AE register  
Analog input voltage(2)  
ADC10 supply current(3)  
0
VCC  
V
fADC10CLK = 5.0 MHz,  
ADC10ON = 1, REFON = 0,  
ADC10SHT0 = 1, ADC10SHT1 = 0,  
ADC10DIV = 0  
IADC10  
25°C  
25°C  
0.6  
mA  
mA  
fADC10CLK = 5.0 MHz,  
ADC10ON = 0, REF2_5V = 0,  
REFON = 1, REFOUT = 0  
0.25  
0.25  
Reference supply current,  
reference buffer disabled(4)  
IREF+  
3 V  
fADC10CLK = 5.0 MHz,  
ADC10ON = 0, REF2_5V = 1,  
REFON = 1, REFOUT = 0  
fADC10CLK = 5.0 MHz,  
Reference buffer supply  
ADC10ON = 0, REFON = 1,  
IREFB,0  
25°C  
25°C  
3 V  
3 V  
1.1  
0.5  
mA  
mA  
current with ADC10SR = 0(4) REF2_5V = 0, REFOUT = 1,  
ADC10SR = 0  
fADC10CLK = 5.0 MHz,  
ADC10ON = 0, REFON = 1,  
Reference buffer supply  
IREFB,1  
current with ADC10SR = 1(4) REF2_5V = 0, REFOUT = 1,  
ADC10SR = 1  
Only one terminal Ax can be selected  
CI  
RI  
Input capacitance  
at one time  
25°C  
25°C  
3 V  
3 V  
27  
pF  
Input MUX ON resistance  
0 V VAx VCC  
1000  
(1) The leakage current is defined in the leakage current table with Px.y/Ax parameter.  
(2) The analog input voltage range must be within the selected reference voltage range VR+ to VR– for valid conversion results.  
(3) The internal reference supply current is not included in current consumption parameter IADC10  
.
(4) The internal reference current is supplied by terminal VCC. Consumption is independent of the ADC10ON control bit, unless a  
conversion is active. The REFON bit enables the built-in reference to settle before starting an A/D conversion.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
MSP430G22x0  
SLAS753D JANUARY 2012REVISED AUGUST 2012  
www.ti.com  
10-Bit ADC, Built-In Voltage Reference (MSP430G2230 Only)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VREF+ 1 mA, REF2_5V = 0  
VCC  
MIN  
2.2  
TYP  
MAX UNIT  
I
I
I
I
Positive built-in reference  
analog supply voltage range  
VCC,REF+  
V
VREF+ 1 mA, REF2_5V = 1  
2.9  
VREF+ IVREF+max, REF2_5V = 0  
VREF+ IVREF+max, REF2_5V = 1  
1.41  
2.35  
1.5  
2.5  
1.59  
V
Positive built-in reference  
voltage  
VREF+  
3 V  
3 V  
2.65  
Maximum VREF+ load  
current  
ILD,VREF+  
±1  
±2  
mA  
IVREF+ = 500 µA ± 100 µA,  
Analog input voltage VAx 0.75 V,  
REF2_5V = 0  
VREF+ load regulation  
3 V  
3 V  
LSB  
IVREF+ = 500 µA ± 100 µA,  
Analog input voltage VAx 1.25 V,  
REF2_5V = 1  
±2  
IVREF+ = 100 µA900 µA,  
VAx 0.5 × VREF+,  
Error of conversion result 1 LSB,  
VREF+ load regulation  
response time  
400  
ns  
ADC10SR = 0  
Maximum capacitance at  
pin VREF+  
CVREF+  
TCREF+  
I
VREF+ ±1 mA, REFON = 1, REFOUT = 1  
3 V  
3 V  
100  
pF  
ppm/  
°C  
Temperature coefficient(1)  
IVREF+ = const with 0 mA IVREF+ 1 mA  
±100  
Settling time of internal  
reference voltage to 99.9%  
VREF  
IVREF+ = 0.5 mA, REF2_5V = 0,  
REFON = 0 1  
tREFON  
3.6 V  
3 V  
30  
2
µs  
µs  
IVREF+ = 0.5 mA,  
REF2_5V = 1, REFON = 1,  
REFBURST = 1, ADC10SR = 0  
Settling time of reference  
buffer to 99.9% VREF  
tREFBURST  
(1) Calculated using the box method: (MAX(-40 to 85°C) – MIN(-40 to 85°C)) / MIN(-40 to 85°C) / (85°C – (–40°C))  
28  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
 
MSP430G22x0  
www.ti.com  
SLAS753D JANUARY 2012REVISED AUGUST 2012  
10-Bit ADC, External Reference (MSP430G2230 Only)(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
VEREF+ > VEREF–,  
SREF1 = 1, SREF0 = 0  
1.4  
VCC  
Positive external reference input  
voltage range  
VEREF+  
V
(2)  
VEREF– VEREF+ VCC – 0.15 V,  
SREF1 = 1, SREF0 = 1  
1.4  
0
3
(3)  
Negative external reference input  
VEREF–  
VEREF+ > VEREF–  
1.2  
V
V
(4)  
voltage range  
Differential external reference  
input voltage range,  
(5)  
ΔVEREF  
VEREF+ > VEREF–  
1.4  
VCC  
ΔVEREF = VEREF+ – VEREF–  
0 V VEREF+ VCC  
SREF1 = 1, SREF0 = 0  
,
3 V  
±1  
IVEREF+  
Static input current into VEREF+  
Static input current into VEREF–  
µA  
µA  
0 V VEREF+ VCC – 0.15 V 3 V,  
3 V  
3 V  
0
SREF1 = 1, SREF0 = 1(3)  
IVEREF–  
0 V VEREF– VCC  
±1  
(1) The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, CI, is also the  
dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the  
recommendations on analog-source impedance to allow the charge to settle for 10-bit accuracy.  
(2) The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced  
accuracy requirements.  
(3) Under this condition the external reference is internally buffered. The reference buffer is active and requires the reference buffer supply  
current IREFB. The current consumption can be limited to the sample and conversion period with REBURST = 1.  
(4) The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced  
accuracy requirements.  
(5) The accuracy limits the minimum external differential reference voltage. Lower differential reference voltage levels may be applied with  
reduced accuracy requirements.  
10-Bit ADC, Timing Parameters (MSP430G2230 Only)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
0.45  
0.45  
TYP  
MAX  
6.3  
UNIT  
ADC10SR = 0  
ADC10SR = 1  
ADC10 input clock  
frequency  
For specified performance of  
ADC10 linearity parameters  
fADC10CLK  
fADC10OSC  
3 V  
MHz  
1.5  
ADC10 built-in oscillator ADC10DIVx = 0, ADC10SSELx = 0,  
3 V  
3 V  
3.7  
6.3  
MHz  
µs  
frequency  
fADC10CLK = fADC10OSC  
ADC10 built-in oscillator, ADC10SSELx = 0,  
fADC10CLK = fADC10OSC  
2.06  
3.51  
tCONVERT  
Conversion time  
13 ×  
fADC10CLK from ACLK, MCLK, or SMCLK:  
ADC10DIV ×  
1/fADC10CLK  
ADC10SSELx 0  
Turn-on settling time of  
the ADC  
(1)  
tADC10ON  
100  
ns  
(1) The condition is that the error in a conversion started after tADC10ON is less than ±0.5 LSB. The reference and input signal are already  
settled.  
10-Bit ADC, Linearity Parameters (MSP430G2230 Only)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Integral linearity error  
Differential linearity error  
Offset error  
TEST CONDITIONS  
VCC  
3 V  
3 V  
3 V  
3 V  
3 V  
MIN  
TYP  
MAX UNIT  
±1 LSB  
±1 LSB  
±1 LSB  
±2 LSB  
±5 LSB  
EI  
ED  
EO  
EG  
ET  
Source impedance RS < 100 Ω  
Gain error  
±1.1  
±2  
Total unadjusted error  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
MSP430G22x0  
SLAS753D JANUARY 2012REVISED AUGUST 2012  
www.ti.com  
10-Bit ADC, Temperature Sensor and Built-In VMID (MSP430G2230 Only)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
3 V  
3 V  
3 V  
3 V  
3 V  
MIN  
TYP  
60  
MAX UNIT  
Temperature sensor supply  
current(1)  
REFON = 0, INCHx = 0Ah,  
TA = 25°C  
ISENSOR  
TCSENSOR  
tSensor(sample)  
IVMID  
µA  
mV/°C  
µs  
(2)  
ADC10ON = 1, INCHx = 0Ah  
ADC10ON = 1, INCHx = 0Ah,  
Error of conversion result 1 LSB  
3.55  
Sample time required if channel  
30  
(3)  
10 is selected  
(4)  
Current into divider at channel 11 ADC10ON = 1, INCHx = 0Bh  
µA  
ADC10ON = 1, INCHx = 0Bh,  
VCC divider at channel 11  
VMID  
1.5  
V
V
MID 0.5 × VCC  
Sample time required if channel  
11 is selected  
ADC10ON = 1, INCHx = 0Bh,  
Error of conversion result 1 LSB  
tVMID(sample)  
3 V  
1220  
ns  
(5)  
(1) The sensor current ISENSOR is consumed if (ADC10ON = 1 and REFON = 1) or (ADC10ON = 1 and INCH = 0Ah and sample signal is  
high). When REFON = 1, ISENSOR is included in IREF+. When REFON = 0, ISENSOR applies during conversion of the temperature sensor  
input (INCH = 0Ah).  
(2) The following formula can be used to calculate the temperature sensor output voltage:  
VSensor,typ = TCSensor (273 + T [°C] ) + VOffset,sensor [mV] or  
VSensor,typ = TCSensor T [°C] + VSensor(TA = 0°C) [mV]  
(3) The typical equivalent impedance of the sensor is 51 k. The sample time required includes the sensor-on time tSENSOR(on)  
(4) No additional current is needed. The VMID is used during sampling.  
.
(5) The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed.  
30  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
MSP430G22x0  
www.ti.com  
SLAS753D JANUARY 2012REVISED AUGUST 2012  
Flash Memory  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST  
CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
VCC(PGM/ERASE) Program and erase supply voltage  
2.2  
3.6  
V
fFTG  
Flash timing generator frequency  
Supply current from VCC during program  
Supply current from VCC during erase  
Cumulative program time(1)  
257  
476 kHz  
IPGM  
2.2 V, 3.6 V  
2.2 V, 3.6 V  
2.2 V, 3.6 V  
2.2 V, 3.6 V  
1
1
5
7
mA  
mA  
IERASE  
tCPT  
10  
ms  
tCMErase  
Cumulative mass erase time  
20  
104  
100  
ms  
Program and erase endurance  
Data retention duration  
105  
cycles  
years  
tFTG  
tFTG  
tRetention  
tWord  
TJ = 25°C  
(2)  
Word or byte program time  
30  
25  
(2)  
(2)  
tBlock, 0  
Block program time for first byte or word  
Block program time for each additional byte or  
word  
tBlock, 1-63  
18  
tFTG  
(2)  
(2)  
(2)  
tBlock, End  
tMass Erase  
tSeg Erase  
Block program end-sequence wait time  
Mass erase time  
6
10593  
4819  
tFTG  
tFTG  
tFTG  
Segment erase time  
(1) The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming  
methods: individual word or byte write and block write modes.  
(2) These values are hardwired into the Flash Controller's state machine (tFTG = 1/fFTG).  
RAM  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
CPU halted  
MIN  
MAX UNIT  
(1)  
V(RAMh)  
RAM retention supply voltage  
1.6  
V
(1) This parameter defines the minimum supply voltage VCC when the data in RAM remains unchanged. No program execution should  
happen during this supply voltage condition.  
Spy-Bi-Wire Interface  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Spy-Bi-Wire input frequency  
VCC  
MIN  
0
TYP  
MAX UNIT  
fSBW  
2.2 V, 3 V  
2.2 V, 3 V  
20 MHz  
tSBW,Low  
Spy-Bi-Wire low clock pulse duration  
0.025  
15  
µs  
Spy-Bi-Wire enable time  
tSBW,En  
2.2 V, 3 V  
1
µs  
(TEST high to acceptance of first clock edge(1)  
)
tSBW,Ret  
RInternal  
Spy-Bi-Wire return to normal operation time  
Internal pulldown resistance on TEST  
2.2 V, 3 V  
2.2 V, 3 V  
15  
25  
100  
90  
µs  
60  
kΩ  
(1) Tools accessing the Spy-Bi-Wire interface need to wait for the maximum tSBW,En time after pulling the TEST/SBWCLK pin high before  
applying the first SBWCLK clock edge.  
JTAG Fuse(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Supply voltage during fuse-blow condition  
Voltage level on TEST for fuse blow  
Supply current into TEST during fuse blow  
Time to blow fuse  
TEST CONDITIONS  
MIN  
2.5  
6
MAX UNIT  
VCC(FB)  
VFB  
TA = 25°C  
V
7
100  
1
V
IFB  
mA  
ms  
tFB  
(1) After the fuse is blown, no further access to the JTAG/Test, Spy-Bi-Wire, and emulation feature is possible, and JTAG is switched to  
bypass mode.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
 
MSP430G22x0  
SLAS753D JANUARY 2012REVISED AUGUST 2012  
www.ti.com  
APPLICATION INFORMATION  
Port (P1.2 and P1.5) Pin Schematics - MSP430G2210  
To Comparator  
from Comparator  
CAPD.y  
PxDIR.y  
0
1
Direction  
0: Input  
1: Output  
PxREN.y  
DVSS  
DVCC  
0
1
1
PxSEL.y  
PxOUT.y  
0
1
From Module  
Bus  
Keeper  
EN  
P1.2/TA0.1/CA2  
P1.5/TA0.0/CA5  
PxIN.y  
EN  
To Module  
PxIRQ.y  
D
PxIE.y  
EN  
Set  
Q
PxIFG.y  
Interrupt  
Edge  
Select  
PxSEL.y  
PxIES.y  
Figure 21.  
Table 15. Port P1 (P1.2 to P1.5) Pin Functions - MSP430G2210  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P1.x)  
x
FUNCTION  
P1DIR.x  
P1SEL.x  
CAPD.y  
P1.2/  
P1.x (I/O)  
TA0.1  
I: 0; O: 1  
0
1
0
TA0.1/  
1
0
2
TA0.CCI1A  
CA2  
0
1
0
CA2  
X
X
0
1 (y = 2)  
P1.5/  
TA0.0/  
CA5  
P1.x (I/O)  
TA0.0  
I: 0; O: 1  
0
0
5
1
1
CA5  
X
Xx  
1 (y = 5)  
(1) X = don't care  
32  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
 
MSP430G22x0  
www.ti.com  
SLAS753D JANUARY 2012REVISED AUGUST 2012  
Port P1 (P1.6 and 1.7) Pin Schematic - MSP430G2210  
To Comparator  
From Comparator  
CAPD.y  
PxSEL.y  
PxDIR.y  
1
0
Direction  
0: Input  
1: Output  
PxREN.y  
DVSS  
DVCC  
0
1
PxSEL.y  
1
PxOUT.y  
0
1
From Module  
P1.6/TA0.1/CA6  
PxIN.y  
To Module  
PxIRQ.y  
PxIE.y  
EN  
Set  
Q
PxIFG.y  
Interrupt  
Edge  
Select  
PxSEL.y  
PxIES.y  
Figure 22.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
MSP430G22x0  
SLAS753D JANUARY 2012REVISED AUGUST 2012  
www.ti.com  
To Comparator  
From Comparator  
CAPD.y  
PxSEL.y  
PxDIR.y  
1
0
Direction  
0: Input  
1: Output  
PxREN.y  
DVSS  
DVCC  
0
1
PxSEL.y  
1
PxOUT.y  
0
1
From Module  
P1.7/CAOUT/CA7  
PxIN.y  
To Module  
PxIRQ.y  
PxIE.y  
EN  
Set  
Q
PxIFG.y  
Interrupt  
Edge  
Select  
PxSEL.y  
PxIES.y  
Figure 23.  
Table 16. Port P1 (P1.6 and P1.7) Pin Functions - MSP430G2210  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P1.x)  
P1.6/  
x
FUNCTION  
P1DIR.x  
P1SEL.x  
CAPD.y  
P1.x (I/O)  
I: 0; O: 1  
0
1
X
0
X
1
0
TA0.1/  
CA6  
6
TA0.1  
CA6  
1
0
X
1 (y = 6)  
P1.7/  
P1.x (I/O)  
CA7  
I: 0; O: 1  
0
1 (y = 7)  
0
CA7/  
7
X
1
CAOUT  
CAOUT  
(1) X = don't care  
34  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
MSP430G22x0  
www.ti.com  
SLAS753D JANUARY 2012REVISED AUGUST 2012  
Port P1 (P1.2 ) Pin Schematics - MSP430G2230  
To ADC10  
INCHx = y  
ADC10AE.y  
PxDIR.y  
0
1
Direction  
0: Input  
1: Output  
PxREN.y  
DVSS  
DVCC  
0
1
1
PxSEL.y  
PxOUT.y  
0
1
From Module  
Bus  
Keeper  
EN  
P1.2/TA0.1/A2  
PxIN.y  
EN  
To Module  
PxIRQ.y  
D
PxIE.y  
EN  
Set  
Q
PxIFG.y  
Interrupt  
Edge  
Select  
PxSEL.y  
PxIES.y  
Figure 24.  
Table 17. Port P1 (P1.2) Pin Functions - MSP430G2230  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P1.x)  
x
FUNCTION  
ADC10AE.x  
(INCH.y = 1)  
P1DIR.x  
P1SEL.x  
P1.2/  
P1.x (I/O)  
TA0.1  
I: 0; O: 1  
0
1
1
X
0
TA0.1/  
1
0
X
0
0
2
TA0.CCI1A  
A2  
A2  
1 (y = 2)  
(1) X = don't care  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
MSP430G22x0  
SLAS753D JANUARY 2012REVISED AUGUST 2012  
www.ti.com  
Port P1 (P1.5 ) Pin Schematics - MSP430G2230  
To ADC10  
INCHx = y  
ADC10AE.y  
PxDIR.y  
0
1
Direction  
0: Input  
1: Output  
USI Module Direction  
USIPE5  
PxREN.y  
PxSEL.y  
DVSS  
DVCC  
0
1
1
PxOUT.y  
0
1
From Module  
Bus  
Keeper  
EN  
P1.5/TA0.0/SCLK/A5  
PxIN.y  
EN  
To Module  
PxIRQ.y  
D
PxIE.y  
EN  
Set  
Q
PxIFG.y  
Interrupt  
Edge  
Select  
PxSEL.y  
PxIES.y  
Figure 25.  
Table 18. Port P1 (P1.5) Pin Functions - MSP430G2230  
CONTROL BITS AND SIGNALS(1)  
PIN NAME  
(P1.x)  
x
FUNCTION  
ADC10AE.x  
(INCH.y = 1)  
P1DIR.x  
P1SEL.x  
USIP.x  
INCHx  
P1.5/  
P1.x (I/O)  
I: 0; O: 1  
0
1
0
0
1
X
0
X
X
X
5
TA0.0/  
SCLK/  
A5  
TA0.0  
SCLK  
A5  
1
X
X
0
X
5
X
X
1 (y = 5)  
(1) X = don't care  
36  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
 
MSP430G22x0  
www.ti.com  
SLAS753D JANUARY 2012REVISED AUGUST 2012  
Port P1 (P1.6 and 1.7) Pin Schematic - MSP430G2230  
To ADC10  
INCHx  
ADC10AE0.y  
USIPE6  
PxDIR.y  
1
0
Direction  
0: Input  
1: Output  
from USI  
PxREN.y  
PxSEL.y or  
USIPE6  
DVSS  
DVCC  
0
1
1
PxOUT.y  
0
1
From USI  
Bus  
Keeper  
EN  
P1.6/TA0.1/SDO/SCL/A6  
PxSEL.y  
PxIN.y  
To Module  
PxIRQ.y  
PxIE.y  
EN  
Set  
Q
PxIFG.y  
Interrupt  
Edge  
Select  
PxSEL.y  
PxIES.y  
USI in I2C mode: Output driver drives low level only.  
Figure 26.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
MSP430G22x0  
SLAS753D JANUARY 2012REVISED AUGUST 2012  
www.ti.com  
To ADC10  
INCHx  
ADC10AE0.y  
USIPE7  
PxDIR.y  
1
0
Direction  
0: Input  
1: Output  
from USI  
PxSEL.y  
PxREN.y  
PxSEL.y or  
USIPE7  
DVSS  
DVCC  
0
1
1
PxOUT.y  
0
1
From USI  
Bus  
Keeper  
EN  
P1.7/SDI/SDA/A7  
PxSEL.y  
PxIN.y  
To Module  
PxIRQ.y  
PxIE.y  
EN  
Set  
Q
PxIFG.y  
Interrupt  
Edge  
Select  
PxSEL.y  
PxIES.y  
USI in I2C mode: Output driver drives low level only.  
Figure 27.  
Table 19. Port P1 (P1.6 and P1.7) Pin Functions - MSP430G2230  
CONTROL BITS AND SIGNALS(1)  
PIN NAME  
(P1.x)  
x
FUNCTION  
ADC10AE.x  
(INCH.y = 1)  
P1DIR.x  
P1SEL.x  
USIP.x  
P1.6/  
P1.x (I/O)  
TA0.CCI1A  
TA0.1  
I: 0; O: 1  
0
1
1
1
1
X
0
1
1
X
0
0
0
1
1
0
0
1
1
0
0
TA0.1/  
0
0
1
0
6
SDO/  
SCL/  
A6  
SPI Mode  
I2C Mode  
A6  
from USI  
0
from USI  
0
X
1 (y = 6)  
P1.7/  
SDI/  
SDA/  
A7  
P1.x (I/O)  
SDI  
I: 0; O: 1  
0
X
X
X
0
0
7
SDA  
A7  
1 (y = 7)  
(1) X = don't care  
38  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
 
MSP430G22x0  
www.ti.com  
SLAS753D JANUARY 2012REVISED AUGUST 2012  
REVISION HISTORY  
Literature  
Number  
Comments  
SLAS753  
Production Data release  
Changed Table 11.  
Added Table 12.  
SLAS753A  
Corrected "Basic Clock Module Configurations" list in Features.  
SLAS753B  
SLAS753C  
Added note to TCREF+ in 10-Bit ADC, Built-In Voltage Reference (MSP430G2230 Only).  
Added Flash Memory.  
Table 15, Removed ADC10AE.x column and removed A2 and A5 rows (no ADC on this device).  
Table 18, Added USIP.x column.  
SLAS753D  
Table 19, Added "(INCH.y = 1)" to ADC10AE.x column header.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Aug-2012  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
MSP430G2210ID  
MSP430G2210IDR  
MSP430G2230ID  
MSP430G2230IDR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
8
8
8
8
75  
2500  
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
Green (RoHS  
& no Sb/Br)  
2500  
Green (RoHS  
& no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF MSP430G2230 :  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Aug-2012  
Enhanced Product: MSP430G2230-EP  
NOTE: Qualified Version Definitions:  
Enhanced Product - Supports Defense, Aerospace and Medical Applications  
Addendum-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All  
semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time  
of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which  
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such  
components to meet such requirements.  
Products  
Audio  
Applications  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Medical  
Logic  
Security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
www.ti.com/video  
OMAP Mobile Processors www.ti.com/omap  
Wireless Connectivity www.ti.com/wirelessconnectivity  
TI E2E Community  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2012, Texas Instruments Incorporated  

相关型号:

MSP430G2210IDR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430G2211

MIXED SIGNAL MICROCONTROLLER
TI

MSP430G2211-Q1

ULTRA-LOW-POWER MICROCONTROLLERS
TI

MSP430G2211IN14

MIXED SIGNAL MICROCONTROLLER
TI

MSP430G2211IPW14

MIXED SIGNAL MICROCONTROLLER
TI

MSP430G2211IPW14R

MIXED SIGNAL MICROCONTROLLER
TI

MSP430G2211IPW4Q1

MIXED SIGNAL MICROCONTROLLER
TI

MSP430G2211IRSA16

MIXED SIGNAL MICROCONTROLLER
TI

MSP430G2211IRSA16R

MIXED SIGNAL MICROCONTROLLER
TI

MSP430G2211IRSA16T

MIXED SIGNAL MICROCONTROLLER
TI

MSP430G2211IRSAQ1

MIXED SIGNAL MICROCONTROLLER
TI

MSP430G2211TPW4Q1

MIXED SIGNAL MICROCONTROLLER
TI