MSP430FR6005IPZ [TI]

具有 128KB FRAM、LCD、12 位高速 8MSPS Σ-Δ ADC 和集成传感器 AFE 的 16MHz MCU | PZ | 100 | -40 to 85;
MSP430FR6005IPZ
型号: MSP430FR6005IPZ
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 128KB FRAM、LCD、12 位高速 8MSPS Σ-Δ ADC 和集成传感器 AFE 的 16MHz MCU | PZ | 100 | -40 to 85

CD 传感器
文件: 总180页 (文件大小:3370K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
MSP430FR600x Ultrasonic Sensing MSP430™ Microcontrollers  
for WaterMetering Applications  
Ferroelectric random access memory (FRAM)  
– Up to 256KB of nonvolatile memory  
– Ultra-low-power writes  
– Fast write at 125 ns per word (64KB in 4 ms)  
– Unified memory = program + data + storage in  
one space  
– 1015 write cycle endurance  
– Radiation resistant and nonmagnetic  
Intelligent digital peripherals  
– 32-bit hardware multiplier (MPY)  
– 6-channel internal DMA  
– RTC with calendar and alarm functions  
– Six 16-bit timers with up to seven capture/  
compare registers each  
1 Features  
Best-in-class ultrasonic water-flow measurement  
with ultra-low power consumption  
– <100-ps differential time-of-flight (dTOF)  
accuracy  
– High-precision time measurement resolution of  
20 ps  
– Ability to detect low flow rates (4-6 liters per  
hour)  
– Approximately 4-µA current consumption with  
one measurement per second  
Compliant to and exceeds ISO 4064, OIML R49,  
and EN 1434 accuracy standards  
Ability to directly interface standard ultrasonic  
sensors (up to 2.5 MHz)  
Integrated analog front end – ultrasonic sensing  
solution (USS)  
– 32-bit and 16-bit cyclic redundancy check  
(CRC)  
High-performance analog  
– 16-channel analog comparator  
– 12-bit SAR ADC featuring window comparator,  
internal reference, and sample-and-hold, up to  
16 external input channels  
– Integrated LCD driver with contrast control for  
up to 264 segments  
– Programmable pulse generation (PPG) to  
generate pulses at different frequencies  
– Integrated physical interface (PHY) with low-  
impedance (4-Ω) output driver to control input  
and output channels  
– High-performance high-speed 12-bit sigma-  
delta ADC (SDHS) with output data rates up to  
8 Msps  
– Programmable gain amplifier (PGA) with –  
6.5 dB to 30.8 dB  
– High-performance phase-locked loop (PLL) with  
output range of 68 MHz to 80 MHz  
Low-energy accelerator (LEA)  
Multifunction input/output ports  
– Accessible bit-, byte-, and word-wise (in pairs)  
– Edge-selectable wake from LPM on all ports  
– Programmable pullup and pulldown on all ports  
Code security and encryption  
– 128- or 256-bit AES security encryption and  
decryption coprocessor  
– Operation independent of CPU  
– 4KB of RAM shared with CPU  
– Efficient 256-point complex FFT:  
Up to 40× faster than Arm® Cortex®-M0+ core  
Embedded microcontroller  
– 16-bit RISC architecture up to 16MHz clock  
– Wide supply voltage range from 3.6 V down to  
1.8 V (minimum supply voltage is restricted by  
SVS levels, see the SVS specifications)  
Optimized ultra-low-power modes  
– Active mode: approximately 120 µA/MHz  
– Standby mode with real-time clock (RTC)  
(LPM3.5): 450 nA 1  
– Random number seed for random number  
generation algorithms  
– IP encapsulation protects memory from  
external access  
– FRAM provides inherent security advantages  
Enhanced serial communication  
– Up to four eUSCI_A serial communication ports  
UART with automatic baud-rate detection  
IrDA encode and decode  
– Up to two eUSCI_B serial communication ports  
I2C with multiple-slave addressing  
– Hardware UART or I2C bootloader (BSL)  
– Shutdown (LPM4.5): 30 nA  
1
The RTC is clocked by a 3.7-pF crystal.  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Flexible clock system  
MSP-TS430PZ100E target socket board for  
100-pin package  
– Free professional development environments  
with EnergyTrace++ technology  
MSP430Warefor MSP430microcontrollers  
Device Comparison summarizes the available  
device variants and package options  
– Fixed-frequency DCO with 10 selectable  
factory-trimmed frequencies  
– Low-power low-frequency internal clock source  
(VLO)  
– 32-kHz crystals (LFXT)  
– High-frequency crystals (HFXT)  
Development tools and software (also see Tools  
and Software)  
– Ultrasonic Sensing Design Center graphical  
user interface  
– Ultrasonic sensing software library  
EVM430-FR6047 water meter evaluation  
module  
2 Applications  
Ultrasonic smart water meter  
Ultrasonic smart heat meter  
Liquid level sensing  
Water leak detector  
3 Description  
The Texas Instruments MSP430FR600x family of ultrasonic sensing and measurement SoCs are powerful,  
highly integrated microcontrollers (MCUs) that are optimized for water and heat meters. The MSP430FR600x  
MCUs offer an integrated ultrasonic sensing solution (USS) module, which provides high accuracy for a wide  
range of flow rates. The USS module helps achieve ultra-low-power metering combined with lower system cost  
due to maximum integration requiring very few external components. MSP430FR600x MCUs implement a high-  
speed ADC-based signal acquisition followed by optimized digital signal processing using the integrated low-  
energy accelerator (LEA) module to deliver a high-accuracy metering solution with ultra-low power optimum for  
battery-powered metering applications.  
The USS module includes a programmable pulse generator (PPG) and a physical interface (PHY) with a low-  
impedance output driver for optimum sensor excitation to deliver best results for zero-flow drift (ZFD). The  
module also includes a programmable gain amplifier (PGA) and a high-speed 12-bit 8-Msps sigma-delta ADC  
(SDHS) for accurate signal acquisition from industry-standard ultrasonic transducers.  
Additionally, MSP430FR600x MCUs integrate other peripherals to improve system integration for metering. The  
MSP430FR600x MCUs also have an on-chip 8-mux LCD driver, an RTC, a 12-bit SAR ADC, an analog  
comparator, an advanced encryption accelerator (AES256), and a cyclic redundancy check (CRC) module.  
MSP430FR600x MCUs are supported by an extensive hardware and software ecosystem with reference designs  
and code examples to get your design started quickly. Development kits include the MSPTS430PZ100E 100-pin  
target development board and EVM430FR6047 ultrasonic water flow meter EVM. TI also provides free software  
including the ultrasonic sensing design center, ultrasonic sensing software library, and MSP430Ware™ software.  
TI's MSP430 ultra-low-power (ULP) FRAM microcontroller platform combines uniquely embedded FRAM and a  
holistic ultra-low-power system architecture, letting system designers increase performance while lowering  
energy consumption. FRAM technology combines the low-energy fast writes, flexibility, and endurance of RAM  
with the nonvolatility of flash.  
For complete module descriptions, see the MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User's  
Guide.  
Device Information  
PART NUMBER(1) (2)  
MSP430FR6007IPZ  
MSP430FR6005IPZ  
PACKAGE  
BODY SIZE(3)  
LQFP (100)  
14 mm × 14 mm  
(1) For the most current part, package, and ordering information for all available devices, see the Package Option Addendum in Section  
12, or see the TI website at www.ti.com.  
(2) For a comparison of all available device variants, see Section 6.  
(3) The sizes shown here are approximations. For the package dimensions with tolerances, see the Mechanical Data in Section 12.  
Copyright © 2020 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
4 Functional Block Diagram  
Figure 4-1 show the functional block diagrams of the devices.  
P1.x, P2.x  
2x8  
P3.x, P4.x  
2x8  
P5.x, P6.x  
2x8  
P7.x, P8.x  
2x8  
P9.x  
PJ.x,  
1x8  
1x8  
LFXIN,  
HFXIN  
LFXOUT,  
HFXOUT  
ADC12_B  
I/O Ports  
P1, P2  
2x8 I/Os  
I/O Ports  
P3, P4  
2x8 I/Os  
I/O Ports  
P5, P6  
2x8 I/Os  
I/O Ports  
P7, P8  
2x8 I/Os  
I/O Ports  
P9  
1x8 I/Os  
I/O Port  
PJ  
1x8 I/Os  
MCLK  
ACLK  
REF_A  
Comp_E  
(up to 16  
standard  
Clock  
System  
Voltage  
Reference  
(up to 16  
inputs)  
inputs, up to 8  
differential  
PA  
1x16 I/Os  
PB  
1x16 I/Os  
PC  
1x16 I/Os  
PD  
1x16 I/Os  
PE  
1x8 I/Os  
SMCLK  
inputs)  
DMA  
Controller  
MAB  
MDB  
6
Channel  
Bus  
Control  
Logic  
CPUXV2  
inc. 16  
Registers  
CRC16  
MPU  
IP Encap  
LCD_C  
Power  
Manage-  
ment  
AES256  
TA2  
TA3  
RAM  
CRC-16-  
CCITT  
CRC32  
(up to  
264 Seg:  
static,  
Security  
Encryption,  
Decryption  
(128, 256)  
Timer_A  
2 CC  
Registers  
(int)  
Timer_A  
2 CC  
Registers  
(int)  
4KB + 4KB  
FRCTL_A  
256KB  
128KB  
MPY32  
Watchdog  
LDO  
SVS  
Brownout  
2 to 8 mux)  
EEM  
(S: 3+1)  
Tiny RAM  
22B  
CRC-32-  
ISO-3309  
MDB  
JTAG  
Interface  
MAB  
Spy-Bi-Wire  
TB0  
TA0  
TA1  
TA4  
eUSCI_A0  
eUSCI_B0  
USS  
Subsystem  
LEA  
Subsystem  
eUSCI_A1  
eUSCI_A2  
eUSCI_A3  
(UART,  
IrDA,  
eUSCI_B1  
(I2C,  
SPI)  
Timer_B  
7 CC  
Registers  
(int, ext)  
Timer_A  
3 CC  
Registers  
(int, ext)  
Timer_A  
3 CC  
Registers  
(int, ext)  
Timer_A  
2 CC  
Registers  
(int, ext)  
RTC_C  
SPI)  
LPM3.5 Domain  
CHx_IN, CHx_OUT  
USSXTIN, USSXTOUT, USSXT_BOUT  
NOTE: The device has 8KB of RAM, and 4KB of the RAM is shared with the LEA subsystem.  
Figure 4-1. MSP430FR600x Functional Block Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................2  
3 Description.......................................................................2  
4 Functional Block Diagram.............................................. 3  
5 Revision History.............................................................. 4  
6 Device Comparison.........................................................5  
6.1 Related Products........................................................ 6  
7 Terminal Configuration and Functions..........................7  
7.1 Pin Diagram................................................................ 7  
7.2 Pin Attributes...............................................................8  
7.3 Signal Descriptions................................................... 16  
7.4 Pin Multiplexing.........................................................24  
7.5 Buffer Type................................................................24  
7.6 Connection of Unused Pins...................................... 25  
8 Specifications................................................................ 26  
8.1 Absolute Maximum Ratings...................................... 26  
8.2 ESD Ratings............................................................. 26  
8.3 Recommended Operating Conditions.......................27  
8.4 Active Mode Supply Current Into VCC Excluding  
External Current.......................................................... 28  
8.5 Typical Characteristics, Active Mode Supply  
9 Detailed Description......................................................67  
9.1 Overview...................................................................67  
9.2 CPU.......................................................................... 67  
9.3 Ultrasonic Sensing Solution (USS) Module.............. 67  
9.4 Low-Energy Accelerator (LEA) for Signal  
Processing...................................................................68  
9.5 Operating Modes...................................................... 69  
9.6 Interrupt Vector Table and Signatures.......................72  
9.7 Bootloader (BSL)...................................................... 75  
9.8 JTAG Operation........................................................ 75  
9.9 FRAM Controller A (FRCTL_A)................................ 77  
9.10 RAM........................................................................77  
9.11 Tiny RAM.................................................................77  
9.12 Memory Protection Unit (MPU) Including IP  
Encapsulation..............................................................77  
9.13 Peripherals..............................................................78  
9.14 Input/Output Diagrams............................................90  
9.15 Device Descriptors (TLV)......................................131  
9.16 Memory Map.........................................................134  
9.17 Identification..........................................................157  
10 Applications, Implementation, and Layout............. 158  
10.1 Device Connection and Layout Fundamentals..... 158  
10.2 Peripheral- and Interface-Specific Design  
Currents.......................................................................29  
8.6 Low-Power Mode (LPM0, LPM1) Supply  
Currents Into VCC Excluding External Current............ 29  
8.7 Low-Power Mode (LPM2, LPM3, LPM4) Supply  
Currents (Into VCC) Excluding External Current.......... 30  
8.8 Low-Power Mode With LCD Supply Currents  
(Into VCC) Excluding External Current.........................32  
8.9 Low-Power Mode (LPMx.5) Supply Currents  
Information................................................................ 164  
11 Device and Documentation Support........................166  
11.1 Getting Started and Next Steps............................ 166  
11.2 Device Nomenclature............................................166  
11.3 Tools and Software................................................168  
11.4 Documentation Support........................................ 170  
11.5 Support Resources............................................... 171  
11.6 Trademarks........................................................... 171  
11.7 Electrostatic Discharge Caution............................171  
11.8 Export Control Notice............................................171  
11.9 Glossary................................................................171  
12 Mechanical, Packaging, and Orderable  
(Into VCC) Excluding External Current.........................33  
8.10 Typical Characteristics, Low-Power Mode  
Supply Currents...........................................................34  
8.11 Current Consumption per Module...........................35  
8.12 Thermal Resistance Characteristics for 100-Pin  
LQFP (PZ) Package....................................................35  
8.13 Timing and Switching Characteristics..................... 36  
Information.................................................................. 172  
5 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from initial release to revision A  
Changes from March 31, 2020 to December 1, 2020  
Page  
Added the note that begins "XT1CLK and VLOCLK can be active during LPM4..." in Section 9.5, Operating  
Modes ..............................................................................................................................................................69  
Added the INTERRUPT VECTOR REGISTER column, moved register names from the INTERRUPT FLAG  
column, and corrected interrupt flag names as necessary in Table 9-4, Interrupt Sources, Flags, and Vectors  
..........................................................................................................................................................................72  
Corrected the table notes for Table 9-31, Port P5 (P5.0 to P5.7) Pin Functions ........................................... 105  
Corrected the address range for "Main: interrupt vectors" in Table 9-45, Memory Organization ...................134  
Copyright © 2020 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
6 Device Comparison  
Table 6-1 summarizes the available family members.  
Table 6-1. Device Comparison  
FRAM SRAM  
CLOCK  
SYSTEM  
USS  
USSXT  
ADC12_B  
(Channels)  
Comp_E  
(Channels)  
DEVICE(1) (2)  
LEA  
Timer_A(3)  
Timer_B(4)  
eUSCI_A(5)  
eUSCI_B(6)  
AES  
BSL  
I/Os  
PACKAGE  
(KB)  
(KB)  
DCO  
HFXT  
LFXT  
16 external,  
2 internal  
3, 3(7)  
100 PZ  
(LQFP)  
MSP430FR6007  
256  
8
Yes  
Yes  
Yes  
16  
16  
7
4
2
Yes  
UART  
76  
2, 2,2(8)  
DCO  
HFXT  
LFXT  
16 external,  
2 internal  
3, 3(7)  
100 PZ  
(LQFP)  
MSP430FR6005  
128  
8
Yes  
7
4
2
Yes  
UART  
76  
2, 2,2(8)  
(1) For the most current package and ordering information, see the Package Option Addendum in Section 12, or see the TI website at www.ti.com.  
(2) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/packaging.  
(3) Each number in the sequence represents an instantiation of Timer_A with its associated number of capture/compare registers and PWM output generators available. For example, a  
number sequence of 3, 5 would represent two instantiations of Timer_A, the first instantiation having three capture/compare registers and PWM output generators and the second  
instantiation having five capture/compare registers and PWM output generators, respectively.  
(4) Each number in the sequence represents an instantiation of Timer_B with its associated number of capture/compare registers and PWM output generators available. For example, a  
number sequence of 3, 5 would represent two instantiations of Timer_B, the first instantiation having three capture/compare registers and PWM output generators and the second  
instantiation having five capture/compare registers and PWM output generators, respectively.  
(5) eUSCI_A supports UART with automatic baud-rate detection, IrDA encode and decode, and SPI.  
(6) eUSCI_B supports I2C with multiple slave addresses and SPI.  
(7) Timers TA0 and TA1 provide internal and external capture/compare inputs and internal and external PWM outputs.  
(8) Timers TA2 and TA3 provide only internal capture/compare inputs and only internal PWM outputs (if any) whereas Timer TA4 provides internal, external capture/compare inputs and  
internal, external PWM outputs.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
 
 
 
 
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
6.1 Related Products  
For information about other devices in this family of products or related products, see the following links.  
TI 16-bit and 32-bit microcontrollers  
High-performance, low-power solutions to enable the autonomous future  
Products for MSP430 ultra-low-power sensing & measurement microcontrollers  
One platform. One ecosystem. Endless possibilities.  
Companion products for MSP430FR6007  
Review products that are frequently purchased or used with this product.  
Reference designs for MSP430FR6007  
Find reference designs leveraging the best in TI technology – from analog and power management to embedded  
processors.  
Copyright © 2020 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
7 Terminal Configuration and Functions  
7.1 Pin Diagram  
Figure 7-1 and Figure 7-1 show the pinouts of the 100-pin PZ packages.  
P2.2/COUT/UCA0CLK/A14/C14  
P2.3/TA0.0/UCA0STE/A15/C15  
P1.0/UCA1CLK/TA1.0/A0/C0/VREF-/VeREF-  
P1.1/UCA1STE/TA4.0/A1/C1/VREF+/VeREF+  
AVSS2  
1
2
3
4
5
6
7
8
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DVSS3  
R33/LCDCAP  
P6.3/R23  
P6.2/R13/LCDREF  
P6.1/R03  
PJ.4/LFXIN  
PJ.5/LFXOUT  
AVSS3  
PJ.6/HFXIN  
P7.3/UCA2STE/TB0.1/COM7/LCDS33  
P7.2/UCA2CLK/TB0.0/COM6/LCDS34  
P7.1/UCA2SOMI/UCA2RXD/SMCLK/COM5/LCDS35  
P7.0/UCA2SIMO/UCA2TXD/ACLK/COM4/LCDS36  
P6.7/COM3/LCDS37  
P6.6/COM2/LCDS38  
P6.5/COM1  
P6.4/COM0  
P6.0/COUT/LCDS0  
P5.7/UCB1STE/LCDS1  
P5.6/UCB1SOMI/UCB1SCL/LCDS2  
P5.5/TA0CLK/UCB1SIMO/UCB1SDA/LCDS3  
P5.4/UCB1CLK/LCDS4  
P5.3/UCA2STE/LCDS5  
P5.2/UCA2CLK/LCDS6  
P5.1/UCA2SOMI/UCA2RXD/LCDS7  
P5.0/UCA2SIMO/UCA2TXD/LCDS8  
P4.7/DMAE0/LCDS9  
9
PJ.7/HFXOUT  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
AVSS4  
P1.4/TB0.4/UCB0STE/A2/C2  
P1.5/TB0.5/UCB0CLK/A3/C3  
P1.6/UCB0SIMO/UCB0SDA/A4/C4  
P1.7/USSTRG/UCB0SOMI/UCB0SCL/A5/C5  
P2.0/UCA0SIMO/UCA0TXD/A6/C6  
P2.1/UCA0SOMI/UCA0RXD/A7/C7  
P1.2/UCA1SIMO/UCA1TXD/A8/C8  
P1.3/UCA1SOMI/UCA1RXD/A9/C9  
TEST/SBWCLK  
RST/NMI/SBWTDIO  
PJ.0/TDO/ACLK/SRSCG1/DMAE0/C10  
PJ.1/TDI/TCLK/SMCLK/SRSCG0/TA4CLK/C11  
PJ.2/TMS/MCLK/SROSCOFF/TB0OUTH/C12  
PJ.3/TCK/RTCCLK/SRCPUOFF/TB0.6/C13  
DVCC2  
DVSS2  
On devices with UART BSL: P2.0 is BSLTX, P2.1 is BSLRX  
On devices with I2C BSL: P1.6 is BSLSDA, P1.7 is BSLSCL  
Figure 7-1. MSP430FR600x 100-Pin PZ Package (Top View)  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
7.2 Pin Attributes  
Table 7-1 lists the attributes of each pin.  
Table 7-1. Pin Attributes  
RESET STATE  
PIN NUMBER  
SIGNAL NAME(1) (4)  
P2.2  
SIGNAL TYPE(2)  
BUFFER TYPE(3)  
POWER SOURCE(5)  
AFTER BOR(7)  
I/O  
O
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
OFF  
COUT  
UCA0CLK  
A14  
1
C14  
I
Analog  
P2.3  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
TA0.0  
UCA0STE  
A15  
2
C15  
I
Analog  
P1.0  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCA1CLK  
TA1.0  
A0  
3
C0  
I
Analog  
VREF-  
VeREF-  
P1.1  
O
I
Analog  
Analog  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCA1STE  
TA4.0  
A1  
4
C1  
I
Analog  
VREF+  
VeREF+  
AVSS2  
PJ.4  
O
I
Analog  
Analog  
5
6
P
Power  
N/A  
OFF  
I/O  
I
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
LFXIN  
PJ.5  
I/O  
O
P
LVCMOS  
Analog  
OFF  
7
8
9
LFXOUT  
AVSS3  
PJ.6  
Power  
N/A  
I/O  
I
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
HFXIN  
PJ.7  
I/O  
O
P
LVCMOS  
Analog  
OFF  
10  
11  
HFXOUT  
AVSS4  
P1.4  
Power  
N/A  
OFF  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
TB0.4  
UCB0STE  
A2  
12  
C2  
I
Analog  
Copyright © 2020 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 7-1. Pin Attributes (continued)  
RESET STATE  
AFTER BOR(7)  
PIN NUMBER  
SIGNAL NAME(1) (4)  
P1.5  
SIGNAL TYPE(2)  
BUFFER TYPE(3)  
POWER SOURCE(5)  
I/O  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
OFF  
TB0.5  
UCB0CLK  
A3  
I/O  
13  
14  
I/O  
I
C3  
I
Analog  
P1.6  
I/O  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCB0SIMO  
UCB0SDA  
A4  
I/O  
I/O  
I
C4  
I
Analog  
P1.7  
I/O  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
USSTRG  
UCB0SOMI  
UCB0SCL  
A5  
I
I/O  
15  
I/O  
I
C5  
I
Analog  
P2.0  
I/O  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCA0TXD  
UCA0SIMO  
A6  
O
16  
17  
18  
19  
I/O  
I
C6  
I
Analog  
P2.1  
I/O  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCA0RXD  
UCA0SOMI  
A7  
I
I/O  
I
C7  
I
Analog  
P1.2  
I/O  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCA1TXD  
UCA1SIMO  
A8  
O
I/O  
I
C8  
I
Analog  
P1.3  
I/O  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCA1RXD  
UCA1SOMI  
A9  
I
I/O  
I
C9  
I
Analog  
TEST  
I
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
PD  
20  
21  
SBWTCK  
RST  
I/O  
I
PU  
NMI  
SBWTDIO  
I/O  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: MSP430FR6007 MSP430FR6005  
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 7-1. Pin Attributes (continued)  
RESET STATE  
PIN NUMBER  
SIGNAL NAME(1) (4)  
PJ.0  
SIGNAL TYPE(2)  
BUFFER TYPE(3)  
POWER SOURCE(5)  
AFTER BOR(7)  
I/O  
O
O
O
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
OFF  
TDO  
ACLK  
SRSCG1  
DMAE0  
C10  
22  
I
PJ.1  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
TDI  
TCLK  
SMCLK  
SRSCG0  
TA4CLK  
C11  
I
23  
O
O
I
I
PJ.2  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
TMS  
MCLK  
SROSCOFF  
TB0OUTH  
C12  
O
O
I
24  
I
PJ.3  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
TCK  
RTCCLK  
SRCPUOFF  
TB0.6  
C13  
O
O
I/O  
I
25  
26  
27  
DVSS1  
DVCC1  
P2.4  
P
Power  
N/A  
N/A  
OFF  
P
Power  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
TA0CLK  
TB0CLK  
TA1CLK  
S32  
28  
I
I
O
I/O  
I/O  
O
I/O  
I/O  
O
I/O  
I/O  
O
I/O  
O
O
P2.5  
LVCMOS  
LVCMOS  
Analog  
OFF  
29  
30  
31  
32  
TA4.0  
S31  
P2.6  
LVCMOS  
LVCMOS  
Analog  
OFF  
TA4.1  
S30  
P3.0  
LVCMOS  
LVCMOS  
Analog  
OFF  
TB0.0  
S29  
P3.1  
LVCMOS  
LVCMOS  
Analog  
OFF  
TB0.1  
S28  
Copyright © 2020 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 7-1. Pin Attributes (continued)  
RESET STATE  
AFTER BOR(7)  
PIN NUMBER  
SIGNAL NAME(1) (4)  
P3.2  
SIGNAL TYPE(2)  
BUFFER TYPE(3)  
POWER SOURCE(5)  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
OFF  
33  
TB0.2  
S27  
O
P3.3  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
OFF  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
TB0.3  
S26  
P3.4  
I/O  
I
LVCMOS  
LVCMOS  
Analog  
OFF  
TB0OUTH  
S25  
O
P3.5  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
OFF  
TB0.4  
S24  
P3.6  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
OFF  
TB0.5  
S23  
P3.7  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
OFF  
TB0.6  
S22  
P2.7  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
OFF  
TA0.0  
S21  
P9.0  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
OFF  
TA1.0  
S20  
P9.1  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
OFF  
SMCLK  
S19  
O
P9.2  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
OFF  
MCLK  
S18  
O
P9.3  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
OFF  
ACLK  
S17  
O
P4.0  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
OFF  
RTCCLK  
S16  
O
P4.1  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
OFF  
UCA0CLK  
S15  
P4.2  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
OFF  
UCA0STE  
S14  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: MSP430FR6007 MSP430FR6005  
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 7-1. Pin Attributes (continued)  
RESET STATE  
PIN NUMBER  
SIGNAL NAME(1) (4)  
P4.3  
SIGNAL TYPE(2)  
BUFFER TYPE(3)  
POWER SOURCE(5)  
AFTER BOR(7)  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
OFF  
UCA0TXD  
UCA0SIMO  
S13  
47  
I/O  
O
P4.4  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCA0RXD  
UCA0SOMI  
S12  
48  
49  
50  
I/O  
O
P4.5  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
TA0CLK  
TA1CLK  
S11  
I
O
P4.6  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
TB0CLK  
TA4CLK  
S10  
I
O
51  
52  
DVSS2  
DVCC2  
P4.7  
P
Power  
N/A  
N/A  
OFF  
P
Power  
I/O  
I
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
53  
DMAE0  
S9  
O
P5.0  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCA2TXD  
UCA2SIMO  
S8  
54  
I/O  
O
P5.1  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCA2RXD  
UCA2SOMI  
S7  
55  
I/O  
O
P5.2  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
OFF  
56  
57  
58  
UCA2CLK  
S6  
P5.3  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
OFF  
UCA2STE  
S5  
P5.4  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
OFF  
UCB1CLK  
S4  
P5.5  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
TA0CLK  
UCB1SIMO  
UCB1SDA  
S3  
59  
I/O  
I/O  
O
Copyright © 2020 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 7-1. Pin Attributes (continued)  
RESET STATE  
AFTER BOR(7)  
PIN NUMBER  
SIGNAL NAME(1) (4)  
P5.6  
SIGNAL TYPE(2)  
BUFFER TYPE(3)  
POWER SOURCE(5)  
I/O  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
OFF  
UCB1SOMI  
UCB1SCL  
S2  
60  
P5.7  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
OFF  
61  
62  
UCB1STE  
S1  
P6.0  
I/O  
I
LVCMOS  
LVCMOS  
Analog  
OFF  
COUT  
S0  
O
P6.4  
I/O  
O
LVCMOS  
Analog  
OFF  
63  
64  
COM0  
P6.5  
I/O  
O
LVCMOS  
Analog  
OFF  
COM1  
P6.6  
I/O  
O
LVCMOS  
Analog  
OFF  
65  
66  
COM2  
S38  
O
Analog  
P6.7  
I/O  
O
LVCMOS  
Analog  
OFF  
COM3  
S37  
O
Analog  
P7.0  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCA2TXD  
UCA2SIMO  
ACLK  
COM4  
S36  
I/O  
O
67  
O
O
Analog  
P7.1  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCA2RXD  
UCA2SOMI  
SMCLK  
COM5  
S35  
I/O  
O
68  
69  
O
O
Analog  
P7.2  
I/O  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCA2CLK  
TB0.0  
COM6  
S34  
O
Analog  
P7.3  
I/O  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCA2STE  
TB0.1  
COM7  
S33  
70  
71  
O
Analog  
P6.1  
I/O  
I/O  
LVCMOS  
Analog  
OFF  
R03  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: MSP430FR6007 MSP430FR6005  
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 7-1. Pin Attributes (continued)  
RESET STATE  
PIN NUMBER  
SIGNAL NAME(1) (4)  
P6.2  
SIGNAL TYPE(2)  
BUFFER TYPE(3)  
POWER SOURCE(5)  
AFTER BOR(7)  
I/O  
I/O  
I
LVCMOS  
Analog  
DVCC  
DVCC  
-
OFF  
72  
R13  
LCDREF  
P6.3  
Analog  
I/O  
I/O  
I/O  
I/O  
P
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
OFF  
73  
74  
R23  
R33  
Analog  
-
LCDCAP  
DVSS3  
DVCC3  
P7.4  
Analog  
75  
76  
Power  
N/A  
N/A  
OFF  
P
Power  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
PVCC  
PVCC  
77  
78  
TA0.1  
P7.5  
OFF  
TA1.1  
P8.0  
OFF  
UCA3STE  
TB0.2  
79  
80  
81  
82  
83  
84  
DMAE0  
P8.1  
I/O  
I/O  
I/O  
I
OFF  
UCA3CLK  
TB0.3  
TB0OUTH  
P8.2  
I/O  
O
OFF  
UCA3RXD  
UCA3SOMI  
MCLK  
I/O  
O
P8.3  
I/O  
O
OFF  
UCA3TXD  
UCA3SIMO  
RTCCLK  
P7.6  
I/O  
O
I/O  
I/O  
I
OFF  
TA4.1  
DMAE0  
COUT  
O
P7.7  
I/O  
I/O  
I
OFF  
TA0.2  
TB0OUTH  
COUT  
O
85  
86  
87  
88  
89  
90  
91  
CH1_IN  
CH1_OUT  
PVSS  
I
O
Analog  
P
Power  
N/A  
N/A  
N/A  
PVCC  
P
Power  
PVSS  
P
Power  
CH0_OUT  
CH0_IN  
O
Analog  
PVCC  
PVCC  
I
Analog  
Copyright © 2020 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 7-1. Pin Attributes (continued)  
RESET STATE  
AFTER BOR(7)  
PIN NUMBER  
SIGNAL NAME(1) (4)  
P8.4  
SIGNAL TYPE(2)  
BUFFER TYPE(3)  
POWER SOURCE(5)  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
OFF  
UCB1CLK  
TA1.2  
92  
93  
94  
95  
A10  
P8.5  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCB1SIMO  
UCB1SDA  
A11  
P8.6  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCB1SOMI  
UCB1SCL  
A12  
P8.7  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCB1STE  
USSXT_BOUT  
A13  
96  
97  
AVSS5  
P
Power  
N/A  
USSXTIN(6)  
USSXTOUT(6)  
AVSS1  
I
Analog  
1.5 V  
1.5 V  
98  
O
Analog  
99  
P
Power  
N/A  
N/A  
100  
AVCC1  
P
Power  
(1) The signal that is listed first for each pin is the reset default pin name.  
(2) Signal Types: I = Input, O = Output, I/O = Input or Output.  
(3) Buffer Types: LVCMOS, Analog, or Power (see Table 7-3 for details)  
(4) To determine the pin mux encodings for each pin, see Section 9.14.  
(5) The power source shown in this table is the I/O power source, which may differ from the module power source.  
(6) Do not connect USSXTIN and USSXTOUT pins to AVCC nor to DVCC. USSXTIN does not support bypass mode, so do not drive an  
external clock on the USSXTIN pin.  
(7) Reset States:  
OFF = High impedance with Schmitt-trigger input and pullup or pulldown (if available) disabled  
PU = Pullup is enabled  
PD = Pulldown is enabled  
N/A = Not applicable  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
 
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
7.3 Signal Descriptions  
Table 7-2 describes the signals.  
Table 7-2. Signal Descriptions  
PIN NO.  
FUNCTION  
SIGNAL NAME  
A0  
PIN TYPE(1)  
DESCRIPTION  
PZ  
3
I
I
ADC analog input A0  
ADC analog input A1  
ADC analog input A2  
ADC analog input A3  
ADC analog input A4  
ADC analog input A5  
ADC analog input A6  
ADC analog input A7  
ADC analog input A8  
ADC analog input A9  
ADC analog input A10  
ADC analog input A11  
ADC analog input A12  
ADC analog input A13  
ADC analog input A14  
ADC analog input A15  
A1  
4
A2  
12  
13  
14  
15  
16  
17  
18  
19  
92  
93  
94  
95  
1
I
A3  
I
A4  
I
A5  
I
A6  
I
A7  
I
A8  
I
A9  
I
ADC  
A10  
A11  
A12  
A13  
A14  
A15  
VREF+  
VREF-  
VeREF+  
VeREF-  
I
I
I
I
I
2
I
4
O
O
I
Output of positive reference voltage  
3
Output of negative reference voltage  
4
Input for an external positive reference voltage to the ADC  
Input for an external negative reference voltage to the ADC  
3
I
22, 43,  
67  
ACLK  
O
ACLK output  
HFXIN  
9
10  
6
I
Input for high-frequency crystal oscillator HFXT  
Output for high-frequency crystal oscillator HFXT  
Input for low-frequency crystal oscillator LFXT  
Output of low-frequency crystal oscillator LFXT  
HFXOUT  
LFXIN  
O
I
Clock  
LFXOUT  
7
O
24, 42,  
81  
MCLK  
O
O
MCLK output  
23, 41,  
68  
SMCLK  
SMCLK output  
Copyright © 2020 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 7-2. Signal Descriptions (continued)  
PIN NO.  
FUNCTION  
SIGNAL NAME  
C0  
PIN TYPE(1)  
DESCRIPTION  
PZ  
3
I
I
Comparator input C0  
Comparator input C1  
Comparator input C2  
Comparator input C3  
Comparator input C4  
Comparator input C5  
Comparator input C6  
Comparator input C7  
Comparator input C8  
Comparator input C9  
Comparator input C10  
Comparator input C11  
Comparator input C12  
Comparator input C13  
Comparator input C14  
Comparator input C15  
Comparator output  
C1  
4
C2  
12  
I
C3  
13  
I
C4  
14  
I
C5  
15  
I
C6  
16  
I
C7  
17  
I
Comparator  
C8  
18  
I
C9  
19  
I
C10  
C11  
C12  
C13  
C14  
C15  
COUT  
22  
I
23  
I
24  
I
25  
I
1
I
2
I
1, 83, 84  
O
22, 79,  
83  
DMA  
DMAE0  
I
External DMA trigger  
SBWTCK  
SBWTDIO  
SRCPUOFF  
SROSCOFF  
SRSCG0  
SRSCG1  
TCK  
20  
21  
25  
24  
23  
22  
25  
23  
23  
22  
20  
24  
3
I
Spy-Bi-Wire input clock  
I/O  
O
Spy-Bi-Wire data input/output  
Low-power debug: CPU Status register bit CPUOFF  
Low-power debug: CPU Status register bit OSCOFF  
Low-power debug: CPU Status register bit SCG0  
Low-power debug: CPU Status register bit SCG1  
Test clock  
O
O
O
Debug  
I
TCLK  
I
Test clock input  
TDI  
I
Test data input  
TDO  
O
Test data output port  
TEST  
I
Test mode pin, selects digital I/O on JTAG pins  
Test mode select  
TMS  
I
P1.0  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
P1.1  
4
P1.2  
18  
19  
12  
13  
14  
15  
P1.3  
GPIO Port 1  
P1.4  
P1.5  
P1.6  
P1.7  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: MSP430FR6007 MSP430FR6005  
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 7-2. Signal Descriptions (continued)  
PIN NO.  
PZ  
16  
17  
1
FUNCTION  
SIGNAL NAME  
P2.0  
PIN TYPE(1)  
DESCRIPTION  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
P2.1  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
P2.7  
P3.0  
P3.1  
P3.2  
P3.3  
P3.4  
P3.5  
P3.6  
P3.7  
P4.0  
P4.1  
P4.2  
P4.3  
P4.4  
P4.5  
P4.6  
P4.7  
P5.0  
P5.1  
P5.2  
P5.3  
P5.4  
P5.5  
P5.6  
P5.7  
P6.0  
P6.1  
P6.2  
P6.3  
P6.4  
P6.5  
P6.6  
P6.7  
2
GPIO Port 2  
28  
29  
30  
39  
31  
32  
33  
34  
35  
36  
37  
38  
44  
45  
46  
47  
48  
49  
50  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
71  
72  
73  
63  
64  
65  
66  
GPIO Port 3  
GPIO Port 4  
GPIO Port 5  
GPIO Port 6  
Copyright © 2020 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 7-2. Signal Descriptions (continued)  
PIN NO.  
PZ  
67  
FUNCTION  
SIGNAL NAME  
P7.0  
PIN TYPE(1)  
DESCRIPTION  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O  
P7.1  
68  
P7.2  
69  
P7.3  
70  
GPIO Port 7  
P7.4  
77  
P7.5  
78  
P7.6  
83  
P7.7  
84  
P8.0  
79  
P8.1  
80  
P8.2  
81  
P8.3  
82  
GPIO Port 8  
GPIO Port 9  
GPIO Port J  
I2C  
P8.4  
92  
P8.5  
93  
P8.6  
94  
P8.7  
95  
P9.0  
40  
P9.1  
41  
P9.2  
42  
P9.3  
43  
PJ.0  
22  
PJ.1  
23  
General-purpose digital I/O  
PJ.2  
24  
General-purpose digital I/O  
PJ.3  
25  
General-purpose digital I/O  
PJ.4  
6
General-purpose digital I/O  
PJ.5  
7
General-purpose digital I/O  
PJ.6  
9
General-purpose digital I/O  
PJ.7  
10  
General-purpose digital I/O  
UCB0SCL  
UCB0SDA  
UCB1SCL  
UCB1SDA  
15  
I2C clock for eUSCI_B0 I2C mode  
14  
I2C data for eUSCI_B0 I2C mode  
94, 60  
93, 59  
I2C clock for eUSCI_B1 I2C mode  
I2C data for eUSCI_B1 I2C mode  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: MSP430FR6007 MSP430FR6005  
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 7-2. Signal Descriptions (continued)  
PIN NO.  
PZ  
63  
FUNCTION  
SIGNAL NAME  
COM0  
PIN TYPE(1)  
DESCRIPTION  
O
O
O
O
O
O
O
O
LCD common output COM0 for LCD backplane  
LCD common output COM1 for LCD backplane  
LCD common output COM2 for LCD backplane  
LCD common output COM3 for LCD backplane  
LCD common output COM4 for LCD backplane  
LCD common output COM5 for LCD backplane  
LCD common output COM6 for LCD backplane  
LCD common output COM7 for LCD backplane  
LCD capacitor connection  
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
64  
65  
66  
67  
68  
69  
70  
LCDCAP  
74  
I/O  
CAUTION: LCDCAP/R33 must be connected to DVSS if not used.  
External reference voltage input for regulated LCD voltage  
Input/output port of lowest analog LCD voltage (V5)  
LCDREF  
R03  
72  
71  
72  
73  
I
I/O  
I/O  
I/O  
R13  
Input/output port of third most positive analog LCD voltage (V3 or V4)  
Input/output port of second most positive analog LCD voltage (V2)  
R23  
Input/output port of most positive analog LCD voltage (V1)  
CAUTION: LCDCAP/R33 must be connected to DVSS if not used.  
R33  
74  
I/O  
S0  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
S1  
S2  
S3  
S4  
S5  
S6  
LCD  
S7  
S8  
S9  
S10  
S11  
S12  
S13  
S14  
S15  
S16  
S17  
S18  
S19  
S20  
S21  
S22  
S23  
S24  
S25  
S26  
S27  
S28  
Copyright © 2020 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 7-2. Signal Descriptions (continued)  
PIN NO.  
PZ  
31  
FUNCTION  
SIGNAL NAME  
S29  
PIN TYPE(1)  
DESCRIPTION  
O
O
O
O
O
O
O
O
O
O
P
P
P
P
P
P
P
P
P
P
P
P
P
P
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
Analog power supply  
Analog ground supply  
Analog ground supply  
Analog ground supply  
Analog ground supply  
Analog ground supply  
Digital power supply  
Digital power supply  
Digital power supply  
Digital ground supply  
Digital ground supply  
Digital ground supply  
USS power supply  
S30  
30  
S31  
29  
S32  
28  
S33  
70  
LCD (continued)  
S34  
69  
S35  
68  
S36  
67  
S37  
66  
S38  
65  
AVCC1  
AVSS1  
AVSS2  
AVSS3  
AVSS4  
AVSS5  
DVCC1  
DVCC2  
DVCC3  
DVSS1  
DVSS2  
DVSS3  
PVCC  
PVSS  
100  
99  
5
8
11  
96  
27  
Power  
52  
76  
26  
51  
75  
88  
87, 89  
USS ground supply  
25, 44,  
82  
RTC  
RTCCLK  
O
RTC clock calibration output  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: MSP430FR6007 MSP430FR6005  
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 7-2. Signal Descriptions (continued)  
PIN NO.  
FUNCTION  
SIGNAL NAME  
PIN TYPE(1)  
DESCRIPTION  
PZ  
Clock signal input for eUSCI_A0 SPI slave mode  
Clock signal output for eUSCI_A0 SPI master mode  
UCA0CLK  
1, 45  
I/O  
UCA0SIMO  
UCA0SOMI  
UCA0STE  
16, 47  
17, 48  
2, 46  
I/O  
I/O  
I/O  
Slave in/master out for eUSCI_A0 SPI mode  
Slave out/master in for eUSCI_A0 SPI mode  
Slave transmit enable for eUSCI_A0 SPI mode  
Clock signal input for eUSCI_A1 SPI slave mode  
Clock signal output for eUSCI_A1 SPI master mode  
UCA1CLK  
3
I/O  
UCA1SIMO  
UCA1SOMI  
UCA1STE  
18  
19  
4
I/O  
I/O  
I/O  
Slave in/master out for eUSCI_A1 SPI mode  
Slave out/master in for eUSCI_A1 SPI mode  
Slave transmit enable for eUSCI_A1 SPI mode  
Clock signal input for eUSCI_A2 SPI slave mode  
Clock signal output for eUSCI_A2 SPI master mode  
UCA2CLK  
69, 56  
I/O  
UCA2SIMO  
UCA2SOMI  
UCA2STE  
67, 54  
68, 55  
70, 57  
I/O  
I/O  
I/O  
Slave in/master out for eUSCI_A2 SPI mode  
Slave out/master in for eUSCI_A2 SPI mode  
Slave transmit enable for eUSCI_A2 SPI mode  
SPI  
Clock signal input for eUSCI_A3 SPI slave mode  
Clock signal output for eUSCI_A3 SPI master mode  
UCA3CLK  
80  
I/O  
UCA3SIMO  
UCA3SOMI  
UCA3STE  
82  
81  
79  
I/O  
I/O  
I/O  
Slave in/master out for eUSCI_A3 SPI mode  
Slave out/master in for eUSCI_A3 SPI mode  
Slave transmit enable for eUSCI_A3 SPI mode  
Clock signal input for eUSCI_B0 SPI slave mode  
Clock signal output for eUSCI_B0 SPI master mode  
UCB0CLK  
13  
I/O  
UCB0SIMO  
UCB0SOMI  
UCB0STE  
14  
15  
12  
I/O  
I/O  
I/O  
Slave in/master out for eUSCI_B0 SPI mode  
Slave out/master in for eUSCI_B0 SPI mode  
Slave transmit enable for eUSCI_B0 SPI mode  
Clock signal input for eUSCI_B1 SPI slave mode  
Clock signal output for eUSCI_B1 SPI master mode  
UCB1CLK  
92, 58  
I/O  
UCB1SIMO  
UCB1SOMI  
UCB1STE  
NMI  
93, 59  
94, 60  
95, 61  
21  
I/O  
I/O  
I/O  
I
Slave in/master out for eUSCI_B1 SPI mode  
Slave out/master in for eUSCI_B1 SPI mode  
Slave transmit enable for eUSCI_B1 SPI mode  
Nonmaskable interrupt input  
System  
RST  
21  
I/O  
Reset input active low  
Copyright © 2020 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 7-2. Signal Descriptions (continued)  
PIN NO.  
FUNCTION  
SIGNAL NAME  
TA0.0  
PIN TYPE(1)  
DESCRIPTION  
PZ  
2
I/O  
I/O  
I/O  
I/O  
TA0 CCR0 capture: CCI0A input, compare: Out0  
TA0 CCR0 capture: CCI0B input, compare: Out0  
TA0 CCR1 capture: CCI1A input, compare: Out1  
TA0 CCR2 capture: CCI2A input, compare: Out2  
TA0.0  
TA0.1  
TA0.2  
39  
77  
84  
28, 49,  
59  
TA0CLK  
I
TA0 input clock  
TA1.0  
TA1.0  
TA1.1  
TA1.2  
TA1CLK  
TA4.0  
TA4.0  
TA4.1  
TA4.1  
TA4CLK  
TB0.0  
TB0.0  
TB0.1  
TB0.1  
TB0.2  
TB0.2  
TB0.3  
TB0.3  
TB0.4  
TB0.4  
TB0.5  
TB0.5  
TB0.6  
TB0.6  
TB0CLK  
3
40  
I/O  
I/O  
I/O  
I/O  
I
TA1 CCR0 capture: CCI0A input, compare: Out0  
TA1 CCR0 capture: CCI0B input, compare: Out0  
TA1 CCR1 capture: CCI1A input, compare: Out1  
TA1 CCR2 capture: CCI2A input, compare: Out2  
TA1 input clock  
78  
92  
28, 49  
4
I/O  
I/O  
I/O  
I/O  
I
TA4 CCR0 capture: CCI0A input, compare: Out0  
TA4 CCR0 capture: CCI0B input, compare: Out0  
TA4CCR1 capture: CCI1B input, compare: Out1  
TA4 CCR1 capture: CCI1A input, compare: Out1  
TA4 input clock  
29  
30  
83  
23, 50  
31  
Timer  
I/O  
I/O  
I/O  
O
TB0 CCR0 capture: CCI0B input, compare: Out0  
TB0 CCR0 capture: CCI0A input, compare: Out0  
TB0 CCR1 capture: CCI1A input, compare: Out1  
TB0 CCR1 compare: Out1  
69  
32  
70  
33  
I/O  
O
TB0 CCR2 capture: CCI2A input, compare: Out2  
TB0 CCR2 compare: Out2  
79  
34  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
TB0 CCR3 capture: CCI3A input, compare: Out3  
TB0 CCR3 capture: CCI3B input, compare: Out3  
TB0 CCR4 capture: CCI4A input, compare: Out4  
TB0 CCR4 capture: CCI4B input, compare: Out4  
TB0 CCR5 capture: CCI5A input, compare: Out5  
TB0CCR5 capture: CCI5B input, compare: Out5  
TB0 CCR6 capture: CCI6B input, compare: Out6  
TB0 CCR6 capture: CCI6A input, compare: Out6  
TB0 clock input  
80  
12  
36  
13  
37  
25  
38  
28, 50  
24, 35,  
80, 84  
TB0OUTH  
I
Switch all PWM outputs high impedance input – TB0  
UCA0RXD  
UCA0TXD  
UCA1RXD  
UCA1TXD  
UCA2RXD  
UCA2TXD  
UCA3RXD  
UCA3TXD  
17, 48  
16, 47  
19  
I
O
I
Receive data for eUSCI_A0 UART mode  
Transmit data for eUSCI_A0 UART mode  
Receive data for eUSCI_A1 UART mode  
Transmit data for eUSCI_A1 UART mode  
Receive data for eUSCI_A2 UART mode  
Transmit data for eUSCI_A2 UART mode  
Receive data for eUSCI_A3 UART mode  
Transmit data for eUSCI_A3 UART mode  
18  
O
I
UART  
68, 55  
67, 54  
81  
O
I
82  
O
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: MSP430FR6007 MSP430FR6005  
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 7-2. Signal Descriptions (continued)  
PIN NO.  
PZ  
15  
FUNCTION  
SIGNAL NAME  
PIN TYPE(1)  
DESCRIPTION  
USSTRG  
I
I
USS trigger  
USSXTIN  
USSXTOUT  
USSXT_BOUT  
CH0_IN  
97  
Input for crystal or resonator of oscillator USSXT  
Output for crystal or resonator of oscillator USSXT  
Buffered output clock of USSXT  
USS channel 0 RX  
98  
O
O
I
95  
USS  
91  
CH0_OUT  
CH1_IN  
90  
I/O  
I
USS channel 0 TX  
85  
USS channel 1 RX  
CH1_OUT  
86  
I/O  
USS channel 1 TX  
(1) I = input, O = output, P = power  
7.4 Pin Multiplexing  
Pin multiplexing for these devices is controlled by both register settings and operating modes (for example, if the  
device is in test mode). For details of the settings for each pin and diagrams of the multiplexed ports, see  
Section 9.14.  
7.5 Buffer Type  
Table 7-3 describes the buffer types that are referenced in Table 7-1.  
Table 7-3. Buffer Type  
NOMINAL  
PULLUP (PU)  
OR  
PULLDOWN (PD)  
OUTPUT DRIVE  
STRENGTH  
(mA)  
BUFFER TYPE  
(STANDARD)  
NOMINAL  
VOLTAGE  
PU OR PD  
STRENGTH  
(µA)  
OTHER  
CHARACTERISTICS  
HYSTERESIS  
See analog modules in  
Section 8 for details.  
Analog(2)  
3.0 V  
3.0 V  
3.0 V  
N
Y(1)  
N
N/A  
Programmable  
N/A  
N/A  
N/A  
See Section  
8.13.5  
See Section  
8.13.5  
LVCMOS  
SVS enables hysteresis on  
DVCC.  
Power (DVCC)(3)  
N/A  
N/A  
Power (AVCC)(3)  
Power (PVCC)(3)  
3.0 V  
3.0 V  
N
N
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Power (DVSS  
and AVSS)(3)  
0 V  
N
N/A  
N/A  
N/A  
(1) Only for input pins  
(2) This is a switch, not a buffer.  
(3) This is supply input, not a buffer.  
Copyright © 2020 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
 
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
7.6 Connection of Unused Pins  
Table 7-4 lists the correct termination of unused pins.  
Table 7-4. Connection of Unused Pins  
COMMENT  
PIN(1)  
AVCC  
PVCC  
AVSS  
PVSS  
POTENTIAL  
DVCC  
DVCC  
DVSS  
DVSS  
CHx_IN,  
CHx_OUT  
DVSS  
USSXTIN  
DVSS  
Open  
Open  
Do not connect to DVCC, AVCC, or PVCC  
USSXTOUT  
Px.0 to Px.7  
Switched to port function, output direction (PxDIR.n = 1)  
RST/NMI/  
SBWTDIO  
DVCC or VCC  
47-kΩ pullup or internal pullup selected with 10-nF (2.2-nF(2)) pulldown  
PJ.0/TDO  
PJ.1/TDI  
PJ.2/TMS  
PJ.3/TCK  
The JTAG pins are shared with general-purpose I/O function (PJ.x). If these pins are not used, set  
them to port function, output direction. If used as JTAG pins, leave them open.  
Open  
Open  
TEST  
This pin always has an internal pulldown enabled.  
(1) For any unused pin with a secondary function that is shared with general-purpose I/O, follow the guidelines for the Px.0 to Px.7 pins.  
(2) The pulldown capacitor must not exceed 2.2 nF when using devices with Spy-Bi-Wire interface in Spy-Bi-Wire mode or in 4-wire JTAG  
mode with TI tools like FET interfaces or GANG programmers.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
8 Specifications  
8.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
MAX  
4.1  
UNIT  
At DVCC and AVCC pins  
VCC  
Supply voltage(3)  
V
At DVCC, AVCC, and PVCC pins  
4.1  
Voltage difference between DVCC and AVCC pins(2)  
Voltage difference among DVCC, AVCC, and PVCC pins(2)  
Applied to CHx_IN  
±0.3  
±0.3  
1.65  
1.8  
V
V
–0.3  
–0.3  
–0.3  
Applied to CHx_IN with a duty cycle of 10% over 1 ms  
VI  
Input voltage(3)  
V
Applied to USSXTIN (USSXTOUT)  
Applied to any other pin  
1.5  
VCC + 0.3 V  
(4.1 V Max)  
–0.3  
Diode current at any device pin  
Storage temperature (4)  
±2  
mA  
°C  
Tstg  
–40  
125  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Voltage differences between DVCC and AVCC that exceed the specified limits can cause malfunction of the device including erroneous  
writes to RAM and FRAM.  
(3) Voltages are referenced to VSS  
.
(4) Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow  
temperatures not higher than classified on the device label on the shipping boxes or reels.  
8.2 ESD Ratings  
VALUE  
UNIT  
Electrostatic discharge (all Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
except CHx_OUT  
±1000  
V(ESD)  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
terminals)  
±250  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±1000  
±250  
Electrostatic discharge (on  
CHx_OUT terminals)  
V(ESD)  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as  
±1000 V may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±250  
V may actually have higher performance.  
Copyright © 2020 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
 
 
 
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.3 Recommended Operating Conditions  
TYP data are based on VCC = 3.0 V and TA = 25°C (unless otherwise noted)  
MIN  
1.8(7)  
2.2  
NOM  
MAX UNIT  
VCC  
VCC  
VSS  
TA  
Supply voltage range applied at all DVCC and AVCC pins(1) (3) (4) (2)  
Supply voltage range applied at PVCC pin(1)  
Supply voltage applied at all DVSS, AVSS, and PVSS pins  
Operating free-air temperature  
3.6  
3.6  
V
V
0
V
–40  
85  
°C  
µF  
CDVCC  
Capacitor value at DVCC(5)  
1 – 20%  
No FRAM wait states (NWAITSx  
= 0)  
0
8(9)  
fSYSTEM  
Processor frequency (maximum MCLK frequency)(6)  
With FRAM wait states  
(NWAITSx = 1)(8)  
MHz  
0
0
16(10)  
fLEA  
LEA processor frequency  
Maximum ACLK frequency  
Maximum SMCLK frequency  
16(10)  
50  
fACLK  
fSMCLK  
kHz  
16(10)  
MHz  
(1) TI recommends powering the AVCC, DVCC, PVCC pins from the same source. At a minimum, during power up, power down, and  
device operation, the voltage difference among AVCC, DVCC, PVCC must not exceed the limits specified in Absolute Maximum  
Ratings. Exceeding the specified limits can cause malfunction of the device including erroneous writes to RAM and FRAM.  
(2) The USS module must be disabled if AVCC and DVCC are lower than 2.2 V.  
(3) Fast supply voltage changes can trigger a BOR reset even within the recommended supply voltage range. To avoid unwanted BOR  
resets, the supply voltage must change by less than 0.05 V per microsecond (±0.05 V/µs). Following the recommendation for capacitor  
CDVCC should limit the slopes accordingly.  
(4) Modules may have a different supply voltage range specification. See the specification of the respective module in this data sheet.  
(5) As a decoupling capacitor for each supply pin pair (DVCC and DVSS or AVCC and AVSS), place a low-ESR 100-nF (minimum)  
ceramic capacitor as close as possible (within a few millimeters) to the respective pin pairs. For the PVCC and PVSS pair, place a low-  
ESR 22-µF (minimum) ceramic capacitor as close as possible (within a few millimeters) to the pin pair.  
(6) Modules may have a different maximum input clock specification. See the specification of each module in this data sheet.  
(7) The minimum supply voltage is defined by the supervisor SVS levels. See the PMM SVS threshold parameters for the exact values.  
(8) Wait states occur only on actual FRAM accesses; that is, on FRAM cache misses. RAM and peripheral accesses are always  
excecuted without wait states.  
(9) DCO settings and HF crystals with a typical value less than or equal to the specified MAX value are permitted.  
(10) DCO settings and HF crystals with a typical value less than or equal to the specified MAX value are permitted. If a clock source with a  
higher typical value is used, the clock must be divided in the clock system.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
 
 
 
 
 
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.4 Active Mode Supply Current Into VCC Excluding External Current  
over recommended operating free-air temperature (unless otherwise noted)(1) (2)  
FREQUENCY (fMCLK = fSMCLK  
)
1 MHz  
0 WAIT STATES 0 WAIT STATES 0 WAIT STATES  
(NWAITSx = 0) (NWAITSx = 0) (NWAITSx = 0)  
4 MHz  
8 MHz  
12 MHz  
1 WAIT STATE  
(NWAITSx = 1)  
16 MHz  
1 WAIT STATE  
(NWAITSx = 1)  
EXECUTION  
MEMORY  
PARAMETER  
VCC  
UNIT  
TYP  
MAX  
TYP  
MAX  
TYP  
MAX  
TYP  
MAX  
TYP  
MAX  
IAM, FRAM_UNI  
FRAM  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
225  
665  
1275  
1550  
1970  
µA  
µA  
µA  
µA  
µA  
(Unified memory)(3)  
FRAM  
0% cache hit ratio  
IAM, FRAM (0%)(4) (5)  
420  
275  
220  
192  
1455  
855  
650  
535  
2850  
1650  
1240  
1015  
2330  
1770  
1490  
1290  
3000  
2265  
1880  
1620  
IAM, FRAM (50%)(4)  
FRAM  
50% cache hit ratio  
1022  
1888  
1443  
1170  
2041  
1735  
1490  
2606  
2197  
1870  
(5)  
IAM, FRAM (66%)(4)  
FRAM  
66% cache hit ratio  
(5)  
IAM, FRAM (75%)(4)  
FRAM  
75% cache hit ratio  
261  
182  
(5)  
FRAM  
100% cache hit  
ratio  
IAM, FRAM (100%)(4)  
3.0 V  
125  
237  
450  
670  
790  
µA  
(5)  
(6) (5)  
IAM, RAM  
RAM  
RAM  
3.0 V  
3.0 V  
140  
90  
323  
292  
590  
540  
880  
830  
1070  
1020  
µA  
µA  
(7) (5)  
IAM, RAM only  
1313  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) Characterized with program executing typical data processing.  
fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO at specified frequency, except for 12 MHz. For 12 MHz, fDCO = 24 MHz and fMCLK = fSMCLK  
=
fDCO/2.  
At MCLK frequencies above 8 MHz, the FRAM requires wait states. When wait states are required, the effective MCLK frequency  
(fMCLK,eff) decreases. The effective MCLK frequency also depends on the cache hit ratio. SMCLK is not affected by the number of wait  
states or the cache hit ratio.  
The following equation can be used to compute fMCLK,eff  
fMCLK,eff = fMCLK / [wait states × (1 – cache hit ratio) + 1]  
:
For example, with 1 wait state and 75% cache hit ratio, fMCKL,eff = fMCLK / [1 × (1 – 0.75) + 1] = fMCLK / 1.25.  
(3) Represents typical program execution. Program and data reside entirely in FRAM. All execution is from FRAM.  
(4) Program resides in FRAM. Data resides in SRAM. Average current dissipation varies with cache hit-to-miss ratio as specified. Cache  
hit ratio represents number cache accesess divided by the total number of FRAM accesses. For example, a 75% ratio implies three of  
every four accesses is from cache, and the remaining are FRAM accesses.  
(5) See Section 8.5 for typical curves. Each characteristic equation shown in the graph is computed using the least squares method for  
best linear fit using the typical data shown in Section 8.4.  
(6) Program and data reside entirely in RAM. All execution is from RAM.  
(7) Program and data reside entirely in RAM. All execution is from RAM. FRAM is off.  
Copyright © 2020 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
 
 
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.5 Typical Characteristics, Active Mode Supply Currents  
3000  
I(AM,0%)  
I(AM,50%)  
2500  
I(AM,66%)  
I(AM,75%)  
I(AM,75%)[µA] ~ 120 × f[MHz] + 68  
2000  
1500  
1000  
500  
0
I(AM,100%)  
I(AM,RAMonly)  
0
1
2
3
4
5
6
7
8
9
MCLK Frequency (MHz)  
A. I(AM,cache hit ratio): Program resides in FRAM. Data resides in SRAM. Average current dissipation varies with cache hit-to-miss ratio as  
specified. Cache hit ratio represents number cache accesses divided by the total number of FRAM accesses. For example, a 75% ratio  
implies three of every four accesses is from cache, and the remaining are FRAM accesses.  
B. I(AM,RAMonly): Program and data reside entirely in RAM. All execution is from RAM. FRAM is off.  
Figure 8-1. Typical Active Mode Supply Currents, No Wait States  
8.6 Low-Power Mode (LPM0, LPM1) Supply Currents Into VCC Excluding External Current  
over recommended operating free-air temperature (unless otherwise noted)(1) (2)  
FREQUENCY (fSMCLK  
)
PARAMETER  
VCC  
1 MHz  
TYP  
4 MHz  
TYP  
8 MHz  
12 MHz  
TYP  
16 MHz  
TYP  
UNIT  
MAX  
148  
70  
MAX  
TYP  
180  
190  
136  
136  
MAX  
MAX  
MAX  
316  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
80  
95  
40  
40  
115  
125  
70  
276  
286  
230  
235  
250  
265  
205  
210  
ILPM0  
µA  
µA  
178  
245  
340  
ILPM1  
70  
250  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) Current for watchdog timer clocked by SMCLK included.  
fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO at specified frequency, except for 12 MHz. For 12 MHz, fDCO = 24 MHz and fMCLK  
fSMCLK = fDCO / 2.  
=
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.7 Low-Power Mode (LPM2, LPM3, LPM4) Supply Currents (Into VCC) Excluding External  
Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 8-2  
and Figure 8-3)  
TEMPERATURE  
PARAMETER  
–40°C  
TYP  
25°C  
TYP  
60°C  
TYP  
85°C  
TYP  
UNIT  
VCC  
2.2 V  
MAX  
MAX  
MAX  
MAX  
0.8  
0.8  
0.6  
0.6  
0.5  
0.5  
0.8  
0.8  
0.5  
0.5  
0.4  
0.4  
0.36  
1.3  
1.3  
1.2  
1.2  
1.0  
1.0  
1.0  
1.0  
0.7  
0.7  
0.5  
0.5  
0.47  
4.1  
4.1  
4.0  
4.0  
3.8  
3.8  
2.2  
2.2  
2.1  
2.1  
1.9  
1.9  
1.4  
10.8  
10.8  
10.7  
10.7  
10.5  
10.5  
4.5  
Low-power mode 2, 12pF  
ILPM2,XT12  
ILPM2,XT3.7  
ILPM2,VLO  
ILPM3,XT12  
ILPM3,XT3.7  
ILPM3,VLO  
μA  
μA  
μA  
μA  
μA  
μA  
crystal(1) (3) (4)  
3 V  
2.2 V  
3 V  
Low-power mode 2, 3.7pF  
crystal(1) (2) (4)  
2.2 V  
3 V  
Low-power mode 2, VLO,  
includes SVS(5)  
2.2 V  
3 V  
1.1  
10.1  
Low-power mode 3, 12pF  
crystal, includes SVS(1) (3) (6)  
4.5  
2.2 V  
3 V  
4.4  
9.8  
9.8  
9.6  
Low-power mode 3, 3.7pF  
crystal, excludes SVS(1) (2) (7)  
4.4  
2.2 V  
3 V  
1.2  
1.1  
4.2  
Low-power mode 3, VLO,  
excludes SVS(8)  
4.2  
Low-power mode 3, VLO,  
excludes SVS, RAM powered-  
down completely(8)  
2.2 V  
2.9  
2.6  
8.2  
ILPM3,VLO,  
μA  
RAMoff  
3 V  
0.36  
0.47  
1.4  
2.6  
2.2 V  
3 V  
0.5  
0.5  
0.3  
0.3  
0.3  
0.6  
0.6  
1.2  
1.1  
1.0  
1.9  
1.9  
1.7  
1.7  
1.2  
4.3  
4.3  
4.0  
4.0  
2.5  
9.7  
9.4  
8
Low-power mode 4, includes  
SVS(9)  
ILPM4,SVS  
μA  
μA  
0.8  
2.2 V  
3 V  
0.4  
Low-power mode 4, excludes  
SVS(10)  
ILPM4  
0.4  
Low-power mode 4, excludes  
SVS, RAM powered-down  
completely(10)  
2.2 V  
0.37  
2.8  
ILPM4,RAMoff  
μA  
μA  
3 V  
0.3  
0.37  
1.2  
2.5  
Additional idle current if one or  
more modules from Group A  
(see Table 9-3) are activated in  
LPM3 or LPM4  
IIDLE,GroupA  
3 V  
0.02  
0.3  
Additional idle current if one or  
more modules from Group B  
(see Table 9-3) are activated in  
LPM3 or LPM4  
IIDLE,GroupB  
3 V  
3 V  
0.02  
0.02  
0.35  
0.38  
μA  
μA  
Additional idle current if one or  
more modules from Group C  
(see Table 9-3) are activated in  
LPM3 or LPM4  
IIDLE,GroupC  
(1) Not applicable for devices with HF crystal oscillator only.  
(2) Characterized with a Seiko SSP-T7-FL (SMD) crystal with a load capacitance of 3.7 pF. The internal and external load capacitance are  
chosen to closely match the required 3.7pF load.  
(3) Characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load capacitance  
are chosen to closely match the required 12.5pF load.  
(4) Low-power mode 2, crystal oscillator test conditions:  
Current for watchdog timer clocked by ACLK and RTC clocked by XT1 included. Current for brownout and SVS included.  
CPUOFF = 1, SCG0 = 0 SCG1 = 1, OSCOFF = 0 (LPM2), fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
(5) Low-power mode 2, VLO test conditions:  
Current for watchdog timer clocked by ACLK included. RTC disabled (RTCHOLD = 1). Current for brownout and SVS included.  
CPUOFF = 1, SCG0 = 0 SCG1 = 1, OSCOFF = 0 (LPM2), fXT1 = 0 Hz, fACLK = fVLO, fMCLK = fSMCLK = 0 MHz  
(6) Low-power mode 3, 12pF crystal including SVS test conditions:  
Current for watchdog timer clocked by ACLK and RTC clocked by XT1 included. Current for brownout and SVS included (SVSHE = 1).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3), fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
Activating additional peripherals increases the current consumption due to active supply current contribution as well as due to  
additional idle current. Refer to the idle currents specified for the respective peripheral groups.  
Copyright © 2020 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
 
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
(7) Low-power mode 3, 3.7pF crystal excluding SVS test conditions:  
Current for watchdog timer clocked by ACLK and RTC clocked by XT1 included. Current for brownout included. SVS disabled (SVSHE  
= 0).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3), fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
Activating additional peripherals increases the current consumption due to active supply current contribution as well as due to  
additional idle current. Refer to the idle currents specified for the respective peripheral groups.  
(8) Low-power mode 3, VLO excluding SVS test conditions:  
Current for watchdog timer clocked by ACLK included. RTC disabled (RTCHOLD = 1). RAM disabled (RCCTL0 = 5A55h). Current for  
brownout included. SVS disabled (SVSHE = 0).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3), fXT1 = 0 Hz, fACLK = fVLO, fMCLK = fSMCLK = 0 MHz  
Activating additional peripherals increases the current consumption due to active supply current contribution as well as due to  
additional idle current. Refer to the idle currents specified for the respective peripheral groups.  
(9) Low-power mode 4 including SVS test conditions:  
Current for brownout and SVS included (SVSHE = 1).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPM4), fXT1 = 0 Hz, fACLK = 0 Hz, fMCLK = fSMCLK = 0 MHz  
Activating additional peripherals increases the current consumption due to active supply current contribution as well as due to  
additional idle current. Refer to the idle currents specified for the respective peripheral groups.  
(10) Low-power mode 4 excluding SVS test conditions:  
Current for brownout included. SVS disabled (SVSHE = 0). RAM disabled (RCCTL0 = 5A55h).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPM4), fXT1 = 0 Hz, fACLK = 0 Hz, fMCLK = fSMCLK = 0 MHz  
Activating additional peripherals increases the current consumption due to active supply current contribution as well as due to  
additional idle current. Refer to the idle currents specified for the respective peripheral groups.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.8 Low-Power Mode With LCD Supply Currents (Into VCC) Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
TEMPERATURE (TA)  
PARAMETER  
VCC  
–40°C  
TYP  
25°C  
TYP  
60°C  
TYP  
85°C  
TYP  
UNIT  
MAX  
MAX  
MAX  
MAX  
Low-power mode 3 (LPM3)  
current,12 pF crystal, LCD 4-  
mux mode, external biasing,  
excludes SVS(1) (2)  
ILPM3,XT12  
LCD,  
ext. bias  
3.0 V  
0.9  
1.3  
1.1  
1.4  
2.5  
2.2  
5.1  
4.9  
µA  
µA  
Low-power mode 3 (LPM3)  
current,12 pF crystal, LCD 4-  
mux mode, internal biasing,  
charge pump disabled,  
excludes SVS(1) (3)  
ILPM3,XT12  
LCD,  
int. bias  
3.0 V  
2.0  
4.5  
12.5  
Low-power mode 3 (LPM3)  
current,12 pF crystal, LCD 4-  
mux mode, internal biasing,  
charge pump enabled, 1/3 bias,  
excludes SVS(1) (4)  
2.2 V  
3.0 V  
3.6  
3.4  
4
5.1  
4.9  
8.1  
8.1  
µA  
µA  
ILPM3,XT12  
LCD,CP  
3.7  
(1) Current for watchdog timer clocked by ACLK and RTC clocked by XT1 included. Current for brownout included. SVS disabled (SVSHE  
= 0).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3),  
fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
Activating additional peripherals increases the current consumption due to active supply current contribution as well as due to  
additional idle current - idle current of Group containing LCD module already included. Refer to the idle currents specified for the  
respective peripheral groups.  
(2) LCDMx = 11 (4-mux mode), LCDREXT = 1, LCDEXTBIAS = 1 (external biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 0 (charge pump  
disabled), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (fLCD = 32768 Hz / 32 / 4 = 256 Hz)  
Current through external resistors not included (voltage levels are supplied by test equipment).  
Even segments S0, S2,... = 0, odd segments S1, S3,... = 1. No LCD panel load.  
(3) LCDMx = 11 (4-mux mode), LCDREXT = 0, LCDEXTBIAS = 0 (internal biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 0 (charge pump  
disabled), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (fLCD = 32768 Hz / 32 / 4 = 256 Hz)  
Even segments S0, S2,... = 0, odd segments S1, S3,... = 1. No LCD panel load.  
(4) LCDMx = 11 (4-mux mode), LCDREXT = 0, LCDEXTBIAS = 0 (internal biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 1 (charge pump  
enabled), VLCDx = 1000 (VLCD = 3 V typical), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (fLCD = 32768 Hz / 32 / 4 = 256 Hz)  
Even segments S0, S2,... = 0, odd segments S1, S3,... = 1. No LCD panel load.  
Copyright © 2020 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.9 Low-Power Mode (LPMx.5) Supply Currents (Into VCC) Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 8-4  
and Figure 8-5)  
TEMPERTURE (TA)  
PARAMETER  
VCC  
–40°C  
TYP  
25°C  
TYP  
60°C  
TYP  
85°C  
TYP MAX  
UNIT  
MAX  
MAX  
MAX  
Low-power mode 3.5,  
12pF crystal including  
SVS(1) (3) (4)  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
0.45  
0.45  
0.3  
0.5  
0.5  
0.55  
0.55  
0.4  
0.75  
0.75  
0.65  
0.65  
ILPM3.5,XT12  
μA  
μA  
Low-power mode 3.5,  
0.35  
0.35  
ILPM3.5,XT3.7 3.7pF crystal excluding  
SVS(1) (2) (5)  
0.3  
0.4  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
0.23  
0.23  
0.2  
0.2  
0.28  
0.28  
0.4  
0.4  
Low-power mode 4.5,  
ILPM4.5,SVS  
μA  
μA  
including SVS(6)  
0.035  
0.035  
0.045  
0.045  
0.075  
0.075  
0.15  
0.15  
Low-power mode 4.5,  
ILPM4.5  
excluding SVS(7)  
(1) Not applicable for devices with HF crystal oscillator only.  
(2) Characterized with a Seiko SSP-T7-FL (SMD) crystal with a load capacitance of 3.7 pF. The internal and external load capacitance are  
chosen to closely match the required 3.7pF load.  
(3) Characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load capacitance  
are chosen to closely match the required 12.5pF load.  
(4) Low-power mode 3.5, 1pF crystal including SVS test conditions:  
Current for RTC clocked by XT1 included. Current for brownout and SVS included (SVSHE = 1). Core regulator disabled.  
PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),  
fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
(5) Low-power mode 3.5, 3.7pF crystal excluding SVS test conditions:  
Current for RTC clocked by XT1 included.Current for brownout included. SVS disabled (SVSHE = 0). Core regulator disabled.  
PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),  
fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
(6) Low-power mode 4.5 including SVS test conditions:  
Current for brownout and SVS included (SVSHE = 1). Core regulator disabled.  
PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),  
fXT1 = 0 Hz, fACLK = 0 Hz, fMCLK = fSMCLK = 0 MHz  
(7) Low-power mode 4.5 excluding SVS test conditions:  
Current for brownout included. SVS disabled (SVSHE = 0). Core regulator disabled.  
PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),  
fXT1 = 0 Hz, fACLK = 0 Hz, fMCLK = fSMCLK = 0 MHz  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
 
 
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.10 Typical Characteristics, Low-Power Mode Supply Currents  
3
2.5  
2
3
2.5  
2
3.0 V, SVS off  
2.2 V, SVS off  
3.0 V, SVS on  
2.2 V, SVS on  
3.0 V, SVS off  
2.2 V, SVS off  
3.0 V, SVS on  
2.2 V, SVS on  
1.5  
1
1.5  
1
0.5  
0
0.5  
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
Temperature (°C)  
Figure 8-2. LPM3 Supply Current (ILPM3,XT3.7) vs Temperature  
Figure 8-3. LPM4 Supply Current (ILPM4,SVS) vs Temperature  
0.7  
0.7  
3.0 V, SVS off  
3.0 V, SVS off  
2.2 V, SVS off  
0.6  
2.2 V, SVS off  
0.6  
3.0 V, SVS on  
2.2 V, SVS on  
0.5  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.4  
0.3  
0.2  
0.1  
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
Temperature (°C)  
Figure 8-4. LPM3.5 Supply Current (ILPM3.5,XT3.7) vs Temperature  
Figure 8-5. LPM4.5 Supply Current (ILPM4.5) vs Temperature  
Copyright © 2020 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.11 Current Consumption per Module  
MODULE(1)  
Timer_A  
TEST CONDITIONS  
REFERENCE CLOCK  
Module input clock  
MIN  
TYP MAX  
UNIT  
2.5  
3.8  
μA/MHz  
μA/MHz  
Timer_B  
Module input clock  
UART mode  
SPI mode  
SPI mode  
6.3  
4.4  
4.4  
4.4  
100  
28  
7.0  
4.8  
eUSCI_A  
eUSCI_B  
Module input clock  
Module input clock  
μA/MHz  
μA/MHz  
I2C mode, 100 kbaud  
RTC_C  
MPY  
32 kHz  
MCLK  
MCLK  
MCLK  
nA  
Only from start to end of operation  
Only from start to end of operation  
Only from start to end of operation  
256-point complex FFT, data = nonzero  
256-point complex FFT, data = zero  
μA/MHz  
μA/MHz  
μA/MHz  
CRC16  
CRC32  
3.3  
3.3  
86  
68  
LEA  
MCLK  
µA/MHz  
66  
(1) For other module currents not listed here, see the module-specific parameter sections.  
8.12 Thermal Resistance Characteristics for 100-Pin LQFP (PZ) Package  
THERMAL METRIC(1)  
VALUE(2)  
57.6  
UNIT  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
JA  
Junction-to-ambient thermal resistance, still air  
Junction-to-case (top) thermal resistance  
JC(TOP)  
JB  
14.9  
Junction-to-board thermal resistance  
35.6  
ΨJB  
Junction-to-board thermal characterization parameter  
Junction-to-top thermal characterization parameter  
Junction-to-case (bottom) thermal resistance  
35.0  
ΨJT  
0.6  
JC(BOTTOM)  
N/A(3)  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
(2) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC (RθJC) value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment and application. For more information, see these EIA/JEDEC  
standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
(3) N/A = not applicable  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.13 Timing and Switching Characteristics  
8.13.1 Power Supply Sequencing  
TI recommends powering the AVCC, DVCC, and PVCC pins from the same source. At a minimum, during power  
up, power down, and device operation, the voltage difference among AVCC, DVCC, and PVCC must not exceed  
the limits specified in Section 8.1. Exceeding the specified limits can cause malfunction of the device including  
erroneous writes to RAM and FRAM.  
8.13.1.1 Brownout and Device Reset Power Ramp Requirements  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Brownout power-down level(1)  
Brownout power-up level(1)  
TEST CONDITIONS  
| dDVCC/dt | < 3 V/s  
| dDVCC/dt | < 3 V/s(2)  
MIN  
MAX UNIT  
VVCC_BOR–  
VVCC_BOR+  
0.7  
1.66  
1.68  
V
V
0.79  
(1) Fast supply voltage changes can trigger a BOR reset even within the recommended supply voltage range. To avoid unwanted BOR  
resets, the supply voltage must change by less than 0.05 V per microsecond (±0.05 V/µs). Following the recommendation for capacitor  
CDVCC should limit the slopes accordingly.  
(2) The brownout levels are measured with a slowly changing supply.  
8.13.1.2 SVS  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ISVSH,LPM  
VSVSH–  
SVSH current consumption, low-power modes  
SVSH power-down level(1)  
170  
300  
1.85  
1.99  
120  
10  
nA  
V
1.75  
1.77  
40  
1.80  
1.88  
VSVSH+  
SVSH power-up level(1)  
V
VSVSH_hys  
tPD,SVSH, AM  
SVSH hysteresis  
mV  
µs  
SVSH propagation delay, active mode  
dVVcc/dt = –10 mV/µs  
(1) For additional information, see the Dynamic Voltage Scaling Power Solution for MSP430 Devices With Single-Channel LDO Reference  
Design.  
Copyright © 2020 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.13.2 Reset Timing  
8.13.2.1 Reset Input  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
t(RST) External reset pulse duration on RST (1)  
VCC  
MIN  
TYP MAX UNIT  
2.2 V, 3.0 V  
2
µs  
(1) Not applicable if the RST/NMI pin is configured as NMI .  
8.13.3 Clock Specifications  
Section 8.13.3.1 lists the characteristics of the low-frequency oscillator.  
8.13.3.1 Low-Frequency Crystal Oscillator, LFXT  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(4)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
fOSC = 32768 Hz,  
LFXTBYPASS = 0,LFXTDRIVE = {0},  
TA = 25°C, CL,eff = 3.7 pF, ESR ≈ 44 kΩ  
180  
fOSC = 32768 Hz,  
LFXTBYPASS = 0, LFXTDRIVE = {1},  
TA = 25°C, CL,eff = 6 pF, ESR ≈ 40 kΩ  
185  
225  
IVCC.LFXT  
Current consumption  
3.0 V  
nA  
fOSC = 32768 Hz,  
LFXTBYPASS = 0, LFXTDRIVE = {2},  
TA = 25°C, CL,eff = 9 pF, ESR ≈ 40 kΩ  
fOSC = 32768 Hz,  
LFXTBYPASS = 0, LFXTDRIVE = {3},  
TA = 25°C, CL,eff = 12.5 pF, ESR ≈ 40 kΩ  
330  
fLFXT  
LFXT oscillator crystal frequency  
LFXT oscillator duty cycle  
LFXTBYPASS = 0  
32768  
Hz  
Measured at ACLK,  
fLFXT = 32768 Hz  
DCLFXT  
30%  
10.5  
30%  
70%  
LFXT oscillator logic-level square-  
wave input frequency  
fLFXT,SW  
LFXTBYPASS = 1(5) (8)  
LFXTBYPASS = 1  
32.768  
50  
kHz  
kΩ  
LFXT oscillator logic-level square-  
wave input duty cycle  
DCLFXT, SW  
70%  
LFXTBYPASS = 0, LFXTDRIVE = {1},  
fLFXT = 32768 Hz, CL,eff = 6 pF  
210  
300  
2
Oscillation allowance for LF  
crystals(9)  
OALFXT  
LFXTBYPASS = 0, LFXTDRIVE = {3},  
fLFXT = 32768 Hz, CL,eff = 12.5 pF  
Integrated load capacitance at  
LFXIN terminal(6) (7)  
CLFXIN  
pF  
pF  
Integrated load capacitance at  
LFXOUT terminal(6) (7)  
CLFXOUT  
2
fOSC = 32768 Hz,  
LFXTBYPASS = 0, LFXTDRIVE = {0},  
TA = 25°C, CL,eff = 3.7 pF  
3.0 V  
3.0 V  
800  
tSTART,LFXT  
Start-up time(2)  
ms  
Hz  
fOSC = 32768 Hz,  
LFXTBYPASS = 0, LFXTDRIVE = {3},  
TA = 25°C, CL,eff = 12.5 pF  
1000  
fFault,LFXT  
Oscillator fault frequency(3) (1)  
0
3500  
(1) Measured with logic-level input frequency but also applies to operation with crystals.  
(2) Includes start-up counter of 1024 clock cycles.  
(3) Frequencies above the MAX specification do not set the fault flag. Frequencies between the MIN and MAX specifications may set the  
flag. A static condition or stuck at fault condition will set the flag.  
(4) To improve EMI on the LFXT oscillator, observe the following guidelines:  
Keep the trace between the device and the crystal as short as possible.  
Design a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins LFXIN and LFXOUT.  
Avoid running PCB traces underneath or adjacent to the LFXIN and LFXOUT pins.  
Use assembly materials and processes that avoid any parasitic load on the oscillator LFXIN and LFXOUT pins.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
If conformal coating is used, ensure that it does not induce capacitive or resistive leakage between the oscillator pins.  
(5) When LFXTBYPASS is set, LFXT circuits are automatically powered down. Input signal is a digital square wave with parametrics  
defined in the Schmitt-trigger Inputs section of this data sheet. Duty cycle requirements are defined by DCLFXT, SW  
.
(6) This represents all the parasitic capacitance present at the LFXIN and LFXOUT terminals, respectively, including parasitic bond and  
package capacitance. The effective load capacitance, CL,eff can be computed as CIN × COUT / (CIN + COUT), where CIN and COUT is the  
total capacitance at the LFXIN and LFXOUT terminals, respectively.  
(7) Requires external capacitors at both terminals to meet the effective load capacitance specified by crystal manufacturers.  
Recommended effective load capacitance values supported are 3.7 pF, 6 pF, 9 pF, and 12.5 pF. Maximum shunt capacitance of 1.6 pF.  
The PCB adds additional capacitance, so it must also be considered in the overall capacitance. Verify that the recommended effective  
load capacitance of the selected crystal is met.  
(8) Maximum frequency of operation of the entire device cannot be exceeded.  
(9) Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the  
LFXTDRIVE settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following  
guidelines, but should be evaluated based on the actual crystal selected for the application:  
For LFXTDRIVE = {0}, CL,eff = 3.7 pF  
For LFXTDRIVE = {1}, CL,eff = 6 pF  
For LFXTDRIVE = {2}, 6 pF ≤ CL,eff ≤ 9 pF  
For LFXTDRIVE = {3}, 9 pF ≤ CL,eff ≤ 12.5 pF  
8.13.3.2 High-Frequency Crystal Oscillator, HFXT  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(5)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
fOSC = 4 MHz,  
HFXTBYPASS = 0, HFXTDRIVE = 0,  
HFFREQ = 1(8)  
,
75  
TA = 25°C, CL,eff = 18 pF,  
typical ESR, Cshunt  
fOSC = 8 MHz,  
HFXTBYPASS = 0, HFXTDRIVE = 1, HFFREQ = 1,  
TA = 25°C, CL,eff = 18 pF,  
typical ESR, Cshunt  
120  
190  
250  
HFXT oscillator crystal current HF  
mode at typical ESR  
IDVCC.HFXT  
3.0 V  
μA  
fOSC = 16 MHz,  
HFXTBYPASS = 0, HFXTDRIVE = 2, HFFREQ = 2,  
TA = 25°C, CL,eff = 18 pF,  
typical ESR, Cshunt  
fOSC = 24 MHz  
HFXTBYPASS = 0, HFXTDRIVE = 3, HFFREQ = 3,  
TA = 25°C, CL,eff = 18 pF,  
typical ESR, Cshunt  
HFXTBYPASS = 0, HFFREQ = 1(8) (7)  
HFXTBYPASS = 0, HFFREQ = 2(7)  
HFXTBYPASS = 0, HFFREQ = 3(7)  
Measured at SMCLK, fHFXT = 16 MHz  
HFXTBYPASS = 1, HFFREQ = 0(6) (7)  
HFXTBYPASS = 1, HFFREQ = 1(6) (7)  
HFXTBYPASS = 1, HFFREQ = 2(6) (7)  
HFXTBYPASS = 1, HFFREQ = 3(6) (7)  
4
8.01  
16.01  
40%  
0.9  
8
HFXT oscillator crystal frequency,  
crystal mode  
fHFXT  
16  
24  
60%  
4
MHz  
MHz  
DCHFXT  
HFXT oscillator duty cycle  
50%  
4.01  
8.01  
16.01  
8
HFXT oscillator logic-level square-  
wave input frequency, bypass mode  
fHFXT,SW  
16  
24  
HFXT oscillator logic-level square-  
wave input duty cycle  
DCHFXT, SW  
HFXTBYPASS = 1  
40%  
60%  
HFXTBYPASS = 0, HFXTDRIVE = 0,  
HFFREQ = 1(8)  
,
450  
fHFXT,HF = 4 MHz, CL,eff = 16 pF  
HFXTBYPASS = 0, HFXTDRIVE = 1, HFFREQ = 1,  
fHFXT,HF = 8 MHz, CL,eff = 16 pF  
320  
200  
200  
Oscillation allowance for HFXT  
crystals(9)  
OAHFXT  
HFXTBYPASS = 0, HFXTDRIVE = 2, HFFREQ = 2,  
fHFXT,HF = 16 MHz, CL,eff = 16 pF  
HFXTBYPASS = 0, HFXTDRIVE = 3, HFFREQ = 3,  
fHFXT,HF = 24 MHz, CL,eff = 16 pF  
Copyright © 2020 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.13.3.2 High-Frequency Crystal Oscillator, HFXT (continued)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(5)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
fOSC = 4 MHz,  
HFXTBYPASS = 0, HFXTDRIVE = 0, HFFREQ = 1,  
TA = 25°C, CL,eff = 16 pF  
3.0 V  
1.6  
tSTART,HFXT  
Start-up time(10)  
ms  
fOSC = 24 MHz,  
HFXTBYPASS = 0, HFXTDRIVE = 3, HFFREQ = 3,  
TA = 25°C, CL,eff = 16 pF  
3.0 V  
0.6  
Integrated load capacitance at HFXIN  
terminaI(1) (2)  
CHFXIN  
CHFXOUT  
fFault,HFXT  
2
2
pF  
pF  
Integrated load capacitance at  
HFXOUT terminaI(1) (2)  
Oscillator fault frequency(4) (3)  
0
800  
kHz  
(1) This represents all the parasitic capacitance present at the HFXIN and HFXOUT terminals, respectively, including parasitic bond and  
package capacitance. The effective load capacitance, CL,eff can be computed as CIN × COUT / (CIN + COUT), where CIN and COUT is the  
total capacitance at the HFXIN and HFXOUT terminals, respectively.  
(2) Requires external capacitors at both terminals to meet the effective load capacitance specified by crystal manufacturers.  
Recommended effective load capacitance values supported are 14 pF, 16 pF, and 18 pF. Maximum shunt capacitance of 7 pF. The  
PCB adds additional capacitance, so it must also be considered in the overall capacitance. Verify that the recommended effective load  
capacitance of the selected crystal is met.  
(3) Measured with logic-level input frequency but also applies to operation with crystals.  
(4) Frequencies above the MAX specification do not set the fault flag. Frequencies between the MIN and MAX specifications might set the  
flag. A static condition or stuck at fault condition will set the flag.  
(5) To improve EMI on the HFXT oscillator the following guidelines should be observed.  
Keep the traces between the device and the crystal as short as possible.  
Design a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins HFXIN and HFXOUT.  
Avoid running PCB traces underneath or adjacent to the HFXIN and HFXOUT pins.  
Use assembly materials and processes that avoid any parasitic load on the oscillator LFXIN and LFXOUT pins.  
If conformal coating is used, ensure that it does not induce capacitive or resistive leakage between the oscillator pins.  
(6) When HFXTBYPASS is set, HFXT circuits are automatically powered down. Input signal is a digital square wave with parametrics  
defined in the Schmitt-trigger Inputs section of this datasheet. Duty cycle requirements are defined by DCHFXT, SW  
(7) Maximum frequency of operation of the entire device cannot be exceeded.  
(8) HFFREQ = {0} is not supported for HFXT crystal mode of operation.  
.
(9) Oscillation allowance is based on a safety factor of 5 for recommended crystals.  
(10) Includes start-up counter of 1024 clock cycles.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
 
 
 
 
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.13.3.3 DCO  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX  
UNIT  
Measured at SMCLK, divide by 1,  
DCORSEL = 0, DCOFSEL = 0,  
DCORSEL = 1, DCOFSEL = 0  
DCO frequency range 1 MHz,  
trimmed  
fDCO1  
1
±3.5%  
MHz  
DCO frequency range 2.7 MHz, Measured at SMCLK, divide by 1,  
trimmed DCORSEL = 0, DCOFSEL = 1  
fDCO2.7  
fDCO3.5  
fDCO4  
2.667  
3.5  
4
±3.5%  
±3.5%  
±3.5%  
MHz  
MHz  
MHz  
DCO frequency range 3.5 MHz, Measured at SMCLK, divide by 1,  
trimmed  
DCORSEL = 0, DCOFSEL = 2  
DCO frequency range 4 MHz,  
trimmed  
Measured at SMCLK, divide by 1,  
DCORSEL = 0, DCOFSEL = 3  
Measured at SMCLK, divide by 1,  
DCORSEL = 0, DCOFSEL = 4,  
DCORSEL = 1, DCOFSEL = 1  
DCO frequency range 5.3 MHz,  
trimmed  
fDCO5.3  
fDCO7  
fDCO8  
5.333  
±3.5%  
±3.5%  
±3.5%  
MHz  
MHz  
MHz  
Measured at SMCLK, divide by 1,  
DCORSEL = 0, DCOFSEL = 5,  
DCORSEL = 1, DCOFSEL = 2  
DCO frequency range 7 MHz,  
trimmed  
7
8
Measured at SMCLK, divide by 1,  
DCORSEL = 0, DCOFSEL = 6,  
DCORSEL = 1, DCOFSEL = 3  
DCO frequency range 8 MHz,  
trimmed  
DCO frequency range 16 MHz,  
trimmed  
Measured at SMCLK, divide by 1,  
DCORSEL = 1, DCOFSEL = 4  
fDCO16  
fDCO21  
fDCO24  
16  
21  
24  
±3.5%(2)  
±3.5%(2)  
±3.5%(2)  
MHz  
MHz  
MHz  
DCO frequency range 21 MHz,  
trimmed  
Measured at SMCLK, divide by 2,  
DCORSEL = 1, DCOFSEL = 5  
DCO frequency range 24 MHz,  
trimmed  
Measured at SMCLK, divide by 2,  
DCORSEL = 1, DCOFSEL = 6  
Measured at SMCLK, divide by 1,  
No external divide, all DCORSEL and  
DCOFSEL settings except DCORSEL = 1,  
DCOFSEL = 5 and DCORSEL = 1,  
DCOFSEL = 6  
fDCO,DC  
Duty cycle  
48%  
50%  
52%  
Based on fsignal = 10 kHz and DCO used for  
12-bit SAR ADC sampling source. This  
achieves >74-dB SNR due to jitter; that is,  
limited by ADC performance.  
tDCO, JITTER  
DCO jitter  
2
3
ns  
dfDCO/dT  
DCO temperature drift(1)  
3.0 V  
0.01  
%/°C  
(1) Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C))  
(2) After a wakeup from LPM1, LPM2, LPM3, or LPM4, the DCO frequency fDCO might exceed the specified frequency range for a few  
clock cycles by up to 5% before settling to the specified steady state frequency range.  
Copyright © 2020 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.13.3.4 Internal Very-Low-Power Low-Frequency Oscillator (VLO)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
100  
9.4  
MAX  
UNIT  
nA  
IVLO  
Current consumption  
fVLO  
VLO frequency  
Measured at ACLK  
6
14  
kHz  
%/°C  
%/V  
dfVLO/dT  
dfVLO/dVCC  
fVLO,DC  
VLO frequency temperature drift  
VLO frequency supply voltage drift  
Duty cycle  
Measured at ACLK(1)  
Measured at ACLK(2)  
Measured at ACLK  
0.2  
0.7  
40%  
50%  
60%  
(1) Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C))  
(2) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)  
8.13.3.5 Module Oscillator (MODOSC)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
μA  
IMODOSC  
Current consumption  
Enabled  
25  
fMODOSC  
MODOSC frequency  
4.0  
4.8  
5.4  
MHz  
%/℃  
%/V  
fMODOSC/dT  
fMODOSC/dVCC  
MODOSC frequency temperature drift(1)  
MODOSC frequency supply voltage drift(2)  
0.08  
1.4  
Measured at SMCLK,  
divide by 1  
DCMODOSC  
Duty cycle  
40%  
50%  
60%  
(1) Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C))  
(2) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.13.4 Wake-up Characteristics  
8.13.4.1 Wake-up Times From Low-Power Modes and Reset  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
(Additional) wake-up time to activate the FRAM in AM if  
previously disabled by the FRAM controller or from an  
LPM if immediate activation is selected for wakeup  
tWAKE-UP FRAM  
6
10  
μs  
ns  
400 +  
1.5/fDCO  
tWAKE-UP LPM0  
Wake-up time from LPM0 to active mode(1)  
2.2 V, 3.0 V  
tWAKE-UP LPM1  
tWAKE-UP LPM2  
Wake-up time from LPM1 to active mode(1)  
Wake-up time from LPM2 to active mode(1)  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
6
6
μs  
μs  
6.6 +  
2.0/fDCO 2.5/fDCO  
9.6 +  
tWAKE-UP LPM3  
Wake-up time from LPM3 to active mode(1)  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
μs  
μs  
6.6 + 9.6 +  
2.0/fDCO 2.5/fDCO  
tWAKE-UP LPM4  
Wake-up time from LPM4 to active mode(1)  
Wake-up time from LPM3.5 to active mode(2)  
tWAKE-UP LPM3.5  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
350  
350  
0.4  
450  
450  
0.8  
μs  
μs  
SVSHE = 1  
SVSHE = 0  
tWAKE-UP LPM4.5  
Wake-up time from LPM4.5 to active mode(2)  
ms  
Wake-up time from a RST pin triggered reset to active  
mode(2)  
tWAKE-UP-RST  
tWAKE-UP-BOR  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
480  
0.5  
596  
1
μs  
Wake-up time from power-up to active mode (2)  
ms  
(1) The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) to the first  
externally observable MCLK clock edge with MCLKREQEN = 1. This time includes the activation of the FRAM during wakeup. With  
MCLKREQEN = 0, the externally observable MCLK clock is gated one additional cycle.  
(2) The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) until the first  
instruction of the user program is executed.  
8.13.4.2 Typical Wake-up Charges  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Charge used for activating the FRAM in AM or during wakeup from  
LPM0 if previously disabled by the FRAM controller.  
QWAKE-UP FRAM  
16.5  
nAs  
QWAKE-UP LPM0  
QWAKE-UP LPM1  
QWAKE-UP LPM2  
QWAKE-UP LPM3  
QWAKE-UP LPM4  
QWAKE-UP LPM3.5  
Charge used to wake up from LPM0 to active mode (with FRAM active)  
Charge used to wake up from LPM1 to active mode (with FRAM active)  
Charge used to wake up from LPM2 to active mode (with FRAM active)  
Charge used to wake up from LPM3 to active mode (with FRAM active)  
Charge used to wake up from LPM4 to active mode (with FRAM active)  
Charge used to wake up from LPM3.5 to active mode(2)  
3.8  
21  
nAs  
nAs  
nAs  
nAs  
nAs  
nAs  
22  
28  
28  
170  
173  
171  
148  
SVSHE = 1  
SVSHE = 0  
QWAKE-UP LPM4.5  
QWAKE-UP-RESET  
Charge used to wake up from LPM4.5 to active mode(2)  
nAs  
nAs  
Charge used for reset from RST or BOR event to active mode(2)  
(1) Charge used during the wake-up time from a given low-power mode to active mode. This does not include the energy required in  
active mode (for example, for an interrupt service routine).  
(2) Charge required until start of user code. This does not include the energy required to reconfigure the device.  
Copyright © 2020 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.13.4.3 Typical Characteristics, Average LPM Currents vs Wake-up Frequency  
Figure 8-6 shows the average LPM currents vs wake-up frequency at 25°C.  
10000.00  
LPM0  
LPM1  
LPM2,XT12  
1000.00  
LPM3,XT12  
LPM3.5,XT12  
100.00  
10.00  
1.00  
0.10  
0.001  
0.01  
0.1  
1
10  
100  
1000  
10000  
100000  
Wake-up Frequency (Hz)  
The average wake-up current does not include the energy required in active mode; for example, for an interrupt service routine or to  
reconfigure the device.  
Figure 8-6. Average LPM Currents vs Wake-up Frequency at 25°C  
Figure 8-7 shows the average LPM currents vs wake-up frequency at 85°C.  
10000.00  
LPM0  
LPM1  
LPM2,XT12  
1000.00  
LPM3,XT12  
LPM3.5,XT12  
100.00  
10.00  
1.00  
0.10  
0.001  
0.01  
0.1  
1
10  
100  
1000  
10000  
100000  
Wake-up Frequency (Hz)  
The average wake-up current does not include the energy required in active mode; for example, for an interrupt service routine or to  
reconfigure the device.  
Figure 8-7. Average LPM Currents vs Wake-up Frequency at 85°C  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.13.5 Digital I/Os  
8.13.5.1 Digital Inputs  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
2.2 V  
1.2  
1.65  
V
VIT+  
VIT–  
Vhys  
Positive-going input threshold voltage  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
1.65  
0.55  
0.75  
0.44  
0.60  
2.25  
1.00  
V
1.35  
Negative-going input threshold voltage  
0.98  
V
1.30  
Input voltage hysteresis (VIT+ – VIT–  
)
For pullup: VIN = VSS  
For pulldown: VIN = VCC  
RPull  
CI,dig  
CI,ana  
Pullup or pulldown resistor  
20  
35  
3
50  
kΩ  
pF  
pF  
nA  
Input capacitance, digital only port pins  
VIN = VSS or VCC  
VIN = VSS or VCC  
See (2) (3)  
Input capacitance, port pins with shared analog  
functions(1)  
5
Ilkg(Px.y) High-impedance input leakage current  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
–20  
20  
2
+20  
Ports with interrupt  
capability (see Section  
7.3)  
External interrupt timing (external trigger pulse  
t(int)  
ns  
µs  
duration to set interrupt flag)(4)  
t(RST)  
External reset pulse duration on RST (5)  
(1) If the port pins PJ.4/LFXIN and PJ.5/LFXOUT are used as digital I/Os, they are connected by a 4-pF capacitor and a 35-MΩ resistor in  
series. At frequencies of approximately 1 kHz and lower, the 4-pF capacitor can add to the pin capacitance of PJ.4/LFXIN and/or PJ.5/  
LFXOUT.  
(2) The input leakage current is measured with VSS or VCC applied to the corresponding pins, unless otherwise noted.  
(3) The input leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor  
is disabled.  
(4) An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It might be set by trigger signals  
shorter than t(int)  
.
(5) Not applicable if RST/NMI pin configured as NMI  
Copyright © 2020 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.13.5.2 Digital Outputs  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
VCC  
0.25  
VCC  
0.60  
TYP  
MAX UNIT  
I(OHmax) = –1 mA(1)  
VCC  
2.2 V  
I(OHmax) = –3 mA(2)  
I(OHmax) = –2 mA(1)  
I(OHmax) = –6 mA(2)  
I(OLmax) = 1 mA(1)  
I(OLmax) = 3 mA(2)  
I(OLmax) = 2 mA(1)  
I(OLmax) = 6 mA(2)  
VCC  
High-level output voltage  
(see Figure 8-10 and Figure 8-11)  
VOH  
V
VCC  
VCC  
0.25  
3.0 V  
2.2 V  
3.0 V  
VCC  
VCC  
0.60  
VSS  
+
VSS  
VSS  
VSS  
VSS  
0.25  
VSS  
+
0.60  
Low-level output voltage  
(see Figure 8-8 and Figure 8-9)  
VOL  
V
VSS  
+
0.25  
VSS  
+
0.60  
2.2 V  
3.0 V  
2.2 V  
16  
16  
16  
Port output frequency (with load)(5)  
Clock output frequency(5)  
CL = 20 pF, RL  
MHz  
MHz  
(3) (4)  
fPx.y  
ACLK, MCLK, or SMCLK at  
configured output port,  
CL = 20 pF(4)  
fPort_CLK  
3.0 V  
16  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
4
3
4
3
6
4
6
4
15  
trise,dig  
Port output rise time, digital only port pins  
Port output fall time, digital only port pins  
CL = 20 pF  
CL = 20 pF  
CL = 20 pF  
CL = 20 pF  
ns  
ns  
ns  
ns  
15  
15  
15  
15  
15  
15  
15  
tfall,dig  
Port output rise time, port pins with shared  
analog functions  
trise,ana  
Port output fall time, port pins with shared  
analog functions  
tfall,ana  
(1) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage  
drop specified.  
(2) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±100 mA to hold the maximum voltage  
drop specified.  
(3) A resistive divider with 2 × R1 and R1 = 1.6 kΩ between VCC and VSS is used as load. The output is connected to the center tap of the  
divider. CL = 20 pF is connected from the output to VSS  
.
(4) The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency.  
(5) The port can output frequencies at least up to the specified limit, and the port might support higher frequencies.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.13.5.3 Typical Characteristics, Digital Outputs  
15  
30  
20  
10  
0
25°C  
25°C  
85°C  
85°C  
10  
5
P1.1  
P1.1  
3
0
0
0.5  
1
1.5  
2
0
0.5  
1
1.5  
2
2.5  
Low-Level Output Voltage (V)  
Low-Level Output Voltage (V)  
C001  
C001  
VCC = 2.2 V  
VCC = 3.0 V  
Figure 8-8. Typical Low-Level Output Current vs  
Low-Level Output Voltage  
Figure 8-9. Typical Low-Level Output Current vs  
Low-Level Output Voltage  
0
0
25°C  
85°C  
25°C  
85°C  
-5  
-10  
-20  
-30  
-10  
P1.1  
P1.1  
-15  
0
0.5  
1
1.5  
2
0
0.5  
1
1.5  
2
2.5  
3
High-Level Output Voltage (V)  
High-Level Output Voltage (V)  
C001  
C001  
VCC = 2.2 V  
VCC = 3.0 V  
Figure 8-10. Typical High-Level Output Current vs  
High-Level Output Voltage  
Figure 8-11. Typical High-Level Output Current vs  
High-Level Output Voltage  
Copyright © 2020 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.13.6 LEA  
8.13.6.1 Low-Energy Accelerator (LEA) Performance  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
fLEA  
Frequency for specified performance MCLK  
16  
MHz  
LEA subsystem energy on fast  
Fourier transform  
Complex FFT 128 pt. Q.15 with random  
data in LEA-RAM  
VCORE = 3 V, MCLK  
= 16 MHz  
W_LEA_FFT  
350  
2.6  
nJ  
µJ  
LEA subsystem energy on finite  
impulse response  
Real FIR on random Q.31 data with 128  
taps on 24 points  
VCORE = 3 V, MCLK  
= 16 MHz  
W_LEA_FIR  
W_LEA_ADD  
On 32 Q.31 elements with random value  
VCORE = 3 V, MCLK  
= 16 MHz  
LEA subsystem energy on additions out of LEA-RAM with linear address  
increment  
6.6  
nJ  
8.13.7 Timer_A and Timer_B  
8.13.7.1 Timer_A  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK or ACLK,  
fTA  
Timer_A input clock frequency  
External: TACLK,  
Duty cycle = 50% ±10%  
2.2 V, 3.0 V  
16  
MHz  
ns  
All capture inputs, minimum pulse duration  
required for capture  
tTA,cap  
Timer_A capture timing  
2.2 V, 3.0 V  
20  
8.13.7.2 Timer_B  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK or ACLK,  
fTB  
Timer_B input clock frequency  
External: TBCLK,  
Duty cycle = 50% ±10%  
2.2 V, 3.0 V  
16  
MHz  
ns  
All capture inputs, minimum pulse duration  
required for capture  
tTB,cap  
Timer_B capture timing  
2.2 V, 3.0 V  
20  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: MSP430FR6007 MSP430FR6005  
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.13.8 eUSCI  
8.13.8.1 eUSCI (UART Mode) Clock Frequency  
PARAMETER  
CONDITIONS  
Internal: SMCLK or ACLK,  
MIN  
MAX  
UNIT  
feUSCI  
eUSCI input clock frequency  
External: UCLK,  
Duty cycle = 50% ±10%  
16  
4
MHz  
BITCLK clock frequency  
(equals baud rate in MBaud)  
fBITCLK  
MHz  
8.13.8.2 eUSCI (UART Mode) Switching Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
UCGLITx = 0  
5
30  
UCGLITx = 1  
UCGLITx = 2  
UCGLITx = 3  
20  
35  
50  
90  
ns  
tt  
UART receive deglitch time(1)  
2.2 V, 3.0 V  
160  
220  
(1) Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. Thus the selected deglitch  
time can limit the maximum useable baud rate. To ensure that pulses are correctly recognized, their duration should exceed the  
maximum specification of the deglitch time.  
8.13.8.3 eUSCI (SPI Master Mode) Clock Frequency  
PARAMETER  
TEST CONDITIONS  
Internal: SMCLK or ACLK,  
MIN  
MAX  
UNIT  
feUSCI  
eUSCI input clock frequency  
16  
MHz  
Duty cycle = 50% ±10%  
8.13.8.4 eUSCI (SPI Master Mode) Switching Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX  
UNIT  
tSTE,LEAD  
tSTE,LAG  
tSTE,ACC  
tSTE,DIS  
STE lead time, STE active to clock  
UCSTEM = 1, UCMODEx = 01 or 10  
1
UCxCLK  
cycles  
STE lag time, Last clock to STE  
inactive  
UCSTEM = 1, UCMODEx = 01 or 10  
UCSTEM = 0, UCMODEx = 01 or 10  
UCSTEM = 0, UCMODEx = 01 or 10  
1
STE access time, STE active to SIMO  
data out  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
60  
80  
ns  
ns  
STE disable time, STE inactive to  
SOMI high impedance  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
40  
40  
0
tSU,MI  
SOMI input data setup time  
SOMI input data hold time  
SIMO output data valid time(2)  
SIMO output data hold time(3)  
ns  
ns  
ns  
ns  
tHD,MI  
0
11  
10  
UCLK edge to SIMO valid,  
CL = 20 pF  
tVALID,MO  
0
0
tHD,MO  
CL = 20 pF  
(1) fUCxCLK = 1/2 tLO/HI with tLO/HI = max(tVALID,MO(eUSCI) + tSU,SI(Slave), tSU,MI(eUSCI) + tVALID,SO(Slave)).  
For the slave parameters tSU,SI(Slave) and tVALID,SO(Slave), see the SPI parameters of the attached slave.  
(2) Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams  
in Figure 8-12 and Figure 8-13.  
(3) Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data  
on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure  
8-12 and Figure 8-13.  
Copyright © 2020 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.13.8.5 eUSCI (SPI Master Mode) Timing Diagrams  
UCMODEx = 01  
tSTE,LEAD  
tSTE,LAG  
STE  
UCMODEx = 10  
CKPL = 0  
1/fUCxCLK  
UCLK  
CKPL = 1  
tLOW/HIGH  
tLOW/HIGH  
tSU,MI  
tHD,MI  
SOMI  
SIMO  
tHD,MO  
tVALID,MO  
tSTE,ACC  
tSTE,DIS  
Figure 8-12. SPI Master Mode, CKPH = 0  
UCMODEx = 01  
STE  
tSTE,LEAD  
tSTE,LAG  
UCMODEx = 10  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tLOW/HIGH  
tLOW/HIGH  
tHD,MI  
tSU,MI  
SOMI  
SIMO  
tHD,MO  
tVALID,MO  
tSTE,DIS  
tSTE,ACC  
Figure 8-13. SPI Master Mode, CKPH = 1  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.13.8.6 eUSCI (SPI Slave Mode) Switching Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
45  
40  
2
MAX  
UNIT  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
tSTE,LEAD  
tSTE,LAG  
tSTE,ACC  
tSTE,DIS  
tSU,SI  
STE lead time, STE active to clock  
ns  
STE lag time, Last clock to STE inactive  
STE access time, STE active to SOMI data out  
STE disable time, STE inactive to SOMI high impedance  
SIMO input data setup time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3
45  
40  
50  
45  
4
4
7
7
tHD,SI  
SIMO input data hold time  
35  
35  
UCLK edge to SOMI valid,  
CL = 20 pF  
tVALID,SO  
SOMI output data valid time(2)  
0
0
tHD,SO  
SOMI output data hold time(3)  
CL = 20 pF  
(1) fUCxCLK = 1/2 tLO/HI with tLO/HI ≥ max(tVALID,MO(Master) + tSU,SI(eUSCI), tSU,MI(Master) + tVALID,SO(eUSCI)  
)
For the master parameters tSU,MI(Master) and tVALID,MO(Master), see the SPI parameters of the attached master.  
(2) Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams  
in Figure 8-14 and Figure 8-15.  
(3) Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in Figure  
8-14 and Figure 8-15.  
Copyright © 2020 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.13.8.7 eUSCI (SPI Slave Mode) Timing Diagrams  
UCMODEx = 01  
tSTE,LEAD  
tSTE,LAG  
STE  
UCMODEx = 10  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tSU,SI  
tLOW/HIGH  
tLOW/HIGH  
tHD,SI  
SIMO  
tHD,SO  
tVALID,SO  
tSTE,ACC  
tSTE,DIS  
SOMI  
Figure 8-14. SPI Slave Mode, CKPH = 0  
UCMODEx = 01  
UCMODEx = 10  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tLOW/HIGH  
tLOW/HIGH  
tHD,SI  
tSU,SI  
SIMO  
tHD,SO  
tVALID,SO  
tSTE,ACC  
tSTE,DIS  
SOMI  
Figure 8-15. SPI Slave Mode, CKPH = 1  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.13.8.8 eUSCI (I2C Mode) Switching Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 8-16)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK or ACLK,  
External: UCLK,  
feUSCI  
eUSCI input clock frequency  
16  
MHz  
Duty cycle = 50% ±10%  
fSCL  
SCL clock frequency  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
0
4.0  
0.6  
4.7  
0.6  
0
400  
kHz  
µs  
fSCL = 100 kHz  
fSCL > 100 kHz  
fSCL = 100 kHz  
fSCL > 100 kHz  
tHD,STA  
Hold time (repeated) START  
tSU,STA  
Setup time for a repeated START  
2.2 V, 3.0 V  
µs  
tHD,DAT  
tSU,DAT  
Data hold time  
Data setup time  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
ns  
ns  
100  
4.0  
0.6  
4.7  
1.3  
50  
fSCL = 100 kHz  
fSCL > 100 kHz  
fSCL = 100 kHz  
fSCL > 100 kHz  
UCGLITx = 0  
UCGLITx = 1  
UCGLITx = 2  
UCGLITx = 3  
UCCLTOx = 1  
UCCLTOx = 2  
UCCLTOx = 3  
tSU,STO  
Setup time for STOP  
2.2 V, 3.0 V  
µs  
us  
Bus free time between a STOP and START  
condition  
tBUF  
250  
125  
25  
Pulse duration of spikes suppressed by input  
filter  
tSP  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
ns  
12.5  
6.3  
62.5  
31.5  
27  
30  
33  
tTIMEOUT  
Clock low time-out  
ms  
8.13.8.9 eUSCI (I2C Mode) Timing Diagram  
tHD,STA  
tSU,STA  
tHD,STA  
tBUF  
SDA  
tLOW  
tHIGH  
tSP  
SCL  
tSU,DAT  
tSU,STO  
tHD,DAT  
Figure 8-16. I2C Mode Timing  
Copyright © 2020 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.13.9 Segment LCD Controller  
8.13.9.1 LCD_C Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
CONDITIONS  
MIN  
NOM  
MAX UNIT  
Supply voltage range, charge pump LCDCPEN = 1, 0000b < VLCDx ≤ 1111b  
VCC,LCD_C,CP en,3.6  
VCC,LCD_C,CP en,3.3  
VCC,LCD_C,int. bias  
VCC,LCD_C,ext. bias  
2.2  
3.6  
3.6  
3.6  
3.6  
V
V
V
V
enabled, VLCD ≤ 3.6 V  
(charge pump enabled, VLCD ≤ 3.6 V)  
Supply voltage range, charge pump LCDCPEN = 1, 0000b < VLCDx ≤ 1100b  
2.0  
2.4  
2.4  
enabled, VLCD ≤ 3.3 V  
(charge pump enabled, VLCD ≤ 3.3 V)  
LCDCPEN = 0, VLCDEXT = 0  
Supply voltage range, internal  
biasing, charge pump disabled  
Supply voltage range, external  
biasing, charge pump disabled  
LCDCPEN = 0, VLCDEXT = 0  
Supply voltage range, external LCD  
VCC,LCD_C,VLCDEXT  
voltage, internal or external biasing, LCDCPEN = 0, VLCDEXT = 1  
charge pump disabled  
2.0  
2.4  
3.6  
3.6  
V
V
External LCD voltage at LCDCAP,  
VLCDCAP  
internal or external biasing, charge  
pump disabled  
LCDCPEN = 0, VLCDEXT = 1  
Capacitor value on LCDCAP when  
charge pump enabled  
LCDCPEN = 1, VLCDx > 0000b (charge pump  
enabled)  
CLCDCAP  
fACLK,in  
fLCD  
4.7–20%  
4.7  
10+20%  
40  
µF  
kHz  
Hz  
ACLK input frequency range  
LCD frequency range  
30  
0
32.768  
fFRAME = (1 / (2 × mux)) × fLCD with mux = 1  
(static) to 8  
1024  
fFRAME,4mux(MAX) = (1 / (2 × 4)) × fLCD(MAX) =  
(1 / (2 × 4)) × 1024 Hz  
fFRAME,4mux  
LCD frame frequency range  
128  
Hz  
fLCD = 1024 Hz, all common lines equally  
loaded  
CPanel  
VR33  
Panel capacitance  
10000  
pF  
V
Analog input voltage at R33  
LCDCPEN = 0, VLCDEXT = 1  
2.4  
VCC + 0.2  
VR03 + 2/3  
VR23,1/3bias  
VR13,1/3bias  
VR13,1/2bias  
Analog input voltage at R23  
LCDREXT = 1, LCDEXTBIAS = 1, LCD2B = 0  
VR13  
× (VR33  
)
VR33  
VR23  
VR33  
V
V
V
VR03  
VR03 + 1/3  
× (VR33  
VR03  
Analog input voltage at R13 with 1/3  
biasing  
LCDREXT = 1, LCDEXTBIAS = 1, LCD2B = 0  
LCDREXT = 1, LCDEXTBIAS = 1, LCD2B = 1  
VR03  
)
VR03 + 1/2  
× (VR33  
VR03  
Analog input voltage at R13 with 1/2  
biasing  
VR03  
)
VR03  
Analog input voltage at R03  
R0EXT = 1  
VSS  
2.4  
V
V
Voltage difference between VLCD and  
R03  
VLCD – VR03  
LCDCPEN = 0, R0EXT = 1  
VCC + 0.2  
1.2  
External LCD reference voltage  
applied at LCDREF  
VLCDREF  
VLCDREFx = 01  
0.8  
1.0  
V
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: MSP430FR6007 MSP430FR6005  
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.13.9.2 LCD_C Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VLCDx = 0000, VLCDEXT = 0  
LCDCPEN = 1, VLCDx = 0001b  
LCDCPEN = 1, VLCDx = 0010b  
LCDCPEN = 1, VLCDx = 0011b  
LCDCPEN = 1, VLCDx = 0100b  
LCDCPEN = 1, VLCDx = 0101b  
LCDCPEN = 1, VLCDx = 0110b  
LCDCPEN = 1, VLCDx = 0111b  
LCDCPEN = 1, VLCDx = 1000b  
LCDCPEN = 1, VLCDx = 1001b  
LCDCPEN = 1, VLCDx = 1010b  
LCDCPEN = 1, VLCDx = 1011b  
LCDCPEN = 1, VLCDx = 1100b  
LCDCPEN = 1, VLCDx = 1101b  
LCDCPEN = 1, VLCDx = 1110b  
LCDCPEN = 1, VLCDx = 1111b  
VCC  
MIN  
TYP  
VCC  
MAX UNIT  
VLCD,0  
VLCD,1  
VLCD,2  
VLCD,3  
VLCD,4  
VLCD,5  
VLCD,6  
VLCD,7  
VLCD,8  
VLCD,9  
VLCD,10  
VLCD,11  
VLCD,12  
VLCD,13  
VLCD,14  
VLCD,15  
2.4 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2.2 V to 3.6 V  
2.2 V to 3.6 V  
2.2 V to 3.6 V  
2.49  
2.60  
2.66  
2.72  
2.78  
2.84  
2.90  
2.96  
3.02  
3.08  
3.14  
3.20  
3.26  
3.32  
3.38  
3.44  
2.72  
LCD voltage  
V
3.32  
3.6  
LCD voltage with external reference of LCDCPEN = 1, VLCDx = 0111b,  
0.8 V VLCDREFx = 01b, VLCDREF = 0.8 V  
2.96 ×  
0.8 V  
VLCD,7,0.8  
VLCD,7,1.0  
VLCD,7,1.2  
ΔVLCD  
2 V to 3.6 V  
2 V to 3.6 V  
2.2 V to 3.6 V  
V
LCD voltage with external reference of LCDCPEN = 1, VLCDx = 0111b,  
1.0 V VLCDREFx = 01b, VLCDREF = 1.0 V  
2.96 ×  
1.0 V  
V
V
LCD voltage with external reference of LCDCPEN = 1, VLCDx = 0111b,  
2.96 ×  
1.2 V  
1.2 V  
VLCDREFx = 01b, VLCDREF = 1.2 V  
Voltage difference between  
consecutive VLCDx settings  
ΔVLCD = VLCD,x – VLCD,x–1  
with x = 0010b to 1111b  
40  
50  
60  
600  
100  
80  
mV  
µA  
LCDCPEN = 1, VLCDx = 1111b  
external, with decoupling capacitor on  
DVCC supply ≥1 µF  
Peak supply currents due to charge  
pump activities  
ICC,Peak,CP  
2.2 V  
CLCD = 4.7 µF, LCDCPEN = 0→1, VLCDx =  
1111b  
tLCD,CP,on  
ICP,Load  
Time to charge CLCD when discharged  
Maximum charge pump load current  
2.2 V  
2.2 V  
2.2 V  
500  
ms  
µA  
kΩ  
LCDCPEN = 1, VLCDx = 1111b  
LCDCPEN = 0, ILOAD = ±10 µA  
LCD driver output impedance, segment  
lines  
RLCD,Seg  
10  
10  
LCD driver output impedance, common  
lines  
RLCD,COM  
LCDCPEN = 0, ILOAD = ±10 µA  
2.2 V  
kΩ  
Copyright © 2020 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.13.10 ADC12_B  
8.13.10.1 12-Bit ADC, Power Supply and Input Range Conditions  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
NOM  
MAX  
UNIT  
V(Ax)  
Analog input voltage range(1)  
All ADC12 analog input pins Ax  
0
AVCC  
V
fADC12CLK = MODCLK, ADC12ON = 1,  
ADC12PWRMD = 0, ADC12DIF = 0,  
REFON = 0, ADC12SHTx = 0,  
ADC12DIV = 0  
3.0 V  
145  
199  
190  
I(ADC12_B)  
Operating supply current into AVCC  
and DVCC terminals(2) (3)  
µA  
µA  
µA  
µA  
single-ended  
mode  
fADC12CLK = MODCLK, ADC12ON = 1,  
ADC12PWRMD = 0, ADC12DIF = 0,  
REFON = 0, ADC12SHTx = 0,  
ADC12DIV = 0  
2.2 V  
140  
fADC12CLK = MODCLK, ADC12ON = 1,  
ADC12PWRMD = 0, ADC12DIF = 1,  
REFON = 0, ADC12SHTx= 0,  
ADC12DIV = 0  
3.0 V  
2.2 V  
175  
170  
245  
230  
I(ADC12_B)  
Operating supply current into AVCC  
and DVCC terminals(2) (3)  
differential mode  
fADC12CLK = MODCLK/4, ADC12ON = 1,  
ADC12PWRMD = 1, ADC12DIF = 0,  
REFON = 0, ADC12SHTx = 0,  
ADC12DIV = 0  
3.0 V  
2.2 V  
85  
83  
125  
120  
I(ADC12_B)  
Operating supply current into AVCC  
and DVCC terminals(2) (3)  
single-ended  
fADC12CLK = MODCLK/4, ADC12ON = 1,  
ADC12PWRMD = 1, ADC12DIF = 0,  
REFON = 0, ADC12SHTx = 0,  
ADC12DIV = 0  
low-power mode  
fADC12CLK = MODCLK/4, ADC12ON = 1,  
ADC12PWRMD = 1, ADC12DIF = 1,  
REFON = 0, ADC12SHTx= 0,  
ADC12DIV = 0  
3.0 V  
2.2 V  
110  
109  
165  
160  
I(ADC12_B)  
Operating supply current into AVCC  
and DVCC terminals(2) (3)  
differential low-  
power mode  
CI  
RI  
Input capacitance  
Only one terminal Ax can be selected at one time 2.2 V  
10  
0.5  
1
15  
4
pF  
kΩ  
>2 V  
Input MUX ON resistance  
0 V ≤ V(Ax) ≤ AVCC  
<2 V  
10  
(1) The analog input voltage range must be within the selected reference voltage range VR+ to VR– for valid conversion results.  
(2) The internal reference supply current is not included in current consumption parameter I(ADC12_B).  
(3) Approximately 60% (typical) of the total current into the AVCC and DVCC terminal is from AVCC.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.13.10.2 12-Bit ADC, Timing Parameters  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
For specified performance of ADC12 linearity parameters with  
ADC12PWRMD = 0,  
If ADC12PWRMD = 1, the maximum is 1/4 of the value shown here  
Frequency for specified  
performance  
fADC12CLK  
0.45  
5.4  
MHz  
Frequency for reduced  
performance  
fADC12CLK  
fADC12OSC  
Linearity parameters have reduced performance  
32.768  
4.8  
kHz  
Internal oscillator(3)  
ADC12DIV = 0, fADC12CLK = fADC12OSC from MODCLK  
4
5.4  
3.5  
MHz  
REFON = 0, Internal oscillator, fADC12CLK = fADC12OSC from MODCLK,  
ADC12WINC = 0  
2.6  
tCONVERT  
Conversion time  
µs  
External fADC12CLK from ACLK, MCLK, or SMCLK, ADC12SSEL ≠ 0  
See (1)  
See (2)  
Turnon settling time of  
the ADC  
tADC12ON  
100  
ns  
ns  
Time ADC must be off  
tADC12OFF  
before can be turned on Note: tADC12OFF must be met to make sure that tADC12ON time holds.  
again  
100  
1
All pulse sample mode (ADC12SHP = 1)  
and extended sample mode (ADC12SHP  
= 0) with buffered reference  
(ADC12VRSEL = 0x1, 0x3, 0x5, 0x7,  
RS = 400 Ω, RI = 4 kΩ, CI = 15  
0x9, 0xB, 0xD, 0xF)  
tSample  
Sampling time  
µs  
pF, Cpext= 8 pF(4)  
Extended sample mode (ADC12SHP = 0)  
with unbuffered reference  
(ADC12VRSEL= 0x0, 0x2, 0x4, 0x6, 0xC,  
0xE)  
See (5)  
(1) The condition is that the error in a conversion started after tADC12ON is less than ±0.5 LSB. The reference and input signal are already  
settled.  
(2) 14 × 1 / fADC12CLK. If ADC12WINC = 1 then 15 × 1 / fADC12CLK  
.
(3) The ADC12OSC is sourced directly from MODOSC in the UCS.  
(4) Approximately 10 Tau (τ) are needed to get an error of less than ±0.5 LSB: tsample = ln(2n+2) × (RS + RI) × (CI + Cpext), where n = ADC  
resolution = 12, RS= external source resistance, Cpext = external parasitic capacitance.  
(5) 6 × 1 / fADC12CLK  
Copyright © 2020 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.13.10.3 12-Bit ADC, Linearity Parameters  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
With external voltage reference (ADC12VRSEL = 0x2, 0x3, 0x4,  
0x14, 0x15),  
1.2 V ≤ (VR+ – VR–) ≤ AVCC  
Integral linearity error (INL) for  
differential input  
±1.8  
EI  
LSB  
With external voltage reference (ADC12VRSEL = 0x2, 0x3, 0x4,  
0x14, 0x15),  
1.2 V ≤ (VR+ – VR–) ≤ AVCC  
Integral linearity error (INL) for single-  
ended inputs  
±2.2  
With external voltage reference (ADC12VRSEL = 0x2, 0x3, 0x4,  
0x14, 0x15),  
ED  
EO  
Differential linearity error (DNL)  
Offset error(1) (2)  
–0.99  
+1.0  
±1.5  
LSB  
mV  
ADC12VRSEL = 0x1 without TLV calibration,  
±0.5  
±0.2%  
±0.2%  
TLV calibration data can be used to improve the parameter(3)  
With internal voltage reference VREF = 2.5 V (ADC12VRSEL =  
0x1, 0x7, 0x9, 0xB, or 0xD)  
±1.7%  
±2.5%  
With internal voltage reference VREF = 1.2 V (ADC12VRSEL =  
0x1, 0x7, 0x9, 0xB, or 0xD)  
EG  
Gain error  
With external voltage reference without internal buffer  
(ADC12VRSEL = 0x2 or 0x4) without TLV calibration, VR+ = 2.5  
V, VR– = AVSS  
±1  
±3  
LSB  
With external voltage reference with internal buffer  
(ADC12VRSEL = 0x3), VR+ = 2.5 V, VR– = AVSS  
±2  
±0.2%  
±0.2%  
±27  
±1.8%  
±2.6%  
With internal voltage reference VREF = 2.5 V (ADC12VRSEL =  
0x1, 0x7, 0x9, 0xB, or 0xD)  
With internal voltage reference VREF = 1.2 V (ADC12VRSEL =  
0x1, 0x7, 0x9, 0xB, or 0xD)  
ET  
Total unadjusted error  
With external voltage reference without internal buffer  
(ADC12VRSEL = 0x2 or 0x4) without TLV calibration, VR+ = 2.5  
V, VR– = AVSS  
±1  
±1  
±5  
LSB  
With external voltage reference with internal buffer  
(ADC12VRSEL = 0x3), VR+ = 2.5 V, VR– = AVSS  
±28  
(1) Offset is measured as the input voltage (at which ADC output transitions from 0 to 1) minus 0.5 LSB.  
(2) Offset increases as IR drop increases when VR– is AVSS.  
(3) For details, see the Device Descriptor Table section in the MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User's  
Guide.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.13.10.4 12-Bit ADC, Dynamic Performance With External Reference  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Resolution  
SNR  
Number of no missing code output-code bits  
Signal-to-noise with differential inputs  
12  
bits  
VR+ = 2.5 V, VR– = AVSS  
71  
70  
dB  
Signal-to-noise with single-ended inputs  
Effective number of bits with differential inputs(1)  
Effective number of bits with single-ended inputs(1)  
VR+ = 2.5 V, VR– = AVSS  
VR+ = 2.5 V, VR– = AVSS  
VR+ = 2.5 V, VR– = AVSS  
11.4  
11.1  
ENOB  
bits  
Reduced performance with fADC12CLK from  
ACLK LFXT 32.768 kHz,  
VR+ = 2.5 V, VR– = AVSS  
Effective number of bits with 32.768-kHz clock (reduced  
performance)(1)  
10.9  
(1) ENOB = (SINAD – 1.76) / 6.02  
8.13.10.5 12-Bit ADC, Dynamic Performance With Internal Reference  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Resolution  
SNR  
Number of no missing code output-code bits  
Signal-to-noise with differential inputs  
12  
bits  
VR+ = 2.5 V, VR– = AVSS  
70  
69  
dB  
Signal-to-noise with single-ended inputs  
Effective number of bits with differential inputs(1)  
Effective number of bits with single-ended inputs(1)  
VR+ = 2.5 V, VR– = AVSS  
VR+ = 2.5 V, VR– = AVSS  
VR+ = 2.5 V, VR– = AVSS  
11.4  
11.0  
ENOB  
bits  
Reduced performance with fADC12CLK from  
ACLK LFXT 32.768 kHz,  
VR+ = 2.5 V, VR– = AVSS  
Effective number of bits with 32.768-kHz clock (reduced  
performance)(1)  
10.9  
(1) ENOB = (SINAD – 1.76) / 6.02  
8.13.10.6 12-Bit ADC, Temperature Sensor and Built-In V1/2  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Temperature sensor voltage(1) (2)  
See (2)  
TEST CONDITIONS  
MIN  
TYP  
700  
2.5  
MAX UNIT  
ADC12ON = 1, ADC12TCMAP = 1, TA  
0°C  
=
VSENSOR  
mV  
mV/°C  
µs  
TCSENSOR  
tSENSOR(sample)  
ADC12ON = 1, ADC12TCMAP = 1  
Sample time required if ADCTCMAP = 1 and channel  
(MAX – 1) is selected(3)  
ADC12ON = 1, ADC12TCMAP = 1, Error of  
conversion result ≤1 LSB  
30  
AVCC voltage divider for ADC12BATMAP = 1 on MAX  
input channel  
V1/2  
ADC12ON = 1, ADC12BATMAP = 1  
ADC12ON = 1, ADC12BATMAP = 1  
ADC12ON = 1, ADC12BATMAP = 1  
47.5%  
50% 52.5%  
38 72  
IV1/2  
Current for battery monitor during sample time  
µA  
µs  
Sample time required if ADC12BATMAP = 1 and  
channel MAX is selected(4)  
tV1/2 (sample)  
1.7  
(1) The temperature sensor offset can be as much as ±30°C. TI recommends a single-point calibration to minimize the offset error of the  
built-in temperature sensor.  
(2) The device descriptor structure contains calibration values for 30°C ±3°C and 85°C ±3°C for each of the available reference voltage  
levels. The sensor voltage can be computed as VSENSE = TCSENSOR × (Temperature, °C) + VSENSOR, where TCSENSOR and VSENSOR  
can be computed from the calibration values for higher accuracy.  
(3) The typical equivalent impedance of the sensor is 250 kΩ. The sample time required includes the sensor on-time, tSENSOR(on)  
(4) The on-time tV1/2(on) is included in the sampling time tV1/2(sample); no additional on time is needed.  
.
Copyright © 2020 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.13.10.7 12-Bit ADC, External Reference  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Positive external reference voltage input VeREF+  
or VeREF- based on ADC12VRSEL bit  
VR+  
VR+ > VR–  
1.2  
AVCC  
V
Negative external reference voltage input VeREF  
+ or VeREF- based on ADC12VRSEL bit  
VR–  
VR+ > VR–  
VR+ > VR–  
0
1.2  
V
V
VR+ – VR–  
Differential external reference voltage input  
Static input current singled-ended input mode  
1.2  
AVCC  
1.2 V ≤ VeREF+≤ VAVCC, VeREF- = 0 V  
fADC12CLK = 5 MHz, ADC12SHTx = 1h,  
ADC12DIF = 0, ADC12PWRMD = 0  
±10  
±2.5  
±20  
±5  
IVeREF+  
IVeREF-  
,
µA  
µA  
1.2 V ≤ VeREF+≤ VAVCC , VeREF- = 0 V  
fADC12CLK = 5 MHz, ADC12SHTx = 8h,  
ADC12DIF = 0, ADC12PWRMD = 01  
1.2 V ≤ VeREF+≤ VAVCC, VeREF- = 0 V  
fADC12CLK = 5 MHz, ADC12SHTx = 1h,  
ADC12DIF = 1, ADC12PWRMD = 0  
IVeREF+  
IVeREF-  
,
Static input current differential input mode  
1.2 V ≤ VeREF+≤ VAVCC , VeREF- = 0 V  
fADC12CLK = 5 MHz, ADC12SHTx = 8h,  
ADC12DIF = 1, ADC12PWRMD = 1  
IVeREF+  
IVeREF+  
CVeREF+/-  
Peak input current with single-ended input  
Peak input current with differential input  
Capacitance at VeREF+ or VeREF- terminal  
0 V ≤ VeREF+ ≤ VAVCC, ADC12DIF = 0  
0 V ≤ VeREF+ ≤ VAVCC, ADC12DIF = 1  
See (2)  
1.5  
3
mA  
mA  
µF  
10  
(1) The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance (CI) is  
also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the  
recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy.  
(2) Connect two decoupling capacitors, 10 µF and 470 nF, from VeREF+ or VeREF– to AVSS to decouple the dynamic current required for  
an external reference source if it is used for the ADC12_B. Also see the MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family  
User's Guide.  
950  
900  
850  
800  
750  
700  
650  
600  
550  
500  
–40  
–20  
0
20  
40  
60  
80  
Ambient Temperature (°C)  
Figure 8-17. Typical Temperature Sensor Voltage  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.13.11 Reference  
Section 8.13.11.1 lists the characteristics of the internal reference.  
8.13.11.1 REF, Built-In Reference  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
REFVSEL = {2} for 2.5 V, REFON = 1  
REFVSEL = {1} for 2.0 V, REFON = 1  
REFVSEL = {0} for 1.2 V, REFON = 1  
From 0.1 Hz to 10 Hz, REFVSEL = {0}  
VCC  
MIN  
TYP  
2.5 ±1.5%  
2.0 ±1.5%  
1.2 ±1.8%  
MAX UNIT  
2.7 V  
Positive built-in reference  
voltage output  
VREF+  
2.2 V  
1.8 V  
V
Noise  
RMS noise at VREF (3)  
30  
130  
+16  
µV  
VREF ADC BUF_INT buffer  
offset(5)  
TA = 25°C, ADC on, REFVSEL = {0}, REFON = 1,  
REFOUT = 0  
VOS_BUF_INT  
–16  
–16  
mV  
VREF ADC BUF_EXT buffer  
offset(4)  
TA = 25°C, REFVSEL = {0} , REFOUT = 1,  
REFON = 1 or ADC on  
VOS_BUF_EXT  
AVCC(min)  
IREF+  
+16  
mV  
V
REFVSEL = {0} for 1.2 V  
REFVSEL = {1} for 2.0 V  
REFVSEL = {2} for 2.5 V  
1.8  
2.2  
2.7  
AVCC minimum voltage,  
Positive built-in reference active  
Operating supply current into  
AVCC terminal(1)  
REFON = 1  
3 V  
19  
247  
26  
400  
µA  
ADC ON, REFOUT = 0,  
REFVSEL = {0, 1, or 2}, ADC12PWRMD = 0  
ADC ON, REFOUT = 1,  
REFVSEL = {0, 1, 2}, ADC12PWRMD = 0  
1053  
153  
1820  
240  
Operating supply current into  
AVCC terminal(1)  
ADC ON, REFOUT = 0,  
REFVSEL = {0, 1, 2}, ADC12PWRMD = 1  
IREF+_ADC_BUF  
3 V  
µA  
µA  
ADC ON, REFOUT = 1,  
REFVSEL = {0, 1, 2}, ADC12PWRMD = 1  
581  
1030  
1890  
ADC OFF, REFON = 1, REFOUT = 1,  
REFVSEL = {0, 1, 2}  
1105  
REFVSEL = {0, 1, 2}, AVCC = AVCC(min) for each  
reference level,  
REFON = REFOUT = 1  
VREF maximum load current,  
VREF+ terminal  
IO(VREF+)  
–1000  
+10  
REFVSEL = {0, 1, 2},  
Load-current regulation, VREF+ IO(VREF+) = +10 µA or –1000 µA,  
ΔVout/ΔIo (VREF+)  
1500 µV/mA  
terminal  
AVCC = AVCC(min) for each reference level,  
REFON = REFOUT = 1  
Capacitance at VREF+ and  
VREF- terminals  
CVREF+/-  
REFON = REFOUT = 1  
0
100  
pF  
REFVSEL = {0, 1, 2},  
REFON = REFOUT = 1,  
TA = –40°C to 85°C(6)  
Temperature coefficient of built-  
in reference  
TCREF+  
24  
50 ppm/K  
AVCC = AVCC (min) to AVCC(max)  
TA = 25°C, REFVSEL = {0, 1, 2},  
REFON = REFOUT = 1  
,
Power supply rejection ratio  
(DC)  
PSRR_DC  
100  
400  
µV/V  
Power supply rejection ratio  
(AC)  
PSRR_AC  
tSETTLE  
dAVCC= 0.1 V at 1 kHz  
3.0  
40  
mV/V  
µs  
Settling time of reference  
voltage(2)  
AVCC = AVCC (min) to AVCC(max)  
REFVSEL = {0, 1, 2}, REFON = 0 → 1  
,
80  
2
Settling time of ADC reference  
voltage buffer(2)  
AVCC = AVCC (min) to AVCC(max)  
REFVSEL = {0, 1, 2}, REFON = 1  
,
Tbuf_settle  
0.4  
us  
(1) The internal reference current is supplied through the AVCC terminal.  
(2) The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB.  
(3) Internal reference noise affects ADC performance when ADC uses the internal reference. See Designing With the MSP430FR59xx  
and MSP430FR58xx ADC for details on optimizing ADC performance for your application with the choice of internal or external  
reference.  
(4) Buffer offset affects ADC gain error and thus total unadjusted error.  
(5) Buffer offset affects ADC gain error and thus total unadjusted error.  
(6) Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C)/(85°C – (–40°C)).  
Copyright © 2020 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
 
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.13.12 Comparator  
Section 8.13.12.1 lists the characteristics of the comparator.  
8.13.12.1 Comparator_E  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX  
UNIT  
CEPWRMD = 00, CEON = 1,  
CERSx = 00 (fast)  
12  
16  
CEPWRMD = 01, CEON = 1,  
CERSx = 00 (medium)  
10  
0.1  
0.3  
31  
14  
0.3  
Comparator operating supply  
current into AVCC, excludes  
reference resistor ladder  
IAVCC_COMP  
2.2 V, 3.0 V  
µA  
CEPWRMD = 10, CEON = 1,  
CERSx = 00 (slow), TA = 30°C  
CEPWRMD = 10, CEON = 1,  
CERSx = 00 (slow), TA = 85°C  
1.3  
CEREFLx = 01, CERSx = 10, REFON =  
0, CEON = 1, CEREFACC = 0  
38  
Quiescent current of resistor  
ladder into AVCC, including  
REF module current  
IAVCC_COMP_REF  
2.2 V, 3.0 V  
µA  
CEREFLx = 01, CERSx = 10, REFON =  
0, CEON = 1, CEREFACC = 1  
16  
19  
CERSx = 11, CEREFLx = 01,  
CEREFACC = 0  
1.8 V  
2.2 V  
2.7 V  
1.8 V  
2.2 V  
2.7 V  
1.152  
1.92  
2.40  
1.10  
1.90  
2.35  
1.2  
2.0  
2.5  
1.2  
2.0  
2.5  
1.248  
2.08  
2.60  
1.245  
2.08  
2.60  
CERSx = 11, CEREFLx = 10,  
CEREFACC = 0  
CERSx = 11, CEREFLx = 11,  
CEREFACC = 0  
VREF  
Reference voltage level  
V
CERSx = 11, CEREFLx = 01,  
CEREFACC = 1  
CERSx = 11, CEREFLx = 10,  
CEREFACC = 1  
CERSx = 11, CEREFLx = 11,  
CEREFACC = 1  
VIC  
Common-mode input range  
Input offset voltage  
0
–16  
–12  
–37  
VCC – 1  
16  
V
CEPWRMD = 00  
VOFFSET  
CEPWRMD = 01  
12  
mV  
CEPWRMD = 10  
37  
CEPWRMD = 00 or CEPWRMD = 01  
CEPWRMD = 10  
10  
10  
1
CIN  
Input capacitance  
pF  
ON (switch closed)  
OFF (switch open)  
3
kΩ  
RSIN  
Series input resistance  
50  
MΩ  
CEPWRMD = 00, CEF = 0, Overdrive ≥  
20 mV  
193  
230  
5
330  
400  
15  
ns  
Propagation delay, response  
time  
CEPWRMD = 01, CEF = 0, Overdrive ≥  
20 mV  
tPD  
CEPWRMD = 10, CEF = 0, Overdrive ≥  
20 mV  
µs  
ns  
CEPWRMD = 00 or 01, CEF = 1,  
Overdrive ≥ 20 mV, CEFDLY = 00  
700  
1.0  
2.0  
4.0  
1000  
1.9  
CEPWRMD = 00 or 01, CEF = 1,  
Overdrive ≥ 20 mV, CEFDLY = 01  
Propagation delay with filter  
active  
tPD,filter  
CEPWRMD = 00 or 01, CEF = 1,  
Overdrive ≥ 20 mV, CEFDLY = 10  
3.7  
µs  
CEPWRMD = 00 or 01, CEF = 1,  
Overdrive ≥ 20 mV, CEFDLY = 11  
7.7  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.13.12.1 Comparator_E (continued)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX  
UNIT  
CEON = 0 → 1, VIN+,  
VIN- from pins,  
Overdrive ≥ 20 mV, CEPWRMD = 00  
0.9  
1.5  
1.5  
65  
CEON = 0 → 1, VIN+,  
VIN- from pins,  
Overdrive ≥ 20 mV, CEPWRMD = 01  
tEN_CMP  
Comparator enable time  
0.9  
15  
µs  
CEON = 0 → 1,  
VIN+, VIN- from pins,  
Overdrive ≥ 20 mV, CEPWRMD = 10  
Comparator and reference  
ladder and reference voltage  
enable time  
CEON = 0 → 1, CEREFLX = 10, CERSx  
= 10 or 11, CEREF0 = CEREF1 = 0x0F,  
REFON = 0  
tEN_CMP_VREF  
120  
10  
220  
30  
µs  
V
CEON = 0 → 1, CEREFLX = 10, CERSx  
= 10, REFON = 1, CEREF0 = CEREF1 =  
0x0F  
Comparator and reference  
ladder enable time  
tEN_CMP_RL  
Reference voltage for a given VIN = reference into resistor ladder, n =  
tap 0 to 31  
VIN × (n + VIN × (n + VIN × (n +  
VCE_REF  
0.5) / 32  
1) / 32  
1.5) / 32  
8.13.13 FRAM  
Section 8.13.13.1 lists the characteristics of the FRAM.  
8.13.13.1 FRAM  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TJ  
MIN  
1015  
100  
40  
TYP  
MAX  
UNIT  
Read and write endurance  
Data retention duration  
cycles  
25°C  
70°C  
85°C  
tRetention  
years  
10  
IWRITE  
IERASE  
tWRITE  
Current to write into FRAM(1)  
Erase current(2)  
IREAD  
N/A(3)  
nA  
nA  
ns  
Write time(4)  
tREAD  
NWAITSx = 0  
NWAITSx = 1  
1 / fSYSTEM  
2 / fSYSTEM  
tREAD  
Read time(5)  
ns  
(1) Writing to FRAM does not require a setup sequence or additional power when compared to reading from FRAM. The FRAM read  
current IREAD is included in the active mode current consumption, IAM,FRAM  
(2) FRAM does not require a special erase sequence.  
(3) N/A = Not applicable  
.
(4) Writing into FRAM is as fast as reading.  
(5) The maximum read (and write) speed is specified by fSYSTEM using the appropriate wait state settings (NWAITSx).  
Copyright © 2020 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.13.14 USS  
8.13.14.1 USS Recommended Operating Conditions  
PARAMETER  
TEST CONDITIONS  
MIN  
2.2  
TYP  
MAX UNIT  
PVCC  
PVCC  
Analog supply voltage at PVCC pins for LDO operation  
Analog supply voltage at PVCC pins for USS operation  
3.6  
3.6  
V
V
2.2  
8.13.14.2 USS LDO  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Analog supply voltage at PVCC pins  
USS voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
VCC-LDO  
VUSS  
2.2  
3.6  
0 ≤ ILOAD ≤ ILOAD,MAX  
1.52  
1.6  
0
1.65  
V
LBHDEL = 0  
LBHDEL = 1  
LBHDEL = 2  
LBHDEL = 3  
100  
200  
300  
tholdoff  
Hold off delay on power up  
µs  
µs  
160 +  
tholdoff  
ttime-out  
Time-out on transition from OFF to READY  
8.13.14.3 USSXTAL  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
dBc  
Nphase_osc  
FRQXTAL  
DCosc  
Integrated phase noise  
Resonator frequency  
Duty cycle  
fosc = 4 MHz or 8 MHz, range = 10 kHz to 4 MHz  
–74  
4
8
MHz  
35%  
65%  
fosc = 4 MHz or 8 MHz, CL = 18 pF, CS = 4 pF, fully settled, ceramic  
resonator  
180  
240  
Iosc  
OSC supply current  
Oscillation allowance  
µA  
Ω
fosc = 4 MHz or 8 MHz, CL = 12 pF (4 MHz) or 16 pF (8 MHz), CS  
7 pF, fully settled, crystal resonator  
=
fosc = 4 MHz, CL = 18 pF, CS = 4 pF, ceramic resonator  
fosc = 4 MHz, CL = 12 pF, CS = 7 pF, crystal resonator  
fosc = 8 MHz, CL = 18 pF, CS = 4 pF, ceramic resonator  
fosc = 8 MHz, CL = 16 pF, CS = 7 pF, crystal resonator  
fosc = 4 MHz, crystal resonator  
1500  
1000  
500  
350  
2.8  
Aosc  
4.6  
1.9  
fosc = 8 MHz, crystal resonator  
1
Tstart_osc  
Start-up time (gate)  
ms  
fosc = 4 MHz, ceramic resonator  
0.14  
0.08  
0.17  
0.12  
fosc = 8 MHz, ceramic resonator  
8.13.14.4 USS HSPLL  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
8
UNIT  
MHz  
MHz  
PLL_CLKin  
PLL_CLKout  
Input clock to HSPLL  
Output clock from HSPLL  
4
68  
80  
Reference clock = PLL_CLKin,  
Sequence: Set USS.CTL.USSPWRUP bit = 1, then  
measure the time between PSQ_PLLUP (internal control  
signal) is set to 1 and HSPLL.CTL.PLL_LOCK is set to 1  
LOCKpwr  
Lock time from PLL power up  
64 cycles  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: MSP430FR6007 MSP430FR6005  
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.13.14.5 USS SDHS  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SDHS power domain  
supply voltage  
Vsdhs  
Vsdhs = Vuss  
1.52  
1.6  
1.65  
V
Operating supply current  
into AVCC and DVCC  
Includes PLL, PGA, SDHS, and DTC, modulator clock = 80 MHz,  
output data rate = 8 Msps  
Isdhs_product  
5.2  
mA  
fmod  
Modulator clock  
68  
80  
MHz  
MHz  
BWmod  
Frequency at –3-dB SNR  
Modulator clock = 80 MHz, modulator only (no filter is enabled)  
1.5  
45  
Bandwidth from 200 kHz to  
100mVpp ≤ Input signal level ≤ 1000  
1.5 MHz, PGA gain: a gain  
mVpp, PVCC = 3.0 V, fmod = 80  
from the PGA gain table for  
MHz, OSR = 20  
SNR  
Signal-to-noise ratio  
dB  
the maximum SNR  
TM2 – TM1, AUTOSSDIS = 0, 1% of settled DC level  
TM2 – TM1, AUTOSSDIS = 1, 1% of settled DC level  
40  
40  
8
SDHS settling time (PGA +  
modulator)  
tMOD_Settle  
µs  
DROUTsdhs  
Output data rate  
Msps  
8.13.14.6 USS PHY Output Stage  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
PVCC  
PHY supply voltage  
PVCC = VCC, PVSS = VSS  
2.2  
3.6  
V
Output impedance of CH0OUT and CH1OUT for high  
and low sides  
RDSonT  
PVCC ≥ 2.5 V  
PVCC ≥ 2.5 V  
3.4  
3.4  
Ω
Ω
Termination impedance of CH0OUT and CH1OUT  
toward PVSS  
RTerm  
fMAX  
Maximum output frequency  
PVCC = VCC (2.5 V to 3.6 V)  
PVCC = VCC  
4.5  
22  
MHz  
µF  
CSUPP  
RSUPP  
Supply buffering capacitance (low ESR type)  
Series resistance to CSUPP  
100  
22  
PVCC = VCC  
Ω
8.13.14.7 USS PHY Input Stage, Multiplexer  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
PVSS –  
0.3  
VIN  
Input voltage on CH0IN or CH1IN  
PVCC = VCC, PVSS = VSS  
1.8  
V
Copyright © 2020 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.13.14.8 USS PGA  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Supply voltage  
Gain(1)  
TEST CONDITIONS  
MIN  
2.2  
–6.5  
30  
TYP  
MAX  
3.6  
UNIT  
V
PVcc  
GN  
30.8  
800  
dB  
Vinr1  
Vinr2  
Input range  
Input range  
2.2 V ≤ PVCC  
2.5 V ≤ PVCC  
mVpp  
mVpp  
30  
1000  
Recommended input range  
for maximum performance  
Vinrperf  
2.5 V ≤ PVCC  
30  
800  
1.5  
mVpp  
Gtol  
Gain tolerance  
Full PGA gain range, VOUT = 600 mV  
–1.5  
dB  
dB/℃  
dB/V  
µs  
GTdrift  
GVdrift  
tSET  
Gain drift with temperature Full PGA gain range, VOUT = 600 mV  
0.0019  
0.15  
0.65  
5.5  
Gain drift with voltage  
Gain settling time  
Full PGA gain range, VOUT = 600 mV  
Gain setting: from 0 dB to 6 dB, to ±5%  
1.4  
DCoffset  
DC offset (PGA and SDHS) Full PGA gain range, measured at SDHS output  
mV  
DC offset drift (PGA and  
Full PGA gain range, measured at SDHS output  
SDHS)  
DCdrift  
4.7  
µV/℃  
PGA gain = 0 dB  
–41  
–37  
–19  
VCC = 3 V + 50 mVpp × sin (2π × fC) where  
fC = 1 MHz, VIN = ground, PSRR_AC =  
20log(VOUT / 50 mV)  
AC power supply rejection  
ratio  
PSRR_AC  
PGA gain = 10 dB  
PGA gain = 30 dB  
dB  
(1) See the PGA Gain table in the MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User's Guide.  
8.13.14.9 USS Bias Voltage Generator  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
EXCBIAS = 0  
200  
EXCBIAS = 1  
EXCBIAS = 2  
EXCBIAS = 3  
BIMP = 0  
300  
Excitation bias voltage (coupling  
capacitors)  
Vexc_bias  
PVCC = VCC (2.2 V to 3.6 V)  
PVCC = VCC (2.2 V to 3.6 V)  
mV  
400  
600  
450  
BIMP = 1  
850  
Impedance of excitation bias  
generator  
RVBE  
Ω
µs  
BIMP = 2  
1450  
2900  
BIMP = 3  
PVCC = VCC (2.2 V to 3.6 V), to 0.1% end value,  
RET = 200 Ω, CK + C0P = 1 nF, BIMP = 2  
tSBE  
Excitation bias settling time  
20  
PGABIAS = 0  
750  
800  
PGABIAS = 1  
PVCC = VCC (2.2 V to 3.6 V)  
PGABIAS = 2  
PGA bias voltage (coupling  
capacitors)  
Vpga_bias  
mV  
900  
PGABIAS = 3  
BIMP = 0  
950  
500  
BIMP = 1  
PVCC = VCC (2.2 V to 3.6 V)  
BIMP = 2  
900  
Impedance of acquisition bias  
generator  
RVBA  
Ω
1500  
2950  
BIMP = 3  
PVCC = VCC (2.2 V to 3.6 V), to 0.1% end value,  
RET = 200 Ω, CK + C0P = 1 nF, BIMP = 2  
tSBA  
Acquisition bias settling time  
22  
µs  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.13.15 Emulation and Debug  
Section 8.13.15.1 lists the characteristics of the JTAG and SBW interface.  
8.13.15.1 JTAG and Spy-Bi-Wire Interface  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
VCC  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
MIN  
TYP  
MAX UNIT  
IJTAG  
Supply current adder when JTAG active (but not clocked)  
Spy-Bi-Wire input frequency  
40  
100  
10  
μA  
MHz  
μs  
fSBW  
0
tSBW,Low  
tSBW, En  
tSBW,Rst  
Spy-Bi-Wire low clock pulse duration  
0.04  
15  
Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge)(1)  
Spy-Bi-Wire return to normal operation time  
110  
100  
16  
μs  
15  
0
μs  
2.2 V  
fTCK  
TCK input frequency, 4-wire JTAG(2)  
MHz  
3.0 V  
0
16  
Rinternal  
fTCLK  
tTCLK,Low/High  
fTCLK,FRAM  
Internal pulldown resistance on TEST  
2.2 V, 3.0 V  
20  
35  
50  
kΩ  
TCLK/MCLK frequency during JTAG access, no FRAM access (limited by  
16  
25  
MHz  
fSYSTEM  
)
TCLK low or high clock pulse duration, no FRAM access  
ns  
MHz  
ns  
TCLK/MCLK frequency during JTAG access, including FRAM access (limited  
by fSYSTEM with no FRAM wait states)  
4
tTCLK,FRAM, Low/  
TCLK low or high clock pulse duration, including FRAM accesses  
100  
High  
(1) Tools that access the Spy-Bi-Wire and the BSL interfaces must wait for the tSBW,En time after the first transition of the TEST/SBWTCK  
pin (low to high), before the second transition of the pin (high to low) during the entry sequence.  
(2) fTCK may be restricted to meet the timing requirements of the module selected.  
Copyright © 2020 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
9 Detailed Description  
9.1 Overview  
The TI MSP430FR60xx family of ultra-low-power microcontrollers consists of several devices featuring different  
sets of peripherals. The architecture, combined with seven low-power modes, is optimized to achieve extended  
battery life for example in portable measurement applications. The devices features a powerful 16-bit RISC CPU,  
16-bit registers, and constant generators that contribute to maximum code efficiency.  
The device is an MSP430FR6xx family device with ultrasonic sensing solution (USS), low-energy accelerator  
(LEA), up to six 16-bit timers, up to six eUSCIs that support UART, SPI, and I2C, a comparator, a hardware  
multiplier, an AES accelerator, a 6-channel DMA, an RTC module with alarm capabilities, up to 76 I/O pins, and  
a high-performance 12-bit ADC. The MSP430FR60xx devices also include an LCD module with contrast control  
for displays with up to 264 segments.  
9.2 CPU  
The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations,  
other than program-flow instructions, are performed as register operations in conjunction with seven addressing  
modes for source operand and four addressing modes for destination operand.  
The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register  
operation execution time is one cycle of the CPU clock.  
Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant  
generator, respectively. The remaining registers are general-purpose registers.  
Peripherals are connected to the CPU using data, address, and control buses. The peripherals can be managed  
with all instructions.  
The instruction set consists of the original 51 instructions with three formats and seven address modes and  
additional instructions for the expanded address range. Each instruction can operate on word and byte data.  
9.3 Ultrasonic Sensing Solution (USS) Module  
The USS module provides a high-precision ultrasonic sensing solution. The USS module is a sophisticated  
system that consists of six submodules:  
UUPS (universal USS power supply)  
HSPLL (high-speed PLL) with oscillator  
ASQ (acquisition sequencer)  
PHY (physical interface)  
PPG (programmable pulse generator) with low-output-impedance driver  
PGA (programmable gain amplifier)  
SDHS (sigma-delta high-speed ADC) with DTC (data transfer controller)  
The submodules have different roles, and together they enable high-precision data acquisition in ultrasonic  
applications. See the dedicated chapter for each submodule in the MSP430FR58xx, MSP430FR59xx, and  
MSP430FR6xx Family User's Guide.  
The USS module performs complete measurement sequence without CPU involvement to achieve ultra-low  
power consumption for ultrasonic metrology. Figure 9-1 shows the USS subsystem block diagram. The USS  
module has dedicated I/O pins without secondary functions. See the Ultrasonic Sensing Solution (USS) chapter  
in the MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User's Guide for details.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
USS Module  
USSXT  
USSXTOUT  
USSXTIN  
USSXT_BOUT  
SAPH  
CH0_OUT  
OSC  
PHY  
PPG  
ASQ  
CH1_OUT  
PVSS  
PVCC  
PLL_CLK  
PLL  
VOUT  
UUPS  
HSPLL  
MSP430FRxxxx  
PVSS  
SDHS  
RAM  
CH0_IN  
CH1_IN  
(shared with LEA)  
PGA  
MOD  
Filter  
DTC  
Figure 9-1. USS Subsystem Block Diagram  
9.4 Low-Energy Accelerator (LEA) for Signal Processing  
The LEA is a hardware engine designed for operations that involve vector-based signal processing, such as FIR,  
IIR, and FFT. The LEA offers fast performance and low energy consumption when performing vector-based  
digital signal processing computations. For performance benchmarks comparing LEA to using the CPU or other  
processors, see Benchmarking the Signal Processing Capabilities of the Low-Energy Accelerator.  
The LEA requires MCLK to be operational; therefore, LEA operates only in active mode or LPM0. While the LEA  
is running, the LEA data operations are performed on a shared 4KB of RAM out of the 8KB of total RAM (see  
Table 9-45). This shared RAM can also be used by the regular application. The MSP CPU and the LEA can run  
simultaneously and independently unless they access the same system RAM.  
Direct access to LEA registers is not supported, and TI offers the optimized Digital Signal Processing (DSP)  
Library for MSP Microcontrollers for the operations that the LEA module supports.  
Copyright © 2020 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
9.5 Operating Modes  
The MCU has one active mode and seven software-selectable low-power modes of operation. An interrupt event can wake the device from low-power  
modes LPM0 to LPM4, service the request, and return to the low-power mode on return from the interrupt. LPM3.5 and LPM4.5 disable the core supply  
to minimize power consumption. Table 9-1 lists the operating modes and the clocks and peripherals that are available in each.  
Note  
XT1CLK and VLOCLK can be active during LPM4 if requested by low-frequency peripherals such as RTC or WDT.  
Table 9-1. Operating Modes  
AM  
LPM0  
CPU OFF(2)  
16 MHz  
LPM1  
CPU OFF  
16 MHz  
35 µA at 1 MHz  
6 µs  
LPM2  
STANDBY  
50 kHz  
0.7 µA  
LPM3  
STANDBY  
50 kHz  
0.4 µA  
LPM4  
OFF  
LPM3.5  
RTC ONLY  
50 kHz  
LPM4.5  
MODE  
ACTIVE,  
SHUTDOWN  
SHUTDOWN  
ACTIVE  
FRAM OFF(1)  
WITH SVS  
WITHOUT SVS  
Maximum system clock  
16 MHz  
0(3)  
0(3)  
Typical current consumption,  
TA = 25°C  
103 µA/MHz  
N/A  
65 µA/MHz  
70 µA at 1 MHz  
instant  
0.3 µA  
7 µs  
0.25 µA  
250 µs  
0.2 µA  
250 µs  
0.02 µA  
1000 µs  
Typical wake-up time  
Wake-up events  
6 µs  
7 µs  
LF, RTC, I/O,  
Comp  
LF, RTC, I/O,  
Comp  
N/A  
all  
all  
I/O, Comp  
RTC, I/O  
I/O  
CPU  
on  
on  
on  
off  
on  
off  
off  
off  
off  
off  
off  
reset  
reset  
reset  
off  
reset  
reset  
reset  
off  
USS  
off  
off  
LEA  
on(10)  
off  
off  
off  
off  
off  
off  
FRAM  
on  
off(1)  
standby or off(1)  
available  
off  
off  
off  
High-frequency peripherals  
Low-frequency peripherals  
Unclocked peripherals(5)  
MCLK  
available  
available  
available  
on  
available  
available  
available  
off  
off  
off  
off  
off  
reset  
RTC  
reset  
off  
reset  
reset  
reset  
off  
available  
available  
available  
off  
available (4)  
available (4)  
off  
available  
available (4)  
off  
on(10)  
optional(6)  
off  
SMCLK  
optional(6)  
on  
optional(6)  
on  
off  
off  
off  
off  
off  
ACLK  
on  
on  
on  
off  
off  
off  
Full retention  
SVS  
yes  
yes  
yes  
yes  
yes  
yes  
no  
no  
always  
always  
always  
always  
always  
always  
optional(7)  
always  
optional(7)  
always  
optional(7)  
always  
optional(7)  
always  
on(8)  
off(9)  
Brownout  
always  
(1) FRAM is disabled in the FRAM controller (FRCTL_A).  
(2) Disabling the FRAM through the FRAM controller (FRCTL_A) allows the application to lower the LPM current consumption but the wake-up time increases when FRAM is accessed (for  
example, to fetch an interrupt vector). For a wakeup that does not involve FRAM (for example, a DMA transfer to RAM) the wake-up time is not increased.  
(3) All clocks disabled  
(4) See Section 9.5.2, which describes the use of peripherals in LPM3 and LPM4.  
(5) Unclocked peripherals are peripherals that do not require a clock source to operate; for example, the comparator and REF, or the eUSCI when operated as an SPI slave.  
(6) Controlled by SMCLKOFF.  
(7) Activated SVS (SVSHE = 1) results in higher current consumption. SVS is not included in typical current consumption.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
 
 
 
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
(8) SVSHE = 1  
(9) SVSHE = 0  
(10) Only while the LEA is performing a task enabled by the CPU during AM. The LEA cannot be enabled in LPM0.  
Copyright © 2020 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
9.5.1 Peripherals in Low-Power Modes  
Peripherals can be in different states that affect the achievable power modes of the device. The states depend  
on the operational modes of the peripherals (see Table 9-2). The states are:  
A peripheral is in a "high-frequency state" if it requires or uses a clock with a "high" frequency of more than  
50 kHz.  
A peripheral is in a "low-frequency state" if it requires or uses a clock with a "low" frequency of 50 kHz or less.  
A peripheral is in an "unclocked state" if it does not require or use an internal clock.  
If the CPU requests a power mode that does not support the current state of all active peripherals, the device  
does not enter the requested power mode, but it does enter a power mode that still supports the current state of  
the peripherals, except if an external clock is used. If an external clock is used, the application must use the  
correct frequency range for the requested power mode.  
Table 9-2. Peripheral States  
PERIPHERAL  
WDT  
IN HIGH-FREQUENCY STATE(1)  
Clocked by SMCLK  
Not applicable  
IN LOW-FREQUENCY STATE(2)  
IN UNCLOCKED STATE(3)  
Not applicable  
Clocked by ACLK  
DMA(4)  
RTC_C  
LCD_C  
Not applicable  
Waiting for a trigger  
Not applicable  
Not applicable  
Clocked by LFXT  
Not applicable  
Clocked by ACLK or VLOCLK  
Not applicable  
Clocked by SMCLK or  
clocked by external clock >50 kHz  
Clocked by ACLK or  
clocked by external clock ≤50 kHz  
Timer_A, TAx  
Timer_B, TBx  
Clocked by external clock ≤50 kHz  
Clocked by external clock ≤50 kHz  
Waiting for first edge of START bit  
Not applicable  
Clocked by SMCLK or  
clocked by external clock >50 kHz  
Clocked by ACLK or  
clocked by external clock ≤50 kHz  
eUSCI_Ax in  
UART mode  
Clocked by SMCLK  
Clocked by SMCLK  
Clocked by ACLK  
Clocked by ACLK  
eUSCI_Ax in SPI  
master mode  
eUSCI_Ax in SPI  
slave mode  
Clocked by external clock >50 kHz  
Clocked by external clock ≤50 kHz  
Clocked by external clock ≤50 kHz  
Not applicable  
eUSCI_Bx in I2C  
master mode  
Clocked by SMCLK or  
clocked by external clock >50 kHz  
Clocked by ACLK or  
clocked by external clock ≤50 kHz  
eUSCI_Bx in I2C  
slave mode  
Waiting for START condition or  
clocked by external clock ≤50 kHz  
Clocked by external clock >50 kHz  
Clocked by SMCLK  
Clocked by external clock ≤50 kHz  
Clocked by ACLK  
eUSCI_Bx in SPI  
master mode  
Not applicable  
eUSCI_Bx in SPI  
slave mode  
Clocked by external clock >50 kHz  
Clocked by external clock ≤50 kHz  
Clocked by external clock ≤50 kHz  
ADC12_B  
REF_A  
COMP_E  
CRC(5)  
Clocked by SMCLK or by MODOSC  
Not applicable  
Clocked by ACLK  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Waiting for a trigger  
Always  
Not applicable  
Always  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
MPY(5)  
Not applicable  
AES(5)  
Not applicable  
(1) Peripherals are in a state that requires or uses a clock with a "high" frequency of more than 50 kHz  
(2) Peripherals are in a state that requires or uses a clock with a "low" frequency of 50 kHz or less.  
(3) Peripherals are in a state that does not require or does not use an internal clock.  
(4) The DMA always transfers data in active mode but can wait for a trigger in any low-power mode. A DMA trigger during a low-power  
mode causes a temporary transition into active mode for the time of the transfer.  
(5) This peripheral operates during active mode only and will delay the transition into a low-power mode until its operation is completed.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
9.5.2 Idle Currents of Peripherals in LPM3 and LPM4  
Most peripherals can be operational in LPM3 if clocked by ACLK. Some modules are operational in LPM4,  
because they do not require a clock to operate (for example, the comparator). Activating a peripheral in LPM3 or  
LPM4 increases the current consumption due to its active supply current contribution but also due to an  
additional idle current. To reduce the idle current adder, certain peripherals are grouped together. To achieve  
optimal current consumption, use modules within one group and limit the number of groups with active modules.  
Table 9-3 lists the peripheral groups. Modules not listed in this table are either already included in the standard  
LPM3 current consumption or cannot be used in LPM3 or LPM4.  
The idle current adder is very small at room temperature (25°C) but increases at high temperatures (85°C); see  
the IIDLE current parameters in Section 8 for details.  
Table 9-3. Peripheral Groups  
GROUP A  
Timer TA1  
Timer TA2  
Timer TB0  
eUSCI_A0  
eUSCI_A1  
eUSCI_B0  
GROUP B  
Timer TA0  
Timer TA3  
Comparator  
ADC12_B  
REF_A  
GROUP C  
Timer TA4  
eUSCI_A2  
eUSCI_A3  
eUSCI_B1  
LCD_C  
9.6 Interrupt Vector Table and Signatures  
The interrupt vectors, the power-up start address, and signatures are in the address range 0FFFFh to 0FF80h.  
Figure 9-2 summarizes the content of this address range.  
0FFFFh  
Reset Vector  
BSL Password  
Interrupt  
Vectors  
0FFE0h  
JTAG Password  
Reserved  
0FF88h  
0FF80h  
Signatures  
Figure 9-2. Interrupt Vectors, Signatures and Passwords  
The power-up start address or reset vector is at 0FFFFh to 0FFFEh. It contains the 16-bit address pointing to the  
start address of the application program.  
The interrupt vectors start at 0FFFDh and extend to lower addresses. Each vector contains the 16-bit address of  
the appropriate interrupt-handler instruction sequence. Table 9-4 shows the device-specific interrupt vector  
locations.  
The vectors programmed into the address range from 0FFFFh to 0FFE0h are used as BSL password (if enabled  
by the corresponding signature).  
The signatures start at 0FF80h and extend to higher addresses. Signatures are evaluated during device start-up.  
Table 9-5 shows the device-specific signature locations.  
Copyright © 2020 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
A JTAG password can be programmed starting from address 0FF88h and extending to higher addresses. The  
password can extend into the interrupt vector locations using the interrupt vector addresses as additional bits for  
the password. The length of the JTAG password depends on the JTAG signature.  
See the System Resets, Interrupts, and Operating Modes, System Control Module (SYS) chapter in the  
MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User's Guide for details.  
Table 9-4. Interrupt Sources, Flags, and Vectors  
INTERRUPT  
VECTOR  
REGISTER  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
System Reset  
INTERRUPT FLAG  
PRIORITY  
Power up, brownout, supply  
supervisor  
SVSHIFG  
PMMRSTIFG  
WDTIFG  
External reset RST  
Watchdog time-out (watchdog  
mode)  
SYSRSTIV(1) (2)  
Reset  
0FFFEh  
Highest  
WDT, FRCTL MPU, CS,  
PMM password violation  
WDTPW, FRCTLPW, MPUPW, CSPW,  
PMMPW  
FRAM uncorrectable bit error  
detection  
UBDIFG  
MPUSEG1IFG, MPUSEG2IFG,  
MPUSEG3IFG  
MPU segment violation  
Software POR, BOR  
System NMI  
PMMPORIFG, PMMBORIFG  
Vacant memory access  
JTAG mailbox  
VMAIFG  
JMBINIFG, JMBOUTIFG  
ACCTEIFG  
FRAM access time error  
FRAM write protection error  
FRAM bit error detection  
SYSSNIV(1) (3) (Non)maskable  
0FFFCh  
WPIFG  
CBDIFG, UBDIFG  
MPUSEG1IFG, MPUSEG2IFG,  
MPUSEG3IFG  
MPU segment violation  
User NMI  
External NMI  
NMIIFG  
OFIFG  
SYSUNIV(1) (3) (Non)maskable  
0FFFAh  
Oscillator fault  
LEA RAM access conflict  
Comparator_E  
TB0  
DACCESSIFG  
CEIFG, CEIIFG  
TB0CCR0.CCIFG  
CEIV(1)  
Maskable  
Maskable  
0FFF8h  
0FFF6h  
TB0CCR1.CCIFG to TB0CCR6.CCIFG,  
TB0CTL.TBIFG  
TB0  
TB0IV(1)  
Maskable  
Maskable  
0FFF4h  
0FFF2h  
Watchdog timer (interval timer  
mode)  
WDTIFG  
UCA0IFG: UCRXIFG, UCTXIFG (SPI  
mode)  
UCA0IFG: UCSTTIFG, UCTXCPTIFG,  
UCRXIFG, UCTXIFG (UART mode)  
eUSCI_A0 receive or transmit  
eUSCI_B0 receive or transmit  
UCA0IV(1)  
Maskable  
0FFF0h  
UCB0IFG: UCRXIFG, UCTXIFG (SPI  
mode)  
UCB0IFG: UCALIFG, UCNACKIFG,  
UCSTTIFG, UCSTPIFG, UCRXIFG0,  
UCTXIFG0, UCRXIFG1, UCTXIFG1,  
UCRXIFG2, UCTXIFG2, UCRXIFG3,  
UCTXIFG3, UCCNTIFG, UCBIT9IFG  
(I2C mode)  
UCB0IV(1)  
Maskable  
0FFEEh  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
MSP430FR6007, MSP430FR6005  
www.ti.com  
PRIORITY  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
Table 9-4. Interrupt Sources, Flags, and Vectors (continued)  
INTERRUPT  
VECTOR  
REGISTER  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
ADC12IFG0 to ADC12IFG31  
ADC12LOIFG, ADC12INIFG,  
ADC12HIIFG, ADC12RDYIFG,  
ADC21OVIFG, ADC12TOVIFG  
ADC12_B  
ADC12IV(1) (4)  
Maskable  
0FFECh  
TA0  
TA0  
TA0CCR0.CCIFG  
Maskable  
Maskable  
0FFEAh  
0FFE8h  
TA0CCR1.CCIFG, TA0CCR2.CCIFG,  
TA0CTL.TAIFG  
TA0IV(1)  
UCA1IFG: UCRXIFG, UCTXIFG (SPI  
mode)  
UCA1IFG: UCSTTIFG, UCTXCPTIFG,  
UCRXIFG, UCTXIFG (UART mode)  
eUSCI_A1 receive or transmit  
DMA  
UCA1IV(1)  
Maskable  
Maskable  
0FFE6h  
0FFE4h  
DMA0CTL.DMAIFG,  
DMA1CTL.DMAIFG,  
DMA2CTL.DMAIFG  
DMAIV(1)  
TA1  
TA1  
TA1CCR0.CCIFG  
Maskable  
Maskable  
0FFE2h  
0FFE0h  
TA1CCR1.CCIFG, TA1CCR2.CCIFG,  
TA1CTL.TAIFG  
TA1IV(1)  
P1IV(1)  
I/O port P1  
TA2  
P1IFG.0 to P1IFG.7  
TA2CCR0.CCIFG  
Maskable  
Maskable  
0FFDEh  
0FFDCh  
TA2CCR1.CCIFG  
TA2CTL.TAIFG  
TA2  
TA2IV(1)  
P2IV(1)  
Maskable  
0FFDAh  
I/O port P2  
TA3  
P2IFG.0 to P2IFG.7  
TA3CCR0.CCIFG  
Maskable  
Maskable  
0FFD8h  
0FFD6h  
TA3CCR1.CCIFG  
TA3CTL.TAIFG  
TA3  
TA3IV(1)  
Maskable  
0FFD4h  
I/O port P3  
I/O port P4  
LCD_C  
P3IFG.0 to P3IFG.7  
P4IFG.0 to P4IFG.7  
LCD_C interrupt flags  
P3IV(1)  
P4IV(1)  
Maskable  
Maskable  
Maskable  
0FFD2h  
0FFD0h  
0FFCEh  
LCDCIV(1)  
RTCRDYIFG, RTCTEVIFG, RTCAIFG,  
RT0PSIFG, RT1PSIFG, RTCOFIFG  
RTC_C  
RTCIV(1)  
Maskable  
0FFCCh  
AES  
TA4  
AESRDYIFG  
Maskable  
Maskable  
0FFCAh  
0FFC8h  
TA4CCR0.CCIFG  
TA4CCR1.CCIFG  
TA4CTL.TAIFG  
TA4  
TA4IV(1)  
Maskable  
0FFC6h  
I/O port P5  
I/O port P6  
P5IFG.0 to P5IFG.7  
P6IFG.0 to P6IFG.7  
P5IV(1)  
P6IV(1)  
Maskable  
Maskable  
0FFC4h  
0FFC2h  
UCA2IFG: UCRXIFG, UCTXIFG (SPI  
mode)  
UCA2IFG: UCSTTIFG, UCTXCPTIFG,  
UCRXIFG, UCTXIFG (UART mode)  
eUSCI_A2 receive or transmit  
eUSCI_A3 receive or transmit  
UCA2IV(1)  
UCA3IV(1)  
Maskable  
Maskable  
0FFC0h  
0FFBEh  
UCA3IFG: UCRXIFG, UCTXIFG (SPI  
mode)  
UCA3IFG: UCSTTIFG, UCTXCPTIFG,  
UCRXIFG, UCTXIFG (UART mode)  
UCB1IFG: UCRXIFG, UCTXIFG (SPI  
mode)  
UCB1IFG: UCALIFG, UCNACKIFG,  
UCSTTIFG, UCSTPIFG, UCRXIFG0,  
UCTXIFG0, UCRXIFG1, UCTXIFG1,  
UCRXIFG2, UCTXIFG2, UCRXIFG3,  
UCTXIFG3, UCCNTIFG, UCBIT9IFG  
(I2C mode)  
eUSCI_B1 receive or transmit  
UCB1IV(1)  
Maskable  
0FFBCh  
Copyright © 2020 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 9-4. Interrupt Sources, Flags, and Vectors (continued)  
INTERRUPT  
VECTOR  
REGISTER  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
PRIORITY  
I/O port P7  
I/O port P8  
I/O port P9  
P7IFG.0 to P7IFG.7  
P8IFG.0 to P8IFG.7  
P9IFG.0 to P9IFG.7  
P7IV(1)  
P8IV(1)  
P9IV(1)  
Maskable  
Maskable  
Maskable  
0FFBAh  
0FFB8h  
0FFB6h  
CMDIFG, SDIIFG, OORIFG, TIFG,  
COVLIFG  
LEA  
LEAIV(1)  
Maskable  
0FFB4h  
UUPS  
HSPLL  
SAPH  
PTMOUT, PREQIG  
PLLUNLOCK  
IIDX(1)  
IIDX(1)  
IIDX(1)  
Maskable  
Maskable  
Maskable  
0FFB2h  
0FFB0h  
0FFAEh  
DATAERR, TAMTO, SEQDN, PNGDN  
OVF, ACQDONE, SSTRG, DTRDY,  
WINHI, WINLO  
SDHS  
IIDX(1)  
Maskable  
0FFACh  
Lowest  
(1) Multiple source flags  
(2) A reset is generated if the CPU tries to fetch instructions from within peripheral space.  
(3) (Non)maskable: the individual interrupt enable bit can disable an interrupt event, but the general interrupt enable cannot disable it.  
(4) Only on devices with ADC, otherwise reserved.  
Table 9-5. Signatures  
SIGNATURE  
IP Encapsulation Signature2  
IP Encapsulation Signature1(1)  
BSL Signature2  
WORD ADDRESS  
0FF8Ah  
0FF88h  
0FF86h  
BSL Signature1  
0FF84h  
JTAG Signature2  
0FF82h  
JTAG Signature1  
0FF80h  
(1) Must not contain 0AAAAh if used as the JTAG password.  
9.7 Bootloader (BSL)  
The BSL can program the FRAM or RAM using a UART serial interface (FRxxxx devices). Access to the device  
memory through the BSL is protected by an user-defined password. Table 9-6 lists the pins that are required for  
use of the BSL. BSL entry requires a specific entry sequence on the RST/NMI/SBWTDIO and TEST/SBWTCK  
pins. For a complete description of the features of the BSL and its implementation, see the MSP430 FRAM  
Devices Bootloader (BSL) User's Guide. More information on the BSL can be found at www.ti.com/tool/mspbsl.  
Table 9-6. BSL Pin Requirements and Functions  
DEVICE SIGNAL  
BSL FUNCTION  
RST/NMI/SBWTDIO  
Entry sequence signal  
TEST/SBWTCK  
Entry sequence signal  
P2.0  
P2.1  
VCC  
VSS  
Devices with UART BSL (FRxxxx): Data transmit  
Devices with UART BSL (FRxxxx): Data receive  
Power supply  
Ground supply  
9.8 JTAG Operation  
9.8.1 JTAG Standard Interface  
The MSP family supports the standard JTAG interface, which requires four signals for sending and receiving  
data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to enable the  
JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with MSP  
development tools and device programmers. Table 9-7 lists the JTAG pin requirements. For further details on  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
 
 
 
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide. For a  
complete description of the features of the JTAG interface and its implementation, see MSP430 Programming  
With the JTAG Interface.  
Table 9-7. JTAG Pin Requirements and Functions  
DEVICE SIGNAL  
DIRECTION(1)  
FUNCTION  
JTAG clock input  
JTAG state control  
JTAG data input, TCLK input  
JTAG data output  
Enable JTAG pins  
External reset  
PJ.3/TCK  
IN  
IN  
PJ.2/TMS  
PJ.1/TDI/TCLK  
PJ.0/TDO  
IN  
OUT  
IN  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
DVCC  
IN  
N/A  
N/A  
Power supply  
DVSS  
Ground supply  
(1) N/A = not applicable  
9.8.2 Spy-Bi-Wire (SBW) Interface  
In addition to the standard JTAG interface, the MSP family supports the 2-wire SBW interface. SBW can be used  
to interface with MSP development tools and device programmers. Table 9-8 lists the SBW interface pin  
requirements. For further details on interfacing to development tools and device programmers, see the MSP430  
Hardware Tools User's Guide. For a complete description of the features of the JTAG interface and its  
implementation, see MSP430 Programming With the JTAG Interface.  
Table 9-8. SBW Pin Requirements and Functions  
DEVICE SIGNAL  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
DVCC  
DIRECTION(1)  
FUNCTION  
Spy-Bi-Wire clock input  
Spy-Bi-Wire data input and output  
Power supply  
IN  
IN, OUT  
N/A  
DVSS  
N/A  
Ground supply  
(1) N/A = not applicable  
Copyright © 2020 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
9.9 FRAM Controller A (FRCTL_A)  
The FRAM can be programmed through the JTAG port, SBW, the BSL, or in-system by the CPU. Features of the  
FRAM include:  
Ultra-low-power ultra-fast-write nonvolatile memory  
Byte and word access capability  
Programmable wait state generation  
Error correction coding (ECC)  
Note  
Wait States  
For MCLK frequencies > 8 MHz, wait states must be configured following the flow described in the  
"Wait State Control" section of the FRAM Controller A (FRCTRL_A) chapter in the MSP430FR58xx,  
MSP430FR59xx, and MSP430FR6xx Family User's Guide.  
For important software design information regarding FRAM including but not limited to partitioning the memory  
layout according to application-specific code, constant, and data space requirements, the use of FRAM to  
optimize application energy consumption, and the use of the Memory Protection Unit (MPU) to maximize  
application robustness by protecting the program code against unintended write accesses, see MSP430™  
FRAM Technology – How To and Best Practices.  
9.10 RAM  
The RAM is made up of three sectors: Sector 0 = 2KB, Sector 1 = 2KB, Sector 2 = 4KB (shared with LEA). Each  
sector can be individually powered down in LPM3 and LPM4 to save leakage. All data in the sector is lost when  
a sector is powered down.  
9.11 Tiny RAM  
Tiny RAM is 22 bytes of RAM in addition to the complete RAM (see Table 9-45). This memory is always  
available, even in LPM3 and LPM4, while the complete RAM can be powered down in LPM3 and LPM4. Tiny  
RAM can be used to hold data or a very small stack when the complete RAM is powered down in LPM3 and  
LPM4. No memory is available in LPMx.5.  
9.12 Memory Protection Unit (MPU) Including IP Encapsulation  
The FRAM can be protected by the MPU from inadvertent CPU execution, read access, or write access.  
Features of the MPU include:  
IP encapsulation with programmable boundaries in steps of 1KB (prevents reads from outside the application;  
for example, through JTAG or by non-IP software).  
Main memory partitioning is programmable up to three segments in steps of 1KB.  
Access rights of each segment can be individually selected (main and information memory).  
Access violation flags with interrupt capability for easy servicing of access violations.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
9.13 Peripherals  
Peripherals are connected to the CPU through data, address, and control buses. Peripherals can be controlled  
using all instructions. For complete module descriptions, see the MSP430FR58xx, MSP430FR59xx, and  
MSP430FR6xx Family User's Guide.  
9.13.1 Digital I/O  
Up to ten 8-bit I/O ports are implemented:  
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt conditions is possible.  
Programmable pullup or pulldown on all ports.  
Edge-selectable interrupt and LPM3.5 and LPM4.5 wake-up input is available for all pins of ports P1 to P9.  
Read and write access to port control registers is supported by all instructions.  
Ports P1 and P2 (PA), P3 and P4 (PB), P5 and P6 (PC), P7 and P8 (PD), or P9 (PE) can be accessed byte-  
wise or word-wise in pairs.  
No cross currents during start-up.  
Note  
Configuration of Digital I/Os After BOR Reset  
To prevent any cross currents during start-up of the device, all port pins are high-impedance with  
Schmitt triggers and their module functions disabled. To enable the I/O functionality after a BOR reset,  
the ports must be configured first and then the LOCKLPM5 bit must be cleared. For details, see the  
Configuration After Reset section of the Digital I/O chapter in the MSP430FR58xx, MSP430FR59xx,  
and MSP430FR6xx Family User's Guide.  
9.13.2 Oscillator and Clock System (CS)  
The clock system includes support for a 32-kHz watch-crystal oscillator XT1 (LF), an internal very-low-power  
low-frequency oscillator (VLO), an integrated internal digitally controlled oscillator (DCO), and a high-frequency  
crystal oscillator XT2 (HF). The clock system module is designed to meet the requirements of both low system  
cost and low power consumption. A fail-safe mechanism exists for all crystal sources. The clock system module  
provides the following clock signals:  
Auxiliary clock (ACLK). ACLK can be sourced from a 32-kHz watch crystal (LFXT1), the internal VLO, or a  
digital external low-frequency (<50-kHz) clock source.  
Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced from a high-frequency crystal  
(HFXT2), the internal DCO, a 32-kHz watch crystal (LFXT1), the internal VLO, or a digital external clock  
source.  
Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be sourced by  
same sources made available to MCLK.  
9.13.3 Power-Management Module (PMM)  
The PMM includes an integrated voltage regulator that supplies the core voltage to the device . The PMM also  
includes supply voltage supervisor (SVS) and brownout protection. The brownout circuit provides the proper  
internal reset signal to the device during power on and power off. The SVS circuitry detects if the supply voltage  
drops below a safe level and below a user-selectable level. SVS circuitry is available on the primary and core  
supplies.  
9.13.4 Hardware Multiplier (MPY)  
The multiplication operation is supported by a dedicated peripheral module. The module performs operations  
with 32-, 24-, 16-, and 8-bit operands. The module supports signed multiplication, unsigned multiplication, signed  
multiply-and-accumulate, and unsigned multiply-and-accumulate operations.  
Copyright © 2020 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
9.13.5 Real-Time Clock (RTC_C)  
The RTC_C module contains an integrated real-time clock (RTC) with the following features:  
Calendar mode with leap year correction  
General-purpose counter mode  
The internal calendar compensates for months with fewer than 31 days and includes leap year correction. The  
RTC_C also supports flexible alarm functions and offset-calibration hardware. RTC operation is available in  
LPM3.5 modes to minimize power consumption.  
9.13.6 Watchdog Timer (WDT_A)  
The primary function of the WDT_A module is to perform a controlled system restart if a software problem  
occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed  
in an application, the module can be configured as an interval timer and can generate interrupts at selected time  
intervals. Table 9-9 lists the clocks that can source the WDT_A module.  
Table 9-9. WDT_A Clocks  
NORMAL OPERATION  
WDTSSEL  
(WATCHDOG AND INTERVAL TIMER  
MODE)  
00  
01  
10  
11  
SMCLK  
ACLK  
VLOCLK  
LFMODCLK  
9.13.7 System Module (SYS)  
The SYS module manages many system functions within the device. These functions include power-on reset  
(POR) and power-up clear (PUC) handling, NMI source selection and management, reset interrupt vector  
generators, bootloader (BSL) entry mechanisms, and configuration management (device descriptors). The SYS  
module also includes a data exchange mechanism through JTAG called a JTAG mailbox that can be used in the  
application. Table 9-10 lists the SYS module interrupt vector registers.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 9-10. System Module Interrupt Vector Registers  
INTERRUPT VECTOR  
REGISTER  
ADDRESS  
INTERRUPT EVENT  
VALUE  
PRIORITY  
No interrupt pending  
Brownout (BOR)  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
22h  
24h  
Highest  
RSTIFG RST/NMI (BOR)  
PMMSWBOR software BOR (BOR)  
LPMx.5 wakeup (BOR)  
Security violation (BOR)  
Reserved  
SVSHIFG SVSH event (BOR)  
Reserved  
Reserved  
PMMSWPOR software POR (POR)  
WDTIFG watchdog time-out (PUC)  
WDTPW password violation (PUC)  
FRCTLPW password violation (PUC)  
Uncorrectable FRAM bit error detection (PUC)  
Peripheral area fetch (PUC)  
PMMPW PMM password violation (PUC)  
MPUPW MPU password violation (PUC)  
CSPW CS password violation (PUC)  
SYSRSTIV, System Reset  
019Eh  
MPUSEGIPIFG encapsulated IP memory segment violation  
(PUC)  
26h  
Reserved  
MPUSEG1IFG segment 1 memory violation (PUC)  
MPUSEG2IFG segment 2 memory violation (PUC)  
MPUSEG3IFG segment 3 memory violation (PUC)  
Reserved  
28h  
2Ah  
2Ch  
2Eh  
30h to 3Eh  
00h  
Lowest  
Highest  
No interrupt pending  
Reserved  
02h  
Uncorrectable FRAM bit error detection  
FRAM access time error  
04h  
06h  
MPUSEGIPIFG encapsulated IP memory segment violation  
Reserved  
08h  
0Ah  
0Ch  
0Eh  
10h  
MPUSEG1IFG segment 1 memory violation  
MPUSEG2IFG segment 2 memory violation  
MPUSEG3IFG segment 3 memory violation  
VMAIFG vacant memory access  
JMBINIFG JTAG mailbox input  
JMBOUTIFG JTAG mailbox output  
Correctable FRAM bit error detection  
FRAM Write Protection Detection  
LEA time-out fault  
SYSSNIV, System NMI  
019Ch  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
LEA command fault  
Lowest  
Copyright © 2020 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 9-10. System Module Interrupt Vector Registers (continued)  
INTERRUPT VECTOR  
ADDRESS  
INTERRUPT EVENT  
VALUE  
PRIORITY  
REGISTER  
No interrupt pending  
NMIIFG NMI pin  
OFIFG oscillator fault  
DACCESSIFG  
Reserved  
00h  
02h  
Highest  
04h  
SYSUNIV, User NMI  
019Ah  
06h  
08h  
Reserved  
0Ah to 1Eh  
Lowest  
9.13.8 DMA Controller  
The DMA controller allows movement of data from one memory address to another without CPU intervention.  
For example, the DMA controller can be used to move data from the ADC12_B conversion memory to RAM.  
Using the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces  
system power consumption by allowing the CPU to remain in sleep mode, without having to awaken to move  
data to or from a peripheral. Table 9-11 lists the available triggers for the DMA.  
Table 9-11. DMA Trigger Assignments  
TRIGGER  
CHANNEL 0  
CHANNEL 1  
CHANNEL 2  
CHANNEL 3  
CHANNEL 4  
CHANNEL 5  
(1)  
0
1
DMAREQ  
DMAREQ  
DMAREQ  
DMAREQ  
DMAREQ  
DMAREQ  
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2CCR0 CCIFG  
TA3CCR0 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
TA4CCR0 CCIFG  
Reserved  
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2CCR0 CCIFG  
TA3CCR0 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
TA4CCR0 CCIFG  
Reserved  
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2CCR0 CCIFG  
TA3CCR0 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
TA4CCR0 CCIFG  
Reserved  
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2CCR0 CCIFG  
TA3CCR0 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
TA4CCR0 CCIFG  
Reserved  
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2CCR0 CCIFG  
TA3CCR0 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
TA4CCR0 CCIFG  
Reserved  
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2CCR0 CCIFG  
TA3CCR0 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
TA4CCR0 CCIFG  
Reserved  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
AES Trigger 0  
AES Trigger 1  
AES Trigger 2  
UCA0RXIFG  
AES Trigger 0  
AES Trigger 1  
AES Trigger 2  
UCA0RXIFG  
AES Trigger 0  
AES Trigger 1  
AES Trigger 2  
UCA0RXIFG  
AES Trigger 0  
AES Trigger 1  
AES Trigger 2  
UCA2RXIFG  
AES Trigger 0  
AES Trigger 1  
AES Trigger 2  
UCA2RXIFG  
AES Trigger 0  
AES Trigger 1  
AES Trigger 2  
UCA2RXIFG  
UCA0TXIFG  
UCA0TXIFG  
UCA0TXIFG  
UCA2TXIFG  
UCA2TXIFG  
UCA2TXIFG  
UCA1RXIFG  
UCA1RXIFG  
UCA1RXIFG  
UCA3RXIFG  
UCA3RXIFG  
UCA3RXIFG  
UCA1TXIFG  
UCA1TXIFG  
UCA1TXIFG  
UCA3TXIFG  
UCA3TXIFG  
UCA3TXIFG  
UCB0RXIFG (SPI)  
UCB0RXIFG0 (I2C)  
UCB0RXIFG (SPI)  
UCB0RXIFG0 (I2C)  
UCB0RXIFG (SPI)  
UCB0RXIFG0 (I2C)  
UCB1RXIFG (SPI)  
UCB1RXIFG0 (I2C)  
UCB1RXIFG (SPI)  
UCB1RXIFG0 (I2C)  
UCB1RXIFG (SPI)  
UCB1RXIFG0 (I2C)  
18  
19  
UCB0TXIFG (SPI)  
UCB0TXIFG0 (I2C)  
UCB0TXIFG (SPI)  
UCB0TXIFG0 (I2C)  
UCB0TXIFG (SPI)  
UCB0TXIFG0 (I2C)  
UCB1TXIFG (SPI)  
UCB1TXIFG0 (I2C)  
UCB1TXIFG (SPI)  
UCB1TXIFG0 (I2C)  
UCB1TXIFG (SPI)  
UCB1TXIFG0 (I2C)  
20  
21  
22  
23  
24  
25  
UCB0RXIFG1 (I2C)  
UCB0TXIFG1 (I2C)  
UCB0RXIFG2 (I2C)  
UCB0TXIFG2 (I2C)  
UCB0RXIFG3 (I2C)  
UCB0TXIFG3 (I2C)  
UCB0RXIFG1 (I2C)  
UCB0TXIFG1 (I2C)  
UCB0RXIFG2 (I2C)  
UCB0TXIFG2 (I2C)  
UCB0RXIFG3 (I2C)  
UCB0TXIFG3 (I2C)  
UCB0RXIFG1 (I2C)  
UCB0TXIFG1 (I2C)  
UCB0RXIFG2 (I2C)  
UCB0TXIFG2 (I2C)  
UCB0RXIFG3 (I2C)  
UCB0TXIFG3 (I2C)  
UCB1RXIFG1 (I2C)  
UCB1TXIFG1 (I2C)  
UCB1RXIFG2 (I2C)  
UCB1TXIFG2 (I2C)  
UCB1RXIFG3 (I2C)  
UCB1TXIFG3 (I2C)  
UCB1RXIFG1 (I2C)  
UCB1TXIFG1 (I2C)  
UCB1RXIFG2 (I2C)  
UCB1TXIFG2 (I2C)  
UCB1RXIFG3 (I2C)  
UCB1TXIFG3 (I2C)  
UCB1RXIFG1 (I2C)  
UCB1TXIFG1 (I2C)  
UCB1RXIFG2 (I2C)  
UCB1TXIFG2 (I2C)  
UCB1RXIFG3 (I2C)  
UCB1TXIFG3 (I2C)  
ADC12 end of  
conversion  
ADC12 end of  
conversion  
ADC12 end of  
conversion  
ADC12 end of  
conversion  
ADC12 end of  
conversion  
ADC12 end of  
conversion  
26  
27  
28  
29  
LEA ready  
Reserved  
MPY ready  
LEA ready  
Reserved  
MPY ready  
LEA ready  
Reserved  
MPY ready  
LEA ready  
Reserved  
MPY ready  
LEA ready  
Reserved  
MPY ready  
LEA ready  
Reserved  
MPY ready  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 9-11. DMA Trigger Assignments (continued)  
TRIGGER  
CHANNEL 0  
CHANNEL 1  
CHANNEL 2  
CHANNEL 3  
CHANNEL 4  
CHANNEL 5  
(1)  
30  
31  
DMA2IFG  
DMAE0  
DMA0IFG  
DMAE0  
DMA1IFG  
DMAE0  
DMA5IFG  
DMAE0  
DMA3IFG  
DMAE0  
DMA4IFG  
DMAE0  
(1) If a reserved trigger source is selected, no trigger is generated.  
9.13.9 Enhanced Universal Serial Communication Interface (eUSCI)  
The eUSCI modules are used for serial data communication. The eUSCI module supports synchronous  
communication protocols such as SPI (3- or 4-pin) and I2C, and asynchronous communication protocols such as  
UART, enhanced UART with automatic baud-rate detection, and IrDA.  
The eUSCI_A0, eUSCI_A1, eUSCI_A2, and eUSCI_A3 modules support SPI (3- or 4-pin), UART, enhanced  
UART, and IrDA.  
The eUSCI_B0 and eUSCI_B1 modules support SPI (3- or 4-pin) and I2C.  
Four eUSCI_A modules and two eUSCI_B modules are implemented.  
9.13.10 TA0, TA1, and TA4  
TA0, TA1, and TA4 are 16-bit timers and counters (Timer_A type) with three (TA0 and TA1) or two (TA4) capture/  
compare registers each. Each timer can support multiple captures or compares, PWM outputs, and interval  
timing (see Table 9-12, Table 9-13, and Table 9-14). Each timer has extensive interrupt capabilities. Interrupts  
may be generated from the counter on overflow conditions and from each capture/compare register.  
Table 9-12. TA0 Signal Connections  
DEVICE  
OUTPUT  
SIGNAL  
DEVICE INPUT MODULE INPUT  
MODULE  
BLOCK  
MODULE  
OUTPUT SIGNAL  
INPUT PORT PIN  
OUTPUT PORT PIN  
SIGNAL  
SIGNAL  
P2.4, P4.5, P5.5  
TA0CLK  
ACLK (internal)  
SMCLK (internal)  
TA0CLK  
TACLK  
ACLK  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
Timer  
CCR0  
N/A  
TA0  
N/A  
P2.4. P4.5, P5.5  
P2.3  
TA0.0  
P2.3  
P2.7  
P2.7  
TA0.0  
TA0.0  
DVSS  
DVCC  
VCC  
P7.4  
P7.7  
TA0.1  
CCI1A  
P7.4  
ADC12(internal)(1)  
ADC12SHSx = {1}  
COUT (internal)  
CCI1B  
CCR1  
CCR2  
TA1  
TA2  
TA0.1  
TA0.2  
DVSS  
DVCC  
TA0.2  
GND  
VCC  
CCI2A  
P7.7  
UUPS Trigger  
(USSPWRUP)  
UUPS.CTL.USSPWRU  
PSEL = {2}  
ACLK (internal)  
CCI2B  
DVSS  
DVCC  
GND  
VCC  
(1) Only on devices with ADC.  
Copyright © 2020 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 9-13. TA1 Signal Connections  
DEVICE  
OUTPUT  
SIGNAL  
DEVICE INPUT MODULE INPUT  
MODULE  
BLOCK  
MODULE  
OUTPUT SIGNAL  
INPUT PORT PIN  
OUTPUT PORT PIN  
SIGNAL  
SIGNAL  
P2.4, P4.5  
TA1CLK  
ACLK (internal)  
SMCLK (internal)  
TA1CLK  
TACLK  
ACLK  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
Timer  
CCR0  
N/A  
TA0  
N/A  
P2.4. P4.5  
P1.0  
TA1.0  
P1.0  
P9.0  
P9.0  
TA1.0  
TA1.0  
DVSS  
DVCC  
VCC  
P7.5  
P8.4  
TA1.1  
CCI1A  
P7.5  
ADC12(internal)(1)  
ADC12SHSx = {4}  
COUT (internal)  
CCI1B  
CCR1  
CCR2  
TA1  
TA2  
TA1.1  
TA1.2  
DVSS  
DVCC  
TA1.2  
GND  
VCC  
CCI2A  
P8.4  
ASQ Trigger  
(ASQTRIG)  
SAPH.ASCTL0.TRIGS  
EL= {2}  
ACLK (internal)  
CCI2B  
DVSS  
DVCC  
GND  
VCC  
(1) Only on devices with ADC.  
Table 9-14. TA4 Signal Connections  
DEVICE INPUT MODULE INPUT  
MODULE  
BLOCK  
MODULE  
OUTPUT SIGNAL  
DEVICE OUTPUT  
SIGNAL  
INPUT PORT PIN  
OUTPUT PORT PIN  
SIGNAL  
TA4CLK  
ACLK (internal)  
SMCLK (internal)  
TA4CLK  
TA4.0  
SIGNAL  
TACLK  
ACLK  
PJ.1,P4.6  
Timer  
CCR0  
N/A  
TA0  
N/A  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
PJ.1, P4.6  
P1.1  
P1.1  
P2.5  
P2.5  
TA4.0  
TA4.0  
DVSS  
DVCC  
VCC  
P7.6  
P2.6  
TA4.1  
CCI1A  
CCI1B  
P7.6  
P2.6  
TA4.1  
ADC12(internal)(1)  
ADC12SHSx = {7}  
CCR1  
TA1  
TA4.1  
DVSS  
DVCC  
GND  
VCC  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
9.13.11 TA2 and TA3  
TA2 and TA3 are 16-bit timers and counters (Timer_A type) with two capture/compare registers each and with  
internal connections only. Each timer can support multiple captures or compares, PWM outputs, and interval  
timing (see Table 9-15 and Table 9-16). Each timer has extensive interrupt capabilities. Interrupts may be  
generated from the counter on overflow conditions and from each capture/compare register.  
Table 9-15. TA2 Signal Connections  
MODULE OUTPUT  
DEVICE INPUT SIGNAL MODULE INPUT NAME  
MODULE BLOCK  
DEVICE OUTPUT SIGNAL  
SIGNAL  
COUT (internal)  
ACLK (internal)  
SMCLK (internal)  
Reserved  
TACLK  
ACLK  
Timer  
N/A  
SMCLK  
INCLK  
TA3 CCR0 output  
(internal)  
CCI0A  
TA3 CCI0A input  
ACLK (internal)  
DVSS  
CCI0B  
GND  
VCC  
CCR0  
CCR1  
TA0  
TA1  
DVCC  
ADC12 (internal)  
ADC12SHSx = {5}  
Reserved  
CCI1A  
CCI1B  
PPG Trigger (PPGTRIG)  
SAPH.PGCTL.TRSEL= {2}  
COUT (internal)  
DVSS  
DVCC  
GND  
VCC  
Table 9-16. TA3 Signal Connections  
MODULE OUTPUT  
SIGNAL  
DEVICE OUTPUT  
SIGNAL  
DEVICE INPUT SIGNAL  
MODULE INPUT NAME  
MODULE BLOCK  
COUT (internal)  
ACLK (internal)  
SMCLK (internal)  
Reserved  
TACLK  
ACLK  
Timer  
N/A  
TA0  
SMCLK  
INCLK  
TA2 CCR0 output  
(internal)  
CCI0A  
TA2 CCI0A input  
ACLK (internal)  
DVSS  
CCI0B  
GND  
VCC  
CCR0  
CCR1  
DVCC  
ADC12 (internal)  
ADC12SHSx = {6}  
Reserved  
CCI1A  
COUT (internal)  
DVSS  
CCI1B  
GND  
VCC  
TA1  
DVCC  
Copyright © 2020 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
9.13.12 TB0  
TB0 is a 16-bit timer and counter (Timer_B type) with seven capture/compare registers. TB0 can support  
multiple captures or compares, PWM outputs, and interval timing (see Table 9-17). TB0 has extensive interrupt  
capabilities. Interrupts may be generated from the counter on overflow conditions and from each capture/  
compare register.  
Table 9-17. TB0 Signal Connections  
DEVICE INPUT MODULE INPUT  
MODULE  
OUTPUT SIGNAL  
DEVICE OUTPUT  
SIGNAL  
INPUT PORT PIN  
MODULE BLOCK  
OUTPUT PORT PIN  
SIGNAL  
SIGNAL  
TBCLK  
ACLK  
P2.4, P4.6  
TB0CLK  
ACLK (internal)  
SMCLK (internal)  
TB0CLK  
Timer  
N/A  
N/A  
SMCLK  
INCLK  
CCI0A  
CCI0B  
P2.4, P4.6  
P7.2  
TB0.0  
P7.2  
P3.0  
P3.0  
TB0.0  
CCR0  
CCR1  
TB0  
TB0.0  
ADC12 (internal)  
ADC12SHSx = {2}  
DVSS  
GND  
DVCC  
TB0.1  
VCC  
P7.3  
P8.0  
CCI1A  
CCI1B  
P7.3  
P3.1  
COUT (internal)  
TB1  
TB0.1  
ADC12 (internal)  
ADC12SHSx = {3}  
DVSS  
GND  
DVCC  
TB0.2  
VCC  
CCI2A  
CCI2B  
GND  
P8.0  
P3.2  
ACLK (internal)  
DVSS  
CCR2  
CCR3  
CCR4  
CCR5  
CCR6  
TB2  
TB3  
TB4  
TB5  
TB6  
TB0.2  
TB0.3  
TB0.4  
TB0.5  
TB0.6  
DVCC  
TB0.3  
VCC  
P8.1  
P3.3  
CCI3A  
CCI3B  
GND  
P8.1  
P3.3  
TB0.3  
DVSS  
DVCC  
TB0.4  
VCC  
P1.4  
P3.5  
CCI4A  
CCI4B  
GND  
P1.4  
P3.5  
TB0.4  
DVSS  
DVCC  
TB0.5  
VCC  
P1.5  
P3.6  
CCI5A  
CCI5B  
GND  
P1.5  
P3.6  
TB0.5  
DVSS  
DVCC  
TB0.6  
VCC  
PJ.3  
P3.7  
CCI6A  
CCI6B  
GND  
PJ.3  
P3.7  
TB0.6  
DVSS  
DVCC  
VCC  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
9.13.13 ADC12_B  
The ADC12_B module supports fast 12-bit analog-to-digital conversions with differential and single-ended  
inputs. The module implements a 12-bit SAR core, sample select control, a reference generator, and a  
conversion result buffer. A window comparator with lower and upper limits allows CPU-independent result  
monitoring with three window comparator interrupt flags.  
Table 9-18 lists the external trigger sources.  
Table 9-18. ADC12_B Trigger Signal Connections  
ADC12SHSx  
CONNECTED TRIGGER  
SOURCE  
BINARY  
DECIMAL  
000  
001  
010  
011  
100  
101  
110  
111  
0
1
2
3
4
5
6
7
Software (ADC12SC)  
TA0 CCR1 output  
TB0 CCR0 output  
TB0 CCR1 output  
TA1 CCR1 output  
TA2 CCR1 output  
TA3 CCR1 output  
TA4 CCR1 output  
Table 9-19 lists the available multiplexing between internal and external analog inputs.  
Table 9-19. ADC12_B External and Internal Signal Mapping  
CONTROL BIT IN ADC12CTL3  
REGISTER  
EXTERNAL ADC INPUT  
(CONTROL BIT = 0)  
INTERNAL ADC INPUT  
(CONTROL BIT = 1)  
ADC12BATMAP  
ADC12TCMAP  
ADC12CH0MAP  
ADC12CH1MAP  
ADC12CH2MAP  
ADC12CH3MAP  
A31  
A30  
A29  
A28  
A27  
A26  
Battery monitor  
Temperature sensor  
N/A(1)  
N/A(1)  
N/A(1)  
N/A(1)  
(1) N/A = No internal signal is available on this device.  
Copyright © 2020 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
9.13.14 USS  
Table 9-20 lists the available UUPS triggers.  
Table 9-20. UUPS Trigger Signal Connections  
UUPS.CTL.USSPWRUPSEL  
CONNECTED TRIGGER SOURCE  
BINARY  
00  
01  
10  
11  
Software (UUPS.CTL.USSPWRUP)  
RTC (any enabled interrupt events)  
TA0 CCR2 output  
P1.7  
Table 9-21 lists the available PPG triggers.  
Table 9-21. PPG Trigger Signal Connections  
SAPH.PGCTL.TRSEL  
CONNECTED TRIGGER SOURCE  
BINARY  
00  
01  
10  
11  
Software (SAPH.PPGTRIG.PPGTRIG)  
ASQ (Acquisition Sequencer)  
TA2 CCR1 output  
Reserved  
Table 9-22 lists the available ASQ triggers.  
Table 9-22. ASQ Trigger Signal Connections  
SAPH.ASCTL0.TRIGSEL  
CONNECTED TRIGGER SOURCE  
BINARY  
00  
01  
10  
11  
Software (SAPH.ASQTRIG.ASQTRIG)  
PSQ (Power Sequencer)  
TA1 CCR2 output  
Reserved  
9.13.15 Comparator_E  
The primary function of the Comparator_E module is to support precision slope analog-to-digital conversions,  
battery voltage supervision, and monitoring of external analog signals.  
9.13.16 CRC16  
The CRC16 module produces a signature based on a sequence of entered data values and can be used for data  
checking purposes. The CRC16 module signature is based on the CRC-CCITT standard.  
9.13.17 CRC32  
The CRC32 module produces a signature based on a sequence of entered data values and can be used for data  
checking purposes. The CRC32 module signature is based on the ISO 3309 standard.  
9.13.18 AES256 Accelerator  
The AES accelerator module performs encryption and decryption of 128-bit data with 128-, 192-, or 256-bit keys  
according to the Advanced Encryption Standard (AES) (FIPS PUB 197) in hardware.  
9.13.19 True Random Seed  
The device descriptor information (TLV) section contains a 128-bit true random seed that can be used to  
implement a deterministic random number generator.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
9.13.20 Shared Reference (REF)  
The REF module generates critical reference voltages that can be used by the various analog peripherals in the  
device.  
9.13.21 LCD_C  
The LCD_C driver generates the segment and common signals required to drive a liquid crystal display (LCD).  
The LCD_C controller has dedicated data memories to hold segment drive information. Common and segment  
signals are generated as defined by the mode. Static and 2-mux to 8-mux LCDs are supported. The module can  
provide an LCD voltage independent of the supply voltage with its integrated charge pump. It is possible to  
control the level of the LCD voltage and thus contrast by software. The module also provides an automatic  
blinking capability for individual segments in static, 2-, 3-, and 4-mux modes.  
To reduce system noise, the charge pump can be temporarily disabled. Table 9-23 lists the available automatic  
charge pump disable options.  
Table 9-23. LCD Automatic Charge Pump Disable Bits (LCDCPDISx)  
CONTROL BIT  
DESCRIPTION  
LCD charge pump disable during ADC12 conversion  
LCDCPDIS0  
0b = LCD charge pump not automatically disabled during conversion.  
1b = LCD charge pump automatically disabled during conversion.  
LCDCPDIS1 to LCDCPDIS7  
No functionality.  
9.13.22 Embedded Emulation  
9.13.22.1 Embedded Emulation Module (EEM) (S Version)  
The EEM supports real-time in-system debugging. The S version of the EEM has the following features:  
Three hardware triggers or breakpoints on memory access  
One hardware trigger or breakpoint on CPU register write access  
Up to four hardware triggers that can be combined to form complex triggers or breakpoints  
One cycle counter  
Clock control on module level  
9.13.22.2 EnergyTrace++ Technology  
The devices implement circuitry to support EnergyTrace++ technology. The EnergyTrace++ technology lets the  
user observe information about the internal states of the microcontroller. These states include the CPU Program  
Counter (PC), the on or off status of the peripherals and system clocks (regardless of the clock source), and the  
low-power mode currently in use. These states can always be read by a debug tool, even when the  
microcontroller sleeps in LPMx.5 modes.  
The activity of the following modules can be observed:  
LEA is running  
MPY is calculating.  
WDT is counting.  
RTC is counting.  
ADC: a sequence, sample, or conversion is active.  
REF: REFBG or REFGEN active and BG in static mode.  
COMP is on.  
AES is encrypting or decrypting.  
eUSCI_A0 is transferring (receiving or transmitting) data.  
eUSCI_A1 is transferring (receiving or transmitting) data.  
eUSCI_A2 is transferring (receiving or transmitting) data.  
eUSCI_A3 is transferring (receiving or transmitting) data.  
eUSCI_B0 is transferring (receiving or transmitting) data.  
Copyright © 2020 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
eUSCI_B1 is transferring (receiving or transmitting) data.  
TB0 is counting.  
TA0 is counting.  
TA1 is counting.  
TA2 is counting.  
TA3 is counting.  
TA4 is counting.  
LCD_C is running.  
USS status  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: MSP430FR6007 MSP430FR6005  
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
9.14 Input/Output Diagrams  
9.14.1 Port Function Select Registers (PySEL1 , PySEL0)  
Port pins are multiplexed with peripheral module functions as described in the MSP430FR58xx,  
MSP430FR59xx, and MSP430FR6xx Family User's Guide. The functions of each port pin are controlled by its  
port function select registers, PySEL1 and PySEL0, where y = port number. The bits in the registers are mapped  
to the pins in the port. The primary module function, secondary module function, and tertiary module function of  
the pins are determined by the configuration of the PySEL1.x and PySEL0.x bits (see Table 9-24). For example,  
P1SEL1.0 and P1SEL0.0 determine the primary module function, secondary module function, and tertiary  
module function of the P1.0 pin, which is in port 1. The module functions may also require the PxDIR bits to be  
configured according to the direction needed for the module function.  
Table 9-24. I/O Function Selection  
I/O FUNCTIONS  
PySEL1.x  
PySEL0.x  
General-purpose I/O is selected  
0
0
1
1
0
1
0
1
Primary module function is selected  
Secondary module function is selected  
Tertiary module function is selected  
See the port pin function tables in the following sections for the configurations of the function and direction for  
each pin.  
Copyright © 2020 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
9.14.2 Port P1 (P1.0 and P1.1) Input/Output With Schmitt Trigger  
Figure 9-3 shows the port diagram. Table 9-25 summarizes the selection of the pin function.  
Pad Logic  
(ADC) Reference  
To ADC  
From ADC  
To Comparator  
From Comparator  
CBPD.x  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
module 1 or PxDIR.x  
module 2 or PxDIR.x  
module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
module 1 or DVSS  
module 2 or DVSS  
module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
Bus  
Keeper  
EN  
D
To modules  
Functional representation only.  
Figure 9-3. Port P1 (P1.0 to P1.1) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 9-25. Port P1 (P1.0 to P1.1) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P1.x)  
x
FUNCTION  
P1DIR.x  
P1SEL1.x  
P1SEL0.x  
0 = Input,  
1 = Output  
P1.0 (I/O)  
0
0
0
1
UCA1CLK  
TA1.CCI0A  
TA1.0  
X(4)  
P1.0/UCA1CLK/TA1.0/A0/C0/ VREF-/  
VeREF-  
0
0
1
0
1
A0, C0, VREF-, VeREF-(2) (3)  
X
1
0
0
1
0
1
0 = Input,  
1 = Output  
P1.1 (I/O)  
UCA1STE  
X(4)  
P1.1/UCA1STE/TA4.0/A1/C1/ VREF+/  
VeREF+  
1
TA4.CCI0A  
0
1
1
0
1
TA4.0  
1
A1, C1, VREF+, VeREF+(2) (3)  
X
(1) X = Don't care  
(2) Setting P1SEL1.x and P1SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
(3) Setting the CEPDx bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents  
when applying analog signals. Selecting the Cx input pin to the comparator multiplexer with the input select bits in the comparator  
module automatically disables output driver and input buffer for that pin, regardless of the state of the associated CEPDx bit.  
(4) Direction controlled by eUSCI_A1 module.  
Copyright © 2020 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
9.14.3 Port P1 (P1.2 to P1.7) Input/Output With Schmitt Trigger  
Figure 9-4 shows the port diagram. Table 9-26 summarizes the selection of the pin function.  
Pad Logic  
To ADC  
From ADC  
To Comparator  
From Comparator  
CBPD.x  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
module 1 or PxDIR.x  
module 2 or PxDIR.x  
module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
module 1 or DVSS  
module 2 or DVSS  
module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
Bus  
Keeper  
EN  
D
To modules  
Functional representation only.  
Figure 9-4. Port P1 (P1.2 to P1.7) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 9-26. Port P1 (P1.2 to P1.7) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P1.x)  
x
FUNCTION  
P1DIR.x  
P1SEL1.x  
P1SEL0.x  
0 = Input,  
1 = Output  
P1.2 (I/O)  
0
0
0
1
UCA1SIMO/UCA1TXD  
N/A  
X(2)  
P1.2/UCA1SIMO/UCA1TXD/A8/C8  
2
0
1
0
Internally tied to DVSS  
A8, C8(3) (4)  
1
X
1
0
0
1
0
1
0 = Input,  
1 = Output  
P1.3 (I/O)  
UCA1SOMI/UCA1RXD  
N/A  
X(2)  
P1.3/UCA1SOMI/UCA1RXD/A9/C9  
3
4
5
6
0
1
0
Internally tied to DVSS  
A9, C9(3) (4)  
1
X
1
0
1
0
0 = Input,  
1 = Output  
P1.4 (I/O)  
TB0.CCI4A  
TB0.4  
0
1
0
1
P1.4/TB0.4/UCB0STE/A2/C2  
UCB0STE  
A2, C2(3) (4)  
X(1)  
1
1
0
1
X
0 = Input,  
1 = Output  
P1.5(I/O)  
0
0
0
1
TB0.CCI5A  
TB0.5  
0
P1.5/TB0.5/UCB0CLK/A3/C3  
1
UCB0CLK  
A3, C3(3) (4)  
X(1)  
X
1
1
0
1
0 = Input,  
1 = Output  
P1.6(I/O)  
0
0
0
1
N/A  
0
P1.6/UCB0SIMO/UCB0SDA/A4/C4  
Internally tied to DVSS  
UCB0SIMO/UCB0SDA  
A4, C4(3) (4)  
1
X(1)  
X
1
1
0
1
0 = Input,  
1 = Output  
P1.7(I/O)  
0
0
X
1
0
1
1
1
X
1
0
1
USSTRG (independent function)  
0
P1.7/USSTRG/UCB0SOMI/UCB0SCL/  
A5/C5  
7
Internally tied to DVSS  
UCB0SOMI/UCB0SCL  
A5, C5(3) (4)  
1
X(1)  
X
(1) Direction controlled by eUSCI_B0 module.  
(2) Direction controlled by eUSCI_A1 module.  
(3) Setting P1SEL1.x and P1SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
(4) Setting the CEPDx bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents  
when applying analog signals. Selecting the Cx input pin to the comparator multiplexer with the input select bits in the comparator  
module automatically disables output driver and input buffer for that pin, regardless of the state of the associated CEPDx bit.  
Copyright © 2020 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
9.14.4 Port P2 (P2.0 to P2.3) Input/Output With Schmitt Trigger  
Figure 9-5 shows the port diagram. Table 9-27 summarizes the selection of the pin function.  
Pad Logic  
To ADC  
From ADC  
To Comparator  
From Comparator  
CBPD.x  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
module 1 or PxDIR.x  
module 2 or PxDIR.x  
module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
module 1 or DVSS  
module 2 or DVSS  
module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
Bus  
Keeper  
EN  
D
To modules  
Functional representation only.  
Figure 9-5. Port P2 (P2.0 to P2.3) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 9-27. Port P2 (P2.0 to P2.3) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P2.x)  
x
FUNCTION  
P2DIR.x  
P2SEL1.x  
P2SEL0.x  
0 = Input,  
1 = Output  
P2.0 (I/O)  
N/A  
0
0
0
1
0
1
P2.0/UCA0SIMO/UCA0TXD/A6/C6  
0
Internally tied to DVSS  
UCA0SIMO/UCA0TXD  
A6, C6(2) (3)  
X(1)  
1
1
0
1
X
0 = Input,  
1 = Output  
P2.1 (I/O)  
0
0
0
1
N/A  
0
1
P2.1/UCA0SOMI/UCA0RXD/A7/C7  
P2.2/COUT/UCA0CLK/A14/C14  
P2.3/TA0.0/UCA0STE/A15/C15  
1
2
3
Internally tied to DVSS  
UCA0SOMI/UCA0RXD  
A7, C7(2) (3)  
X(1)  
1
1
0
1
X
0 = Input,  
1 = Output  
P2.2 (I/O)  
0
0
0
1
N/A  
0
1
COUT  
UCA0CLK  
A14, C14(2) (3)  
X(1)  
1
1
0
1
X
0 = Input,  
1 = Output  
P2.3(I/O)  
0
0
0
1
TA0.CCI0A  
TA0.0  
0
1
UCA0STE  
A15, C15(2) (3)  
X(1)  
X
1
1
0
1
(1) Direction controlled by eUSCI_A0 module.  
(2) Setting P2SEL1.x and P2SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
(3) Setting the CEPDx bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents  
when applying analog signals. Selecting the Cx input pin to the comparator multiplexer with the input select bits in the comparator  
module automatically disables output driver and input buffer for that pin, regardless of the state of the associated CEPDx bit.  
Copyright © 2020 Texas Instruments Incorporated  
96  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
9.14.5 Port P2 (P2.4 to P2.7) Input/Output With Schmitt Trigger  
Figure 9-6 shows the port diagram. Table 9-28 summarizes the selection of the pin function.  
Pad Logic  
Sz  
LCDSz  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
module 1 or PxDIR.x  
module 2 or PxDIR.x  
module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
module 1 or DVSS  
module 2 or DVSS  
module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
Bus  
Keeper  
EN  
D
To modules  
Functional representation only.  
Figure 9-6. Port P2 (P2.4 to P2.7) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 9-28. Port P2 (P2.4 to P2.7) Pin Functions  
CONTROL BITS OR SIGNALS (1)  
PIN NAME (P2.x)  
x
FUNCTION  
P2DIR.x  
P2SEL1.x  
P2SEL0.x  
LCDSz  
0 = Input,  
1 = Output  
P2.4 (I/O)  
TA0LCK  
0
0
0
0
1
0
1
0
1
X
0
1
1
1
0
1
0
0
0
Internally tied to DVSS  
TB0LCK  
P2.4/TA0LCK/TB0CLK/TA1CLK/  
LCDS32  
4
Internally tied to DVSS  
TA1LCK  
Internally tied to DVSS  
Sz (1)  
X
0
X
0
1
0
0 = Input,  
1 = Output  
P2.5 (I/O)  
N/A  
0
1
0
1
0
1
X
0
1
1
1
0
1
0
0
0
Internally tied to DVSS  
TA4.CCI0B  
P2.5/TA4.0/LCDS31  
P2.6/TA4.1/LCDS30  
P2.7/TA0.0/LCDS21  
5
6
7
TA4.0  
N/A  
Internally tied to DVSS  
Sz (1)  
X
0
X
0
1
0
0 = Input,  
1 = Output  
P2.6 (I/O)  
N/A  
0
1
0
1
0
1
X
0
1
1
1
0
1
0
0
0
Internally tied to DVSS  
TA4.CCI1B  
TA4.1  
N/A  
Internally tied to DVSS  
Sz (1)  
X
0
X
0
1
0
0 = Input,  
1 = Output  
P2.7 (I/O)  
N/A  
0
1
0
1
0
1
X
0
1
1
0
0
0
Internally tied to DVSS  
TA0.CCI0B  
TA0.0  
N/A  
1
1
0
1
Internally tied to DVSS  
Sz (1)  
X
X
(1) Associated LCD segment is package dependent. Refer to the pin diagrams and signal descriptions in Section 7.  
Copyright © 2020 Texas Instruments Incorporated  
98  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
9.14.6 Port P3 (P3.0 to P3.7) Input/Output With Schmitt Trigger  
Figure 9-7 shows the port diagram. Table 9-29 summarizes the selection of the pin function.  
Pad Logic  
Sz  
LCDSz  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
module 1 or PxDIR.x  
module 2 or PxDIR.x  
module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
module 1 or DVSS  
module 2 or DVSS  
module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
Bus  
Keeper  
EN  
D
To modules  
Functional representation only.  
Figure 9-7. Port P3 (P3.0 to P3.7) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 9-29. Port P3 (P3.0 to P3.7) Pin Functions  
CONTROL BITS OR SIGNALS (1)  
PIN NAME (P3.x)  
x
FUNCTION  
P3DIR.x  
P3SEL1.x  
P3SEL0.x  
LCDSz  
0 = Input,  
1 = Output  
P3.0 (I/O)  
N/A  
0
0
0
0
1
0
1
0
1
X
0
1
1
1
0
1
0
0
0
Internally tied to DVSS  
TB0.CCI0B  
P3.0/TB0.0/LCDS29  
0
TB0.0  
N/A  
Internally tied to DVSS  
Sz (1)  
X
0
X
0
1
0
0 = Input,  
1 = Output  
P3.1 (I/O)  
N/A  
0
1
0
1
0
1
X
0
1
1
1
0
1
0
0
0
Internally tied to DVSS  
N/A  
P3.1/TB0.1/LCDS28  
P3.2/TB0.2/LCDS27  
P3.3/TB0.3/LCDS26  
1
2
3
4
TB0.1  
N/A  
Internally tied to DVSS  
Sz (1)  
X
0
X
0
1
0
0 = Input,  
1 = Output  
P3.2 (I/O)  
N/A  
0
1
0
1
0
1
X
0
1
1
1
0
1
0
0
0
Internally tied to DVSS  
N/A  
TB0.2  
N/A  
Internally tied to DVSS  
Sz (1)  
X
0
X
0
1
0
0 = Input,  
1 = Output  
P3.3 (I/O)  
N/A  
0
1
0
1
0
1
X
0
1
1
1
0
1
0
0
0
Internally tied to DVSS  
TB0.CCI3B  
TB0.3  
N/A  
Internally tied to DVSS  
Sz (1)  
X
0
X
0
1
0
0 = Input,  
1 = Output  
P3.4 (I/O)  
N/A  
0
1
0
1
0
1
X
0
1
1
0
0
0
Internally tied to DVSS  
TB0OUTH  
P3.4/TB0OUTH/LCDS25  
Internally tied to DVSS  
N/A  
1
1
0
1
Internally tied to DVSS  
Sz (1)  
X
X
Copyright © 2020 Texas Instruments Incorporated  
100 Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 9-29. Port P3 (P3.0 to P3.7) Pin Functions (continued)  
CONTROL BITS OR SIGNALS (1)  
PIN NAME (P3.x)  
x
FUNCTION  
P3DIR.x  
P3SEL1.x  
P3SEL0.x  
LCDSz  
0 = Input,  
1 = Output  
P3.5 (I/O)  
N/A  
0
0
0
0
1
0
1
0
1
X
0
1
1
1
0
1
0
0
0
Internally tied to DVSS  
TB0.CCI4B  
P3.5/TB0.4/LCDS24  
P3.6/TB0.5/LCDS23  
P3.7/TB0.6/LCDS22  
5
TB0.4  
N/A  
Internally tied to DVSS  
Sz (1)  
X
0
X
0
1
0
0 = Input,  
1 = Output  
P3.6 (I/O)  
N/A  
0
1
0
1
0
1
X
0
1
1
1
0
1
0
0
0
Internally tied to DVSS  
TB0.CCI5B  
6
TB0.5  
N/A  
Internally tied to DVSS  
Sz (1)  
X
0
X
0
1
0
0 = Input,  
1 = Output  
P3.7 (I/O)  
N/A  
0
1
0
1
0
1
X
0
1
1
0
0
0
Internally tied to DVSS  
TB0.CCI6B  
7
TB0.6  
N/A  
1
1
0
1
Internally tied to DVSS  
Sz (1)  
X
X
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 101  
Product Folder Links: MSP430FR6007 MSP430FR6005  
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
9.14.7 Port P4 (P4.0 to P4.7) Input/Output With Schmitt Trigger  
Figure 9-8 shows the port diagram. Table 9-30 summarizes the selection of the pin function.  
Pad Logic  
Sz  
LCDSz  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
module 1 or PxDIR.x  
module 2 or PxDIR.x  
module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
module 1 or DVSS  
module 2 or DVSS  
module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
Bus  
Keeper  
EN  
D
To modules  
Functional representation only.  
Figure 9-8. Port P4 (P4.0 to P4.7) Diagram  
Table 9-30. Port P4 (P4.0 to P4.7) Pin Functions  
CONTROL BITS OR SIGNALS (1)  
PIN NAME (P4.x)  
x
FUNCTION  
P4DIR.x  
P4SEL1.x  
P4SEL0.x  
LCDSz  
0 = Input,  
1 = Output  
P4.0 (I/O)  
N/A  
0
0
0
0
1
0
1
0
1
X
0
1
1
0
0
0
Internally tied to DVSS  
N/A  
P4.0/RTCCLK/LCDS16  
0
RTCCLK  
N/A  
1
1
0
1
Internally tied to DVSS  
Sz (1)  
X
X
Copyright © 2020 Texas Instruments Incorporated  
102 Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 9-30. Port P4 (P4.0 to P4.7) Pin Functions (continued)  
CONTROL BITS OR SIGNALS (1)  
PIN NAME (P4.x)  
x
FUNCTION  
P4DIR.x  
P4SEL1.x  
P4SEL0.x  
LCDSz  
0 = Input,  
1 = Output  
P4.1 (I/O)  
0
0
0
1
0
0
UCA0CLK  
N/A  
X(1)  
0
1
1
0
1
0
0
P4.1/UCA0CLK/LCDS15  
1
Internally tied to DVSS  
1
N/A  
0
Internally tied to DVSS  
Sz (1)  
1
X
X
0
0
X
0
1
1
0
0
0 = Input,  
1 = Output  
P4.2 (I/O)  
UCA0STE  
X(1)  
N/A  
0
1
1
0
1
0
0
P4.2/UCA0STE/LCDS14  
2
3
4
Internally tied to DVSS  
1
N/A  
0
Internally tied to DVSS  
Sz (1)  
1
X
X
0
0
X
0
1
1
0
0
0 = Input,  
1 = Output  
P4.3 (I/O)  
UCA0SIMO/UCA0TXD  
X(1)  
N/A  
0
1
1
0
1
0
0
P4.3/UCA0SIMO/UCA0TXD/LCDS13  
Internally tied to DVSS  
1
N/A  
0
Internally tied to DVSS  
Sz (1)  
1
X
X
0
0
X
0
1
1
0
0
0 = Input,  
1 = Output  
P4.4 (I/O)  
UCA0SOMI/UCA0RXD  
X(1)  
N/A  
0
P4.4/UCA0SOMI/UCA0RXD/  
LCDS12  
1
1
0
1
0
0
Internally tied to DVSS  
1
N/A  
0
Internally tied to DVSS  
Sz (1)  
1
X
X
0
X
0
1
0
0 = Input,  
1 = Output  
P4.5 (I/O)  
TA0CLK  
0
1
0
1
0
1
X
0
1
1
0
0
0
Internally tied to DVSS  
TA1CLK  
P4.5/TA0LCK/TA1CLK/LCDS11  
5
Internally tied to DVSS  
N/A  
1
1
0
1
Internally tied to DVSS  
Sz (1)  
X
X
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 103  
Product Folder Links: MSP430FR6007 MSP430FR6005  
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 9-30. Port P4 (P4.0 to P4.7) Pin Functions (continued)  
CONTROL BITS OR SIGNALS (1)  
PIN NAME (P4.x)  
x
FUNCTION  
P4DIR.x  
P4SEL1.x  
P4SEL0.x  
LCDSz  
0 = Input,  
1 = Output  
P4.6 (I/O)  
TB0CLK  
0
0
0
0
1
0
1
0
1
X
0
1
1
1
0
1
0
0
0
Internally tied to DVSS  
TA4CLK  
P4.6/TB0CLK/TA4CLK/LCDS10  
6
Internally tied to DVSS  
N/A  
Internally tied to DVSS  
Sz (1)  
X
0
X
0
1
0
0 = Input,  
1 = Output  
P4.7 (I/O)  
N/A  
0
1
0
1
0
1
X
0
1
1
0
0
0
Internally tied to DVSS  
DMAE0  
P4.7/DMAE0/LCDS9  
7
Internally tied to DVSS  
N/A  
1
1
0
1
Internally tied to DVSS  
Sz (1)  
X
X
(1) Direction controlled by eUSCI_A0 module.  
Copyright © 2020 Texas Instruments Incorporated  
104 Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
9.14.8 Port P5 (P5.0 to P5.7) Input/Output With Schmitt Trigger  
Figure 9-9 shows the port diagram. Table 9-31 summarizes the selection of the pin function.  
Pad Logic  
Sz  
LCDSz  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
module 1 or PxDIR.x  
module 2 or PxDIR.x  
module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
module 1 or DVSS  
module 2 or DVSS  
module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
Bus  
Keeper  
EN  
D
To modules  
Functional representation only.  
Figure 9-9. Port P5 (P5.0 to P5.7) Diagram  
Table 9-31. Port P5 (P5.0 to P5.7) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P5.x)  
x
FUNCTION  
P5DIR.x  
P5SEL1.x  
P5SEL0.x  
LCDSz  
0 = Input,  
1 = Output  
P5.0 (I/O)  
N/A  
0
0
0
0
1
0
1
1
1
0
1
0
0
0
Internally tied to DVSS  
UCA2SIMO/UCA2TXD  
N/A  
P5.0/UCA2SIMO/UCA2TXD/LCDS8  
0
X(4)  
0
Internally tied to DVSS  
Sz(3)  
1
X
X
0
X
0
1
0
0 = Input,  
1 = Output  
P5.1 (I/O)  
N/A  
0
1
0
1
1
X
1
0
1
X
0
0
0
1
Internally tied to DVSS  
UCA2SOMI/UCA2RXD  
N/A  
P5.1/UCA2SOMI/UCA2RXD/LCDS7  
1
X(4)  
0
Internally tied to DVSS  
Sz(3)  
1
X
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 105  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 9-31. Port P5 (P5.0 to P5.7) Pin Functions (continued)  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P5.x)  
x
FUNCTION  
P5DIR.x  
P5SEL1.x  
P5SEL0.x  
LCDSz  
0 = Input,  
1 = Output  
P5.2 (I/O)  
N/A  
0
0
0
0
1
0
1
1
1
0
1
0
0
0
Internally tied to DVSS  
UCA2CLK  
P5.2/UCA2CLK/LCDS6  
2
X(4)  
N/A  
0
Internally tied to DVSS  
Sz(3)  
1
X
X
0
X
0
1
0
0 = Input,  
1 = Output  
P5.3 (I/O)  
N/A  
0
0
1
1
1
0
1
0
0
0
Internally tied to DVSS  
UCA2STE  
1
P5.3/UCA2STE/LCDS5  
3
4
5
6
X(4)  
0
N/A  
Internally tied to DVSS  
Sz(3)  
1
X
X
0
X
0
1
0
0 = Input,  
1 = Output  
P5.4 (I/O)  
N/A  
0
0
1
1
1
0
1
0
0
0
Internally tied to DVSS  
UCB1CLK  
1
P5.4/UCB1CLK/LCDS4  
X(2)  
0
N/A  
Internally tied to DVSS  
Sz (3)  
1
X
X
0
X
0
1
0
0 = Input,  
1 = Output  
P5.5 (I/O)  
TA0CLK  
0
0
1
1
1
0
1
0
0
0
Internally tied to DVSS  
UCB1SIMO/UCB1SDA  
N/A  
1
P5.5/TA0CLK/UCB1SIMO/  
UCB1SDA/LCDS3  
X(2)  
0
Internally tied to DVSS  
Sz (3)  
1
X
X
0
X
0
1
0
0 = Input,  
1 = Output  
P5.6 (I/O)  
N/A  
0
0
1
1
X
1
0
1
X
0
0
0
1
Internally tied to DVSS  
UCB1SOMI/UCB1SCL  
N/A  
1
P5.6/UCB1SOMI/UCB1SCL/LCDS2  
X(2)  
0
Internally tied to DVSS  
Sz (3)  
1
X
Copyright © 2020 Texas Instruments Incorporated  
106 Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 9-31. Port P5 (P5.0 to P5.7) Pin Functions (continued)  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P5.x)  
x
FUNCTION  
P5DIR.x  
P5SEL1.x  
P5SEL0.x  
LCDSz  
0 = Input,  
1 = Output  
P5.7 (I/O)  
N/A  
0
0
0
0
1
0
1
1
X
1
0
1
X
0
0
0
1
Internally tied to DVSS  
UCB1STE  
P5.7/UCB1STE/LCDS1  
7
X(2)  
N/A  
0
Internally tied to DVSS  
Sz (3)  
1
X
(1) X = Don't care  
(2) Direction controlled by eUSCI_B1 module.  
(3) Associated LCD segment is package dependent. Refer to the pin diagrams and signal descriptions in Section 7.  
(4) Direction controlled by eUSCI_A2 module.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 107  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
9.14.9 Port P6 (P6.0) Input/Output With Schmitt Trigger  
Figure 9-10 shows the port diagram. Table 9-32 summarizes the selection of the pin function.  
Pad Logic  
Sz  
LCDSz  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
module 1 or PxDIR.x  
module 2 or PxDIR.x  
module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
module 1 or DVSS  
module 2 or DVSS  
module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
Bus  
Keeper  
EN  
D
To modules  
Functional representation only.  
Figure 9-10. Port P6 (P6.0) Diagram  
Table 9-32. Port P6 (P6.0) Pin Functions  
CONTROL BITS OR SIGNALS (1)  
PIN NAME (P6.x)  
x
FUNCTION  
P6DIR.x  
P6SEL1.x  
P6SEL0.x  
LCDSz  
0 = Input,  
P6.0 (I/O)  
1 = Output  
0
0
0
N/A  
0
1
0
1
0
1
X
0
1
1
0
0
0
Internally tied to DVSS  
N/A  
P6.0/COUT/LCDS0  
0
COUT  
N/A  
1
1
0
1
Internally tied to DVSS  
Sz (1)  
X
X
Copyright © 2020 Texas Instruments Incorporated  
108 Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
9.14.10 Port P6 (P6.1 to P6.5) Input/Output With Schmitt Trigger  
Figure 9-11 shows the port diagram. Table 9-33 summarizes the selection of the pin function.  
Pad Logic  
To/From LCD  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
module 1 or PxDIR.x  
module 2 or PxDIR.x  
module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
module 1 or DVSS  
module 2 or DVSS  
module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
Bus  
Keeper  
EN  
D
To modules  
Functional representation only.  
Figure 9-11. Port P6 (P6.1 to P6.5) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 109  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 9-33. Port P6 (P6.1 to P6.5) Pin Functions  
CONTROL BITS OR SIGNALS (1)  
PIN NAME (P6.x)  
x
FUNCTION  
P6DIR.x  
P6SEL1.x  
P6SEL0.x  
0 = Input,  
1 = Output  
P6.1 (I/O)  
N/A  
0
0
0
1
0
1
X
0
1
1
0
Internally tied to DVSS  
N/A  
P6.1/R03  
1
Internally tied to DVSS  
R03 (1)  
1
0
1
0
0 = Input,  
1 = Output  
P6.2 (I/O)  
N/A  
0
1
0
1
X
0
1
1
0
Internally tied to DVSS  
N/A  
P6.2/R13/LCDREF  
2
3
4
5
Internally tied to DVSS  
R13/LCDREF (1)  
1
0
1
0
0 = Input,  
1 = Output  
P6.3 (I/O)  
N/A  
0
1
0
1
X
0
1
1
0
Internally tied to DVSS  
N/A  
P6.3/R23  
Internally tied to DVSS  
R23 (1)  
1
0
1
0
0 = Input,  
1 = Output  
P6.4 (I/O)  
N/A  
0
1
0
1
X
0
1
1
0
Internally tied to DVSS  
N/A  
P6.4/COM0  
Internally tied to DVSS  
COM0 (1)  
1
0
1
0
0 = Input,  
1 = Output  
P6.5 (I/O)  
N/A  
0
1
0
1
X
0
1
Internally tied to DVSS  
N/A  
P6.5/COM1  
1
1
0
1
Internally tied to DVSS  
COM1 (1)  
(1) Setting P6SEL1.x and P6SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
Copyright © 2020 Texas Instruments Incorporated  
110  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
9.14.11 Port P6 (P6.6 and P6.7) Input/Output With Schmitt Trigger  
Figure 9-12 shows the port diagram. Table 9-34 summarizes the selection of the pin function.  
Pad Logic  
Sz  
LCDSz  
COMx  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
module 1 or PxDIR.x  
module 2 or PxDIR.x  
module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
module 1 or DVSS  
module 2 or DVSS  
module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
Bus  
Keeper  
EN  
D
To modules  
Functional representation only.  
Figure 9-12. Port P6 (P6.6 and P6.7) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
111  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 9-34. Port P6 (P6.6 to P6.7) Pin Functions  
CONTROL BITS OR SIGNALS (1)  
PIN NAME (P6.x)  
x
FUNCTION  
P6DIR.x  
P6SEL1.x  
P6SEL0.x  
LCDSz  
0 = Input,  
1 = Output  
P6.6(I/O)  
N/A  
0
0
0
0
1
0
1
X
0
1
1
0
0
Internally tied to DVSS  
N/A  
P6.6/COM2/LCDS38  
6
0
0
1
Internally tied to DVSS  
COM2(1)  
1
X
0
1
0
X
Sz (1)  
X
0 = Input,  
1 = Output  
P6.7(I/O)  
0
0
0
1
0
0
N/A  
0
1
0
1
X
Internally tied to DVSS  
N/A  
P6.7/COM3/LCDS37  
7
1
0
0
0
1
Internally tied to DVSS  
COM3(1)  
1
X
0
1
0
X
Sz (1)  
X
(1) X = Don't care  
Copyright © 2020 Texas Instruments Incorporated  
112  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
9.14.12 Port P7 (P7.0 to P7.3) Input/Output With Schmitt Trigger  
Figure 9-13 shows the port diagram. Table 9-35 summarizes the selection of the pin function.  
Pad Logic  
Sz  
LCDSz  
COMx  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
module 1 or PxDIR.x  
module 2 or PxDIR.x  
module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
module 1 or DVSS  
module 2 or DVSS  
module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
Bus  
Keeper  
EN  
D
To modules  
Functional representation only.  
Figure 9-13. Port P7 (P7.0 to P7.3) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
113  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 9-35. Port P7 (P7.0 to P7.3) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P7.x)  
x
FUNCTION  
P7DIR.x  
P7SEL1.x  
P7SEL0.x  
LCDSz  
0 = Input,  
1 = Output  
P7.0(I/O)  
0
0
0
1
0
0
UCA2SIMO/UCA2TXD  
X(2)  
N/A  
0
P7.0/UCA2SIMO/UCA2TXD/ ACLK/  
COM4/LCDS36  
1
0
0
0
1
0
ACLK  
COM4(1)  
1
X
1
X
0
1
0
X
Sz (1)  
X
0 = Input,  
1 = Output  
P7.1(I/O)  
0
0
0
1
0
0
UCA2SOMI/UCA2RXD  
X(2)  
N/A  
0
P7.1/UCA2SOMI/UCA2RXD/  
SMCLK/COM5/LCDS35  
1
0
0
0
1
1
2
3
SMCLK  
COM5(1)  
1
X
1
X
0
1
0
X
Sz (1)  
X
0 = Input,  
1 = Output  
P7.2(I/O)  
0
0
0
1
0
0
UCA2CLK  
TB0.CCI0A  
TB0.0  
X(2)  
0
P7.2/UCA2CLK/TB0.0/COM6/  
LCDS34  
1
0
0
0
1
1
COM6(1)  
X
1
X
0
1
0
X
Sz (1)  
X
0 = Input,  
1 = Output  
P7.3(I/O)  
0
0
0
1
0
0
UCA2STE  
TB0.CCI1A  
TB0.1  
X(2)  
0
P7.3/UCA2STE/TB0.1/COM7/  
LCDS33  
1
0
0
0
1
1
COM7(1)  
X
1
X
0
1
0
X
Sz (1)  
X
(1) X = Don't care  
(2) Direction controlled by eUSCI_A2 module.  
Copyright © 2020 Texas Instruments Incorporated  
114  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
9.14.13 Port P7 (P7.4 to P7.7) Input/Output With Schmitt Trigger  
Figure 9-14 shows the port diagram. Table 9-36 summarizes the selection of the pin function.  
Pad Logic  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
module 1 or PxDIR.x  
module 2 or PxDIR.x  
module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
module 1 or DVSS  
module 2 or DVSS  
module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
EN  
D
To modules  
Functional representation only.  
Figure 9-14. Port P7 (P7.6 and P7.7) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
115  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 9-36. Port P7 (P7.6 to P7.7) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P7.x)  
x
FUNCTION  
P7DIR.x  
P7SEL1.x  
P7SEL0.x  
0 = Input,  
1 = Output  
P7.4(I/O)  
0
0
TA0.CCI1A  
TA0.1  
0
1
0
1
0
1
0
1
1
0
P7.4/TA0.1  
4
N/A  
Internally tied to DVSS  
N/A  
1
0
0
1
0
1
Internally tied to DVSS  
0 = Input,  
1 = Output  
P7.5(I/O)  
TA1.CCI1A  
0
1
0
1
0
1
TA1.1  
P7.5/TA1.1  
5
6
7
N/A  
1
0
Internally tied to DVSS  
N/A  
1
0
0
1
0
1
Internally tied to DVSS  
0 = Input,  
1 = Output  
P7.6(I/O)  
TA4.CCI1A  
0
1
0
1
0
1
TA4.1  
P7.6/TA4.1/DMAE0/COUT  
DMAE0  
1
0
Internally tied to DVSS  
N/A  
1
0
0
1
0
1
COUT  
0 = Input,  
1 = Output  
P7.7(I/O)  
TA0.CCI2A  
TA0.2  
0
1
0
1
0
1
P7.7/TA0.2/TB0OUTH/COUT  
TB0OUTH  
Internally tied to DVSS  
N/A  
1
1
0
1
COUT  
(1) X = Don't care  
Copyright © 2020 Texas Instruments Incorporated  
116  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
9.14.14 Port P8 (P8.0 to P8.3) Input/Output With Schmitt Trigger  
Figure 9-15 shows the port diagram. Table 9-37 summarizes the selection of the pin function.  
Pad Logic  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
module 1 or PxDIR.x  
module 2 or PxDIR.x  
module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
module 1 or DVSS  
module 2 or DVSS  
module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
EN  
D
To modules  
Functional representation only.  
Figure 9-15. Port P8 (P8.0 to P8.3) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
117  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 9-37. Port P8 (P8.0 to P8.3) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P8.x)  
x
FUNCTION  
P8DIR.x  
P8SEL1.x  
P8SEL0.x  
0 = Input,  
1 = Output  
P8.0(I/O)  
0
0
0
1
UCA3STE  
TB0.CCI2A  
TB0.2  
X(2)  
0
P8.0/UCA3STE/TB0.2/DMAE0  
0
1
1
0
1
1
DMAE0  
0
Internally tied to DVSS  
P8.1(I/O)  
1
0 = Input,  
1 = Output  
0
0
0
1
UCA3CLK  
X(2)  
TB0.CCI3A  
TB0.3  
0
P8.1/UCA3CLK/TB0.3/TB0OUTH  
1
2
3
1
1
0
1
1
TB0OUTH  
0
Internally tied to DVSS  
1
0 = Input,  
1 = Output  
P8.2(I/O)  
0
0
0
1
UCA3SOMI/UCA3RXD  
X(2)  
N/A  
0
P8.2/UCA3SOMI/UCA3RXD/MCLK  
1
1
0
1
MCLK  
1
N/A  
0
Internally tied to DVSS  
1
0 = Input,  
1 = Output  
P8.3(I/O)  
0
0
0
1
UCA3SIMO/UCA3TXD  
X(2)  
N/A  
0
P8.3/UCA3SIMO/UCA3TXD/RTCCLK  
1
1
0
1
RTCCLK  
1
N/A  
0
Internally tied to DVSS  
1
(1) X = Don't care  
(2) Direction controlled by eUSCI_A3 module.  
Copyright © 2020 Texas Instruments Incorporated  
118  
Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
9.14.15 Port P8 (P8.4 to P8.7) Input/Output With Schmitt Trigger  
Figure 9-16 shows the port diagram. Table 9-38 summarizes the selection of the pin function.  
Pad Logic  
To ADC  
From ADC  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
module 1 or PxDIR.x  
module 2 or PxDIR.x  
module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
module 1 or DVSS  
module 2 or DVSS  
module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
Bus  
Keeper  
EN  
D
To modules  
Functional representation only.  
Figure 9-16. Port P8 (P8.4 to P8.7) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
119  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 9-38. Port P8 (P8.4 to P8.7) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P8.x)  
x
FUNCTION  
P8DIR.x  
P8SEL1.x  
P8SEL0.x  
0 = Input,  
1 = Output  
P8.4(I/O)  
0
0
0
1
UCB1CLK  
TA1.CCI2A  
TA1.2  
X(2)  
P8.4/UCB1CLK/TA1.2/A10  
4
0
1
0
1
A10(3)  
X
1
0
0
1
0
1
0 = Input,  
1 = Output  
P8.5(I/O)  
UCB1SIMO/UCB1SDA  
X(2)  
P8.5/UCB1SIMO/UCB1SDA/A11  
P8.6/UCB1SOMI/UCB1SCL/A12  
5
6
7
N/A  
0
1
0
Internally tied to DVSS  
A11(3)  
1
X
1
0
0
1
0
1
0 = Input,  
1 = Output  
P8.6(I/O)  
UCB1SOMI/UCB1SCL  
N/A  
X(2)  
0
1
0
Internally tied to DVSS  
A12(3)  
1
X
1
0
0
1
0
1
0 = Input,  
1 = Output  
P8.7(I/O)  
UCB1STE  
N/A  
X(2)  
P8.7/UCB1STE/USSXT_BOUT/A13  
(1) X = Don't care  
0
1
1
0
1
USSXT_BOUT(4)  
A13(3)  
1
X
(2) Direction controlled by eUSCI_B1 module.  
(3) Setting P8SEL1.x and P8SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
(4) USSXTHSPLL.PLLXTLCTL.XTOUTOFF bit must also be set to 0.  
Copyright © 2020 Texas Instruments Incorporated  
120 Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
9.14.16 Port P9 (P9.0 to P9.3) Input/Output With Schmitt Trigger  
Figure 9-17 shows the port diagram. Table 9-39 summarizes the selection of the pin function.  
Pad Logic  
Sz  
LCDSz  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
module 1 or PxDIR.x  
module 2 or PxDIR.x  
module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
module 1 or DVSS  
module 2 or DVSS  
module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
Bus  
Keeper  
EN  
D
To modules  
Functional representation only.  
Figure 9-17. Port P9 (P9.0 to P9.3) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 121  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 9-39. Port P9 (P9.0 to P9.3) Pin Functions  
CONTROL BITS OR SIGNALS (1)  
PIN NAME (P9.x)  
x
FUNCTION  
P9DIR.x  
P9SEL1.x  
P9SEL0.x  
LCDSz  
0 = Input,  
1 = Output  
P9.0 (I/O)  
0
0
0
TA1.CCI0B  
TA1.0  
0
1
0
1
0
1
X
0
1
1
1
0
1
0
0
0
N/A  
P9.0/TA1.0/LCDS20  
0
Internally tied to DVSS  
N/A  
Internally tied to DVSS  
Sz (1)  
X
0
X
0
1
0
0 = Input,  
1 = Output  
P9.1 (I/O)  
N/A  
0
1
0
1
0
1
X
0
1
1
1
0
1
0
0
0
Internally tied to DVSS  
N/A  
P9.1/SMCLK/LCDS19  
P9.2/MCLK/LCDS18  
P9.3/ACLK/LCDS17  
1
2
3
SMCLK  
N/A  
Internally tied to DVSS  
Sz (1)  
X
0
X
0
1
0
0 = Input,  
1 = Output  
P9.2 (I/O)  
N/A  
0
1
0
1
0
1
X
0
1
1
1
0
1
0
0
0
Internally tied to DVSS  
N/A  
MCLK  
N/A  
Internally tied to DVSS  
Sz (1)  
X
0
X
0
1
0
0 = Input,  
1 = Output  
P9.3 (I/O)  
N/A  
0
1
0
1
0
1
X
0
1
1
0
0
0
Internally tied to DVSS  
N/A  
ACLK  
N/A  
1
1
0
1
Internally tied to DVSS  
Sz (1)  
X
X
Copyright © 2020 Texas Instruments Incorporated  
122 Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
9.14.17 Port PJ (PJ.0 to PJ.3) JTAG Pins TDO, TMS, TCK, TDI/TCLK, Input/Output With Schmitt Trigger  
Figure 9-18 shows the port diagram. Table 9-40 summarizes the selection of the pin function.  
To Comparator  
From Comparator  
Pad Logic  
CBPD.x  
JTAG enable  
From JTAG  
From JTAG  
PJREN.x  
0 0  
0 1  
1 0  
1 1  
PJDIR.x  
module 1 or PxDIR.x  
module 2 or PxDIR.x  
module 3 or PxDIR.x  
1
0
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PJOUT.x  
module 1 or DVSS  
module 2 or DVSS  
module 3 or DVSS  
1
0
PJSEL1.x  
PJSEL0.x  
PJIN.x  
Bus  
Keeper  
EN  
D
To modules  
and JTAG  
Functional representation only.  
Figure 9-18. Port PJ (PJ.0 to PJ.3) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 123  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 9-40. Port PJ (PJ.0 to PJ.3) Pin Functions  
CONTROL BITS/ SIGNALS(1)  
PIN NAME (PJ.x)  
x
FUNCTION  
PJDIR.x  
PJSEL1.x  
PJSEL0.x  
CEPDx (Cx)  
0 = Input,  
1 = Output  
PJ.0 (I/O)(2)  
0
0
0
0
TDO(3)  
N/A  
X
0
1
0
1
0
1
X
X
X
0
1
1
1
0
1
0
0
0
ACLK  
N/A  
PJ.0/TDO/ACLK/SRSCG1/  
DMAE0/C10  
0
CPU Status Register Bit SCG1  
DMAE0  
Internally tied to DVSS  
C10(5)  
X
0
X
0
1
0
0
0 = Input,  
1 = Output  
PJ.1 (I/O)(2)  
TDI/TCLK(3) (4)  
X
X
X
N/A  
0
0
1
1
1
0
1
0
0
0
SMCLK  
1
PJ.1/TDI/TCLK/SMCLK/  
SRSCG0/TA4CLK/C11  
1
N/A  
0
CPU Status Register Bit SCG0  
1
TA4CLK  
0
Internally tied to DVSS  
1
C11(5)  
X
X
0
X
0
1
0
0
PJ.2 (I/O)(2)  
I: 0; O: 1  
TMS(3) (4)  
X
X
X
N/A  
0
0
1
1
1
0
1
0
0
0
MCLK  
1
PJ.2/TMS/MCLK/  
SROSCOFF/TB0OUTH/C12  
2
N/A  
0
CPU Status Register Bit OSCOFF  
1
TB0OUTH  
0
Internally tied to DVSS  
1
C12(5)  
X
X
0
X
0
1
0
0
PJ.3 (I/O)(2)  
I: 0; O: 1  
TCK(3) (4)  
X
0
1
0
1
0
1
X
X
X
N/A  
0
1
1
0
0
0
RTCCLK  
PJ.3/TCK/RTCCLK/  
SRCPUOFF/TB0.6/C13  
3
N/A  
CPU Status Register Bit CPUOFF  
TB0.CCI6A  
TB0.6  
1
1
0
1
C13(5)  
X
X
(1) X = Don't care  
(2) Default condition  
(3) The pin direction is controlled by the JTAG module. JTAG mode selection is made through the SYS module or by the Spy-Bi-Wire four-  
wire entry sequence. Neither PJSEL1.x and PJSEL0.x nor CEPDx bits have an effect in these cases.  
(4) In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are don't care.  
(5) Setting the CEPDx bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents  
when applying analog signals. Selecting the Cx input pin to the comparator multiplexer with the input select bits in the comparator  
module automatically disables The output driver and input buffer for that pin, regardless of the state of the associated CEPDx bit.  
Copyright © 2020 Texas Instruments Incorporated  
124 Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
9.14.18 Port PJ (PJ.4 and PJ.5) Input/Output With Schmitt Trigger  
Figure 9-19 and Figure 9-20 show the port diagrams. Table 9-41 summarizes the selection of the pin function.  
Pad Logic  
To LFXT XIN  
PJREN.4  
0 0  
0 1  
1 0  
1 1  
PJDIR.4  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PJOUT.4  
DVSS  
DVSS  
DVSS  
PJ.4/LFXIN  
PJSEL1.4  
PJSEL0.4  
PJIN.4  
Bus  
Keeper  
EN  
D
To modules  
Functional representation only.  
Figure 9-19. Port PJ (PJ.4) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 125  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Pad Logic  
To LFXT XOUT  
PJSEL0.4  
PJSEL1.4  
LFXTBYPASS  
PJREN.5  
0 0  
0 1  
1 0  
1 1  
PJDIR.5  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PJOUT.5  
DVSS  
DVSS  
DVSS  
PJ.5/LFXOUT  
PJSEL1.5  
PJSEL0.5  
PJIN.5  
Bus  
Keeper  
EN  
D
To modules  
Functional representation only.  
Figure 9-20. Port PJ (PJ.5) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
126 Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 9-41. Port PJ (PJ.4 and PJ.5) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (PJ.x)  
x
FUNCTION  
LFXT  
BYPASS  
PJDIR.x  
PJSEL1.5  
PJSEL0.5  
PJSEL1.4  
PJSEL0.4  
PJ.4 (I/O)  
N/A  
I: 0; O: 1  
X
X
0
0
X
0
1
X
X
1
X
X
PJ.4/LFXIN  
4 Internally tied to DVSS  
LFXIN crystal mode(2)  
LFXIN bypass mode(2)  
X
X
X
X
X
X
0
0
0
1
X
0
1
X
0
1
X
0
1
1
0
1
0
0
1(3)  
0
PJ.5 (I/O)  
I: 0; O: 1  
0
0
X
X
0
N/A  
5
0
see(1)  
see(1)  
X
X
0
PJ.5/LFXOUT  
1(3)  
0
Internally tied to DVSS  
LFXOUT crystal mode(2)  
1
see(1)  
X
see(1)  
X
X
X
1
1(3)  
0
X
(1) If PJSEL0.5 = 1 or PJSEL1.5 = 1, the general-purpose I/O functionality is disabled. No input function is available. Configured as output,  
the pin is actively pulled to zero.  
(2) If PJSEL1.4 = 0 and PJSEL0.4 = 1, the general-purpose I/O is disabled. When LFXTBYPASS = 0, PJ.4 and PJ.5 are configured for  
crystal operation and PJSEL1.5 and PJSEL0.5 are don't care. When LFXTBYPASS = 1, PJ.4 is configured for bypass operation and  
PJ.5 is configured as general-purpose I/O.  
(3) When PJ.4 is configured in bypass mode, PJ.5 is configured as general-purpose I/O.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 127  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
9.14.19 Port PJ (PJ.6 and PJ.7) Input/Output With Schmitt Trigger  
Figure 9-21 and Figure 9-22 show the port diagrams. Table 9-42 summarizes the selection of the pin function.  
Pad Logic  
To HFXT XIN  
PJREN.6  
0 0  
0 1  
1 0  
1 1  
PJDIR.6  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PJOUT.6  
DVSS  
DVSS  
DVSS  
PJ.6/HFXIN  
PJSEL1.6  
PJSEL0.6  
PJIN.6  
Bus  
Keeper  
EN  
D
To modules  
Functional representation only.  
Figure 9-21. Port PJ (PJ.6) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
128 Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Pad Logic  
To HFXT XOUT  
PJSEL0.6  
PJSEL1.6  
HFXTBYPASS  
PJREN.7  
0 0  
0 1  
1 0  
1 1  
PJDIR.7  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PJOUT.7  
DVSS  
DVSS  
DVSS  
PJ.7/HFXOUT  
PJSEL1.7  
PJSEL0.7  
PJIN.7  
Bus  
Keeper  
EN  
D
To modules  
Functional representation only.  
Figure 9-22. Port PJ (PJ.7) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 129  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 9-42. Port PJ (PJ.6 and PJ.7) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (PJ.x)  
x
FUNCTION  
PJDIR.x  
PJSEL1.7  
PJSEL0.7  
PJSEL1.6  
PJSEL0.6 HFXTBYPASS  
PJ.6 (I/O)  
I: 0; O: 1  
X
X
0
0
X
N/A  
0
1
X
X
1
X
X
PJ.6/HFXIN  
6
Internally tied to DVSS  
HFXIN crystal mode(2)  
HFXIN bypass mode(2)  
X
X
X
X
X
X
0
0
0
1
X
0
1
X
0
1
X
0
1
1
0
1
0
0
1(3)  
0
PJ.7 (I/O)(1)  
I: 0; O: 1  
0
0
X
X
0
N/A  
0
see (1)  
see (1)  
X
X
0
PJ.7/HFXOUT  
7
1(3)  
0
Internally tied to DVSS  
HFXOUT crystal mode(2)  
1
see (1)  
see (1)  
X
X
1
1(3)  
0
X
X
X
(1) With PJSEL0.7 = 1 or PJSEL1.7 =1 the general-purpose I/O functionality is disabled. No input function is available. Configured as  
output the pin is actively pulled to zero.  
(2) Setting PJSEL1.6 = 0 and PJSEL0.6 = 1 causes the general-purpose I/O to be disabled. When HFXTBYPASS = 0, PJ.6 and PJ.7 are  
configured for crystal operation and PJSEL1.6 and PJSEL0.7 are do not care. When HFXTBYPASS = 1, PJ.6 is configured for bypass  
operation and PJ.7 is configured as general-purpose I/O.  
(3) When PJ.6 is configured in bypass mode, PJ.7 is configured as general-purpose I/O.  
Copyright © 2020 Texas Instruments Incorporated  
130 Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
9.15 Device Descriptors (TLV)  
Table 9-43 lists the Device IDs.  
Table 9-43. Device IDs  
DEVICE ID  
DEVICE  
PACKAGE  
01A05h  
83h  
01A04h  
2Eh  
MSP430FR6007  
MSP430FR6005  
PZ  
PZ  
83h  
2Fh  
Table 9-44 lists the contents of the device descriptor tag-length-value (TLV) structure.  
Table 9-44. Device Descriptors  
MSP430FR60xx (UART BSL)(1)  
DESCRIPTION  
ADDRESS VALUE  
Info length  
01A00h  
01A01h  
01A02h  
01A03h  
01A04h  
01A05h  
01A06h  
01A07h  
01A08h  
01A09h  
01A0Ah  
01A0Bh  
01A0Ch  
01A0Dh  
01A0Eh  
01A0Fh  
01A10h  
01A11h  
01A12h  
01A13h  
06h  
06h  
CRC length  
Per unit  
Per unit  
CRC value  
Device ID  
Info Block  
See Table 9-43.  
Hardware revision  
Firmware revision  
Die record tag  
Per unit  
Per unit  
08h  
Die record length  
0Ah  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Lot/wafer ID  
Die Record  
Die X position  
Die Y position  
Test results  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 131  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 9-44. Device Descriptors (continued)  
MSP430FR60xx (UART BSL)(1)  
DESCRIPTION  
ADDRESS  
01A14h  
01A15h  
01A16h  
01A17h  
01A18h  
01A19h  
01A1Ah  
01A1Bh  
01A1Ch  
01A1Dh  
01A1Eh  
01A1Fh  
01A20h  
01A21h  
01A22h  
01A23h  
01A24h  
01A25h  
01A26h  
01A27h  
01A28h  
01A29h  
01A2Ah  
01A2Bh  
01A2Ch  
01A2Dh  
01A2Eh  
01A2Fh  
01A30h  
01A31h  
01A32h  
01A33h  
01A34h  
01A35h  
01A36h  
01A37h  
01A38h  
01A39h  
01A3Ah  
01A3Bh  
01A3Ch  
01A3Dh  
01A3Eh  
01A3Fh  
VALUE  
11h  
ADC12 calibration tag  
ADC12 calibration length  
10h  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
12h  
ADC gain factor(2)  
ADC offset(3)  
ADC 1.2-V reference  
temperature sensor 30°C  
ADC 1.2-V reference  
temperature sensor 85°C  
ADC12 Calibration  
ADC 2.0-V reference  
temperature sensor 30°C  
ADC 2.0-V reference  
temperature sensor 85°C  
ADC 2.5-V reference  
temperature sensor 30°C  
ADC 2.5-V reference  
temperature sensor 85°C  
REF calibration tag  
REF calibration length  
06h  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
15h  
REF 1.2-V reference  
REF 2.0-V reference  
REF 2.5-V reference  
REF Calibration  
128-bit random number tag  
Random number length  
10h  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Random Number  
128-bit random number(4)  
Copyright © 2020 Texas Instruments Incorporated  
132 Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 9-44. Device Descriptors (continued)  
MSP430FR60xx (UART BSL)(1)  
DESCRIPTION  
ADDRESS VALUE  
BSL tag  
BSL length  
01A40h  
01A41h  
01A42h  
01A43h  
1Ch  
02h  
00h  
00h  
BSL Configuration  
BSL interface  
BSL interface configuration  
(1) NA = Not applicable, Per unit = content can differ from device to device  
(2) ADC gain: The gain correction factor is measured at room temperature using a 2.5-V external voltage reference without internal buffer  
(ADC12VRSEL = 0x2, 0x4, or 0xE). Other settings (for example, using internal reference) can result in different correction factors.  
(3) ADC offset: the offset correction factor is measured at room temperature using ADC12VRSEL= 0x2 or 0x4, an external reference, VR+  
= external 2.5 V, VR– = AVSS.  
(4) 128-bit random number: The random number is generated during production test using the Microsoft® CryptGenRandom() function.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 133  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
9.16 Memory Map  
Table 9-45 summarizes the memory organization for all device variants.  
Table 9-45. Memory Organization (1) (2)  
MSP430FR6007  
MSP430FR6005  
128KB  
Memory (FRAM)  
Total Size  
256KB  
Main: interrupt vectors and  
signatures  
00FFFFh to 00FF80h  
00FFFFh to 00FF80h  
Main: code memory  
RAM (shared with LEA)  
(Sector 2)  
043FFFh to 004000h  
4KB  
0023FFFh to 004000h  
4KB  
Size  
Size  
(003BFFh to 002C00h)  
003BFFh to 002C00h  
4KB  
(003BFFh to 002C00h)  
003BFFh to 002C00h  
4KB  
Block 0  
System RAM  
(Sector 1)  
(002BFFh to 002400h)  
(0023FFh to 001C00h)  
002BFFh to 001C00h  
003BFFh to 003B80h  
(002BFFh to 002400h)  
(0023FFh to 001C00h)  
002BFFh to 001C00h  
003BFFh to 003B80h  
(Sector 0)  
Main: base location  
Main: interrupt vectors  
Device descriptor info (TLV)  
(FRAM)  
Size  
Size  
256 bytes  
001AFFh to 001A00h  
256 bytes  
001AFFh to 001A00h  
TI calibration and configuration  
(FRAM)  
256 bytes  
0019FFh to 001900h  
256 bytes  
0019FFh to 001900h  
Bootloader (BSL) memory (ROM)  
BSL 3  
BSL 2  
BSL 1  
BSL 0  
Size  
512 bytes  
0017FFh to 001600h  
512 bytes  
0017FFh to 001600h  
512 bytes  
0015FFh to 001400h  
512 bytes  
0015FFh to 001400h  
512 bytes  
0013FFh to 001200h  
512 bytes  
0013FFh to 001200h  
512 bytes  
0011FFh to 001000h  
512 bytes  
0011FFh to 001000h  
Peripherals  
Tiny RAM  
Reserved  
4KB  
4KB  
000FFFh to 000020h  
000FFFh to 000020h  
Size  
22 bytes  
000001Fh to 00000Ah  
22 bytes  
000001Fh to 00000Ah  
Size  
10 bytes  
10 bytes  
000009h to 000000h  
000009h to 000000h  
(1) N/A = Not available  
(2) All address space not listed is considered vacant memory.  
9.16.1 Peripheral File Map  
For complete module register descriptions, see the MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx  
Family User's Guide. Table 9-46 lists the base and end addresses of the registers for each peripheral.  
Table 9-46. Peripherals  
MODULE NAME  
Special Functions (see Table 9-47)  
PMM (see Table 9-48)  
BASE ADDRESS  
END ADDRESS  
011Fh  
0100h  
0120h  
013Fh  
FRAM Control (see Table 9-49)  
CRC (see Table 9-50)  
0140h  
014Fh  
0150h  
0157h  
RAM Control (see Table 9-51)  
Watchdog (see Table 9-52)  
CS (see Table 9-53)  
0158h  
0159h  
015Ch  
015Dh  
0160h  
016Fh  
SYS (see Table 9-54)  
0180h  
019Fh  
Copyright © 2020 Texas Instruments Incorporated  
134 Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 9-46. Peripherals (continued)  
MODULE NAME  
Shared Reference (see Table 9-55)  
Digital I/O (see Table 9-56)  
TA0 (see Table 9-57)  
BASE ADDRESS  
01B0h  
0200h  
0340h  
0380h  
03C0h  
0400h  
0440h  
04A0h  
04C0h  
0500h  
05A0h  
05C0h  
05E0h  
0600h  
0620h  
0640h  
0680h  
07C0h  
0800h  
08C0h  
0980h  
09C0h  
0A00h  
0A80h  
0E00h  
0E80h  
0EC0h  
0EE0h  
END ADDRESS  
01B1h  
033Fh  
036Fh  
03AFh  
03EFh  
042Fh  
046Fh  
04BFh  
04EFh  
056Fh  
05AFh  
05DFh  
05FFh  
061Fh  
063Fh  
066Fh  
06AFh  
07EFh  
089Fh  
08CFh  
09AFh  
09CFh  
0A5Fh  
0AFFh  
0E7Fh  
0EBFh  
0EDFh  
0EFFh  
TA1 (see Table 9-58)  
TB0 (see Table 9-59)  
TA2 (see Table 9-60)  
TA3 (see Table 9-61)  
RTC_C (see Table 9-62)  
32-Bit Hardware Multiplier (see Table 9-63)  
DMA (see Table 9-64)  
MPU Control (see Table 9-65)  
eUSCI_A0 (see Table 9-66)  
eUSCI_A1 (see Table 9-67)  
eUSCI_A2 (see Table 9-68)  
eUSCI_A3 (see Table 9-69)  
eUSCI_B0 (see Table 9-70)  
eUSCI_B1 (see Table 9-71)  
TA4 (see Table 9-72)  
ADC12_B (see Table 9-73)  
Comparator E (see Table 9-74)  
CRC32 (see Table 9-75)  
AES256 (see Table 9-76)  
LCD_C (see Table 9-77)  
LEA (see Table 9-78)  
SAPH (see Table 9-79)  
SDHS (see Table 9-80)  
UUPS (see Table 9-81)  
HSPLL (see Table 9-82)  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 135  
Product Folder Links: MSP430FR6007 MSP430FR6005  
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 9-47. Special Functions Registers  
REGISTER DESCRIPTION  
ACRONYM  
ADDRESS  
Interrupt Enable  
Interrupt Flag  
SFRIE1  
0100h  
0102h  
0104h  
SFRIFG1  
SFRRPCR  
Reset Pin Control  
Table 9-48. PMM Registers  
REGISTER DESCRIPTION  
ACRONYM  
PMMCTL0  
PMMIFG  
ADDRESS  
0120h  
PMM Control 0  
PMM Interrupt Flag  
Power Mode 5 Control 0  
012Ah  
PM5CTL0  
0130h  
Table 9-49. FRAM Control Registers  
REGISTER DESCRIPTION  
ACRONYM  
ADDRESS  
0140h  
FRAM Controller A Control 0  
General Control 0  
FRCTL0  
GCCTL0  
GCCTL1  
0144h  
General Control 1  
0146h  
Table 9-50. CRC Registers  
REGISTER DESCRIPTION  
ACRONYM  
CRCDI  
ADDRESS  
0150h  
CRC Data In  
CRC Data In Reverse Byte  
CRC Initialization and Result  
CRC Result Reverse  
CRCDIRB  
CRCINIRES  
CRCRESR  
0152h  
0154h  
0156h  
Table 9-51. RAM Control Registers  
REGISTER DESCRIPTION  
ACRONYM  
ADDRESS  
0158h  
RAM Controller Control 0  
RAM Controller Control 1  
RCCTL0  
RCCTL1  
015Ah  
Table 9-52. Watchdog Registers  
REGISTER DESCRIPTION  
ACRONYM  
ADDRESS  
Watchdog Timer Control  
WDTCTL  
015Ch  
Table 9-53. CS Registers  
REGISTER DESCRIPTION  
ACRONYM  
CSCTL0  
CSCTL1  
CSCTL2  
CSCTL3  
CSCTL4  
CSCTL5  
CSCTL6  
ADDRESS  
0160h  
Clock System Control 0  
Clock System Control 1  
Clock System Control 2  
Clock System Control 3  
Clock System Control 4  
Clock System Control 5  
Clock System Control 6  
0162h  
0164h  
0166h  
0168h  
016Ah  
016Ch  
Copyright © 2020 Texas Instruments Incorporated  
136 Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
 
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 9-54. SYS Registers  
REGISTER DESCRIPTION  
ACRONYM  
SYSCTL  
ADDRESS  
0180h  
System Control  
JTAG Mailbox Control  
JTAG Mailbox Input  
JTAG Mailbox Input  
JTAG Mailbox Output  
JTAG Mailbox Output  
User NMI Vector Generator  
SYSJMBC  
SYSJMBI0  
SYSJMBI1  
SYSJMBO0  
SYSJMBO1  
SYSUNIV  
SYSSNIV  
0186h  
0188h  
018Ah  
018Ch  
018Eh  
019Ah  
019Ch  
019Eh  
System NMI Vector Generator  
Reset Vector Generator  
SYSRSTIV  
Table 9-55. Shared Reference Registers  
REGISTER DESCRIPTION  
ACRONYM  
ADDRESS  
REF Control 0  
REFCTL0  
01B0h  
Table 9-56. Digital I/O Registers  
REGISTER DESCRIPTION  
ACRONYM  
PAIN  
ADDRESS  
0200h  
0200h  
0201h  
0202h  
0202h  
0203h  
0204h  
0204h  
0205h  
0206h  
0206h  
0207h  
020Ah  
020Ah  
020Bh  
020Ch  
020Ch  
020Dh  
020Eh  
0216h  
0216h  
0217h  
0218h  
0218h  
0219h  
021Ah  
021Ah  
021Bh  
021Ch  
021Ch  
Port A Input  
Port 1 Input  
P1IN  
Port 2 Input  
P2IN  
Port A Output  
PAOUT  
P1OUT  
P2OUT  
PADIR  
P1DIR  
P2DIR  
PAREN  
P1REN  
P2REN  
PASEL0  
P1SEL0  
P2SEL0  
PASEL1  
P1SEL1  
P2SEL1  
P1IV  
Port 1 Output  
Port 2 Output  
Port A Direction  
Port 1 Direction  
Port 2 Direction  
Port A Resistor Enable  
Port 1 Resistor Enable  
Port 2 Resistor Enable  
Port A Select 0  
Port 1 Select 0  
Port 2 Select 0  
Port A Select 1  
Port 1 Select 1  
Port 2 Select 1  
Port 1 Interrupt Vector  
Port A Complement Select  
Port 1 Complement Select  
Port 2 Complement Select  
Port A Interrupt Edge Select  
Port 1 Interrupt Edge Select  
Port 2 Interrupt Edge Select  
Port A Interrupt Enable  
Port 1 Interrupt Enable  
Port 2 Interrupt Enable  
Port A Interrupt Flag  
Port 1 Interrupt Flag  
PASELC  
P1SELC  
P2SELC  
PAIES  
P1IES  
P2IES  
PAIE  
P1IE  
P2IE  
PAIFG  
P1IFG  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 137  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 9-56. Digital I/O Registers (continued)  
REGISTER DESCRIPTION  
ACRONYM  
P2IFG  
P2IV  
ADDRESS  
Port 2 Interrupt Flag  
Port 2 Interrupt Vector  
Port B Input  
021Dh  
021Eh  
0220h  
0220h  
0221h  
0222h  
0222h  
0223h  
0224h  
0224h  
0225h  
0226h  
0226h  
0227h  
022Ah  
022Ah  
022Bh  
022Ch  
022Ch  
022Dh  
022Eh  
0236h  
0236h  
0237h  
0238h  
0238h  
0239h  
023Ah  
023Ah  
023Bh  
023Ch  
023Ch  
023Dh  
023Eh  
0240h  
0240h  
0241h  
0242h  
0242h  
0243h  
0244h  
0244h  
0245h  
0246h  
0246h  
PBIN  
Port 3 Input  
P3IN  
Port 4 Input  
P4IN  
Port B Output  
PBOUT  
P3OUT  
P4OUT  
PBDIR  
P3DIR  
P4DIR  
PBREN  
P3REN  
P4REN  
PBSEL0  
P3SEL0  
P4SEL0  
PBSEL1  
P3SEL1  
P4SEL1  
P3IV  
Port 3 Output  
Port 4 Output  
Port B Direction  
Port 3 Direction  
Port 4 Direction  
Port B Resistor Enable  
Port 3 Resistor Enable  
Port 4 Resistor Enable  
Port B Select 0  
Port 3 Select 0  
Port 4 Select 0  
Port B Select 1  
Port 3 Select 1  
Port 4 Select 1  
Port 3 Interrupt Vector  
Port B Complement Select  
Port 3 Complement Select  
Port 4 Complement Select  
Port B Interrupt Edge Select  
Port 3 Interrupt Edge Select  
Port 4 Interrupt Edge Select  
Port B Interrupt Enable  
Port 3 Interrupt Enable  
Port 4 Interrupt Enable  
Port B Interrupt Flag  
Port 3 Interrupt Flag  
Port 4 Interrupt Flag  
Port 4 Interrupt Vector  
Port C Input  
PBSELC  
P3SELC  
P4SELC  
PBIES  
P3IES  
P4IES  
PBIE  
P3IE  
P4IE  
PBIFG  
P3IFG  
P4IFG  
P4IV  
PCIN  
Port 5 Input  
P5IN  
Port 6 Input  
P6IN  
Port C Output  
PCOUT  
P5OUT  
P6OUT  
PCDIR  
P5DIR  
P6DIR  
PCREN  
P5REN  
Port 5 Output  
Port 6 Output  
Port C Direction  
Port 5 Direction  
Port 6 Direction  
Port C Resistor Enable  
Port 5 Resistor Enable  
Copyright © 2020 Texas Instruments Incorporated  
138 Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 9-56. Digital I/O Registers (continued)  
REGISTER DESCRIPTION  
ACRONYM  
ADDRESS  
0247h  
024Ah  
024Ah  
024Bh  
024Ch  
024Ch  
024Dh  
024Eh  
0256h  
0256h  
0257h  
0258h  
0258h  
0259h  
025Ah  
025Ah  
025Bh  
025Ch  
025Ch  
025Dh  
025Eh  
0260h  
0260h  
0261h  
0262h  
0262h  
0263h  
0264h  
0264h  
0265h  
0266h  
0266h  
0267h  
026Ah  
026Ah  
026Bh  
026Ch  
026Ch  
026Dh  
026Eh  
0276h  
0276h  
0277h  
0278h  
0278h  
Port 6 Resistor Enable  
Port C Select 0  
P6REN  
PCSEL0  
P5SEL0  
P6SEL0  
PCSEL1  
P5SEL1  
P6SEL1  
P5IV  
Port 5 Select 0  
Port 6 Select 0  
Port C Select 1  
Port 5 Select 1  
Port 6 Select 1  
Port 5 Interrupt Vector  
Port C Complement Select  
Port 5 Complement Select  
Port 6 Complement Select  
Port C Interrupt Edge Select  
Port 5 Interrupt Edge Select  
Port 6 Interrupt Edge Select  
Port C Interrupt Enable  
Port 5 Interrupt Enable  
Port 6 Interrupt Enable  
Port C Interrupt Flag  
Port 5 Interrupt Flag  
Port 6 Interrupt Flag  
Port 6 Interrupt Vector  
Port D Input  
PCSELC  
P5SELC  
P6SELC  
PCIES  
P5IES  
P6IES  
PCIE  
P5IE  
P6IE  
PCIFG  
P5IFG  
P6IFG  
P6IV  
PDIN  
Port 7 Input  
P7IN  
Port 8 Input  
P8IN  
Port D Output  
PDOUT  
P7OUT  
P8OUT  
PDDIR  
P7DIR  
P8DIR  
PDREN  
P7REN  
P8REN  
PDSEL0  
P7SEL0  
P8SEL0  
PDSEL1  
P7SEL1  
P8SEL1  
P7IV  
Port 7 Output  
Port 8 Output  
Port D Direction  
Port 7 Direction  
Port 8 Direction  
Port D Resistor Enable  
Port 7 Resistor Enable  
Port 8 Resistor Enable  
Port D Select 0  
Port 7 Select 0  
Port 8 Select 0  
Port D Select 1  
Port 7 Select 1  
Port 8 Select 1  
Port 7 Interrupt Vector  
Port D Complement Select  
Port 7 Complement Select  
Port 8 Complement Select  
Port D Interrupt Edge Select  
Port 7 Interrupt Edge Select  
PDSELC  
P7SELC  
P8SELC  
PDIES  
P7IES  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 139  
Product Folder Links: MSP430FR6007 MSP430FR6005  
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 9-56. Digital I/O Registers (continued)  
REGISTER DESCRIPTION  
ACRONYM  
P8IES  
PDIE  
ADDRESS  
Port 8 Interrupt Edge Select  
Port D Interrupt Enable  
Port 7 Interrupt Enable  
Port 8 Interrupt Enable  
Port D Interrupt Flag  
Port 7 Interrupt Flag  
Port 8 Interrupt Flag  
Port 8 Interrupt Vector  
Port E Input  
0279h  
027Ah  
027Ah  
027Bh  
027Ch  
027Ch  
027Dh  
027Eh  
0280h  
0280h  
0282h  
0282h  
0284h  
0284h  
0286h  
0286h  
028Ah  
028Ah  
028Ch  
028Ch  
028Eh  
0296h  
0296h  
0298h  
0298h  
029Ah  
029Ah  
029Ch  
029Ch  
0320h  
0322h  
0324h  
0326h  
032Ah  
032Ch  
0336h  
P7IE  
P8IE  
PDIFG  
P7IFG  
P8IFG  
P8IV  
PEIN  
Port 9 Input  
P9IN  
Port E Output  
PEOUT  
P9OUT  
PEDIR  
P9DIR  
PEREN  
P9REN  
PESEL0  
P9SEL0  
PESEL1  
P9SEL1  
P9IV  
Port 9 Output  
Port E Direction  
Port 9 Direction  
Port E Resistor Enable  
Port 9 Resistor Enable  
Port E Select 0  
Port 9 Select 0  
Port E Select 1  
Port 9 Select 1  
Port 9 Interrupt Vector  
Port E Complement Select  
Port 9 Complement Select  
Port E Interrupt Edge Select  
Port 9 Interrupt Edge Select  
Port E Interrupt Enable  
Port 9 Interrupt Enable  
Port E Interrupt Flag  
Port 9 Interrupt Flag  
Port J Input  
PESELC  
P9SELC  
PEIES  
P9IES  
PEIE  
P9IE  
PEIFG  
P9IFG  
PJIN  
Port J Output  
PJOUT  
PJDIR  
PJREN  
PJSEL0  
PJSEL1  
PJSELC  
Port J Direction  
Port J Resistor Enable  
Port J Select 0  
Port J Select 1  
Port J Complement Select  
Copyright © 2020 Texas Instruments Incorporated  
140 Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 9-57. TA0 Registers  
Table 9-58. TA1 Registers  
Table 9-59. TB0 Registers  
REGISTER DESCRIPTION  
ACRONYM  
TA0CTL  
ADDRESS  
0340h  
0342h  
0344h  
0346h  
0350h  
0352h  
0354h  
0356h  
0360h  
036Eh  
Timer_A0 Control  
Timer_A0 Capture/Compare Control  
Timer_A0 Capture/Compare Control  
Timer_A0 Capture/Compare Control  
Timer_A0 Counter  
TA0CCTL0  
TA0CCTL1  
TA0CCTL2  
TA0R  
Timer_A0 Capture/Compare  
Timer_A0 Capture/Compare  
Timer_A0 Capture/Compare  
Timer_A0 Expansion 0  
TA0CCR0  
TA0CCR1  
TA0CCR2  
TA0EX0  
Timer_A0 Interrupt Vector  
TA0IV  
REGISTER DESCRIPTION  
ACRONYM  
TA1CTL  
ADDRESS  
0380h  
0382h  
0384h  
0386h  
0390h  
0392h  
0394h  
0396h  
03A0h  
03AEh  
Timer_A1 Control  
Timer_A1 Capture/Compare Control  
Timer_A1 Capture/Compare Control  
Timer_A1 Capture/Compare Control  
Timer_A1 Counter  
TA1CCTL0  
TA1CCTL1  
TA1CCTL2  
TA1R  
Timer_A1 Capture/Compare  
Timer_A1 Capture/Compare  
Timer_A1 Capture/Compare  
Timer_A1 Expansion 0  
TA1CCR0  
TA1CCR1  
TA1CCR2  
TA1EX0  
Timer_A1 Interrupt Vector  
TA1IV  
REGISTER DESCRIPTION  
ACRONYM  
TB0CTL  
ADDRESS  
03C0h  
03C2h  
03C4h  
03C6h  
03C8h  
03CAh  
03CCh  
03CEh  
03D0h  
03D2h  
03D4h  
03D6h  
03D8h  
03DAh  
03DCh  
03DEh  
03E0h  
03EEh  
Timer_B0 Control  
Timer_B0 Capture/Compare Control  
Timer_B0 Capture/Compare Control  
Timer_B0 Capture/Compare Control  
Timer_B0 Capture/Compare Control  
Timer_B0 Capture/Compare Control  
Timer_B0 Capture/Compare Control  
Timer_B0 Capture/Compare Control  
Timer_B0 Counter  
TB0CCTL0  
TB0CCTL1  
TB0CCTL2  
TB0CCTL3  
TB0CCTL4  
TB0CCTL5  
TB0CCTL6  
TB0R  
Timer_B0 Capture/Compare  
Timer_B0 Capture/Compare  
Timer_B0 Capture/Compare  
Timer_B0 Capture/Compare  
Timer_B0 Capture/Compare  
Timer_B0 Capture/Compare  
Timer_B0 Capture/Compare  
Timer_B0 Expansion 0  
TB0CCR0  
TB0CCR1  
TB0CCR2  
TB0CCR3  
TB0CCR4  
TB0CCR5  
TB0CCR6  
TB0EX0  
Timer_B0 Interrupt Vector  
TB0IV  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 141  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 9-60. TA2 Registers  
REGISTER DESCRIPTION  
ACRONYM  
TA2CTL  
ADDRESS  
Timer_A2 Control  
0400h  
0402h  
0404h  
0410h  
0412h  
0414h  
0420h  
042Eh  
Timer_A2 Capture/Compare Control  
Timer_A2 Capture/Compare Control  
Timer_A2 Counter  
TA2CCTL0  
TA2CCTL1  
TA2R  
Timer_A2 Capture/Compare  
Timer_A2 Capture/Compare  
Timer_A2 Expansion 0  
TA2CCR0  
TA2CCR1  
TA2EX0  
Timer_A2 Interrupt Vector  
TA2IV  
Table 9-61. TA3 Registers  
REGISTER DESCRIPTION  
ACRONYM  
TA3CTL  
ADDRESS  
0440h  
0442h  
0444h  
0450h  
0452h  
0454h  
0460h  
046Eh  
Timer_A3 Control  
Timer_A3 Capture/Compare Control  
Timer_A3 Capture/Compare Control  
Timer_A3 Counter  
TA3CCTL0  
TA3CCTL1  
TA3R  
Timer_A3 Capture/Compare  
Timer_A3 Capture/Compare  
Timer_A3 Expansion 0  
TA3CCR0  
TA3CCR1  
TA3EX0  
Timer_A3 Interrupt Vector  
TA3IV  
Table 9-62. RTC_C Registers  
REGISTER DESCRIPTION  
ACRONYM  
RTCCTL0  
RTCCTL13  
RTCOCAL  
RTCTCMP  
RTCPS0CTL  
RTCPS1CTL  
RTCPS  
ADDRESS  
04A0h  
04A2h  
04A4h  
04A6h  
04A8h  
04AAh  
04ACh  
04ACh  
04ADh  
04AEh  
04B0h  
04B2h  
04B4h  
04B6h  
04B8h  
04BAh  
04BCh  
04BEh  
Real-Time Clock Control 0  
Real-Time Clock Control 1, 3  
Real-Time Clock Offset Calibration  
Real-Time Clock Temperature Compensation  
Real-Time Clock Prescale Timer 0 Control  
Real-Time Clock Prescale Timer 1 Control  
Real-Time Clock Prescale Timer Counter  
Prescale Timer 0 Counter Value  
Prescale Timer 1 Counter Value  
Real-Time Clock Interrupt Vector  
Real-Time Clock Seconds and Minutes  
Real-Time Clock Hour, Day of Week  
Real-Time Clock Date  
RT0PS  
RT1PS  
RTCIV  
RTCTIM0  
RTCTIM1  
RTCDATE  
RTCYEAR  
RTCAMINHR  
RTCADOWDAY  
BIN2BCD  
BCD2BIN  
Real-Time Clock Year  
Real-Time Clock Minute and Hour  
Real-Time Clock Alarm Day of Week and Day  
Binary-to-BCD Conversion  
BCD-to-Binary Conversion  
Copyright © 2020 Texas Instruments Incorporated  
142 Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 9-63. 32-Bit Hardware Multiplier Registers  
REGISTER DESCRIPTION  
ACRONYM  
ADDRESS  
04C0h  
04C2h  
04C4h  
04C6h  
04C8h  
04CAh  
04CCh  
04CEh  
04D0h  
04D2h  
04D4h  
04D6h  
04D8h  
04DAh  
04DCh  
04DEh  
04E0h  
04E2h  
04E4h  
04E6h  
04E8h  
04EAh  
04ECh  
16-bit operand one – multiply  
MPY  
MPYS  
16-bit operand one – signed multiply  
16-bit operand one – multiply accumulate  
16-bit operand one – signed multiply accumulate  
16-bit operand two  
MAC  
MACS  
OP2  
16x16-bit result low word  
RESLO  
RESHI  
16x16-bit result high word  
16x16-bit sum extension  
SUMEXT  
MPY32L  
MPY32H  
MPYS32L  
MPYS32H  
MAC32L  
MAC32H  
MACS32L  
MACS32H  
OP2L  
32-bit operand 1 – multiply – low word  
32-bit operand 1 – multiply – high word  
32-bit operand 1 – signed multiply – low word  
32-bit operand 1 – signed multiply – high word  
32-bit operand 1 – multiply accumulate – low word  
32-bit operand 1 – multiply accumulate – high word  
32-bit operand 1 – signed multiply accumulate – low word  
32-bit operand 1 – signed multiply accumulate – high word  
32-bit operand 2 – low word  
32-bit operand 2 – high word  
OP2H  
32x32-bit result 0 – least significant word  
32x32-bit result 1  
RES0  
RES1  
32x32-bit result 2  
RES2  
32x32-bit result 3 – most significant word  
MPY32 control 0  
RES3  
MPY32CTL0  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 143  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 9-64. DMA Registers  
REGISTER DESCRIPTION  
ACRONYM  
DMACTL0  
DMACTL1  
DMACTL2  
DMACTL4  
DMAIV  
ADDRESS  
DMA Control 0  
0500h  
0502h  
0504h  
0508h  
050Eh  
0510h  
0512h  
0516h  
051Ah  
0520h  
0522h  
0526h  
052Ah  
0530h  
0532h  
0536h  
053Ah  
0540h  
0542h  
0546h  
054Ah  
0550h  
0552h  
0556h  
055Ah  
0560h  
0562h  
0566h  
056Ah  
DMA Control 1  
DMA Control 2  
DMA Control 4  
DMA Interrupt Vector  
DMA Channel 0 Control  
DMA0CTL  
DMA0SA  
DMA0DA  
DMA0SZ  
DMA1CTL  
DMA1SA  
DMA1DA  
DMA1SZ  
DMA2CTL  
DMA2SA  
DMA2DA  
DMA2SZ  
DMA3CTL  
DMA3SA  
DMA3DA  
DMA3SZ  
DMA4CTL  
DMA4SA  
DMA4DA  
DMA4SZ  
DMA5CTL  
DMA5SA  
DMA5DA  
DMA5SZ  
DMA Channel 0 Source Address  
DMA Channel 0 Destination Address  
DMA Channel 0 Transfer Size  
DMA Channel 1 Control  
DMA Channel 1 Source Address  
DMA Channel 1 Destination Address  
DMA Channel 1 Transfer Size  
DMA Channel 2 Control  
DMA Channel 2 Source Address  
DMA Channel 2 Destination Address  
DMA Channel 2 Transfer Size  
DMA Channel 3 Control  
DMA Channel 3 Source Address  
DMA Channel 3 Destination Address  
DMA Channel 3 Transfer Size  
DMA Channel 4 Control  
DMA Channel 4 Source Address  
DMA Channel 4 Destination Address  
DMA Channel 4 Transfer Size  
DMA Channel 5 Control  
DMA Channel 5 Source Address  
DMA Channel 5 Destination Address  
DMA Channel 5 Transfer Size  
Table 9-65. MPU Control Registers  
REGISTER DESCRIPTION  
ACRONYM  
ADDRESS  
05A0h  
05A2h  
05A4h  
05A6h  
05A8h  
05AAh  
05ACh  
05AEh  
Memory Protection Unit Control 0  
MPUCTL0  
Memory Protection Unit Control 1  
MPUCTL1  
Memory Protection Unit Segmentation Border 2 Register  
Memory Protection Unit Segmentation Border 1 Register  
Memory Protection Unit Segmentation Access Management Register  
Memory Protection Unit IP Control 0 Register  
MPUSEGB2  
MPUSEGB1  
MPUSAM  
MPUIPC0  
Memory Protection Unit IP Encapsulation Segment Border 2 Register  
Memory Protection Unit IP Encapsulation Segment Border 1 Register  
MPUIPSEGB2  
MPUIPSEGB1  
Copyright © 2020 Texas Instruments Incorporated  
144 Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 9-66. eUSCI_A0 Registers  
Table 9-67. eUSCI_A1 Registers  
Table 9-68. eUSCI_A2 Registers  
REGISTER DESCRIPTION  
ACRONYM  
UCA0CTLW0  
UCA0CTLW1  
UCA0BRW  
UCA0MCTLW  
UCA0STATW  
UCA0RXBUF  
UCA0TXBUF  
UCA0ABCTL  
UCA0IRCTL  
UCA0IE  
ADDRESS  
05C0h  
05C2h  
05C6h  
05C8h  
05CAh  
05CCh  
05CEh  
05D0h  
05D2h  
05DAh  
05DCh  
05DEh  
eUSCI_A0 Control Word Register 0  
eUSCI_A0 Control Word Register 1  
eUSCI_A0 Baud Rate Control Word  
eUSCI_A0 Modulation Control Word  
eUSCI_A0 Status Register  
eUSCI_A0 Receive Buffer  
eUSCI_A0 Transmit Buffer  
eUSCI_A0 Auto Baud Rate Control  
eUSCI_A0 IrDA Control Word  
eUSCI_A0 Interrupt Enable  
eUSCI_A0 Interrupt Flag  
UCA0IFG  
eUSCI_A0 Interrupt Vector  
UCA0IV  
REGISTER DESCRIPTION  
ACRONYM  
UCA1CTLW0  
UCA1CTLW1  
UCA1BRW  
UCA1MCTLW  
UCA1STATW  
UCA1RXBUF  
UCA1TXBUF  
UCA1ABCTL  
UCA1IRCTL  
UCA1IE  
ADDRESS  
05E0h  
05E2h  
05E6h  
05E8h  
05EAh  
05ECh  
05EEh  
05F0h  
05F2h  
05FAh  
05FCh  
05FEh  
eUSCI_A1 Control Word Register 0  
eUSCI_A1 Control Word Register 1  
eUSCI_A1 Baud Rate Control Word  
eUSCI_A1 Modulation Control Word  
eUSCI_A1 Status Register  
eUSCI_A1 Receive Buffer  
eUSCI_A1 Transmit Buffer  
eUSCI_A1 Auto Baud Rate Control  
eUSCI_A1 IrDA Control Word  
eUSCI_A1 Interrupt Enable  
eUSCI_A1 Interrupt Flag  
UCA1IFG  
eUSCI_A1 Interrupt Vector  
UCA1IV  
REGISTER DESCRIPTION  
ACRONYM  
UCA2CTLW0  
UCA2CTLW1  
UCA2BRW  
UCA2MCTLW  
UCA2STATW  
UCA2RXBUF  
UCA2TXBUF  
UCA2ABCTL  
UCA2IRCTL  
UCA2IE  
ADDRESS  
0600h  
0602h  
0606h  
0608h  
060Ah  
060Ch  
060Eh  
0610h  
0612h  
061Ah  
061Ch  
061Eh  
eUSCI_A2 Control Word Register 0  
eUSCI_A2 Control Word Register 1  
eUSCI_A2 Baud Rate Control Word  
eUSCI_A2 Modulation Control Word  
eUSCI_A2 Status Register  
eUSCI_A2 Receive Buffer  
eUSCI_A2 Transmit Buffer  
eUSCI_A2 Auto Baud Rate Control  
eUSCI_A2 IrDA Control Word  
eUSCI_A2 Interrupt Enable  
eUSCI_A2 Interrupt Flag  
UCA2IFG  
eUSCI_A2 Interrupt Vector  
UCA2IV  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 145  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 9-69. eUSCI_A3 Registers  
REGISTER DESCRIPTION  
ACRONYM  
UCA3CTLW0  
UCA3CTLW1  
UCA3BRW  
UCA3MCTLW  
UCA3STATW  
UCA3RXBUF  
UCA3TXBUF  
UCA3ABCTL  
UCA3IRCTL  
UCA3IE  
ADDRESS  
eUSCI_A3 Control Word Register 0  
0620h  
0622h  
0626h  
0628h  
062Ah  
062Ch  
062Eh  
0630h  
0632h  
063Ah  
063Ch  
063Eh  
eUSCI_A3 Control Word Register 1  
eUSCI_A3 Baud Rate Control Word  
eUSCI_A3 Modulation Control Word  
eUSCI_A3 Status Register  
eUSCI_A3 Receive Buffer  
eUSCI_A3 Transmit Buffer  
eUSCI_A3 Auto Baud Rate Control  
eUSCI_A3 IrDA Control Word  
eUSCI_A3 Interrupt Enable  
eUSCI_A3 Interrupt Flag  
UCA3IFG  
eUSCI_A3 Interrupt Vector  
UCA3IV  
Table 9-70. eUSCI_B0 Registers  
REGISTER DESCRIPTION  
ACRONYM  
UCB0CTLW0  
UCB0CTLW1  
UCB0BRW  
ADDRESS  
0640h  
0642h  
0646h  
0648h  
064Ah  
064Ch  
064Eh  
0654h  
0656h  
0658h  
065Ah  
065Ch  
065Eh  
0660h  
066Ah  
066Ch  
066Eh  
eUSCI_B0 Control Word Register 0  
eUSCI_B0 Control Word Register 1  
eUSCI_B0 Baud Rate Control Word  
eUSCI_B0 Status Register  
UCB0STATW  
UCB0TBCNT  
UCB0RXBUF  
UCB0TXBUF  
UCB0I2COA0  
UCB0I2COA1  
UCB0I2COA2  
UCB0I2COA3  
UCB0ADDRX  
eUSCI_B0 Byte Counter Threshold  
eUSCI_B0 Receive Buffer  
eUSCI_B0 Transmit Buffer  
eUSCI_B0 I2C Own Address 0  
eUSCI_B0 I2C Own Address 1  
eUSCI_B0 I2C Own Address 2  
eUSCI_B0 I2C Own Address 3  
eUSCI_B0 I2C Received Address  
eUSCI_B0 I2C Address Mask  
eUSCI_B0 I2C Slave Address  
eUSCI_B0 Interrupt Enable  
UCB0ADDMASK  
UCB0I2CSA  
UCB0IE  
eUSCI_B0 Interrupt Flag  
UCB0IFG  
eUSCI_B0 Interrupt Vector  
UCB0IV  
Copyright © 2020 Texas Instruments Incorporated  
146 Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 9-71. eUSCI_B1 Registers  
REGISTER DESCRIPTION  
ACRONYM  
UCB1CTLW0  
UCB1CTLW1  
UCB1BRW  
ADDRESS  
0680h  
0682h  
0686h  
0688h  
068Ah  
068Ch  
068Eh  
0694h  
0696h  
0698h  
069Ah  
069Ch  
069Eh  
06A0h  
06AAh  
06ACh  
06AEh  
eUSCI_B1 Control Word Register 0  
eUSCI_B1 Control Word Register 1  
eUSCI_B1 Baud Rate Control Word  
eUSCI_B1 Status Register  
UCB1STATW  
UCB1TBCNT  
UCB1RXBUF  
UCB1TXBUF  
UCB1I2COA0  
UCB1I2COA1  
UCB1I2COA2  
UCB1I2COA3  
UCB1ADDRX  
eUSCI_B1 Byte Counter Threshold  
eUSCI_B1 Receive Buffer  
eUSCI_B1 Transmit Buffer  
eUSCI_B1 I2C Own Address 0  
eUSCI_B1 I2C Own Address 1  
eUSCI_B1 I2C Own Address 2  
eUSCI_B1 I2C Own Address 3  
eUSCI_B1 I2C Received Address  
eUSCI_B1 I2C Address Mask  
eUSCI_B1 I2C Slave Address  
eUSCI_B1 Interrupt Enable  
UCB1ADDMASK  
UCB1I2CSA  
UCB1IE  
eUSCI_B1 Interrupt Flag  
UCB1IFG  
eUSCI_B1 Interrupt Vector  
UCB1IV  
Table 9-72. TA4 Registers  
REGISTER DESCRIPTION  
ACRONYM  
TA4CTL  
ADDRESS  
07C0h  
07C2h  
07C4h  
07D0h  
07D2h  
07D4h  
07E0h  
07EEh  
Timer_A4 Control  
Timer_A4 Capture/Compare Control  
Timer_A4 Capture/Compare Control  
Timer_A4 Counter  
TA4CCTL0  
TA4CCTL1  
TA4R  
Timer_A4 Capture/Compare  
Timer_A4 Capture/Compare  
Timer_A4 Expansion 0  
TA4CCR0  
TA4CCR1  
TA4EX0  
Timer_A4 Interrupt Vector  
TA4IV  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 147  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 9-73. ADC12_B Registers  
REGISTER DESCRIPTION  
ACRONYM  
ADC12CTL0  
ADDRESS  
ADC12_B Control 0  
ADC12_B Control 1  
ADC12_B Control 2  
ADC12_B Control 3  
0800h  
0802h  
0804h  
0806h  
0808h  
080Ah  
080Ch  
080Eh  
0810h  
0812h  
0814h  
0816h  
0818h  
0820h  
0822h  
0824h  
0826h  
0828h  
082Ah  
082Ch  
082Eh  
0830h  
0832h  
0834h  
0836h  
0838h  
083Ah  
083Ch  
083Eh  
0840h  
0842h  
0844h  
0846h  
0848h  
084Ah  
084Ch  
084Eh  
0850h  
0852h  
0854h  
0856h  
0858h  
085Ah  
085Ch  
085Eh  
ADC12CTL1  
ADC12CTL2  
ADC12CTL3  
ADC12_B Window Comparator Low Threshold Register  
ADC12_B Window Comparator High Threshold Register  
ADC12_B Interrupt Flag 0  
ADC12LO  
ADC12HI  
ADC12IFGR0  
ADC12IFGR1  
ADC12IFGR2  
ADC12IER0  
ADC12_B Interrupt Flag 1  
ADC12_B Interrupt Flag 2  
ADC12_B Interrupt Enable 0  
ADC12_B Interrupt Enable 1  
ADC12_B Interrupt Enable 2  
ADC12_B Interrupt Vector  
ADC12IER1  
ADC12IER2  
ADC12IV  
ADC12_B Memory Control 0  
ADC12_B Memory Control 1  
ADC12_B Memory Control 2  
ADC12_B Memory Control 3  
ADC12_B Memory Control 4  
ADC12_B Memory Control 5  
ADC12_B Memory Control 6  
ADC12_B Memory Control 7  
ADC12_B Memory Control 8  
ADC12_B Memory Control 9  
ADC12_B Memory Control 10  
ADC12_B Memory Control 11  
ADC12_B Memory Control 12  
ADC12_B Memory Control 13  
ADC12_B Memory Control 14  
ADC12_B Memory Control 15  
ADC12_B Memory Control 16  
ADC12_B Memory Control 17  
ADC12_B Memory Control 18  
ADC12_B Memory Control 19  
ADC12_B Memory Control 20  
ADC12_B Memory Control 21  
ADC12_B Memory Control 22  
ADC12_B Memory Control 23  
ADC12_B Memory Control 24  
ADC12_B Memory Control 25  
ADC12_B Memory Control 26  
ADC12_B Memory Control 27  
ADC12_B Memory Control 28  
ADC12_B Memory Control 29  
ADC12_B Memory Control 30  
ADC12_B Memory Control 31  
ADC12MCTL0  
ADC12MCTL1  
ADC12MCTL2  
ADC12MCTL3  
ADC12MCTL4  
ADC12MCTL5  
ADC12MCTL6  
ADC12MCTL7  
ADC12MCTL8  
ADC12MCTL9  
ADC12MCTL10  
ADC12MCTL11  
ADC12MCTL12  
ADC12MCTL13  
ADC12MCTL14  
ADC12MCTL15  
ADC12MCTL16  
ADC12MCTL17  
ADC12MCTL18  
ADC12MCTL19  
ADC12MCTL20  
ADC12MCTL21  
ADC12MCTL22  
ADC12MCTL23  
ADC12MCTL24  
ADC12MCTL25  
ADC12MCTL26  
ADC12MCTL27  
ADC12MCTL28  
ADC12MCTL29  
ADC12MCTL30  
ADC12MCTL31  
Copyright © 2020 Texas Instruments Incorporated  
148 Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 9-73. ADC12_B Registers (continued)  
REGISTER DESCRIPTION  
ACRONYM  
ADDRESS  
0860h  
0862h  
0864h  
0866h  
0868h  
086Ah  
086Ch  
086Eh  
0870h  
0872h  
0874h  
0876h  
0878h  
087Ah  
087Ch  
087Eh  
0880h  
0882h  
0884h  
0886h  
0888h  
088Ah  
088Ch  
088Eh  
0890h  
0892h  
0894h  
0896h  
0898h  
089Ah  
089Ch  
089Eh  
ADC12_B Memory 0  
ADC12_B Memory 1  
ADC12_B Memory 2  
ADC12_B Memory 3  
ADC12_B Memory 4  
ADC12_B Memory 5  
ADC12_B Memory 6  
ADC12_B Memory 7  
ADC12_B Memory 8  
ADC12_B Memory 9  
ADC12_B Memory 10  
ADC12_B Memory 11  
ADC12_B Memory 12  
ADC12_B Memory 13  
ADC12_B Memory 14  
ADC12_B Memory 15  
ADC12_B Memory 16  
ADC12_B Memory 17  
ADC12_B Memory 18  
ADC12_B Memory 19  
ADC12_B Memory 20  
ADC12_B Memory 21  
ADC12_B Memory 22  
ADC12_B Memory 23  
ADC12_B Memory 24  
ADC12_B Memory 25  
ADC12_B Memory 26  
ADC12_B Memory 27  
ADC12_B Memory 28  
ADC12_B Memory 29  
ADC12_B Memory 30  
ADC12_B Memory 31  
ADC12MEM0  
ADC12MEM1  
ADC12MEM2  
ADC12MEM3  
ADC12MEM4  
ADC12MEM5  
ADC12MEM6  
ADC12MEM7  
ADC12MEM8  
ADC12MEM9  
ADC12MEM10  
ADC12MEM11  
ADC12MEM12  
ADC12MEM13  
ADC12MEM14  
ADC12MEM15  
ADC12MEM16  
ADC12MEM17  
ADC12MEM18  
ADC12MEM19  
ADC12MEM20  
ADC12MEM21  
ADC12MEM22  
ADC12MEM23  
ADC12MEM24  
ADC12MEM25  
ADC12MEM26  
ADC12MEM27  
ADC12MEM28  
ADC12MEM29  
ADC12MEM30  
ADC12MEM31  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 149  
Product Folder Links: MSP430FR6007 MSP430FR6005  
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 9-74. Comparator_E Registers  
REGISTER DESCRIPTION  
ACRONYM  
CECTL0  
CECTL1  
CECTL2  
CECTL3  
CEINT  
ADDRESS  
Comparator Control Register 0  
08C0h  
08C2h  
08C4h  
08C6h  
08CCh  
08CEh  
Comparator Control Register 1  
Comparator Control Register 2  
Comparator Control Register 3  
Comparator Interrupt Control  
Comparator Interrupt Vector Word  
CEIV  
Table 9-75. CRC32 Registers  
REGISTER DESCRIPTION  
ACRONYM  
CRC32DIW0  
ADDRESS  
0980h  
0982h  
0984h  
0986h  
0988h  
098Ah  
098Ch  
098Eh  
0990h  
0996h  
0998h  
099Eh  
CRC32 Data Input Word 0  
CRC32 Data Input Word 1  
CRC32 Data In Reverse Word 1  
CRC32 Data In Reverse Word 0  
CRC32 Initialization and Result Word 0  
CRC32 Initialization and Result Word 1  
CRC32 Result Reverse Word 1  
CRC32 Result Reverse Word 0  
CRC16 Data Input  
CRC32DIW1  
CRC32DIRBW1  
CRC32DIRBW0  
CRC32INIRESW0  
CRC32INIRESW1  
CRC32RESRW1  
CRC32RESRW0  
CRC16DIW0  
CRC16 Data In Reverse  
CRC16DIRBW0  
CRC16INIRESW0  
CRC16RESRW0  
CRC16 Init and Result  
CRC16 Result Reverse  
Table 9-76. AES256 Registers  
REGISTER DESCRIPTION  
ACRONYM  
AESACTL0  
AESACTL1  
AESASTAT  
AESAKEY  
AESADIN  
ADDRESS  
09C0h  
09C2h  
09C4h  
09C6h  
09C8h  
09CAh  
09CCh  
09CEh  
AES Accelerator Control 0  
AES Accelerator Control 1  
AES Accelerator Status  
AES Accelerator Key  
AES Accelerator Data In  
AES Accelerator Data Out  
AES Accelerator XORed Data In  
AES Accelerator XORed Data In  
AESADOUT  
AESAXDIN  
AESAXIN  
Copyright © 2020 Texas Instruments Incorporated  
150 Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 9-77. LCD_C Registers  
REGISTER DESCRIPTION  
ACRONYM  
LCDCCTL0  
LCDCCTL1  
LCDCBLKCTL  
LCDCMEMCTL  
LCDCVCTL  
LCDCPCTL0  
LCDCPCTL1  
LCDCPCTL2  
LCDCPCTL3  
LCDCCPCTL  
LCDCIV  
ADDRESS  
0A00h  
0A02h  
0A04h  
0A06h  
0A08h  
0A0Ah  
0A0Ch  
0A0Eh  
0A10h  
0A12h  
0A1Eh  
LCD_C control 0  
LCD_C control 1  
LCD_C blinking control  
LCD_C memory control  
LCD_C Voltage Control  
LCD_C port control 0  
LCD_C port control 1  
LCD_C port control 2 (≥256 segments)  
LCD_C port control 3 (384 segments)  
LCD_C charge pump control  
LCD_C interrupt vector  
LCDMX = 0 ... 4  
LCD memory 1  
LCDM1  
LCDM2  
0A20h  
0A21h  
0A22h  
0A23h  
0A24h  
0A25h  
0A26h  
0A27h  
0A28h  
0A29h  
0A2Ah  
0A2Bh  
0A2Ch  
0A2Dh  
0A2Eh  
0A2Fh  
0A30h  
0A31h  
0A32h  
0A33h  
0A40h  
0A41h  
0A42h  
0A43h  
0A44h  
0A45h  
0A46h  
0A47h  
0A48h  
0A49h  
0A4Ah  
0A4Bh  
0A4Ch  
LCD memory 2  
LCD memory 3  
LCDM3  
LCD memory 4  
LCDM4  
LCD memory 5  
LCDM5  
LCD memory 6  
LCDM6  
LCD memory 7  
LCDM7  
LCD memory 8  
LCDM8  
LCD memory 9  
LCDM9  
LCD memory 10  
LCDM10  
LCD memory 11  
LCDM11  
LCD memory 12  
LCDM12  
LCD memory 13  
LCDM13  
LCD memory 14  
LCDM14  
LCD memory 15  
LCDM15  
LCD memory 16  
LCDM16  
LCD memory 17  
LCDM17  
LCD memory 18  
LCDM18  
LCD memory 19  
LCDM19  
LCD memory 20  
LCDM20  
LCD blinking memory 1  
LCD blinking memory 2  
LCD blinking memory 3  
LCD blinking memory 4  
LCD blinking memory 5  
LCD blinking memory 6  
LCD blinking memory 7  
LCD blinking memory 8  
LCD blinking memory 9  
LCD blinking memory 10  
LCD blinking memory 11  
LCD blinking memory 11  
LCD blinking memory 13  
LCDM33_LCDBM1  
LCDM34_LCDBM2  
LCDM35_LCDBM3  
LCDM36_LCDBM4  
LCDM37_LCDBM5  
LCDM38_LCDBM6  
LCDM39_LCDBM7  
LCDM40_LCDBM8  
LCDM41_LCDBM9  
LCDM42_LCDBM10  
LCDM43_LCDBM11  
LCDM44_LCDBM12  
LCDM45_LCDBM13  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 151  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 9-77. LCD_C Registers (continued)  
REGISTER DESCRIPTION  
ACRONYM  
ADDRESS  
LCD blinking memory 14  
LCD blinking memory 15  
LCD blinking memory 16  
LCD blinking memory 17  
LCD blinking memory 18  
LCD blinking memory 19  
LCD blinking memory 20  
LCDM46_LCDBM14  
LCDM47_LCDBM15  
LCDM48_LCDBM16  
LCDM49_LCDBM17  
LCDM50_LCDBM18  
LCDM51_LCDBM19  
LCDM52_LCDBM20  
0A4Dh  
0A4Eh  
0A4Fh  
0A50h  
0A51h  
0A52h  
0A53h  
LCDMX = 5 ... 8  
LCD memory 1  
LCD memory 2  
LCD memory 3  
LCD memory 4  
LCD memory 5  
LCD memory 6  
LCD memory 7  
LCD memory 8  
LCD memory 9  
LCD memory 10  
LCD memory 11  
LCD memory 12  
LCD memory 13  
LCD memory 14  
LCD memory 15  
LCD memory 16  
LCD memory 17  
LCD memory 18  
LCD memory 19  
LCD memory 20  
LCD memory 21  
LCD memory 22  
LCD memory 23  
LCD memory 24  
LCD memory 25  
LCD memory 26  
LCD memory 27  
LCD memory 28  
LCD memory 29  
LCD memory 30  
LCD memory 31  
LCD memory 32  
LCD memory 33  
LCD memory 34  
LCD memory 35  
LCD memory 36  
LCDM1  
LCDM2  
0A20h  
0A21h  
0A22h  
0A23h  
0A24h  
0A25h  
0A26h  
0A27h  
0A28h  
0A29h  
0A2Ah  
0A2Bh  
0A2Ch  
0A2Dh  
0A2Eh  
0A2Fh  
0A30h  
0A31h  
0A32h  
0A33h  
0A34h  
0A35h  
0A36h  
0A37h  
0A38h  
0A39h  
0A3Ah  
0A3Bh  
0A3Ch  
0A3Dh  
0A3Eh  
0A3Fh  
0A40h  
0A41h  
0A42h  
0A43h  
LCDM3  
LCDM4  
LCDM5  
LCDM6  
LCDM7  
LCDM8  
LCDM9  
LCDM10  
LCDM11  
LCDM12  
LCDM13  
LCDM14  
LCDM15  
LCDM16  
LCDM17  
LCDM18  
LCDM19  
LCDM20  
LCDM21  
LCDM22  
LCDM23  
LCDM24  
LCDM25  
LCDM26  
LCDM27  
LCDM28  
LCDM29  
LCDM30  
LCDM31  
LCDM32  
LCDM33_LCDBM1  
LCDM34_LCDBM2  
LCDM35_LCDBM3  
LCDM36_LCDBM4  
Copyright © 2020 Texas Instruments Incorporated  
152 Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 9-78. LEA Registers  
REGISTER DESCRIPTION  
ACRONYM  
LEACAP  
ADDRESS  
0A80h  
0A84h  
0A88h  
0A8Ch  
0A90h  
0A94h  
0A98h  
0A9Ch  
0AA8h  
0AACh  
0AB0h  
0AB4h  
0AC0h  
0AC4h  
0AC8h  
0ACCh  
0AD0h  
0AF0h  
0AF4h  
0AF8h  
0AFCh  
LEA Capability Register  
Configuration Register 0  
Configuration Register 1  
Configuration Register 2  
Memory Bottom Register  
Memory Top Register  
Code Memory Access  
Code Memory Control  
LEA Command Status  
LEA Source 1 Status  
LEA Source 0 Status  
LEA Result Status  
LEACNF0  
LEACNF1  
LEACNF2  
LEAMB  
LEAMT  
LEACMA  
LEACMCTL  
LEACMDSTAT  
LEAS1STAT  
LEAS0STAT  
LEADSTSTAT  
LEAPMCTL  
LEAPMDST  
LEAPMS1  
LEAPMS0  
LEAPMCB  
LEAIFGSET  
LEAIE  
PM Control Register  
PM Result Register  
PM Source 1 Register  
PM Source 0 Register  
PM Command Buffer  
Interrupt Flag and Set  
Interrupt Enable  
Interrupt Flag and Clear  
Interrupt Vector  
LEAIFG  
LEAIV  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 153  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 9-79. SAPH Registers  
REGISTER DESCRIPTION  
ACRONYM  
SAPHIIDX  
ADDRESS  
Interrupt Index  
0E00h  
0E02h  
0E04h  
0E06h  
0E08h  
0E0Ah  
0E0Ch  
0E0Eh  
0E10h  
0E12h  
0E14h  
0E16h  
0E20h  
0E22h  
0E24h  
0E26h  
0E28h  
0E2Ah  
0E2Ch  
0E2Eh  
0E30h  
0E34h  
0E40h  
0E42h  
0E44h  
0E46h  
0E48h  
0E60h  
0E62h  
0E64h  
0E66h  
0E68h  
0E6Ah  
0E6Eh  
0E70h  
0E72h  
0E74h  
0E76h  
0E78h  
0E7Ah  
0E7Ch  
0E7Eh  
Masked Interrupt Satus  
Raw Interrupt Status  
Interrupt Mask  
SAPHMIS  
SAPHRIS  
SAPHIMSC  
Interrupt Clear  
SAPHICR  
Interrupt Set  
SAPHISR  
Module-Descriptor Low Word  
Module-Descriptor High Word  
Key  
SAPHDESCLO  
SAPHDESCHI  
SAPHKEY  
Physical Interface Output Control #0  
Physical Interface Output Control #1  
Physical Interface Output Function Select  
Channel 0 Pull UpTrim  
Channel 0 Pull DownTrim  
Channel 0 Termination Trim  
Channel 1 Pull UpTrim  
Channel 1 Pull DownTrim  
Channel 1 Termination Trim  
Mode Configuration Register  
Trim Access Control  
SAPHOCTL0  
SAPHOCTL1  
SAPHOSEL  
SAPHCH0PUT  
SAPHCH0PDT  
SAPHCH0TT  
SAPHCH1PUT  
SAPHCH1PDT  
SAPHCH1TT  
SAPHMCNF  
SAPHTACTL  
SAPHICTL0  
SAPHBCTL  
Physical Interface Input Control #0  
Bias Control  
PPG Count  
SAPHPGC  
Pulse Generator Low Period  
Pulse Generator High Period  
PPG Control  
SAPHPGLPER  
SAPHPGHPER  
SAPHPGCTL  
SAPHPPGTRIG  
SAPHASCTL0  
SAPHASCTL1  
SAPHASQTRIG  
SAPHAPOL  
SAPHAPLEV  
SAPHAPHIZ  
SAPHATM_A  
SAPHATM_B  
SAPHATM_C  
SAPHATM_D  
SAPHATM_E  
SAPHATM_F  
SAPHTBCTL  
SAPHATIMLO  
SAPHATIMHI  
PPG Software Trigger  
A-SEQ control 0  
A-SEQ control 1  
ASQ Software Trigger  
ASQ ping output polarity  
ASQ ping pause level  
ASQ ping pause impedance  
A-SEQ start to 1st ping  
ASQ start to ADC arm  
Count for the TIMEMARK C Event  
ASQ start to ADC trig  
ASQ start to restart  
ASQ start to time-out  
Time Base Control  
Acquisition Timer Low Part  
Acquisition Timer High Part  
Copyright © 2020 Texas Instruments Incorporated  
154 Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 9-80. SDHS Registers  
REGISTER DESCRIPTION  
ACRONYM  
SDHSIIDX  
ADDRESS  
0E80h  
0E82h  
0E84h  
0E86h  
0E88h  
0E8Ah  
0E8Ch  
0E8Eh  
0E90h  
0E92h  
0E94h  
0E96h  
0E98h  
0E9Ah  
0E9Ch  
0E9Eh  
0EA2h  
0EA4h  
0EA6h  
0EA8h  
Interrupt Index Register  
Masked Interrupt Status and Clear Register  
Raw Interrupt Status  
SDHSMIS  
SDHSRIS  
Interrupt Mask Register  
SDHSIMSC  
SDHSICR  
Interrupt Clear  
Interrupt Set Register  
SDHSISR  
SDHS Descriptor Register L  
SDHS Descriptor Register H  
SDHS Control Register 0  
SDHSDESCLO  
SDHSDESCHI  
SDHSCTL0  
SDHSCTL1  
SDHSCTL2  
SDHSCTL3  
SDHSCTL4  
SDHSCTL5  
SDHSCTL6  
SDHSCTL7  
SDHSDT  
SDHS Control Register 1  
SDHS Control Register 2  
SDHS Control Register 3  
SDHS Control Register 4  
SDHS Control Register 5  
SDHS Control Register 6  
SDHS Control Register 7  
SDHS Data Converstion Register  
SDHS Window Comparator High Threshold Register  
SDHS Window Comparator Low Threshold Register  
DTC destination address  
SDHSWINHITH  
SDHSWINLOTH  
SDHSDTCDA  
Table 9-81. UUPS Registers  
REGISTER DESCRIPTION  
ACRONYM  
UUPSIIDX  
ADDRESS  
0EC0h  
0EC2h  
0EC4h  
0EC6h  
0EC8h  
0ECAh  
0ECCh  
0ECEh  
0ED0h  
Interrupt Index Register  
Masked Interrupt Status  
Raw Interrupt Status  
Interrupt Mask Register  
Interrupt Clear  
UUPSMIS  
UUPSRIS  
UUPSIMSC  
UUPSICR  
Interrupt Flag Set  
UUPSISR  
UUPS Descriptor Register L  
UUPS Descriptor Register H  
UUPS Control  
UUPSDESCLO  
UUPSDESCHI  
UUPSCTL  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 155  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 9-82. HSPLL Registers  
REGISTER DESCRIPTION  
ACRONYM  
HSPLLIIDX  
ADDRESS  
Interrupt Index Register  
Masked Interrupt Status  
Raw Interrupt Status  
Interrupt Mask Register  
Interrupt Flag Clear  
0EE0h  
0EE2h  
0EE4h  
0EE6h  
0EE8h  
0EEAh  
0EECh  
0EEEh  
0EF0h  
0EF2h  
HSPLLMIS  
HSPLLRIS  
HSPLLIMSC  
HSPLLICR  
Interrupt Flag Set  
HSPLLISR  
HSPLL Descriptor Register L  
HSPLLDESCLO  
HSPLLDESCHI  
HSPLLCTL  
HSPLL Descriptor Register H  
HSPLL Control Register  
USSXT Control Register  
HSPLLUSSXTLCTL  
Copyright © 2020 Texas Instruments Incorporated  
156 Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
9.17 Identification  
9.17.1 Revision Identification  
The device revision information is shown as part of the top-side marking on the device package. The device-  
specific errata sheet describes these markings. For links to the errata sheets for the devices in this data sheet,  
see Section 11.4.  
The hardware revision is also stored in the Device Descriptor structure in the Info Block section. For details on  
this value, see the "Hardware Revision" entries in the Device Descriptor structure (see Section 9.15).  
9.17.2 Device Identification  
The device type can be identified from the top-side marking on the device package. The device-specific errata  
sheet describes these markings. For links to the errata sheets for the devices in this data sheet, see Section  
11.4.  
A device identification value is also stored in the Device Descriptor structure in the Info Block section. For details  
on this value, see the "Device ID" entries in the Device Descriptor structure (see Section 9.15).  
9.17.3 JTAG Identification  
Programming through the JTAG interface, including reading and identifying the JTAG ID, is described in MSP430  
Programming With the JTAG Interface.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 157  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
10 Applications, Implementation, and Layout  
Note  
Information in the following Applications section is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TI's customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
10.1 Device Connection and Layout Fundamentals  
This section describes the recommended guidelines when designing with the MSP MCU. These guidelines are  
to make sure that the device has proper connections for powering, programming, debugging, and optimum  
analog performance.  
10.1.1 Power Supply Decoupling and Bulk Capacitors  
TI recommends connecting a combination of a 1-µF plus a 100-nF low-ESR ceramic decoupling capacitor to  
each AVCC and DVCC pin (see Figure 10-1). Higher-value capacitors may be used but can affect supply rail  
ramp-up time. Decoupling capacitors must be placed as close as possible to the pins that they decouple (within  
a few millimeters). Additionally, TI recommends separated grounds with a single-point connection for better noise  
isolation from digital to analog circuits on the board and to achieve high analog accuracy.  
DVCC  
Digital Power  
Supply Decoupling  
+
DVSS  
AVCC  
1 µF  
100 nF  
Analog Power  
Supply Decoupling  
+
AVSS  
1 µF  
100 nF  
Figure 10-1. Power Supply Decoupling  
For PVCC and PVSS, TI recommends connecting a combination of a 1-µF plus a 22-µF low-ESR ceramic  
decoupling capacitor between the PVCC and PVSS pins and a serial 22-Ω resistor to filter low-frequency noise  
on the supply line (see Figure 10-2).  
22 W  
PVCC  
+
1 nF  
22 µF  
PVSS  
USS module power supply decoupling  
Figure 10-2. Power Supply Decoupling for PVCC and PVSS  
10.1.2 External Oscillator (HFXT and LFXT)  
Depending on the device variant (see Section 6), the device can support a low-frequency crystal (32 kHz) on the  
LFXT pins, a high-frequency crystal on the HFXT pins, or both. External bypass capacitors for the crystal  
oscillator pins are required.  
Copyright © 2020 Texas Instruments Incorporated  
158 Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
It is also possible to apply digital clock signals to the LFXIN and HFXIN input pins that meet the specifications of  
the respective oscillator if the appropriate LFXTBYPASS or HFXTBYPASS mode is selected. In this case, the  
associated LFXOUT and HFXOUT pins can be used for other purposes. If they are left unused, they must be  
terminated according to Section 7.6.  
Figure 10-3 shows a typical connection diagram.  
LFXIN  
or  
LFXOUT  
or  
HFXIN  
HFXOUT  
CL1  
CL2  
Figure 10-3. Typical Crystal Connection  
See MSP430 32-kHz Crystal Oscillators for more information on selecting, testing, and designing a crystal  
oscillator with the MSP MCUs.  
10.1.3 USS Oscillator (USSXT)  
Depending on the device variant (see Section 6), the device with USS module supports a high-frequency crystal  
on the USSXT pins. External bypass capacitors for the crystal oscillator pins are required. Serially connect a 22-  
Ω resistor close to the USSXTOUT pin (see Figure 10-4). The USSXT does not support bypass mode, so it is  
not possible to apply digital clock signals to the USSXTIN pin. Never connect the USSXTIN pin to a power  
supply line (AVCC, DVCC, or PVCC). If the USSXT pins are not used, terminate them according to Section 7.6.  
Figure 10-4 shows a typical connection diagram.  
USSXTIN  
USSXTOUT  
22 W  
CL2  
CL1  
Figure 10-4. Typical Crystal Connection  
Consider the following items for the USSXT layout:  
Keep the trace of USSXTIN and USSXTOUT as short as possible. If one must be longer than the other, keep  
USSXTIN shorter, because USSXTIN is more sensitive to EMI.  
Make the ground shield open ended without making a loop.  
Use a ground plane to reduce the impedance of the ground trace.  
If USSXT_BOUT is used, keep coupling to USSXTIN and CH0_IN to a minimum.  
If USSXT_BOUT is feeding other clock or device inputs, apply a small capacitor (10 pF) as the line  
termination load at the end of the line. This avoids reflection artifacts on sensitive inputs (for example,  
HFXTIN).  
Figure 10-5 shows the recommended PCB layout.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 159  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Plane  
Plane  
Transducer  
Interface  
Area  
Transducer  
Interface  
Area  
Oscillator  
Area  
CL2  
CL1  
Oscillator  
Area  
XTAL  
XTAL  
22R  
22R  
Keep-out area for  
high currents down  
to next GND plane  
Keep-out area for  
high currents down  
to next GND plane  
Figure 10-5. USSXT PCB Layout Recommendation  
10.1.4 Transducer Connection to the USS Module  
Figure 10-6 shows a typical connection of two transducers to the USS output and input pins. TI recommends 1%  
error tolerance for the external termination resistors (Rterm0 and Rterm1) and the AC coupling capacitors (Cac0  
and Cac1). Typical value of the termination resistors is in the range of 150 to 400 Ω, the AC coupling capacitors  
are 1 to 2 nF. Actual values should be determined to meet the requirements of each application.  
Rterm0  
CH0_OUT  
Rterm1  
CH1_OUT  
T0  
T1  
Cac0  
Cac1  
CH1_IN  
CH0_IN  
Figure 10-6. Typical Transducer Connection  
10.1.5 Charge Pump Control of Input Multiplexer  
Figure 10-7 shows the control logic of the charge pump control of the input multiplexer of CHx_IN. The charge  
pump is enabled as long the SAPH_AMCNF.CPEO is high and during the arming of the SDHS. Use the CPDA  
bit to control the CP during data acquisition.  
Copyright © 2020 Texas Instruments Incorporated  
160 Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
SAPH_ABCTL.CPDA  
ASQ.acquisition  
Charge  
pump  
enable  
ASQ.adc_arming  
en CP  
SAPH_AMCNF.CPEO  
SDHS.adc_arming  
SDHS.acquisition  
CH0_IN  
CH1_IN  
PGA  
To SDHS  
Figure 10-7. Control Of Input Multiplexer  
10.1.6 JTAG  
With the proper connections, the debugger and a hardware JTAG interface (such as the MSP-FET or MSP-  
FET430UIF) can be used to program and debug code on the target board. In addition, the connections also  
support the MSP-GANG production programmers, thus providing an easy way to program prototype boards, if  
desired. Figure 10-8 shows the connections between the 14-pin JTAG connector and the target device required  
to support in-system programming and debugging for 4-wire JTAG communication. Figure 10-9 shows the  
connections for 2-wire JTAG mode (Spy-Bi-Wire).  
The connections for the MSP-FET and MSP-FET430UIF interface modules and the MSP-GANG are identical.  
Both can supply VCC to the target board (through pin 2). In addition, the MSP-FET and MSP-FET430UIF  
interface modules and MSP-GANG have a VCC sense feature that, if used, requires an alternate connection (pin  
4 instead of pin 2). The VCC sense feature senses the local VCC present on the target board (that is, a battery or  
other local power supply) and adjusts the output signals accordingly. Figure 10-8 and Figure 10-9 show a jumper  
block that supports both scenarios of supplying VCC to the target board. If this flexibility is not required, the  
desired VCC connections may be hard-wired to eliminate the jumper block. Pins 2 and 4 must not be connected  
at the same time.  
For additional design information regarding the JTAG interface, see the MSP430 Hardware Tools User’s Guide.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 161  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
VCC  
Important to connect  
MSP430FRxxx  
J1 (see Note A)  
J2 (see Note A)  
AVCC/DVCC  
R1  
47 kW  
JTAG  
RST/NMI/SBWTDIO  
VCC TOOL  
TDO/TDI  
TDI  
TDO/TDI  
TDI  
2
1
VCC TARGET  
4
3
TMS  
TMS  
6
5
7
TEST  
TCK  
8
TCK  
GND  
RST  
10  
12  
14  
9
11  
13  
TEST/SBWTCK  
AVSS/DVSS  
C1  
2.2 nF  
(see Note B)  
Copyright © 2016, Texas Instruments Incorporated  
A. If a local target power supply is used, make connection J1. If power from the debug or programming adapter is used, make connection  
J2.  
B. The upper limit for C1 is 2.2 nF when using current TI tools.  
Figure 10-8. Signal Connections for 4-Wire JTAG Communication  
Copyright © 2020 Texas Instruments Incorporated  
162 Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
VCC  
Important to connect  
MSP430FRxxx  
AVCC/DVCC  
J1 (see Note A)  
J2 (see Note A)  
R1  
47 kΩ  
See Note B  
JTAG  
VCC TOOL  
TDO/TDI  
2
1
3
5
7
9
RST/NMI/SBWTDIO  
VCC TARGET  
4
6
TCK  
8
GND  
10  
12  
14  
11  
13  
TEST/SBWTCK  
AVSS/DVSS  
C1  
2.2 nF  
See Note B  
Copyright © 2016, Texas Instruments Incorporated  
A. Make connection J1 if a local target power supply is used, or make connection J2 if the target is powered from the debug or  
programming adapter.  
B. The device RST/NMI/SBWTDIO pin is used in 2-wire mode for bidirectional communication with the device during JTAG access, and any  
capacitance that is attached to this signal may affect the ability to establish a connection with the device. The upper limit for C1 is 2.2 nF  
when using current TI tools.  
Figure 10-9. Signal Connections for 2-Wire JTAG Communication (Spy-Bi-Wire)  
10.1.7 Reset  
The reset pin can be configured as a reset function (default) or as an NMI function in the SFRRPCR register.  
In reset mode, the RST/NMI pin is active low, and a pulse applied to this pin that meets the reset timing  
specifications generates a BOR-type device reset.  
Setting SYSNMI causes the RST/NMI pin to be configured as an external NMI source. The external NMI is edge  
sensitive, and its edge is selectable by SYSNMIIES. Setting the NMIIE enables the interrupt of the external NMI.  
When an external NMI event occurs, the NMIIFG is set.  
The RST/NMI pin can have either a pullup or pulldown that is enabled or not. SYSRSTUP selects either pullup or  
pulldown, and SYSRSTRE causes the pullup (default) or pulldown to be enabled (default) or not. If the RST/NMI  
pin is unused, it is required either to select and enable the internal pullup or to connect an external 47-kΩ pullup  
resistor to the RST/NMI pin with a 2.2-nF pulldown capacitor. The pulldown capacitor should not exceed 2.2 nF  
when using devices with Spy-Bi-Wire interface in Spy-Bi-Wire mode or in 4-wire JTAG mode with TI tools like  
FET interfaces or GANG programmers.  
See the MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User's Guide for more information on the  
referenced control registers and bits.  
10.1.8 Unused Pins  
For details on the connection of unused pins, see Section 7.6.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 163  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
10.1.9 General Layout Recommendations  
Proper grounding and short traces for external crystal to reduce parasitic capacitance. See MSP430 32-kHz  
Crystal Oscillators for recommended layout guidelines.  
Proper bypass capacitors on DVCC, AVCC, and reference pins if used.  
Avoid routing any high-frequency signal close to an analog signal line. For example, keep digital switching  
signals such as PWM or JTAG signals away from the oscillator circuit.  
Proper ESD level protection should be considered to protect the device from unintended high-voltage  
electrostatic discharge. See MSP430 System-Level ESD Considerations for guidelines.  
10.1.10 Do's and Don'ts  
TI recommends powering AVCC and DVCC pins from the same source. At a minimum, during power up, power  
down, and device operation, the voltage difference between AVCC and DVCC must not exceed the limits  
specified in Section 8.1. Exceeding the specified limits may cause malfunction of the device including erroneous  
writes to RAM and FRAM.  
10.2 Peripheral- and Interface-Specific Design Information  
10.2.1 ADC12_B Peripheral  
10.2.1.1 Partial Schematic  
Figure 10-10 shows the recommended connections for the reference input pins.  
AVSS  
VREF+/VEREF+  
Using an  
External  
Positive  
Reference  
+
470 nF  
10 µF  
VEREF-  
Using an  
External  
+
Negative  
Reference  
10 µF  
470 nF  
Figure 10-10. ADC12_B Grounding and Noise Considerations  
10.2.1.2 Design Requirements  
As with any high-resolution ADC, appropriate printed-circuit-board layout and grounding techniques should be  
followed to eliminate ground loops, unwanted parasitic effects, and noise.  
Ground loops are formed when return current from the ADC flows through paths that are common with other  
analog or digital circuitry. If care is not taken, this current can generate small unwanted offset voltages that can  
add to or subtract from the reference or input voltages of the ADC. The general guidelines in Section 10.1.1  
combined with the connections shown in Figure 10-10 prevent these offsets.  
In addition to grounding, ripple and noise spikes on the power-supply lines that are caused by digital switching or  
switching power supplies can corrupt the conversion result. A noise-free design using separate analog and  
digital ground planes with a single-point connection is recommend to achieve high accuracy.  
Figure 10-10 shows the recommended decoupling circuit when an external voltage reference is used. The  
internal reference module has a maximum drive current as specified in the IO(VREF+) specification of the REF  
module.  
The reference voltage must be a stable voltage for accurate measurements. The capacitor values that are  
selected in the general guidelines filter out the high- and low-frequency ripple before the reference voltage  
enters the device. In this case, the 10-µF capacitor buffers the reference pin and filter any low-frequency ripple.  
A 470-nF bypass capacitor filters out any high-frequency noise.  
Copyright © 2020 Texas Instruments Incorporated  
164 Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
10.2.1.3 Detailed Design Procedure  
For additional design information, see Designing With the MSP430FR58xx, FR59xx, FR68xx, and FR69xx ADC.  
10.2.1.4 Layout Guidelines  
Component that are shown in the partial schematic (see Figure 10-10) should be placed as close as possible to  
the respective device pins. Avoid long traces, because they add additional parasitic capacitance, inductance,  
and resistance on the signal.  
Avoid routing analog input signals close to a high-frequency pin (for example, a high-frequency PWM), because  
the high-frequency switching can be coupled into the analog signal.  
If differential mode is used for the ADC12_B, the analog differential input signals must be routed closely together  
to minimize the effect of noise on the resulting signal.  
10.2.2 LCD_C Peripheral  
10.2.2.1 Partial Schematic  
Required LCD connections greatly vary by the type of display that is used (static or multiplexed), whether  
external or internal biasing is used, and whether the on-chip charge pump is employed. Also, there is a fair  
amount of flexibility as to how the segment (Sx) and common (COMx) signals are connected to the MCU, which  
can provide unique benefits. Because LCD connections are application-specific, it is difficult to provide a single  
one-fits-all schematic. However, for examples and how-to circuit design guidance, see Designing With  
MSP430™ MCUs and Segment LCDs.  
10.2.2.2 Design Requirements  
Due to the flexibility of the LCD_C peripheral module to accommodate various segment-based LCDs, selecting  
the correct display for the application in combination with determining specific design requirements is often an  
iterative process. TI strongly recommends reviewing the LCD_C peripheral module chapter in the  
MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User's Guide and Designing With MSP430™  
MCUs and Segment LCDs during the initial design requirements and decision process.  
10.2.2.3 Detailed Design Procedure  
A major component in designing the LCD solution is determining the exact connections between the LCD_C  
peripheral module and the display. Two basic design processes can be employed for this step, although in reality  
often a balanced co-design approach is recommended:  
PCB layout-driven design, optimizing signal routing  
Software-driven design, focusing on optimizing computational overhead  
For a detailed discussion of the design procedure as well as for design information regarding the LCD controller  
input voltage selection including internal and external options, contrast control, and bias generation, see  
Designing With MSP430™ MCUs and Segment LCDs and the LCD_C Controller chapter in the MSP430FR58xx,  
MSP430FR59xx, and MSP430FR6xx Family User's Guide.  
10.2.2.4 Layout Guidelines  
LCD segment (Sx) and common (COMx) signal traces are continuously switching while the LCD is enabled and  
should, therefore, be kept away from sensitive analog signals such as ADC inputs to prevent any noise coupling.  
TI recommends keeping the LCD signal traces on one side of the PCB grouped together in a bus-like fashion. A  
ground plane beneath the LCD traces and guard traces alongside the LCD traces can provide shielding.  
If the internal charge pump of the LCD module is used, place the externally provided capacitor on the LCDCAP  
pin as close as possible to the MCU. Connect the capacitor to the device using a short and direct trace and also  
have a solid connection to the ground plane that supplies the VSS pins of the MCU.  
For an example layouts and a more in-depth discussion, see Designing With MSP430™ MCUs and Segment  
LCDs.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 165  
Product Folder Links: MSP430FR6007 MSP430FR6005  
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
11 Device and Documentation Support  
11.1 Getting Started and Next Steps  
For more information on the MSP family of microcontrollers and the tools and libraries that are available to help  
with your development, visit the MSP430™ ultra-low-power sensing & measurement MCUs overview.  
11.2 Device Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all MSP  
MCU devices. Each MSP MCU commercial family member has one of two prefixes: MSP or XMS. These  
prefixes represent evolutionary stages of product development from engineering prototypes (XMS) through fully  
qualified production devices (MSP).  
XMS – Experimental device that is not necessarily representative of the final device's electrical specifications  
MSP – Fully qualified production device  
XMS devices are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
MSP devices have been characterized fully, and the quality and reliability of the device have been demonstrated  
fully. TI's standard warranty applies.  
Predictions show that prototype devices (XMS) have a greater failure rate than the standard production devices.  
TI recommends that these devices not be used in any production system because their expected end-use failure  
rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the temperature  
range, package type, and distribution format. Figure 11-1 provides a legend for reading the complete device  
name.  
Copyright © 2020 Texas Instruments Incorporated  
166 Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
MSP 430 FR  
6
007  
I
PN  
R
Feature Set  
Processor Family  
MCU Platform  
Memory Type  
Series  
Distribution Format  
Packaging  
Temperature Range  
AES  
Oscillators, LEA  
FRAM  
MSP = Mixed-Signal Processor  
XMS = Experimental Silicon  
Processor Family  
430 = MSP430 16-Bit Low-Power Platform  
FR = FRAM  
Platform  
Memory Type  
Series  
6 = FRAM 6 Series Up to 16 MHz with LCD  
First Digit: Feature Second Digit: Oscillators, LEA Third Digit: FRAM (KB)  
Feature Sets  
0 = AES  
0 = HFXT + LFXT + LEA + USS  
7 = 256  
5 = 128  
I = -40( to 85(  
Temperature Range  
Packaging  
http://www.ti.com/packaging  
T = Small reel  
Optional: Distribution Format  
R = Large reel  
No Marking = Tube or Tray  
Figure 11-1. Device Nomenclature  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 167  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
11.3 Tools and Software  
Table 11-1 lists the debug features supported by these microcontrollers. See the Code Composer Studio™ IDE  
for MSP430 User's Guide for details on the available features. For further usage information, see the following  
documents:  
Advanced Debugging Using the Enhanced Emulation Module (EEM) With Code Composer Studio™ IDE  
MSP430™ Advanced Power Optimizations: ULP Advisor™ Software and EnergyTrace™ Technology  
Table 11-1. Hardware Features  
BREAK-  
POINTS  
(N)  
RANGE  
BREAK-  
POINTS  
LPMx.5  
DEBUGGING  
SUPPORT  
MSP  
ARCHITECTURE  
4-WIRE  
JTAG  
2-WIRE  
JTAG  
CLOCK  
CONTROL SEQUENCER  
STATE  
TRACE  
BUFFER  
EnergyTrace++  
MSP430Xv2  
Yes  
Yes  
3
Yes  
Yes  
No  
No  
Yes  
Yes  
Design Kits and Evaluation Modules  
MSP430FR6047 Ultrasonic Sensing Evaluation Module  
The EVM430-FR6047 evaluation kit is a development platform that can be used to evaluate the performance of  
the MSP430FR6007 for ultrasonic sensing applications (for example, smart water meters).  
MSP-TS430PZ100E 100-pin Target Development Board  
The MSP-TS430PZ100E is a stand-alone 100-pin ZIF socket target board used to program and debug the  
MSP430 MCU in-system through the JTAG interface or the Spy Bi-Wire (2-wire JTAG) protocol.  
Software  
MSP430WareSoftware  
MSP430Ware software is a collection of code examples, data sheets, and other design resources for all  
MSP430 devices delivered in a convenient package. In addition to providing a complete collection of existing  
MSP430 design resources, MSP430Ware software also includes a high-level API called MSP430 Driver Library.  
This library makes it easy to program MSP430 hardware. MSP430Ware software is available as a component of  
Code Composer Studio IDE or as a stand-alone package.  
MSP430FR604x(1), MSP430FR603x(1) Code Examples  
C Code examples are available for every MSP device that configures each of the integrated peripherals for  
various application needs.  
MSP Driver Library  
Driver Library's abstracted API keeps you above the bits and bytes of the MSP430 hardware by providing easy-  
to-use function calls. Thorough documentation is delivered through a helpful API Guide, which includes details  
on each function call and the recognized parameters. Developers can use Driver Library functions to write  
complete projects with minimal overhead.  
MSP EnergyTraceTechnology  
EnergyTrace technology for MSP430 microcontrollers is an energy-based code analysis tool that measures and  
displays the energy profile of the application and helps to optimize it for ultra-low-power consumption.  
ULP (Ultra-Low Power) Advisor  
ULP Advisorsoftware is a tool for guiding developers to write more efficient code to fully use the unique ultra-  
low power features of MSP430 and MSP432 microcontrollers. Aimed at both experienced and new  
microcontroller developers, ULP Advisor checks your code against a thorough ULP checklist to squeeze every  
last nano amp out of your application. At build time, ULP Advisor provides notifications and remarks on areas of  
your code that can be further optimized for lower power.  
Copyright © 2020 Texas Instruments Incorporated  
168 Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Fixed-Point Math Library for MSP MCUs  
The MSP IQmath and Qmath Libraries are a collection of highly optimized and high-precision mathematical  
functions for C programmers to seamlessly port a floating-point algorithm into fixed-point code on MSP430 and  
MSP432 devices. These routines are typically used in computationally intensive real-time applications where  
optimal execution speed, high accuracy, and ultra-low energy are critical. By using the IQmath and Qmath  
libraries, it is possible to achieve execution speeds considerably faster and energy consumption considerably  
lower than equivalent code written using floating-point math.  
Floating-Point Math Library for MSP430™ MCUs  
Continuing to innovate in the low power and low cost microcontroller space, TI brings you MSPMATHLIB.  
Leveraging the intelligent peripherals of our devices, this floating point math library of scalar functions brings you  
up to 26x better performance. Mathlib is easy to integrate into your designs. This library is free and is integrated  
in both Code Composer Studio and IAR IDEs. Read the user's guide for an in depth look at the math library and  
relevant benchmarks.  
Development Tools  
Code Composer StudioIntegrated Development Environment for MSP Microcontrollers  
The Code Composer Studio integrated development environment (IDE) supports TI's Microcontroller and  
Embedded Processors portfolio. The Code Composer Studio IDE comprises a suite of tools used to develop and  
debug embedded applications. It includes an optimizing C/C++ compiler, source code editor, project build  
environment, debugger, profiler, and many other features. The intuitive IDE provides a single user interface  
taking you through each step of the application development flow. Familiar tools and interfaces allow users to get  
started faster than ever before. The Code Composer Studio IDE combines the advantages of the Eclipse  
software framework with advanced embedded debug capabilities from TI resulting in a compelling feature-rich  
development environment for embedded developers.  
Command-Line Programmer  
MSP Flasher is an open-source shell-based interface for programming MSP microcontrollers through a FET  
programmer or eZ430 using JTAG or Spy-Bi-Wire (SBW) communication. MSP Flasher can download binary  
files (.txt or .hex) files directly to the MSP microcontroller without an IDE.  
MSP MCU Programmer and Debugger  
The MSP-FET is a powerful emulation development tool – often called a debug probe – which allows users to  
quickly begin application development on MSP low-power microcontrollers (MCU). Creating MCU software  
usually requires downloading the resulting binary program to the MSP device for validation and debugging. The  
MSP-FET provides a debug communication pathway between a host computer and the target MSP.  
Furthermore, the MSP-FET also provides a Backchannel UART connection between the computer's USB  
interface and the MSP UART. This affords the MSP programmer a convenient method for communicating serially  
between the MSP and a terminal running on the computer. The MSP-FET also supports loading programs (often  
called firmware) to the MSP target using the BSL through the UART and I2C communication protocols.  
MSP-GANG Production Programmer  
The MSP Gang Programmer is an MSP430 or MSP432 device programmer that can program up to eight  
identical MSP430 or MSP432 Flash or FRAM devices at the same time. The MSP Gang Programmer connects  
to a host PC using a standard RS-232 or USB connection and provides flexible programming options that allow  
the user to fully customize the process. The MSP Gang Programmer is provided with an expansion board, called  
the Gang Splitter, that implements the interconnections between the MSP Gang Programmer and multiple target  
devices. Eight cables are provided that connect the expansion board to eight target devices (through JTAG or  
Spy-Bi-Wire connectors). The programming can be done with a PC or as a stand-alone device. A PC-side  
graphical user interface is also available and is DLL-based.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 169  
Product Folder Links: MSP430FR6007 MSP430FR6005  
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
11.4 Documentation Support  
The following documents describe the MSP430FR600x MCUs. Copies of these documents are available on the  
Internet at www.ti.com.  
Receiving Notification of Document Updates  
To receive notification of documentation updates—including silicon errata—go to the product folder for your  
device on ti.com (for example, MSP430FR6007). In the upper-right corner, click the "Alert me" button. This  
registers you to receive a weekly digest of product information that has changed (if any). For change details,  
check the revision history of any revised document.  
Errata  
MSP430FR6007 Device Erratasheet  
Describes the known exceptions to the functional specifications.  
MSP430FR6005 Device Erratasheet  
Describes the known exceptions to the functional specifications.  
User's Guides  
MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User's Guide  
Detailed description of all modules and peripherals available in this device family.  
MSP430™ FRAM Devices Bootloader (BSL) User's Guide  
The bootloader (BSL) on MSP430 microcontrollers (MCUs) lets users communicate with embedded memory in  
the MSP430 MCU during the prototyping phase, final production, and in service. Both the programmable  
memory (FRAM memory) and the data memory (RAM) can be modified as required.  
MSP430™ Programming With the JTAG Interface  
This document describes the functions that are required to erase, program, and verify the memory module of the  
MSP430 flash-based and FRAM-based microcontroller families using the JTAG communication port. In addition,  
it describes how to program the JTAG access security fuse that is available on all MSP430 devices. This  
document describes device access using both the standard 4-wire JTAG interface and the 2-wire JTAG  
interface, which is also referred to as Spy-Bi-Wire (SBW).  
MSP430™ Hardware Tools User's Guide  
This manual describes the hardware of the TI MSP-FET430 Flash Emulation Tool (FET). The FET is the  
program development tool for the MSP430 ultra-low-power microcontroller.  
Copyright © 2020 Texas Instruments Incorporated  
170 Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
Application Reports  
MSP430™ 32-kHz Crystal Oscillators  
Selection of the correct crystal, correct load circuit, and proper board layout are important for a stable crystal  
oscillator. This application report summarizes crystal oscillator function and explains the parameters to select the  
correct crystal for MSP430 ultra-low-power operation. In addition, hints and examples for correct board layout  
are given. The document also contains detailed information on the possible oscillator tests to ensure stable  
oscillator operation in mass production.  
MSP430™ System-Level ESD Considerations  
System-level ESD has become increasingly demanding with silicon technology scaling towards lower voltages  
and the need for designing cost-effective and ultra-low-power components. This application report addresses  
different ESD topics to help board designers and OEMs understand and design robust system-level designs. A  
few real-world system-level ESD protection design examples and their results are also discussed.  
11.5 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.6 Trademarks  
MSP430Ware, MSP430, EnergyTrace, ULP Advisor, Code Composer Studio, and TI E2Eare  
trademarks of Texas Instruments.  
Arm® and Cortex® are registered trademarks of Arm Limited.  
Microsoft® is a registered trademark of Microsoft Corporation.  
All trademarks are the property of their respective owners.  
11.7 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.8 Export Control Notice  
Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as  
defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled  
product restricted by other applicable national regulations, received from disclosing party under nondisclosure  
obligations (if any), or any direct product of such technology, to any destination to which such export or re-export  
is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S.  
Department of Commerce and other competent Government authorities to the extent required by those laws.  
11.9 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 171  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
 
 
 
MSP430FR6007, MSP430FR6005  
SLASEV3A – MARCH 2020 – REVISED DECEMBER 2020  
www.ti.com  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2020 Texas Instruments Incorporated  
172 Submit Document Feedback  
Product Folder Links: MSP430FR6007 MSP430FR6005  
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
MSP430FR6005IPZ  
MSP430FR6005IPZR  
MSP430FR6007IPZ  
MSP430FR6007IPZR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LQFP  
LQFP  
LQFP  
LQFP  
PZ  
PZ  
PZ  
PZ  
100  
100  
100  
100  
90  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
FR6005  
1000 RoHS & Green  
90 RoHS & Green  
1000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
FR6005  
FR6007  
FR6007  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Oct-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
MSP430FR6005IPZR  
MSP430FR6007IPZR  
LQFP  
LQFP  
PZ  
PZ  
100  
100  
1000  
1000  
330.0  
330.0  
24.4  
24.4  
17.0  
17.0  
17.0  
17.0  
2.1  
2.1  
20.0  
20.0  
24.0  
24.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Oct-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
MSP430FR6005IPZR  
MSP430FR6007IPZR  
LQFP  
LQFP  
PZ  
PZ  
100  
100  
1000  
1000  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Oct-2022  
TRAY  
L - Outer tray length without tabs  
KO -  
Outer  
tray  
height  
W -  
Outer  
tray  
width  
Text  
P1 - Tray unit pocket pitch  
CW - Measurement for tray edge (Y direction) to corner pocket center  
CL - Measurement for tray edge (X direction) to corner pocket center  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
MSP430FR6005IPZ  
MSP430FR6007IPZ  
PZ  
PZ  
LQFP  
LQFP  
100  
100  
90  
90  
6 x 15  
6 x 15  
150  
150  
315 135.9 7620 20.3  
315 135.9 7620 20.3  
15.4 15.45  
15.4 15.45  
Pack Materials-Page 3  
MECHANICAL DATA  
MTQF013A – OCTOBER 1994 – REVISED DECEMBER 1996  
PZ (S-PQFP-G100)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
75  
M
0,08  
51  
50  
76  
26  
100  
0,13 NOM  
1
25  
12,00 TYP  
Gage Plane  
14,20  
SQ  
13,80  
0,25  
16,20  
SQ  
0,05 MIN  
0°7°  
15,80  
1,45  
1,35  
0,75  
0,45  
Seating Plane  
0,08  
1,60 MAX  
4040149/B 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

MSP430FR6005IPZR

具有 128KB FRAM、LCD、12 位高速 8MSPS Σ-Δ ADC 和集成传感器 AFE 的 16MHz MCU | PZ | 100 | -40 to 85
TI

MSP430FR6007

具有 256KB FRAM、LCD、12 位高速 8MSPS Σ-Δ ADC 和集成传感器 AFE 的 16MHz MCU
TI

MSP430FR6007IPZ

具有 256KB FRAM、LCD、12 位高速 8MSPS Σ-Δ ADC 和集成传感器 AFE 的 16MHz MCU | PZ | 100 | -40 to 85
TI

MSP430FR6007IPZR

具有 256KB FRAM、LCD、12 位高速 8MSPS Σ-Δ ADC 和集成传感器 AFE 的 16MHz MCU | PZ | 100 | -40 to 85
TI

MSP430FR6037

具有 256KB FRAM、8KB SRAM、低功耗加速器、AES、12 位 ADC、LCD、DMA 和 76 个 IO 的 16MHz MCU
TI

MSP430FR60371

具有 256KB FRAM、8KB SRAM、低功耗加速器、LCD、DMA 和 I2C 引导加载程序和 76 个 IO 的 16MHz MCU
TI

MSP430FR60371IPZ

具有 256KB FRAM、8KB SRAM、低功耗加速器、LCD、DMA 和 I2C 引导加载程序和 76 个 IO 的 16MHz MCU | PZ | 100 | -40 to 85
TI

MSP430FR60371IPZR

具有 256KB FRAM、8KB SRAM、低功耗加速器、LCD、DMA 和 I2C 引导加载程序和 76 个 IO 的 16MHz MCU | PZ | 100 | -40 to 85
TI

MSP430FR6037IPZ

具有 256KB FRAM、8KB SRAM、低功耗加速器、AES、12 位 ADC、LCD、DMA 和 76 个 IO 的 16MHz MCU | PZ | 100 | -40 to 85
TI

MSP430FR6037IPZR

具有 256KB FRAM、8KB SRAM、低功耗加速器、AES、12 位 ADC、LCD、DMA 和 76 个 IO 的 16MHz MCU | PZ | 100 | -40 to 85
TI

MSP430FR6041

具有 32KB FRAM、LCD、12 位高速 8MSPS Σ-Δ ADC 和集成传感器 AFE 的 16MHz MCU
TI

MSP430FR6041IPN

具有 32KB FRAM、LCD、12 位高速 8MSPS Σ-Δ ADC 和集成传感器 AFE 的 16MHz MCU | PN | 80 | -40 to 85
TI