MSP430FR2422IRHLR [TI]

具有 8KB FRAM、2KB SRAM、10 位 ADC、UART/SPI/I2C 和计时器的 16MHz MCU | RHL | 20 | -40 to 85;
MSP430FR2422IRHLR
型号: MSP430FR2422IRHLR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 8KB FRAM、2KB SRAM、10 位 ADC、UART/SPI/I2C 和计时器的 16MHz MCU | RHL | 20 | -40 to 85

静态存储器 外围集成电路
文件: 总86页 (文件大小:2172K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
MSP430FR2422 混合信号微控制器  
– 一eUSCI_B 接口SPI I2C  
• 时钟系(CS)  
1 特性  
• 嵌入式微控制器  
– 片32kHz RC 振荡(REFO)  
– 带有锁频(FLL) 的片16MHz 数控振荡器  
(DCO)  
16 RISC 架构  
– 支持的时钟频率最高可16MHz  
1.8V 3.6V 的宽电源电压范围最低电源电压  
受限SVS 电平请参SVS 规格)  
• 优化的超低功耗模式  
• 室温下的精度±1%具有片上基准)  
– 片上超低10kHz 振荡(VLO)  
– 片上高频调制振荡(MODOSC)  
– 外32kHz (LFXT)  
– 可编MCLK 预分频器1 128)  
– 通过可编程预分频器124 8MCLK  
获得SMCLK  
– 工作模式120µA/MHz典型值)  
– 待机32768Hz 晶振LPM3.5 实时时钟  
(RTC) 计数器710nA典型值)  
– 关(LPM4.5)36nA未使SVS  
• 低功耗铁RAM (FRAM)  
• 通用输入/输出和引脚功能  
– 非易失性存储器容量高7.5KB  
– 内置错误修正(ECC)  
– 可配置的写保护  
– 共15 I/OVQFN-20 封装)  
15 个中断引脚P1 P2可以MCU 从低  
功耗模式下唤醒  
– 对程序、常量和存储的统一存储  
– 耐写次数1015 次  
– 抗辐射和非磁性  
• 开发工具和软件  
– 开发工具  
• 目标开发MSPTS430RHL20  
• 系列成员另请参阅器件比较)  
MSP430FR24227.25KB FRAM256B  
FRAM2KB RAM  
• 封装选项  
FRAM SRAM 之比高4:1  
• 高性能模拟  
– 高8 10 位模数转换(ADC)  
1.5V 的内部基准电压  
• 采样保200ksps  
• 智能数字外设  
20 引脚VQFN (RHL)  
16 引脚TSSOP (PW)  
– 两16 位计时器每个计时器有三个捕捉/比较  
寄存(Timer_A3)  
2 应用  
– 一个仅用作计数器16 RTC  
16 位循环冗余校(CRC)  
• 增强型串行通信支持引脚重映射功能请参阅器  
件比较)  
• 工业传感器  
• 电池组  
• 便携式电器  
• 电动牙刷  
• 低功耗医疗、健康和健身器材  
– 一eUSCI_A 接口UARTIrDA SPI  
3 说明  
MSP430FR2422 MSP430超值系列微控制(MCU) 产品组合的其中一个器件该超值系列微控制器是 TI 成  
本超低的 MCU 系列适用于感应和测量应用。MSP430FR2422 MCU 可提供 8KB 非易失性存储器并配8 通道  
10 ADC。该架构、FRAM 和集成外设与多种低功耗模式相结合针对在便携式和电池供电传感应用中延长电  
池寿命进行了优化。采16 TSSOP 20 VQFN 封装。  
TI MSP430 超低功耗 FRAM 微控制器平台将独特的嵌入式 FRAM 和全面的超低功耗系统架构相结合从而使  
系统设计人员能够在降低能耗的同时提升性能。FRAM 技术兼有 RAM 的低功耗快速写入、灵活性、耐用性和闪  
存非易失性等特性。  
MSP430FR2422 MCU 由广泛的硬件和软件生态系统进行支持提供参考设计和代码示例协助用户快速开展设  
计。开发套件包括 MSP-TS430RHL20 20 引脚目标开发板。TI 还提供免费的 MSP430Ware软件该软件以  
Code Composer StudioIDE 桌面和云版本组件的形式提供位于 TI Resource Explorer E2E支持论坛  
MSP430 MCU 提供广泛的在线配套资料、培训和在线支持。  
有关完整的模块说明请参阅MSP430FR4xx MSP430FR2xx 系列器件用户指南》。  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLASEE5  
 
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
器件信息  
封装  
器件型(1)  
MSP430FR2422IPW16  
MSP430FR2422IRHL  
封装尺寸(2)  
5mm × 4.4mm  
4.5mm × 3.5mm  
TSSOP (16)  
VQFN (20)  
(1) 要获得最新的产品、封装和订购信息请参阅12 中的封装选项附录或者访问德州仪(TI) 网站  
www.ti.com.cn。  
(2) 这里显示的尺寸为近似值。要获得包含误差值的封装尺寸请参阅机械数据12 。  
CAUTION  
系统级静电放电 (ESD) 保护必须符合器件级 ESD 规范以防发生电气过载或对数据或代码存储器造  
成干扰。如需更多信息请参阅MSP430 系统ESD 注意事项》。  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: MSP430FR2422  
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
4 功能方框图  
4-1 给出了功能方框图。  
XIN XOUT  
P1.x/P2.x  
FRAM  
RAM  
2KB  
MPY32  
32-bit  
Hardware Redundancy  
Multiplier  
CRC16  
I/O Ports  
P1 : 8 IOs  
P2 : 7 IOs  
Interrupt,  
Wakeup,  
DVCC  
LFXT  
Power  
Management  
Module  
DVSS  
16-bit  
Cyclic  
Clock  
System  
RST/NMI  
7.25KB  
+256B  
Check  
PA : 15 IOs  
MAB  
16-MHz CPU  
inc.  
16 Registers  
MDB  
EEM  
RTC  
Counter  
eUSCI_A0  
2 × TA  
eUSCI_B0  
(SPI, I2C)  
ADC  
BAKMEM  
SYS  
TCK  
TMS  
8 channels  
Single-end  
10 bit  
32-bytes  
Backup  
Memory  
16-bit  
Real-Time  
Clock  
Timer_A3  
3 CC  
Registers  
JTAG  
SBW  
TDI/TCLK  
TDO  
(UART,  
IrDA, SPI)  
Watchdog  
200 ksps  
SBWTCK  
SBWTDIO  
LPM3.5 Domain  
4-1. 功能方框图  
MCU 的主电源DVCC DVSS 分别为数字模块和模拟模块供电。推荐的旁路电容和去耦电容分别为  
4.7μF 10μF 0.1μF精度±5%。  
P1 P2 特有引脚中断功能MCU 从所LPM 唤醒LPM3.5 LPM4。  
• 每Timer_A3 3 个捕捉/比较寄存器不过CCR1 CCR2 从外部连接。CCR0 寄存器仅用于内部周  
期时序和生成中断。  
LPM3.5 模式下RTC 模块可在其他外设停止工作的情况下继续工作。  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: MSP430FR2422  
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
Table of Contents  
8.12 Timing and Switching Characteristics..................... 19  
9 Detailed Description......................................................39  
9.1 Overview...................................................................39  
9.2 CPU.......................................................................... 39  
9.3 Operating Modes...................................................... 39  
9.4 Interrupt Vector Addresses....................................... 41  
9.5 Bootloader (BSL)...................................................... 42  
9.6 JTAG Standard Interface.......................................... 42  
9.7 Spy-Bi-Wire Interface (SBW).................................... 43  
9.8 FRAM........................................................................43  
9.9 Memory Protection....................................................43  
9.10 Peripherals..............................................................43  
9.11 Input/Output Diagrams............................................52  
9.12 Device Descriptors..................................................56  
9.13 Memory...................................................................57  
9.14 Identification............................................................65  
10 Applications, Implementation, and Layout............... 66  
10.1 Device Connection and Layout Fundamentals....... 66  
10.2 Peripheral- and Interface-Specific Design  
Information.................................................................. 69  
11 Device and Documentation Support..........................71  
11.1 Getting Started and Next Steps.............................. 71  
11.2 Device Nomenclature..............................................71  
11.3 Tools and Software..................................................72  
11.4 Documentation Support.......................................... 74  
11.5 支持资源..................................................................75  
11.6 Trademarks............................................................. 75  
11.7 静电放电警告...........................................................75  
11.8 Export Control Notice..............................................75  
11.9 术语表..................................................................... 75  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 功能方框图.........................................................................3  
5 Revision History.............................................................. 5  
6 Device Comparison.........................................................7  
6.1 Related Products........................................................ 7  
7 Terminal Configuration and Functions..........................8  
7.1 Pin Diagrams.............................................................. 8  
7.2 Pin Attributes...............................................................9  
7.3 Signal Descriptions................................................... 11  
7.4 Pin Multiplexing.........................................................13  
7.5 Buffer Types..............................................................13  
7.6 Connection of Unused Pins...................................... 13  
8 Specifications................................................................ 14  
8.1 Absolute Maximum Ratings...................................... 14  
8.2 ESD Ratings............................................................. 14  
8.3 Recommended Operating Conditions.......................14  
8.4 Active Mode Supply Current Into VCC Excluding  
External Current.......................................................... 15  
8.5 Active Mode Supply Current Per MHz...................... 15  
8.6 Low-Power Mode (LPM0) Supply Currents Into  
VCC Excluding External Current.................................. 15  
8.7 Low-Power Mode (LPM3, LPM4) Supply  
Currents (Into VCC) Excluding External Current.......... 16  
8.8 Low-Power Mode (LPMx.5) Supply Currents  
(Into VCC) Excluding External Current.........................17  
8.9 Typical Characteristics - Low-Power Mode  
Supply Currents...........................................................18  
8.10 Typical Characteristics Current  
Consumption Per Module............................................18  
8.11 Thermal Resistance Characteristics....................... 19  
Information.................................................................... 76  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: MSP430FR2422  
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
5 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from revision C to revision D  
Changes from December 11, 2019 to January 29, 2021  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
Added the TMS signal to pin 12 in 7-2, 16-Pin PW Package (Top View) ......................................................8  
Corrected the assignments for TA0.2 and TA0.1 for RHL pins 16 and 17 and PW pins 12 and 13 in 7-1, Pin  
Attributes ............................................................................................................................................................9  
Changes from revision B to revision C  
Changes from August 20, 2019 to December 10, 2019  
Page  
Changed the note that begins "Supply voltage changes faster than 0.2 V/µs can trigger a BOR reset..." in 节  
8.3, Recommended Operating Conditions .......................................................................................................14  
Added the note that begins "TI recommends that power to the DVCC pin must not exceed the limits..." in 节  
8.3, Recommended Operating Conditions .......................................................................................................14  
Changed the note that begins "A capacitor tolerance of ±20% or better is required..." in 8.3,  
Recommended Operating Conditions ..............................................................................................................14  
Added the note "See MSP430 32-kHz Crystal Oscillators for details on crystal section, layout, and testing" to  
8.12.3.1, XT1 Crystal Oscillator (Low Frequency) ...................................................................................... 21  
Changed the note that begins "Requires external capacitors at both terminals..." in 8.12.3.1, XT1 Crystal  
Oscillator (Low Frequency) ..............................................................................................................................21  
Corrected the test conditions for the RI parameter in 8.12.8.1, ADC, Power Supply and Input Range  
Conditions ........................................................................................................................................................34  
Added the note that begins "tSample = ln(2n+1) × τ..." in 8.12.8.2, ADC, 10-Bit Timing Parameters ..........34  
Added "1.5-V reference factor" in 9-18, Device Descriptors ....................................................................... 56  
Changed the CRC covered end address to 0x1AF5 in note (1) in 9-18, Device Descriptors ..................... 56  
Changes from revision A to revision B  
Changes from November 8, 2018 to August 19, 2019  
Page  
• 更新1 ................................................................................................................................................ 1  
Changed CapTIvate BSWP demonstration board to CapTIvate phone demonstration board in note (11) on 节  
8.7, Low-Power Mode (LPM3, LPM4) Supply Currents (Into VCC) Excluding External Current ...................... 16  
Changed CapTIvate BSWP demonstration board to CapTIvate phone demonstration board in note (19) on 节  
8.7, Low-Power Mode (LPM3, LPM4) Supply Currents (Into VCC) Excluding External Current ...................... 16  
Updated 11.2, Device Nomenclature ...........................................................................................................71  
Changes from initial release to revision A  
Changes from January 12, 2018 to November 7, 2018  
Page  
• 更改了1 中的列表项“1.8V 3.6V 的宽电源电压范围......................................................................1  
Updated 6.1, Related Products .....................................................................................................................7  
Changed HBM limit to ±1000 V and CDM limit to ±250 V in 8.2, ESD Ratings .......................................... 14  
Changed the MIN value of the VCC parameter from 2 V to 1.8 V in 8.3, Recommended Operating  
Conditions ........................................................................................................................................................14  
Changed the crystal in the footnote that begins "Characterized with a Seiko Crystal SC-32S crystal..." in 节  
8.7, Low-Power Mode (LPM3, LPM4) Supply Currents (Into VCC) Excluding External Current ...................... 16  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: MSP430FR2422  
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
Changed the crystal in the footnote that begins "Characterized with a Seiko Crystal SC-32S crystal..." in 节  
8.8, Low-Power Mode (LPMx.5) Supply Currents (Into VCC) Excluding External Current ...............................17  
Added note on VSVSH- and VSVSH+ parameters to 8.12.1.1, PMM, SVS and BOR ..................................... 19  
Changed the minimum VCC from 2.0 V to 1.8 V in the test conditions for the fREFO, dfREFO/ dVCC, and fDC  
parameters and in note (2) in 8.12.3.4, REFO ............................................................................................22  
Changed the minimum VCC from 2.0 V to 1.8 V in the test conditions for the dfVLO/dVCC parameter and in  
note (2) in 8.12.3.5, Internal Very-Low-Power Low-Frequency Oscillator (VLO) ........................................ 24  
Changed the minimum VCC from 2.0 V to 1.8 V in the test conditions for the fMODOSC/dVCC parameter in 节  
8.12.3.6, Module Oscillator (MODOSC) .......................................................................................................... 24  
Corrected bitfield from RTCCLK to RTCCKSEL in table note that starts "Controlled by ..." in 9-8, Clock  
Distribution .......................................................................................................................................................44  
Corrected bitfield from IRDSEL to IRDSSEL in 9.10.8, Timers (Timer0_A3, Timer1_A3), in the description  
that starts "The interconnection of Timer0_A3 and ..."..................................................................................... 49  
Corrected ADCINCHx column heading in 9-13, ADC Channel Connections ..............................................50  
Added P1SELC information in 9-28, Port P1, P2 Registers (Base Address: 0200h) ..................................58  
Added P2SELC information in 9-28, Port P1, P2 Registers (Base Address: 0200h) ..................................58  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: MSP430FR2422  
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
6 Device Comparison  
6-1 summarizes the features of the available family members.  
6-1. Device Comparison  
PROGRAM FRAM +  
SRAM  
10-BIT ADC  
CHANNELS  
DEVICE(1)  
INFORMATION  
FRAM (bytes)  
TA0,TA1  
eUSCI_A  
eUSCI_B  
GPIOs  
PACKAGE(2)  
(bytes)  
20 RHL  
(VQFN)  
MSP430FR2422IRHL  
MSP430FR2422IPW16  
7424 + 256  
7424 + 256  
2048  
2, 3 × CCR(3)  
2, 3 × CCR(3)  
1
1
1
1
8
5
15  
11  
16 PW  
(TSSOP)  
2048  
(1) For the most current package and ordering information, see the Package Option Addendum in 12, or see the TI website at  
www.ti.com.  
(2) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/  
packaging.  
(3) A CCR register is a configurable register that provides internal and external capture or compare inputs, or internal and external PWM  
outputs.  
6.1 Related Products  
For information about other devices in this family of products or related products, see the following links.  
TI 16-bit and 32-bit microcontrollers  
High-performance, low-power solutions to enable the autonomous future  
Products for MSP430 ultra-low-power sensing and measurement microcontrollers  
One platform. One ecosystem. Endless possibilities.  
Companion Products for MSP430FR2422  
Review products that are frequently purchased or used in conjunction with this product.  
Reference Designs  
Find reference designs leveraging the best in TI technology to solve your system-level challenges  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: MSP430FR2422  
 
 
 
 
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
7 Terminal Configuration and Functions  
7.1 Pin Diagrams  
7-1 shows the pinout of the 20-pin RHL package.  
19 18 17 16 15 14 13 12  
20  
11  
10  
P2.4/TA1CLK/UCB0CLK/A6  
P1.2/UCB0SIMO/UCB0SDA/SMCLK/A2/Veref-  
P1.1/UCB0CLK/ACLK/A1/VREF+  
MSP430FR2422IRHL  
1
P2.5/UCB0SIMO/UCB0SDA/A7  
2
3
4
5
6
7
8
9
7-1. 20-Pin RHL Package (Top View)  
7-2 shows the pinout of the 16-pin PW package.  
P1.1/UCB0CLK/ACLK/A1/VREF+  
P1.0/UCB0STE/A0/Veref+  
TEST/SBWTCK  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
P1.2/UCB0SIMO/UCB0SDA/SMCLK/A2/Veref-  
P1.3/UCB0SOMI/UCB0SCL/MCLK/A3  
DNC  
P1.4/UCA0TXD/UCA0SIMO/TA0.1/TCK  
P1.5/UCA0RXD/UCA0SOMI/TA0.2/TMS  
P1.6/UCA0CLK/TA0CLK/TDI/TCLK  
P1.7/UCA0STE/TDO  
RST/NMI/SBWTDIO  
DVCC  
MSP430FR2422IPW16  
DVSS  
P2.1/UCA0RXD/UCA0SOMI/XIN  
P2.0/UCA0TXD/UCA0SIMO/XOUT  
P2.2/TA1.1/A4  
7-2. 16-Pin PW Package (Top View)  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: MSP430FR2422  
 
 
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
7.2 Pin Attributes  
7-1 lists the attributes of all pins.  
7-1. Pin Attributes  
PIN NUMBER  
SIGNAL  
TYPE(2)  
RESET STATE  
SIGNAL NAME(1) (4)  
BUFFER TYPE(3)  
POWER SOURCE(5)  
AFTER BOR(6)  
RHL  
PW16  
P1.1 (RD)  
UCB0CLK  
ACLK  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
Power  
DVCC  
DVCC  
DVCC  
Power  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
OFF  
1
1
A1  
VREF+  
I
Analog  
P1.0 (RD)  
UCB0STE  
A0  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
Analog  
OFF  
2
2
Veref+  
I
Analog  
TEST (RD)  
SBWTCK  
RST (RD)  
NMI  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Power  
OFF  
3
4
3
4
I
I
OFF  
I
SBWTDIO  
DVCC  
I/O  
P
5
6
5
6
N/A  
N/A  
OFF  
DVSS  
P
Power  
P2.1 (RD)  
UCA0RXD  
UCA0SOMI  
XIN  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
7
7
I/O  
I
P2.0 (RD)  
UCA0TXD  
UCA0SIMO  
XOUT  
I/O  
O
OFF  
8
9
8
I/O  
O
P2.6 (RD)  
UCB0SOMI  
UCB0SCL  
P2.5 (RD)  
UCB0SIMO  
UCB0SDA  
A7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
OFF  
OFF  
10  
P2.4 (RD)  
TA1CLK  
UCB0CLK  
A6  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
11  
12  
I/O  
I
P2.3 (RD)  
TA1.2  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCB0STE  
A5  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: MSP430FR2422  
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
7-1. Pin Attributes (continued)  
PIN NUMBER  
RHL PW16  
SIGNAL  
TYPE(2)  
RESET STATE  
SIGNAL NAME(1) (4)  
BUFFER TYPE(3)  
POWER SOURCE(5)  
AFTER BOR(6)  
P2.2 (RD)  
TA1.1  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
OFF  
13  
9
A4  
P1.7 (RD)  
UCA0STE  
TDO  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
OFF  
14  
15  
10  
11  
P1.6 (RD)  
UCA0CLK  
TA0CLK  
TDI  
I/O  
I/O  
I
OFF  
I
TCLK  
I
P1.5 (RD)  
UCA0RXD  
UCA0SOMI  
TA0.2  
I/O  
I
OFF  
16  
12  
I/O  
I/O  
I
TMS  
P1.4 (RD)  
UCA0TXD  
UCA0SIMO  
TA0.1  
I/O  
O
OFF  
17  
18  
19  
13  
14  
15  
I/O  
I/O  
I
TCK  
DNC  
I/O  
I/O  
I/O  
O
P1.3 (RD)  
UCB0SOMI  
UCB0SCL  
MCLK  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
Power  
OFF  
A3  
I
P1.2 (RD)  
UCB0SIMO  
UCB0SDA  
SMCLK  
A2  
I/O  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
20  
16  
I
Veref-  
I
Analog  
(1) Signals names with (RD) denote the reset default pin name.  
(2) Signal Types: I = Input, O = Output, I/O = Input or Output  
(3) Buffer Types: LVCMOS, Analog, or Power (see 7-3)  
(4) To determine the pin mux encodings for each pin, see 9.11.  
(5) The power source shown in this table is the I/O power source, which may differ from the module power source.  
(6) Reset States:  
OFF = High-impedance with Schmitt trigger and pullup or pulldown (if available) disabled  
N/A = Not applicable  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: MSP430FR2422  
 
 
 
 
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
7.3 Signal Descriptions  
7-2 describes the signals for all device variants and package options.  
7-2. Signal Descriptions  
PIN NUMBER  
PIN  
FUNCTION  
SIGNAL NAME  
DESCRIPTION  
TYPE(1)  
RHL  
2
PW  
2
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
I
Analog input A0  
1
1
I
Analog input A1  
20  
19  
13  
12  
11  
10  
2
16  
15  
9
I
Analog input A2  
I
I
Analog input A3  
Analog input A4  
ADC  
I
Analog input A5  
2
I
Analog input A6  
I
Analog input A7  
Veref+  
Veref-  
ACLK  
MCLK  
SMCLK  
XIN  
I
ADC positive reference  
ADC negative reference  
ACLK output  
20  
1
16  
1
I
I/O  
O
O
I
19  
20  
7
15  
16  
7
MCLK output  
Clock  
SMCLK output  
Input terminal for crystal oscillator  
Output terminal for crystal oscillator  
Spy-Bi-Wire input clock  
Spy-Bi-Wire data input/output  
Test clock  
XOUT  
SBWTCK  
SBWTDIO  
TCK  
8
8
O
I
3
3
4
4
I/O  
I
17  
15  
15  
14  
3
13  
11  
11  
10  
TCLK  
TDI  
I
Test clock input  
Debug  
I
Test data input  
TDO  
O
I
Test data output  
TEST  
TMS  
3
Test mode pin selected digital I/O on JTAG pins  
Test mode select  
16  
2
12  
2
I
P1.0  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O(4)  
General-purpose I/O(4)  
General-purpose I/O(4)  
General-purpose I/O(4)  
P1.1  
1
1
P1.2  
20  
19  
17  
16  
15  
14  
16  
15  
13  
12  
11  
10  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
GPIO  
P2.0  
P2.1  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
8
7
8
7
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
13  
12  
11  
10  
9
9
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: MSP430FR2422  
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
7-2. Signal Descriptions (continued)  
PIN NUMBER  
PIN  
FUNCTION  
SIGNAL NAME  
UCB0SCL(2)  
DESCRIPTION  
TYPE(1)  
RHL  
19  
PW  
15  
I/O  
I/O  
eUSCI_B0 I2C clock  
eUSCI_B0 I2C data  
UCB0SDA(2)  
20  
16  
I2C  
UCB0SCL(2)  
UCB0SDA(2)  
DVCC  
9
10  
5
I/O  
I/O  
P
eUSCI_B0 I2C clock  
eUSCI_B0 I2C data  
Power supply  
5
Power  
DVSS  
6
6
P
Power ground  
VREF+  
1
1
P
Output of positive reference voltage with ground as reference  
eUSCI_A0 SPI slave transmit enable  
eUSCI_A0 SPI clock input/output  
UCA0STE  
14  
15  
16  
17  
7
10  
11  
12  
13  
7
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
UCA0CLK  
UCA0SOMI(2) (3)  
UCA0SIMO(2) (3)  
UCA0SOMI(2) (3)  
UCA0SIMO(2) (3)  
eUSCI_A0 SPI slave out/master in  
eUSCI_A0 SPI slave in/master out  
eUSCI_A0 SPI slave out/master in  
8
8
eUSCI_A0 SPI slave in/master out  
UCB0STE(2)  
UCB0CLK(2)  
UCB0SOMI(2)  
UCB0SIMO(2)  
2
1
2
1
I/O  
I/O  
I/O  
I/O  
eUSCI_B0 slave transmit enable  
eUSCI_B0 clock input/output  
SPI  
19  
20  
15  
16  
eUSCI_B0 SPI slave out/master in  
eUSCI_B0 SPI slave in/master out  
UCB0STE(2)  
UCB0CLK(2)  
UCB0SOMI(2)  
UCB0SIMO(2)  
NMI  
12  
11  
9
I/O  
I/O  
I/O  
I/O  
I
eUSCI_B0 slave transmit enable  
4
eUSCI_B0 clock input/output  
eUSCI_B0 SPI slave out/master in  
eUSCI_B0 SPI slave in/master out  
Nonmaskable interrupt input  
10  
4
System  
RST  
4
4
I
Active-low reset input  
TA0.1  
17  
16  
15  
13  
12  
11  
I/O  
I/O  
I
Timer TA0 CCR1 capture: CCI1A input, compare: Out1 outputs  
Timer TA0 CCR2 capture: CCI2A input, compare: Out2 outputs  
Timer clock input TACLK for TA0  
TA0.2  
TA0CLK  
Timer_A  
TA1.1  
13  
12  
11  
16  
17  
9
I/O  
I/O  
I
Timer TA1 CCR1 capture: CCI1A input, compare: Out1 outputs  
Timer TA1 CCR2 capture: CCI2A input, compare: Out2 outputs  
Timer clock input TACLK for TA1  
TA1.2  
12  
13  
TA1CLK  
UCA0RXD(2)  
UCA0TXD(2)  
I
eUSCI_A0 UART receive data  
O
eUSCI_A0 UART transmit data  
UART  
UCA0RXD(2)  
UCA0TXD(2)  
Do not connect  
7
8
7
8
I
eUSCI_A0 UART receive data  
O
eUSCI_A0 UART transmit data  
DNC  
18  
14  
Do not connect  
QFN package exposed thermal pad. TI recommends connecting to  
QFN Pad  
QFN thermal pad  
Pad  
VSS  
.
(1) Pin Types: I = Input, O = Output, I/O = Input or Output, P = Power  
(2) These signal assignments are controlled by the USCIARMP bit of the SYSCFG3 register or the USCIBRMP bit of the SYSCFG2  
register. Only one group can be selected at one time.  
(3) Signal assignments on these pins are controlled by the remap functionality and are selected by the USCIARMP bit in the SYSCFG3  
register. Only one group can be selected at one time. The CLK and STE assignments are fixed and shared by both SPI function  
groups.  
(4) Because this pin is multiplexed with the JTAG function, TI recommends disabling the pin interrupt function while in JTAG debug to  
prevent collisions.  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: MSP430FR2422  
 
 
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
7.4 Pin Multiplexing  
Pin multiplexing for this MCU is controlled by both register settings and operating modes (for example, if the  
MCU is in test mode). For details of the settings for each pin and diagrams of the multiplexed ports, see 9.11.  
7.5 Buffer Types  
7-3 defines the pin buffer types that are listed in 7-1  
7-3. Buffer Types  
NOMINAL  
OUTPUT DRIVE  
STRENGTH  
(mA)  
BUFFER TYPE  
(STANDARD)  
NOMINAL  
VOLTAGE  
PU OR PD  
STRENGTH  
(µA)  
OTHER  
CHARACTERISTICS  
HYSTERESIS  
PU OR PD  
LVCMOS  
Analog  
3.0 V  
3.0 V  
Y(1)  
N
Programmable  
N/A  
See 8.12.4  
See 8.12.4  
See analog modules in 8  
for details.  
N/A  
N/A  
SVS enables hysteresis on  
DVCC.  
Power (DVCC)  
Power (AVCC)  
3.0 V  
3.0 V  
N
N
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
(1) Only for input pins.  
7.6 Connection of Unused Pins  
7-4 lists the correct termination of unused pins.  
7-4. Connection of Unused Pins  
PIN(1)  
POTENTIAL  
Open  
COMMENT  
Switched to port function, output direction (PxDIR.n = 1)  
Px.0 to Px.7  
RST/NMI  
TEST  
47-kpullup or internal pullup selected with 10-nF (or 1.1-nF) pulldown(2)  
DVCC  
Open  
This pin always has an internal pull-down enabled.  
(1) Any unused pin with a secondary function that is shared with general-purpose I/O should follow the Px.0 to Px.7 unused pin connection  
guidelines.  
(2) The pulldown capacitor should not exceed 1.1 nF when using MCUs with Spy-Bi-Wire interface in Spy-Bi-Wire mode with TI tools like  
FET interfaces or GANG programmers.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: MSP430FR2422  
 
 
 
 
 
 
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
8 Specifications  
8.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
MAX  
UNIT  
Voltage applied at DVCC pin to VSS  
Voltage applied to any other pin(2)  
4.1  
V
0.3  
VCC + 0.3  
(4.1 V Max)  
V
0.3  
Diode current at any device pin  
±2  
85  
mA  
°C  
Maximum junction temperature, TJ  
(3)  
Storage temperature, Tstg  
125  
°C  
40  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages referenced to VSS  
.
(3) Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow  
temperatures not higher than classified on the device label on the shipping boxes or reels.  
8.2 ESD Ratings  
VALUE  
±1000  
±250  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS001(1)  
Charged-device model (CDM), per JEDEC specification JESD22C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as  
±1000 V may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as  
±250 V may actually have higher performance.  
8.3 Recommended Operating Conditions  
MIN  
NOM  
MAX UNIT  
VCC  
VSS  
TA  
Supply voltage applied at DVCC pin(1) (2) (3) (4)  
Supply voltage applied at DVSS pin  
Operating free-air temperature  
1.8  
3.6  
V
V
0
85  
85  
°C  
°C  
µF  
40  
40  
4.7  
TJ  
Operating junction temperature  
CDVCC  
Recommended capacitor at DVCC(5)  
10  
No FRAM wait states  
(NWAITSx = 0)  
0
0
8
fSYSTEM  
Processor frequency (maximum MCLK frequency)(4) (7)  
MHz  
With FRAM wait states  
(NWAITSx = 1)(6)  
16(8)  
fACLK  
Maximum ACLK frequency  
Maximum SMCLK frequency  
40 kHz  
fSMCLK  
16(8) MHz  
(1) Supply voltage changes faster than 0.2 V/µs can trigger a BOR reset even within the recommended supply voltage range. Following  
the data sheet recommendation for capacitor CDVCC limits the slopes accordingly.  
(2) Modules may have a different supply voltage range specification. See the specification of the respective module in this data sheet.  
(3) TI recommends that power to the DVCC pin must not exceed the limits specified in Recommended Operating Conditions. Exceeding  
the specified limits can cause malfunction of the device including erroneous writes to RAM and FRAM.  
(4) The minimum supply voltage is defined by the SVS levels. See the SVS threshold parameters in 8.12.1.1.  
(5) A capacitor tolerance of ±20% or better is required. A low-ESR ceramic capacitor of 100 nF (minimum) should be placed as close as  
possible (within a few millimeters) to the respective pin pair.  
(6) Wait states only occur on actual FRAM accesses (that is, on FRAM cache misses). RAM and peripheral accesses are always executed  
without wait states.  
(7) Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet.  
(8) If clock sources such as HF crystals or the DCO with frequencies >16 MHz are used, the clock must be divided in the clock system to  
comply with this operating condition.  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: MSP430FR2422  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
8.4 Active Mode Supply Current Into VCC Excluding External Current  
See (1)  
FREQUENCY (fMCLK = fSMCLK  
)
1 MHz  
0 WAIT STATES  
(NWAITSx = 0)  
8 MHz  
0 WAIT STATES  
(NWAITSx = 0)  
16 MHz  
1 WAIT STATE  
(NWAITSx = 1)  
EXECUTION  
MEMORY  
TEST  
CONDITION  
PARAMETER  
UNIT  
TYP  
454  
471  
191  
MAX  
TYP  
2620  
2700  
573  
MAX  
TYP  
2935  
2980  
950  
MAX  
3 V, 25°C  
3 V, 85°C  
3 V, 25°C  
FRAM  
0% cache hit ratio  
IAM, FRAM(0%)  
µA  
3250  
1200  
FRAM  
100% cache hit  
ratio  
IAM, FRAM(100%)  
µA  
µA  
3 V, 85°C  
3 V, 25°C  
199  
216  
592  
772  
974  
(2)  
IAM, RAM  
RAM  
1300  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. Characterized with program executing typical data  
processing.  
fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO at specified frequency  
Program and data entirely reside in FRAM. All execution is from FRAM.  
(2) Program and data reside entirely in RAM. All execution is from RAM. No access to FRAM.  
8.5 Active Mode Supply Current Per MHz  
VCC = 3 V, TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TYP  
UNIT  
Active mode current consumption per MHz,  
execution from FRAM, no wait states  
[IAM (75% cache hit rate) at 8 MHz –  
IAM (75% cache hit rate) at 1 MHz) / 7 MHz  
dIAM,FRAM/df  
120  
µA/MHz  
8.6 Low-Power Mode (LPM0) Supply Currents Into VCC Excluding External Current  
VCC = 3 V, TA = 25°C (unless otherwise noted)(1) (2)  
FREQUENCY (fSMCLK  
)
PARAMETER  
VCC  
1 MHz  
TYP  
8 MHz  
16 MHz  
TYP MAX  
UNIT  
MAX  
TYP  
292  
300  
MAX  
2 V  
3 V  
145  
155  
395  
ILPM0  
µA  
394  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) Current for watchdog timer clocked by SMCLK included.  
fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK at specified frequency.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: MSP430FR2422  
 
 
 
 
 
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
8.7 Low-Power Mode (LPM3, LPM4) Supply Currents (Into VCC) Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1)  
25°C  
85°C  
40°C  
TYP MAX  
PARAMETER  
VCC  
UNIT  
TYP  
MAX  
TYP  
MAX  
3 V  
2 V  
3 V  
2 V  
3 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
0.96  
0.93  
0.77  
0.75  
0.90  
0.51  
0.49  
0.35  
0.34  
0.43  
0.42  
0.80  
0.79  
1.11  
1.08  
0.92  
0.90  
1.05  
0.64  
0.61  
0.48  
0.46  
0.56  
0.55  
0.96  
0.94  
2.75  
2.78  
2.66  
2.60  
2.77  
2.30  
2.25  
2.13  
2.10  
2.21  
2.19  
2.68  
2.64  
6.2  
Low-power mode 3, 12.5-pF crystal, includes  
SVS(2) (3) (4)  
ILPM3,XT1  
µA  
6.0  
ILPM3,VLO  
ILPM3, RTC  
ILPM4, SVS  
Low-power mode 3, VLO, excludes SVS(5)  
Low-power mode 3, RTC, excludes SVS(9)  
Low-power mode 4, includes SVS(6)  
µA  
µA  
µA  
ILPM4  
Low-power mode 4, excludes SVS(6)  
µA  
µA  
µA  
Low-power mode 4, RTC is soured from VLO,  
excludes SVS(7)  
ILPM4,VLO  
Low-power mode 4, RTC is soured from XT1,  
excludes SVS(8)  
ILPM4,XT1  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) Not applicable for MCUs with HF crystal oscillator only.  
(3) Characterized with a Seiko Crystal SC-32S crystal with a load capacitance chosen to closely match the required load.  
(4) Low-power mode 3, 12.5-pF crystal, includes SVS test conditions:  
Current for watchdog timer clocked by ACLK and RTC clocked by XT1 included. Current for brownout and SVS included (SVSHE = 1).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3),  
fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
(5) Low-power mode 3, VLO, excludes SVS test conditions:  
Current for watchdog timer clocked by VLO included. RTC disabled. Current for brownout included. SVS disabled (SVSHE = 0).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3)  
fXT1 = 32768 Hz, fACLK = fMCLK = fSMCLK = 0 MHz  
(6) Low-power mode 4, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPM4), CPU and all clocks are disabled, WDT and RTC  
disabled  
(7) Low-power mode 4, VLO, excludes SVS test conditions:  
Current for RTC clocked by VLO included. Current for brownout included. SVS disabled (SVSHE = 0).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPM4)  
fXT1 = 0 Hz, fMCLK = fSMCLK = 0 MHz  
(8) Low-power mode 4, XT1, excludes SVS test conditions:  
Current for RTC clocked by XT1 included. Current for brownout included. SVS disabled (SVSHE = 0).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPM4)  
fXT1 = 32768 Hz, fMCLK = fSMCLK = 0 MHz  
(9) RTC periodically wakes up every second with external 32768-Hz input as source.  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: MSP430FR2422  
 
 
 
 
 
 
 
 
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
8.8 Low-Power Mode (LPMx.5) Supply Currents (Into VCC) Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
25°C  
85°C  
TYP  
40°C  
TYP MAX  
PARAMETER  
VCC  
UNIT  
TYP  
MAX  
MAX  
Low-power mode 3.5, 12.5-pF crystal, includes  
SVS(1) (2) (3)  
(also see 8-3)  
3 V  
2 V  
0.57  
0.54  
0.63  
0.60  
0.81  
0.79  
1.54  
ILPM3.5, XT1  
µA  
3 V  
2 V  
3 V  
2 V  
0.23  
0.21  
0.25  
0.23  
0.31  
0.29  
0.45  
0.15  
ILPM4.5, SVS  
Low-power mode 4.5, includes SVS(4)  
Low-power mode 4.5, excludes SVS(5)  
µA  
µA  
0.027  
0.022  
0.036  
0.031  
0.080  
0.073  
ILPM4.5  
(1) Not applicable for MCUs with HF crystal oscillator only.  
(2) Characterized with a Seiko Crystal SC-32S crystal with a load capacitance chosen to closely match the required load.  
(3) Low-power mode 3.5, 12.5-pF crystal, includes SVS test conditions:  
Current for RTC clocked by XT1 included. Current for brownout and SVS included (SVSHE = 1). Core regulator disabled.  
PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),  
fXT1 = 32768 Hz, fACLK = 0, fMCLK = fSMCLK = 0 MHz  
(4) Low-power mode 4.5, includes SVS test conditions:  
Current for brownout and SVS included (SVSHE = 1). Core regulator disabled.  
PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5)  
fXT1 = 0 Hz, fACLK = fMCLK = fSMCLK = 0 MHz  
(5) Low-power mode 4.5, excludes SVS test conditions:  
Current for brownout included. SVS disabled (SVSHE = 0). Core regulator disabled.  
PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5)  
fXT1 = 0 Hz, fACLK = fMCLK = fSMCLK = 0 MHz  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: MSP430FR2422  
 
 
 
 
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
8.9 Typical Characteristics - Low-Power Mode Supply Currents  
VCC = 3 V  
RTC enabled  
SVS disabled  
VCC = 3 V  
RTC enabled  
SVS disabled  
8-1. LPM3 Supply Current vs Temperature  
8-2. LPM4 Supply Current vs Temperature  
VCC = 3 V  
SVS enabled  
VCC = 3 V  
XT1 enabled  
SVS enabled  
8-4. LPM4.5 Supply Current vs Temperature  
8-3. LPM3.5 Supply Current vs Temperature  
8.10 Typical Characteristics Current Consumption Per Module  
MODULE  
TEST CONDITIONS  
REFERENCE CLOCK  
MIN  
TYP  
5
MAX  
UNIT  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
nA  
Timer_A  
Module input clock  
eUSCI_A  
eUSCI_A  
eUSCI_B  
eUSCI_B  
RTC  
UART mode  
Module input clock  
Module input clock  
Module input clock  
Module input clock  
32 kHz  
7
SPI mode  
5
SPI mode  
5
I2C mode, 100 kbaud  
5
85  
8.5  
CRC  
From start to end of operation  
MCLK  
µA/MHz  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: MSP430FR2422  
 
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
8.11 Thermal Resistance Characteristics  
THERMAL METRIC(1)  
VALUE(2)  
37.8  
UNIT  
VQFN 20 pin (RHL)  
TSSOP 16 pin (PW16)  
VQFN 20 pin (RHL)  
TSSOP 16 pin (PW16)  
VQFN 20 pin (RHL)  
TSSOP 16 pin (PW16)  
Junction-to-ambient thermal resistance, still air  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
RθJA  
RθJC  
RθJB  
101.7  
34.1  
°C/W  
°C/W  
33.7  
15.3  
47.5  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
(2) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC (RθJC) value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment and application. For more information, see these EIA/JEDEC  
standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
8.12 Timing and Switching Characteristics  
8.12.1 Power Supply Sequencing  
8.12.1.1 lists the characteristics of the SVS and BOR.  
8.12.1.1 PMM, SVS and BOR  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Safe BOR power-down level(1)  
Safe BOR reset delay(2)  
TEST CONDITIONS  
MIN  
0.1  
10  
TYP  
MAX UNIT  
VBOR, safe  
tBOR, safe  
ISVSH,AM  
ISVSH,LPM  
VSVSH-  
V
ms  
SVSH current consumption, active mode  
SVSH current consumption, low-power modes  
SVSH power-down level(3)  
VCC = 3.6 V  
VCC = 3.6 V  
1.5  
µA  
nA  
V
240  
1.80  
1.88  
80  
1.71  
1.76  
1.87  
1.99  
VSVSH+  
SVSH power-up level(3)  
V
VSVSH_hys SVSH hysteresis  
mV  
µs  
tPD,SVSH, AM SVSH propagation delay, active mode  
10  
tPD,SVSH,  
SVSH propagation delay, low-power modes  
100  
µs  
LPM  
(1) A safe BOR can be correctly generated only if DVCC drops below this voltage before it rises.  
(2) When an BOR occurs, a safe BOR can be correctly generated only if DVCC is kept low longer than this period before it reaches  
VSVSH+  
.
(3) For additional information, see the Dynamic Voltage Scaling Power Solution for MSP430 Devices With Single-Channel LDO Reference  
Design.  
V
Power Cycle Reset  
VSVS+  
SVS Reset  
BOR Reset  
VSVS–  
VBOR  
tBOR  
t
8-5. Power Cycle, SVS, and BOR Reset Conditions  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: MSP430FR2422  
 
 
 
 
 
 
 
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
8.12.2 Reset Timing  
8.12.2.1 lists the timing characteristics of wakeup from LPMs and reset.  
8.12.2.1 Wake-up Times From Low-Power Modes and Reset  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
TEST  
CONDITIONS  
PARAMETER  
VCC  
3 V  
3 V  
MIN  
TYP  
MAX UNIT  
Additional wake-up time to activate the FRAM in  
AM if previously disabled by the FRAM controller or  
from a LPM if immediate activation is selected for  
wakeup(1)  
tWAKE-UP FRAM  
10  
µs  
200 +  
ns  
tWAKE-UP LPM0  
Wake-up time from LPM0 to active mode (1)  
2.5 / fDCO  
tWAKE-UP LPM3  
tWAKE-UP LPM4  
Wake-up time from LPM3 to active mode (2)  
Wake-up time from LPM4 to active mode  
3 V  
3 V  
3 V  
10  
10  
µs  
µs  
µs  
µs  
ms  
tWAKE-UP LPM3.5 Wake-up time from LPM3.5 to active mode (2)  
350  
350  
1
SVSHE = 1  
SVSHE = 0  
tWAKE-UP LPM4.5 Wake-up time from LPM4.5 to active mode (2)  
3 V  
Wake-up time from RST or BOR event to active  
tWAKE-UP-RESET  
tRESET  
3 V  
3 V  
1
ms  
µs  
mode (2)  
Pulse duration required at RST/NMI pin to accept a  
reset  
2
(1) The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) to the first  
externally observable MCLK clock edge.  
(2) The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) until the first  
instruction of the user program is executed.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: MSP430FR2422  
 
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
8.12.3 Clock Specifications  
8.12.3.1 lists the characteristics of the LF XT1.  
8.12.3.1 XT1 Crystal Oscillator (Low Frequency)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (2)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
XT1 oscillator crystal, low  
frequency  
fXT1, LF  
LFXTBYPASS = 0  
32768  
Hz  
Measured at MCLK,  
fLFXT = 32768 Hz  
DCXT1, LF  
fXT1,SW  
DCXT1, SW  
OALFXT  
CL,eff  
XT1 oscillator LF duty cycle  
30%  
70%  
kHz  
60%  
kΩ  
XT1 oscillator logic-level square-  
wave input frequency  
LFXTBYPASS = 1 (3) (4)  
32.768  
LFXT oscillator logic-level  
square-wave input duty cycle  
LFXTBYPASS = 1  
40%  
Oscillation allowance for  
LF crystals (5)  
LFXTBYPASS = 0, LFXTDRIVE = {3},  
fLFXT = 32768 Hz, CL,eff = 12.5 pF  
200  
1
Integrated effective load  
capacitance(6)  
See (7)  
pF  
fOSC = 32768 Hz,  
LFXTBYPASS = 0, LFXTDRIVE = {3},  
TA = 25°C, CL,eff = 12.5 pF  
tSTART,LFXT Start-up time (9)  
fFault,LFXT  
Oscillator fault frequency (10)  
1000  
ms  
XTS = 0(8)  
0
3500  
Hz  
(1) To improve EMI on the LFXT oscillator, observe the following guidelines:  
Keep the trace between the device and the crystal as short as possible.  
Design a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.  
Use assembly materials and processes that avoid any parasitic load on the oscillator XIN and XOUT pins.  
If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins.  
(2) See MSP430 32-kHz Crystal Oscillators for details on crystal section, layout, and testing.  
(3) When LFXTBYPASS is set, LFXT circuits are automatically powered down. Input signal is a digital square wave with parametrics  
defined in the Schmitt-trigger inputs section of this data sheet. Duty cycle requirements are defined by DCLFXT, SW  
(4) Maximum frequency of operation of the entire device cannot be exceeded.  
.
(5) Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the  
LFXTDRIVE settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following  
guidelines, but should be evaluated based on the actual crystal selected for the application:  
For LFXTDRIVE = {0}, CL,eff = 3.7 pF  
For LFXTDRIVE = {1}, 6 pF CL,eff 9 pF  
For LFXTDRIVE = {2}, 6 pF CL,eff 10 pF  
For LFXTDRIVE = {3}, 6 pF CL,eff 12 pF  
(6) Includes parasitic bond and package capacitance (approximately 2 pF per pin).  
(7) Requires external capacitors at both terminals to meet the effective load capacitance specified by crystal manufacturers.  
Recommended effective load capacitance values supported are 3.7 pF, 6 pF, 9 pF, and 12.5 pF. Maximum shunt capacitance of 1.6 pF.  
The PCB adds additional capacitance, so it must also be considered in the overall capacitance. Verify that the recommended effective  
load capacitance of the selected crystal is met.  
(8) Measured with logic-level input frequency but also applies to operation with crystals.  
(9) Includes start-up counter of 1024 clock cycles.  
(10) Frequencies above the MAX specification do not set the fault flag. Frequencies between the MIN and MAX specifications might set the  
flag. A static condition or stuck at fault condition sets the flag.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: MSP430FR2422  
 
 
 
 
 
 
 
 
 
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
8.12.3.2 DCO FLL, Frequency  
over recommended operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
3 V  
3 V  
MIN  
1.0%  
2.0%  
TYP  
MAX UNIT  
1.0%  
FLL lock frequency, 16 MHz, 25°C  
FLL lock frequency, 16 MHz, 40°C to 85°C  
Measured at MCLK, Internal  
trimmed REFO as reference  
2.0%  
fDCO, FLL  
Measured at MCLK, XT1  
crystal as reference  
3 V  
0.5%  
60%  
FLL lock frequency, 16 MHz, 40°C to 85°C  
0.5%  
fDUTY  
Duty cycle  
3 V  
3 V  
3 V  
3 V  
40%  
50%  
0.25%  
0.022%  
280  
Jittercc  
Jitterlong  
tFLL, lock  
Cycle-to-cycle jitter, 16 MHz  
Long term jitter, 16 MHz  
FLL lock time, 16MHz  
Measured at MCLK, XT1  
crystal as reference  
ms  
8.12.3.3 lists the characteristics of the DCO.  
8.12.3.3 DCO Frequency  
over recommended operating free-air temperature (unless otherwise noted) (see 8-6)  
PARAMETER  
TEST CONDITIONS  
VCC  
TYP  
UNIT  
DCORSEL = 101b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 000b, DCO = 0  
7.1  
11.8  
17  
DCORSEL = 101b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 000b, DCO = 511  
fDCO, 16MHz  
fDCO, 12MHz  
fDCO, 8MHz  
fDCO, 4MHz  
DCO frequency, 16 MHz  
3 V  
3 V  
3 V  
3 V  
MHz  
DCORSEL = 101b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 111b, DCO = 0  
DCORSEL = 101b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 111b, DCO = 511  
27.7  
5.5  
DCORSEL = 100b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 000b, DCO = 0  
DCORSEL = 100b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 000b, DCO = 511  
9.1  
DCO frequency, 12 MHz  
DCO frequency, 8 MHz  
DCO frequency, 4 MHz  
MHz  
MHz  
MHz  
DCORSEL = 100b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 111b, DCO = 0  
13.1  
21.5  
3.7  
DCORSEL = 100b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 111b, DCO = 511  
DCORSEL = 011b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 000b, DCO = 0  
DCORSEL = 011b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 000b, DCO = 511  
6.3  
DCORSEL = 011b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 111b, DCO = 0  
9.0  
DCORSEL = 011b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 111b, DCO = 511  
14.9  
1.9  
DCORSEL = 010b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 000b, DCO = 0  
DCORSEL = 010b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 000b, DCO = 511  
3.2  
DCORSEL = 010b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 111b, DCO = 0  
4.6  
DCORSEL = 010b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 111b, DCO = 511  
7.8  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: MSP430FR2422  
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
over recommended operating free-air temperature (unless otherwise noted) (see 8-6)  
PARAMETER  
TEST CONDITIONS  
VCC  
TYP  
UNIT  
DCORSEL = 001b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 000b, DCO = 0  
0.96  
DCORSEL = 001b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 000b, DCO = 511  
1.6  
2.3  
fDCO, 2MHz  
DCO frequency, 2 MHz  
3 V  
MHz  
DCORSEL = 001b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 111b, DCO = 0  
DCORSEL = 001b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 111b, DCO = 511  
4.0  
DCORSEL = 000b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 000b, DCO = 0  
0.5  
DCORSEL = 000b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 000b, DCO = 511  
0.85  
1.2  
fDCO, 1MHz  
DCO frequency, 1 MHz  
3 V  
MHz  
DCORSEL = 000b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 111b, DCO = 0  
DCORSEL = 000b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 111b, DCO = 511  
2.0  
30  
25  
20  
15  
10  
5
DCOFTRIM = 7  
DCOFTRIM = 7  
DCOFTRIM = 7  
DCOFTRIM = 7  
DCOFTRIM = 7  
DCOFTRIM = 0  
DCOFTRIM = 0  
DCOFTRIM = 0  
DCOFTRIM = 7  
DCOFTRIM = 0  
DCOFTRIM = 0  
DCOFTRIM = 0  
0
DCO  
0
511  
0
511  
0
511  
0
511  
0
511  
0
511  
DCORSEL  
0
1
2
3
4
5
VCC = 3 V  
TA = 40°C to 85°C  
8-6. Typical DCO Frequency  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: MSP430FR2422  
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
8.12.3.4 lists the characteristics of the REFO.  
8.12.3.4 REFO  
over recommended operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
3 V  
MIN  
TYP  
15  
MAX UNIT  
IREFO  
REFO oscillator current consumption  
REFO calibrated frequency  
TA = 25°C  
µA  
Hz  
Measured at MCLK  
40°C to 85°C  
3 V  
32768  
fREFO  
REFO absolute calibrated tolerance  
REFO frequency temperature drift  
1.8 V to 3.6 V  
3 V  
+3.5%  
%/°C  
3.5%  
dfREFO/dT  
Measured at MCLK(1)  
0.01  
1
dfREFO  
dVCC  
/
REFO frequency supply voltage drift  
Measured at MCLK at 25°C(2)  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
%/V  
fDC  
REFO duty cycle  
Measured at MCLK  
40%  
50%  
50  
60%  
µs  
tSTART  
REFO start-up time  
40% to 60% duty cycle  
(1) Calculated using the box method: (MAX(40°C to 85°C) MIN(40°C to 85°C)) / MIN(40°C to 85°C) / (85°C (40°C))  
(2) Calculated using the box method: (MAX(1.8 V to 3.6 V) MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V 1.8 V)  
8.12.3.5 lists the characteristics of the VLO.  
8.12.3.5 Internal Very-Low-Power Low-Frequency Oscillator (VLO)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
VLO frequency  
VLO frequency temperature drift  
TEST CONDITIONS  
VCC  
TYP UNIT  
10 kHz  
0.5 %/°C  
fVLO  
Measured at MCLK  
3 V  
dfVLO/dT  
Measured at MCLK(1)  
Measured at MCLK(2)  
Measured at MCLK  
3 V  
dfVLO/dVCC VLO frequency supply voltage drift  
fVLO,DC Duty cycle  
1.8 V to 3.6 V  
3 V  
4
%/V  
50%  
(1) Calculated using the box method: (MAX(40°C to 85°C) MIN(40°C to 85°C)) / MIN(40°C to 85°C) / (85°C (40°C))  
(2) Calculated using the box method: (MAX(1.8 V to 3.6 V) MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V 1.8 V)  
Note  
The VLO clock frequency is reduced by 15% (typical) when the device switches from active mode to  
LPM3 or LPM4, because the reference changes. This lower frequency is not a violation of the VLO  
specifications (see 8.12.3.5).  
8.12.3.6 lists the characteristics of the MODOSC.  
8.12.3.6 Module Oscillator (MODOSC)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
4.8  
MAX UNIT  
5.8 MHz  
%/℃  
fMODOSC  
MODOSC frequency  
3 V  
3.8  
fMODOSC/dT  
MODOSC frequency temperature drift  
3 V  
0.102  
1.02  
50%  
fMODOSC/dVCC MODOSC frequency supply voltage drift  
fMODOSC,DC Duty cycle  
1.8 V to 3.6 V  
3 V  
%/V  
40%  
60%  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: MSP430FR2422  
 
 
 
 
 
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
8.12.4 Digital I/Os  
8.12.4.1 lists the characteristics of the digital inputs.  
8.12.4.1 Digital Inputs  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
MIN  
0.90  
1.35  
0.50  
0.75  
0.3  
TYP  
MAX UNIT  
1.50  
V
2.25  
VIT+  
VIT–  
Vhys  
Positive-going input threshold voltage  
1.10  
V
1.65  
Negative-going input threshold voltage  
0.8  
V
1.2  
Input voltage hysteresis (VIT+ VIT–  
)
0.4  
For pullup: VIN = VSS  
For pulldown: VIN = VCC  
RPull  
Pullup or pulldown resistor  
20  
35  
3
50  
20  
kΩ  
pF  
pF  
nA  
CI,dig  
Input capacitance, digital only port pins  
VIN = VSS or VCC  
VIN = VSS or VCC  
Input capacitance, port pins with shared analog  
functions  
CI,ana  
Ilkg(Px.y)  
5
High-impedance leakage current of GPIO pins See (1) (2)  
Ports with interrupt capability  
External interrupt timing (external trigger pulse (see block diagram and  
2 V, 3 V  
2 V, 3 V  
20  
t(int)  
50  
ns  
duration to set interrupt flag)(3)  
terminal function  
descriptions)  
(1) The leakage current is measured with VSS or VCC applied to the corresponding pins, unless otherwise noted.  
(2) The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is  
disabled.  
(3) An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It may be set by trigger signals  
shorter than t(int)  
.
8.12.4.2 lists the characteristics of the digital outputs.  
8.12.4.2 Digital Outputs  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
I(OHmax) = 3 mA(1)  
I(OHmax) = 5 mA(1)  
I(OLmax) = 3 mA(1)  
VCC  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
MIN  
1.4  
2.4  
0.0  
0.0  
16  
TYP  
MAX UNIT  
2.0  
V
3.0  
VOH  
High-level output voltage  
0.60  
V
0.60  
VOL  
Low-level output voltage  
I(OHmax) = 5 mA(1)  
fPort_CLK  
trise,dig  
tfall,dig  
Clock output frequency  
CL = 20 pF(2)  
CL = 20 pF  
CL = 20 pF  
MHz  
ns  
16  
10  
7
Port output rise time, digital only port pins  
Port output fall time, digital only port pins  
10  
5
ns  
(1) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage  
drop specified.  
(2) The port can output frequencies at least up to the specified limit and might support higher frequencies.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: MSP430FR2422  
 
 
 
 
 
 
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
8.12.4.3 Typical Characteristics Outputs at 3 V and 2 V  
DVCC = 3 V  
DVCC = 2 V  
8-7. Typical Low-Level Output Current vs Low-Level Output  
8-8. Typical Low-Level Output Current vs Low-Level Output  
Voltage  
Voltage  
DVCC = 3 V  
DVCC = 2 V  
8-9. Typical High-Level Output Current vs High-Level Output  
8-10. Typical High-Level Output Current vs High-Level  
Voltage  
Output Voltage  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: MSP430FR2422  
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
8.12.5 VREF+ Built-in Reference  
8.12.5.1 lists the characteristics of the VREF+.  
8.12.5.1 VREF+  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
VREF+  
Positive built-in reference voltage  
EXTREFEN = 1 with 1-mA load current  
2 V, 3 V  
1.15  
1.19  
1.23  
V
Temperature coefficient of built-in  
reference voltage  
TCREF+  
30  
µV/°C  
8.12.6 Timer_A  
8.12.6.1 lists the characteristics of Timer_A.  
8.12.6.1 Timer_A  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, ACLK  
fTA  
Timer_A input clock frequency  
External: TACLK  
2 V, 3 V  
16 MHz  
Duty cycle = 50% ±10%  
All capture inputs, minimum pulse  
duration required for capture  
tTA,cap  
Timer_A capture timing  
2 V, 3 V  
20  
ns  
tTIMR  
Timer Clock  
CCR0-1  
0h  
1h  
CCR0  
CCR0-1  
0h  
CCR0  
tVALID,PWM  
Timer  
TAx.1  
tHD,PWM  
8-11. Timer PWM Mode  
Capture  
tTIMR  
Timer Clock  
tSU,CCIA  
t,HD,CCIA  
TAx.CCIA  
8-12. Timer Capture Mode  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: MSP430FR2422  
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
8.12.7 eUSCI  
8.12.7.1 lists the supported frequencies of the eUSCI in UART mode.  
8.12.7.1 eUSCI (UART Mode) Clock Frequency  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
Internal: SMCLK, MODCLK  
External: UCLK  
feUSCI  
eUSCI input clock frequency  
2 V, 3 V  
16 MHz  
Duty cycle = 50% ±10%  
BITCLK clock frequency  
(equals baud rate in Mbaud)  
fBITCLK  
2 V, 3 V  
5
MHz  
8.12.7.2 lists the characteristics of the eUSCI in UART mode.  
8.12.7.2 eUSCI (UART Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
TYP UNIT  
UCGLITx = 0  
12  
UCGLITx = 1  
UCGLITx = 2  
UCGLITx = 3  
40  
ns  
68  
tt  
UART receive deglitch time (1)  
2 V, 3 V  
110  
(1) Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are  
correctly recognized, their duration should exceed the maximum specification of the deglitch time.  
8.12.7.3 lists the supported frequencies of the eUSCI in SPI master mode.  
8.12.7.3 eUSCI (SPI Master Mode) Clock Frequency  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
MHz  
Internal: SMCLK, MODCLK  
Duty cycle = 50% ±10%  
feUSCI eUSCI input clock frequency  
8
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: MSP430FR2422  
 
 
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
8.12.7.4 lists the characteristics of the eUSCI in SPI master mode.  
8.12.7.4 eUSCI (SPI Master Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX  
UNIT  
UCSTEM = 0, UCMODEx = 01 or 10  
UCSTEM = 1, UCMODEx = 01 or 10  
UCSTEM = 0, UCMODEx = 01 or 10  
UCSTEM = 1, UCMODEx = 01 or 10  
UCxCLK  
cycles  
tSTE,LEAD STE lead time, STE active to clock  
1
UCxCLK  
cycles  
tSTE,LAG STE lag time, last clock to STE inactive  
1
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
48  
37  
0
tSU,MI  
SOMI input data setup time  
SOMI input data hold time  
ns  
ns  
ns  
ns  
tHD,MI  
0
20  
20  
UCLK edge to SIMO valid,  
CL = 20 pF  
tVALID,MO SIMO output data valid time(2)  
-6  
-5  
tHD,MO  
SIMO output data hold time(3)  
CL = 20 pF  
(1) fUCxCLK = 1/2tLO/HI with tLO/HI = max(tVALID,MO(eUSCI) + tSU,SI(Slave), tSU,MI(eUSCI) + tVALID,SO(Slave)  
)
For the slave parameters tSU,SI(Slave) and tVALID,SO(Slave), see the SPI parameters of the attached slave.  
(2) Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams  
in 8-13 and 8-14.  
(3) Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data  
on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in 8-13  
and 8-14.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: MSP430FR2422  
 
 
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
UCMODEx = 01  
STE  
tSTE,LEAD  
tSTE,LAG  
UCMODEx = 10  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tLOW/HIGH  
tLOW/HIGH  
tSU,MI  
tHD,MI  
SOMI  
SIMO  
tHD,MO  
tVALID,MO  
tSTE,ACC  
tSTE,DIS  
8-13. SPI Master Mode, CKPH = 0  
UCMODEx = 01  
STE  
UCMODEx = 10  
tSTE,LEAD  
tSTE,LAG  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tLOW/HIGH  
tLOW/HIGH  
tHD,MI  
tSU,MI  
SOMI  
SIMO  
tHD,MO  
tVALID,MO  
tSTE,DIS  
tSTE,ACC  
8-14. SPI Master Mode, CKPH = 1  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: MSP430FR2422  
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
8.12.7.5 lists the characteristics of the eUSCI in SPI slave mode.  
8.12.7.5 eUSCI (SPI Slave Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
MIN  
MAX UNIT  
55  
tSTE,LEAD STE lead time, STE active to clock  
ns  
45  
20  
tSTE,LAG  
tSTE,ACC  
tSTE,DIS  
tSU,SI  
STE lag time, Last clock to STE inactive  
STE access time, STE active to SOMI data out  
STE disable time, STE inactive to SOMI high impedance  
SIMO input data setup time  
ns  
20  
65  
ns  
40  
40  
ns  
35  
8
6
ns  
ns  
12  
12  
tHD,SI  
SIMO input data hold time  
68  
ns  
42  
UCLK edge to SOMI valid,  
CL = 20 pF  
tVALID,SO SOMI output data valid time(2)  
5
5
tHD,SO  
SOMI output data hold time (3)  
CL = 20 pF  
ns  
(1) fUCxCLK = 1/2tLO/HI with tLO/HI max(tVALID,MO(Master) + tSU,SI(eUSCI), tSU,MI(Master) + tVALID,SO(eUSCI)  
)
For the master parameters tSU,MI(Master) and tVALID,MO(Master), see the SPI parameters of the attached master.  
(2) Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams  
in 8-15 and 8-16.  
(3) Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in 8-15  
and 8-16.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: MSP430FR2422  
 
 
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
UCMODEx = 01  
STE  
tSTE,LEAD  
tSTE,LAG  
UCMODEx = 10  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tSU,SI  
tLOW/HIGH  
tLOW/HIGH  
tHD,SI  
SIMO  
SOMI  
tHD,SO  
tVALID,SO  
tSTE,ACC  
tSTE,DIS  
8-15. SPI Slave Mode, CKPH = 0  
UCMODEx = 01  
tSTE,LEAD  
tSTE,LAG  
STE  
UCMODEx = 10  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tLOW/HIGH  
tLOW/HIGH  
tHD,SI  
tSU,SI  
SIMO  
tHD,SO  
tVALID,SO  
tSTE,ACC  
tSTE,DIS  
SOMI  
8-16. SPI Slave Mode, CKPH = 1  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: MSP430FR2422  
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
8.12.7.6 lists the characteristics of the eUSCI in I2C mode.  
8.12.7.6 eUSCI (I2C Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see 8-17)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, MODCLK  
External: UCLK  
feUSCI  
eUSCI input clock frequency  
16 MHz  
Duty cycle = 50% ±10%  
fSCL  
SCL clock frequency  
2 V, 3 V  
2 V, 3 V  
0
4.0  
0.6  
4.7  
0.6  
0
400 kHz  
µs  
fSCL = 100 kHz  
fSCL > 100 kHz  
fSCL = 100 kHz  
fSCL > 100 kHz  
tHD,STA  
Hold time (repeated) START  
tSU,STA  
Setup time for a repeated START  
2 V, 3 V  
µs  
tHD,DAT  
tSU,DAT  
Data hold time  
Data setup time  
2 V, 3 V  
2 V, 3 V  
ns  
ns  
250  
4.0  
0.6  
50  
fSCL = 100 kHz  
fSCL > 100 kHz  
UCGLITx = 0  
UCGLITx = 1  
UCGLITx = 2  
UCGLITx = 3  
UCCLTOx = 1  
UCCLTOx = 2  
UCCLTOx = 3  
tSU,STO  
Setup time for STOP  
2 V, 3 V  
µs  
600  
25  
300  
ns  
150  
Pulse duration of spikes suppressed by  
input filter  
tSP  
2 V, 3 V  
12.5  
6.3  
75  
27  
30  
33  
tTIMEOUT Clock low time-out  
2 V, 3 V  
ms  
tHD,STA  
tSU,STA  
tHD,STA  
tBUF  
SDA  
SCL  
tLOW  
tHIGH  
tSP  
tSU,DAT  
tSU,STO  
tHD,DAT  
8-17. I2C Mode Timing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: MSP430FR2422  
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
8.12.8 ADC  
8.12.8.1 lists the characteristics of the ADC power supply and input range conditions.  
8.12.8.1 ADC, Power Supply and Input Range Conditions  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
2.0  
0
TYP  
MAX UNIT  
DVCC  
V(Ax)  
ADC supply voltage  
Analog input voltage range  
3.6  
V
V
All ADC pins  
DVCC  
Operating supply current into  
DVCC terminal, reference  
current not included, repeat-  
single-channel mode  
2 V  
3 V  
185  
207  
fADCCLK = 5 MHz, ADCON = 1,  
REFON = 0, SHT0 = 0, SHT1 = 0,  
ADCDIV = 0, ADCCONSEQx = 10b  
IADC  
µA  
Only one terminal Ax can be selected at one  
time from the pad to the ADC capacitor array,  
including wiring and pad  
CI  
RI  
Input capacitance  
2.2 V  
2.5  
3.5  
36  
pF  
Input MUX ON resistance  
DVCC = 2 V, 0 V VAx DVCC  
kΩ  
8.12.8.2 lists the ADC 10-bit timing parameters.  
8.12.8.2 ADC, 10-Bit Timing Parameters  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
For specified performance of ADC linearity  
parameters  
2 V to  
3.6 V  
fADCCLK  
fADCOSC  
0.45  
5
5.5 MHz  
Internal ADC oscillator  
(MODOSC)  
2 V to  
3.6 V  
ADCDIV = 0, fADCCLK = fADCOSC  
3.8  
4.8  
5.8 MHz  
REFON = 0, Internal oscillator,  
10 ADCCLK cycles, 10-bit mode,  
fADCOSC = 4.5 MHz to 5.5 MHz  
2 V to  
3.6 V  
2.18  
2.67  
µs  
tCONVERT  
Conversion time  
External fADCCLK from ACLK, MCLK, or SMCLK,  
ADCSSEL 0  
2 V to  
3.6 V  
12 ×  
1 / fADCCLK  
The error in a conversion started after tADCON is  
less than ±0.5 LSB.  
Reference and input signal are already settled.  
Turnon settling time of  
the ADC  
tADCON  
100  
ns  
µs  
RS = 1000 Ω, RI = 36000 Ω, CI = 3.5 pF.  
Approximately 8 Tau (t) are required for an error  
of less than ±0.5 LSB.(1)  
tSample  
Sampling time  
3 V  
2.0  
(1) tSample = ln(2n+1) × τ, where n = ADC resolution, τ= (RI + RS) × CI  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: MSP430FR2422  
 
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
8.12.8.3 lists the ADC 10-bit linearity parameters.  
8.12.8.3 ADC, 10-Bit Linearity Parameters  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
2  
TYP  
MAX UNIT  
Integral linearity error (10-bit mode)  
Integral linearity error (8-bit mode)  
Differential linearity error (10-bit mode)  
Differential linearity error (8-bit mode)  
Offset error (10-bit mode)  
2.4 V to 3.6 V  
2.0 V to 3.6 V  
2.4 V to 3.6 V  
2.0 V to 3.6 V  
2.4 V to 3.6 V  
2.0 V to 3.6 V  
2
EI  
Veref+ reference  
Veref+ reference  
Veref+ reference  
LSB  
2
2  
1
1  
ED  
EO  
LSB  
1
1  
6.5  
mV  
6.5  
6.5  
6.5  
2.0  
3.0%  
2.0  
3.0%  
2.0  
3.0%  
2.0  
3.0%  
Offset error (8-bit mode)  
Veref+ as reference  
Internal 1.5-V reference  
Veref+ as reference  
Internal 1.5-V reference  
Veref+ as reference  
Internal 1.5-V reference  
Veref+ as reference  
Internal 1.5-V reference  
2.0 LSB  
3.0%  
Gain error (10-bit mode)  
2.4 V to 3.6 V  
2.0 V to 3.6 V  
2.4 V to 3.6 V  
2.0 V to 3.6 V  
EG  
2.0 LSB  
3.0%  
Gain error (8-bit mode)  
2.0 LSB  
3.0%  
Total unadjusted error (10-bit mode)  
ET  
2.0 LSB  
3.0%  
Total unadjusted error (8-bit mode)  
See (1)  
ADCON = 1, INCH = 0Ch,  
TA = 0℃  
VSENSOR  
3 V  
3 V  
913  
mV  
TCSENSOR See (2)  
ADCON = 1, INCH = 0Ch  
3.35  
mV/℃  
ADCON = 1, INCH = 0Ch, Error  
of conversion result 1 LSB,  
AM and all LPMs above LPM3  
3 V  
3 V  
30  
tSENSOR  
Sample time required if channel 12 is  
selected(3)  
µs  
(sample)  
ADCON = 1, INCH = 0Ch, Error  
of conversion result 1 LSB,  
LPM3  
100  
(1) The temperature sensor offset can vary significantly. TI recommends a single-point calibration to minimize the offset error of the built-in  
temperature sensor.  
(2) The device descriptor structure contains calibration values for 30and 85for each available reference voltage level. The sensor  
voltage can be computed as VSENSE = TCSENSOR × (Temperature, ) + VSENSOR, where TCSENSOR and VSENSOR can be computed  
from the calibration values for higher accuracy.  
(3) The typical equivalent impedance of the sensor is 700 kΩ. The sample time required includes the sensor on time, tSENSOR(on)  
.
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: MSP430FR2422  
 
 
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
8.12.9 FRAM  
8.12.9.1 lists the characteristics of the FRAM.  
8.12.9.1 FRAM  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
1015  
100  
40  
TYP  
MAX  
UNIT  
Read and write endurance  
cycles  
TJ = 25°C  
tRetention  
Data retention duration  
TJ = 70°C  
TJ = 85°C  
years  
10  
(1)  
IWRITE  
IERASE  
tWRITE  
Current to write into FRAM  
Erase current  
IREAD  
nA  
nA  
ns  
N/A(2)  
(3)  
Write time  
tREAD  
(4)  
(4)  
NWAITSx = 0  
NWAITSx = 1  
1 / fSYSTEM  
2 / fSYSTEM  
tREAD  
Read time  
ns  
(1) Writing to FRAM does not require a setup sequence or additional power when compared to reading from FRAM. The FRAM read  
current IREAD is included in the active mode current consumption parameter IAM,FRAM  
.
(2) FRAM does not require a special erase sequence.  
(3) Writing into FRAM is as fast as reading.  
(4) The maximum read (and write) speed is specified by fSYSTEM using the appropriate wait state settings (NWAITSx).  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: MSP430FR2422  
 
 
 
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
8.12.10 Debug and Emulation  
8.12.10.1 lists the characteristics of the 2-wire SBW interface.  
8.12.10.1 JTAG, Spy-Bi-Wire Interface  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see 8-18)  
PARAMETER  
VCC  
MIN  
TYP  
MAX UNIT  
fSBW  
Spy-Bi-Wire input frequency  
2 V, 3 V  
2 V, 3 V  
0
8
MHz  
µs  
tSBW,Low  
Spy-Bi-Wire low clock pulse duration  
0.028  
15  
SBWTDIO setup time (before falling edge of SBWTCK in TMS and  
TDI slot, Spy-Bi-Wire)  
tSU, SBWTDIO  
tHD, SBWTDIO  
tValid, SBWTDIO  
tSBW, En  
2 V, 3 V  
2 V, 3 V  
2 V, 3 V  
2 V, 3 V  
4
ns  
ns  
ns  
µs  
SBWTDIO hold time (after rising edge of SBWTCK in TMS and TDI  
slot, Spy-Bi-Wire)  
19  
SBWTDIO data valid time (after falling edge of SBWTCK in TDO slot,  
Spy-Bi-Wire)  
31  
Spy-Bi-Wire enable time (TEST high to acceptance of first clock  
edge) (1)  
110  
tSBW,Ret  
Rinternal  
Spy-Bi-Wire return to normal operation time(2)  
2 V, 3 V  
2 V, 3 V  
15  
20  
100  
50  
µs  
Internal pulldown resistance on TEST  
35  
kΩ  
(1) Tools that access the Spy-Bi-Wire interface must wait for the tSBW,En time after pulling the TEST/SBWTCK pin high before applying the  
first SBWTCK clock edge.  
(2) Maximum tSBW,Ret time after pulling or releasing the TEST/SBWTCK pin low until the Spy-Bi-Wire pins revert from their Spy-Bi-Wire  
function to their application function. This time applies only if the Spy-Bi-Wire mode is selected.  
tSBW,EN  
tSBW,Low  
1/fSBW  
tSBW,High  
tSBW,Ret  
TEST/SBWTCK  
tEN,SBWTDIO  
tValid,SBWTDIO  
RST/NMI/SBWTDIO  
tSU,SBWTDIO  
tHD,SBWTDIO  
8-18. JTAG Spy-Bi-Wire Timing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: MSP430FR2422  
 
 
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
8.12.10.2 lists the characteristics of the 4-wire JTAG interface.  
8.12.10.2 JTAG, 4-Wire Interface  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see 8-19)  
PARAMETER  
VCC  
MIN  
TYP  
MAX UNIT  
fTCK  
TCK input frequency(1)  
2 V, 3 V  
2 V, 3 V  
2 V, 3 V  
2 V, 3 V  
2 V, 3 V  
2 V, 3 V  
2 V, 3 V  
2 V, 3 V  
2 V, 3 V  
2 V, 3 V  
0
10 MHz  
tTCK,Low  
tTCK,High  
tSU,TMS  
tHD,TMS  
tSU,TDI  
tHD,TDI  
TCK low clock pulse duration  
15  
15  
11  
3
ns  
ns  
ns  
ns  
ns  
ns  
TCK high clock pulse duration  
TMS setup time (before rising edge of TCK)  
TMS hold time (after rising edge of TCK)  
TDI setup time (before rising edge of TCK)  
TDI hold time (after rising edge of TCK)  
13  
5
tZ-Valid,TDO TDO high impedance to valid output time (after falling edge of TCK)  
tValid,TDO TDO to new valid output time (after falling edge of TCK)  
tValid-Z,TDO TDO valid to high-impedance output time (after falling edge of TCK)  
26  
26  
ns  
ns  
ns  
µs  
kΩ  
26  
tJTAG,Ret  
Rinternal  
Spy-Bi-Wire return to normal operation time  
Internal pulldown resistance on TEST  
15  
20  
100  
50  
2 V, 3 V  
35  
(1) fTCK may be restricted to meet the timing requirements of the module selected.  
1/fTCK  
tTCK,Low  
tTCK,High  
TCK  
TMS  
tSU,TMS  
tHD,TMS  
TDI  
(or TDO as TDI)  
tSU,TDI  
tHD,TDI  
TDO  
tZ-Valid,TDO  
tValid,TDO  
tValid-Z,TDO  
tJTAG,Ret  
TEST  
8-19. JTAG 4-Wire Timing  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: MSP430FR2422  
 
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The MSP430FR2422 is an ultra-low-power MCU. The architecture, combined with extensive low-power modes,  
is optimized to achieve extended battery life in, for example, portable measurement applications. The MCU  
features two 16-bit timers, two eUSCIs that support UART, SPI, and I2C, a hardware multiplier, an RTC module,  
and a high-performance 10-bit ADC.  
9.2 CPU  
The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations,  
other than program-flow instructions, are performed as register operations in conjunction with seven addressing  
modes for source operand and four addressing modes for destination operand.  
The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register  
operation execution time is one cycle of the CPU clock.  
Four of the registers, R0 to R3, are dedicated as program counter (PC), stack pointer (SP), status register (SR),  
and constant generator (CG), respectively. The remaining registers are general-purpose registers.  
Peripherals are connected to the CPU using data, address, and control buses. Peripherals can be handled with  
all instructions.  
9.3 Operating Modes  
The MSP430 has one active mode and several software-selectable low-power modes of operation (see 9-1).  
An interrupt event can wake the MCU from low-power mode LPM0, LPM3 or LPM4, service the request, and  
restore the MCU back to the low-power mode on return from the interrupt program. Low-power modes LPM3.5  
and LPM4.5 disable the core supply to minimize power consumption.  
Note  
XT1CLK and VLOCLK can be active during LPM4 mode if requested by low-frequency peripherals,  
such as RTC and WDT.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: MSP430FR2422  
 
 
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
9-1. Operating Modes  
AM  
LPM0  
CPU OFF  
16 MHz  
LPM3  
STANDBY  
40 kHz  
LPM4  
OFF  
0
LPM3.5  
ONLY RTC  
40 kHz  
LPM4.5  
SHUTDOWN  
0
ACTIVE  
MODE  
MODE  
(FRAM ON)  
Maximum system clock  
16 MHz  
1.2 µA with  
RTC counter  
only in LFXT  
0.73 µA with  
RTC counter  
only in LFXT  
0.49 µA  
without SVS  
16 nA without  
SVS  
Power consumption at 25°C, 3 V  
126 µA/MHz  
40 µA/MHz  
Wake-up time  
N/A  
N/A  
Instant  
All  
10 µs  
All  
10 µs  
I/O  
350 µs  
350 µs  
I/O  
RTC  
I/O  
Wake-up events  
Partial Power Partial Power Partial Power  
Regulator  
Full Regulation Full Regulation  
Power Down  
Down  
Optional  
On  
Down  
Optional  
On  
Down  
Optional  
On  
Power  
SVS  
On  
On  
Optional  
On  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Brownout  
MCLK  
SMCLK  
FLL  
On  
On  
Active  
Off  
Off  
Off  
Off  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
On  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
DCO  
Off  
Off  
Off  
Clock(2)  
MODCLK  
REFO  
Off  
Off  
Off  
Optional  
Optional  
Optional  
Optional  
Off  
Off  
Off  
ACLK  
Off  
Off  
XT1CLK  
VLOCLK  
CPU  
Off  
Optional  
Optional  
Off  
Off  
Off  
FRAM  
On  
On  
Off  
Off  
Off  
Core  
RAM  
On  
On  
On  
On  
Off  
Backup memory(1)  
Timer0_A3  
Timer1_A3  
WDT  
On  
On  
On  
On  
On  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
eUSCI_A0  
eUSCI_B0  
CRC  
Off  
Off  
Peripherals  
Off  
Off  
Off  
Off  
ADC  
Optional  
Optional  
Off  
Off  
RTC  
Off  
Optional  
General-purpose digital  
input/output  
I/O  
On  
Optional  
State Held  
State Held  
State Held  
State Held  
(1) Backup memory contains 32 bytes of register space in peripheral memory. See 9-20 and 9-35 for its memory allocation.  
(2) The status shown for LPM4 applies to internal clocks only.  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: MSP430FR2422  
 
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
9.4 Interrupt Vector Addresses  
The interrupt vectors and the power-up start address are in the address range 0FFFFh to 0FF80h (see 9-2).  
The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.  
9-2. Interrupt Sources, Flags, and Vectors  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
PRIORITY  
System Reset  
Power up, Brownout, Supply supervisor  
External reset RST  
Watchdog time-out, Key violation  
FRAM uncorrectable bit error detection  
Software POR, BOR  
SVSHIFG  
PMMRSTIFG  
WDTIFG  
Reset  
FFFEh  
63, Highest  
PMMPORIFG, PMMBORIFG  
SYSRSTIV  
FLLUNLOCKIFG  
FLL unlock error  
System NMI  
Vacant memory access  
JTAG mailbox  
FRAM access time error  
FRAM bit error detection  
VMAIFG  
JMBINIFG, JMBOUTIFG  
CBDIFG, UBDIFG  
Nonmaskable  
Nonmaskable  
FFFCh  
FFFAh  
62  
61  
User NMI  
External NMI  
Oscillator fault  
NMIIFG  
OFIFG  
Timer0_A3  
Timer0_A3  
Timer1_A3  
Timer1_A3  
TA0CCR0 CCIFG0  
Maskable  
Maskable  
Maskable  
Maskable  
FFF8h  
FFF6h  
FFF4h  
FFF2h  
60  
59  
58  
57  
TA0CCR1 CCIFG1, TA0CCR2 CCIFG2,  
TA0IFG (TA0IV)  
TA1CCR0 CCIFG0  
TA1CCR1 CCIFG1, TA1CCR2 CCIFG2,  
TA1IFG (TA1IV)  
RTC  
RTCIFG  
WDTIFG  
Maskable  
Maskable  
FFF0h  
FFEEh  
56  
55  
Watchdog timer interval mode  
UCTXCPTIFG, UCSTTIFG, UCRXIFG,  
UCTXIFG (UART mode)  
UCRXIFG, UCTXIFG (SPI mode)  
(UCA0IV)  
eUSCI_A0 receive or transmit  
Maskable  
FFECh  
54  
UCB0RXIFG, UCB0TXIFG (SPI mode)  
UCALIFG, UCNACKIFG, UCSTTIFG,  
UCSTPIFG, UCRXIFG0, UCTXIFG0,  
UCRXIFG1, UCTXIFG1, UCRXIFG2,  
UCTXIFG2, UCRXIFG3, UCTXIFG3,  
UCCNTIFG, UCBIT9IFG (I2C mode)  
(UCB0IV)  
eUSCI_B0 receive or transmit  
Maskable  
Maskable  
FFEAh  
FFE8h  
53  
52  
ADCIFG0, ADCINIFG, ADCLOIFG,  
ADCHIIFG, ADCTOVIFG, ADCOVIFG  
(ADCIV)  
ADC  
P1  
P2  
P1IFG.0 to P1IFG.7 (P1IV)  
P2IFG.0 to P2IFG.6 (P2IV)  
Reserved  
Maskable  
Maskable  
Maskable  
FFE6h  
FFE4h  
51  
50  
Reserved  
FFE0hFF88h  
9-3. Signatures  
SIGNATURE  
BSL Signature2  
BSL Signature1  
JTAG Signature2  
JTAG Signature1  
WORD ADDRESS  
0FF86h  
0FF84h  
0FF82h  
0FF80h  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: MSP430FR2422  
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
9.5 Bootloader (BSL)  
The BSL lets users program the FRAM or RAM using either the UART serial interface or the I2C interface.  
Access to the MCU memory through the BSL is protected by an user-defined password. Use of the BSL requires  
four pins (see 9-4 and 9-5). The BSL entry requires a specific entry sequence on the RST/NMI/SBWTDIO  
and TEST/SBWTCK pins. This device can support the blank device detection automatically to invoke the BSL  
with bypass this special entry sequence for saving time and on board programmable. For the complete  
description of the feature of the BSL, see the MSP430 FRAM Device Bootloader (BSL) User's Guide.  
9-4. UART BSL Pin Requirements and Functions  
DEVICE SIGNAL  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
P1.4  
BSL FUNCTION  
Entry sequence signal  
Entry sequence signal  
Data transmit  
P1.5  
Data receive  
DVCC  
Power supply  
DVSS  
Ground supply  
9-5. I2C BSL Pin Requirements and Functions  
DEVICE SIGNAL  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
P1.2  
BSL FUNCTION  
Entry sequence signal  
Entry sequence signal  
Data transmit and receive  
Clock  
P1.3  
DVCC  
Power supply  
DVSS  
Ground supply  
9.6 JTAG Standard Interface  
The MSP low-power microcontrollers support the standard JTAG interface, which requires four signals for  
sending and receiving data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin  
enables the JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with  
MSP430 development tools and device programmers. 9-6 lists the JTAG pin requirements. For further details  
on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide.  
For details on using the JTAG interface, see MSP430 Programming With the JTAG Interface.  
9-6. JTAG Pin Requirements and Function  
DEVICE SIGNAL  
DIRECTION  
JTAG FUNCTION  
JTAG clock input  
JTAG state control  
JTAG data input, TCLK input  
JTAG data output  
Enable JTAG pins  
External reset  
P1.4/.../TCK  
IN  
IN  
P1.5/.../TMS  
P1.6/.../TDI/TCLK  
P1.7/.../TDO  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
DVCC  
IN  
OUT  
IN  
IN  
Power supply  
DVSS  
Ground supply  
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: MSP430FR2422  
 
 
 
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
9.7 Spy-Bi-Wire Interface (SBW)  
The MSP low-power microcontrollers support the 2-wire SBW interface. SBW can be used to interface with MSP  
development tools and device programmers. 9-7 lists the SBW interface pin requirements. For further details  
on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide.  
For details on using the SBW interface, see the MSP430 Programming With the JTAG Interface.  
9-7. Spy-Bi-Wire Pin Requirements and Functions  
DEVICE SIGNAL  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
DVCC  
DIRECTION  
SBW FUNCTION  
Spy-Bi-Wire clock input  
Spy-Bi-Wire data input and output  
Power supply  
IN  
IN, OUT  
DVSS  
Ground supply  
9.8 FRAM  
The FRAM can be programmed using the JTAG port, SBW, the BSL, or in-system by the CPU. Features of the  
FRAM include:  
Byte and word access capability  
Programmable wait state generation  
Error correction coding (ECC)  
9.9 Memory Protection  
The device features memory protection for user access authority and write protection, including options to:  
Secure the whole memory map to prevent unauthorized access from JTAG port or BSL, by writing JTAG and  
BSL signatures using the JTAG port, SBW, the BSL, or in-system by the CPU.  
Enable write protection to prevent unwanted write operation to FRAM contents by setting the control bits in  
the System Configuration 0 register. For detailed information, see the SYS chapter in the MP430FR4xx and  
MP430FR2xx Family User's Guide.  
9.10 Peripherals  
Peripherals are connected to the CPU through data, address, and control buses. All peripherals can be handled  
by using all instructions in the memory map. For complete module description, see the MP430FR4xx and  
MP430FR2xx Family User's Guide.  
9.10.1 Power-Management Module (PMM)  
The PMM includes an integrated voltage regulator that supplies the core voltage to the device. The PMM also  
includes supply voltage supervisor (SVS) and brownout protection. The brownout reset circuit (BOR) is  
implemented to provide the proper internal reset signal to the device during power on and power off. The SVS  
circuitry detects if the supply voltage drops below a user-selectable safe level. SVS circuitry is available on the  
primary supply.  
The device contains two on-chip reference: 1.5 V for internal reference and 1.2 V for external reference.  
The 1.5-V reference is internally connected to ADC channel 13. DVCC is internally connected to ADC channel  
15. When DVCC is set as the reference voltage for ADC conversion, the DVCC can be easily represent as 方程  
1 by using ADC sampling 1.5-V reference without any external components support.  
DVCC = (1023 × 1.5 V) ÷ 1.5-V reference ADC result  
(1)  
A 1.2-V reference voltage can be buffered, when EXTREFEN = 1 on PMMCTL2 register, and it can be output to  
P1.1/../A1/VREF+ , meanwhile the ADC channel 1 can also be selected to monitor this voltage. For more  
detailed information, see the MSP430FR4xx and MSP430FR2xx Family User's Guide.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: MSP430FR2422  
 
 
 
 
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
9.10.2 Clock System (CS) and Clock Distribution  
The clock system includes a 32-kHz crystal oscillator (XT1), an internal very-low-power low-frequency oscillator  
(VLO), an integrated 32-kHz RC oscillator (REFO), an integrated internal digitally controlled oscillator (DCO) that  
may use frequency-locked loop (FLL) locking with internal or external 32-kHz reference clock, and an on-chip  
asynchronous high-speed clock (MODOSC). The clock system is designed for cost-effective designs with  
minimal external components. A fail-safe mechanism is included for XT1. The clock system module offers the  
following clock signals.  
Main Clock (MCLK): The system clock used by the CPU and all relevant peripherals accessed by the bus. All  
clock sources except MODOSC can be selected as the source with a predivider of 1, 2, 4, 8, 16, 32, 64, or  
128.  
Sub-Main Clock (SMCLK): The subsystem clock used by the peripheral modules. SMCLK derives from the  
MCLK with a predivider of 1, 2, 4, or 8. This means SMCLK is always equal to or less than MCLK.  
Auxiliary Clock (ACLK): This clock is derived from the external XT1 clock or internal REFO clock up to  
40 kHz.  
All peripherals may have one or several clock sources depending on specific functionality. 9-8 lists the clock  
distribution used in this device.  
9-8. Clock Distribution  
CLOCK  
SOURCE  
SELECT  
BITS  
MCLK  
SMCLK  
ACLK  
MODCLK  
XT1CLK  
VLOCLK  
EXTERNAL PIN  
Frequency  
Range  
DC to  
16 MHz  
DC to  
16 MHz  
DC to 40 kHz 5 MHz ±10% DC to 40 kHz 10 kHz ±50%  
CPU  
N/A  
N/A  
Default  
Default  
Default  
Default  
Default  
00b  
10b  
FRAM  
RAM  
N/A  
CRC  
N/A  
I/O  
N/A  
TA0  
TASSEL  
TASSEL  
UCSSEL  
UCSSEL  
WDTSSEL  
ADCSSEL  
RTCSS  
10b  
01b  
01b  
01b  
01b  
01b  
01b  
01b(1)  
11b  
00b (TA0CLK pin)  
00b (TA1CLK pin)  
00b (UCA0CLK pin)  
00b (UCB0CLK pin)  
TA1  
10b  
eUSCI_A0  
eUSCI_B0  
WDT  
10b or 11b  
10b or 11b  
00b  
10b  
ADC  
10b or 11b  
01b(1)  
RTC  
11b  
(1) Controlled by the RTCCKSEL bit in the SYSCFG2 register  
Copyright © 2021 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: MSP430FR2422  
 
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
CPU  
FRAM  
SRAM  
CRC  
I/O  
MCLK  
Timer_A  
A0  
Timer_A  
A1  
eUSCI_A0  
eUSCI_B0  
WDT  
RTC  
ADC10  
Clock System (CS)  
SMCLK  
ACLK  
VLOCLK  
MODCLK  
Selected on SYSCFG2  
XT1CLK  
9-1. Clock Distribution Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: MSP430FR2422  
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
9.10.3 General-Purpose Input/Output Port (I/O)  
Up to 15 I/O ports are implemented.  
P1 implements 8 bits, and P2 implements 7 bits.  
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt conditions is possible.  
Programmable pullup or pulldown on all ports.  
Edge-selectable interrupt and LPMx.5 wake-up input capability are available for P1 and P2.  
Read and write access to port-control registers is supported by all instructions.  
Ports can be accessed byte-wise or word-wise as a pair.  
Note  
Configuration of digital I/Os after BOR reset  
To prevent any cross currents during start-up of the device, all port pins are high-impedance with  
Schmitt triggers and module functions disabled. To enable the I/O functions after a BOR reset, the  
ports must be configured first and then the LOCKLPM5 bit must be cleared. For details, see the  
Configuration After Reset section in the Digital I/O chapter of the MP430FR4xx and MP430FR2xx  
Family User's Guide.  
9.10.4 Watchdog Timer (WDT)  
The primary function of the WDT module is to perform a controlled system restart after a software problem  
occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed  
in an application, the module can be configured as an interval timer and can generate interrupts at selected time  
intervals. 9-9 lists the system clocks that can be used to source the WDT.  
9-9. WDT Clocks  
NORMAL OPERATION  
WDTSSEL  
(WATCHDOG AND INTERVAL TIMER  
MODE)  
00  
01  
10  
11  
SMCLK  
ACLK  
VLOCLK  
Reserved  
Copyright © 2021 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: MSP430FR2422  
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
9.10.5 System (SYS) Module  
The SYS module handles many of the system functions within the device. These features include power-on reset  
(POR) and power-up clear (PUC) handling, NMI source selection and management, reset interrupt vector  
generators, bootloader entry mechanisms, and configuration management (device descriptors). The SYS  
module also includes a data exchange mechanism through SBW called a JTAG mailbox mail box that can be  
used in the application. 9-10 summarizes the interrupts that are managed by the SYS module.  
9-10. System Module Interrupt Vector Registers  
INTERRUPT VECTOR  
ADDRESS  
INTERRUPT EVENT  
VALUE  
PRIORITY  
REGISTER  
No interrupt pending  
Brownout (BOR)  
00h  
02h  
Highest  
RSTIFG RST/NMI (BOR)  
PMMSWBOR software BOR (BOR)  
LPMx.5 wakeup (BOR)  
Security violation (BOR)  
Reserved  
04h  
06h  
08h  
0Ah  
0Ch  
SVSHIFG SVSH event (BOR)  
Reserved  
0Eh  
10h  
SYSRSTIV, System Reset  
015Eh  
Reserved  
12h  
PMMSWPOR software POR (POR)  
WDTIFG watchdog time-out (PUC)  
WDTPW password violation (PUC)  
FRCTLPW password violation (PUC)  
Uncorrectable FRAM bit error detection  
Peripheral area fetch (PUC)  
PMMPW PMM password violation (PUC)  
FLL unlock (PUC)  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
24h  
Reserved  
22h, 26h to 3Eh  
00h  
Lowest  
Highest  
No interrupt pending  
SVS low-power reset entry  
Uncorrectable FRAM bit error detection  
Reserved  
02h  
04h  
06h  
Reserved  
08h  
Reserved  
0Ah  
Reserved  
0Ch  
SYSSNIV, System NMI  
015Ch  
Reserved  
0Eh  
Reserved  
10h  
VMAIFG vacant memory access  
JMBINIFG JTAG mailbox input  
JMBOUTIFG JTAG mailbox output  
Correctable FRAM bit error detection  
Reserved  
12h  
14h  
16h  
18h  
1Ah to 1Eh  
00h  
Lowest  
Highest  
Lowest  
No interrupt pending  
NMIIFG NMI pin or SVSH event  
OFIFG oscillator fault  
Reserved  
02h  
SYSUNIV, User NMI  
015Ah  
04h  
06h to 1Eh  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: MSP430FR2422  
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
9.10.6 Cyclic Redundancy Check (CRC)  
The 16-bit cyclic redundancy check (CRC) module produces a signature based on a sequence of data values  
and can be used for data checking purposes. The CRC generation polynomial is compliant with CRC-16-CCITT  
standard of x16 + x12 + x5 + 1.  
9.10.7 Enhanced Universal Serial Communication Interface (eUSCI_A0, eUSCI_B0)  
The eUSCI modules are used for serial data communications. The eUSCI_A module supports either UART or  
SPI communications. The eUSCI_B module supports either SPI or I2C communications. Additionally, eUSCI_A  
supports automatic baud-rate detection and IrDA. The eUSCI_A and eUSCI_B are connected either from P1 port  
or P2 port, it can be selected from the USCIARMP of SYSCFG3 or USCIBRMP bit of SYSCFG2. 9-11 lists the  
pin configurations that are required for each eUSCI mode.  
9-11. eUSCI Pin Configurations  
PIN (USCIARMP = 0)  
UART  
SPI  
SIMO  
SOMI  
SCLK  
STE  
P1.4  
TXD  
P1.5  
RXD  
P1.6  
P1.7  
eUSCI_A0  
PIN (USCIARMP = 1)  
UART  
TXD  
RXD  
SPI  
P2.0  
SIMO  
SOMI  
SCLK  
STE  
P2.1  
P1.6  
P1.7  
PIN (USCIBRMP = 0)  
I2C  
SPI  
P1.0  
STE  
P1.1  
SCLK  
SIMO  
SOMI  
SPI  
P1.2  
SDA  
SCL  
I2C  
P1.3  
eUSCI_B0  
PIN (USCIBRMP = 1)  
P2.3  
P2.4  
P2.5  
P2.6  
STE  
SCLK  
SIMO  
SOMI  
SDA  
SCL  
Copyright © 2021 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: MSP430FR2422  
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
9.10.8 Timers (Timer0_A3, Timer1_A3)  
The Timer0_A3 and Timer1_A3 modules are 16-bit timers and counters with three capture/compare registers  
each. Each timer supports multiple captures or compares, PWM outputs, and interval timing (see 9-2). Each  
timer has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions  
and from each of the capture/compare registers. The CCR0 registers on both Timer0_A3 and Timer1_A3 are not  
externally connected and can only be used for hardware period timing and interrupt generation. In Up mode,  
they can be used to set the overflow value of the counter.  
Timer_A0  
Timer_A1  
TA0CLK  
ACLK  
00  
01  
10  
11  
TA1CLK  
ACLK  
00  
01  
10  
11  
16-bit Counter  
SMCLK  
VLO  
16-bit Counter  
SMCLK  
00  
01  
10  
11  
ACLK  
VLO  
TA0.0A  
TA0.0B  
00  
01  
10  
11  
CCR0  
DVSS  
DVCC  
TA0.0A  
TA0.0B  
CCR0  
DVSS  
DVCC  
P1.4  
RTC  
00  
01  
10  
11  
TA0.1A  
TA0.1B  
P1.4  
P2.2  
00  
01  
10  
11  
CCR1  
DVSS  
DVCC  
TA0.1A  
TA0.1B  
P2.2  
CCR1  
DVSS  
DVCC  
To ADC Trigger  
P1.5  
00  
01  
10  
11  
TA0.2A  
TA0.2B  
P1.5  
P2.3  
00  
01  
10  
11  
CCR2  
DVSS  
DVCC  
TA0.2A  
TA0.2B  
P2.3  
CCR2  
DVSS  
DVCC  
Coding  
Carrier  
Infrared  
Logic (SYS)  
P2.0/UCA0TXD/UCA0SIMO  
UCA0TXD/UCA0SIMO  
eUSCI_A0  
Data  
9-2. Timer0_A3 and Timer1_A3 Signal Connections  
The interconnection of Timer0_A3 and Timer1_A3 can be used to modulate the eUSCI_A pin of UCA0TXD/  
UCA0SIMO in either ASK or FSK mode, with which a user can easily acquire a modulated infrared command for  
directly driving an external IR diode. The IR functions are fully controlled by SYS configuration registers 1  
including IREN (enable), IRPSEL (polarity select), IRMSEL (mode select), IRDSSEL (data select), and IRDATA  
(data) bits. For more information, see the SYS chapter in the MP430FR4xx and MP430FR2xx Family User's  
Guide.  
9.10.9 Hardware Multiplier (MPY)  
The multiplication operation is supported by a dedicated peripheral module. The module performs operations  
with 32-, 24-, 16-, and 8-bit operands. The MPY module supports signed multiplication, unsigned multiplication,  
signed multiply-and-accumulate, and unsigned multiply-and-accumulate operations.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: MSP430FR2422  
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
9.10.10 Backup Memory (BAKMEM)  
The BAKMEM supports data retention during LPM3.5. This device provides up to 32 bytes that are retained  
during LPM3.5.  
9.10.11 Real-Time Clock (RTC)  
The RTC is a 16-bit modulo counter that is functional in AM, LPM0, LPM3, and LPM3.5. This module can  
periodically wake up the CPU from LPM0, LPM3, or LPM3.5 based on timing from a low-power clock source  
such as the XT1 and VLO clocks. RTC also can be sourced from ACLK controlled by RTCCLK in SYSCFG2. In  
AM, RTC can be driven by SMCLK to generate high-frequency timing events and interrupts. The RTC overflow  
events trigger:  
Timer0_B3 CCI1B  
ADC conversion trigger when ADCSHSx bits are set as 01b  
9-12. RTC Clock Source  
RTCSS  
CLOCK SOURCE  
00  
Reserved  
01  
SMCLK or ACLK is selected(1)  
XT1CLK  
10  
11  
VLOCLK  
(1) Controlled by the RTCCLK bit of the SYSCFG2 register  
9.10.12 10-Bit Analog-to-Digital Converter (ADC)  
The 10-bit ADC module supports fast 10-bit analog-to-digital conversions with single-ended input. The module  
implements a 10-bit SAR core, sample select control, a reference generator, and a conversion result buffer. A  
window comparator with lower and upper limits allows CPU-independent result monitoring with three window  
comparator interrupt flags.  
The ADC supports 10 external inputs and 4 internal inputs (see 9-13).  
9-13. ADC Channel Connections  
ADCINCH  
ADC CHANNELS  
EXTERNAL PIN  
x
0
A0/Veref+  
P1.0  
P1.1  
P1.2  
P1.3  
P2.2  
P2.3  
P2.4  
P2.5  
N/A  
1
A1(1)  
2
A2/Veref-  
3
A3  
4
A4  
5
A5  
6
A6  
7
A7  
Not used  
8
9
Not used  
N/A  
10  
11  
12  
13  
14  
15  
Not used  
N/A  
Not used  
N/A  
On-chip temperature sensor  
Reference voltage (1.5 V)  
DVSS  
N/A  
N/A  
N/A  
DVCC  
N/A  
(1) When A7 is used, the PMM 1.2-V reference voltage can be  
output to this pin by setting the PMM control register. The 1.2-V  
voltage can be measured by the A1 channel.  
Copyright © 2021 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: MSP430FR2422  
 
 
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
The analog-to-digital conversion can be started by software or a hardware trigger. 9-14 lists the trigger  
sources that are available.  
9-14. ADC Trigger Signal Connections  
ADCSHSx  
TRIGGER SOURCE  
BINARY  
DECIMAL  
00  
01  
10  
11  
0
1
2
3
ADCSC bit (software trigger)  
RTC event  
TA1.1B  
Reserved  
9.10.13 Embedded Emulation Module (EEM)  
The EEM supports real-time in-system debugging. The EEM on these devices has the following features:  
Three hardware triggers or breakpoints on memory access  
One hardware trigger or breakpoint on CPU register write access  
Up to four hardware triggers can be combined to form complex triggers or breakpoints  
One cycle counter  
Clock control on module level  
EEM version: S  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: MSP430FR2422  
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
9.11 Input/Output Diagrams  
9.11.1 Port P1 (P1.0 to P1.7) Input/Output With Schmitt Trigger  
9-3 shows the port diagram. 9-15 summarizes the selection of pin function.  
A0 to A3  
P1SEL.x = 11  
P1REN.x  
P1DIR.x  
From Module1  
From Module2  
00  
01  
10  
11  
2 bit  
DVSS  
DVCC  
0
1
00  
01  
P1OUT.x  
From Module1  
From Module2  
DVSS  
10  
11  
2 bit  
P1SEL.x  
EN  
D
To module  
P1IN.x  
P1IE.x  
Bus  
Keeper  
P1 Interrupt  
D
S
Q
P1IFG.x  
P1.0/UCB0STE/A0/Veref+  
P1.1/UCB0CLK/ACLK/A1/VREF+  
P1.2/UCB0SIMO/UCB0SDA/SMCLK/A2/Veref-  
P1.3/UCB0SOMI/UCB0SCL/MCLK/A3  
P1.4/UCA0TXD/UCA0SIMO/TA0.1/TCK  
P1.5/UCA0RXD/UCA0SOMI/TA0.2/TMS  
P1.6/UCA0CLK/TA0CLK/TDI/TCLK  
P1.7/UCA0STE/TDO  
Edge  
Select  
P1IES.x  
From JTAG  
To JTAG  
9-3. Port P1 (P1.0 to P1.7) Input/Output With Schmitt Trigger  
Copyright © 2021 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: MSP430FR2422  
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
9-15. Port P1 (P1.0 to P1.7) Pin Functions  
CONTROL BITS AND SIGNALS(2)  
PIN NAME (P1.x)  
x
FUNCTION  
ANALOG  
P1SELx  
P1DIR.x  
JTAG  
FUNCTION(1)  
P1.0 (I/O)  
UCB0STE  
I: 0; O: 1  
X
00  
01  
0
0
0
0
P1.0/UCB0STE/A0/  
Veref+  
0
ADCPCTLx = 1 (x = 0) from  
SYSCFG2  
A0,Veref+  
X
N/A  
P1.1 (I/O)  
UCB0CLK  
ACLK  
I: 0; O: 1  
00  
01  
10  
0
0
0
0
0
0
X
1
P1.1/UCB0CLK/ACLK/  
A1/VREF+  
1
2
3
ADCPCTLx = 1 (x = 1) from  
SYSCFG2  
A1,VREF+  
P1.2 (I/O)  
X
N/A  
I: 0; O: 1  
00  
01  
10  
0
0
0
0
0
0
UCB0SIMO/UCB0SDA  
SMCLK  
X
1
P1.2/UCB0SIMO/  
UCB0SDA/SMCLK/A2/  
Veref-  
ADCPCTLx = 1 (x = 2) from  
SYSCFG2  
A2, Veref-  
X
N/A  
P1.3 (I/O)  
I: 0; O: 1  
00  
01  
10  
0
0
0
0
0
0
UCB0SOMI/UCB0SCL  
MCLK  
X
1
P1.3/UCB0SOMI/  
UCB0SCL/MCLK/A3  
ADCPCTLx = 1 (x = 3) from  
SYSCFG2  
A3  
X
N/A  
P1.4 (I/O)  
I: 0; O: 1  
00  
01  
0
0
Disabled  
Disabled  
UCA0TXD/UCA0SIMO  
TA0.CCI1A  
TA0.1  
X
P1.4/UCA0TXD/  
UCA0SIMO/TA0.1/TCK  
4
5
0
10  
0
Disabled  
1
JTAG TCK  
P1.5 (I/O)  
X
X
X
0
0
TCK  
I: 0; O: 1  
00  
01  
Disabled  
Disabled  
UCA0RXD/UCA0SOMI  
TA0.CCI2A  
TA0.2  
X
P1.5/UCA0RXD/  
UCA0SOMI/TA0.2/TMS  
0
10  
0
Disabled  
1
JTAG TMS  
P1.6 (I/O)  
X
X
00  
01  
10  
X
X
0
0
0
X
0
0
X
TMS  
I: 0; O: 1  
Disabled  
Disabled  
Disabled  
TDI/TCLK  
Disabled  
Disabled  
TDO  
UCA0CLK  
X
P1.6/UCA0CLK/  
TA0CLK/TDI/TCLK  
6
7
TA0CLK  
0
JTAG TDI/TCLK  
P1.7 (I/O)  
X
I: 0; O: 1  
00  
01  
X
P1.7/UCA0STE/TDO  
UCA0STE  
X
X
JTAG TDO  
(1) Setting the bits disables both the output driver and input Schmitt trigger to prevent leakage when analog signals are applied.  
(2) X = don't care  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: MSP430FR2422  
 
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
9.11.2 Port P2 (P2.0 to P2.6) Input/Output With Schmitt Trigger  
9-4 shows the port diagram. 9-16 summarizes the selection of pin function.  
A4 to A7  
P2SEL.x = 11  
P2REN.x  
P2DIR.x  
From Module1  
From Module2  
00  
01  
10  
11  
2 bit  
DVSS  
DVCC  
0
1
00  
01  
P2OUT.x  
From Module1  
From Module2  
DVSS  
10  
11  
2 bit  
P2SEL.x  
EN  
D
To module  
P2IN.x  
P2IE.x  
Bus  
Keeper  
P2 Interrupt  
D
S
Q
P2.0/UCA0TXD/UCA0SIMO/XOUT  
P2.1/UCA0RXD/UCA0SOMI/XIN  
P2.2/TA1.1/A4  
P2.3/TA1.2/UCB0STE/A5  
P2.4/TA1CLK/UCB0CLK/A6  
P2.5/UCB0SIMO/UCB0SDA/A7  
P2.6/UCB0SOMI/UCB0SCL  
P2IFG.x  
P2IES.x  
Edge  
Select  
9-4. Port P2 (P2.0 to P2.6) Input/Output With Schmitt Trigger  
Copyright © 2021 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: MSP430FR2422  
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
9-16. Port P2 (P2.0 to P2.6) Pin Functions  
CONTROL BITS AND SIGNALS(2)  
PIN NAME (P2.x)  
x
FUNCTION  
P2DIR.x  
P2SELx  
00  
ANALOG FUNCTION(1)  
P2.0 (I/O)  
I: 0; O: 1  
0
0
0
0
0
0
0
P2.0/UCA0TXD/  
UCA0SIMO/XOUT  
0
UCA0TXD/UCA0SIMO  
XOUT  
X
01  
X
10  
P2.1 (I/O)  
I: 0; O: 1  
00  
P2.1/UCA0RXD/  
UCA0SOMI/XIN  
1
2
UCA0RXD/UCA0SOMI  
XIN  
X
01  
X
10  
P2.2 (I/O)  
I: 0; O: 1  
00  
TA1.CCI1A  
TA1.1  
0
1
01  
0
P2.2/TA1.1/A4  
ADCPCTLx = 1 (x = 4)  
from SYSCFG2(1)  
A4  
X
X
P2.3 (I/O)  
TA1.CCI2A  
TA1.2  
I: 0; O: 1  
00  
0
0
0
0
1
X
01  
P2.3/TA1.2/  
UCB0STE/A5  
3
4
UCB0STE  
10  
X
ADCPCTLx = 1 (x = 5)  
from SYSCFG2(1)  
A5  
X
P2.4 (I/O)  
TA1CLK  
I: 0; O: 1  
00  
01  
10  
0
0
0
0
P2.4/TA1CLK/  
UCB0CLK/A6  
UCB0CLK  
X
ADCPCTLx = 1 (x = 6)  
from SYSCFG2(1)  
A6  
X
X
P2.5 (I/O)  
I: 0; O: 1  
X
00  
10  
0
0
P2.5/UCB0SIMO/  
UCB0SDA/A7  
UCB0SIMO/UCB0SDA  
5
6
ADCPCTLx = 1 (x = 7)  
from SYSCFG2(1)  
A7  
X
X
P2.6 (I/O)  
I: 0; O: 1  
X
00  
10  
0
0
P2.6/UCB0SOMI/  
UCB0SCL  
UCB0SOMI/UCB0SCL  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: MSP430FR2422  
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
9.12 Device Descriptors  
9-17 lists the Device IDs of the devices. 9-18 lists the contents of the device descriptor tag-length-value  
(TLV) structure for the devices.  
9-17. Device IDs  
DEVICE ID  
DEVICE  
1A05h  
1A04h  
MSP430FR2422  
83h  
11h  
9-18. Device Descriptors  
MSP430FR2422  
ADDRESS  
DESCRIPTION  
VALUE  
06h  
Info length  
1A00h  
1A01h  
1A02h  
1A03h  
1A04h  
1A05h  
1A06h  
1A07h  
1A08h  
1A09h  
1A0Ah  
1A0Bh  
1A0Ch  
1A0Dh  
1A0Eh  
1A0Fh  
1A10h  
1A11h  
1A12h  
1A13h  
1A14h  
1A15h  
1A16h  
1A17h  
1A18h  
1A19h  
1A1Ah  
1A1Bh  
1A1Ch  
1A1Dh  
CRC length  
06h  
Per unit  
Per unit  
CRC value(1)  
Information Block  
Device ID  
See 9-17.  
Hardware revision  
Firmware revision  
Die record tag  
Per unit  
Per unit  
08h  
Die record length  
0Ah  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Lot wafer ID  
Die Record  
Die X position  
Die Y position  
Test result  
ADC calibration tag  
ADC calibration length  
ADC gain factor  
ADC calibration  
ADC offset  
ADC 1.5-V reference, temperature 30°C  
ADC 1.5-V reference, temperature 85°C  
Copyright © 2021 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: MSP430FR2422  
 
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
9-18. Device Descriptors (continued)  
MSP430FR2422  
DESCRIPTION  
ADDRESS  
1A1Eh  
1A1Fh  
1A20h  
VALUE  
12h  
Calibration tag  
Calibration length  
04h  
Per unit  
Per unit  
Per unit  
Per unit  
Reference and DCO Calibration 1.5-V reference factor  
1A21h  
1A22h  
DCO tap setting for 16 MHz, temperature 30°C(2)  
1A23h  
(1) The CRC value covers the check sum from 0x1A04h to 0x1AF5h by applying the CRC-CCITT-16 polynomial of x16 + x12 + x5 + 1.  
(2) This value can be directly loaded into DCO bits in CSCTL0 registers to get accurate 16-MHz frequency at room temperature,  
especially when the MCU exits from LPM3 and below. TI suggests using the predivider to decrease the frequency if the temperature  
drift might result an overshoot beyond 16 MHz.  
9.13 Memory  
9.13.1 Memory Organization  
9-19 summarizes the memory organization of the devices.  
9-19. Memory Organization  
ACCESS  
MSP430FR2422  
Memory (FRAM)  
Main: interrupt vectors and signatures  
Main: code memory  
7.25KB  
FFFFh to FF80h  
FFFFh to E300h  
Read/Write  
(Optional Write Protect)(1)  
2KB  
27FFh to 2000h  
RAM  
Read/Write  
Read/Write  
256B  
18FFh to 1800h  
Information Memory (FRAM)  
Bootloader (BSL1) Memory (ROM)  
Bootloader (BSL2) Memory (ROM)  
Peripherals  
(Optional Write Protect)(2)  
2KB  
17FFh to 1000h  
Read only  
Read only  
Read/Write  
1KB  
FFFFFh to FFC00h  
4KB  
0FFFh to 0000h  
(1) The Program FRAM can be write protected by setting PFWP bit in SYSCFG0 register. See the SYS chapter in the MP430FR4xx and  
MP430FR2xx Family User's Guide for more details  
(2) The Information FRAM can be write protected by setting DFWP bit in SYSCFG0 register. See the SYS chapter in the MP430FR4xx  
and MP430FR2xx Family User's Guide for more details  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: MSP430FR2422  
 
 
 
 
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
9.13.2 Peripheral File Map  
9-20 lists the available peripherals and the register base address for each.  
9-20. Peripherals Summary  
MODULE NAME  
Special Functions (See 9-21)  
BASE ADDRESS  
0100h  
SIZE  
0010h  
0020h  
0040h  
0020h  
0010h  
0008h  
0002h  
0020h  
0010h  
0030h  
0030h  
0030h  
0020h  
0030h  
0020h  
0040h  
0120h  
PMM (See 9-22)  
0140h  
SYS (See 9-23)  
0180h  
CS (See 9-24)  
01A0h  
01C0h  
01CCh  
0200h  
FRAM (See 9-25)  
CRC (See 9-26)  
WDT (See 9-27)  
Port P1, P2 (See 9-28)  
RTC (See 9-29)  
0300h  
0380h  
Timer0_A3 (See 9-30)  
Timer1_A3 (See 9-31)  
MPY32 (See 9-32)  
eUSCI_A0 (See 9-33)  
eUSCI_B0 (See 9-34)  
Backup Memory (See 9-35)  
ADC (See 9-36)  
03C0h  
04C0h  
0500h  
0540h  
0660h  
0700h  
9-21. Special Function Registers (Base Address: 0100h)  
REGISTER DESCRIPTION  
ACRONYM  
OFFSET  
00h  
SFR interrupt enable  
SFR interrupt flag  
SFRIE1  
SFRIFG1  
SFRRPCR  
02h  
SFR reset pin control  
04h  
9-22. PMM Registers (Base Address: 0120h)  
REGISTER DESCRIPTION  
ACRONYM  
PMMCTL0  
PMMCTL1  
PMMCTL2  
PMMIFG  
OFFSET  
00h  
PMM control 0  
PMM control 1  
PMM control 2  
PMM interrupt flags  
PM5 control 0  
02h  
04h  
0Ah  
PM5CTL0  
10h  
Copyright © 2021 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: MSP430FR2422  
 
 
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
9-23. SYS Registers (Base Address: 0140h)  
REGISTER DESCRIPTION  
ACRONYM  
OFFSET  
00h  
System control  
SYSCTL  
Bootloader configuration area  
JTAG mailbox control  
SYSBSLC  
SYSJMBC  
SYSJMBI0  
SYSJMBI1  
SYSJMBO0  
SYSJMBO1  
SYSBERRIV  
SYSUNIV  
SYSSNIV  
02h  
06h  
JTAG mailbox input 0  
08h  
JTAG mailbox input 1  
0Ah  
0Ch  
0Eh  
18h  
JTAG mailbox output 0  
JTAG mailbox output 1  
Bus error vector generator  
User NMI vector generator  
System NMI vector generator  
Reset vector generator  
System configuration 0  
System configuration 1  
System configuration 2  
1Ah  
1Ch  
1Eh  
20h  
SYSRSTIV  
SYSCFG0  
SYSCFG1  
SYSCFG2  
22h  
24h  
9-24. CS Registers (Base Address: 0180h)  
REGISTER DESCRIPTION  
ACRONYM  
CSCTL0  
CSCTL1  
CSCTL2  
CSCTL3  
CSCTL4  
CSCTL5  
CSCTL6  
CSCTL7  
CSCTL8  
OFFSET  
00h  
CS control 0  
CS control 1  
CS control 2  
CS control 3  
CS control 4  
CS control 5  
CS control 6  
CS control 7  
CS control 8  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
9-25. FRAM Registers (Base Address: 01A0h)  
REGISTER DESCRIPTION  
ACRONYM  
OFFSET  
00h  
FRAM control 0  
General control 0  
General control 1  
FRCTL0  
GCCTL0  
GCCTL1  
04h  
06h  
9-26. CRC Registers (Base Address: 01C0h)  
REGISTER DESCRIPTION  
ACRONYM  
OFFSET  
00h  
CRC data input  
CRC16DI  
CRC data input reverse byte  
CRC initialization and result  
CRC result reverse byte  
CRCDIRB  
CRCINIRES  
CRCRESR  
02h  
04h  
06h  
9-27. WDT Registers (Base Address: 01CCh)  
REGISTER DESCRIPTION  
ACRONYM  
OFFSET  
Watchdog timer control  
WDTCTL  
00h  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: MSP430FR2422  
 
 
 
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
9-28. Port P1, P2 Registers (Base Address: 0200h)  
REGISTER DESCRIPTION  
ACRONYM  
OFFSET  
Port P1 input  
P1IN  
00h  
02h  
04h  
06h  
0Ah  
0Ch  
0Eh  
18h  
16h  
1Ah  
1Ch  
01h  
03h  
05h  
07h  
0Bh  
0Ch  
17h  
1Eh  
19h  
1Bh  
1Dh  
Port P1 output  
Port P1 direction  
P1OUT  
P1DIR  
P1REN  
P1SEL0  
P1SEL1  
P1IV  
Port P1 pulling enable  
Port P1 selection 0  
Port P1 selection 1  
Port P1 interrupt vector word  
Port P1 interrupt edge select  
Port P1 complement selection  
Port P1 interrupt enable  
Port P1 interrupt flag  
Port P2 input  
P1IES  
P1SELC  
P1IE  
P1IFG  
P2IN  
Port P2 output  
P2OUT  
P2DIR  
P2REN  
P2SEL0  
P2SEL1  
P2SELC  
P2IV  
Port P2 direction  
Port P2 pulling enable  
Port P2 selection 0  
Port P2 selection 1  
Port P2 complement selection  
Port P2 interrupt vector word  
Port P2 interrupt edge select  
Port P2 interrupt enable  
Port P2 interrupt flag  
P2IES  
P2IE  
P2IFG  
9-29. RTC Registers (Base Address: 0300h)  
REGISTER DESCRIPTION  
ACRONYM  
RTCCTL  
RTCIV  
OFFSET  
00h  
RTC control  
RTC interrupt vector  
RTC modulo  
04h  
RTCMOD  
RTCCNT  
08h  
RTC counter  
0Ch  
Copyright © 2021 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: MSP430FR2422  
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
9-30. Timer0_A3 Registers (Base Address: 0380h)  
REGISTER DESCRIPTION  
ACRONYM  
OFFSET  
00h  
TA0 control  
TA0CTL  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TA0 counter  
TA0CCTL0  
TA0CCTL1  
TA0CCTL2  
TA0R  
02h  
04h  
06h  
10h  
Capture/compare 0  
Capture/compare 1  
Capture/compare 2  
TA0 expansion 0  
TA0CCR0  
TA0CCR1  
TA0CCR2  
TA0EX0  
12h  
14h  
16h  
20h  
TA0 interrupt vector  
TA0IV  
2Eh  
9-31. Timer1_A3 Registers (Base Address: 03C0h)  
REGISTER DESCRIPTION  
ACRONYM  
OFFSET  
00h  
TA1 control  
TA1CTL  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TA1 counter  
TA1CCTL0  
TA1CCTL1  
TA1CCTL2  
TA1R  
02h  
04h  
06h  
10h  
Capture/compare 0  
Capture/compare 1  
Capture/compare 2  
TA1 expansion 0  
TA1CCR0  
TA1CCR1  
TA1CCR2  
TA1EX0  
12h  
14h  
16h  
20h  
TA1 interrupt vector  
TA1IV  
2Eh  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: MSP430FR2422  
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
9-32. MPY32 Registers (Base Address: 04C0h)  
REGISTER DESCRIPTION  
ACRONYM  
OFFSET  
MPY  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
22h  
24h  
26h  
28h  
2Ah  
2Ch  
16-bit operand 1 multiply  
MPYS  
16-bit operand 1 signed multiply  
16-bit operand 1 multiply accumulate  
16-bit operand 1 signed multiply accumulate  
16-bit operand 2  
MAC  
MACS  
OP2  
16 × 16 result low word  
RESLO  
RESHI  
16 × 16 result high word  
16 × 16 sum extension  
SUMEXT  
MPY32L  
MPY32H  
MPYS32L  
MPYS32H  
MAC32L  
MAC32H  
MACS32L  
MACS32H  
OP2L  
32-bit operand 1 multiply low word  
32-bit operand 1 multiply high word  
32-bit operand 1 signed multiply low word  
32-bit operand 1 signed multiply high word  
32-bit operand 1 multiply accumulate low word  
32-bit operand 1 multiply accumulate high word  
32-bit operand 1 signed multiply accumulate low word  
32-bit operand 1 signed multiply accumulate high word  
32-bit operand 2 low word  
OP2H  
32-bit operand 2 high word  
RES0  
32 × 32 result 0 least significant word  
32 × 32 result 1  
RES1  
32 × 32 result 2  
RES2  
RES3  
32 × 32 result 3 most significant word  
MPY32 control 0  
MPY32CTL0  
9-33. eUSCI_A0 Registers (Base Address: 0500h)  
REGISTER DESCRIPTION  
ACRONYM  
UCA0CTLW0  
UCA0CTLW1  
UCA0BR0  
OFFSET  
00h  
eUSCI_A control word 0  
eUSCI_A control word 1  
eUSCI_A control rate 0  
eUSCI_A control rate 1  
eUSCI_A modulation control  
eUSCI_A status  
02h  
06h  
UCA0BR1  
07h  
UCA0MCTLW  
UCA0STAT  
UCA0RXBUF  
UCA0TXBUF  
UCA0ABCTL  
lUCA0IRTCTL  
IUCA0IRRCTL  
UCA0IE  
08h  
0Ah  
0Ch  
0Eh  
10h  
eUSCI_A receive buffer  
eUSCI_A transmit buffer  
eUSCI_A LIN control  
eUSCI_A IrDA transmit control  
eUSCI_A IrDA receive control  
eUSCI_A interrupt enable  
eUSCI_A interrupt flags  
eUSCI_A interrupt vector word  
12h  
13h  
1Ah  
1Ch  
1Eh  
UCA0IFG  
UCA0IV  
Copyright © 2021 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: MSP430FR2422  
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
9-34. eUSCI_B0 Registers (Base Address: 0540h)  
REGISTER DESCRIPTION  
ACRONYM  
UCB0CTLW0  
UCB0CTLW1  
UCB0BR0  
OFFSET  
00h  
eUSCI_B control word 0  
eUSCI_B control word 1  
eUSCI_B bit rate 0  
02h  
06h  
eUSCI_B bit rate 1  
UCB0BR1  
07h  
eUSCI_B status word  
UCB0STATW  
UCB0TBCNT  
UCB0RXBUF  
UCB0TXBUF  
UCB0I2COA0  
UCB0I2COA1  
UCB0I2COA2  
UCB0I2COA3  
UCB0ADDRX  
UCB0ADDMASK  
UCB0I2CSA  
UCB0IE  
08h  
eUSCI_B byte counter threshold  
eUSCI_B receive buffer  
eUSCI_B transmit buffer  
eUSCI_B I2C own address 0  
eUSCI_B I2C own address 1  
eUSCI_B I2C own address 2  
eUSCI_B I2C own address 3  
eUSCI_B receive address  
eUSCI_B address mask  
eUSCI_B I2C slave address  
eUSCI_B interrupt enable  
eUSCI_B interrupt flags  
eUSCI_B interrupt vector word  
0Ah  
0Ch  
0Eh  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
2Ah  
2Ch  
2Eh  
UCB0IFG  
UCB0IV  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: MSP430FR2422  
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
9-35. Backup Memory Registers (Base Address: 0660h)  
REGISTER DESCRIPTION  
ACRONYM  
BAKMEM0  
BAKMEM1  
BAKMEM2  
BAKMEM3  
BAKMEM4  
BAKMEM5  
BAKMEM6  
BAKMEM7  
BAKMEM8  
BAKMEM9  
BAKMEM10  
BAKMEM11  
BAKMEM12  
BAKMEM13  
BAKMEM14  
BAKMEM15  
OFFSET  
Backup memory 0  
Backup memory 1  
Backup memory 2  
Backup memory 3  
Backup memory 4  
Backup memory 5  
Backup memory 6  
Backup memory 7  
Backup memory 8  
Backup memory 9  
Backup memory 10  
Backup memory 11  
Backup memory 12  
Backup memory 13  
Backup memory 14  
Backup memory 15  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
9-36. ADC Registers (Base Address: 0700h)  
REGISTER DESCRIPTION  
REGISTER  
ADCCTL0  
ADCCTL1  
ADCCTL2  
ADCLO  
OFFSET  
00h  
ADC control 0  
ADC control 1  
02h  
ADC control 2  
04h  
ADC window comparator low threshold  
ADC window comparator high threshold  
ADC memory control 0  
ADC conversion memory  
ADC interrupt enable  
06h  
ADCHI  
08h  
ADCMCTL0  
ADCMEM0  
ADCIE  
0Ah  
12h  
1Ah  
1Ch  
1Eh  
ADC interrupt flags  
ADCIFG  
ADC interrupt vector word  
ADCIV  
Copyright © 2021 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: MSP430FR2422  
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
9.14 Identification  
9.14.1 Revision Identification  
The device revision information is included as part of the top-side marking on the device package. The device-  
specific errata sheet describes these markings.  
The hardware revision is also stored in the Device Descriptor structure in the Info Block section. For details on  
this value, see the Hardware Revision entries in 9.12.  
9.14.2 Device Identification  
The device type can be identified from the top-side marking on the device package. The device-specific errata  
sheet describes these markings.  
A device identification value is also stored in the Device Descriptor structure in the Info Block section. For details  
on this value, see the Device ID entries in 9.12.  
9.14.3 JTAG Identification  
Programming through the JTAG interface, including reading and identifying the JTAG ID, is described in detail in  
MSP430 Programming With the JTAG Interface.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: MSP430FR2422  
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
10 Applications, Implementation, and Layout  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
10.1 Device Connection and Layout Fundamentals  
This section discusses the recommended guidelines when designing with the MSP430 devices. These  
guidelines are to make sure that the device has proper connections for powering, programming, debugging, and  
optimum analog performance.  
10.1.1 Power Supply Decoupling and Bulk Capacitors  
TI recommends connecting a combination of a 10-µF plus a 100-nF low-ESR ceramic decoupling capacitor to  
the DVCC and DVSS pins. Higher-value capacitors may be used but can impact supply rail ramp-up time.  
Decoupling capacitors must be placed as close as possible to the pins that they decouple (within a few  
millimeters). Additionally, TI recommends separated grounds with a single-point connection for better noise  
isolation from digital-to-analog circuits on the board and to achieve high analog accuracy.  
DVCC  
Digital  
+
Power Supply  
Decoupling  
DVSS  
10 µF  
100 nF  
10-1. Power Supply Decoupling  
10.1.2 External Oscillator  
This device supports only a low-frequency crystal (32 kHz) on the XIN and XOUT pins. External bypass  
capacitors for the crystal oscillator pins are required.  
It is also possible to apply digital clock signals to the XIN input pin that meet the specifications of the respective  
oscillator if the appropriate XT1BYPASS mode is selected. In this case, the associated XOUT pin can be used  
for other purposes. If the XIN and XOUT pins are not used, they must be terminated according to 7.6.  
10-2 shows a typical connection diagram.  
XIN  
XOUT  
CL1  
CL2  
10-2. Typical Crystal Connection  
See MSP430 32-kHz Crystal Oscillators for more information on selecting, testing, and designing a crystal  
oscillator with the MSP430 devices.  
Copyright © 2021 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: MSP430FR2422  
 
 
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
10.1.3 JTAG  
With the proper connections, the debugger and a hardware JTAG interface (such as the MSP-FET or MSP-  
FET430UIF) can be used to program and debug code on the target board. In addition, the connections also  
support the MSP-GANG production programmers, thus providing an easy way to program prototype boards, if  
desired. 10-3 shows the connections between the 14-pin JTAG connector and the target device required to  
support in-system programming and debugging for 4-wire JTAG communication. 10-4 shows the connections  
for 2-wire JTAG mode (Spy-Bi-Wire).  
The connections for the MSP-FET and MSP-FET430UIF interface modules and the MSP-GANG are identical.  
Both can supply VCC to the target board (through pin 2). In addition, the MSP-FET and MSP-FET430UIF  
interface modules and MSP-GANG have a VCC sense feature that, if used, requires an alternate connection (pin  
4 instead of pin 2). The VCC sense feature detects the local VCC present on the target board (that is, a battery or  
other local power supply) and adjusts the output signals accordingly. 10-3 and 10-4 show a jumper block  
that supports both scenarios of supplying VCC to the target board. If this flexibility is not required, the desired VCC  
connections may be hard-wired to eliminate the jumper block. Pins 2 and 4 must not be connected at the same  
time.  
For additional design information regarding the JTAG interface, see the MSP430 Hardware Tools User's Guide.  
VCC  
Important to connect  
MSP430FRxxx  
J1 (see Note A)  
DVCC  
J2 (see Note A)  
R1  
47 kW  
JTAG  
RST/NMI/SBWTDIO  
VCC TOOL  
TDO/TDI  
TDI  
TDO/TDI  
TDI  
2
1
VCC TARGET  
4
3
TMS  
TMS  
6
5
7
TEST  
TCK  
8
TCK  
GND  
RST  
10  
12  
14  
9
11  
13  
TEST/SBWTCK  
DVSS  
C1  
1 nF  
(see Note B)  
A. If a local target power supply is used, make connection J1. If power from the debug or programming adapter is used, make connection  
J2.  
B. The upper limit for C1 is 1.1 nF when using current TI tools.  
10-3. Signal Connections for 4-Wire JTAG Communication  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: MSP430FR2422  
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
VCC  
Important to connect  
MSP430FRxxx  
J1 (see Note A)  
J2 (see Note A)  
DVCC  
R1  
47 kΩ  
(see Note B)  
JTAG  
VCC TOOL  
TDO/TDI  
2
1
3
5
7
9
RST/NMI/SBWTDIO  
VCC TARGET  
4
6
TCK  
8
GND  
10  
12  
14  
11  
13  
TEST/SBWTCK  
DVSS  
C1  
1 nF  
(see Note B)  
A. Make connection J1 if a local target power supply is used, or make connection J2 if the target is powered from the debug or  
programming adapter.  
B. The device RST/NMI/SBWTDIO pin is used in 2-wire mode for bidirectional communication with the device during JTAG access, and  
any capacitance that is attached to this signal may affect the ability to establish a connection with the device. The upper limit for C1 is  
1.1 nF when using current TI tools.  
10-4. Signal Connections for 2-Wire JTAG Communication (Spy-Bi-Wire)  
10.1.4 Reset  
The reset pin can be configured as a reset function (default) or as an NMI function in the Special Function  
Register (SFR), SFRRPCR.  
In reset mode, the RST/NMI pin is active low, and a pulse applied to this pin that meets the reset timing  
specifications generates a BOR-type device reset.  
Setting SYSNMI causes the RST/NMI pin to be configured as an external NMI source. The external NMI is edge  
sensitive, and its edge is selectable by SYSNMIIES. Setting the NMIIE enables the interrupt of the external NMI.  
When an external NMI event occurs, the NMIIFG is set.  
The RST/NMI pin can have either a pullup or pulldown that is enabled or not. SYSRSTUP selects either pullup or  
pulldown, and SYSRSTRE causes the pullup (default) or pulldown to be enabled (default) or not. If the RST/NMI  
pin is unused, it is required either to select and enable the internal pullup or to connect an external 47-kΩpullup  
resistor to the RST/NMI pin with a 10-nF pulldown capacitor. The pulldown capacitor should not exceed 1.1 nF  
when using devices with Spy-Bi-Wire interface in Spy-Bi-Wire mode or in 4-wire JTAG mode with TI tools like  
FET interfaces or GANG programmers.  
See the MP430FR4xx and MP430FR2xx Family User's Guide for more information on the referenced control  
registers and bits.  
10.1.5 Unused Pins  
For details on the connection of unused pins, see 7.6.  
Copyright © 2021 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: MSP430FR2422  
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
10.1.6 General Layout Recommendations  
Proper grounding and short traces for external crystal to reduce parasitic capacitance. See MSP430 32-kHz  
Crystal Oscillators for recommended layout guidelines.  
Proper bypass capacitors on DVCC and reference pins, if used.  
Avoid routing any high-frequency signal close to an analog signal line. For example, keep digital switching  
signals such as PWM or JTAG signals away from the oscillator circuit.  
Proper ESD level protection should be considered to protect the device from unintended high-voltage  
electrostatic discharge. See MSP430 System-Level ESD Considerations for guidelines.  
10.1.7 Do's and Don'ts  
During power up, power down, and device operation, DVCC must not exceed the limits specified in 8.1.  
Exceeding the specified limits may cause malfunction of the device including erroneous writes to RAM and  
FRAM.  
10.2 Peripheral- and Interface-Specific Design Information  
10.2.1 ADC Peripheral  
10.2.1.1 Partial Schematic  
10-5 shows the recommended decoupling circuit when an external voltage reference is used.  
DVSS  
Using an external  
VREF+/VEREF+  
positive reference  
+
100 nF  
10 µF  
Using an external  
negative reference  
VEREF-  
+
10 µF  
100 nF  
10-5. ADC Grounding and Noise Considerations  
10.2.1.2 Design Requirements  
As with any high-resolution ADC, appropriate printed-circuit-board layout and grounding techniques should be  
followed to eliminate ground loops, unwanted parasitic effects, and noise.  
Ground loops are formed when return current from the ADC flows through paths that are common with other  
analog or digital circuitry. If care is not taken, this current can generate small unwanted offset voltages that can  
add to or subtract from the reference or input voltages of the ADC. The general guidelines in 10.1.1 combined  
with the connections shown in 10-5 prevent this.  
Quickly switching digital signals and noisy power supply lines can corrupt the conversion results, so keep the  
ADC input trace shielded from those digital and power supply lines. Putting the MCU in low-power mode during  
the ADC conversion improves the ADC performance in a noisy environment. If the device includes the analog  
power pair inputs (AVCC and AVSS), TI recommends a noise-free design using separate analog and digital  
ground planes with a single-point connection to achieve high accuracy.  
10-5 shows the recommended decoupling circuit when an external voltage reference is used. The internal  
reference module has a maximum drive current as described in the sections ADC Pin Enable and 1.2-V  
Reference Settings of the MSP430FR4xx and MSP430FR2xx Family User's Guide.  
The reference voltage must be a stable voltage for accurate measurements. The capacitor values that are  
selected in the general guidelines filter out the high- and low-frequency ripple before the reference voltage  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: MSP430FR2422  
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
enters the device. In this case, the 10-µF capacitor buffers the reference pin and filters any low-frequency ripple.  
A bypass capacitor of 100 nF filters out any high-frequency noise.  
10.2.1.3 Layout Guidelines  
Components that are shown in the partial schematic (see 10-5) should be placed as close as possible to the  
respective device pins to avoid long traces, because they add additional parasitic capacitance, inductance, and  
resistance on the signal.  
Avoid routing analog input signals close to a high-frequency pin (for example, a high-frequency PWM), because  
the high-frequency switching can be coupled into the analog signal.  
Copyright © 2021 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: MSP430FR2422  
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Getting Started and Next Steps  
For more information on the MSP low-power microcontrollers and the tools and libraries that are available to help  
with your development, visit the MSP430™ ultra-low-power sensing & measurement MCUs overview.  
11.2 Device Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all MSP  
MCU devices. Each MSP MCU commercial family member has one of two prefixes: MSP or XMS. These  
prefixes represent evolutionary stages of product development from engineering prototypes (XMS) through fully  
qualified production devices (MSP).  
XMS Experimental device that is not necessarily representative of the final device's electrical specifications  
MSP Fully qualified production device  
XMS devices are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
MSP devices have been characterized fully, and the quality and reliability of the device have been demonstrated  
fully. TI's standard warranty applies.  
Predictions show that prototype devices (XMS) have a greater failure rate than the standard production devices.  
TI recommends that these devices not be used in any production system because their expected end-use failure  
rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the temperature  
range, package type, and distribution format. 11-1 provides a legend for reading the complete device name.  
MSP 430 FR 2 422 I RHL T  
Processor Family  
MCU Platform  
Device Type  
Series  
Distribution Format  
Packaging  
Temperature Range  
Feature Set  
Processor Family  
MSP = Mixed-Signal Processor  
XMS = Experimental Silicon  
MCU Platform  
Device Type  
430 = MSP430 16-bit low-power platform  
Memory Type  
FR = FRAM  
Series  
2 = Up to 16 MHz without LCD  
Feature Set  
First and Second Digits:  
ADC10 Channels / eUSCIs / 16-bit Timers / I/Os  
42 = Up to 8 / 2 / 2 / Up to 15  
Third Digit:  
FRAM (KB) / SRAM (KB)  
2 = 8 / 2  
Temperature Range  
Packaging  
I = –40°C to 85°C  
www.ti.com/packaging  
Distribution Format  
T = Small reel  
R = Large reel  
No Marking = Tube or tray  
11-1. Device Nomenclature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: MSP430FR2422  
 
 
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
11.3 Tools and Software  
11-1 lists the debug features supported by these microcontrollers. See the Code Composer Studio IDE for  
MSP430 MCUs User's Guide for details on the available features.  
11-1. Hardware Features  
BREAK-  
POINTS  
(N)  
RANGE  
BREAK-  
POINTS  
LPMx.5  
DEBUGGING  
SUPPORT  
MSP430  
ARCHITECTURE  
4-WIRE  
JTAG  
2-WIRE  
JTAG  
CLOCK  
CONTROL  
STATE  
SEQUENCER  
TRACE  
BUFFER  
EEM  
VERSION  
MSP430Xv2  
Yes  
Yes  
3
Yes  
Yes  
No  
No  
No  
S
Design Kits and Evaluation Modules  
MSP-TS430RHL20 20-Pin Target Development Board for MSP430FR2x MCUs  
The MSP-TS430RHL20 is a stand-alone ZIF socket target board used to program and debug the MSP430 in-  
system through the JTAG interface or the Spy Bi-Wire (2-wire JTAG) protocol. The development board supports  
all MSP430FR252x and MSP430FR242x Flash parts in a 20-pin VQFN package (TI package code: RHL).  
MSP-FET + MSP-TS430RHL20 FRAM Microcontroller Development Kit Bundle  
The MSP-FET430RHL20-BNDL bundle combines two debugging tools that support the 20-pin RHL package for  
the MSP430FR2422 microcontroller (for example, MSP430FR2422RHL). These two tools include MSP-  
TS430RHL20 and MSP-FET.  
Software  
MSP430WareSoftware  
MSP430Ware software is a collection of code examples, data sheets, and other design resources for all  
MSP430 devices delivered in a convenient package. In addition to providing a complete collection of existing  
MSP430 design resources, MSP430Ware software also includes a high-level API called MSP430 Driver Library.  
This library makes it easy to program MSP430 hardware. MSP430Ware software is available as a component of  
CCS or as a stand-alone package.  
MSP430FR2422 Code Examples  
C Code examples are available for every MSP device that configures each of the integrated peripherals for  
various application needs.  
MSP Driver Library  
Driver Library's abstracted API keeps you above the bits and bytes of the MSP430 hardware by providing easy-  
to-use function calls. Thorough documentation is delivered through a helpful API Guide, which includes details  
on each function call and the recognized parameters. Developers can use Driver Library functions to write  
complete projects with minimal overhead.  
MSP EnergyTraceTechnology  
EnergyTrace technology for MSP430 microcontrollers is an energy-based code analysis tool that measures and  
displays the applications energy profile and helps to optimize it for ultra-low-power consumption.  
ULP (Ultra-Low Power) Advisor  
ULP Advisorsoftware is a tool for guiding developers to write more efficient code to fully utilize the unique  
ultra-low power features of MSP and MSP432 microcontrollers. Aimed at both experienced and new  
microcontroller developers, ULP Advisor checks your code against a thorough ULP checklist to squeeze every  
last nano amp out of your application. At build time, ULP Advisor will provide notifications and remarks to  
highlight areas of your code that can be further optimized for lower power.  
Copyright © 2021 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: MSP430FR2422  
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
FRAM Embedded Software Utilities for MSP Ultra-Low-Power Microcontrollers  
The FRAM Utilities is designed to grow as a collection of embedded software utilities that leverage the ultra-low-  
power and virtually unlimited write endurance of FRAM. The utilities are available for MSP430FRxx FRAM  
microcontrollers and provide example code to help start application development. Included utilities include  
Compute Through Power Loss (CTPL). CTPL is utility API set that enables ease of use with LPMx.5 low-power  
modes and a powerful shutdown mode that allows an application to save and restore critical system components  
when a power loss is detected.  
IEC60730 Software Package  
The IEC60730 MSP430 software package was developed to be useful in assisting customers in complying with  
IEC 60730-1:2010 (Automatic Electrical Controls for Household and Similar Use Part 1: General  
Requirements) for up to Class B products, which includes home appliances, arc detectors, power converters,  
power tools, e-bikes, and many others. The IEC60730 MSP430 software package can be embedded in customer  
applications running on MSP430s to help simplify the customers certification efforts of functional safety-  
compliant consumer devices to IEC 60730-1:2010 Class B.  
Fixed Point Math Library for MSP  
The MSP IQmath and Qmath Libraries are a collection of highly optimized and high-precision mathematical  
functions for C programmers to seamlessly port a floating-point algorithm into fixed-point code on MSP430 and  
MSP432 devices. These routines are typically used in computationally intensive real-time applications where  
optimal execution speed, high accuracy, and ultra-low energy are critical. By using the IQmath and Qmath  
libraries, it is possible to achieve execution speeds considerably faster and energy consumption considerably  
lower than equivalent code written using floating-point math.  
Floating Point Math Library for MSP430  
Continuing to innovate in the low power and low cost microcontroller space, TI brings you MSPMATHLIB.  
Leveraging the intelligent peripherals of our devices, this floating point math library of scalar functions brings you  
up to 26x better performance. Mathlib is easy to integrate into your designs. This library is free and is integrated  
in both Code Composer Studio and IAR IDEs. Read the users guide for an in depth look at the math library  
and relevant benchmarks.  
Development Tools  
Code Composer StudioIntegrated Development Environment for MSP Microcontrollers  
Code Composer Studio is an integrated development environment (IDE) that supports all MSP microcontroller  
devices. Code Composer Studio comprises a suite of embedded software utilities used to develop and debug  
embedded applications. It includes an optimizing C/C++ compiler, source code editor, project build environment,  
debugger, profiler, and many other features. The intuitive IDE provides a single user interface taking you through  
each step of the application development flow. Familiar utilities and interfaces allow users to get started faster  
than ever before. Code Composer Studio combines the advantages of the Eclipse software framework with  
advanced embedded debug capabilities from TI resulting in a compelling feature-rich development environment  
for embedded developers. When using CCS with an MSP MCU, a unique and powerful set of plugins and  
embedded software utilities are made available to fully leverage the MSP microcontroller.  
Command-Line Programmer  
MSP Flasher is an open-source shell-based interface for programming MSP microcontrollers through a FET  
programmer or eZ430 using JTAG or Spy-Bi-Wire (SBW) communication. MSP Flasher can download binary  
files (.txt or .hex) files directly to the MSP microcontroller without an IDE.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: MSP430FR2422  
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
MSP MCU Programmer and Debugger  
The MSP-FET is a powerful emulation development tool often called a debug probe that lets users quickly  
begin application development on MSP low-power microcontrollers (MCU). Creating MCU software usually  
requires downloading the resulting binary program to the MSP device for validation and debugging. The MSP-  
FET provides a debug communication pathway between a host computer and the target MSP. Furthermore, the  
MSP-FET also provides a backchannel UART connection between the computer's USB interface and the MSP  
UART. This affords the MSP programmer a convenient method for communicating serially between the MSP and  
a terminal running on the computer.  
MSP-GANG Production Programmer  
The MSP Gang Programmer can program up to eight identical MSP430 or MSP432 flash or FRAM devices at  
the same time. The MSP Gang Programmer connects to a host PC using a standard RS-232 or USB connection  
and provides flexible programming options that allow the user to fully customize the process. The MSP Gang  
Programmer is provided with an expansion board, called the Gang Splitter, that implements the interconnections  
between the MSP Gang Programmer and multiple target devices.  
11.4 Documentation Support  
The following documents describe the MSP430FR2422 microcontrollers. Copies of these documents are  
available on the Internet at www.ti.com.  
Receiving Notification of Document Updates  
To receive notification of documentation updatesincluding silicon erratago to the product folder for your  
device on ti.com (for example, MSP430FR2422). In the upper right corner, click the "Alert me" button. This  
registers you to receive a weekly digest of product information that has changed (if any). For change details,  
check the revision history of any revised document.  
Errata  
MSP430FR2422 Device Erratasheet  
Describes the known exceptions to the functional specifications for all silicon revisions of this device.  
User's Guides  
MSP430FR4xx and MSP430FR2xx Family User's Guide  
Detailed description of all modules and peripherals available in this device family.  
MSP430 FRAM Device Bootloader (BSL) User's Guide  
The BSL can program memory during MSP430 MCU project development and updates. The BSL can be  
activated by a utility that sends commands using a serial protocol. The BSL enables the user to control the  
activity of the MSP430 device and to exchange data using a personal computer or other device.  
MSP430 Programming With the JTAG Interface  
This document describes the functions that are required to erase, program, and verify the memory module of the  
MSP430 flash-based and FRAM-based microcontroller families using the JTAG communication port. In addition,  
it describes how to program the JTAG access security fuse that is available on all MSP430 devices. This  
document describes device access using both the standard 4-wire JTAG interface and the 2-wire JTAG  
interface, which is also referred to as Spy-Bi-Wire (SBW).  
Copyright © 2021 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: MSP430FR2422  
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
MSP430 Hardware Tools User's Guide  
This manual describes the hardware of the TI MSP-FET430 Flash Emulation Tool (FET). The FET is the  
program development tool for the MSP430 ultra-low-power microcontroller.  
Application Reports  
MSP430 32-kHz Crystal Oscillators  
Selection of the right crystal, correct load circuit, and proper board layout are important for a stable crystal  
oscillator. This application report summarizes crystal oscillator function and explains the parameters to select the  
correct crystal for MSP430 ultra-low-power operation. In addition, hints and examples for correct board layout  
are given. The document also contains detailed information on the possible oscillator tests to ensure stable  
oscillator operation in mass production.  
MSP430 System-Level ESD Considerations  
System-level ESD has become increasingly demanding with silicon technology scaling towards lower voltages  
and the need for designing cost-effective and ultra-low-power components. This application report addresses  
different ESD topics to help board designers and OEMs understand and design robust system-level designs. A  
few real-world system-level ESD protection design examples and their results are also discussed.  
11.5 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.6 Trademarks  
MSP430, MSP430Ware, Code Composer Studio, E2E, EnergyTrace, ULP Advisor, TI E2Eare  
trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.7 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.8 Export Control Notice  
Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as  
defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled  
product restricted by other applicable national regulations, received from disclosing party under nondisclosure  
obligations (if any), or any direct product of such technology, to any destination to which such export or re-export  
is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S.  
Department of Commerce and other competent Government authorities to the extent required by those laws.  
11.9 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: MSP430FR2422  
 
 
 
 
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, see the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: MSP430FR2422  
 
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: MSP430FR2422  
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RHL0020A  
PLASTIC QUAD FLATPACK- NO LEAD  
A
3.6  
3.4  
B
PIN 1 INDEX AREA  
4.6  
4.4  
C
1 MAX  
SEATING PLANE  
0.08  
C
2.05 0.1  
2X 1.5  
SYMM  
0.5  
0.3  
20X  
(0.2) TYP  
10  
11  
14X 0.5  
9
12  
SYMM  
2X  
3.5  
21  
3.05 0.1  
19  
2
0.29  
20X  
0.19  
0.1  
0.05  
20  
4X (0.2)  
2X (0.55)  
1
PIN 1 ID  
(OPTIONAL)  
C
A B  
C
4219071 / A 06/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
Copyright © 2021 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: MSP430FR2422  
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RHL0020A  
PLASTIC QUAD FLATPACK- NO LEAD  
(3.3)  
(2.05)  
2X (1.5)  
SYMM  
1
20  
2X (0.4)  
20X (0.6)  
19  
2
20X (0.24)  
14X (0.5)  
SYMM  
21  
(3.05) (4.3)  
6X (0.525)  
2X (0.75)  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
9
12  
(R0.05) TYP  
(Ø0.2) VIA  
TYP)  
10  
11  
4X (0.2)  
4X  
(0.775)  
2X (0.55)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 18X  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
0.07 MIN  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4219071 / A 06/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments  
literature number SLUA271 (www.ti.com/lit/slua271)  
.
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
6. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to theri  
locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: MSP430FR2422  
MSP430FR2422  
ZHCSHB5D JANUARY 2018 REVISED JANUARY 2021  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RHL0020A  
PLASTIC QUAD FLATPACK- NO LEAD  
(3.3)  
2X (1.5)  
(0.55)  
TYP  
(0.56)  
TYP  
1
20  
SOLDER MASK EDGE  
TYP  
20X (0.6)  
2
19  
20X (0.24)  
14X (0.5)  
SYMM  
(1.05)  
TYP  
(4.3)  
21  
6X  
(0.85)  
(R0.05) TYP  
METAL  
TYP  
9
12  
2X  
(0.775)  
2X (0.25)  
11  
10  
4X (0.2)  
6X (0.92)  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1mm THICK STENCIL  
EXPOSED PAD  
75% PRINTED COVERAGE BY AREA  
SCALE: 20X  
4219071 / A 06/2017  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations..  
www.ti.com  
Copyright © 2021 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: MSP430FR2422  
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Jul-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
MSP430FR2422IPW16  
MSP430FR2422IPW16R  
MSP430FR2422IRHLR  
MSP430FR2422IRHLT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
VQFN  
PW  
PW  
16  
16  
20  
20  
90  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
FR2422  
Samples  
Samples  
Samples  
Samples  
2000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
FR2422  
FR2422  
FR2422  
RHL  
RHL  
VQFN  
250  
RoHS & Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Jul-2022  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Jan-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
MSP430FR2422IPW16R TSSOP  
PW  
RHL  
RHL  
16  
20  
20  
2000  
3000  
250  
330.0  
330.0  
180.0  
12.4  
12.4  
12.4  
6.9  
5.6  
1.6  
1.1  
1.1  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
MSP430FR2422IRHLR  
MSP430FR2422IRHLT  
VQFN  
VQFN  
3.71  
3.71  
4.71  
4.71  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Jan-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
MSP430FR2422IPW16R  
MSP430FR2422IRHLR  
MSP430FR2422IRHLT  
TSSOP  
VQFN  
VQFN  
PW  
RHL  
RHL  
16  
20  
20  
2000  
3000  
250  
367.0  
367.0  
210.0  
367.0  
367.0  
185.0  
35.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Jan-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
PW TSSOP  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
MSP430FR2422IPW16  
16  
90  
530  
10.2  
3600  
3.5  
Pack Materials-Page 3  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

MSP430FR2422IRHLT

具有 8KB FRAM、2KB SRAM、10 位 ADC、UART/SPI/I2C 和计时器的 16MHz MCU | RHL | 20 | -40 to 85
TI

MSP430FR2433

具有 16KB FRAM、4KB SRAM、10 位 ADC、UART/SPI/I2C 和计时器的 16MHz MCU
TI

MSP430FR2433IRGER

具有 16KB FRAM、4KB SRAM、10 位 ADC、UART/SPI/I2C 和计时器的 16MHz MCU | RGE | 24 | -40 to 85
TI

MSP430FR2433IRGET

具有 16KB FRAM、4KB SRAM、10 位 ADC、UART/SPI/I2C 和计时器的 16MHz MCU | RGE | 24 | -40 to 85
TI

MSP430FR2433IYQWR

具有 16KB FRAM、4KB SRAM、10 位 ADC、UART/SPI/I2C 和计时器的 16MHz MCU | YQW | 24 | -40 to 85
TI

MSP430FR2433IYQWT

具有 16KB FRAM、4KB SRAM、10 位 ADC、UART/SPI/I2C 和计时器的 16MHz MCU | YQW | 24 | -40 to 85
TI

MSP430FR2475

具有 32KB FRAM、4KB SRAM、比较器、12 位 ADC、UART/SPI/I2C 和计时器的 16MHz MCU
TI

MSP430FR2475TPT

具有 32KB FRAM、4KB SRAM、比较器、12 位 ADC、UART/SPI/I2C 和计时器的 16MHz MCU | PT | 48 | -40 to 105
TI

MSP430FR2475TPTR

具有 32KB FRAM、4KB SRAM、比较器、12 位 ADC、UART/SPI/I2C 和计时器的 16MHz MCU | PT | 48 | -40 to 105
TI

MSP430FR2475TRHAR

具有 32KB FRAM、4KB SRAM、比较器、12 位 ADC、UART/SPI/I2C 和计时器的 16MHz MCU | RHA | 40 | -40 to 105
TI

MSP430FR2475TRHAT

具有 32KB FRAM、4KB SRAM、比较器、12 位 ADC、UART/SPI/I2C 和计时器的 16MHz MCU | RHA | 40 | -40 to 105
TI

MSP430FR2475TRHBR

具有 32KB FRAM、4KB SRAM、比较器、12 位 ADC、UART/SPI/I2C 和计时器的 16MHz MCU | RHB | 32 | -40 to 105
TI