MSP430FR5739-EP [TI]

具有 16KB FRAM、1KB SRAM、32 个 IO、10 位 ADC 和比较器的 MSP430FR5739 24MHz ULP 微控制器;
MSP430FR5739-EP
型号: MSP430FR5739-EP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 16KB FRAM、1KB SRAM、32 个 IO、10 位 ADC 和比较器的 MSP430FR5739 24MHz ULP 微控制器

控制器 微控制器 静态存储器 比较器
文件: 总96页 (文件大小:2207K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
MSP430FR5739-EP  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
MSP430FR5739-EP 混合信号微控制器  
1 器件概述  
1.1 特性  
1
速率高达 10Mbps 的串行外设接口 (SPI)  
嵌入式微控制器  
– eUSCI_B0 支持:  
时钟频率高达 24MHz 16 位精简指令集  
(RISC) 架构  
宽电源电压范围(2V 3.6V)  
工作温度范围 -55°C 85°C  
支持多个从器件寻址的 I2C  
速率高达 10Mbps 的串行外设接口 (SPI)  
硬件通用异步收发器 (UART) 引导加载程序  
(BSL)  
经优化超低功率模式  
电源管理系统  
激活模式:81.4µA/MHz(典型值)  
待机(具有 VLO LPM3):6.3µA(典型值)  
实时时钟(具有晶振的 LPM3.5):1.5µA(典型  
值)  
完全集成的低压降稳压器 (LDO)  
具有复位功能的内核与电源电压监控器  
常开模式的零功率欠压检测  
无需外部电压的串行板上程序设计  
灵活的时钟系统  
关断 (LPM4.5)0.32µA(典型值)  
超低功率铁电 RAM (FRAM)  
高达 16KB 的非易失性存储器  
超低功率写入  
具有 6 个可选出厂校准频率的固定频率数控振荡  
(DCO)(视器件而定)  
低功率低频内部时钟源 (VLO)  
– 32kHz 晶振 (LFXT)  
高频晶振 (HFXT)  
– 125ns 每个字的快速写入(1ms 内写入 16KB)  
内置纠错编码 (ECC) 和存储器保护单元 (MPU)  
通用内存 = 程序 + 数据 + 存储  
– 1015 写入周期持耐久性  
开发工具和软件  
免费专业开发环境 (  
Code Composer Studio ™ IDE)  
低成本全功能套件  
抗辐射和非磁性  
智能数字外设  
– 32 位硬件乘法器 (MPY)  
– 3 通道内部直接存储器访问 (DMA)  
具有日历和报警功能的实时时钟 (RTC)  
– 5 个具有多达 3 个捕捉/比较寄存器的 16 位定时  
()  
完全开发套件(MSP-FET430U40A)  
目标板 (MSP-TS430RHA40A)  
系列产品成员  
在 中汇总的变量和可用封装  
如需了解完整的模块说明, 请查阅  
MSP430FR57xx 系列用户指南》 (SLAU272)  
支持国防、航天和医疗应用  
受控基线  
– 16 位循环冗余校验器 (CRC)  
高性能模拟  
支持电压基准和可编程滞后的 16 通道模拟比较  
具有内部基准、采样与保持功能的 14 通道、10  
位模数转换器  
同一组装和测试场所  
同一制造场所  
在流耗为 100µA 时为 200ksps  
支持扩展温度范围(-55°C 85°C)  
(一些注释的参数仅支持 –40°C 85°C)  
延长的产品生命周期  
延长的产品变更通知  
产品可追溯性  
增强型串行通信  
– eUSCI_A0 eUSCI_A1 支持:  
支持自动波特率侦测的通用异步收发器  
(UART)  
IrDA 编码和解码  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SLVSCN6  
 
 
 
MSP430FR5739-EP  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
1.2 应用范围  
家庭自动化  
安全性  
传感器管理  
数据采集  
注意事项  
注意事项  
这些产品采用 FRAM 非易失性存储器技术。 FRAM 保持对于极端温度环境敏感,例如那些回流焊接或者手工焊接时产  
生的温度。 更多信息,请参见 最大绝对额定值。  
必须采用与器件级 ESD 规范兼容的系统级 ESD 保护以防止电气过载或者数据或代码内存的干扰。 要获得更多信息,  
请参阅应用报告 MSP430™ 系统级 ESD 注意事项》 (SLAA530)  
1.3 说明  
德州仪器 (TI) 573MSP430FRx 系列超低功率微控制器包含多个器件,该系列器件具有嵌入式 FRAM 非易失  
性存储器,超低功率 16 MSP430™ CPU,以及针对多种应用的不同外设。 此架构,FRAM,和外设,与  
7 种低功率模式组合在一起,针对在便携式和无线感测应用中实现延长电池寿命进行了优化。 FRAM 是一款  
全新的非易失性存储器,此存储器将 SRAM 的速度,灵活性,和耐久性与闪存的稳定性和可靠性结合在一  
起,总体能耗更低。 其外设包括:1 10 位模数转换器 (ADC)1 个具有基准电压生成和滞后功能的 16  
通道比较器、3 个支持 I2CSPI UART 协议的增强型串行通道、1 个内部直接存储器访问 (DMA)1 个  
硬件乘法器、1 个实时时钟 (RTC)5 16 位定时器和数字 I/O。  
器件信息(1)  
封装  
器件型号  
MSP430FR5739-EP  
封装尺寸(2)  
VQFN (40)  
6.00mm x 6.00mm  
(1) 要获得最新的产品、封装和订购信息,请参见 9 中的封装选项附录,或者浏览 TI 网站 www.ti.com.cn。  
(2) 这里显示的尺寸为近似值。 要获得包含容差值的封装尺寸,请参见9中的机械数据。  
1.4 功能框图  
本节给出了 MSP430FR5739 器件采用 RHA 封装时的功能框图。  
PA  
PB  
PJ.4/XIN  
PJ.5/XOUT  
DVCC DVSS VCORE AVCC AVSS  
P1.x P2.x P3.x P4.x  
16 KB  
(FR5739)  
I/O Ports  
P1/P2  
2×8 I/Os  
I/O Ports  
P3/P4  
ACLK  
SMCLK  
SYS  
8 KB  
(FR5735)  
Clock  
System  
Power  
Management  
1×8 I/Os  
1x 2 I/Os  
Interrupt  
& Wakeup  
PB  
1 KB  
Boot  
ROM  
4 KB  
(FR5731)  
Watchdog  
REF  
Interrupt  
& Wakeup  
PA  
SVS  
FRAM  
RAM  
MCLK  
Memory  
Protection  
Unit  
1×16 I/Os  
1×10 I/Os  
MAB  
MDB  
CPUXV2  
and  
Working  
Registers  
DMA  
3 Channel  
EEM  
(S: 3+1)  
eUSCI_A0: eUSCI_A1:  
UART,  
IrDA, SPI  
TA0  
TA1  
TB0  
TB1  
TB2  
ADC10_B  
UART,  
IrDA, SPI  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
PJ.0/TDO  
JTAG/  
SBW  
Interface  
10 Bit  
200KSPS  
Comp_D  
RTC_B  
MPY32  
CRC  
eUSCI_B0:  
SPI, I2C  
(2) Timer_A (3) Timer_B  
3 CC  
Registers  
16 channels  
PJ.1/TDI/TCLK  
PJ.2/TMS  
PJ.3/TCK  
3 CC  
Registers  
14 channels  
(12 ext/2 int)  
2
器件概述  
版权 © 2014, Texas Instruments Incorporated  
 
 
 
MSP430FR5739-EP  
www.ti.com.cn  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
内容  
1
器件概.................................................... 1  
4.31 REF, External Reference ........................... 30  
4.32 REF, Built-In Reference............................. 30  
4.33 REF, Temperature Sensor and Built-In VMID ....... 31  
4.34 Comparator_D....................................... 32  
4.35 FRAM................................................ 32  
4.36 JTAG and Spy-Bi-Wire Interface.................... 33  
Detailed Description ................................... 34  
5.1 Functional Block Diagram........................... 34  
5.2 CPU ................................................. 34  
5.3 Operating Modes.................................... 34  
5.4 Interrupt Vector Addresses.......................... 36  
5.5 Memory Organization ............................... 38  
5.6 Bootstrap Loader (BSL)............................. 39  
5.7 JTAG Operation ..................................... 39  
5.8 FRAM ............................................... 40  
5.9 Memory Protection Unit (MPU) ..................... 40  
5.10 Peripherals .......................................... 40  
Input/Output Schematics ............................ 60  
1.1 特性 ................................................... 1  
1.2 应用范围 .............................................. 2  
1.3 说明 ................................................... 2  
1.4 功能框图 .............................................. 2  
修订历史记录............................................... 4  
Pin Configuration and Functions..................... 5  
3.1 Pin Diagram .......................................... 5  
3.2 Signal Descriptions ................................... 6  
Specifications ........................................... 10  
4.1 Absolute Maximum Ratings ........................ 10  
4.2 Recommended Operating Conditions............... 10  
4.3 Thermal Information................................. 10  
2
3
5
4
4.4  
4.5  
4.6  
Active Mode Supply Current Into VCC Excluding  
External Current..................................... 11  
Low-Power Mode Supply Currents (Into VCC  
)
Excluding External Current.......................... 13  
Schmitt-Trigger Inputs – General Purpose I/O  
6
(P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to  
P4.1, PJ.0 to PJ.5, RST/NMI)....................... 14  
6.1  
6.2  
6.3  
6.4  
6.5  
6.6  
Port P1, P1.0 to P1.2, Input/Output With Schmitt  
Trigger............................................... 60  
Port P1, P1.3 to P1.5, Input/Output With Schmitt  
Trigger............................................... 62  
Port P1, P1.6 to P1.7, Input/Output With Schmitt  
Trigger............................................... 64  
Port P2, P2.0 to P2.2, Input/Output With Schmitt  
Trigger............................................... 65  
Port P2, P2.3 to P2.4, Input/Output With Schmitt  
Trigger............................................... 66  
Port P2, P2.5 to P2.6, Input/Output With Schmitt  
Trigger............................................... 68  
4.7  
4.8  
Inputs – Ports P1 and P2  
(P1.0 to P1.7, P2.0 to P2.7) ........................ 14  
Leakage Current – General Purpose I/O  
(P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to  
P4.1, PJ.0 to PJ.5, RST/NMI)....................... 14  
Outputs – General Purpose I/O  
4.9  
(P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to  
P4.1, PJ.0 to PJ.5) ................................. 15  
4.10 Output Frequency – General Purpose I/O  
(P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to  
P4.1, PJ.0 to PJ.5) ................................. 15  
4.11 Typical Characteristics – Outputs................... 16  
6.7  
6.8  
Port P2, P2.7, Input/Output With Schmitt Trigger... 69  
Port P3, P3.0 to P3.3, Input/Output With Schmitt  
Trigger............................................... 70  
Port P3, P3.4 to P3.6, Input/Output With Schmitt  
Trigger............................................... 72  
4.12 Crystal Oscillator, XT1, Low-Frequency (LF) Mode 18  
4.13 Crystal Oscillator, XT1, High-Frequency (HF) Mode  
...................................................... 19  
4.14 Internal Very-Low-Power Low-Frequency Oscillator  
(VLO) ................................................ 20  
6.9  
6.10 Port P3, P3.7, Input/Output With Schmitt Trigger... 73  
6.11 Port P4, P4.0, Input/Output With Schmitt Trigger... 74  
6.12 Port P4, P4.1, Input/Output With Schmitt Trigger... 75  
4.15 DCO Frequencies ................................... 21  
4.16 MODOSC............................................ 21  
4.17 PMM, Core Voltage ................................. 22  
4.18 PMM, SVS, BOR.................................... 22  
4.19 Wake-Up from Low Power Modes .................. 22  
4.20 Timer_A ............................................. 23  
4.21 Timer_B ............................................. 23  
4.22 eUSCI (UART Mode) Recommended Operating  
Conditions ........................................... 23  
6.13 Port J, J.0 to J.3 JTAG pins TDO, TMS, TCK,  
TDI/TCLK, Input/Output With Schmitt Trigger or  
Output ............................................... 76  
6.14 Port PJ, PJ.4 and PJ.5 Input/Output With Schmitt  
Trigger............................................... 79  
7
8
Device Descriptors (TLV) ............................. 81  
器件和文档支持 .......................................... 84  
8.1 器件支............................................. 84  
8.2 文档支............................................. 86  
8.3 Community Resources.............................. 87  
8.4 商标.................................................. 87  
8.5 静电放电警告 ........................................ 87  
8.6 术语表 ............................................... 87  
机械封装和可订购信息 .................................. 87  
9.1 封装信............................................. 87  
4.23 eUSCI (UART Mode)................................ 23  
4.24 eUSCI (SPI Master Mode) Recommended  
Operating Conditions................................ 24  
4.25 eUSCI (SPI Master Mode) .......................... 24  
4.26 eUSCI (SPI Slave Mode) ........................... 26  
4.27 eUSCI (I2C Mode)................................... 28  
4.28 10-Bit ADC, Power Supply and Input Range  
9
Conditions ........................................... 29  
4.29 10-Bit ADC, Timing Parameters .................... 29  
4.30 10-Bit ADC, Linearity Parameters .................. 29  
版权 © 2014, Texas Instruments Incorporated  
内容  
3
MSP430FR5739-EP  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
2 修订历史记录  
Changes from Original (November 2014) to Revision A  
Page  
器件状态更新为生产数据............................................................................................................. 1  
4
修订历史记录  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
www.ti.com.cn  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
3 Pin Configuration and Functions  
3.1 Pin Diagram  
Figure 3-1 shows the pin diagram for the MSP430FR5739-EP device in the 40-pin RHA package.  
RHA PACKAGE  
(TOP VIEW)  
AVSS  
PJ.4/XIN  
PJ.5/XOUT  
AVSS  
P2.4/TA1.0/UCA1CLK/A7*/CD11  
P2.3/TA0.0/UCA1STE/A6*/CD10  
P2.7  
DVCC  
DVSS  
AVCC  
1
2
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
P1.0/TA0.1/DMAE0/RTCCLK/A0*/CD0/VeREF-*  
P1.1/TA0.2/TA1CLK/CDOUT/A1*/CD1/VeREF+*  
P1.2/TA1.1/TA0CLK/CDOUT/A2*/CD2  
P3.0/A12*/CD12  
VCORE  
P1.7/TB1.2/UCB0SOMI/UCB0SCL/TA1.0  
P1.6/TB1.1/UCB0SIMO/UCB0SDA/TA0.0  
3
4
P3.7/TB2.2  
5
P3.1/A13*/CD13  
P3.6/TB2.1/TB1CLK  
6
P3.2/A14*/CD14  
P3.5/TB1.2/CDOUT  
7
P3.3/A15*/CD15  
P3.4/TB1.1/TB2CLK/SMCLK  
P2.2/TB2.2/UCB0CLK/TB1.0  
P2.1/TB2.1/UCA0RXD/UCA0SOMI/TB0.0  
P2.0/TB2.0/UCA0TXD/UCA0SIMO/TB0CLK/ACLK  
8
P1.3/TA1.2/UCB0STE/A3*/CD3  
P1.4/TB0.1/UCA0STE/A4*/CD4  
P1.5/TB0.2/UCA0CLK/A5*/CD5  
9
10  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
PJ.0/TDO/TB0OUTH/SMCLK/CD6  
PJ.1/TDI/TCLK/TB1OUTH/MCLK/CD7  
PJ.2/TMS/TB2OUTH/ACLK/CD8  
PJ.3/TCK/CD9  
P2.6/TB1.0/UCA1RXD/UCA1SOMI  
P2.5/TB0.0/UCA1TXD/UCA1SIMO  
P4.1  
P4.0/TB2.0  
* Not available on MSP430FR5739-EP  
Note: Exposed thermal pad connection to VSS recommended.  
Figure 3-1. 40-Pin RHA Package (Top View)  
Copyright © 2014, Texas Instruments Incorporated  
Pin Configuration and Functions  
5
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
 
MSP430FR5739-EP  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
3.2 Signal Descriptions  
Table 3-1 describes the signals.  
Table 3-1. Signal Descriptions  
PIN  
NAME  
(1)  
I/O  
DESCRIPTION  
NO.  
General-purpose digital I/O with port interrupt and wake up from LPMx.5  
TA0 CCR1 capture: CCI1A input, compare: Out1  
External DMA trigger  
P1.0/TA0.1/DMAE0/  
RTCCLK/A0/CD0/VeREF-  
1
I/O  
RTC clock calibration output  
Analog input A0 – ADC (not available on devices without ADC)  
Comparator_D input CD0  
External applied reference voltage (not available on devices without ADC)  
General-purpose digital I/O with port interrupt and wake up from LPMx.5  
TA0 CCR2 capture: CCI2A input, compare: Out2  
TA1 input clock  
P1.1/TA0.2/TA1CLK/  
CDOUT/A1/CD1/VeREF+  
2
I/O  
Comparator_D output  
Analog input A1 – ADC (not available on devices without ADC)  
Comparator_D input CD1  
Input for an external reference voltage to the ADC (not available on devices without ADC)  
General-purpose digital I/O with port interrupt and wake up from LPMx.5  
TA1 CCR1 capture: CCI1A input, compare: Out1  
TA0 input clock  
P1.2/TA1.1/TA0CLK/ CDOUT/A2/CD2  
3
I/O  
Comparator_D output  
Analog input A2 – ADC (not available on devices without ADC)  
Comparator_D input CD2  
General-purpose digital I/O with port interrupt and wake up from LPMx.5  
Analog input A12 – ADC (not available on devices without ADC)  
Comparator_D input CD12  
P3.0/A12/CD12  
P3.1/A13/CD13  
P3.2/A14/CD14  
P3.3/A15/CD15  
4
5
6
7
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O with port interrupt and wake up from LPMx.5  
Analog input A13 – ADC  
Comparator_D input CD13  
General-purpose digital I/O with port interrupt and wake up from LPMx.5  
Analog input A14 – ADC (not available on devices without ADC)  
Comparator_D input CD14  
General-purpose digital I/O with port interrupt and wake up from LPMx.5  
Analog input A15 – ADC (not available on devices without ADC)  
Comparator_D input CD15  
General-purpose digital I/O with port interrupt and wake up from LPMx.5  
TA1 CCR2 capture: CCI2A input, compare: Out2  
Slave transmit enable – eUSCI_B0 SPI mode  
P1.3/TA1.2/UCB0STE/ A3/CD3  
8
I/O  
Analog input A3 – ADC (not available on devices without ADC)  
Comparator_D input CD3  
(1) I = input, O = output, N/A = not available  
Pin Configuration and Functions  
6
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
 
MSP430FR5739-EP  
www.ti.com.cn  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
Table 3-1. Signal Descriptions (continued)  
PIN  
NAME  
(1)  
I/O  
DESCRIPTION  
NO.  
General-purpose digital I/O with port interrupt and wake up from LPMx.5  
TB0 CCR1 capture: CCI1A input, compare: Out1  
Slave transmit enable – eUSCI_A0 SPI mode  
P1.4/TB0.1/UCA0STE/ A4/CD4  
9
I/O  
Analog input A4 – ADC (not available on devices without ADC)  
Comparator_D input CD4  
General-purpose digital I/O with port interrupt and wake up from LPMx.5  
TB0 CCR2 capture: CCI2A input, compare: Out2  
Clock  
signal  
input  
eUSCI_A0  
SPI  
slave  
mode,  
P1.5/TB0.2/UCA0CLK/ A5/CD5  
10  
I/O  
Clock signal output – eUSCI_A0 SPI master mode  
Analog input A5 – ADC (not available on devices without ADC)  
Comparator_D input CD5  
General-purpose digital I/O  
Test data output port  
(2)  
PJ.0/TDO/TB0OUTH/ SMCLK/CD6  
11  
I/O  
Switch all PWM outputs high impedance input – TB0  
SMCLK output  
Comparator_D input CD6  
General-purpose digital I/O  
Test data input or test clock input  
PJ.1/TDI/TCLK/TB1OUTH/  
MCLK/CD7  
12  
I/O  
(2)  
Switch all PWM outputs high impedance input – TB1 (not available on devices without TB1)  
MCLK output  
Comparator_D input CD7  
General-purpose digital I/O  
Test mode select  
(2)  
PJ.2/TMS/TB2OUTH/ ACLK/CD8  
13  
14  
I/O  
I/O  
Switch all PWM outputs high impedance input – TB2 (not available on devices without TB2)  
ACLK output  
Comparator_D input CD8  
General-purpose digital I/O  
Test clock  
(2)  
PJ.3/TCK/CD9  
Comparator_D input CD9  
General-purpose digital I/O with port interrupt and wake up from LPMx.5  
P4.0/TB2.0  
P4.1  
15  
16  
I/O  
I/O  
TB2 CCR0 capture: CCI0B input, compare: Out0 (not available on devices without TB2)  
General-purpose digital I/O with port interrupt and wake up from LPMx.5  
General-purpose digital I/O with port interrupt and wake up from LPMx.5  
TB0 CCR0 capture: CCI0A input, compare: Out0  
P2.5/TB0.0/UCA1TXD/ UCA1SIMO  
P2.6/TB1.0/UCA1RXD/ UCA1SOMI  
17  
18  
I/O  
I/O  
Transmit data – eUSCI_A1 UART mode, Slave in, master out – eUSCI_A1 SPI mode (not available  
on devices without UCSI_A1)  
General-purpose digital I/O with port interrupt and wake up from LPMx.5  
TB1 CCR0 capture: CCI0A input, compare: Out0 (not available on devices without TB1)  
Receive data – eUSCI_A1 UART mode, Slave out, master in – eUSCI_A1 SPI mode (not available  
on devices without UCSI_A1)  
(2) See Section 5.7 for use with JTAG function.  
Copyright © 2014, Texas Instruments Incorporated  
Pin Configuration and Functions  
7
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
Table 3-1. Signal Descriptions (continued)  
PIN  
NAME  
(1)  
I/O  
DESCRIPTION  
NO.  
Test mode pin – enable JTAG pins  
Spy-Bi-Wire input clock  
(2) (3)  
TEST/SBWTCK  
19  
I
Reset input active low  
(2) (3)  
RST/NMI/SBWTDIO  
20  
21  
I/O  
I/O  
Non-maskable interrupt input  
Spy-Bi-Wire data input/output  
General-purpose digital I/O with port interrupt and wake up from LPMx.5  
TB2 CCR0 capture: CCI0A input, compare: Out0 (not available on devices without TB2)  
P2.0/TB2.0/UCA0TXD/  
UCA0SIMO/TB0CLK/ACLK  
Transmit data – eUSCI_A0 UART mode  
Slave in, master out – eUSCI_A0 SPI mode  
TB0 clock input  
(3)  
ACLK output  
General-purpose digital I/O with port interrupt and wake up from LPMx.5  
TB2 CCR1 capture: CCI1A input, compare: Out1 (not available on devices without TB2)  
Receive data – eUSCI_A0 UART mode  
P2.1/TB2.1/UCA0RXD/  
UCA0SOMI/TB0.0  
22  
I/O  
(3)  
Slave out, master in – eUSCI_A0 SPI mode  
TB0 CCR0 capture: CCI0A input, compare: Out0  
General-purpose digital I/O with port interrupt and wake up from LPMx.5  
TB2 CCR2 capture: CCI2A input, compare: Out2 (not available on devices without TB2)  
P2.2/TB2.2/UCB0CLK/ TB1.0  
23  
I/O  
Clock  
signal  
input  
eUSCI_B0  
SPI  
slave  
mode,  
Clock signal output – eUSCI_B0 SPI master mode  
TB1 CCR0 capture: CCI0A input, compare: Out0 (not available on devices without TB1)  
General-purpose digital I/O with port interrupt and wake up from LPMx.5  
TB1 CCR1 capture: CCI1B input, compare: Out1 (not available on devices without TB1)  
TB2 clock input (not available on devices without TB2)  
SMCLK output  
P3.4/TB1.1/TB2CLK/ SMCLK  
P3.5/TB1.2/CDOUT  
24  
25  
I/O  
I/O  
General-purpose digital I/O with port interrupt and wake up from LPMx.5  
TB1 CCR2 capture: CCI2B input, compare: Out2 (not available on devices without TB1)  
Comparator_D output  
General-purpose digital I/O with port interrupt and wake up from LPMx.5 (not available on package  
options PW, RGE)  
P3.6/TB2.1/TB1CLK  
P3.7/TB2.2  
26  
27  
I/O  
I/O  
TB2 CCR1 capture: CCI1B input, compare: Out1 (not available on devices without TB2)  
TB1 clock input (not available on devices without TB1)  
General-purpose digital I/O with port interrupt and wake up from LPMx.5  
TB2 CCR2 capture: CCI2B input, compare: Out2 (not available on devices without TB2)  
General-purpose digital I/O with port interrupt and wake up from LPMx.5  
TB1 CCR1 capture: CCI1A input, compare: Out1 (not available on devices without TB1)  
Slave in, master out – eUSCI_B0 SPI mode  
P1.6/TB1.1/UCB0SIMO/  
UCB0SDA/TA0.0  
28  
I/O  
I2C data – eUSCI_B0 I2C mode  
TA0 CCR0 capture: CCI0A input, compare: Out0  
(3) See Section 5.6 and Section 5.7 for use with BSL and JTAG functions.  
Pin Configuration and Functions  
8
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
www.ti.com.cn  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
Table 3-1. Signal Descriptions (continued)  
PIN  
NAME  
(1)  
I/O  
DESCRIPTION  
NO.  
General-purpose digital I/O with port interrupt and wake up from LPMx.5  
TB1 CCR2 capture: CCI2A input, compare: Out2 (not available on devices without TB1)  
Slave out, master in – eUSCI_B0 SPI mode  
P1.7/TB1.2/UCB0SOMI/  
UCB0SCL/TA1.0  
29  
I/O  
I2C clock – eUSCI_B0 I2C mode  
TA1 CCR0 capture: CCI0A input, compare: Out0  
Regulated core power supply (internal use only, no external current loading)  
Digital ground supply  
(4)  
VCORE  
30  
31  
32  
33  
DVSS  
DVCC  
P2.7  
Digital power supply  
I/O  
I/O  
General-purpose digital I/O with port interrupt and wake up from LPMx.5  
General-purpose digital I/O with port interrupt and wake up from LPMx.5  
TA0 CCR0 capture: CCI0B input, compare: Out0  
P2.3/TA0.0/UCA1STE/ A6/CD10  
34  
Slave transmit enable – eUSCI_A1 SPI mode (not available on devices without eUSCI_A1)  
Analog input A6 – ADC (not available on devices without ADC)  
Comparator_D input CD10  
General-purpose digital I/O with port interrupt and wake up from LPMx.5  
TA1 CCR0 capture: CCI0B input, compare: Out0  
Clock signal input – eUSCI_A1 SPI slave mode, Clock signal output – eUSCI_A1 SPI master mode  
(not available on devices without eUSCI_A1)  
P2.4/TA1.0/UCA1CLK/ A7/CD11  
35  
I/O  
Analog input A7 – ADC (not available on devices without ADC)  
Comparator_D input CD11  
Analog ground supply  
AVSS  
36  
37  
General-purpose digital I/O  
PJ.4/XIN  
I/O  
I/O  
Input terminal for crystal oscillator XT1  
General-purpose digital I/O  
PJ.5/XOUT  
38  
Output terminal of crystal oscillator XT1  
Analog ground supply  
AVSS  
39  
40  
AVCC  
Analog power supply  
QFN Pad  
Pad  
QFN package pad. Connection to VSS recommended.  
(4) VCORE is for internal use only. No external current loading is possible. VCORE should only be connected to the recommended  
capacitor value, CVCORE  
.
Copyright © 2014, Texas Instruments Incorporated  
Pin Configuration and Functions  
9
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
4 Specifications  
4.1 Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–0.3  
–0.3  
MAX  
UNIT  
V
Voltage applied at VCC to VSS  
4.1  
VCC + 0.3 V  
±2  
(2)  
Voltage applied to any pin (excluding VCORE)  
V
Diode current at any device pin  
mA  
°C  
TJ  
Maximum junction temperature  
95  
Tstg  
Storage temperature range(3) (4) (5)  
–55  
125  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages referenced to VSS. VCORE is for internal device use only. No external DC loading or voltage should be applied.  
(3) Data retention on FRAM memory cannot be ensured when exceeding the specified maximum storage temperature, Tstg  
.
(4) For soldering during board manufacturing, it is required to follow the current JEDEC J-STD-020 specification with peak reflow  
temperatures not higher than classified on the device label on the shipping boxes or reels.  
(5) Programming of devices with user application code should only be performed after reflow or hand soldering. Factory programmed  
information, such as calibration values, are designed to withstand the temperatures reached in the current JEDEC J-STD-020  
specification.  
4.2 Recommended Operating Conditions  
Typical values are specified at VCC = 3.3 V and TA = 25°C (unless otherwise noted)  
MIN NOM  
MAX UNIT  
(1)  
VCC  
VSS  
TA  
Supply voltage during program execution and FRAM programming (AVCC = DVCC)  
Supply voltage (AVSS = DVSS)  
2.0  
3.6  
V
V
0
Operating free-air temperature  
–55  
–55  
470  
85  
85  
°C  
°C  
nF  
TJ  
Operating junction temperature  
Required capacitor at VCORE(2)  
CVCORE  
CVCC  
CVCORE  
/
Capacitor ratio of VCC to VCORE  
10  
0
No FRAM wait states(4), 2 V VCC 3.6 V  
8.0  
With FRAM wait states(4)  
NACCESS = {2},  
NPRECHG = {1},  
,
Processor frequency (maximum  
MCLK frequency)(3)  
ƒSYSTEM  
MHz  
0
24.0  
2 V VCC 3.6 V  
(1) It is recommended to power AVCC and DVCC from the same source. A maximum difference of 0.3 V between AVCC and DVCC can be  
tolerated during power up and operation.  
(2) A capacitor tolerance of ±20% or better is required.  
(3) Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet.  
(4) When using manual wait state control, see the MSP430FR57xx Family User's Guide (SLAU272) for recommended settings for common  
system frequencies.  
4.3 Thermal Information  
MSP430FR5739-EP  
THERMAL METRIC(1)  
VQFN  
40 PINS  
37.8  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
RθJC(top)  
RθJB  
27.4  
12.6  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.4  
ψJB  
12.6  
RθJC(bot)  
3.6  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
10  
Specifications  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
www.ti.com.cn  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
4.4 Active Mode Supply Current Into VCC Excluding External Current  
(2) (3)  
over recommended operating free-air temperature (unless otherwise noted)(1)  
(4)  
Frequency (ƒMCLK = ƒSMCLK  
8 MHz 16 MHz  
TYP MAX TYP MAX  
1.0 1.53  
)
EXECUTION  
MEMORY  
PARAMETER  
VCC  
1 MHz  
TYP MAX  
0.27  
4 MHz  
TYP MAX  
0.58  
20 MHz  
TYP MAX  
24 MHz  
TYP MAX  
UNIT  
(5)  
IAM, FRAM_UNI  
FRAM  
3 V  
3 V  
1.9  
2.2  
mA  
FRAM  
0% cache hit  
ratio  
(6)  
IAM,0%  
0.42  
0.31  
0.27  
0.25  
0.75  
1.2  
0.73  
0.58  
0.5  
1.7  
2.2  
1.3  
2.9  
2.3  
1.75  
1.55  
1.3  
3.0  
2.8  
3.7  
3.45  
4.3  
FRAM  
50% cache hit  
ratio  
(6) (7)  
IAM,50%  
3 V  
3 V  
3 V  
2.1  
1.9  
1.6  
2.5  
2.2  
1.8  
FRAM  
66% cache hit  
ratio  
(6) (7)  
IAM,66%  
1.0  
mA  
FRAM  
75% cache hit  
ratio  
(6) (7)  
IAM,75%  
0.82  
FRAM  
100% cache hit  
ratio  
(6) (7)  
IAM,100%  
3 V  
3 V  
0.2  
0.2  
0.44  
0.41  
0.3  
0.56  
0.56  
0.42  
0.55  
0.81  
0.77  
0.73  
1.0  
1.17  
1.27  
0.88  
1.20  
1.32  
1.47  
1.0  
1.53  
1.8  
(7) (8)  
IAM, RAM  
RAM  
0.35  
1.45  
mA  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external  
load capacitance are chosen to closely match the required 9 pF.  
(3) Characterized with program executing typical data processing.  
(4) At MCLK frequencies above 8 MHz, the FRAM requires wait states. When wait states are required, the effective MCLK frequency,  
ƒMCLK,eff, decreases. The effective MCLK frequency is also dependent on the cache hit ratio. SMCLK is not affected by the number of  
wait states or the cache hit ratio. The following equation can be used to compute ƒMCLK,eff  
:
fMCLK,eff,MHZ= fMCLK,MHZ x 1 / [# of wait states x ((1 - cache hit ratio percent/100)) + 1]  
(5) Program and data reside entirely in FRAM. No wait states enabled. DCORSEL = 0, DCOFSELx = 3 (ƒDCO = 8 MHz). MCLK = SMCLK.  
(6) Program resides in FRAM. Data resides in SRAM. Average current dissipation varies with cache hit-to-miss ratio as specified. Cache hit  
ratio represents number cache accesses divided by the total number of FRAM accesses. For example, a 25% ratio implies one of every  
four accesses is from cache, the remaining are FRAM accesses.  
For 1, 4, and 8 MHz, DCORSEL = 0, DCOFSELx = 3 (ƒDCO = 8 MHz). MCLK = SMCLK. No wait states enabled.  
For 16 MHz, DCORSEL = 1, DCOFSELx = 0 (ƒDCO = 16 MHz). MCLK = SMCLK. One wait state enabled.  
For 20 MHz, DCORSEL = 1, DCOFSELx = 2 (ƒDCO = 20 MHz). MCLK = SMCLK. Three wait states enabled.  
For 24 MHz, DCORSEL = 1, DCOFSELx = 3 (ƒDCO = 24 MHz). MCLK = SMCLK. Three wait states enabled.  
(7) See Figure 4-1 for typical curves. Each characteristic equation shown in the graph is computed using the least squares method for best  
linear fit using the typical data shown in Section 4.4.  
ƒACLK = 32786 Hz, ƒMCLK = ƒSMCLK at specified frequency. No peripherals active.  
XTS = CPUOFF = SCG0 = SCG1 = OSCOFF= SMCLKOFF = 0.  
(8) All execution is from RAM.  
For 1, 4, and 8 MHz, DCORSEL = 0, DCOFSELx = 3 (ƒDCO = 8 MHz). MCLK = SMCLK.  
For 16 MHz, DCORSEL = 1, DCOFSELx = 0 (ƒDCO = 16 MHz). MCLK = SMCLK.  
For 20 MHz, DCORSEL = 1, DCOFSELx = 2 (ƒDCO = 20 MHz). MCLK = SMCLK.  
For 24 MHz, DCORSEL = 1, DCOFSELx = 3 (ƒDCO = 24 MHz). MCLK = SMCLK.  
Copyright © 2014, Texas Instruments Incorporated  
Specifications  
11  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
 
MSP430FR5739-EP  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
Typical Active Mode Supply Current, No Wait States  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
IAM,0% (mA) = 0.2541 * (f, MHz) + 0.1724  
IAM,50% (mA) = 0.1415 * (f, MHz) + 0.1669  
IAM,66%(mA) = 0.1043 * (f, MHz) + 0.1646  
IAM,75% (mA) = 0.0814 * (f, MHz) + 0.1708  
IAM,RAM (mA) = 0.05 * (f, MHz) + 0.150  
IAM,100% (mA) = 0.0314 * (f, MHz) + 0.1708  
0
1
2
3
4
5
6
7
8
9
fMCLK = fSMCLK, MHz  
Figure 4-1. Typical Active Mode Supply Currents, No Wait States  
12  
Specifications  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
www.ti.com.cn  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
4.5 Low-Power Mode Supply Currents (Into VCC) Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
(1) (2)  
–55°C  
25°C  
85°C  
PARAMETER  
VCC  
UNIT  
TYP  
MAX  
TYP  
MAX  
TYP  
MAX  
2 V,  
3 V  
(3) (4)  
(5) (4)  
(6) (4)  
(7) (8)  
ILPM0,1MHz  
Low-power mode 0  
Low-power mode 0  
Low-power mode 0  
Low-power mode 2  
166  
175  
225  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
2 V,  
3 V  
170  
274  
56  
177  
285  
61  
244  
225  
340  
110  
48  
360  
LPM0,8MHz  
2 V,  
3 V  
340  
80  
455  
210  
150  
150  
150  
5.0  
LPM0,24MHz  
2 V,  
3 V  
ILPM2  
Low-power mode 3, crystal  
2 V,  
3 V  
ILPM3,XT1LF  
ILPM3,VLO  
ILPM4  
3.4  
3.3  
2.9  
1.3  
0.3  
6.4  
15  
(9) (8)  
mode  
Low-power mode 3, VLO mode  
2 V,  
3 V  
6.3  
15  
48  
(10) (8)  
2 V,  
3 V  
(11) (8)  
Low-power mode 4  
5.9  
15  
48  
2 V,  
3 V  
(12)  
ILPM3.5  
Low-power mode 3.5  
1.5  
2.2  
0.66  
2.8  
0.57  
2 V,  
3 V  
(13)  
ILPM4.5  
Low-power mode 4.5  
0.32  
2.55  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external  
load capacitance are chosen to closely match the required 9 pF.  
(3) Current for watchdog timer clocked by SMCLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).  
CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), ƒACLK = 32768 Hz, ƒMCLK = 0 MHz, ƒSMCLK = 1 MHz. DCORSEL = 0,  
DCOFSELx = 3 (ƒDCO = 8 MHz)  
(4) Current for brownout, high-side supervisor (SVSH) and low-side supervisor (SVSL) included.  
(5) Current for watchdog timer clocked by SMCLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).  
CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), ƒACLK = 32768 Hz, ƒMCLK = 0 MHz, ƒSMCLK = 8 MHz. DCORSEL = 0,  
DCOFSELx = 3 (ƒDCO = 8 MHz)  
(6) Current for watchdog timer clocked by SMCLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).  
CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), ƒACLK = 32768 Hz, ƒMCLK = 0 MHz, ƒSMCLK = 24 MHz. DCORSEL = 1,  
DCOFSELx = 3 (ƒDCO = 24 MHz)  
(7) Current for watchdog timer (clocked by ACLK) and RTC (clocked by XT1 LF mode) included. ACLK = low-frequency crystal operation  
(XTS = 0, XT1DRIVEx = 0).  
CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0 (LPM2), ƒACLK = 32768 Hz, ƒMCLK = 0 MHz, ƒSMCLK = ƒDCO = 0 MHz, DCORSEL = 0,  
DCOFSELx = 3, DCO bias generator enabled.  
(8) Current for brownout, high-side supervisor (SVSH) included. Low-side supervisor disabled (SVSL).  
(9) Current for watchdog timer (clocked by ACLK) and RTC (clocked by XT1 LF mode) included. ACLK = low-frequency crystal operation  
(XTS = 0, XT1DRIVEx = 0).  
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), ƒACLK = 32768 Hz, ƒMCLK = ƒSMCLK = ƒDCO = 0 MHz  
(10) Current for watchdog timer (clocked by ACLK) included. ACLK = VLO.  
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), ƒACLK = ƒVLO, ƒMCLK = ƒSMCLK = ƒDCO = 0 MHz  
(11) CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 (LPM4), ƒDCO = ƒACLK = ƒMCLK = ƒSMCLK = 0 MHz  
(12) Internal regulator disabled. No data retention. RTC active clocked by XT1 LF mode.  
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1, PMMREGOFF = 1 (LPM3.5), ƒDCO = ƒACLK = ƒMCLK = ƒSMCLK = 0 MHz  
(13) Internal regulator disabled. No data retention.  
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1, PMMREGOFF = 1 (LPM4.5), ƒDCO = ƒACLK = ƒMCLK = ƒSMCLK = 0 MHz  
Copyright © 2014, Texas Instruments Incorporated  
Specifications  
13  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
4.6 Schmitt-Trigger Inputs – General Purpose I/O  
(P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to P4.1, PJ.0 to PJ.5, RST/NMI)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
MIN  
0.7  
TYP  
MAX UNIT  
1.7  
V
VIT+  
VIT–  
Vhys  
Positive-going input threshold voltage  
1.45  
0.41  
0.72  
0.24  
0.27  
2.12  
1.101  
V
Negative-going input threshold voltage  
1.68  
0.855  
V
Input voltage hysteresis (VIT+ – VIT–  
)
1.02  
For pullup: VIN = VSS  
For pulldown: VIN = VCC  
RPull  
CI  
Pullup or pulldown resistor  
Input capacitance  
19  
35  
5
51  
kΩ  
VIN = VSS or VCC  
pF  
(1)  
4.7 Inputs – Ports P1 and P2  
(P1.0 to P1.7, P2.0 to P2.7)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
(2)  
t(int)  
External interrupt timing  
External trigger pulse duration to set interrupt flag  
2 V, 3 V  
20  
ns  
(1) Some devices may contain additional ports with interrupts. See the block diagram and terminal function descriptions.  
(2) An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It may be set by trigger signals  
shorter than t(int)  
.
4.8 Leakage Current – General Purpose I/O  
(P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to P4.1, PJ.0 to PJ.5, RST/NMI)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
(1) (2)  
VCC  
MIN  
MAX UNIT  
65 nA  
Ilkg(Px.x)  
High-impedance leakage current  
2 V, 3 V  
–65  
(1) The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.  
(2) The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup/pulldown resistor is  
disabled.  
14  
Specifications  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
www.ti.com.cn  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
4.9 Outputs – General Purpose I/O  
(P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to P4.1, PJ.0 to PJ.5)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
VCC – 0.25  
VCC – 0.60  
VCC – 0.25  
VCC – 0.60  
MAX UNIT  
(1)  
I(OHmax) = –1 mA  
VCC  
2 V  
(2)  
(1)  
(2)  
I(OHmax) = –3 mA  
I(OHmax) = –2 mA  
I(OHmax) = –6 mA  
VCC  
VOH  
High-level output voltage  
V
VCC  
3 V  
2 V  
3 V  
VCC  
(1)  
I(OLmax) = 1 mA  
I(OLmax) = 3 mA  
I(OLmax) = 2 mA  
I(OLmax) = 6 mA  
VSS VSS + 0.25  
(2)  
VSS VSS + 0.60  
VSS VSS + 0.25  
VSS VSS + 0.60  
VOL  
Low-level output voltage  
V
(1)  
(2)  
(1) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop  
specified.  
(2) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±100 mA to hold the maximum voltage  
drop specified.  
4.10 Output Frequency – General Purpose I/O  
(P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to P4.1, PJ.0 to PJ.5)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
2 V  
3 V  
2 V  
3 V  
MIN  
MAX UNIT  
16  
Port output frequency  
(with load)  
(1) (2)  
ƒPx.y  
Px.y  
MHz  
24  
16  
ACLK, SMCLK, or MCLK at configured output port,  
ƒPort_CLK  
Clock output frequency  
MHz  
24  
(2)  
CL = 20 pF, no DC loading  
(1) A resistive divider with 2 × 1.6 kbetween VCC and VSS is used as load. The output is connected to the center tap of the divider.  
CL = 20 pF is connected from the output to VSS  
.
(2) The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency.  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Specifications  
15  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
4.11 Typical Characteristics – Outputs  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
16  
TA = -40 °C  
14  
TA = 25 °C  
12  
TA = 85 °C  
10  
8
6
4
2
0
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
VOL Low-Level Output Voltage - V  
VCC = 2.0 V  
Measured at Px.y  
Figure 4-2. Typical Low-Level Output Current vs Low-Level Output Voltage  
35  
30  
25  
20  
15  
10  
5
TA = -40 °C  
TA = 25 °C  
TA = 85 °C  
0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0  
VOL Low-Level Output Voltage - V  
VCC = 3.0 V  
Measured at Px.y  
Figure 4-3. Typical Low-Level Output Current vs Low-Level Output Voltage  
16  
Specifications  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
www.ti.com.cn  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
0
-2  
-4  
-6  
-8  
-10  
-12  
-14  
-16  
TA = 85 °C  
TA = 25 °C  
TA = -40 °C  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
VOH High-Level Output Voltage - V  
VCC = 2.0 V  
Measured at Px.y  
Figure 4-4. Typical High-Level Output Current vs High-Level Output Voltage  
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
TA = 85 °C  
TA = 25 °C  
TA = -40 °C  
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0  
VOH High-Level Output Voltage - V  
VCC = 3.0 V  
Measured at Px.y  
Figure 4-5. Typical High-Level Output Current vs High-Level Output Voltage  
Copyright © 2014, Texas Instruments Incorporated  
Specifications  
17  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
4.12 Crystal Oscillator, XT1, Low-Frequency (LF) Mode(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(2)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
ƒOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVE = {1},  
CL,eff = 9 pF, TA = 25°C,  
3 V  
60  
Additional current consumption  
XT1 LF mode from lowest drive  
setting  
ƒOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVE = {2},  
TA = 25°C, CL,eff = 9 pF  
ΔIVCC.LF  
3 V  
3 V  
90  
nA  
ƒOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVE = {3},  
TA = 25°C, CL,eff = 12 pF  
140  
XT1 oscillator crystal frequency,  
LF mode  
ƒXT1,LF0  
XTS = 0, XT1BYPASS = 0  
32768  
Hz  
XT1 oscillator logic-level square-  
wave input frequency, LF mode  
(3) (4)  
ƒXT1,LF,SW  
XTS = 0, XT1BYPASS = 1  
10 32.768  
210  
50 kHz  
XTS = 0,  
XT1BYPASS = 0, XT1DRIVE = {0},  
ƒXT1,LF = 32768 Hz, CL,eff = 6 pF  
Oscillation allowance for  
OALF  
kΩ  
(5)  
LF crystals  
XTS = 0,  
XT1BYPASS = 0, XT1DRIVE = {3},  
ƒXT1,LF = 32768 Hz, CL,eff = 12 pF  
300  
XTS = 0, Measured at ACLK,  
ƒXT1,LF = 32768 Hz  
Duty cycle, LF mode  
30  
10  
70  
%
Oscillator fault frequency, LF mode  
(7)  
ƒFault,LF  
tSTART,LF  
CL,eff  
XTS = 0  
10000  
Hz  
(6)  
ƒOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVE = {0},  
TA = 25°C, CL,eff = 6 pF  
1000  
(8)  
Startup time, LF mode  
3 V  
ms  
pF  
ƒOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVE = {3},  
TA = 25°C, CL,eff = 12 pF  
1000  
1
Integrated effective load  
XTS = 0  
(9) (10)  
capacitance, LF mode  
(1) To improve EMI on the XT1 oscillator, the following guidelines should be observed.  
Keep the trace between the device and the crystal as short as possible.  
Design a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.  
Use assembly materials and processes that avoid any parasitic load on the oscillator XIN and XOUT pins.  
If conformal coating is used, ensure that it does not induce capacitive or resistive leakage between the oscillator pins.  
(2) –40°C to 85°C  
(3) When XT1BYPASS is set, XT1 circuits are automatically powered down. Input signal is a digital square wave with parametrics defined in  
the Schmitt-trigger Inputs section of this data sheet.  
(4) Maximum frequency of operation of the entire device cannot be exceeded.  
(5) Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the XT1DRIVE  
settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following guidelines, but  
should be evaluated based on the actual crystal selected for the application:  
For XT1DRIVE = {0}, CL,eff 6 pF.  
For XT1DRIVE = {1}, 6 pF CL,eff 9 pF.  
For XT1DRIVE = {2}, 6 pF CL,eff 10 pF.  
For XT1DRIVE = {3}, 6 pF CL,eff 12 pF.  
(6) Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.  
Frequencies in between might set the flag.  
(7) Measured with logic-level input frequency but also applies to operation with crystals.  
(8) Includes startup counter of 4096 clock cycles.  
(9) Requires external capacitors at both terminals.  
(10) Values are specified by crystal manufacturers. Include parasitic bond and package capacitance (approximately 2 pF per pin).  
Recommended values supported are 6 pF, 9 pF, and 12 pF. Maximum shunt capacitance of 1.6 pF.  
18  
Specifications  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
www.ti.com.cn  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
4.13 Crystal Oscillator, XT1, High-Frequency (HF) Mode(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(2)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
ƒOSC = 4 MHz,  
XTS = 1, XOSCOFF = 0,  
XT1BYPASS = 0, XT1DRIVE = {0},  
TA = 25°C, CL,eff = 16 pF  
175  
ƒOSC = 8 MHz,  
XTS = 1, XOSCOFF = 0,  
XT1BYPASS = 0, XT1DRIVE = {1},  
TA = 25°C, CL,eff = 16 pF  
300  
350  
550  
XT1 oscillator crystal current HF  
mode  
IVCC,HF  
3 V  
µA  
ƒOSC = 16 MHz,  
XTS = 1, XOSCOFF = 0,  
XT1BYPASS = 0, XT1DRIVE = {2},  
TA = 25°C, CL,eff = 16 pF  
ƒOSC = 24 MHz,  
XTS = 1, XOSCOFF = 0,  
XT1BYPASS = 0, XT1DRIVE = {3},  
TA = 25°C, CL,eff = 16 pF  
XT1 oscillator crystal frequency,  
HF mode 0  
XTS = 1,  
XT1BYPASS = 0, XT1DRIVE = {0}  
ƒXT1,HF0  
ƒXT1,HF1  
ƒXT1,HF2  
ƒXT1,HF3  
ƒXT1,HF,SW  
4
6
6
MHz  
(3)  
(3)  
(3)  
(3)  
XT1 oscillator crystal frequency,  
HF mode 1  
XTS = 1,  
XT1BYPASS = 0, XT1DRIVE = {1}  
10 MHz  
16 MHz  
24 MHz  
24 MHz  
XT1 oscillator crystal frequency,  
HF mode 2  
XTS = 1,  
XT1BYPASS = 0, XT1DRIVE = {2}  
10  
16  
1
XT1 oscillator crystal frequency,  
HF mode 3  
XTS = 1,  
XT1BYPASS = 0, XT1DRIVE = {3}  
XT1 oscillator logic-level square-  
wave input frequency, HF mode  
XTS = 1,  
XT1BYPASS = 1  
(4) (3)  
XTS = 1,  
XT1BYPASS = 0, XT1DRIVE = {0},  
ƒXT1,HF = 4 MHz, CL,eff = 16 pF  
450  
320  
200  
200  
8
XTS = 1,  
XT1BYPASS = 0, XT1DRIVE = {1},  
ƒXT1,HF = 8 MHz, CL,eff = 16 pF  
Oscillation allowance for  
HF crystals  
OAHF  
(5)  
XTS = 1,  
XT1BYPASS = 0, XT1DRIVE = {2},  
ƒXT1,HF = 16 MHz, CL,eff = 16 pF  
XTS = 1,  
XT1BYPASS = 0, XT1DRIVE = {3},  
ƒXT1,HF = 24 MHz, CL,eff = 16 pF  
ƒOSC = 4 MHz, XTS = 1,  
XT1BYPASS = 0, XT1DRIVE = {0},  
TA = 25°C, CL,eff = 16 pF  
(6)  
tSTART,HF  
Startup time, HF mode  
3 V  
ms  
ƒOSC = 24 MHz, XTS = 1,  
XT1BYPASS = 0, XT1DRIVE = {3},  
TA = 25°C, CL,eff = 16 pF  
2
(1) To improve EMI on the XT1 oscillator the following guidelines should be observed.  
Keep the traces between the device and the crystal as short as possible.  
Design a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.  
Use assembly materials and processes that avoid any parasitic load on the oscillator XIN and XOUT pins.  
If conformal coating is used, ensure that it does not induce capacitive or resistive leakage between the oscillator pins.  
(2) –40°C to 85°C  
(3) Maximum frequency of operation of the entire device cannot be exceeded.  
(4) When XT1BYPASS is set, XT1 circuits are automatically powered down. Input signal is a digital square wave with parametrics defined in  
the Schmitt-trigger Inputs section of this data sheet.  
(5) Oscillation allowance is based on a safety factor of 5 for recommended crystals.  
(6) Includes startup counter of 4096 clock cycles.  
Copyright © 2014, Texas Instruments Incorporated  
Specifications  
19  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
Crystal Oscillator, XT1, High-Frequency (HF) Mode(1) (continued)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(2)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Integrated effective load  
capacitance  
CL,eff  
XTS = 1  
1
pF  
(7) (8)  
XTS = 1, Measured at ACLK,  
ƒXT1,HF2 = 24 MHz  
Duty cycle, HF mode  
40  
50  
60  
%
Oscillator fault frequency, HF mode  
(10)  
ƒFault,HF  
XTS = 1  
145  
900 kHz  
(9)  
(7) Includes parasitic bond and package capacitance (approximately 2 pF per pin). Because the PCB adds additional capacitance, it is  
recommended to verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should  
always match the specification of the used crystal.  
(8) Requires external capacitors at both terminals. Values are specified by crystal manufacturers. Recommended values supported are 14  
pF, 16 pF, and 18 pF. Maximum shunt capacitance of 7 pF.  
(9) Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.  
Frequencies in between might set the flag.  
(10) Measured with logic-level input frequency but also applies to operation with crystals.  
4.14 Internal Very-Low-Power Low-Frequency Oscillator (VLO)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
VLO frequency  
TEST CONDITIONS  
VCC  
MIN  
TYP  
8.3  
MAX UNIT  
13.3 kHz  
%/°C  
ƒVLO  
Measured at ACLK  
2 V to 3.6 V  
2 V to 3.6 V  
4.3  
(1)  
(2)  
VLO/dT  
VLO frequency temperature drift  
VLO frequency supply voltage drift  
Duty cycle  
Measured at ACLK  
Measured at ACLK  
Measured at ACLK  
0.5  
VLO/dVC  
C
2 V to 3.6 V  
2 V to 3.6 V  
4
%/V  
65%  
ƒVLO,DC  
35%  
50%  
(1) Calculated using the box method: (MAX(–55 to 85°C) – MIN(–55 to 85°C)) / MIN(–55 to 85°C) / (85°C – (–55°C))  
(2) Calculated using the box method: (MAX(2.0 to 3.6 V) – MIN(2.0 to 3.6 V)) / MIN(2.0 to 3.6 V) / (3.6 V – 2 V)  
20  
Specifications  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
 
MSP430FR5739-EP  
www.ti.com.cn  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
4.15 DCO Frequencies  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
VCC  
TA  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
5.37  
16.2  
6.67  
20  
MAX UNIT  
±5% MHz  
±5% MHz  
±5% MHz  
±5% MHz  
±5% MHz  
±5% MHz  
Measured at ACLK,  
DCORSEL = 0  
2 V to 3.6 V  
–55°C to 85°C  
ƒDCO,LO  
DCO frequency low, trimmed  
Measured at ACLK,  
DCORSEL = 1  
2 V to 3.6 V  
–55°C to 85°C  
Measured at ACLK,  
DCORSEL = 0  
2 V to 3.6 V  
–55°C to 85°C  
ƒDCO,MID  
DCO frequency mid, trimmed  
Measured at ACLK,  
DCORSEL = 1  
2 V to 3.6 V  
–55°C to 85°C  
Measured at ACLK,  
DCORSEL = 0  
2 V to 3.6 V  
–55°C to 85°C  
8
ƒDCO,HI  
DCO frequency high, trimmed  
Duty cycle  
Measured at ACLK,  
DCORSEL = 1  
2 V to 3.6 V  
–55°C to 85°C  
23.8  
Measured at ACLK, divide by 1,  
No external divide, all DCO  
settings  
2 V to 3.6 V  
–55°C to 85°C  
ƒDCO,DC  
35%  
50%  
65%  
4.16 MODOSC  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
Current consumption  
MODOSC frequency  
Duty cycle  
TEST CONDITIONS  
VCC  
MIN  
TYP  
44  
MAX UNIT  
µA  
IMODOSC  
Enabled  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
ƒMODOSC  
ƒMODOSC,DC  
4.2  
5.0  
5.7 MHz  
65%  
Measured at ACLK, divide by 1  
35%  
50%  
Copyright © 2014, Texas Instruments Incorporated  
Specifications  
21  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
4.17 PMM, Core Voltage  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
2 V DVCC 3.6 V  
2 V DVCC 3.6 V  
MIN  
TYP  
1.5  
MAX UNIT  
VCORE(AM)  
Core voltage, active mode  
Core voltage, low-current mode  
V
V
VCORE(LPM)  
1.5  
4.18 PMM, SVS, BOR  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC = 3.6 V  
MIN  
TYP  
MAX UNIT  
ISVSH,AM  
ISVSH,LPM  
VSVSH-  
SVSH current consumption, active mode  
SVSH current consumption, low power modes  
SVSH on voltage level, falling supply voltage  
SVSH off voltage level, rising supply voltage  
SVSH propagation delay, active mode  
SVSH propagation delay, low power modes  
SVSL current consumption  
5
0.8  
µA  
µA  
VCC = 3.6 V  
1.81  
1.85  
1.88  
1.93  
10  
1.95  
2
V
V
VSVSH+  
tPD,SVSH, AM  
tPD,SVSH, LPM  
ISVSL  
dVCC/dt = 10 mV/µs  
dVCC/dt = 1 mV/µs  
µs  
µs  
µA  
V
30  
0.3  
VSVSL–  
SVSL on voltage level  
1.42  
1.47  
VSVSL+  
SVSL off voltage level  
V
4.19 Wake-Up from Low Power Modes  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
VCC  
TA  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
0.58  
12  
MAX UNIT  
Wake-up time from LPM0 to active  
2 V, 3 V  
–55°C to 85°C  
tWAKE-UP LPM0  
tWAKE-UP LPM12  
tWAKE-UP LPM34  
1.1  
25  
µs  
µs  
µs  
µs  
µs  
µs  
ms  
ns  
(1)  
mode  
Wake-up time from LPM1, LPM2 to  
2 V, 3 V  
–55°C to 85°C  
(1)  
active mode  
Wake-up time from LPM3 or LPM4 to  
2 V, 3 V  
–55°C to 85°C  
78  
165  
575  
1100  
(1)  
active mode  
2 V, 3 V  
0°C to 85°C  
310  
310  
230  
1.6  
Wake-up time from LPM3.5 or  
LPM4.5 to active mode  
tWAKE-UP LPMx.5  
(1)  
2 V, 3 V  
–55°C to 85°C  
Wake-up time from RST to active  
2 V, 3 V  
–55°C to 85°C  
tWAKE-UP RESET  
tWAKE-UP BOR  
tRESET  
VCC stable  
(2)  
mode  
Wake-up time from BOR or power-up  
to active mode  
2 V, 3 V  
–55°C to 85°C  
dVCC/dt = 2400 V/s  
Pulse duration required at RST/NMI  
terminal to accept a reset event(3)  
2 V, 3 V  
–55°C to 85°C  
4
(1) The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) until the first  
instruction of the user program is executed.  
(2) The wake-up time is measured from the rising edge of the RST signal until the first instruction of the user program is executed.  
(3) Meeting or exceeding this time makes sures a reset event occurs. Pulses shorter than this minimum time may or may not cause a reset  
event to occur.  
22  
Specifications  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
www.ti.com.cn  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
4.20 Timer_A  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, ACLK  
ƒTA  
Timer_A input clock frequency  
External: TACLK  
2 V, 3 V  
24 MHz  
Duty cycle = 50% ± 10%  
All capture inputs, Minimum pulse  
duration required for capture  
tTA,cap  
Timer_A capture timing  
2 V, 3 V  
20  
ns  
4.21 Timer_B  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, ACLK  
ƒTB  
Timer_B input clock frequency  
External: TBCLK  
2 V, 3 V  
24 MHz  
Duty cycle = 50% ± 10%  
All capture inputs, Minimum pulse  
duration required for capture  
tTB,cap  
Timer_B capture timing  
2 V, 3 V  
20  
ns  
4.22 eUSCI (UART Mode) Recommended Operating Conditions  
PARAMETER  
CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, ACLK  
External: UCLK  
ƒeUSCI  
eUSCI input clock frequency  
ƒSYSTEM MHz  
Duty cycle = 50% ± 10%  
BITCLK clock frequency  
(equals baud rate in MBaud)  
ƒBITCLK  
5
MHz  
4.23 eUSCI (UART Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
UCGLITx = 0  
VCC  
MIN  
5
TYP  
15  
MAX UNIT  
20  
UCGLITx = 1  
UCGLITx = 2  
UCGLITx = 3  
20  
35  
50  
45  
60  
ns  
tt  
UART receive deglitch time(1)  
2 V, 3 V  
80  
120  
110  
180  
(1) Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are  
correctly recognized, their duration should exceed the maximum specification of the deglitch time.  
Copyright © 2014, Texas Instruments Incorporated  
Specifications  
23  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
4.24 eUSCI (SPI Master Mode) Recommended Operating Conditions  
PARAMETER  
CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, ACLK  
Duty cycle = 50% ± 10%  
ƒeUSCI eUSCI input clock frequency  
ƒSYSTEM MHz  
4.25 eUSCI (SPI Master Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX  
UNIT  
UCSTEM = 0,  
UCMODEx = 01 or 10  
2 V, 3 V  
1
UCxCLK  
cycles  
tSTE,LEAD  
tSTE,LAG  
tSTE,ACC  
tSTE,DIS  
STE lead time, STE active to clock  
UCSTEM = 1,  
UCMODEx = 01 or 10  
2 V, 3 V  
2 V, 3 V  
2 V, 3 V  
2 V, 3 V  
2 V, 3 V  
2 V, 3 V  
2 V, 3 V  
1
1
1
UCSTEM = 0,  
UCMODEx = 01 or 10  
STE lag time, Last clock to STE  
inactive  
UCxCLK  
cycles  
UCSTEM = 1,  
UCMODEx = 01 or 10  
UCSTEM = 0,  
UCMODEx = 01 or 10  
55  
35  
40  
30  
STE access time, STE active to SIMO  
data out  
ns  
ns  
UCSTEM = 1,  
UCMODEx = 01 or 10  
UCSTEM = 0,  
UCMODEx = 01 or 10  
STE disable time, STE inactive to  
SIMO high impedance  
UCSTEM = 1,  
UCMODEx = 01 or 10  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
35  
35  
0
tSU,MI  
SOMI input data setup time  
SOMI input data hold time  
ns  
ns  
ns  
ns  
tHD,MI  
0
30  
30  
UCLK edge to SIMO valid,  
CL = 20 pF  
(2)  
tVALID,MO  
SIMO output data valid time  
0
0
(3)  
tHD,MO  
SIMO output data hold time  
CL = 20 pF  
(1) ƒUCxCLK = 1/2tLO/HI with tLO/HI = max(tVALID,MO(eUSCI) + tSU,SI(Slave), tSU,MI(eUSCI) + tVALID,SO(Slave)).  
For the slave's parameters tSU,SI(Slave) and tVALID,SO(Slave) see the SPI parameters of the attached slave.  
(2) Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams  
in Figure 4-6 and Figure 4-7.  
(3) Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data  
on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure 4-  
6 and Figure 4-7.  
24  
Specifications  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
www.ti.com.cn  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
UCMODEx = 01  
UCMODEx = 10  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tLOW/HIGH  
tLOW/HIGH  
tSU,MI  
tHD,MI  
SOMI  
SIMO  
tSTE,ACC  
tVALID,MO  
tSTE,DIS  
Figure 4-6. SPI Master Mode, CKPH = 0  
UCMODEx = 01  
STE  
tSTE,LEAD  
tSTE,LAG  
UCMODEx = 10  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tLOW/HIGH  
tLOW/HIGH  
tHD,MI  
tSU,MI  
SOMI  
SIMO  
tSTE,ACC  
tVALID,MO  
tSTE,DIS  
Figure 4-7. SPI Master Mode, CKPH = 1  
Copyright © 2014, Texas Instruments Incorporated  
Specifications  
25  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
4.26 eUSCI (SPI Slave Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
MIN  
7
TYP  
MAX UNIT  
tSTE,LEAD  
tSTE,LAG  
tSTE,ACC  
tSTE,DIS  
tSU,SI  
STE lead time, STE active to clock  
ns  
7
0
STE lag time, Last clock to STE inactive  
ns  
0
65  
ns  
40  
STE access time, STE active to SOMI data out  
40  
ns  
35  
STE disable time, STE inactive to SOMI high  
impedance  
2
2
5
5
SIMO input data setup time  
SIMO input data hold time  
ns  
ns  
tHD,SI  
30  
ns  
30  
UCLK edge to SOMI valid,  
CL = 20 pF  
(2)  
tVALID,SO  
SOMI output data valid time  
4
4
(3)  
tHD,SO  
SOMI output data hold time  
CL = 20 pF  
ns  
(1) ƒUCxCLK = 1/2tLO/HI with tLO/HI max(tVALID,MO(Master) + tSU,SI(eUSCI), tSU,MI(Master) + tVALID,SO(eUSCI)).  
For the master's parameters tSU,MI(Master) and tVALID,MO(Master) see the SPI parameters of the attached slave.  
(2) Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams  
in Figure 4-8 and Figure 4-9.  
(3) Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in Figure 4-8  
and Figure 4-9.  
26  
Specifications  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
www.ti.com.cn  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
UCMODEx = 01  
UCMODEx = 10  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tSU,SIMO  
tHD,SIMO  
tLOW/HIGH  
tLOW/HIGH  
SIMO  
tACC  
tVALID,SOMI  
tDIS  
SOMI  
Figure 4-8. SPI Slave Mode, CKPH = 0  
UCMODEx = 01  
UCMODEx = 10  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tLOW/HIGH  
tLOW/HIGH  
tHD,SI  
tSU,SI  
SIMO  
tACC  
tDIS  
tVALID,SO  
SOMI  
Figure 4-9. SPI Slave Mode, CKPH = 1  
Copyright © 2014, Texas Instruments Incorporated  
Specifications  
27  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
4.27 eUSCI (I2C Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 4-10)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, ACLK  
External: UCLK  
ƒeUSCI  
eUSCI input clock frequency  
ƒSYSTEM MHz  
Duty cycle = 50% ±10%  
ƒSCL  
SCL clock frequency  
2 V, 3 V  
2 V, 3 V  
0
4.0  
0.6  
4.7  
0.6  
0
400 kHz  
µs  
ƒSCL = 100 kHz  
ƒSCL > 100 kHz  
ƒSCL = 100 kHz  
ƒSCL > 100 kHz  
tHD,STA  
Hold time (repeated) START  
tSU,STA  
Setup time for a repeated START  
2 V, 3 V  
µs  
tHD,DAT  
tSU,DAT  
Data hold time  
Data setup time  
2 V, 3 V  
2 V, 3 V  
ns  
ns  
250  
4.0  
0.6  
50  
ƒSCL = 100 kHz  
ƒSCL > 100 kHz  
UCGLITx = 0  
UCGLITx = 1  
UCGLITx = 2  
UCGLITx = 3  
UCCLTOx = 1  
UCCLTOx = 2  
UCCLTOx = 3  
tSU,STO  
Setup time for STOP  
2 V, 3 V  
µs  
600  
300  
150  
75  
ns  
ns  
25  
Pulse duration of spikes suppressed by  
input filter  
tSP  
2 V, 3 V  
12.5  
6.25  
ns  
ns  
27  
30  
33  
ms  
ms  
ms  
tTIMEOUT  
Clock low timeout  
2 V, 3 V  
tHD,STA  
tSU,STA  
tHD,STA  
tBUF  
SDA  
tLOW  
tHIGH  
tSP  
SCL  
tSU,DAT  
tSU,STO  
tHD,DAT  
Figure 4-10. I2C Mode Timing  
28  
Specifications  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
 
MSP430FR5739-EP  
www.ti.com.cn  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
4.28 10-Bit ADC, Power Supply and Input Range Conditions  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
2.0  
0
TYP  
MAX UNIT  
AVCC and DVCC are connected together,  
AVSS and DVSS are connected together,  
V(AVSS) = V(DVSS) = 0 V  
AVCC  
Analog supply voltage  
Analog input voltage range  
3.6  
V
V
V(Ax)  
All ADC10 pins  
AVCC  
150  
Operating supply current into ƒADC10CLK = 5 MHz, ADC10ON = 1,  
AVCC terminal, reference  
current not included  
2 V  
3 V  
90  
IADC10_A  
REFON = 0, SHT0 = 0, SHT1 = 0,  
ADC10DIV = 0  
µA  
100  
170  
Only one terminal Ax can be selected at one  
time from the pad to the ADC10_A capacitor  
array including wiring and pad  
CI  
RI  
Input capacitance  
2.2 V  
6
pF  
Input MUX ON resistance  
AVCC 2 V, 0 V VAx AVCC  
36  
kΩ  
4.29 10-Bit ADC, Timing Parameters  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
For specified performance of ADC10 linearity  
parameters  
2 V to  
3.6 V  
ƒADC10CLK  
ƒADC10OSC  
0.45  
5
5.5 MHz  
Internal ADC10 oscillator  
(MODOSC)  
2 V to  
3.6 V  
ADC10DIV = 0, ƒADC10CLK = ƒADC10OSC  
4.2  
4.5  
5.7 MHz  
REFON = 0, Internal oscillator,  
12 ADC10CLK cycles, 10-bit mode,  
ƒADC10OSC = 4.5 MHz to 5.5 MHz  
2 V to  
3.6 V  
2.18  
2.67  
µs  
tCONVERT  
Conversion time  
External ƒADC10CLK from ACLK, MCLK, or SMCLK,  
ADC10SSEL 0  
2 V to  
3.6 V  
(1)  
The error in a conversion started after tADC10ON is  
less than ±0.5 LSB,  
Reference and input signal already settled  
Turn on settling time of  
the ADC  
tADC10ON  
100  
ns  
µs  
RS = 1000 , RI = 36000 , CI = 3.5 pF,  
Approximately eight Tau (τ) are required to get an  
error of less than ±0.5 LSB  
2 V  
3 V  
1.5  
2.0  
tSample  
Sampling time  
(1) 12 × ADC10DIV × 1/ƒADC10CLK  
4.30 10-Bit ADC, Linearity Parameters  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
1.4 V (VeREF+ – VREF–/VeREF–)min 1.6 V  
1.6 V < (VeREF+ – VREF–/VeREF–)min VAVCC  
VCC  
MIN  
–1.4  
–1.3  
TYP  
MAX UNIT  
1.4  
Integral  
linearity error  
EI  
3.6 V  
LSB  
1.3  
Differential  
linearity error  
ED  
EO  
(VeREF+ – VREF–/VeREF–)min (VeREF+ – VREF–/VeREF–  
(VeREF+ – VREF–/VeREF–)min (VeREF+ – VREF–/VeREF–  
(VeREF+ – VREF–/VeREF–)min (VeREF+ – VREF–/VeREF–  
)
)
)
3.6 V  
3.6 V  
3.6 V  
–1.2  
1.2 LSB  
mV  
Offset error  
±2.5  
Gain error, external  
reference  
–1.4  
1.4 LSB  
EG  
Gain error, internal  
±4  
(1)  
reference  
Total unadjusted  
error, external  
reference  
(VeREF+ – VREF–/VeREF–)min (VeREF+ – VREF–/VeREF–  
)
3.6 V  
±2.3  
LSB  
ET  
Total unadjusted  
error, internal  
±4  
(1)  
reference  
(1) Error is dominated by the internal reference.  
Copyright © 2014, Texas Instruments Incorporated  
Specifications  
29  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
MAX UNIT  
4.31 REF, External Reference  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
1.4  
0
TYP  
(2)  
VeREF+  
VeREF–  
(VeREF+  
Positive external reference voltage input  
Negative external reference voltage input  
VeREF+ > VeREF–  
AVCC  
1.2  
V
V
(3)  
(4)  
VeREF+ > VeREF–  
Differential external reference voltage input  
VeREF+ > VeREF–  
1.4  
AVCC  
V
VREF–/VeREF–  
)
1.4 V VeREF+ VAVCC  
VeREF– = 0 V,  
,
ƒADC10CLK = 5 MHz,  
ADC10SHTx = 1h,  
Conversion rate 200 ksps  
2.2 V, 3 V  
2.2 V, 3 V  
±6  
µA  
IVeREF+  
IVeREF–  
,
Static input current  
1.4 V VeREF+ VAVCC  
VeREF– = 0 V,  
ƒADC10CLK = 5 MHz,  
ADC10SHTx = 8h,  
,
±1  
10  
µA  
µF  
Conversion rate 20 ksps  
CVREF+  
CVREF-  
,
Capacitance at VREF+ or VREF- terminal(5)  
(1) The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance, Ci, is also  
the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the  
recommendations on analog-source impedance to allow the charge to settle for 10-bit accuracy.  
(2) The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced  
accuracy requirements.  
(3) The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced  
accuracy requirements.  
(4) The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with  
reduced accuracy requirements.  
(5) Two decoupling capacitors, 10 µF and 100 nF, should be connected to VREF to decouple the dynamic current required for an external  
reference source if it is used for the ADC10_B. Also see the MSP430FR57xx Family User's Guide (SLAU272).  
4.32 REF, Built-In Reference  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
REFVSEL = {2} for 2.5 V, REFON = 1  
REFVSEL = {1} for 2 V, REFON = 1  
REFVSEL = {0} for 1.5 V, REFON = 1  
REFVSEL = {0} for 1.5 V  
VCC  
3 V  
3 V  
3 V  
MIN  
2.39  
1.91  
1.43  
2.0  
TYP  
2.5  
2.0  
1.5  
MAX UNIT  
2.61  
Positive built-in reference  
voltage output  
VREF+  
2.09  
1.57  
V
AVCC minimum voltage,  
Positive built-in reference  
active  
AVCC(min)  
REFVSEL = {1} for 2 V  
2.2  
V
REFVSEL = {2} for 2.5 V  
2.7  
Operating supply current into ƒADC10CLK = 5 MHz,  
IREF+  
3 V  
33  
µA  
(1)  
AVCC terminal  
REFON = 1, REFBURST = 0  
Temperature coefficient of  
built-in reference  
ppm/  
°C  
TREF+  
REFVSEL = (0, 1, 2}, REFON = 1  
±35  
AVCC = AVCC (min) - AVCC(max)  
TA = 25°C, REFON = 1,  
REFVSEL = (0} for 1.5 V  
,
,
,
,
1600  
1900  
AVCC = AVCC (min) - AVCC(max)  
TA = 25°C, REFON = 1,  
REFVSEL = (1} for 2 V  
Power supply rejection ratio  
(DC)  
PSRR_DC  
µV/V  
AVCC = AVCC (min) - AVCC(max)  
TA = 25°C, REFON = 1,  
REFVSEL = (2} for 2.5 V  
3600  
30  
Settling time of reference  
voltage  
AVCC = AVCC (min) - AVCC(max)  
REFVSEL = (0, 1, 2}, REFON = 0 1  
tSETTLE  
µs  
(2)  
(1) The internal reference current is supplied by terminal AVCC. Consumption is independent of the ADC10ON control bit, unless a  
conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion.  
(2) The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB.  
30  
Specifications  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
www.ti.com.cn  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
4.33 REF, Temperature Sensor and Built-In VMID  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
790  
MAX UNIT  
mV  
ADC10ON = 1, INCH = 0Ah,  
TA = 0°C  
(1)  
VSENSOR  
See  
2 V, 3 V  
TCSENSOR  
ADC10ON = 1, INCH = 0Ah  
2 V, 3 V  
2 V  
2.55  
mV/°C  
30  
30  
Sample time required if  
channel 10 is selected  
ADC10ON = 1, INCH = 0Ah,  
Error of conversion result 1 LSB  
tSENSOR(sample)  
µs  
(2)  
3 V  
2 V  
0.96  
1.43  
1.0  
1.5  
1.04  
V
ADC10ON = 1, INCH = 0Bh,  
VMID is ~0.5 × VAVCC  
VMID  
AVCC divider at channel 11  
Sample time required if  
3 V  
1.57  
ADC10ON = 1, INCH = 0Bh,  
Error of conversion result 1 LSB  
tVMID(sample)  
2 V, 3 V  
1000  
ns  
(3)  
channel 11 is selected  
(1) The temperature sensor offset can vary significantly. A single-point calibration is recommended to minimize the offset error of the built-in  
temperature sensor.  
(2) The typical equivalent impedance of the sensor is 51 k. The sample time required includes the sensor-on time tSENSOR(on)  
.
(3) The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed.  
1050  
1000  
950  
900  
850  
800  
750  
700  
650  
600  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
Ambient Temperature - Degrees Celsius  
Figure 4-11. Typical Temperature Sensor Voltage  
Copyright © 2014, Texas Instruments Incorporated  
Specifications  
31  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
MAX UNIT  
4.34 Comparator_D  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
Overdrive = 10 mV,  
VIN- = (VIN+ – 400 mV) to (VIN+ + 10 mV)  
49  
100  
202  
ns  
ns  
ns  
Propagation delay,  
AVCC = 2 V to 3.6 V  
Overdrive = 100 mV,  
VIN- = (VIN+ – 400 mV) to (VIN+ + 100 mV)  
tpd  
80  
50  
Overdrive = 250 mV,  
(VIN+ – 400 mV) to (VIN+ + 250 mV)  
CDF = 1, CDFDLY = 00  
CDF = 1, CDFDLY = 01  
CDF = 1, CDFDLY = 10  
CDF = 1, CDFDLY = 11  
AVCC = 2 V to 3.6 V  
0.28  
0.49  
0.85  
1.59  
–26  
0.5  
0.9  
1.6  
3.0  
1.1  
1.8  
µs  
µs  
Filter timer added to the  
propagation delay of the  
comparator  
tfilter  
3.31  
6.5  
µs  
µs  
Voffset  
Input offset  
26  
mV  
Common mode input  
range  
Vic  
AVCC = 2 V to 3.6 V  
0
AVCC – 1  
V
Icomp(AVCC)  
Iref(AVCC)  
Comparator only  
CDON = 1, AVCC = 2 V to 3.6 V  
CDREFLx = 01, AVCC = 2 V to 3.6 V  
28  
20  
µA  
µA  
Reference buffer and R-  
ladder  
CDON = 0 to CDON = 1,  
AVCC = 2 V to 3.6 V  
tenable,comp  
Comparator enable time  
1.1  
2.3  
µs  
µs  
Resistor ladder enable  
time  
CDON = 0 to CDON = 1,  
AVCC = 2 V to 3.6 V  
tenable,rladder  
1.1  
2.3  
VIN ×  
(n + 0.49)  
/ 32  
VIN ×  
(n + 1) (n + 1.51)  
/ 32 / 32  
VIN ×  
Reference voltage for a  
tap  
VIN = voltage input to the R-ladder,  
n = 0 to 31  
VCB_REF  
V
4.35 FRAM  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Write supply voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
DVCC(WRITE)  
tWRITE  
2.0  
3.6  
120  
60  
V
ns  
Word or byte write time  
(1)  
tACCESS  
Read access time  
ns  
(1)  
tPRECHARGE  
tCYCLE  
Precharge time  
60  
ns  
(1)  
Cycle time, read or write operation  
Read and write endurance  
120  
1015  
100  
40  
ns  
cycles  
TJ = 25°C  
TJ = 70°C  
TJ = 85°C  
tRetention  
Data retention duration  
years  
10  
(1) When using manual wait state control, see the MSP430FR57xx Family User's Guide (SLAU272) for recommended settings for common  
system frequencies.  
32  
Specifications  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
www.ti.com.cn  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
4.36 JTAG and Spy-Bi-Wire Interface  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Spy-Bi-Wire input frequency  
VCC  
MIN  
0
TYP  
MAX UNIT  
ƒSBW  
2 V, 3 V  
2 V, 3 V  
2 V, 3 V  
20 MHz  
tSBW,Low  
tSBW, En  
tSBW,Rst  
Spy-Bi-Wire low clock pulse duration  
0.025  
15  
1
µs  
µs  
(1)  
Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge)  
Spy-Bi-Wire return to normal operation time  
18  
0
37  
5
µs  
2 V  
3 V  
MHz  
(2)  
ƒTCK  
TCK input frequency, 4-wire JTAG  
0
10 MHz  
51.5 kΩ  
Rinternal  
Internal pulldown resistance on TEST  
2 V, 3 V  
19  
35  
(1) Tools accessing the Spy-Bi-Wire interface must wait for the tSBW,En time after pulling the TEST/SBWTCK pin high before applying the  
first SBWTCK clock edge.  
(2) ƒTCK may be restricted to meet the timing requirements of the module selected.  
Copyright © 2014, Texas Instruments Incorporated  
Specifications  
33  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
5 Detailed Description  
5.1 Functional Block Diagram  
This section shows the functional block diagram for the MSP430FR5739-EP in the RHA package.  
PA  
PB  
PJ.4/XIN  
PJ.5/XOUT  
DVCC DVSS VCORE AVCC AVSS  
P1.x P2.x P3.x P4.x  
16 KB  
(FR5739)  
I/O Ports  
P1/P2  
2×8 I/Os  
I/O Ports  
P3/P4  
ACLK  
SMCLK  
SYS  
8 KB  
(FR5735)  
Clock  
System  
Power  
Management  
1×8 I/Os  
1x 2 I/Os  
Interrupt  
& Wakeup  
PB  
1 KB  
Boot  
ROM  
4 KB  
(FR5731)  
Watchdog  
REF  
Interrupt  
& Wakeup  
PA  
SVS  
FRAM  
RAM  
MCLK  
Memory  
Protection  
Unit  
1×16 I/Os  
1×10 I/Os  
MAB  
MDB  
CPUXV2  
and  
Working  
Registers  
DMA  
3 Channel  
EEM  
(S: 3+1)  
eUSCI_A0: eUSCI_A1:  
UART,  
IrDA, SPI  
TA0  
TA1  
TB0  
TB1  
TB2  
ADC10_B  
UART,  
IrDA, SPI  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
PJ.0/TDO  
JTAG/  
SBW  
Interface  
10 Bit  
200KSPS  
Comp_D  
RTC_B  
MPY32  
CRC  
eUSCI_B0:  
SPI, I2C  
(2) Timer_A (3) Timer_B  
3 CC  
Registers  
16 channels  
PJ.1/TDI/TCLK  
PJ.2/TMS  
PJ.3/TCK  
3 CC  
Registers  
14 channels  
(12 ext/2 int)  
5.2 CPU  
The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All  
operations, other than program-flow instructions, are performed as register operations in conjunction with  
seven addressing modes for source operand and four addressing modes for destination operand.  
The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-  
register operation execution time is one cycle of the CPU clock.  
Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and  
constant generator, respectively. The remaining registers are general-purpose registers.  
Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all  
instructions.  
The instruction set consists of the original 51 instructions with three formats and seven address modes  
and additional instructions for the expanded address range. Each instruction can operate on word and  
byte data.  
5.3 Operating Modes  
The MSP430 has one active mode and seven software-selectable low-power modes of operation. An  
interrupt event can wake up the device from low-power modes LPM0 through LPM4, service the request,  
and restore back to the low-power mode on return from the interrupt program. Low-power modes LPM3.5  
and LPM4.5 disable the core supply to minimize power consumption.  
The following eight operating modes can be configured by software:  
34  
Detailed Description  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
www.ti.com.cn  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
Active mode (AM)  
All clocks are active  
Low-power mode 0 (LPM0)  
Low-power mode 3 (LPM3)  
CPU is disabled  
ACLK active  
MCLK and SMCLK disabled  
DCO disabled  
CPU is disabled  
ACLK active  
Complete data retention  
MCLK disabled  
SMCLK optionally active  
Complete data retention  
Low-power mode 4 (LPM4)  
CPU is disabled  
ACLK, MCLK, SMCLK disabled  
Complete data retention  
Low-power mode 1 (LPM1)  
CPU is disabled  
ACLK active  
Low-power mode 3.5 (LPM3.5)  
MCLK disabled  
RTC operation  
SMCLK optionally active  
DCO disabled  
Internal regulator disabled  
No data retention  
Complete data retention  
I/O pad state retention  
Wakeup from RST, general-purpose  
I/O, RTC events  
Low-power mode 2 (LPM2)  
CPU is disabled  
Low-power mode 4.5 (LPM4.5)  
ACLK active  
Internal regulator disabled  
No data retention  
MCLK disabled  
SMCLK optionally active  
DCO disabled  
I/O pad state retention  
Wakeup from RST and general-purpose  
I/O  
Complete data retention  
Copyright © 2014, Texas Instruments Incorporated  
Detailed Description  
35  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
5.4 Interrupt Vector Addresses  
The interrupt vectors and the power-up start address are located in the address range 0FFFFh to 0FF80h.  
The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.  
Table 5-1. Interrupt Sources, Flags, and Vectors  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
PRIORITY  
System Reset  
Power-Up, Brownout, Supply  
Supervisors  
SVSLIFG, SVSHIFG  
PMMRSTIFG  
External Reset RST  
WDTIFG  
Watchdog Timeout (Watchdog  
mode)  
WDTPW, FRCTLPW, MPUPW, CSPW, PMMPW  
DBDIFG  
Reset  
0FFFEh  
63, highest  
WDT, FRCTL MPU, CS, PMM  
Password Violation  
MPUSEGIIFG, MPUSEG1IFG, MPUSEG2IFG,  
MPUSEG3IFG  
FRAM double bit error detection  
MPU segment violation  
Software POR, BOR  
PMMPORIFG, PMMBORIFG  
(1) (2)  
(SYSRSTIV)  
System NMI  
Vacant Memory Access  
JTAG Mailbox  
VMAIFG  
JMBNIFG, JMBOUTIFG  
ACCTIMIFG  
(Non)maskable  
(Non)maskable  
0FFFCh  
0FFFAh  
62  
61  
FRAM access time error  
FRAM single, double bit error  
detection  
SBDIFG, DBDIFG  
(1)  
(SYSSNIV)  
User NMI  
External NMI  
Oscillator Fault  
NMIIFG, OFIFG  
(1) (2)  
(SYSUNIV)  
Comparator_D interrupt flags  
Comparator_D  
TB0  
Maskable  
Maskable  
0FFF8h  
0FFF6h  
60  
59  
(1) (3)  
(CBIV)  
(3)  
TB0CCR0 CCIFG0  
TB0CCR1 CCIFG1 to TB0CCR2 CCIFG2,  
TB0IFG  
TB0  
Maskable  
Maskable  
0FFF4h  
0FFF2h  
58  
57  
(1) (3)  
(TB0IV)  
Watchdog Timer  
(Interval Timer Mode)  
WDTIFG  
UCA0RXIFG, UCA0TXIFG (SPI mode)  
UCA0STTIFG, UCA0TXCPTIFG, UCA0RXIFG,  
UXA0TXIFG (UART mode)  
eUSCI_A0 Receive and Transmit  
eUSCI_B0 Receive and Transmit  
ADC10_B  
Maskable  
Maskable  
Maskable  
0FFF0h  
0FFEEh  
0FFECh  
56  
55  
54  
(1) (3)  
(UCA0IV)  
UCB0STTIFG, UCB0TXCPTIFG, UCB0RXIFG,  
UCB0TXIFG (SPI mode)  
UCB0ALIFG, UCB0NACKIFG, UCB0STTIFG,  
UCB0STPIFG, UCB0RXIFG0, UCB0TXIFG0,  
UCB0RXIFG1, UCB0TXIFG1, UCB0RXIFG2,  
UCB0TXIFG2, UCB0RXIFG3, UCB0TXIFG3,  
UCB0CNTIFG, UCB0BIT9IFG (I2C mode)  
(1) (3)  
(UCB0IV)  
ADC10OVIFG, ADC10TOVIFG, ADC10HIIFG,  
ADC10LOIFG  
ADC10INIFG, ADC10IFG0  
(1) (3) (4)  
(ADC10IV)  
(3)  
TA0  
TA0  
TA0CCR0 CCIFG0  
Maskable  
Maskable  
0FFEAh  
0FFE8h  
53  
52  
TA0CCR1 CCIFG1 to TA0CCR2 CCIFG2,  
TA0IFG  
(1) (3)  
(TA0IV)  
(1) Multiple source flags  
(2) A reset is generated if the CPU tries to fetch instructions from within peripheral space or vacant memory space.  
(Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it.  
(3) Interrupt flags are located in the module.  
(4) Only on devices with ADC, otherwise reserved.  
36  
Detailed Description  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
www.ti.com.cn  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
Table 5-1. Interrupt Sources, Flags, and Vectors (continued)  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
PRIORITY  
UCA1RXIFG, UCA1TXIFG (SPI mode)  
UCA1STTIFG, UCA1TXCPTIFG, UCA1RXIFG,  
UXA1TXIFG (UART mode)  
eUSCI_A1 Receive and Transmit  
Maskable  
0FFE6h  
51  
(1) (3)  
(UCA1IV)  
DMA0IFG, DMA1IFG, DMA2IFG  
DMA  
TA1  
Maskable  
Maskable  
0FFE4h  
0FFE2h  
50  
49  
(1) (3)  
(DMAIV)  
(3)  
TA1CCR0 CCIFG0  
TA1CCR1 CCIFG1 to TA1CCR2 CCIFG2,  
TA1IFG  
TA1  
Maskable  
0FFE0h  
48  
(1) (3)  
(TA1IV)  
P1IFG.0 to P1IFG.7  
I/O Port P1  
TB1  
Maskable  
Maskable  
0FFDEh  
0FFDCh  
47  
46  
(1) (3)  
(P1IV)  
(3)  
TB1CCR0 CCIFG0  
TB1CCR1 CCIFG1 to TB1CCR2 CCIFG2,  
TB1IFG  
TB1  
Maskable  
0FFDAh  
45  
(1) (3)  
(TB1IV)  
P2IFG.0 to P2IFG.7  
I/O Port P2  
TB2  
Maskable  
Maskable  
0FFD8h  
0FFD6h  
44  
43  
(1) (3)  
(P2IV)  
(3)  
TB2CCR0 CCIFG0  
TB2CCR1 CCIFG1 to TB2CCR2 CCIFG2,  
TB2IFG  
TB2  
Maskable  
0FFD4h  
42  
(1) (3)  
(TB2IV)  
P3IFG.0 to P3IFG.7  
I/O Port P3  
I/O Port P4  
Maskable  
Maskable  
0FFD2h  
0FFD0h  
41  
40  
(1) (3)  
(P3IV)  
P4IFG.0 to P4IFG.2  
(1) (3)  
(P4IV)  
RTCRDYIFG, RTCTEVIFG, RTCAIFG,  
RT0PSIFG, RT1PSIFG, RTCOFIFG  
RTC_B  
Maskable  
0FFCEh  
39  
(1) (3)  
(RTCIV)  
0FFCCh  
38  
(5)  
Reserved  
Reserved  
0FF80h  
0, lowest  
(5) Reserved interrupt vectors at addresses are not used in this device and can be used for regular program code if necessary. To maintain  
compatibility with other devices, it is recommended to reserve these locations.  
Copyright © 2014, Texas Instruments Incorporated  
Detailed Description  
37  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
5.5 Memory Organization  
Table 5-2 describes the memory organization.  
Table 5-2. Memory Organization(1)(2)  
MSP430FR5739-EP  
Memory (FRAM)  
Total Size  
15.5 KB  
Main: interrupt vectors  
Main: code memory  
00FFFFh–00FF80h  
00FF7Fh–00C200h  
1 KB  
001FFFh–001C00h  
RAM  
Device Descriptor Info (TLV)  
(FRAM)  
128 B  
001A7Fh–001A00h  
N/A  
N/A  
0019FFh–001980h  
Address space mirrored to Info A  
00197Fh–001900h  
Address space mirrored to Info B  
Information memory (FRAM)  
Info A  
Info B  
BSL 3  
BSL 2  
BSL 1  
BSL 0  
Size  
128 B  
0018FFh–001880h  
128 B  
00187Fh–001800h  
512 B  
0017FFh–001600h  
512 B  
0015FFh–001400h  
Bootstrap loader (BSL) memory  
(ROM)  
512 B  
0013FFh–001200h  
512 B  
0011FFh–001000h  
4 KB  
000FFFh–0h  
Peripherals  
(1) N/A = Not available  
(2) All address space not listed in this table is considered vacant memory.  
38  
Detailed Description  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
 
MSP430FR5739-EP  
www.ti.com.cn  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
5.6 Bootstrap Loader (BSL)  
The BSL enables users to program the FRAM or RAM using a UART serial interface. Access to the device  
memory by the BSL is protected by an user-defined password. Use of the BSL requires four pins (see  
Table 5-3). BSL entry requires a specific entry sequence on the RST/NMI/SBWTDIO and TEST/SBWTCK  
pins. For complete description of the features of the BSL and its implementation, see the MSP430  
Programming Via the Bootstrap Loader User's Guide (SLAU319).  
Table 5-3. BSL Pin Requirements and Functions  
DEVICE SIGNAL  
BSL FUNCTION  
Entry sequence signal  
Entry sequence signal  
Data transmit  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
P2.0  
P2.1  
VCC  
VSS  
Data receive  
Power supply  
Ground supply  
5.7 JTAG Operation  
5.7.1 JTAG Standard Interface  
The MSP430 family supports the standard JTAG interface, which requires four signals for sending and  
receiving data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to  
enable the JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with  
MSP430 development tools and device programmers. The JTAG pin requirements are summarized in  
Table 5-4. For further details on interfacing to development tools and device programmers, see the  
MSP430 Hardware Tools User's Guide (SLAU278). For a complete description of the features of the JTAG  
interface and its implementation, see MSP430 Programming Via the JTAG Interface (SLAU320).  
Table 5-4. JTAG Pin Requirements and Functions  
DEVICE SIGNAL  
PJ.3/TCK  
DIRECTION  
FUNCTION  
JTAG clock input  
JTAG state control  
JTAG data input, TCLK input  
JTAG data output  
Enable JTAG pins  
External reset  
IN  
IN  
PJ.2/TMS  
PJ.1/TDI/TCLK  
PJ.0/TDO  
IN  
OUT  
IN  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
VCC  
IN  
Power supply  
VSS  
Ground supply  
Copyright © 2014, Texas Instruments Incorporated  
Detailed Description  
39  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
 
 
MSP430FR5739-EP  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
5.7.2 Spy-Bi-Wire Interface  
In addition to the standard JTAG interface, the MSP430 family supports the two-wire Spy-Bi-Wire  
interface. Spy-Bi-Wire can be used to interface with MSP430 development tools and device programmers.  
The Spy-Bi-Wire interface pin requirements are summarized in Table 5-5. For further details on interfacing  
to development tools and device programmers, see the MSP430 Hardware Tools User's Guide  
(SLAU278). For a complete description of the features of the JTAG interface and its implementation, see  
MSP430 Programming Via the JTAG Interface (SLAU320).  
Table 5-5. Spy-Bi-Wire Pin Requirements and Functions  
DEVICE SIGNAL  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
VCC  
DIRECTION  
IN  
FUNCTION  
Spy-Bi-Wire clock input  
Spy-Bi-Wire data input and output  
Power supply  
IN, OUT  
VSS  
Ground supply  
5.8 FRAM  
The FRAM can be programmed through the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in-system by the  
CPU. Features of the FRAM include:  
Low-power ultra-fast write nonvolatile memory  
Byte and word access capability  
Programmable and automated wait state generation  
Error Correction Coding (ECC) with single bit detection and correction, double bit detection  
For important software design information regarding FRAM including but not limited to partitioning the  
memory layout according to application-specific code, constant, and data space requirements, the use of  
FRAM to optimize application energy consumption, and the use of the Memory Protection Unit (MPU) to  
maximize application robustness by protecting the program code against unintended write accesses, see  
the application report MSP430™ FRAM Technology – How To and Best Practices (SLAA628).  
5.9 Memory Protection Unit (MPU)  
The FRAM can be protected from inadvertent CPU execution or write access by the MPU. Features of the  
MPU include:  
Main memory partitioning programmable up to three segments  
Each segment's (main and information memory) access rights can be individually selected  
Access violation flags with interrupt capability for easy servicing of access violations  
5.10 Peripherals  
Peripherals are connected to the CPU through data, address, and control buses and can be handled using  
all instructions. For complete module descriptions, see the MSP430FR57xx Family User's Guide  
(SLAU272).  
5.10.1 Digital I/O  
There are up to four 8-bit I/O ports implemented:  
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt conditions is possible.  
Programmable pullup or pulldown on all ports.  
Edge-selectable interrupt and LPM3.5 and LPM4.5 wake-up input capability is available for all ports.  
Read and write access to port-control registers is supported by all instructions.  
Ports can be accessed byte-wise or word-wise in pairs.  
40  
Detailed Description  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
 
MSP430FR5739-EP  
www.ti.com.cn  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
5.10.2 Oscillator and Clock System (CS)  
The clock system includes support for a 32-kHz watch crystal oscillator XT1 (LF mode), an internal very-  
low-power low-frequency oscillator (VLO), an integrated internal digitally controlled oscillator (DCO), and a  
high-frequency crystal oscillator XT1 (HF mode). The clock system module is designed to meet the  
requirements of both low system cost and low power consumption. A fail-safe mechanism exists for all  
crystal sources. The clock system module provides the following clock signals:  
Auxiliary clock (ACLK), sourced from a 32-kHz watch crystal (XT1 LF mode), a high-frequency crystal  
(XT1 HF mode), the internal VLO, or the internal DCO.  
Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced by the same sources  
made available to ACLK.  
Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be  
sourced by the same sources made available to ACLK.  
5.10.3 Power Management Module (PMM)  
The PMM includes an integrated voltage regulator that supplies the core voltage to the device. The PMM  
also includes supply voltage supervisor (SVS) and brownout protection. The brownout circuit is  
implemented to provide the proper internal reset signal to the device during power-on and power-off. The  
SVS circuitry detects if the supply voltage drops below a user-selectable safe level. SVS circuitry is  
available on the primary and core supplies.  
5.10.4 Hardware Multiplier (MPY)  
The multiplication operation is supported by a dedicated peripheral module. The module performs  
operations with 32-bit, 24-bit, 16-bit, and 8-bit operands. The module supports signed and unsigned  
multiplication as well as signed and unsigned multiply-and-accumulate operations.  
5.10.5 Real-Time Clock (RTC_B)  
The RTC_B module contains an integrated real-time clock (RTC) (calendar mode). Calendar mode  
integrates an internal calendar which compensates for months with fewer than 31 days and includes leap  
year correction. The RTC_B also supports flexible alarm functions and offset-calibration hardware. RTC  
operation is available in LPM3.5 mode to minimize power consumption.  
5.10.6 Watchdog Timer (WDT_A)  
The primary function of the watchdog timer (WDT_A) module is to perform a controlled system restart  
after a software problem occurs. If the selected time interval expires, a system reset is generated. If the  
watchdog function is not needed in an application, the module can be configured as an interval timer and  
can generate interrupts at selected time intervals.  
5.10.7 System Module (SYS)  
The SYS module handles many of the system functions within the device. These include power-on reset  
(POR) and power-up clear (PUC) handling, NMI source selection and management, reset interrupt vector  
generators, bootstrap loader entry mechanisms, and configuration management (device descriptors). It  
also includes a data exchange mechanism using JTAG called a JTAG mailbox that can be used in the  
application.  
Copyright © 2014, Texas Instruments Incorporated  
Detailed Description  
41  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
Table 5-6. System Module Interrupt Vector Registers  
INTERRUPT VECTOR  
REGISTER  
ADDRESS  
INTERRUPT EVENT  
VALUE  
PRIORITY  
SYSRSTIV,  
System Reset  
019Eh  
No interrupt pending  
Brownout (BOR)  
00h  
02h  
Highest  
RSTIFG RST/NMI (BOR)  
04h  
PMMSWBOR software BOR (BOR)  
LPMx.5 wake up (BOR)  
06h  
08h  
Security violation (BOR)  
0Ah  
SVSLIFG SVSL event (BOR)  
SVSHIFG SVSH event (BOR)  
Reserved  
0Ch  
0Eh  
10h  
Reserved  
12h  
PMMSWPOR software POR (POR)  
WDTIFG watchdog timeout (PUC)  
WDTPW password violation (PUC)  
FRCTLPW password violation (PUC)  
DBDIFG FRAM double bit error (PUC)  
Peripheral area fetch (PUC)  
PMMPW PMM password violation (PUC)  
MPUPW MPU password violation (PUC)  
CSPW CS password violation (PUC)  
MPUSEGIIFG information memory segment violation (PUC)  
MPUSEG1IFG segment 1 memory violation (PUC)  
MPUSEG2IFG segment 2 memory violation (PUC)  
MPUSEG3IFG segment 3 memory violation (PUC)  
Reserved  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
22h  
24h  
26h  
28h  
2Ah  
2Ch  
2Eh  
Reserved  
30h to 3Eh  
00h  
Lowest  
Highest  
SYSSNIV, System NMI  
019Ch  
No interrupt pending  
DBDIFG FRAM double bit error  
ACCTIMIFG access time error  
Reserved  
02h  
04h  
0Eh  
VMAIFG Vacant memory access  
JMBINIFG JTAG mailbox input  
JMBOUTIFG JTAG mailbox output  
SBDIFG FRAM single bit error  
Reserved  
10h  
12h  
14h  
16h  
18h to 1Eh  
00h  
Lowest  
Highest  
SYSUNIV, User NMI  
019Ah  
No interrupt pending  
NMIFG NMI pin  
02h  
OFIFG oscillator fault  
04h  
Reserved  
06h  
Reserved  
08h  
Reserved  
0Ah to 1Eh  
Lowest  
42  
Detailed Description  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
www.ti.com.cn  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
5.10.8 DMA Controller  
The DMA controller allows movement of data from one memory address to another without CPU  
intervention. For example, the DMA controller can be used to move data from the ADC10_B conversion  
memory to RAM. Using the DMA controller can increase the throughput of peripheral modules. The DMA  
controller reduces system power consumption by allowing the CPU to remain in sleep mode, without  
having to awaken to move data to or from a peripheral.  
(1)  
Table 5-7. DMA Trigger Assignments  
TRIGGER  
0
CHANNEL 0  
DMAREQ  
CHANNEL 1  
DMAREQ  
CHANNEL 2  
DMAREQ  
1
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
Reserved  
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
Reserved  
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
Reserved  
2
3
4
5
6
Reserved  
Reserved  
Reserved  
7
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
8
(2)  
(2)  
(2)  
9
TB1CCR0 CCIFG  
TB1CCR2 CCIFG  
TB2CCR0 CCIFG  
TB2CCR2 CCIFG  
Reserved  
TB1CCR0 CCIFG  
TB1CCR2 CCIFG  
TB2CCR0 CCIFG  
TB2CCR2 CCIFG  
Reserved  
TB1CCR0 CCIFG  
TB1CCR2 CCIFG  
TB2CCR0 CCIFG  
TB2CCR2 CCIFG  
Reserved  
(2)  
(3)  
(3)  
(2)  
(3)  
(3)  
(2)  
(3)  
(3)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
UCA0RXIFG  
UCA0RXIFG  
UCA0RXIFG  
UCA0TXIFG  
UCA0TXIFG  
UCA0TXIFG  
(4)  
(4)  
(4)  
UCA1RXIFG  
UCA1RXIFG  
UCA1RXIFG  
(4)  
(4)  
(4)  
UCA1TXIFG  
UCA1TXIFG  
UCA1TXIFG  
UCB0RXIFG0  
UCB0TXIFG0  
UCB0RXIFG1  
UCB0TXIFG1  
UCB0RXIFG2  
UCB0TXIFG2  
UCB0RXIFG3  
UCB0TXIFG3  
UCB0RXIFG0  
UCB0TXIFG0  
UCB0RXIFG1  
UCB0TXIFG1  
UCB0RXIFG2  
UCB0TXIFG2  
UCB0RXIFG3  
UCB0TXIFG3  
UCB0RXIFG0  
UCB0TXIFG0  
UCB0RXIFG1  
UCB0TXIFG1  
UCB0RXIFG2  
UCB0TXIFG2  
UCB0RXIFG3  
UCB0TXIFG3  
(5)  
(5)  
(5)  
ADC10IFGx  
ADC10IFGx  
ADC10IFGx  
Reserved  
Reserved  
MPY ready  
DMA2IFG  
DMAE0  
Reserved  
Reserved  
MPY ready  
DMA0IFG  
DMAE0  
Reserved  
Reserved  
MPY ready  
DMA1IFG  
DMAE0  
(1) If a reserved trigger source is selected, no trigger is generated.  
(2) Only on devices with TB1, otherwise reserved  
(3) Only on devices with TB2, otherwise reserved  
(4) Only on devices with eUSCI_A1, otherwise reserved  
(5) Only on devices with ADC, otherwise reserved  
Copyright © 2014, Texas Instruments Incorporated  
Detailed Description  
43  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
5.10.9 Enhanced Universal Serial Communication Interface (eUSCI)  
The eUSCI modules are used for serial data communication. The eUSCI module supports synchronous  
communication protocols such as SPI (3 or 4 pin) and I2C, and asynchronous communication protocols  
such as UART, enhanced UART with automatic baudrate detection, and IrDA. Each eUSCI module  
contains two portions, A and B.  
The eUSCI_An module provides support for SPI (3 pin or 4 pin), UART, enhanced UART, or IrDA.  
The eUSCI_Bn module provides support for SPI (3 pin or 4 pin) or I2C.  
The MSP430FR5739-EP series include one or two eUSCI_An modules (eUSCI_A0, eUSCI_A1) and one  
eUSCI_Bn module (eUSCI_B).  
5.10.10 TA0, TA1  
TA0 and TA1 are 16-bit timers/counters (Timer_A type) with three capture/compare registers each. Each  
can support multiple capture/compares, PWM outputs, and interval timing. Each has extensive interrupt  
capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the  
capture/compare registers.  
Table 5-8. TA0 Signal Connections  
MODULE INPUT  
SIGNAL  
MODULE OUTPUT  
SIGNAL  
DEVICE OUTPUT  
SIGNAL  
INPUT PIN NUMBER  
DEVICE INPUT SIGNAL  
MODULE BLOCK  
OUTPUT PIN NUMBER  
3-P1.2  
TA0CLK  
ACLK (internal)  
SMCLK (internal)  
TA0CLK  
TA0.0  
TACLK  
ACLK  
SMCLK  
TACLK  
CCI0A  
CCI0B  
GND  
Timer  
N/A  
TA0  
N/A  
3-P1.2  
28-P1.6  
34-P2.3  
28-P1.6  
34-P2.3  
TA0.0  
CCR0  
CCR1  
CCR2  
TA0.0  
DVSS  
DVCC  
VCC  
1-P1.0  
2-P1.1  
TA0.1  
CCI1A  
1-P1.0  
(1)  
ADC10 (internal)  
ADC10SHSx = {1}  
CDOUT (internal)  
CCI1B  
TA1  
TA2  
TA0.1  
TA0.2  
DVSS  
DVCC  
GND  
VCC  
TA0.2  
CCI2A  
CCI2B  
GND  
VCC  
2-P1.1  
ACLK (internal)  
DVSS  
DVCC  
(1) Only on devices with ADC  
44  
Detailed Description  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
www.ti.com.cn  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
Table 5-9. TA1 Signal Connections  
MODULE INPUT  
MODULE OUTPUT  
DEVICE OUTPUT  
SIGNAL  
INPUT PIN NUMBER  
DEVICE INPUT SIGNAL  
MODULE BLOCK  
OUTPUT PIN NUMBER  
SIGNAL  
TACLK  
ACLK  
SMCLK  
TACLK  
CCI0A  
CCI0B  
GND  
SIGNAL  
2-P1.1  
TA1CLK  
ACLK (internal)  
SMCLK (internal)  
TA1CLK  
TA1.0  
Timer  
N/A  
N/A  
2-P1.1  
29-P1.7  
35-P2.4  
29-P1.7  
35-P2.4  
TA1.0  
CCR0  
CCR1  
CCR2  
TA0  
TA1  
TA2  
TA1.0  
TA1.1  
TA1.2  
DVSS  
DVCC  
VCC  
3-P1.2  
8-P1.3  
TA1.1  
CCI1A  
CCI1B  
GND  
3-P1.2  
8-P1.3  
CDOUT (internal)  
DVSS  
DVCC  
VCC  
TA1.2  
CCI2A  
CCI2B  
GND  
ACLK (internal)  
DVSS  
DVCC  
VCC  
Copyright © 2014, Texas Instruments Incorporated  
Detailed Description  
45  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
5.10.11 TB0, TB1, TB2  
TB0, TB1, and TB2 are 16-bit timers/counters (Timer_B type) with three capture/compare registers each.  
Each can support multiple capture/compares, PWM outputs, and interval timing. Each has extensive  
interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each  
of the capture/compare registers.  
Table 5-10. TB0 Signal Connections  
MODULE INPUT  
SIGNAL  
MODULE OUTPUT  
SIGNAL  
DEVICE OUTPUT  
SIGNAL  
INPUT PIN NUMBER  
DEVICE INPUT SIGNAL  
MODULE BLOCK  
OUTPUT PIN NUMBER  
21-P2.0  
TB0CLK  
ACLK (internal)  
SMCLK (internal)  
TB0CLK  
TBCLK  
ACLK  
Timer  
N/A  
TB0  
N/A  
SMCLK  
TBCLK  
CCI0A  
CCI0B  
21-P2.0  
22-P2.1  
17-P2.5  
TB0.0  
22-P2.1  
17-P2.5  
TB0.0  
(1)  
CCR0  
TB0.0  
ADC10 (internal)  
DVSS  
GND  
ADC10SHSx = {2}  
DVCC  
VCC  
9-P1.4  
TB0.1  
CCI1A  
9-P1.4  
(1)  
ADC10 (internal)  
CDOUT (internal)  
CCI1B  
ADC10SHSx = {3}  
CCR1  
CCR2  
TB1  
TB2  
TB0.1  
TB0.2  
DVSS  
DVCC  
GND  
VCC  
10-P1.5  
TB0.2  
CCI2A  
CCI2B  
GND  
VCC  
10-P1.5  
ACLK (internal)  
DVSS  
DVCC  
(1) Only on devices with ADC  
46  
Detailed Description  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
www.ti.com.cn  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
(1)  
Table 5-11. TB1 Signal Connections  
MODULE INPUT  
SIGNAL  
MODULE OUTPUT  
SIGNAL  
DEVICE OUTPUT  
SIGNAL  
INPUT PIN NUMBER  
DEVICE INPUT SIGNAL  
MODULE BLOCK  
OUTPUT PIN NUMBER  
26-P3.6  
TB1CLK  
ACLK (internal)  
SMCLK (internal)  
TB1CLK  
TB1.0  
TBCLK  
ACLK  
SMCLK  
TBCLK  
CCI0A  
CCI0B  
GND  
Timer  
N/A  
TB0  
TB1  
TB2  
N/A  
26-P3.6  
23-P2.2  
18-P2.6  
23-P2.2  
18-P2.6  
TB1.0  
CCR0  
CCR1  
CCR2  
TB1.0  
TB1.1  
TB1.2  
DVSS  
DVCC  
VCC  
28-P1.6  
24-P3.4  
TB1.1  
CCI1A  
CCI1B  
GND  
28-P1.6  
24-P3.4  
TB1.1  
DVSS  
DVCC  
VCC  
29-P1.7  
25-P3.5  
TB1.2  
CCI2A  
CCI2B  
GND  
29-P1.7  
25-P3.5  
TB1.2  
DVSS  
DVCC  
VCC  
(1) TB1 is not present on all device types.  
(1)  
Table 5-12. TB2 Signal Connections  
MODULE INPUT  
SIGNAL  
MODULE OUTPUT  
DEVICE OUTPUT  
SIGNAL  
INPUT PIN NUMBER  
DEVICE INPUT SIGNAL  
MODULE BLOCK  
OUTPUT PIN NUMBER  
SIGNAL  
24-P3.4  
TB2CLK  
ACLK (internal)  
SMCLK (internal)  
TB2CLK  
TB2.0  
TBCLK  
ACLK  
SMCLK  
TBCLK  
CCI0A  
CCI0B  
GND  
Timer  
N/A  
N/A  
24-P3.4  
21-P2.0  
15-P4.0  
21-P2.0  
15-P4.0  
TB2.0  
CCR0  
CCR1  
CCR2  
TB0  
TB1  
TB2  
TB2.0  
TB2.1  
TB2.2  
DVSS  
DVCC  
VCC  
22-P2.1  
26-P3.6  
TB2.1  
CCI1A  
CCI1B  
GND  
22-P2.1  
26-P3.6  
TB2.1  
DVSS  
DVCC  
VCC  
23-P2.2  
27-P3.7  
TB2.2  
CCI2A  
CCI2B  
GND  
23-P2.2  
27-P3.7  
TB2.2  
DVSS  
DVCC  
VCC  
(1) TB2 is not present on all device types.  
Copyright © 2014, Texas Instruments Incorporated  
Detailed Description  
47  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
5.10.12 ADC10_B  
The ADC10_B module supports fast 10-bit analog-to-digital conversions. The module implements a 10-bit  
SAR core, sample select control, reference generator, and a conversion result buffer. A window  
comparator with a lower limit and an upper limit allows CPU-independent result monitoring with three  
window comparator interrupt flags.  
5.10.13 Comparator_D  
The primary function of the Comparator_D module is to support precision slope analog-to-digital  
conversions, battery voltage supervision, and monitoring of external analog signals.  
5.10.14 CRC16  
The CRC16 module produces a signature based on a sequence of entered data values and can be used  
for data checking purposes. The CRC16 module signature is based on the CRC-CCITT standard.  
5.10.15 Shared Reference (REF)  
The reference module (REF) is responsible for generation of all critical reference voltages that can be  
used by the various analog peripherals in the device.  
5.10.16 Embedded Emulation Module (EEM)  
The EEM supports real-time in-system debugging. The S version of the EEM implemented on all devices  
has the following features:  
Three hardware triggers or breakpoints on memory access  
One hardware trigger or breakpoint on CPU register write access  
Up to four hardware triggers can be combined to form complex triggers or breakpoints  
One cycle counter  
Clock control on module level  
48  
Detailed Description  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
www.ti.com.cn  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
5.10.17 Peripheral File Map  
Table 5-13 provides the base address and offset range of all available peripherals.  
Table 5-13. Peripherals  
OFFSET ADDRESS  
RANGE  
MODULE NAME  
BASE ADDRESS  
Special Functions (see Table 5-14)  
PMM (see Table 5-15)  
0100h  
0120h  
0140h  
0150h  
015Ch  
0160h  
0180h  
01B0h  
0200h  
0220h  
0320h  
0340h  
0380h  
03C0h  
0400h  
0440h  
04A0h  
04C0h  
0500h  
0510h  
0520h  
0530h  
05A0h  
05C0h  
05E0h  
0640h  
0700h  
08C0h  
000h-01Fh  
000h-010h  
000h-00Fh  
000h-007h  
000h-001h  
000h-00Fh  
000h-01Fh  
000h-001h  
000h-01Fh  
000h-01Fh  
000h-01Fh  
000h-02Fh  
000h-02Fh  
000h-02Fh  
000h-02Fh  
000h-02Fh  
000h-01Fh  
000h-02Fh  
000h-00Fh  
000h-00Ah  
000h-00Ah  
000h-00Ah  
000h-00Fh  
000h-01Fh  
000h-01Fh  
000h-02Fh  
000h-03Fh  
000h-00Fh  
FRAM Control (see Table 5-16)  
CRC16 (see Table 5-17)  
Watchdog (see Table 5-18)  
CS (see Table 5-19)  
SYS (see Table 5-20)  
Shared Reference (see Table 5-21)  
Port P1, P2 (see Table 5-22)  
Port P3, P4 (see Table 5-23)  
Port PJ (see Table 5-24)  
TA0 (see Table 5-25)  
TA1 (see Table 5-26)  
TB0 (see Table 5-27)  
TB1 (see Table 5-28)  
TB2 (see Table 5-29)  
Real-Time Clock (RTC_B) (see Table 5-30)  
32-Bit Hardware Multiplier (see Table 5-31)  
DMA General Control (see Table 5-32)  
DMA Channel 0 (see Table 5-32)  
DMA Channel 1 (see Table 5-32)  
DMA Channel 2 (see Table 5-32)  
MPU Control (see Table 5-33)  
eUSCI_A0 (see Table 5-34)  
eUSCI_A1 (see Table 5-35)  
eUSCI_B0 (see Table 5-36)  
ADC10_B (see Table 5-37)  
Comparator_D (see Table 5-38)  
Copyright © 2014, Texas Instruments Incorporated  
Detailed Description  
49  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
 
MSP430FR5739-EP  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
Table 5-14. Special Function Registers (Base Address: 0100h)  
REGISTER DESCRIPTION  
REGISTER  
SFRIE1  
OFFSET  
SFR interrupt enable  
SFR interrupt flag  
00h  
02h  
04h  
SFRIFG1  
SFR reset pin control  
SFRRPCR  
Table 5-15. PMM Registers (Base Address: 0120h)  
REGISTER DESCRIPTION  
REGISTER  
PMMCTL0  
OFFSET  
OFFSET  
OFFSET  
PMM Control 0  
PMM interrupt flags  
PM5 Control 0  
00h  
0Ah  
10h  
PMMIFG  
PM5CTL0  
Table 5-16. FRAM Control Registers (Base Address: 0140h)  
REGISTER DESCRIPTION  
REGISTER  
FRCTLCTL0  
FRAM control 0  
General control 0  
General control 1  
00h  
04h  
06h  
GCCTL0  
GCCTL1  
Table 5-17. CRC16 Registers (Base Address: 0150h)  
REGISTER DESCRIPTION  
REGISTER  
CRC16DI  
CRC data input  
00h  
02h  
04h  
06h  
CRC data input reverse byte  
CRC initialization and result  
CRC result reverse byte  
CRCDIRB  
CRCINIRES  
CRCRESR  
Table 5-18. Watchdog Registers (Base Address: 015Ch)  
REGISTER DESCRIPTION  
REGISTER  
WDTCTL  
OFFSET  
OFFSET  
Watchdog timer control  
00h  
Table 5-19. CS Registers (Base Address: 0160h)  
REGISTER DESCRIPTION  
REGISTER  
CSCTL0  
CS control 0  
CS control 1  
CS control 2  
CS control 3  
CS control 4  
CS control 5  
CS control 6  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
CSCTL1  
CSCTL2  
CSCTL3  
CSCTL4  
CSCTL5  
CSCTL6  
50  
Detailed Description  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
www.ti.com.cn  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
Table 5-20. SYS Registers (Base Address: 0180h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
System control  
SYSCTL  
00h  
06h  
08h  
0Ah  
0Ch  
0Eh  
18h  
1Ah  
1Ch  
1Eh  
JTAG mailbox control  
JTAG mailbox input 0  
JTAG mailbox input 1  
JTAG mailbox output 0  
JTAG mailbox output 1  
Bus Error vector generator  
User NMI vector generator  
System NMI vector generator  
Reset vector generator  
SYSJMBC  
SYSJMBI0  
SYSJMBI1  
SYSJMBO0  
SYSJMBO1  
SYSBERRIV  
SYSUNIV  
SYSSNIV  
SYSRSTIV  
Table 5-21. Shared Reference Registers (Base Address: 01B0h)  
REGISTER DESCRIPTION  
REGISTER  
REFCTL  
OFFSET  
OFFSET  
Shared reference control  
00h  
Table 5-22. Port P1, P2 Registers (Base Address: 0200h)  
REGISTER DESCRIPTION  
REGISTER  
Port P1 input  
P1IN  
00h  
02h  
04h  
06h  
0Ah  
0Ch  
0Eh  
16h  
18h  
1Ah  
1Ch  
01h  
03h  
05h  
07h  
0Bh  
0Dh  
17h  
1Eh  
19h  
1Bh  
1Dh  
Port P1 output  
Port P1 direction  
P1OUT  
P1DIR  
P1REN  
Port P1 pullup/pulldown enable  
Port P1 selection 0  
P1SEL0  
P1SEL1  
P1IV  
Port P1 selection 1  
Port P1 interrupt vector word  
Port P1 complement selection  
Port P1 interrupt edge select  
Port P1 interrupt enable  
Port P1 interrupt flag  
P1SELC  
P1IES  
P1IE  
P1IFG  
P2IN  
Port P2 input  
Port P2 output  
P2OUT  
P2DIR  
P2REN  
P2SEL0  
P2SEL1  
P2SELC  
P2IV  
Port P2 direction  
Port P2 pullup/pulldown enable  
Port P2 selection 0  
Port P2 selection 1  
Port P2 complement selection  
Port P2 interrupt vector word  
Port P2 interrupt edge select  
Port P2 interrupt enable  
Port P2 interrupt flag  
P2IES  
P2IE  
P2IFG  
Copyright © 2014, Texas Instruments Incorporated  
Detailed Description  
51  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
Table 5-23. Port P3, P4 Registers (Base Address: 0220h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P3 input  
P3IN  
00h  
02h  
04h  
06h  
0Ah  
0Ch  
0Eh  
16h  
18h  
1Ah  
1Ch  
01h  
03h  
05h  
07h  
0Bh  
0Dh  
17h  
1Eh  
19h  
1Bh  
1Dh  
Port P3 output  
Port P3 direction  
P3OUT  
P3DIR  
P3REN  
Port P3 pullup/pulldown enable  
Port P3 selection 0  
P3SEL0  
P3SEL1  
P3IV  
Port P3 selection 1  
Port P3 interrupt vector word  
Port P3 complement selection  
Port P3 interrupt edge select  
Port P3 interrupt enable  
Port P3 interrupt flag  
P3SELC  
P3IES  
P3IE  
P3IFG  
P4IN  
Port P4 input  
Port P4 output  
P4OUT  
P4DIR  
P4REN  
P4SEL0  
P4SEL1  
P4SELC  
P4IV  
Port P4 direction  
Port P4 pullup/pulldown enable  
Port P4 selection 0  
Port P4 selection 1  
Port P4 complement selection  
Port P4 interrupt vector word  
Port P4 interrupt edge select  
Port P4 interrupt enable  
Port P4 interrupt flag  
P4IES  
P4IE  
P4IFG  
Table 5-24. Port J Registers (Base Address: 0320h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port PJ input  
PJIN  
00h  
02h  
04h  
06h  
0Ah  
0Ch  
16h  
Port PJ output  
PJOUT  
PJDIR  
PJREN  
Port PJ direction  
Port PJ pullup/pulldown enable  
Port PJ selection 0  
Port PJ selection 1  
Port PJ complement selection  
PJSEL0  
PJSEL1  
PJSELC  
52  
Detailed Description  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
www.ti.com.cn  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
Table 5-25. TA0 Registers (Base Address: 0340h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
OFFSET  
OFFSET  
TA0 control  
TA0CTL  
00h  
02h  
04h  
06h  
10h  
12h  
14h  
16h  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TA0 counter register  
TA0CCTL0  
TA0CCTL1  
TA0CCTL2  
TA0R  
Capture/compare register 0  
Capture/compare register 1  
Capture/compare register 2  
TA0 expansion register 0  
TA0 interrupt vector  
TA0CCR0  
TA0CCR1  
TA0CCR2  
TA0EX0  
TA0IV  
Table 5-26. TA1 Registers (Base Address: 0380h)  
REGISTER DESCRIPTION  
REGISTER  
TA1CTL  
TA1 control  
00h  
02h  
04h  
06h  
10h  
12h  
14h  
16h  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TA1 counter register  
TA1CCTL0  
TA1CCTL1  
TA1CCTL2  
TA1R  
Capture/compare register 0  
Capture/compare register 1  
Capture/compare register 2  
TA1 expansion register 0  
TA1 interrupt vector  
TA1CCR0  
TA1CCR1  
TA1CCR2  
TA1EX0  
TA1IV  
Table 5-27. TB0 Registers (Base Address: 03C0h)  
REGISTER DESCRIPTION  
REGISTER  
TB0CTL  
TB0 control  
00h  
02h  
04h  
06h  
10h  
12h  
14h  
16h  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TB0 register  
TB0CCTL0  
TB0CCTL1  
TB0CCTL2  
TB0R  
Capture/compare register 0  
Capture/compare register 1  
Capture/compare register 2  
TB0 expansion register 0  
TB0 interrupt vector  
TB0CCR0  
TB0CCR1  
TB0CCR2  
TB0EX0  
TB0IV  
Copyright © 2014, Texas Instruments Incorporated  
Detailed Description  
53  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
Table 5-28. TB1 Registers (Base Address: 0400h)  
REGISTER DESCRIPTION  
REGISTER  
TB1CTL  
OFFSET  
TB1 control  
00h  
02h  
04h  
06h  
10h  
12h  
14h  
16h  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TB1 register  
TB1CCTL0  
TB1CCTL1  
TB1CCTL2  
TB1R  
Capture/compare register 0  
Capture/compare register 1  
Capture/compare register 2  
TB1 expansion register 0  
TB1 interrupt vector  
TB1CCR0  
TB1CCR1  
TB1CCR2  
TB1EX0  
TB1IV  
Table 5-29. TB2 Registers (Base Address: 0440h)  
REGISTER DESCRIPTION  
REGISTER  
TB2CTL  
OFFSET  
TB2 control  
00h  
02h  
04h  
06h  
10h  
12h  
14h  
16h  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TB2 register  
TB2CCTL0  
TB2CCTL1  
TB2CCTL2  
TB2R  
Capture/compare register 0  
Capture/compare register 1  
Capture/compare register 2  
TB2 expansion register 0  
TB2 interrupt vector  
TB2CCR0  
TB2CCR1  
TB2CCR2  
TB2EX0  
TB2IV  
54  
Detailed Description  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
www.ti.com.cn  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
Table 5-30. Real-Time Clock Registers (Base Address: 04A0h)  
REGISTER DESCRIPTION  
REGISTER  
RTCCTL0  
OFFSET  
RTC control 0  
00h  
01h  
02h  
03h  
08h  
0Ah  
0Ch  
0Dh  
0Eh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Eh  
RTC control 1  
RTCCTL1  
RTC control 2  
RTCCTL2  
RTC control 3  
RTCCTL3  
RTC prescaler 0 control  
RTC prescaler 1 control  
RTC prescaler 0  
RTC prescaler 1  
RTC interrupt vector word  
RTCPS0CTL  
RTCPS1CTL  
RTCPS0  
RTCPS1  
RTCIV  
RTC seconds, RTC counter register 1  
RTC minutes, RTC counter register 2  
RTC hours, RTC counter register 3  
RTC day of week, RTC counter register 4  
RTC days  
RTCSEC, RTCNT1  
RTCMIN, RTCNT2  
RTCHOUR, RTCNT3  
RTCDOW, RTCNT4  
RTCDAY  
RTC month  
RTCMON  
RTC year low  
RTCYEARL  
RTCYEARH  
RTCAMIN  
RTC year high  
RTC alarm minutes  
RTC alarm hours  
RTCAHOUR  
RTCADOW  
RTCADAY  
RTC alarm day of week  
RTC alarm days  
Binary-to-BCD conversion register  
BCD-to-binary conversion register  
BIN2BCD  
BCD2BIN  
Copyright © 2014, Texas Instruments Incorporated  
Detailed Description  
55  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
Table 5-31. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
16-bit operand 1 – multiply  
MPY  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
22h  
24h  
26h  
28h  
2Ah  
2Ch  
16-bit operand 1 – signed multiply  
16-bit operand 1 – multiply accumulate  
16-bit operand 1 – signed multiply accumulate  
16-bit operand 2  
MPYS  
MAC  
MACS  
OP2  
16 × 16 result low word  
RESLO  
RESHI  
16 × 16 result high word  
16 × 16 sum extension register  
SUMEXT  
MPY32L  
MPY32H  
MPYS32L  
MPYS32H  
MAC32L  
MAC32H  
MACS32L  
MACS32H  
OP2L  
32-bit operand 1 – multiply low word  
32-bit operand 1 – multiply high word  
32-bit operand 1 – signed multiply low word  
32-bit operand 1 – signed multiply high word  
32-bit operand 1 – multiply accumulate low word  
32-bit operand 1 – multiply accumulate high word  
32-bit operand 1 – signed multiply accumulate low word  
32-bit operand 1 – signed multiply accumulate high word  
32-bit operand 2 – low word  
32-bit operand 2 – high word  
OP2H  
32 × 32 result 0 – least significant word  
32 × 32 result 1  
RES0  
RES1  
32 × 32 result 2  
RES2  
32 × 32 result 3 – most significant word  
MPY32 control register 0  
RES3  
MPY32CTL0  
56  
Detailed Description  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
www.ti.com.cn  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
Table 5-32. DMA Registers (Base Address DMA General Control: 0500h,  
DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h)  
REGISTER DESCRIPTION  
REGISTER  
DMA0CTL  
OFFSET  
DMA channel 0 control  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
DMA channel 0 source address low  
DMA channel 0 source address high  
DMA channel 0 destination address low  
DMA channel 0 destination address high  
DMA channel 0 transfer size  
DMA0SAL  
DMA0SAH  
DMA0DAL  
DMA0DAH  
DMA0SZ  
DMA channel 1 control  
DMA1CTL  
DMA1SAL  
DMA1SAH  
DMA1DAL  
DMA1DAH  
DMA1SZ  
DMA channel 1 source address low  
DMA channel 1 source address high  
DMA channel 1 destination address low  
DMA channel 1 destination address high  
DMA channel 1 transfer size  
DMA channel 2 control  
DMA2CTL  
DMA2SAL  
DMA2SAH  
DMA2DAL  
DMA2DAH  
DMA2SZ  
DMA channel 2 source address low  
DMA channel 2 source address high  
DMA channel 2 destination address low  
DMA channel 2 destination address high  
DMA channel 2 transfer size  
DMA module control 0  
DMACTL0  
DMACTL1  
DMACTL2  
DMACTL3  
DMACTL4  
DMAIV  
DMA module control 1  
DMA module control 2  
DMA module control 3  
DMA module control 4  
DMA interrupt vector  
Table 5-33. MPU Control Registers (Base Address: 05A0h)  
REGISTER DESCRIPTION  
REGISTER  
MPUCTL0  
OFFSET  
MPU control 0  
00h  
02h  
04h  
06h  
MPU control 1  
MPUCTL1  
MPUSEG  
MPUSAM  
MPU Segmentation Register  
MPU access management  
Copyright © 2014, Texas Instruments Incorporated  
Detailed Description  
57  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
Table 5-34. eUSCI_A0 Registers (Base Address: 05C0h)  
REGISTER DESCRIPTION  
REGISTER  
UCA0CTLW0  
OFFSET  
eUSCI_A control word 0  
eUSCI _A control word 1  
eUSCI_A baud rate 0  
eUSCI_A baud rate 1  
eUSCI_A modulation control  
eUSCI_A status  
00h  
02h  
06h  
07h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
13h  
1Ah  
1Ch  
1Eh  
UCA0CTLW1  
UCA0BR0  
UCA0BR1  
UCA0MCTLW  
UCA0STAT  
UCA0RXBUF  
UCA0TXBUF  
UCA0ABCTL  
UCA0IRTCTL  
UCA0IRRCTL  
UCA0IE  
eUSCI_A receive buffer  
eUSCI_A transmit buffer  
eUSCI_A LIN control  
eUSCI_A IrDA transmit control  
eUSCI_A IrDA receive control  
eUSCI_A interrupt enable  
eUSCI_A interrupt flags  
UCA0IFG  
eUSCI_A interrupt vector word  
UCA0IV  
Table 5-35. eUSCI_A1 Registers (Base Address: 05E0h)  
REGISTER DESCRIPTION  
REGISTER  
UCA1CTLW0  
OFFSET  
eUSCI_A control word 0  
eUSCI _A control word 1  
eUSCI_A baud rate 0  
00h  
02h  
06h  
07h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
13h  
1Ah  
1Ch  
1Eh  
UCA1CTLW1  
UCA1BR0  
eUSCI_A baud rate 1  
UCA1BR1  
eUSCI_A modulation control  
eUSCI_A status  
UCA1MCTLW  
UCA1STAT  
UCA1RXBUF  
UCA1TXBUF  
UCA1ABCTL  
UCA1IRTCTL  
UCA1IRRCTL  
UCA1IE  
eUSCI_A receive buffer  
eUSCI_A transmit buffer  
eUSCI_A LIN control  
eUSCI_A IrDA transmit control  
eUSCI_A IrDA receive control  
eUSCI_A interrupt enable  
eUSCI_A interrupt flags  
eUSCI_A interrupt vector word  
UCA1IFG  
UCA1IV  
58  
Detailed Description  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
www.ti.com.cn  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
Table 5-36. eUSCI_B0 Registers (Base Address: 0640h)  
REGISTER DESCRIPTION  
REGISTER  
UCB0CTLW0  
OFFSET  
eUSCI_B control word 0  
eUSCI_B control word 1  
eUSCI_B bit rate 0  
00h  
02h  
06h  
07h  
08h  
0Ah  
0Ch  
0Eh  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
2Ah  
2Ch  
2Eh  
UCB0CTLW1  
UCB0BR0  
eUSCI_B bit rate 1  
UCB0BR1  
eUSCI_B status word  
UCB0STATW  
UCB0TBCNT  
UCB0RXBUF  
UCB0TXBUF  
UCB0I2COA0  
UCB0I2COA1  
UCB0I2COA2  
UCB0I2COA3  
UCB0ADDRX  
UCB0ADDMASK  
UCB0I2CSA  
UCB0IE  
eUSCI_B byte counter threshold  
eUSCI_B receive buffer  
eUSCI_B transmit buffer  
eUSCI_B I2C own address 0  
eUSCI_B I2C own address 1  
eUSCI_B I2C own address 2  
eUSCI_B I2C own address 3  
eUSCI_B received address  
eUSCI_B address mask  
eUSCI I2C slave address  
eUSCI interrupt enable  
eUSCI interrupt flags  
UCB0IFG  
eUSCI interrupt vector word  
UCB0IV  
Table 5-37. ADC10_B Registers (Base Address: 0700h)  
REGISTER DESCRIPTION  
REGISTER  
ADC10CTL0  
OFFSET  
ADC10_B Control register 0  
00h  
02h  
04h  
06h  
08h  
0Ah  
12h  
1Ah  
1Ch  
1Eh  
ADC10_B Control register 1  
ADC10CTL1  
ADC10CTL2  
ADC10LO  
ADC10_B Control register 2  
ADC10_B Window Comparator Low Threshold  
ADC10_B Window Comparator High Threshold  
ADC10_B Memory Control Register 0  
ADC10_B Conversion Memory Register  
ADC10_B Interrupt Enable  
ADC10HI  
ADC10MCTL0  
ADC10MEM0  
ADC10IE  
ADC10_B Interrupt Flags  
ADC10IGH  
ADC10IV  
ADC10_B Interrupt Vector Word  
Table 5-38. Comparator_D Registers (Base Address: 08C0h)  
REGISTER DESCRIPTION  
Comparator_D control register 0  
REGISTER  
CDCTL0  
OFFSET  
00h  
02h  
04h  
06h  
0Ch  
0Eh  
Comparator_D control register 1  
Comparator_D control register 2  
Comparator_D control register 3  
Comparator_D interrupt register  
Comparator_D interrupt vector word  
CDCTL1  
CDCTL2  
CDCTL3  
CDINT  
CDIV  
Copyright © 2014, Texas Instruments Incorporated  
Detailed Description  
59  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
6 Input/Output Schematics  
6.1 Port P1, P1.0 to P1.2, Input/Output With Schmitt Trigger  
Pad Logic  
External ADC reference  
(P1.0, P1.1)  
To ADC  
From ADC  
To Comparator  
From Comparator  
CDPD.x  
P1REN.x  
P1DIR.x  
0 0  
0 1  
1 0  
1 1  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P1OUT.x  
From module 1  
From module 2  
DVSS  
P1.0/TA0.1/DMAE0/RTCCLK/A0/CD0/VeREF-  
P1.1/TA0.2/TA1CLK/CDOUT/A1/CD1/VeREF+  
P1.2/TA1.1/TA0CLK/CDOUT/A2/CD2  
P1SEL0.x  
P1SEL1.x  
P1IN.x  
Bus  
Keeper  
EN  
D
To modules  
60  
Input/Output Schematics  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
www.ti.com.cn  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
Table 6-1. Port P1 (P1.0 to P1.2) Pin Functions  
CONTROL BITS/SIGNALS  
PIN NAME (P1.x)  
x
FUNCTION  
P1DIR.x  
P1SEL1.x  
P1SEL0.x  
P1.0/TA0.1/DMAE0/RTCCLK/A0/CD0/VeREF-  
P1.1/TA0.2/TA1CLK/CDOUT/A1/CD1/VeREF+  
P1.2/TA1.1/TA0CLK/CDOUT/A2/CD2  
0
P1.0 (I/O)  
TA0.CCI1A  
TA0.1  
I: 0; O: 1  
0
0
0
1
0
1
0
1
1
DMAE0  
0
1
RTCCLK  
(1) (2)  
A0  
(1) (3)  
CD0  
X
1
(1) (2)  
VeREF-  
P1.1 (I/O)  
TA0.CCI2A  
TA0.2  
1
I: 0; O: 1  
0
0
0
1
0
1
0
1
TA1CLK  
CDOUT  
1
1
0
1
(1) (2)  
A1  
(1) (3)  
CD1  
X
(1) (2)  
VeREF+  
P1.2 (I/O)  
TA1.CCI1A  
TA1.1  
2
I: 0; O: 1  
0
0
0
1
0
1
0
1
TA0CLK  
CDOUT  
1
1
0
1
(1) (2)  
A2  
X
(1) (3)  
CD2  
(1) Setting P1SEL1.x and P1SEL0.x disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
(2) Not available on all devices and package types.  
(3) Setting the CDPD.x bit of the comparator disables the output driver as well as the input Schmitt trigger to prevent parasitic cross  
currents when applying analog signals. Selecting the CDx input pin to the comparator multiplexer with the CDx bits automatically  
disables output driver and input buffer for that pin, regardless of the state of the associated CDPD.x bit.  
Copyright © 2014, Texas Instruments Incorporated  
Input/Output Schematics  
61  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
6.2 Port P1, P1.3 to P1.5, Input/Output With Schmitt Trigger  
Pad Logic  
To ADC  
From ADC  
To Comparator  
From Comparator  
CDPD.x  
P1REN.x  
0 0  
0 1  
1 0  
1 1  
P1DIR.x  
DVSS  
DVCC  
0
1
From module 2  
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P1OUT.x  
From module 1  
From module 2  
DVSS  
P1.3/TA1.2/UCB0STE/A3/CD3  
P1.4/TB0.1/UCA0STE/A4/CD4  
P1.5/TB0.2/UCA0CLK/A5/CD5  
P1SEL0.x  
P1SEL1.x  
P1IN.x  
Bus  
Keeper  
EN  
D
To modules  
62  
Input/Output Schematics  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
www.ti.com.cn  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
Table 6-2. Port P1 (P1.3 to P1.5) Pin Functions  
CONTROL BITS/SIGNALS  
PIN NAME (P1.x)  
x
FUNCTION  
P1DIR.x  
P1SEL1.x  
P1SEL0.x  
P1.3/TA1.2/UCB0STE/A3/CD3  
P1.4/TB0.1/UCA0STE/A4/CD4  
P1.5/TB0.2/UCA0CLK/A5/CD5  
3
P1.3 (I/O)  
TA1.CCI2A  
TA1.2  
I: 0; O: 1  
0
0
0
0
1
1
(1)  
UCB0STE  
X
1
1
0
0
1
0
(2) (3)  
A3  
X
(2) (4)  
CD3  
4
5
P1.4 (I/O)  
TB0.CCI1A  
TB0.1  
I: 0; O: 1  
0
0
1
1
(5)  
UCA0STE  
X
1
1
0
0
1
0
(2) (3)  
A4  
X
(2) (4)  
CD4  
P1.5(I/O)  
TB0.CCI2A  
TB0.2  
I: 0; O: 1  
0
1
0
1
(5)  
UCA0CLK  
X
1
1
0
1
(2) (3)  
A5  
X
(2) (4)  
CD5  
(1) Direction controlled by eUSCI_B0 module.  
(2) Setting P1SEL1.x and P1SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
(3) Not available on all devices and package types.  
(4) Setting the CDPD.x bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents  
when applying analog signals. Selecting the CDx input pin to the comparator multiplexer with the CDx bits automatically disables output  
driver and input buffer for that pin, regardless of the state of the associated CDPD.x bit  
(5) Direction controlled by eUSCI_A0 module.  
Copyright © 2014, Texas Instruments Incorporated  
Input/Output Schematics  
63  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
6.3 Port P1, P1.6 to P1.7, Input/Output With Schmitt Trigger  
Pad Logic  
DVSS  
P1REN.x  
P1DIR.x  
0 0  
0 1  
1 0  
1 1  
DVSS  
DVCC  
0
1
From module 2  
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P1OUT.x  
From module 1  
From module 2  
From module 3  
P1.6/TB1.1/UCB0SIMO/UCB0SDA/TA0.0  
P1.7/TB1.2/UCB0SOMI/UCB0SCL/TA1.0  
P1SEL0.x  
P1SEL1.x  
P1IN.x  
Bus  
Keeper  
EN  
D
To modules  
Table 6-3. Port P1 (P1.6 to P1.7) Pin Functions  
CONTROL BITS/SIGNALS  
PIN NAME (P1.x)  
x
FUNCTION  
P1DIR.x  
P1SEL1.x  
P1SEL0.x  
P1.6/TB1.1/UCB0SIMO/UCB0SDA/TA0.0  
6
P1.6 (I/O)  
I: 0; O: 1  
0
0
(1)  
TB1.CCI1A  
0
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
(1)  
TB1.1  
(2)  
UCB0SIMO/UCB0SDA  
TA0.CCI0A  
X
0
TA0.0  
1
P1.7/TB1.2/UCB0SOMI/UCB0SCL/TA1.0  
7
P1.7 (I/O)  
I: 0; O: 1  
(1)  
TB1.CCI2A  
0
1
X(2)  
(1)  
TB1.2  
UCB0SOMI/UCB0SCL  
TA1.CCI0A  
0
TA1.0  
1
(1) Not available on all devices and package types.  
(2) Direction controlled by eUSCI_B0 module.  
64  
Input/Output Schematics  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
www.ti.com.cn  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
6.4 Port P2, P2.0 to P2.2, Input/Output With Schmitt Trigger  
Pad Logic  
DVSS  
P2REN.x  
P2DIR.x  
0 0  
0 1  
1 0  
1 1  
DVSS  
DVCC  
0
1
From module 2  
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P2OUT.x  
From module 1  
From module 2  
From module 3  
P2.0/TB2.0/UCA0TXD/UCA0SIMO/TB0CLK/ACLK  
P2.1/TB2.1/UCA0RXD/UCA0SOMI/TB0.0  
P2.2/TB2.2/UCB0CLK/TB1.0  
P2SEL0.x  
P2SEL1.x  
P2IN.x  
Bus  
Keeper  
EN  
D
To modules  
Table 6-4. Port P2 (P2.0 to P2.2) Pin Functions  
CONTROL BITS/SIGNALS  
PIN NAME (P2.x)  
x
FUNCTION  
P2DIR.x  
P2SEL1.x  
P2SEL0.x  
P2.0/TB2.0/UCA0TXD/UCA0SIMO/TB0CLK/ACLK  
P2.1/TB2.1/UCA0RXD/UCA0SOMI/TB0.0  
P2.2/TB2.2/UCB0CLK/TB1.0  
0
P2.0 (I/O)  
I: 0; O: 1  
0
0
1
0
1
0
1
0
1
0
1
0
1
(1)  
TB2.CCI0A  
0
1
0
1
1
0
0
1
1
0
0
1
1
(1)  
TB2.0  
(2)  
UCA0TXD/UCA0SIMO  
TB0CLK  
X
0
ACLK  
1
1
2
P2.1 (I/O)  
I: 0; O: 1  
(1)  
TB2.CCI1A  
0
1
(1)  
TB2.1  
(2)  
UCA0RXD/UCA0SOMI  
TB0.CCI0A  
X
0
TB0.0  
1
P2.2 (I/O)  
I: 0; O: 1  
(1)  
TB2.CCI2A  
0
1
(1)  
TB2.2  
(3)  
UCB0CLK  
X
(1)  
TB1.CCI0A  
0
1
(1)  
TB1.0  
(1) Not available on all devices and package types.  
(2) Direction controlled by eUSCI_A0 module.  
(3) Direction controlled by eUSCI_B0 module.  
Copyright © 2014, Texas Instruments Incorporated  
Input/Output Schematics  
65  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
6.5 Port P2, P2.3 to P2.4, Input/Output With Schmitt Trigger  
Pad Logic  
To ADC  
From ADC  
To Comparator  
From Comparator  
CDPD.x  
P2REN.x  
0 0  
0 1  
1 0  
1 1  
P2DIR.x  
DVSS  
DVCC  
0
1
From module 2  
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P2OUT.x  
From module 1  
From module 2  
DVSS  
P2.3/TA0.0/UCA1STE/A6/CD10  
P2.4/TA1.0/UCA1CLK/A7/CD11  
P2SEL0.x  
P2SEL1.x  
P2IN.x  
Bus  
Keeper  
EN  
D
To modules  
66  
Input/Output Schematics  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
www.ti.com.cn  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
Table 6-5. Port P2 (P2.3 to P2.4) Pin Functions  
CONTROL BITS/SIGNALS  
PIN NAME (P2.x)  
x
FUNCTION  
P2DIR.x  
P2SEL1.x  
P2SEL0.x  
P2.3/TA0.0/UCA1STE/A6/CD10  
3
P2.3 (I/O)  
TA0.CCI0B  
TA0.0  
I: 0; O: 1  
0
0
0
0
1
1
(1)  
UCA1STE  
X
1
1
0
0
1
0
(2) (3)  
A6  
X
(2) (4)  
CD10  
P2.4/TA1.0/UCA1CLK/A7/CD11  
4
P2.4 (I/O)  
TA1.CCI0B  
TA1.0  
I: 0; O: 1  
0
0
1
1
(1)  
UCA1CLK  
X
1
1
0
1
(2) (3)  
A7  
X
(2) (4)  
CD11  
(1) Direction controlled by eUSCI_A1 module.  
(2) Setting P2SEL1.x and P2SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
(3) Not available on all devices and package types.  
(4) Setting the CDPD.x bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents  
when applying analog signals. Selecting the CDx input pin to the comparator multiplexer with the CDx bits automatically disables output  
driver and input buffer for that pin, regardless of the state of the associated CDPD.x bit.  
Copyright © 2014, Texas Instruments Incorporated  
Input/Output Schematics  
67  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
6.6 Port P2, P2.5 to P2.6, Input/Output With Schmitt Trigger  
Pad Logic  
P2REN.x  
0 0  
0 1  
1 0  
1 1  
P2DIR.x  
DVSS  
DVCC  
0
1
From module 2  
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P2OUT.x  
From module 1  
From module 2  
DVSS  
P2.5/TB0.0/UCA1TXD/UCA1SIMO  
P2.6/TB1.0/UCA1RXD/UCA1SOMI  
P2SEL0.x  
P2SEL1.x  
P2IN.x  
Bus  
Keeper  
EN  
D
To modules  
Table 6-6. Port P2 (P2.5 to P2.6) Pin Functions  
CONTROL BITS/SIGNALS  
PIN NAME (P2.x)  
x
FUNCTION  
P2DIR.x P2SEL1.x P2SEL0.x  
(1)  
P2.5/TB0.0/UCA1TXD/UCA1SIMO  
5
P2.5(I/O)  
I: 0; O: 1  
0
0
(1)  
TB0.CCI0B  
0
1
0
1
(1)  
TB0.0  
(1)  
(2)  
UCA1TXD/UCA1SIMO  
X
1
0
0
0
(1)  
P2.6/TB1.0/UCA1RXD/UCA1SOMI  
6
P2.6(I/O)  
I: 0; O: 1  
(1)  
TB1.CCI0B  
0
0
1
1
0
(1)  
TB1.0  
1
(2)  
(1)  
UCA1RXD/UCA1SOMI  
X
(1) Not available on all devices and package types.  
(2) Direction controlled by eUSCI_A1 module.  
68  
Input/Output Schematics  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
www.ti.com.cn  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
6.7 Port P2, P2.7, Input/Output With Schmitt Trigger  
Pad Logic  
P2REN.x  
0 0  
0 1  
1 0  
1 1  
P2DIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P2OUT.x  
DVSS  
DVSS  
P2.7  
DVSS  
P2SEL0.x  
P2SEL1.x  
P2IN.x  
Bus  
Keeper  
EN  
D
To modules  
Table 6-7. Port P2 (P2.7) Pin Functions  
CONTROL BITS/SIGNALS  
PIN NAME (P2.x)  
x
FUNCTION  
P2DIR.x P2SEL1.x P2SEL0.x  
(1)  
P2.7  
7
P2.7(I/O)  
I: 0; O: 1  
0
0
(1) Not available on all devices and package types.  
Copyright © 2014, Texas Instruments Incorporated  
Input/Output Schematics  
69  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
6.8 Port P3, P3.0 to P3.3, Input/Output With Schmitt Trigger  
Pad Logic  
To ADC  
From ADC  
To Comparator  
From Comparator  
CDPD.x  
P3REN.x  
0 0  
0 1  
1 0  
1 1  
P3DIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P3OUT.x  
DVSS  
DVSS  
DVSS  
P3.0/A12/CD12  
P3.1/A13/CD13  
P3.2/A14/CD14  
P3.3/A15/CD15  
P3SEL0.x  
P3SEL1.x  
P3IN.x  
Bus  
Keeper  
EN  
D
To modules  
70  
Input/Output Schematics  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
www.ti.com.cn  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
Table 6-8. Port P3 (P3.0 to P3.3) Pin Functions  
CONTROL BITS/SIGNALS  
PIN NAME (P3.x)  
x
FUNCTION  
P3DIR.x P3SEL1.x P3SEL0.x  
P3.0/A12/CD12  
P3.1/A13/CD13  
P3.2/A14/CD14  
P3.3/A15/CD15  
0
P3.0 (I/O)  
I: 0; O: 1  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
(1) (2)  
A12  
X
(1) (3)  
CD12  
1
2
3
P3.1 (I/O)  
I: 0; O: 1  
(1) (2)  
A13  
X
I: 0; O: 1  
X
(1) (3)  
CD13  
P3.2 (I/O)  
(1) (2)  
A14  
(1) (3)  
CD14  
P3.3 (I/O)  
I: 0; O: 1  
X
(1) (2)  
A15  
(1) (3)  
CD15  
(1) Setting P1SEL1.x and P1SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
(2) Not available on all devices and package types.  
(3) Setting the CDPD.x bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents  
when applying analog signals. Selecting the CDx input pin to the comparator multiplexer with the CDx bits automatically disables output  
driver and input buffer for that pin, regardless of the state of the associated CDPD.x bit.  
Copyright © 2014, Texas Instruments Incorporated  
Input/Output Schematics  
71  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
6.9 Port P3, P3.4 to P3.6, Input/Output With Schmitt Trigger  
Pad Logic  
DVSS  
P3REN.x  
0 0  
0 1  
1 0  
1 1  
P3DIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P3OUT.x  
From module 1  
DVSS  
P3.4/TB1.1/TB2CLK/SMCLK  
P3.5/TB1.2/CDOUT  
P3.6/TB2.1/TB1CLK  
From module 2  
P3SEL0.x  
P3SEL1.x  
P3IN.x  
Bus  
Keeper  
EN  
D
To modules  
Table 6-9. Port P3 (P3.4 to P3.6) Pin Functions  
CONTROL BITS/SIGNALS  
PIN NAME (P3.x)  
x
FUNCTION  
P3DIR.x P3SEL1.x P3SEL0.x  
(1)  
P3.4/TB1.1/TB2CLK/SMCLK  
4
P3.4 (I/O)  
I: 0; O: 1  
0
0
(1)  
TB1.CCI1B  
0
0
1
(1)  
TB1.1  
1
(1)  
TB2CLK  
0
1
0
0
1
0
1
(1)  
SMCLK  
1
(1)  
P3.5/TB1.2/CDOUT  
P3.6/TB2.1/TB1CLK  
5
6
P3.5 (I/O)  
I: 0; O: 1  
(1)  
TB1.CCI2B  
0
(1)  
TB1.2  
1
(1)  
CDOUT  
1
1
0
1
0
(1)  
P3.6 (I/O)  
I: 0; O: 1  
(1)  
TB2.CCI1B  
0
1
0
0
1
1
1
(1)  
TB2.1  
(1)  
TB1CLK  
(1) Not available on all devices and package types.  
72  
Input/Output Schematics  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
www.ti.com.cn  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
6.10 Port P3, P3.7, Input/Output With Schmitt Trigger  
Pad Logic  
P3REN.x  
0 0  
0 1  
1 0  
1 1  
P3DIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P3OUT.x  
From module 1  
DVSS  
DVSS  
P3.7/TB2.2  
P3SEL0.x  
P3SEL1.x  
P3IN.x  
Bus  
Keeper  
EN  
D
To modules  
Table 6-10. Port P3 (P3.7) Pin Functions  
CONTROL BITS/SIGNALS  
PIN NAME (P3.x)  
x
FUNCTION  
P3DIR.x P3SEL1.x P3SEL0.x  
(1)  
P3.7/TB2.2  
7
P3.7 (I/O)  
I: 0; O: 1  
0
0
(1)  
TB2.CCI2B  
0
1
0
1
(1)  
TB2.2  
(1) Not available on all devices and package types.  
Copyright © 2014, Texas Instruments Incorporated  
Input/Output Schematics  
73  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
6.11 Port P4, P4.0, Input/Output With Schmitt Trigger  
Pad Logic  
P4REN.x  
0 0  
0 1  
1 0  
1 1  
P4DIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P4OUT.x  
From module 1  
DVSS  
DVSS  
P4.0/TB2.0  
P4SEL0.x  
P4SEL1.x  
P4IN.x  
Bus  
Keeper  
EN  
D
To modules  
Table 6-11. Port P4 (P4.0) Pin Functions  
CONTROL BITS/SIGNALS  
PIN NAME (P4.x)  
x
FUNCTION  
P4DIR.x P4SEL1.x P4SEL0.x  
(1)  
P4.0/TB2.0  
0
P4.0 (I/O)  
I: 0; O: 1  
0
0
(1)  
TB2.CCI0B  
0
1
0
1
(1)  
TB2.0  
(1) Not available on all devices and package types.  
74  
Input/Output Schematics  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
www.ti.com.cn  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
6.12 Port P4, P4.1, Input/Output With Schmitt Trigger  
Pad Logic  
P4REN.x  
0 0  
0 1  
1 0  
1 1  
P4DIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P4OUT.x  
DVSS  
DVSS  
P4.1  
DVSS  
P4SEL0.x  
P4SEL1.x  
P4IN.x  
Bus  
Keeper  
EN  
D
To modules  
Table 6-12. Port P4 (P4.1) Pin Functions  
CONTROL BITS/SIGNALS  
PIN NAME (P4.x)  
x
FUNCTION  
P4DIR.x P4SEL1.x P4SEL0.x  
(1)  
P4.1  
1
P4.1 (I/O)  
I: 0; O: 1  
0
0
(1) Not available on all devices and package types.  
Copyright © 2014, Texas Instruments Incorporated  
Input/Output Schematics  
75  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
6.13 Port J, J.0 to J.3 JTAG pins TDO, TMS, TCK, TDI/TCLK, Input/Output With Schmitt  
Trigger or Output  
To Comparator  
From Comparator  
CDPD.x  
From JTAG  
From JTAG  
From JTAG  
Pad Logic  
1
0
PJREN.x  
PJDIR.x  
0 0  
0 1  
1 0  
1 1  
1
0
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
JTAG enable  
0 0  
0 1  
1 0  
1 1  
PJOUT.x  
From module 1  
DVSS  
1
0
PJ.0/TDO/TB0OUTH/SMCLK/CD6  
PJ.1/TDI/TCLK/TB1OUTH/MCLK/CD7  
PJ.2/TMS/TB2OUTH/ACLK/CD8  
DVSS  
PJSEL0.x  
PJSEL1.x  
PJIN.x  
Bus  
Keeper  
EN  
D
To modules  
and JTAG  
76  
Input/Output Schematics  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
www.ti.com.cn  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
To Comparator  
From Comparator  
CDPD.x  
Pad Logic  
From JTAG  
From JTAG  
From JTAG  
1
0
PJREN.x  
PJDIR.x  
0 0  
0 1  
1 0  
1 1  
1
0
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
JTAG enable  
0 0  
0 1  
1 0  
1 1  
PJOUT.x  
DVSS  
1
0
DVSS  
DVSS  
PJ.3/TCK/CD9  
PJSEL0.x  
PJSEL1.x  
PJIN.x  
Bus  
Keeper  
EN  
D
To modules  
and JTAG  
Copyright © 2014, Texas Instruments Incorporated  
Input/Output Schematics  
77  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
Table 6-13. Port PJ (PJ.0 to PJ.3) Pin Functions  
(1)  
CONTROL BITS/ SIGNALS  
PJDIR.x PJSEL1.x PJSEL0.x  
PIN NAME (PJ.x)  
x
FUNCTION  
(2)  
PJ.0/TDO/TB0OUTH/SMCLK/CD6  
0
PJ.0 (I/O)  
I: 0; O: 1  
0
0
(3)  
TDO  
X
X
X
TB0OUTH  
SMCLK  
CD6  
0
0
1
1
X
1
0
X
1
0
X
(2)  
PJ.1/TDI/TCLK/TB1OUTH/MCLK/CD7  
PJ.2/TMS/TB2OUTH/ACLK/CD8  
PJ.3/TCK/CD9  
1
2
3
PJ.1 (I/O)  
TDI/TCLK  
TB1OUTH  
MCLK  
I: 0; O: 1  
(3) (4)  
X
0
0
1
1
CD7  
X
1
0
X
1
0
X
(2)  
PJ.2 (I/O)  
I: 0; O: 1  
(3) (4)  
TMS  
X
TB2OUTH  
ACLK  
0
0
1
1
CD8  
X
1
0
X
1
1
0
X
1
(2)  
PJ.3 (I/O)  
I: 0; O: 1  
(3) (4)  
TCK  
X
X
CD9  
(1) X = Don't care  
(2) Default condition  
(3) The pin direction is controlled by the JTAG module. JTAG mode selection is made by the SYS module or by the Spy-Bi-Wire four-wire  
entry sequence. PJSEL1.x and PJSEL0.x have no effect in these cases.  
(4) In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are do not care.  
78  
Input/Output Schematics  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
www.ti.com.cn  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
6.14 Port PJ, PJ.4 and PJ.5 Input/Output With Schmitt Trigger  
Pad Logic  
To XT1 XIN  
PJREN.4  
0 0  
0 1  
1 0  
1 1  
PJDIR.4  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PJOUT.4  
DVSS  
DVSS  
DVSS  
PJ.4/XIN  
PJSEL0.4  
PJSEL1.4  
PJIN.4  
Bus  
Keeper  
EN  
D
To modules  
Copyright © 2014, Texas Instruments Incorporated  
Input/Output Schematics  
79  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
Pad Logic  
To XT1 XOUT  
PJSEL0.4  
XT1BYPASS  
PJREN.5  
0 0  
0 1  
1 0  
1 1  
PJDIR.5  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PJOUT.5  
DVSS  
DVSS  
DVSS  
PJ.5/XOUT  
PJSEL0.5  
PJSEL1.5  
PJIN.5  
Bus  
Keeper  
EN  
D
To modules  
Table 6-14. Port PJ (PJ.4 and PJ.5) Pin Functions  
(1)  
CONTROL BITS/SIGNALS  
PIN NAME (P7.x)  
x
FUNCTION  
PJ.4 (I/O)  
XT1  
BYPASS  
PJDIR.x PJSEL1.5 PJSEL0.5 PJSEL1.4 PJSEL0.4  
PJ.4/XIN  
4
I: 0; O: 1  
X
X
X
0
X
X
X
0
0
0
0
0
0
1
1
0
X
0
1
X
(2)  
XIN crystal mode  
XIN bypass mode  
PJ.5 (I/O)  
X
X
(2)  
PJ.5/XOUT  
5
I: 0; O: 1  
XOUT crystal mode  
X
X
X
X
X
0
0
1
1
0
1
(2)  
(3)  
PJ.5 (I/O)  
I: 0; O: 1  
(1) X = Don't care  
(2) Setting PJSEL1.4 = 0 and PJSEL0.4 = 1 causes the general-purpose I/O to be disabled. When XT1BYPASS = 0, PJ.4 and PJ.5 are  
configured for crystal operation and PJSEL1.5 and PJSEL0.5 are do not care. When XT1BYPASS = 1, PJ.4 is configured for bypass  
operation and PJ.5 is configured as general-purpose I/O.  
(3) When PJ.4 is configured in bypass mode, PJ.5 is configured as general-purpose I/O.  
80  
Input/Output Schematics  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
MSP430FR5739-EP  
www.ti.com.cn  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
7 Device Descriptors (TLV)  
Table 7-1 and Table 7-2 list the complete contents of the device descriptor tag-length-value (TLV)  
structure for each device type.  
(1)  
Table 7-1. Device Descriptor Table  
FR5739  
Value  
05h  
FR5738  
Value  
05h  
FR5737  
Value  
05h  
FR5736  
Value  
05h  
FR5735  
Value  
05h  
Description  
Address  
Info Block  
Info length  
01A00h  
01A01h  
01A02h  
01A03h  
01A04h  
01A05h  
01A06h  
01A07h  
01A08h  
01A09h  
01A0Ah  
01A0Bh  
01A0Ch  
01A0Dh  
01A0Eh  
01A0Fh  
01A10h  
01A11h  
01A12h  
01A13h  
CRC length  
05h  
05h  
05h  
05h  
05h  
per unit  
per unit  
03h  
per unit  
per unit  
02h  
per unit  
per unit  
01h  
per unit  
per unit  
77h  
per unit  
per unit  
76h  
CRC value  
Device ID  
Device ID  
81h  
81h  
81h  
81h  
81h  
Hardware revision  
Firmware revision  
Die Record Tag  
Die Record length  
per unit  
per unit  
08h  
per unit  
per unit  
08h  
per unit  
per unit  
08h  
per unit  
per unit  
08h  
per unit  
per unit  
08h  
Die Record  
0Ah  
0Ah  
0Ah  
0Ah  
0Ah  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
Lot/Wafer ID  
Die X position  
Die Y position  
Test results  
ADC10  
Calibration  
ADC10 Calibration  
Tag  
01A14h  
01A15h  
13h  
10h  
13h  
10h  
13h  
10h  
05h  
10h  
13h  
10h  
ADC10 Calibration  
length  
01A16h  
01A17h  
01A18h  
01A19h  
01A1Ah  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
per unit  
per unit  
per unit  
per unit  
per unit  
ADC Gain Factor  
ADC Offset  
ADC 1.5-V  
Reference  
01A1Bh  
01A1Ch  
01A1Dh  
01A1Eh  
01A1Fh  
01A20h  
01A21h  
01A22h  
01A23h  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
Temp. Sensor 30°C  
ADC 1.5-V  
Reference  
Temp. Sensor 85°C  
ADC 2.0-V  
Reference  
Temp. Sensor 30°C  
ADC 2.0-V  
Reference  
Temp. Sensor 85°C  
ADC 2.5-V  
Reference  
Temp. Sensor 30°C  
(1) NA = Not applicable  
Copyright © 2014, Texas Instruments Incorporated  
Device Descriptors (TLV)  
81  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
 
MSP430FR5739-EP  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
Table 7-1. Device Descriptor Table (1) (continued)  
FR5739  
Value  
FR5738  
Value  
FR5737  
Value  
NA  
FR5736  
Value  
NA  
FR5735  
Value  
Description  
Address  
ADC 2.5-V  
Reference  
Temp. Sensor 85°C  
01A24h  
01A25h  
per unit  
per unit  
per unit  
per unit  
12h  
per unit  
12h  
NA  
NA  
per unit  
12h  
REF  
Calibration  
REF Calibration Tag  
01A26h  
01A27h  
12h  
12h  
REF Calibration  
length  
06h  
06h  
06h  
06h  
06h  
01A28h  
01A29h  
01A2Ah  
01A2Bh  
01A2Ch  
01A2Dh  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
REF 1.5-V  
Reference  
REF 2.0-V  
Reference  
REF 2.5-V  
Reference  
(1)  
Table 7-2. Device Descriptor Table  
FR5734  
Value  
05h  
FR5733  
Value  
05h  
FR5732  
Value  
05h  
FR5731  
Value  
05h  
FR5730  
Value  
05h  
Description  
Address  
Info Block  
Info length  
01A00h  
01A01h  
01A02h  
01A03h  
01A04h  
01A05h  
01A06h  
01A07h  
01A08h  
01A09h  
01A0Ah  
01A0Bh  
01A0Ch  
01A0Dh  
01A0Eh  
01A0Fh  
01A10h  
01A11h  
01A12h  
01A13h  
CRC length  
05h  
05h  
05h  
05h  
05h  
per unit  
per unit  
00h  
per unit  
per unit  
7Fh  
per unit  
per unit  
75h  
per unit  
per unit  
7Eh  
per unit  
per unit  
7Ch  
CRC value  
Device ID  
Device ID  
81h  
80h  
81h  
80h  
80h  
Hardware revision  
Firmware revision  
Die Record Tag  
Die Record length  
per unit  
per unit  
08h  
per unit  
per unit  
08h  
per unit  
per unit  
08h  
per unit  
per unit  
08h  
per unit  
per unit  
08h  
Die Record  
0Ah  
0Ah  
0Ah  
0Ah  
0Ah  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
Lot/Wafer ID  
Die X position  
Die Y position  
Test results  
ADC10  
Calibration  
ADC10 Calibration  
Tag  
01A14h  
01A15h  
13h  
10h  
13h  
10h  
13h  
10h  
05h  
10h  
13h  
10h  
ADC10 Calibration  
length  
01A16h  
01A17h  
01A18h  
01A19h  
01A1Ah  
per unit  
per unit  
per unit  
per unit  
per unit  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
ADC Gain Factor  
ADC Offset  
ADC 1.5-V  
Reference  
Temp. Sensor 30°C  
01A1Bh  
per unit  
NA  
NA  
per unit  
per unit  
(1) NA = Not applicable  
82 Device Descriptors (TLV)  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5739-EP  
 
MSP430FR5739-EP  
www.ti.com.cn  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
Table 7-2. Device Descriptor Table (1) (continued)  
FR5734  
Value  
FR5733  
Value  
NA  
FR5732  
Value  
NA  
FR5731  
Value  
FR5730  
Value  
Description  
Address  
ADC 1.5-V  
Reference  
Temp. Sensor 85°C  
01A1Ch  
01A1Dh  
01A1Eh  
01A1Fh  
01A20h  
01A21h  
01A22h  
01A23h  
01A24h  
01A25h  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
ADC 2.0-V  
Reference  
Temp. Sensor 30°C  
ADC 2.0-V  
Reference  
Temp. Sensor 85°C  
ADC 2.5-V  
Reference  
Temp. Sensor 30°C  
ADC 2.5-V  
Reference  
Temp. Sensor 85°C  
REF  
Calibration  
REF Calibration Tag  
01A26h  
01A27h  
12h  
06h  
12h  
06h  
12h  
06h  
12h  
06h  
12h  
06h  
REF Calibration  
length  
01A28h  
01A29h  
01A2Ah  
01A2Bh  
01A2Ch  
01A2Dh  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
REF 1.5-V  
Reference  
REF 2.0-V  
Reference  
REF 2.5-V  
Reference  
版权 © 2014, Texas Instruments Incorporated  
Device Descriptors (TLV)  
83  
提交文档反馈意见  
产品主页链接: MSP430FR5739-EP  
 
MSP430FR5739-EP  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
8 器件和文档支持  
8.1 器件支持  
8.1.1 开始使用  
TI 还提供了立即入门必备的所有硬件平台和软件组件以及工具! 不仅如此,TI 还拥有众多辅助组件以满足  
您的需求。 要获得 MSP430™ MCU 产品线、可用开发工具和评估套件,以及高级开发资源,请访问  
MSP430 入门网页。  
8.1.2 Development Tools Support  
All MSP430™ microcontrollers are supported by a wide variety of software and hardware development  
tools. Tools are available from TI and various third parties. See them all at www.ti.com/msp430tools.  
8.1.2.1 Hardware Features  
See the Code Composer Studio for MSP430 User's Guide (SLAU157) for details on the available features.  
Break-  
points  
(N)  
Range  
Break-  
points  
LPMx.5  
Debugging  
Support  
MSP430  
Architecture  
4-Wire  
JTAG  
2-Wire  
JTAG  
Clock  
Control  
State  
Sequencer  
Trace  
Buffer  
MSP430Xv2  
Yes  
Yes  
3
Yes  
Yes  
No  
No  
Yes  
8.1.2.2 Recommended Hardware Options  
8.1.2.2.1 Target Socket Boards  
The target socket boards allow easy programming and debugging of the device using JTAG. They also  
feature header pin outs for prototyping. Target socket boards are orderable individually or as a kit with the  
JTAG programmer and debugger included. The following table shows the compatible target boards and  
the supported packages.  
Package  
Target Board and Programmer Bundle  
Target Board Only  
40-pin VQFN (RHA)  
MSP-FET430U40A  
MSP-TS430RHA40A  
8.1.2.2.2 Experimenter Boards  
Experimenter Boards and Evaluation kits are available for some MSP430 devices. These kits feature  
additional hardware components and connectivity for full system evaluation and prototyping. See  
www.ti.com/msp430tools for details.  
8.1.2.2.3 Debugging and Programming Tools  
Hardware programming and debugging tools are available from TI and from its third party suppliers. See  
the full list of available tools at www.ti.com/msp430tools.  
8.1.2.2.4 Production Programmers  
The production programmers expedite loading firmware to devices by programming several devices  
simultaneously.  
Part Number  
PC Port  
Features  
Provider  
MSP-GANG  
Serial and USB  
Program up to eight devices at a time. Works with PC or standalone.  
Texas Instruments  
8.1.2.3 Recommended Software Options  
8.1.2.3.1 Integrated Development Environments  
Software development tools are available from TI or from third parties. Open source solutions are also  
available.  
This device is supported by Code Composer Studio™ IDE (CCS).  
84  
器件和文档支持  
版权 © 2014, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5739-EP  
MSP430FR5739-EP  
www.ti.com.cn  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
8.1.2.3.2 MSP430Ware  
MSP430Ware is a collection of code examples, data sheets, and other design resources for all MSP430  
devices delivered in a convenient package. In addition to providing a complete collection of existing  
MSP430 design resources, MSP430Ware also includes a high-level API called MSP430 Driver Library.  
This library makes it easy to program MSP430 hardware. MSP430Ware is available as a component of  
CCS or as a standalone package.  
8.1.2.3.3 Command-Line Programmer  
MSP430 Flasher is an open-source, shell-based interface for programming MSP430 microcontrollers  
through a FET programmer or eZ430 using JTAG or Spy-Bi-Wire (SBW) communication. MSP430 Flasher  
can be used to download binary files (.txt or .hex) files directly to the MSP430 microcontroller without the  
need for an IDE.  
8.1.3 器件和开发工具命名规则  
为了指明产品开发周期所处的阶段,TI 为所有 MSP430 MCU 器件和支持工具的产品型号分配了前缀。 每  
MSP430  
MCU  
商用系列产品成员具有以下三个前缀中的一个:MSPPMS  
XMS(例  
如,MSP430F5259)。 德州仪器 (TI) 建议为其支持的工具使用三个可能前缀指示符中的两个:MSP 和  
MSPX。 这些前缀代表了产品从工程原型机(其中 XMS 针对器件,而 MSPX 针对工具)直到完全合格的生  
产器件和工具(其中 MSP 针对器件,而 MSP 针对工具)的产品开发进化阶段。  
器件开发进化流程:  
XMS - 试验器件不一定代表最终器件的电气技术规格  
PMS - 最终的芯片模型符合器件的电气技术规格,但是未经完整的质量和可靠性验证  
MSP - 完全合格的生产器件  
支持工具开发进化流程:  
MSPX - 还未经德州仪器 (TI) 完整内部质量测试的开发支持产品。  
MSP 完全合格的开发支持产品  
XMS PMS 器件和 MSPX 开发支持工具在供货时附带如下免责条款:  
开发的产品用于内部评估用途。”  
MSP 器件和 MSP 开发支持工具已进行完全特性描述,并且器件的质量和可靠性已经完全论证。 TI 的标准  
保修证书适用。  
预测显示原型器件(XMS PMS)的故障率大于标准生产器件。 由于它们的预计的最终使用故障率仍未定  
义,德州仪器 (TI) 建议不要将这些器件用于任何生产系统。 只有合格的产品器件将被使用。  
TI 器件的命名规则也包括一个带有器件系列名称的后缀。 这个后缀包括封装类型(例如,PZP)和温度范  
围(如,T)。8-1 提供了读取任一系列产品成员完整器件名称的图例。  
版权 © 2014, Texas Instruments Incorporated  
器件和文档支持  
85  
提交文档反馈意见  
产品主页链接: MSP430FR5739-EP  
MSP430FR5739-EP  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
MSP 430 F 5 438 A I ZQW T XX  
Processor Family  
430 MCU Platform  
Device Type  
Series  
Feature Set  
Optional: Additional Features  
Optional: Tape and Reel  
Packaging  
Optional: Temperature Range  
Optional: A = Revision  
Processor Family  
CC = Embedded RF Radio  
MSP = Mixed Signal Processor  
XMS = Experimental Silicon  
PMS = Prototype Device  
430 MCU Platform  
Device Type  
TI’s Low Power Microcontroller Platform  
Memory Type  
C = ROM  
F = Flash  
Specialized Application  
AFE = Analog Front End  
BT = Preprogrammed with Bluetooth  
BQ = Contactless Power  
FR = FRAM  
G = Flash or FRAM (Value Line) CG = ROM Medical  
L = No Nonvolatile Memory  
FE = Flash Energy Meter  
FG = Flash Medical  
FW = Flash Electronic Flow Meter  
Series  
1 Series = Up to 8 MHz  
2 Series = Up to 16 MHz  
3 Series = Legacy  
5 Series = Up to 25 MHz  
6 Series = Up to 25 MHz w/ LCD  
0 = Low Voltage Series  
4 Series = Up to 16 MHz w/ LCD  
Feature Set  
Various Levels of Integration Within a Series  
N/A  
Optional: A = Revision  
Optional: Temperature Range S = 0°C to 50°C  
C = 0°C to 70°C  
I = -40°C to 85°C  
T = -40°C to 105°C  
Packaging  
www.ti.com/packaging  
Optional: Tape and Reel  
T = Small Reel  
R = Large Reel  
No Markings = Tube or Tray  
Optional: Additional Features -EP = Enhanced Product (-40°C to 105°C)  
-HT = Extreme Temperature Parts (-55°C to 150°C)  
-Q1 = Automotive Q100 Qualified  
8-1. 器件命名规则  
8.2 文档支持  
以下文档描述了 MSP430FR5739-EP MCUwww.ti.com.cn 网站上提供了这些文档的副本。  
SLAU272  
SLAZ392  
MSP430FR57xx 系列用户指南。 这款器件系列内所提供的全部模块和外设的详细信息。  
MSP430FR5739 器件勘误表。 描述了针对这款器件每个芯片修订版本功能技术规格的已知例  
外情况。  
SLAZ391  
SLAZ390  
SLAZ389  
SLAZ388  
SLAZ387  
MSP430FR5738 器件勘误表。 描述了针对这款器件每个芯片修订版本功能技术规格的已知例  
外情况。  
MSP430FR5737 器件勘误表。 描述了针对这款器件每个芯片修订版本功能技术规格的已知例  
外情况。  
MSP430FR5736 器件勘误表。 描述了针对这款器件每个芯片修订版本功能技术规格的已知例  
外情况。  
MSP430FR5735 器件勘误表。 描述了针对这款器件每个芯片修订版本功能技术规格的已知例  
外情况。  
MSP430FR5734 器件勘误表。 描述了针对这款器件每个芯片修订版本功能技术规格的已知例  
外情况。  
SLAZ386  
MSP430FR5733 器件勘误表。 描述了针对这款器件每个芯片修订版本功能技术规格的已知例  
86  
器件和文档支持  
版权 © 2014, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5739-EP  
MSP430FR5739-EP  
www.ti.com.cn  
ZHCSD33A NOVEMBER 2014REVISED DECEMBER 2014  
外情况。  
SLAZ385  
MSP430FR5732 器件勘误表。 描述了针对这款器件每个芯片修订版本功能技术规格的已知例  
外情况。  
SLAZ384  
SLAZ383  
MSP430FR5731 器件勘误表。 描述了针对这款器件每个芯片修订版本功能技术规格的已知例  
外情况。  
MSP430FR5730 器件勘误表。 描述了针对这款器件每个芯片修订版本功能技术规格的已知例  
外情况。  
8.3 Community Resources  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the  
respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views;  
see TI's Terms of Use.  
TI E2E™ Community  
TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At  
e2e.ti.com, you can ask questions, share knowledge, explore ideas, and help solve problems with fellow  
engineers.  
TI Embedded Processors Wiki  
Texas Instruments Embedded Processors Wiki. Established to help developers get started with embedded  
processors from Texas Instruments and to foster innovation and growth of general knowledge about the  
hardware and software surrounding these devices.  
8.4 商标  
MSP430, Code Composer Studio, E2E are trademarks of Texas Instruments.  
is a trademark of ~ Texas Instruments.  
All other trademarks are the property of their respective owners.  
8.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
8.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
9 机械封装和可订购信息  
9.1 封装信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知  
且不对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2014, Texas Instruments Incorporated  
机械封装和可订购信息  
87  
提交文档反馈意见  
产品主页链接: MSP430FR5739-EP  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
250  
250  
(1)  
(2)  
(3)  
(4/5)  
(6)  
M430FR5739SRHATEP  
V62/14644-01XE  
ACTIVE  
VQFN  
VQFN  
RHA  
40  
40  
RoHS & Green  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-55 to 85  
-55 to 85  
M430  
FR5739EP  
ACTIVE  
RHA  
NIPDAU  
M430  
FR5739EP  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
OTHER QUALIFIED VERSIONS OF MSP430FR5739-EP :  
Catalog: MSP430FR5739  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
6-Feb-2015  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
M430FR5739SRHATEP  
VQFN  
RHA  
40  
250  
180.0  
16.4  
6.3  
6.3  
1.1  
12.0  
16.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
6-Feb-2015  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
VQFN RHA 40  
SPQ  
Length (mm) Width (mm) Height (mm)  
210.0 185.0 35.0  
M430FR5739SRHATEP  
250  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RHA 40  
6 x 6, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225870/A  
www.ti.com  
PACKAGE OUTLINE  
RHA0040D  
VQFN - 1 mm max height  
S
C
A
L
E
2
.
2
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
6.1  
5.9  
B
A
PIN 1 INDEX AREA  
0.5  
0.3  
6.1  
5.9  
0.3  
0.2  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 4.5  
(0.1) TYP  
2.9 0.1  
EXPOSED  
THERMAL PAD  
11  
20  
36X 0.5  
10  
21  
2X  
41  
SYMM  
4.5  
1
30  
SEE TERMINAL  
DETAIL  
0.3  
0.2  
0.1  
40X  
40  
31  
SYMM  
C A  
B
PIN 1 ID  
(OPTIONAL)  
0.5  
0.3  
40X  
0.05  
4225822/A 03/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHA0040D  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
2.9)  
SYMM  
40  
31  
40X (0.6)  
1
30  
40X (0.25)  
(1.2)  
TYP  
41  
SYMM  
(5.8)  
36X (0.5)  
(
0.2) TYP  
VIA  
21  
10  
(R0.05)  
TYP  
11  
20  
(5.8)  
LAND PATTERN EXAMPLE  
SCALE:15X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4225822/A 03/2020  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHA0040D  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(R0.05) TYP  
SYMM  
40  
31  
40X (0.6)  
1
30  
4X ( 1.27)  
40X (0.25)  
(0.735) TYP  
(0.735)  
TYP  
41  
SYMM  
(5.8)  
36X (0.5)  
METAL  
TYP  
21  
10  
20  
11  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 41:  
76.46% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:15X  
4225822/A 03/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

MSP430FR5739IDA

MIXED SIGNAL MICROCONTROLLER
TI

MSP430FR5739IDAR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430FR5739IRHA

MIXED SIGNAL MICROCONTROLLER
TI

MSP430FR5739IRHAR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430FR5739IRHAT

MIXED SIGNAL MICROCONTROLLER
TI

MSP430FR5739_14

MSP430FR573x Mixed-Signal Microcontrollers
TI

MSP430FR573X

MIXED SIGNAL MICROCONTROLLER
TI

MSP430FR573X_1110

MIXED SIGNAL MICROCONTROLLER
TI

MSP430FR5847

具有 32KB FRAM、1KB SRAM、12 位 ADC、比较器、DMA、UART/SPI/I2C 和计时器的 16MHz MCU
TI

MSP430FR58471

具有 32KB FRAM、1KB SRAM、12 位 ADC、比较器、DMA、UART/SPI/I2C 和计时器的 16MHz MCU
TI

MSP430FR58471IRHAR

具有 32KB FRAM、1KB SRAM、12 位 ADC、比较器、DMA、UART/SPI/I2C 和计时器的 16MHz MCU | RHA | 40 | -40 to 85
TI

MSP430FR58471IRHAT

具有 32KB FRAM、1KB SRAM、12 位 ADC、比较器、DMA、UART/SPI/I2C 和计时器的 16MHz MCU | RHA | 40 | -40 to 85
TI