MSP430F2234TRHA [TI]

MIXED SIGNAL MICROCONTROLLER; 混合信号微控制器
MSP430F2234TRHA
型号: MSP430F2234TRHA
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

MIXED SIGNAL MICROCONTROLLER
混合信号微控制器

微控制器和处理器 外围集成电路 时钟
文件: 总87页 (文件大小:1774K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢇ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢇꢆ ꢃ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
D
D
Low Supply Voltage Range 1.8 V to 3.6 V  
D
Two Configurable Operational Amplifiers  
(MSP430x22x4 only)  
Ultralow-Power Consumption  
− Active Mode: 270 µA at 1 MHz, 2.2 V  
− Standby Mode: 0.7 µA  
− Off Mode (RAM Retention): 0.1 µA  
Ultrafast Wake-Up From Standby Mode in  
Less Than 1 µs  
16-Bit RISC Architecture, 62.5 ns  
Instruction Cycle Time  
D
Brownout Detector  
D
Serial Onboard Programming,  
No External Programming Voltage Needed  
Programmable Code Protection by  
Security Fuse  
D
D
D
D
D
D
Bootstrap Loader  
On Chip Emulation Module  
Basic Clock Module Configurations:  
− Internal Frequencies up to 16MHz With  
Four Calibrated Frequencies to 1%  
− Internal Very Low Power LF Oscillator  
− 32-kHz Crystal  
− High-Frequency Crystal up to 16 MHz  
− Resonator  
− External Digital Clock Source  
− External resistor  
Family Members Include:  
MSP430F2232: 8KB + 256B Flash Memory  
512B RAM  
MSP430F2252: 16KB + 256B Flash Memory  
512B RAM  
MSP430F2272: 32KB + 256B Flash Memory  
1KB RAM  
MSP430F2234: 8KB + 256B Flash Memory  
512B RAM  
D
D
D
16-Bit Timer_A With Three  
Capture/Compare Registers  
MSP430F2254: 16KB + 256B Flash Memory  
512B RAM  
MSP430F2274: 32KB + 256B Flash Memory  
1KB RAM  
Available in a 38-Pin Plastic Small-Outline  
Thin (TSSOP) Package and 40-Pin QFN  
Package  
For Complete Module Descriptions, Refer  
to the MSP430x2xx Family User’s Guide  
16-Bit Timer_B With Three  
Capture/Compare Registers  
Universal Serial Communication Interface  
− Enhanced UART supporting  
Auto-Baudrate Detection (LIN)  
− IrDA Encoder and Decoder  
− Synchronous SPI  
D
− I2Ct  
D
10-Bit, 200-ksps A/D Converter With  
Internal Reference, Sample-and-Hold,  
Autoscan, and Data Transfer Controller  
description  
The Texas Instruments MSP430 family of ultralow-power microcontrollers consist of several devices featuring  
different sets of peripherals targeted for various applications. The architecture, combined with five low-power  
modes is optimized to achieve extended battery life in portable measurement applications. The device features  
a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code  
efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less  
than 1 µs.  
The MSP430x22xx series is an ultralow-power mixed signal microcontroller with two built-in 16-bit timers, a  
universal serial communication interface, 10-bit A/D converter with integrated reference and data transfer  
controller (DTC), two general purpose operational amplifiers in the MSP430x22x4 devices, and 32 I/O pins.  
Typical applications include sensor systems that capture analog signals, convert them to digital values, and then  
process the data for display or for transmission to a host system. Stand alone RF sensor front end is another  
area of application.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
ꢂꢒ ꢓ ꢌꢕ ꢑ ꢔꢉ ꢓ ꢎ ꢌ ꢏꢔꢏ ꢖꢗ ꢘ ꢙꢚ ꢛ ꢜꢝ ꢖꢙꢗ ꢖꢞ ꢟꢠ ꢚ ꢚ ꢡꢗꢝ ꢜꢞ ꢙꢘ ꢢꢠꢣ ꢤꢖꢟ ꢜꢝ ꢖꢙꢗ ꢥꢜ ꢝꢡ ꢦ  
ꢂꢚ ꢙ ꢥꢠꢟ ꢝ ꢞ ꢟ ꢙꢗ ꢘꢙ ꢚ ꢛ ꢝ ꢙ ꢞ ꢢꢡ ꢟ ꢖꢘ ꢖꢟꢜ ꢝꢖ ꢙꢗꢞ ꢢꢡ ꢚ ꢝꢧ ꢡ ꢝꢡ ꢚ ꢛꢞ ꢙꢘ ꢔꢡꢆ ꢜꢞ ꢉꢗꢞ ꢝꢚ ꢠꢛ ꢡꢗꢝ ꢞ  
ꢞ ꢝ ꢜ ꢗꢥ ꢜ ꢚꢥ ꢨ ꢜ ꢚꢚ ꢜ ꢗ ꢝꢩꢦ ꢂꢚ ꢙ ꢥꢠꢟ ꢝꢖꢙꢗ ꢢꢚ ꢙꢟ ꢡꢞ ꢞꢖ ꢗꢪ ꢥꢙꢡ ꢞ ꢗꢙꢝ ꢗꢡ ꢟꢡ ꢞꢞ ꢜꢚ ꢖꢤ ꢩ ꢖꢗꢟ ꢤꢠꢥ ꢡ  
ꢝ ꢡ ꢞ ꢝꢖ ꢗꢪ ꢙꢘ ꢜ ꢤꢤ ꢢꢜ ꢚ ꢜ ꢛ ꢡ ꢝ ꢡ ꢚ ꢞ ꢦ  
Copyright 2006 Texas Instruments Incorporated  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢇꢆꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢇꢇ ꢆ ꢃ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
AVAILABLE OPTIONS  
PACKAGED DEVICES  
PLASTIC  
38-PIN TSSOP  
(DA)  
PLASTIC  
40-PIN QFN  
(RHA)  
T
A
MSP430F2232IDA  
MSP430F2252IDA  
MSP430F2272IDA  
MSP430F2234IDA  
MSP430F2254IDA  
MSP430F2274IDA  
MSP430F2232IRHA  
MSP430F2252IRHA  
MSP430F2272IRHA  
MSP430F2234IRHA  
MSP430F2254IRHA  
MSP430F2274IRHA  
40°C to 85°C  
40°C to 105°C  
MSP430F2232TRHA  
MSP430F2232TDA  
MSP430F2252TDA  
MSP430F2252TRHA  
MSP430F2272TDA  
MSP430F2234TDA  
MSP430F2254TDA  
MSP430F2274TDA  
MSP430F2272TRHA  
MSP430F2234TRHA  
MSP430F2254TRHA  
MSP430F2274TRHA  
Product Preview  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢇ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢇꢆ ꢃ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
MSP430x22x2 device pinout, DA package  
TEST/SBWTCK  
DVCC  
1
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
P1.7/TA 2/TDO /TDI  
P1.6/TA 1/TDI  
2
P2.5/Rosc  
3
P1.5/TA 0/TMS  
DVSS  
4
P1.4/SMCLK /TCK  
P1.3/TA 2  
XOUT /P2.7  
5
XIN /P2.6  
6
P1.2/TA 1  
RST /NMI /SBWTDIO  
P2.0/ACLK /A0  
P2.1/TAINCLK /SMCLK /A1  
P2.2/TA 0/A2  
7
P1.1/TA 0  
8
P1.0/TACLK /ADC 10CLK  
P2.4/TA 2/A4/VREF +/VeREF +  
P2.3/TA 1/A3/VREF /VeREF −  
P3.7/A7  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
P3.0/UCB 0STE /UCA 0CLK /A5  
P3.1/UCB 0SIMO /UCB 0SDA  
P3.2/UCB 0SOMI /UCB 0SCL  
P3.3/UCB 0CLK /UCA 0STE  
AVSS  
P3.6/A6  
P3.5/UCA 0RXD /UCA 0SOMI  
P3.4/UCA 0TXD /UCA 0SIMO  
P4.7/TBCLK  
AVCC  
P4.6/TBOUTH /A15  
P4.5/TB2/A14  
P4.0/TB0  
P4.1/TB1  
P4.4/TB1/A13  
P4.2/TB2  
P4.3/TB0/A12  
MSP430x22x4 device pinout, DA package  
TEST /SBWTCK  
DVCC  
1
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
P1.7/TA 2/TDO /TDI  
P1.6/TA 1/TDI  
2
P2.5/Rosc  
3
P1.5/TA 0/TMS  
DVSS  
4
P1.4/SMCLK /TCK  
XOUT /P2.7  
5
P1.3/TA 2  
XIN /P2.6  
6
P1.2/TA 1  
RST /NMI /SBWTDIO  
P2.0/ACLK /A0/OA0I0  
P2.1/TAINCLK /SMCLK /A1/OA0O  
P2.2/TA 0/A2/OA0I1  
P3.0/UCB 0STE /UCA 0CLK /A5  
P3.1/UCB 0SIMO /UCB 0SDA  
P3.2/UCB 0SOMI /UCB 0SCL  
P3.3/UCB 0CLK /UCA 0STE  
AVSS  
7
P1.1/TA 0  
8
P1.0/TACLK /ADC 10CLK  
P2.4/TA 2/A4/VREF +/VeREF +/OA1I0  
P2.3/TA 1/A3/VREF /VeREF /OA1I1/OA1O  
P3.7/A7/OA1I2  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
P3.6/A6/OA0I2  
P3.5/UCA 0RXD /UCA 0SOMI  
P3.4/UCA 0TXD /UCA 0SIMO  
P4.7/TBCLK  
AVCC  
P4.6/TBOUTH /A15/OA1I3  
P4.5/TB2/A14/OA0I3  
P4.4/TB1/A13/OA1O  
P4.3/TB0/A12/OA0O  
P4.0/TB0  
P4.1/TB1  
P4.2/TB2  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢇꢆꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢇꢇ ꢆ ꢃ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
MSP430x22x2 device pinout, RHA package  
39 38 37 36 35 34 33 32  
DVSS  
XOUT /P2.7  
1
2
3
4
5
6
7
8
9
30 P1.1/TA 0  
29 P1.0/TACLK /ADC 10CLK  
28 P2.4/TA 2/A4/VREF +/VeREF +  
27 P2.3/TA 1/A3/VREF /VeREF −  
26 P3.7/A7  
XIN /P2.6  
DVSS  
RST /NMI /SBWTDIO  
P2.0/ACLK /A0  
25 P3.6/A6  
P2.1/TAINCLK /SMCLK /A1  
P2.2/TA 0/A2  
24 P3.5/UCA 0RXD /UCA 0SOMI  
23 P3.4/UCA 0TXD /UCA 0SIMO  
22 P4.7/TBCLK  
P3.0/UCB 0STE /UCA 0CLK /A5  
P3.1/UCB 0SIMO /UCB 0SDA 10  
21 P4.6/TBOUTH /A15  
12 13 14 15 16 17 18 19  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢇ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢇꢆ ꢃ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
MSP430x22x4 device pinout, RHA package  
39 38 37 36 35 34 33 32  
DVSS  
XOUT /P2.7  
1
2
3
4
5
6
7
8
9
30 P1.1/TA 0  
29 P1.0/TACLK /ADC 10CLK  
28 P2.4/TA 2/A4/VREF +/VeREF +/OA1I0  
27 P2.3/TA 1/A3/VREF /VeREF /OA1I1/OA1O  
26 P3.7/A7/OA1I2  
XIN /P2.6  
DVSS  
RST /NMI /SBWTDIO  
P2.0/ACLK /A0/OA0I0  
P2.1/TAINCLK /SMCLK /A1/OA0O  
P2.2/TA 0/A2/OA0I1  
P3.0/UCB 0STE /UCA 0CLK /A5  
25 P3.6/A6/OA0I2  
24 P3.5/UCA 0RXD /UCA 0SOMI  
23 P3.4/UCA 0TXD /UCA 0SIMO  
22 P4.7/TBCLK  
P3.1/UCB 0SIMO /UCB 0SDA 10  
21 P4.6/TBOUTH /A15/OA1I3  
12 13 14 15 16 17 18 19  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢇꢆꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢇꢇ ꢆ ꢃ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
MSP430x22x2 functional block diagram  
VCC  
VSS  
P1.x/P2.x  
2x8  
P3.x/P4.x  
2x8  
XIN  
XOUT  
ADC10  
10Bit  
Ports P1/P2  
ACLK  
Flash  
RAM  
Ports P3/P4  
Basic Clock  
System+  
2x8 I/O  
Interrupt  
capability,  
pullup/down  
resistors  
SMCLK  
32kB  
16kB  
8kB  
1kB  
512B  
512B  
12  
2x8 I/O  
pullup/down  
resistors  
Channels,  
Autoscan,  
DTC  
MCLK  
MAB  
16MHz  
CPU  
incl. 16  
Registers  
MDB  
Emulation  
(2BP)  
Timer_B3  
USCI_A0:  
UART/LIN,  
IrDA, SPI  
Watchdog  
WDT+  
Timer_A3  
JTAG  
Interface  
Brownout  
Protection  
3 CC  
Registers,  
Shadow  
Reg  
3 CC  
Registers  
USCI_B0:  
SPI, I2C  
15/16Bit  
SpyBi Wire  
RST/NMI  
NOTE: See port schematics section for detailed I/O information.  
MSP430x22x4 functional block diagram  
VCC  
VSS  
P1.x/P2.x  
2x8  
P3.x/P4.x  
2x8  
XIN  
XOUT  
ADC10  
10Bit  
Ports P1/P2  
ACLK  
Flash  
RAM  
Ports P3/P4  
Basic Clock  
System+  
OA0, OA1  
2x8 I/O  
Interrupt  
capability,  
pullup/down  
resistors  
SMCLK  
32kB  
16kB  
8kB  
1kB  
512B  
512B  
12  
2x8 I/O  
pullup/down  
resistors  
Channels,  
Autoscan,  
DTC  
2 Op Amps  
MCLK  
MAB  
16MHz  
CPU  
incl. 16  
Registers  
MDB  
Emulation  
(2BP)  
Timer_B3  
USCI_A0:  
UART/LIN,  
IrDA, SPI  
Watchdog  
WDT+  
Timer_A3  
JTAG  
Interface  
Brownout  
Protection  
3 CC  
Registers,  
Shadow  
Reg  
3 CC  
Registers  
USCI_B0:  
SPI, I2C  
15/16Bit  
SpyBi Wire  
RST/NMI  
NOTE: See port schematics section for detailed I/O information.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢇ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢇꢆ ꢃ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
Terminal Functions, MSP430x22x2  
TERMINAL  
DA  
RHA  
NO.  
29  
DESCRIPTION  
NAME  
P1.0/TACLK/  
I/O  
NO.  
31  
I/O General-purpose digital I/O pin  
Timer_A, clock signal TACLK input  
ADC10, conversion clock  
ADC10CLK  
P1.1/TA0  
P1.2/TA1  
P1.3/TA2  
32  
33  
34  
35  
36  
37  
38  
8
30  
31  
32  
33  
34  
35  
36  
6
I/O General-purpose digital I/O pin  
Timer_A, capture: CCI0A input, compare: OUT0 output/BSL transmit  
I/O General-purpose digital I/O pin  
Timer_A, capture: CCI1A input, compare: OUT1 output  
I/O General-purpose digital I/O pin  
Timer_A, capture: CCI2A input, compare: OUT2 output  
P1.4/SMCLK/  
TCK  
I/O General-purpose digital I/O pin / SMCLK signal output  
Test Clock input for device programming and test  
P1.5/TA0/  
TMS  
I/O General-purpose digital I/O pin / Timer_A, compare: OUT0 output  
Test Mode Select input for device programming and test  
P1.6/TA1/  
TDI/TCLK  
I/O General-purpose digital I/O pin / Timer_A, compare: OUT1 output  
Test Data Input or Test Clock Input for programming and test  
P1.7/TA2/  
I/O General-purpose digital I/O pin / Timer_A, compare: OUT2 output  
Test Data Output or Test Data Input for programming and test  
TDO/TDI  
P2.0/ACLK/A0  
I/O General-purpose digital I/O pin / ACLK output  
ADC10, analog input A0  
P2.1/TAINCLK/SMCLK/A1  
9
7
I/O General-purpose digital I/O pin  
Timer_A, clock signal at INCLK, SMCLK signal output  
ADC10, analog input A1  
P2.2/TA0/A2  
P2.3/TA1/  
10  
29  
8
I/O General-purpose digital I/O pin  
Timer_A, capture: CCI0B input/BSL receive, compare: OUT0 output  
ADC10, analog input A2  
27  
I/O General-purpose digital I/O pin  
A3/V  
/V  
Timer_A, capture CCI1B input, compare: OUT1 output  
ADC10, analog input A3 / negative reference voltage output/input  
REF− eREF−  
P2.4/TA2/  
A4/V  
30  
3
28  
40  
3
I/O General-purpose digital I/O pin / Timer_A, compare: OUT2 output  
ADC10, analog input A4 / positive reference voltage output/input  
/V  
REF+ eREF+  
P2.5/  
I/O General-purpose digital I/O pin  
R
Input for external DCO resistor to define DCO frequency  
OSC  
XIN/P2.6  
6
I/O Input terminal of crystal oscillator  
General-purpose digital I/O pin  
XOUT/P2.7  
5
2
I/O Output terminal of crystal oscillator  
General-purpose digital I/O pin  
P3.0/  
11  
9
I/O General-purpose digital I/O pin  
UCB0STE/UCA0CLK/  
A5  
USCI_B0 slave transmit enable / USCI_A0 clock input/output  
ADC10, analog input A5  
P3.1/  
12  
13  
14  
25  
10  
11  
12  
23  
I/O General-purpose digital I/O pin  
2
2
UCB0SIMO/UCB0SDA  
USCI_B0 slave in/master out in SPI mode, SDA I C data in I C mode  
P3.2/  
I/O General-purpose digital I/O pin  
2
2
UCB0SOMI/UCB0SCL  
USCI_B0 slave out/master in in SPI mode, SCL I C clock in I C mode  
P3.3/  
I/O General-purpose digital I/O pin  
UCB0CLK/UCA0STE  
USCI_B0 clock input/output / USCI_A0 slave transmit enable  
P3.4/  
I/O General-purpose digital I/O pin  
UCA0TXD/UCA0SIMO  
USCI_A0 transmit data output in UART mode, slave in/master out in SPI mode  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢇꢆꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢇꢇ ꢆ ꢃ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
Terminal Functions, MSP430x22x2 (Continued)  
TERMINAL  
DA  
NO.  
26  
RHA  
NO.  
24  
DESCRIPTION  
NAME  
I/O  
P3.5/  
I/O General-purpose digital I/O pin  
UCA0RXD/UCA0SOMI  
USCI_A0 receive data input in UART mode, slave out/master in in SPI mode  
P3.6/A6  
27  
28  
17  
18  
19  
20  
25  
26  
15  
16  
17  
18  
I/O General-purpose digital I/O pin  
ADC10 analog input A6  
P3.7/A7  
I/O General-purpose digital I/O pin  
ADC10 analog input A7  
P4.0/TB0  
P4.1/TB1  
P4.2/TB2  
I/O General-purpose digital I/O pin  
Timer_B, capture: CCI0A input, compare: OUT0 output  
I/O General-purpose digital I/O pin  
Timer_B, capture: CCI1A input, compare: OUT1 output  
I/O General-purpose digital I/O pin  
Timer_B, capture: CCI2A input, compare: OUT2 output  
P4.3/TB0/  
A12  
I/O General-purpose digital I/O pin  
Timer_B, capture: CCI0B input, compare: OUT0 output  
ADC10 analog input A12  
P4.4/TB1  
A13  
21  
22  
23  
19  
20  
21  
I/O General-purpose digital I/O pin  
Timer_B, capture: CCI1B input, compare: OUT1 output  
ADC10 analog input A13  
P4.5/TB2  
A14  
I/O General-purpose digital I/O pin  
Timer_B, compare: OUT2 output  
ADC10 analog input A14  
P4.6/TBOUTH  
A15  
I/O General-purpose digital I/O pin  
Timer_B, switch all TB0 to TB3 outputs to high impedance  
ADC10 analog input A15  
P4.7/TBCLK  
24  
7
22  
5
I/O General-purpose digital I/O pin  
Timer_B, clock signal TBCLK input  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
I
Reset or nonmaskable interrupt input  
Spy-Bi-Wire test data input/output during programming and test  
1
37  
I
Selects test mode for JTAG pins on Port1. The device protection fuse is  
connected to TEST.  
Spy-Bi-Wire test clock input during programming and test  
DV  
2
16  
4
38, 39  
14  
Digital supply voltage  
Analog supply voltage  
Digital ground reference  
Analog ground reference  
CC  
AV  
DV  
CC  
1, 4  
13  
SS  
SS  
AV  
15  
NA  
QFN Pad  
Package  
Pad  
NA QFN package pad; connection to DV recommended.  
SS  
TDO or TDI is selected via JTAG instruction.  
NOTE: If XOUT/P2.7/CA7 is used as an input, excess current will flow until P2SEL.7 is cleared. This is due to the oscillator output driver  
connection to this pad after reset.  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢇ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢇꢆ ꢃ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
Terminal Functions, MSP430x22x4  
TERMINAL  
DA  
RHA  
NO.  
29  
DESCRIPTION  
NAME  
P1.0/TACLK/  
I/O  
NO.  
31  
I/O General-purpose digital I/O pin  
Timer_A, clock signal TACLK input  
ADC10, conversion clock  
ADC10CLK  
P1.1/TA0  
P1.2/TA1  
P1.3/TA2  
32  
33  
34  
35  
36  
37  
38  
8
30  
31  
32  
33  
34  
35  
36  
6
I/O General-purpose digital I/O pin  
Timer_A, capture: CCI0A input, compare: OUT0 output/BSL transmit  
I/O General-purpose digital I/O pin  
Timer_A, capture: CCI1A input, compare: OUT1 output  
I/O General-purpose digital I/O pin  
Timer_A, capture: CCI2A input, compare: OUT2 output  
P1.4/SMCLK/  
TCK  
I/O General-purpose digital I/O pin / SMCLK signal output  
Test Clock input for device programming and test  
P1.5/TA0/  
TMS  
I/O General-purpose digital I/O pin / Timer_A, compare: OUT0 output  
Test Mode Select input for device programming and test  
P1.6/TA1/  
TDI/TCLK  
I/O General-purpose digital I/O pin / Timer_A, compare: OUT1 output  
Test Data Input or Test Clock Input for programming and test  
P1.7/TA2/  
I/O General-purpose digital I/O pin / Timer_A, compare: OUT2 output  
Test Data Output or Test Data Input for programming and test  
TDO/TDI  
P2.0/ACLK/A0/OA0I0  
I/O General-purpose digital I/O pin / ACLK output  
ADC10, analog input A0 / OA0, analog input I0  
P2.1/TAINCLK/SMCLK/  
A1/OA0O  
9
7
I/O General-purpose digital I/O pin / Timer_A, clock signal at INCLK  
SMCLK signal output  
ADC10, analog input A1 / OA0, analog output  
P2.2/TA0/  
A2/OA0I1  
10  
29  
8
I/O General-purpose digital I/O pin  
Timer_A, capture: CCI0B input/BSL receive, compare: OUT0 output  
ADC10, analog input A2 / OA0, analog input I1  
P2.3/TA1/  
27  
I/O General-purpose digital I/O pin  
A3/V  
/OA1I1/OA1O  
/V  
Timer_A, capture CCI1B input, compare: OUT1 output  
ADC10, analog input A3 / negative reference voltage output/input  
OA1, analog input I1 / OA1, analog output  
REF− eREF−  
P2.4/TA2/  
30  
28  
I/O General-purpose digital I/O pin / Timer_A, compare: OUT2 output  
ADC10, analog input A4 / positive reference voltage output/input  
OA1, analog input I0  
A4/V  
/V  
REF+ eREF+  
/OA1I0  
P2.5/  
3
6
40  
3
I/O General-purpose digital I/O pin  
R
Input for external DCO resistor to define DCO frequency  
OSC  
XIN/P2.6  
I/O Input terminal of crystal oscillator  
General-purpose digital I/O pin  
XOUT/P2.7  
5
2
I/O Output terminal of crystal oscillator  
General-purpose digital I/O pin  
P3.0/  
11  
9
I/O General-purpose digital I/O pin  
UCB0STE/UCA0CLK/  
A5  
USCI_B0 slave transmit enable / USCI_A0 clock input/output  
ADC10, analog input A5  
P3.1/  
12  
13  
14  
25  
10  
11  
12  
23  
I/O General-purpose digital I/O pin  
2
2
UCB0SIMO/UCB0SDA  
USCI_B0 slave in/master out in SPI mode, SDA I C data in I C mode  
P3.2/  
I/O General-purpose digital I/O pin  
2
2
UCB01SOMI/UCB0SCL  
USCI_B0 slave out/master in in SPI mode, SCL I C clock in I C mode  
P3.3/  
I/O General-purpose digital I/O pin  
UCB0CLK/UCA0STE  
USCI_B0 clock input/output / USCI_A0 slave transmit enable  
P3.4/  
I/O General-purpose digital I/O pin  
UCA0TXD/UCA0SIMO  
USCI_A0 transmit data output in UART mode, slave in/master out in SPI mode  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢇꢆꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢇꢇ ꢆ ꢃ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
Terminal Functions, MSP430x22x4 (Continued)  
TERMINAL  
DA  
NO.  
26  
RHA  
NO.  
24  
DESCRIPTION  
NAME  
I/O  
P3.5/  
I/O General-purpose digital I/O pin  
UCA0RXD/UCA0SOMI  
USCI_A0 receive data input in UART mode, slave out/master in in SPI mode  
P3.6/A6/OA0I2  
27  
28  
17  
18  
19  
20  
25  
26  
15  
16  
17  
18  
I/O General-purpose digital I/O pin  
ADC10 analog input A6 / OA0 analog input I2  
P3.7/A7/OA1I2  
P4.0/TB0  
I/O General-purpose digital I/O pin  
ADC10 analog input A7 / OA1 analog input I2  
I/O General-purpose digital I/O pin  
Timer_B, capture: CCI0A input, compare: OUT0 output  
P4.1/TB1  
I/O General-purpose digital I/O pin  
Timer_B, capture: CCI1A input, compare: OUT1 output  
P4.2/TB2  
I/O General-purpose digital I/O pin  
Timer_B, capture: CCI2A input, compare: OUT2 output  
P4.3/TB0/  
A12/OA0O  
I/O General-purpose digital I/O pin  
Timer_B, capture: CCI0B input, compare: OUT0 output  
ADC10 analog input A12 / OA0 analog output  
P4.4/TB1  
A13/OA1O  
21  
22  
23  
19  
20  
21  
I/O General-purpose digital I/O pin  
Timer_B, capture: CCI1B input, compare: OUT1 output  
ADC10 analog input A13 / OA1 analog output  
P4.5/TB2  
A14/OA0I3  
I/O General-purpose digital I/O pin  
Timer_B, compare: OUT2 output  
ADC10 analog input A14 / OA0 analog input I3  
P4.6/TBOUTH  
A15/OA1I3  
I/O General-purpose digital I/O pin  
Timer_B, switch all TB0 to TB3 outputs to high impedance  
ADC10 analog input A15 / OA1 analog input I3  
P4.7/TBCLK  
24  
7
22  
5
I/O General-purpose digital I/O pin  
Timer_B, clock signal TBCLK input  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
I
Reset or nonmaskable interrupt input  
Spy-Bi-Wire test data input/output during programming and test  
1
37  
I
Selects test mode for JTAG pins on Port1. The device protection fuse is  
connected to TEST.  
Spy-Bi-Wire test clock input during programming and test  
DV  
2
16  
4
38, 39  
14  
Digital supply voltage  
Analog supply voltage  
Digital ground reference  
Analog ground reference  
CC  
AV  
DV  
CC  
1, 4  
13  
SS  
SS  
AV  
15  
NA  
QFN Pad  
Package  
Pad  
NA QFN package pad connection to DV recommended.  
SS  
TDO or TDI is selected via JTAG instruction.  
NOTE: If XOUT/P2.7/CA7 is used as an input, excess current will flow until P2SEL.7 is cleared. This is due to the oscillator output driver  
connection to this pad after reset.  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢇ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢇꢆ ꢃ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
short-form description  
CPU  
Program Counter  
Stack Pointer  
PC/R0  
The MSP430 CPU has a 16-bit RISC architecture  
that is highly transparent to the application. All  
operations, other than program-flow instructions,  
are performed as register operations in  
conjunction with seven addressing modes for  
source operand and four addressing modes for  
destination operand.  
SP/R1  
Status Register  
SR/CG1/R2  
Constant Generator  
CG2/R3  
R4  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
The CPU is integrated with 16 registers that  
provide reduced instruction execution time. The  
register-to-register operation execution time is  
one cycle of the CPU clock.  
R5  
R6  
R7  
Four of the registers, R0 to R3, are dedicated as  
program counter, stack pointer, status register,  
and constant generator respectively. The  
remaining registers are general-purpose  
registers.  
R8  
R9  
Peripherals are connected to the CPU using data,  
address, and control buses, and can be handled  
with all instructions.  
R10  
R11  
instruction set  
R12  
R13  
The instruction set consists of 51 instructions with  
three formats and seven address modes. Each  
instruction can operate on word and byte data.  
Table 1 shows examples of the three types of  
instruction formats; the address modes are listed  
in Table 2.  
R14  
R15  
Table 1. Instruction Word Formats  
Dual operands, source-destination  
Single operands, destination only  
Relative jump, un/conditional  
e.g., ADD R4,R5  
R4 + R5 −−−> R5  
e.g., CALL  
e.g., JNE  
R8  
PC −−> (TOS), R8−−> PC  
Jump-on-equal bit = 0  
Table 2. Address Mode Descriptions  
ADDRESS MODE  
Register  
S
D
SYNTAX  
EXAMPLE  
MOV R10,R11  
MOV 2(R5),6(R6)  
OPERATION  
F
F
F
F
F
F
F
F
F
MOV Rs,Rd  
R10 −−> R11  
Indexed  
MOV X(Rn),Y(Rm)  
MOV EDE,TONI  
MOV &MEM,&TCDAT  
MOV @Rn,Y(Rm)  
M(2+R5)−−> M(6+R6)  
M(EDE) −−> M(TONI)  
M(MEM) −−> M(TCDAT)  
M(R10) −−> M(Tab+R6)  
Symbolic (PC relative)  
Absolute  
Indirect  
MOV @R10,Tab(R6)  
MOV @R10+,R11  
MOV #45,TONI  
Indirect  
autoincrement  
M(R10) −−> R11  
R10 + 2−−> R10  
F
F
MOV @Rn+,Rm  
Immediate  
MOV #X,TONI  
#45 −−> M(TONI)  
NOTE: S = source  
D = destination  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢇꢆꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢇꢇ ꢆ ꢃ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
operating modes  
The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt  
event can wake up the device from any of the five low-power modes, service the request and restore back to  
the low-power mode on return from the interrupt program.  
The following six operating modes can be configured by software:  
D
D
Active mode AM;  
All clocks are active  
Low-power mode 0 (LPM0);  
CPU is disabled  
ACLK and SMCLK remain active. MCLK is disabled  
D
D
Low-power mode 1 (LPM1);  
CPU is disabled  
ACLK and SMCLK remain active. MCLK is disabled  
DCO’s dc-generator is disabled if DCO not used in active mode  
Low-power mode 2 (LPM2);  
CPU is disabled  
MCLK and SMCLK are disabled  
DCO’s dc-generator remains enabled  
ACLK remains active  
D
D
Low-power mode 3 (LPM3);  
CPU is disabled  
MCLK and SMCLK are disabled  
DCO’s dc-generator is disabled  
ACLK remains active  
Low-power mode 4 (LPM4);  
CPU is disabled  
ACLK is disabled  
MCLK and SMCLK are disabled  
DCO’s dc-generator is disabled  
Crystal oscillator is stopped  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢇ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢇꢆ ꢃ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
interrupt vector addresses  
The interrupt vectors and the power-up starting address are located in the address range of 0FFFFh−0FFC0h.  
The vector contains the 16-bit address of the appropriate interrupt handler instruction sequence.  
If the reset vector (located at address 0FFFEh) contains 0FFFFh (e.g., flash is not programmed) the CPU will  
go into LPM4 immediately after power-up.  
INTERRUPT SOURCE  
INTERRUPT FLAG  
SYSTEM INTERRUPT  
WORD ADDRESS  
PRIORITY  
Power-up  
External reset  
Watchdog  
PORIFG  
RSTIFG  
WDTIFG  
KEYV  
Reset  
0FFFEh  
31, highest  
Flash key violation  
PC out-of-range (see Note 1)  
(see Note 2)  
NMIIFG  
OFIFG  
ACCVIFG  
NMI  
Oscillator fault  
Flash memory access violation  
(non)-maskable,  
(non)-maskable,  
(non)-maskable  
0FFFCh  
30  
(see Notes 2 & 4)  
Timer_B3  
Timer_B3  
TBCCR0 CCIFG (see Note 3)  
maskable  
maskable  
0FFFAh  
0FFF8h  
29  
28  
TBCCR1 and TBCCR2  
CCIFGs, TBIFG  
(see Notes 2 & 3)  
0FFF6h  
0FFF4h  
0FFF2h  
27  
26  
25  
Watchdog Timer  
Timer_A3  
WDTIFG  
maskable  
maskable  
TACCR0 CCIFG (see Note 3)  
TACCR1 CCIFG.  
TACCR2 CCIFG  
TAIFG (see Notes 2 & 3)  
Timer_A3  
maskable  
maskable  
0FFF0h  
24  
UCA0RXIFG, UCB0RXIFG  
(see Notes 2)  
USCI_A0/USCI_B0 Receive  
0FFEEh  
0FFECh  
23  
22  
UCA0TXIFG, UCB0TXIFG  
(see Notes 2)  
USCI_A0/USCI_B0 Transmit  
ADC10  
maskable  
maskable  
ADC10IFG (see Note 3)  
0FFEAh  
0FFE8h  
21  
20  
I/O Port P2  
(eight flags)  
P2IFG.0 to P2IFG.7  
(see Notes 2 & 3)  
maskable  
maskable  
0FFE6h  
0FFE4h  
19  
18  
I/O Port P1  
(eight flags)  
P1IFG.0 to P1IFG.7  
(see Notes 2 & 3)  
0FFE2h  
0FFE0h  
17  
16  
(see Note 5)  
(see Note 6)  
0FFDEh  
15  
0FFDCh ... 0FFC0h  
14 ... 0, lowest  
NOTES: 1. A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h−01FFh) or from  
within unused address ranges.  
2. Multiple source flags  
3. Interrupt flags are located in the module  
4. (non)-maskable: the individual interrupt-enable bit can disable an interrupt event, but the general interrupt enable cannot.  
Nonmaskable: neither the individual nor the general interrupt-enable bit will disable an interrupt event.  
5. This location is used as bootstrap loader security key (BSLSKEY).  
A 0AA55h at this location disables the BSL completely.  
A zero (0h) disables the erasure of the flash if an invalid password is supplied.  
6. The interrupt vectors at addresses 0FFDCh to 0FFC0h are not used in this device and can be used for regular program code if  
necessary.  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢇꢆꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢇꢇ ꢆ ꢃ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
special function registers  
Most interrupt and module enable bits are collected into the lowest address space. Special function register bits  
not allocated to a functional purpose are not physically present in the device. Simple software access is provided  
with this arrangement.  
interrupt enable 1 and 2  
Address  
00h  
7
6
5
4
3
2
1
0
ACCVIE  
rw−0  
NMIIE  
rw−0  
OFIE  
rw−0  
WDTIE  
rw−0  
WDTIE  
Watchdog Timer interrupt enable. Inactive if watchdog mode is selected. Active if Watchdog Timer is configured  
in interval timer mode.  
OFIE  
Oscillator fault enable  
NMIIE  
ACCVIE  
(Non)maskable interrupt enable  
Flash access violation interrupt enable  
Address  
01h  
7
6
5
4
3
2
1
0
UCB0TXIE UCB0RXIE UCA0TXIE UCA0RXIE  
rw−0 rw−0 rw−0 rw−0  
UCA0RXIE  
UCA0TXIE  
UCB0RXIE  
UCB0TXIE  
USCI_A0 receive-interrupt enable  
USCI_A0 transmit-interrupt enable  
USCI_B0 receive-interrupt enable  
USCI_B0 transmit-interrupt enable  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢇ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢇꢆ ꢃ  
ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
interrupt flag register 1 and 2  
Address  
02h  
7
6
5
4
3
2
1
0
NMIIFG  
rw−0  
RSTIFG  
rw−(0)  
PORIFG  
rw−(1)  
OFIFG  
rw−1  
WDTIFG  
rw−(0)  
WDTIFG  
Set on Watchdog Timer overflow (in watchdog mode) or security key violation.  
Reset on V power-up or a reset condition at RST/NMI pin in reset mode.  
CC  
Flag set on oscillator fault  
External reset interrupt flag. Set on a reset condition at RST/NMI pin in reset mode. Reset on V  
OFIFG  
RSTIFG  
PORIFG  
NMIIFG  
power-up  
CC  
Power-On interrupt flag. Set on V  
power-up.  
CC  
Set via RST/NMI-pin  
Address  
03h  
7
6
5
4
3
2
1
0
UCB0  
TXIFG  
UCB0  
RXIFG  
UCA0  
TXIFG  
UCA0  
RXIFG  
rw−1  
rw−0  
rw−1  
rw−0  
UCA0RXIFG  
UCA0TXIFG  
UCB0RXIFG  
UCB0TXIFG  
USCI_A0 receive-interrupt flag  
USCI_A0 transmit-interrupt flag  
USCI_B0 receive-interrupt flag  
USCI_B0 transmit-interrupt flag  
Legend  
rw:  
rw-0,1:  
rw-(0,1):  
Bit can be read and written.  
Bit can be read and written. It is Reset or Set by PUC.  
Bit can be read and written. It is Reset or Set by POR.  
SFR bit is not present in device  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢇꢆꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢇꢇ ꢆ ꢃ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
memory organization  
MSP430F223x  
MSP430F225x  
MSP430F227x  
Memory  
Main: interrupt vector  
Main: code memory  
Size  
Flash  
Flash  
8KB Flash  
0FFFFh−0FFC0h  
0FFFFh−0E000h  
16KB Flash  
0FFFFh−0FFC0h  
0FFFFh−0C000h  
32KB Flash  
0FFFFh−0FFC0h  
0FFFFh−08000h  
Information memory  
Boot memory  
RAM  
Size  
Flash  
256 Byte  
010FFh−01000h  
256 Byte  
010FFh−01000h  
256 Byte  
010FFh−01000h  
Size  
ROM  
1KB  
0FFFh−0C00h  
1KB  
0FFFh−0C00h  
1KB  
0FFFh−0C00h  
Size  
512 Byte  
512 Byte  
1KB  
03FFh−0200h  
03FFh−0200h  
05FFh−0200h  
Peripherals  
16-bit  
8-bit  
8-bit SFR  
01FFh−0100h  
0FFh−010h  
0Fh−00h  
01FFh−0100h  
0FFh−010h  
0Fh−00h  
01FFh−0100h  
0FFh−010h  
0Fh−00h  
bootstrap loader (BSL)  
The MSP430 bootstrap loader (BSL) enables users to program the flash memory or RAM using a UART serial  
interface. Access to the MSP430 memory via the BSL is protected by user-defined password. For complete  
description of the features of the BSL and its implementation, see the application report, Features of the  
MSP430 Bootstrap Loader, TI literature number SLAA089.  
BSL Function  
Data Transmit  
Data Receive  
DA Package Pins  
32 − P1.1  
RHA Package Pins  
30 − P1.1  
10 − P2.2  
8 − P2.2  
flash memory  
The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The  
CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include:  
D
Flash memory has n segments of main memory and four segments of information memory (A to D) of  
64 bytes each. Each segment in main memory is 512 bytes in size.  
D
D
Segments 0 to n may be erased in one step, or each segment may be individually erased.  
Segments A to D can be erased individually, or as a group with segments 0−n.  
Segments A to D are also called information memory.  
D
Segment A contains calibration data. After reset, segment A is protected against programming or erasing.  
It can be unlocked, but care should be taken not to erase this segment if the calibration data is required.  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢇ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢇꢆ ꢃ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
peripherals  
Peripherals are connected to the CPU through data, address, and control busses and can be handled using  
all instructions. For complete module descriptions, refer to the MSP430x2xx Family User’s Guide.  
oscillator and system clock  
The clock system is supported by the basic clock module that includes support for a 32768-Hz watch crystal  
oscillator, an internal very low power, low frequency oscillator, an internal digitally-controlled oscillator (DCO),  
and a high frequency crystal oscillator. The basic clock module is designed to meet the requirements of both  
low system cost and low power consumption. The internal DCO provides a fast turn-on clock source and  
stabilizes in less than 1 µs. The basic clock module provides the following clock signals:  
D
Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal, a high frequency crystal, or the internal very  
low power LF oscillator.  
D
Main clock (MCLK), the system clock used by the CPU.  
D
Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules.  
DCO Calibration Data (provided from factory in flash info memory segment A, see Note)  
DCO Frequency  
Calibration Register  
CALBC1_1MHZ  
CALDCO_1MHZ  
CALBC1_8MHZ  
CALDCO_8MHZ  
CALBC1_12MHZ  
CALDCO_12MHZ  
CALBC1_16MHZ  
CALDCO_16MHZ  
Size  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
Address  
010FFh  
010FEh  
010FDh  
010FCh  
010FBh  
010FAh  
010F9h  
010F8h  
1 MHz  
8 MHz  
12 MHz  
16 MHz  
brownout  
The brownout circuit is implemented to provide the proper internal reset signal to the device during power on  
and power off.  
digital I/O  
There are four 8-bit I/O ports implemented—ports P1, P2, P3, and P4:  
D
D
D
D
D
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt conditions is possible.  
Edge-selectable interrupt input capability for all the eight bits of port P1 and P2.  
Read/write access to port-control registers is supported by all instructions.  
Each I/O has an individually programmable pullup/pulldown resistor.  
WDT+ watchdog timer  
The primary function of the watchdog timer (WDT+) module is to perform a controlled system restart after a  
software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog  
function is not needed in an application, the module can be configured as an interval timer and can generate  
interrupts at selected time intervals.  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢇꢆꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢇꢇ ꢆ ꢃ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
timer_A3  
Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple  
capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare  
registers.  
Timer_A3 Signal Connections  
Input  
Pin Number  
Device  
Input Signal  
Module  
Input Name  
Module  
Block  
Module  
Output Signal  
Output  
Pin Number  
DA  
RHA  
DA  
RHA  
31 - P1.0  
29 - P1.0  
TACLK  
ACLK  
TACLK  
ACLK  
Timer  
CCR0  
CCR1  
CCR2  
NA  
TA0  
TA1  
TA2  
SMCLK  
TAINCLK  
TA0  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
9 - P2.1  
32 - P1.1  
10 - P2.2  
7 - P2.1  
30 - P1.1  
8 - P2.2  
32 - P1.1  
10 - P2.2  
36 - P1.5  
30 - P1.1  
8 - P2.2  
TA0  
V
SS  
34 - P1.5  
V
CC  
V
CC  
33 - P1.2  
29 - P2.3  
31 - P1.2  
27 - P2.3  
TA1  
TA1  
CCI1A  
CCI1B  
GND  
33 - P1.2  
29 - P2.3  
37 - P1.6  
31 - P1.2  
27 - P2.3  
35 - P1.6  
V
SS  
V
CC  
V
CC  
34 - P1.3  
32 - P1.3  
TA2  
CCI2A  
CCI2B  
GND  
34 - P1.3  
30 - P2.4  
38 - P1.7  
32 - P1.3  
28 - P2.4  
36 - P1.7  
ACLK (internal)  
V
SS  
V
CC  
V
CC  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢇ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢇꢆ ꢃ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
timer_B3  
Timer_B3 is a 16-bit timer/counter with three capture/compare registers. Timer_B3 can support multiple  
capture/compares, PWM outputs, and interval timing. Timer_B3 also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare  
registers.  
Timer_B3 Signal Connections  
Input  
Pin Number  
Device  
Input Signal  
Module  
Input Name  
Module  
Block  
Module  
Output Signal  
Output  
Pin Number  
DA  
RHA  
DA  
RHA  
24 - P4.7  
22 - P4.7  
TBCLK  
ACLK  
SMCLK  
TBCLK  
TB0  
TBCLK  
ACLK  
Timer  
CCR0  
CCR1  
CCR2  
NA  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
24 - P4.7  
17 - P4.0  
20 - P4.3  
22 - P4.7  
15 - P4.0  
18 - P4.3  
17 - P4.0  
20 - P4.3  
15 - P4.0  
18 - P4.3  
TB0  
TB0  
TB1  
TB2  
V
SS  
V
V
CC  
CC  
18 - P4.1  
21 - P4.4  
16 - P4.1  
19 - P4.4  
TB1  
TB1  
CCI1A  
CCI1B  
GND  
18 - P4.1  
21 - P4.4  
16 - P4.1  
19 - P4.4  
V
SS  
V
CC  
V
CC  
19 - P4.2  
17 - P4.2  
TB2  
CCI2A  
CCI2B  
GND  
19 - P4.2  
22 - P4.5  
17 - P4.2  
20 - P4.5  
ACLK (internal)  
V
SS  
V
CC  
V
CC  
USCI  
The universal serial communication interface (USCI) module is used for serial data communication. The USCI  
module supports synchronous communication protocols like SPI (3 or 4 pin), I2C and asynchronous  
communication protocols like UART, enhanced UART with automatic baudrate detection (LIN), and IrDA.  
USCI_A0 provides support for SPI (3 or 4 pin), UART, enhanced UART and IrDA.  
USCI_B0 provides support for SPI (3 or 4 pin) and I2C.  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢇꢆꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢇꢇ ꢆ ꢃ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
ADC10  
The ADC10 module supports fast, 10-bit analog-to-digital conversions. The module implements a 10-bit SAR  
core, sample select control, reference generator and data transfer controller, or DTC, for automatic conversion  
result handling allowing ADC samples to be converted and stored without any CPU intervention.  
operational amplifier OA (MSP430x22x4 only)  
The MSP430x22x4 has two configurable low-current general-purpose operational amplifiers. Each OA input  
and output terminal is software-selectable and offer a flexible choice of connections for various applications.  
The OA op amps primarily support front-end analog signal conditioning prior to analog-to-digital conversion.  
OA0 Signal Connections  
Analog Input  
Pin Number  
Device Input Signal  
Module Input Name  
DA  
RHA  
6 - A0  
8 - A0  
OA0I0  
OA0I1  
OA0I1  
OA0I2  
OA0I3  
OAxI0  
OA0I1  
OAxI1  
OAxIA  
OAxIB  
10 - A2  
10 - A2  
27 - A6  
22 - A14  
8 - A2  
8 - A2  
25 - A6  
20 - A14  
OA1 Signal Connections  
Analog Input  
Pin Number  
Device Input Signal  
Module Input Name  
DA  
RHA  
28 - A4  
8 - A2  
30 - A4  
10 - A2  
29 - A3  
28 - A7  
23 - A15  
OA1I0  
OA0I1  
OA1I1  
OA1I2  
OA1I3  
OAxI0  
OA0I1  
OAxI1  
OAxIA  
OAxIB  
27 - A3  
26 - A7  
21 - A15  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢇ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢇꢆ ꢃ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
peripheral file map  
PERIPHERALS WITH WORD ACCESS  
ADC10  
ADC data transfer start address  
ADC memory  
ADC control register 1  
ADC control register 0  
ADC analog enable 0  
ADC analog enable 1  
ADC data transfer control register 1  
ADC data transfer control register 0  
ADC10SA  
1BCh  
1B4h  
1B2h  
1B0h  
04Ah  
04Bh  
049h  
048h  
ADC10MEM  
ADC10CTL1  
ADC10CTL0  
ADC10AE0  
ADC10AE1  
ADC10DTC1  
ADC10DTC0  
Timer_B  
Capture/compare register  
Capture/compare register  
Capture/compare register  
Timer_B register  
Capture/compare control  
Capture/compare control  
Capture/compare control  
Timer_B control  
TBCCR2  
TBCCR1  
TBCCR0  
TBR  
TBCCTL2  
TBCCTL1  
TBCCTL0  
TBCTL  
0196h  
0194h  
0192h  
0190h  
0186h  
0184h  
0182h  
0180h  
011Eh  
Timer_B interrupt vector  
TBIV  
Timer_A  
Capture/compare register  
Capture/compare register  
Capture/compare register  
Timer_A register  
Capture/compare control  
Capture/compare control  
Capture/compare control  
Timer_A control  
TACCR2  
TACCR1  
TACCR0  
TAR  
TACCTL2  
TACCTL1  
TACCTL0  
TACTL  
0176h  
0174h  
0172h  
0170h  
0166h  
0164h  
0162h  
0160h  
012Eh  
Timer_A interrupt vector  
TAIV  
Flash Memory  
Flash control 3  
Flash control 2  
Flash control 1  
FCTL3  
FCTL2  
FCTL1  
012Ch  
012Ah  
0128h  
Watchdog Timer+  
Watchdog/timer control  
WDTCTL  
0120h  
PERIPHERALS WITH BYTE ACCESS  
OA1 (MSP430x22x4 only)  
OA0 (MSP430x22x4 only)  
USCI_B0  
Operational Amplifier 1 control register 1  
Operational Amplifier 1 control register 1  
OA1CTL1  
OA1CTL0  
0C3h  
0C2h  
Operational Amplifier 0 control register 1  
Operational Amplifier 0 control register 1  
OA0CTL1  
OA0CTL0  
0C1h  
0C0h  
USCI_B0 transmit buffer  
USCI_B0 receive buffer  
USCI_B0 status  
USCI_B0 bit rate control 1  
USCI_B0 bit rate control 0  
USCI_B0 control 1  
USCI_B0 control 0  
USCI_B0 I2C slave address  
USCI_B0 I2C own address  
UCB0TXBUF  
UCB0RXBUF 06Eh  
06Fh  
UCB0STAT  
UCB0BR1  
UCB0BR0  
UCB0CTL1  
UCB0CTL0  
UCB0SA  
06Dh  
06Bh  
06Ah  
069h  
068h  
011Ah  
0118h  
UCB0OA  
USCI_A0  
USCI_A0 transmit buffer  
USCI_A0 receive buffer  
USCI_A0 status  
USCI_A0 modulation control  
USCI_A0 baud rate control 1  
USCI_A0 baud rate control 0  
USCI_A0 control 1  
UCA0TXBUF  
UCA0RXBUF 066h  
067h  
UCA0STAT  
UCA0MCTL  
UCA0BR1  
UCA0BR0  
UCA0CTL1  
UCA0CTL0  
065h  
064h  
063h  
062h  
061h  
060h  
USCI_A0 control 0  
USCI_A0 IrDA receive control  
USCI_A0 IrDA transmit control  
USCI_A0 auto baud rate control  
UCA0IRRCTL 05Fh  
UCA0IRTCTL 05Eh  
UCA0ABCTL  
05Dh  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢇꢆꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢇꢇ ꢆ ꢃ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
PERIPHERALS WITH BYTE ACCESS (continued)  
Basic Clock System+  
Basic clock system control 3  
Basic clock system control 2  
Basic clock system control 1  
DCO clock frequency control  
BCSCTL3  
BCSCTL2  
BCSCTL1  
DCOCTL  
053h  
058h  
057h  
056h  
Port P4  
Port P3  
Port P2  
Port P4 resistor enable  
Port P4 selection  
Port P4 direction  
Port P4 output  
P4REN  
P4SEL  
P4DIR  
P4OUT  
P4IN  
011h  
01Fh  
01Eh  
01Dh  
01Ch  
Port P4 input  
Port P3 resistor enable  
Port P3 selection  
Port P3 direction  
Port P3 output  
P3REN  
P3SEL  
P3DIR  
P3OUT  
P3IN  
010h  
01Bh  
01Ah  
019h  
018h  
Port P3 input  
Port P2 resistor enable  
Port P2 selection  
Port P2 interrupt enable  
Port P2 interrupt edge select  
Port P2 interrupt flag  
Port P2 direction  
P2REN  
P2SEL  
P2IE  
P2IES  
P2IFG  
P2DIR  
P2OUT  
P2IN  
02Fh  
02Eh  
02Dh  
02Ch  
02Bh  
02Ah  
029h  
028h  
Port P2 output  
Port P2 input  
Port P1  
Port P1 resistor enable  
Port P1 selection  
Port P1 interrupt enable  
Port P1 interrupt edge select  
Port P1 interrupt flag  
Port P1 direction  
P1REN  
P1SEL  
P1IE  
P1IES  
P1IFG  
P1DIR  
P1OUT  
P1IN  
027h  
026h  
025h  
024h  
023h  
022h  
021h  
020h  
Port P1 output  
Port P1 input  
Special Function  
SFR interrupt flag 2  
SFR interrupt flag 1  
SFR interrupt enable 2  
SFR interrupt enable 1  
IFG2  
IFG1  
IE2  
003h  
002h  
001h  
000h  
IE1  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢇ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢇꢆ ꢃ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
absolute maximum ratings (see Note 1)  
Voltage applied at V  
to V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 4.1 V  
CC  
SS  
Voltage applied to any pin (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to V +0.3 V  
Diode current at any device terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 mA  
CC  
Storage temperature, T (unprogrammed device, see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 150°C  
stg  
Storage temperature, T (programmed device, see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 105°C  
stg  
NOTES: 1. Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress  
ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended  
operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
2. All voltages referenced to V . The JTAG fuse-blow voltage, V , is allowed to exceed the absolute maximum rating. The voltage  
SS  
FB  
is applied to the TEST pin when blowing the JTAG fuse.  
3. Higher temperature may be applied during board soldering process according to the current JEDEC J-STD-020 specification with  
peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels.  
recommended operating conditions  
MIN  
1.8  
NOM  
MAX  
3.6  
UNIT  
V
Supply voltage during program execution, V  
CC  
Supply voltage during program/erase flash memory, V  
CC  
2.2  
3.6  
V
Supply voltage, V  
SS  
0
V
I Version  
T Version  
−40  
−40  
85  
°C  
°C  
Operating free-air temperature range, T  
A
105  
V
= 1.8 V,  
CC  
Duty Cycle = 50% 10%  
dc  
dc  
dc  
4.15  
12  
Processor frequency f  
SYSTEM  
(see Notes 1, 2 and Figure 1)  
(Maximum MCLK frequency)  
V
= 2.7 V,  
CC  
Duty Cycle = 50% 10%  
MHz  
V
3.3 V,  
CC  
Duty Cycle = 50% 10%  
16  
NOTES: 1. The MSP430 CPU is clocked directly with MCLK.  
Both the high and low phase of MCLK must not exceed the pulse width of the specified maximum frequency.  
2. Modules might have a different maximum input clock specification. Refer to the specification of the respective module in this data  
sheet.  
Legend:  
16 MHz  
Supply voltage range,  
during flash memory  
programming  
12 MHz  
Supply voltage range,  
during program execution  
7.5 MHz  
4.15 MHz  
1.8 V  
2.2 V  
2.7 V  
3.3 V 3.6 V  
Supply Voltage −V  
NOTE: Minimum processor frequency is defined by system clock. Flash program or erase operations require a minimum V  
of 2.2 V.  
CC  
Figure 1. Operating Area  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢇꢆꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢇꢇ ꢆ ꢃ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted)  
active mode supply current (into DV  
+ AV ) excluding external current (see Notes 1 and 2)  
CC  
CC  
PARAMETER  
TEST CONDITIONS  
T
A
VCC  
MIN  
TYP  
MAX UNIT  
f
= f  
= f  
= 1MHz,  
DCO MCLK SMCLK  
f = 32,768Hz,  
ACLK  
2.2 V  
270  
390  
µA  
Program executes in flash,  
Active mode (AM)  
current (1MHz)  
I
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
CPUOFF = 0, SCG0 = 0, SCG1 = 0,  
OSCOFF = 0  
AM, 1MHz  
AM, 1MHz  
3 V  
2.2 V  
3 V  
390  
240  
550  
f
= f  
= f  
= 1MHz,  
DCO MCLK SMCLK  
f = 32,768Hz,  
ACLK  
Program executes in RAM,  
Active mode (AM)  
current (1MHz)  
I
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
CPUOFF = 0, SCG0 = 0, SCG1 = 0,  
OSCOFF = 0  
µA  
340  
5
f
f
f
= f =  
= 32,768Hz/8 = 4,096Hz,  
= 0Hz,  
MCLK SMCLK  
ACLK  
DCO  
-40−85°C  
105°C  
2.2 V  
2.2 V  
3 V  
9
18  
µA  
10  
Active mode (AM) Program executes in flash,  
I
I
AM, 4kHz  
current (4kHz)  
SELMx = 11, SELS = 1,  
DIVMx = DIVSx = DIVAx = 11,  
CPUOFF = 0, SCG0 = 1, SCG1 = 0,  
OSCOFF = 0  
-40−85°C  
105°C  
6
3 V  
20  
85  
f
= f 100kHz,  
= 0Hz,  
= f  
-40−85°C  
105°C  
2.2 V  
2.2 V  
3 V  
60  
72  
MCLK SMCLK DCO(0,0)  
f
ACLK  
95  
µA  
95  
Program executes in flash,  
RSELx = 0, DCOx = 0,  
Active mode (AM)  
current (100kHz)  
AM,100kHz  
-40−85°C  
105°C  
CPUOFF = 0, SCG0 = 0, SCG1 = 0,  
OSCOFF = 1  
3 V  
105  
NOTES: 1. All inputs are tied to 0 V or V . Outputs do not source or sink any current.  
CC  
2. The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF.  
The internal and external load capacitance is chosen to closely match the required 9pF.  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢇ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢇꢆ ꢃ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
typical characteristics − active mode supply current (into DV  
+ AV  
)
CC  
CC  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
f
f
= 16 MHz  
= 12 MHz  
DCO  
DCO  
T
= 85 °C  
= 25 °C  
A
T
A
V
= 3 V  
CC  
f
= 8 MHz  
DCO  
T
= 85 °C  
= 25 °C  
A
T
A
V
CC  
= 2.2 V  
f
= 1 MHz  
DCO  
3.5  
1.5  
2.0  
2.5  
3.0  
4.0  
0.0  
4.0  
8.0  
12.0  
16.0  
V
CC  
− Supply Voltage − V  
f
DCO  
− DCO Frequency − MHz  
Figure 2. Active mode current vs V , T = 25°C  
Figure 3. Active mode current vs DCO frequency  
CC  
A
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢇꢆꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢇꢇ ꢆ ꢃ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
low power mode supply currents (into DV  
+ AV ) excluding external current (see Notes 1 and 2)  
CC  
CC  
PARAMETER  
TEST CONDITIONS  
T
A
VCC  
MIN  
TYP  
MAX UNIT  
f
f
f
= 0MHz,  
MCLK  
= f  
= 1MHz,  
= 32,768Hz,  
2.2 V  
75  
90  
SMCLK DCO  
Low-power mode  
ACLK  
I
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
CPUOFF = 1, SCG0 = 0, SCG1 = 0,  
OSCOFF = 0  
µA  
0 (LPM0) current,  
see Note 3  
LPM0, 1MHz  
3 V  
90  
37  
120  
f
f
f
= 0MHz,  
MCLK  
2.2 V  
3 V  
48  
µA  
65  
= f  
SMCLK DCO(0, 0)  
100kHz,  
Low-power mode  
0 (LPM0) current,  
see Note 3  
= 0Hz,  
ACLK  
I
I
LPM01,00kHz  
RSELx = 0, DCOx = 0,  
CPUOFF = 1, SCG0 = 0, SCG1 = 0,  
OSCOFF = 1  
41  
22  
f
= f  
MCLK SMCLK  
= 0MHz, f = 1MHz,  
DCO  
-40−85°C  
105°C  
29  
2.2 V  
3 V  
f
= 32,768Hz,  
ACLK  
Low-power mode  
2 (LPM2) current,  
see Note 4  
35  
µA  
32  
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
LPM2  
-40−85°C  
25  
CPUOFF = 1, SCG0 = 0, SCG1 = 1,  
OSCOFF = 0  
105°C  
-40°C  
25°C  
40  
0.7  
0.7  
2.8  
6
1.4  
1.4  
µA  
4.5  
2.2 V  
3 V  
85°C  
Low-power mode  
3 (LPM3) current,  
see Note 4  
f
= f = 0MHz,  
= f  
= 32,768Hz,  
DCO MCLK SMCLK  
105°C  
-40°C  
25°C  
18  
f
ACLK  
I
LPM3,LFXT1  
CPUOFF = 1, SCG0 = 1, SCG1 = 1,  
OSCOFF = 0  
0.9  
0.9  
3.0  
6.5  
0.4  
0.5  
2.2  
5.7  
0.5  
0.6  
2.5  
6.0  
0.1  
0.1  
1.9  
5.5  
1.5  
1.5  
µA  
5.0  
85°C  
105°C  
-40°C  
25°C  
19  
1.0  
1.0  
µA  
4.2  
2.2 V  
3 V  
85°C  
Low-power mode  
3 current, (LPM3)  
see Note 4  
f
= f = 0MHz,  
= f  
from internal LF oscillator (VLO),  
DCO MCLK SMCLK  
105°C  
-40°C  
25°C  
16.5  
1.2  
f
ACLK  
I
LPM3,VLO  
CPUOFF = 1, SCG0 = 1, SCG1 = 1,  
OSCOFF = 0  
1.2  
µA  
4.5  
85°C  
105°C  
-40°C  
25°C  
17  
0.5  
0.5  
f
= f = 0MHz,  
= 0Hz,  
= f  
DCO MCLK SMCLK  
Low-power mode  
4 (LPM4) current,  
see Note 5  
f
ACLK  
I
LPM4  
2.2 V/3 V  
µA  
CPUOFF = 1, SCG0 = 1, SCG1 = 1,  
OSCOFF = 1  
85°C  
4.0  
105°C  
16  
NOTES: 1. All inputs are tied to 0 V or V . Outputs do not source or sink any current.  
CC  
2. The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF.  
The internal and external load capacitance is chosen to closely match the required 9pF.  
3. Current for brownout and WDT clocked by SMCLK included.  
4. Current for brownout and WDT clocked by ACLK included.  
5. Current for brownout included.  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢇ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢇꢆ ꢃ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
Schmitt-trigger inputs − Ports P1, P2, P3, P4, and RST/NMI  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
0.45  
1.00  
1.35  
0.25  
0.55  
0.75  
0.2  
TYP  
MAX UNIT  
0.75  
1.65  
2.25  
0.55  
1.20  
1.65  
1.0  
V
CC  
V
Positive-going input threshold  
voltage  
2.2 V  
3 V  
V
IT+  
V
CC  
V
Negative-going input threshold  
voltage  
2.2 V  
3 V  
V
V
IT−  
2.2 V  
3 V  
Input voltage hysteresis  
V
hys  
(V  
IT+  
− V )  
IT−  
0.3  
1.0  
For pullup: V = V  
For pulldown: V = V  
IN  
;
IN SS  
R
C
Pullup/pulldown resistor  
Input Capacitance  
20  
35  
50  
kW  
Pull  
I
CC  
V
IN  
= V  
SS  
or V  
CC  
5
pF  
inputs − Ports P1 and P2  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Port P1, P2: P1.x to P2.x, External  
trigger puls width to set interrupt  
flag, (see Note 1)  
t
External interrupt timing  
2.2 V/3 V  
20  
ns  
(int)  
NOTES: 1. An external signal sets the interrupt flag every time the minimum interrupt puls width t  
(int)  
is met. It may be set even with trigger signals  
shorter than t  
.
(int)  
leakage current − Ports P1, P2, P3 and P4  
PARAMETER  
TEST CONDITIONS  
see Notes 1 and 2  
or V applied to the corresponding pin(s), unless otherwise noted.  
VCC  
MIN  
TYP  
MAX UNIT  
50 nA  
I
High-impedance leakage current  
2.2 V/3 V  
lkg(Px.x)  
NOTES: 1. The leakage current is measured with V  
SS  
CC  
2. The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup/pulldown resistor is  
disabled.  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢇꢆꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢇꢇ ꢆ ꢃ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
outputs − Ports P1, P2, P3 and P4  
PARAMETER  
TEST CONDITIONS  
= −1.5 mA (see Notes 1)  
= −6 mA (see Notes 2)  
= −1.5 mA (see Notes 1)  
= −6 mA (see Notes 2)  
= 1.5 mA (see Notes 1)  
= 6 mA (see Notes 2)  
= 1.5 mA (see Notes 1)  
= 6 mA (see Notes 2)  
VCC  
2.2 V  
2.2 V  
3 V  
MIN  
−0.25  
TYP  
MAX  
UNIT  
I
I
I
I
I
I
I
I
V
V
CC  
V
CC  
V
CC  
V
CC  
(OHmax)  
(OHmax)  
(OHmax)  
(OHmax)  
(OLmax)  
(OLmax)  
(OLmax)  
(OLmax)  
CC  
V
−0.6  
High-level output  
voltage  
CC  
−0.25  
V
V
OH  
OL  
V
CC  
3 V  
V
−0.6  
CC  
2.2 V  
2.2 V  
3 V  
V
V
+0.25  
SS  
SS  
SS  
SS  
SS  
V
V
V
V +0.6  
SS  
Low-level output  
voltage  
V
V
V
+0.25  
+0.6  
SS  
3 V  
V
SS  
NOTES: 1. The maximum total current, I  
voltage drop specified.  
and I  
, for all outputs combined, should not exceed 12 mA to hold the maximum  
OHmax  
OLmax  
OLmax  
2. The maximum total current, I  
voltage drop specified.  
and I  
, for all outputs combined, should not exceed 48 mA to hold the maximum  
OHmax  
output frequency − Ports P1, P2, P3 and P4  
PARAMETER  
TEST CONDITIONS  
P1.4/SMCLK,  
= 20 pF, R = 1 kW against V /2  
VCC  
MIN  
TYP  
MAX UNIT  
2.2 V  
10 MHz  
Port output frequency  
(with load)  
f
f
C
Px.y  
L
L
CC  
3 V  
12 MHz  
(see Note 1 and 2)  
2.2 V  
3 V  
12 MHz  
16 MHz  
P2.0/ACLK, P1.4/SMCLK, C = 20 pF  
L
(see Note 2)  
Clock output frequency  
Port_CLK  
NOTES: 1. Alternatively a resistive divider with 2 times 2 kW between V  
and V is used as load. The output is connected to the center tap  
SS  
CC  
of the divider.  
2. The output voltage reaches at least 10% and 90% V  
CC  
at the specified toggle frequency.  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢇ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢇꢆ ꢃ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
typical characteristics − outputs  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
vs  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
25.0  
20.0  
15.0  
10.0  
5.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
V
CC  
P4.5  
= 2.2 V  
T
= 25°C  
V
CC  
P4.5  
= 3 V  
A
T
= 25°C  
= 85°C  
A
T
= 85°C  
A
T
A
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
OL  
− Low-Level Output Voltage − V  
V
OL  
− Low-Level Output Voltage − V  
Figure 4  
Figure 5  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
vs  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
HIGH-LEVEL OUTPUT VOLTAGE  
0.0  
−5.0  
0.0  
−10.0  
−20.0  
−30.0  
−40.0  
−50.0  
V
= 2.2 V  
CC  
P4.5  
V
= 3 V  
CC  
P4.5  
−10.0  
−15.0  
−20.0  
−25.0  
T
= 85°C  
A
T
A
= 85°C  
T
A
= 25°C  
T
= 25°C  
A
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
OH  
− High-Level Output Voltage − V  
V
OH  
− High-Level Output Voltage − V  
Figure 6  
Figure 7  
NOTE: One output loaded at a time.  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢇꢆꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢇꢇ ꢆ ꢃ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
POR/brownout reset (BOR) (see Notes 1 and 2)  
PARAMETER  
TEST CONDITIONS  
dV /dt 3 V/s  
VCC  
MIN  
TYP  
MAX UNIT  
V
V
V
(see Figure 8)  
0.7 × V  
V
CC(start)  
CC  
(B_IT−)  
(see Figure 8 through Figure 10)  
(see Figure 8)  
dV /dt 3 V/s  
1.71  
210  
V
(B_IT−)  
hys(B_IT−)  
d(BOR)  
CC  
dV /dt 3 V/s  
70  
2
130  
mV  
µs  
CC  
t
(see Figure 8)  
2000  
Pulse length needed at RST/NMI pin  
to accepted reset internally  
t
2.2 V/3 V  
µs  
(reset)  
NOTES: 1. The current consumption of the brownout module is already included in the I  
current consumption data. The voltage level  
CC  
V
+ V is 1.8V.  
(B_IT−)  
hys(B_IT−)  
2. During power up, the CPU begins code execution following a period of t  
after V  
= V  
+ V  
. The default  
d(BOR)  
is the minimum supply voltage for the desired  
CC  
(B_IT−)  
hys(B_IT−)  
DCO settings must not be changed until V  
operating frequency.  
V  
, where V  
CC(min)  
CC  
CC(min)  
V
CC  
V
hys(B_IT−)  
V
(B_IT−)  
V
CC(start)  
1
0
t
d(BOR)  
Figure 8. POR/Brownout Reset (BOR) vs Supply Voltage  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢇ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢇꢆ ꢃ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
typical characteristics − POR/brownout reset (BOR)  
V
t
CC  
pw  
2
3 V  
V
= 3 V  
CC  
Typical Conditions  
1.5  
1
V
CC(drop)  
0.5  
0
0.001  
1
1000  
1 ns  
1 ns  
− Pulse Width − µs  
t
− Pulse Width − µs  
t
pw  
pw  
Figure 9. V  
Level With a Square Voltage Drop to Generate a POR/Brownout Signal  
CC(drop)  
V
t
CC  
pw  
2
3 V  
V
= 3 V  
CC  
Typical Conditions  
1.5  
1
V
CC(drop)  
0.5  
0
t = t  
f
r
0.001  
1
1000  
t
t
r
f
t
− Pulse Width − µs  
t
− Pulse Width − µs  
pw  
pw  
Figure 10. V  
Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal  
CC(drop)  
31  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢇꢆꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢇꢇ ꢆ ꢃ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
main DCO characteristics  
D
All ranges selected by RSELx overlap with RSELx + 1: RSELx = 0 overlaps RSELx = 1, ... RSELx = 14  
overlaps RSELx = 15.  
D
DCO control bits DCOx have a step size as defined by parameter S  
.
DCO  
D
Modulation control bits MODx select how often f  
is used within the period of 32 DCOCLK  
DCO(RSEL,DCO+1)  
cycles. The frequency f  
to:  
is used for the remaining cycles. The frequency is an average equal  
DCO(RSEL,DCO)  
32   fDCO(RSEL,DCO)   fDCO(RSEL,DCO)1)  
faverage  
+
MOD   fDCO(RSEL,DCO))(32*MOD)   fDCO(RSEL,DCO)1)  
DCO frequency  
PARAMETER  
TEST CONDITIONS  
RSELx < 14  
VCC  
MIN  
1.8  
TYP  
MAX UNIT  
3.6  
3.6  
3.6  
V
V
V
RSELx = 14  
2.2  
3.0  
Vcc  
Supply voltage range  
RSELx = 15  
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
DCO frequency (0, 0)  
DCO frequency (0, 3)  
DCO frequency (1, 3)  
DCO frequency (2, 3)  
DCO frequency (3, 3)  
DCO frequency (4, 3)  
DCO frequency (5, 3)  
DCO frequency (6, 3)  
DCO frequency (7, 3)  
DCO frequency (8, 3)  
DCO frequency (9, 3)  
DCO frequency (10, 3)  
DCO frequency (11, 3)  
DCO frequency (12, 3)  
DCO frequency (13, 3)  
DCO frequency (14, 3)  
DCO frequency (15, 3)  
DCO frequency (15, 7)  
Frequency step between  
RSELx = 0, DCOx = 0, MODx = 0  
RSELx = 0, DCOx = 3, MODx = 0  
RSELx = 1, DCOx = 3, MODx = 0  
RSELx = 2, DCOx = 3, MODx = 0  
RSELx = 3, DCOx = 3, MODx = 0  
RSELx = 4, DCOx = 3, MODx = 0  
RSELx = 5, DCOx = 3, MODx = 0  
RSELx = 6, DCOx = 3, MODx = 0  
RSELx = 7, DCOx = 3, MODx = 0  
RSELx = 8, DCOx = 3, MODx = 0  
RSELx = 9, DCOx = 3, MODx = 0  
RSELx = 10, DCOx = 3, MODx = 0  
RSELx = 11, DCOx = 3, MODx = 0  
RSELx = 12, DCOx = 3, MODx = 0  
RSELx = 13, DCOx = 3, MODx = 0  
RSELx = 14, DCOx = 3, MODx = 0  
RSELx = 15, DCOx = 3, MODx = 0  
RSELx = 15, DCOx = 7, MODx = 0  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
3 V  
0.06  
0.07  
0.10  
0.14  
0.20  
0.28  
0.39  
0.54  
0.80  
1.10  
1.60  
2.50  
3.00  
4.30  
6.00  
8.60  
12.0  
16.0  
0.14 MHz  
0.17 MHz  
0.20 MHz  
0.28 MHz  
0.40 MHz  
0.54 MHz  
0.77 MHz  
1.06 MHz  
1.50 MHz  
2.10 MHz  
3.00 MHz  
4.30 MHz  
5.50 MHz  
7.30 MHz  
9.60 MHz  
13.9 MHz  
18.5 MHz  
26.0 MHz  
DCO(0,0)  
DCO(0,3)  
DCO(1,3)  
DCO(2,3)  
DCO(3,3)  
DCO(4,3)  
DCO(5,3)  
DCO(6,3)  
DCO(7,3)  
DCO(8,3)  
DCO(9,3)  
DCO(10,3)  
DCO(11,3)  
DCO(12,3)  
DCO(13,3)  
DCO(14,3)  
DCO(15,3)  
DCO(15,7)  
3 V  
S
S
f =  
/f  
/f  
2.2 V/3 V  
1.55  
ratio  
1.12  
RSEL  
DCO  
RSDECLO(RSEL+1,DCO) DCO(RSEL,DCO)  
range RSEL and RSEL+1  
Frequency step between  
tap DCO and DCO+1  
S
S f =  
DCDOCO(RSEL,DCO+1) DCO(RSEL,DCO)  
2.2 V/3 V  
2.2 V/3 V  
1.05  
40  
1.08  
50  
Duty Cycle  
Measured at P1.4/SMCLK  
60  
%
32  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢇ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢇꢆ ꢃ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
calibrated DCO frequencies − tolerance at calibration  
PARAMETER  
TEST CONDITIONS  
T
VCC  
MIN  
−1  
TYP  
0.2  
MAX UNIT  
+1  
A
Frequency tolerance at calibration  
25°C  
3 V  
%
BCSCTL1= CALBC1_1MHZ  
DCOCTL = CALDCO_1MHZ  
Gating time: 5ms  
f
1MHz calibration value  
8MHz calibration value  
25°C  
3 V  
3 V  
3 V  
3 V  
0.990  
7.920  
11.88  
15.84  
1
8
1.010 MHz  
8.080 MHz  
CAL(1MHz)  
BCSCTL1= CALBC1_8MHZ  
DCOCTL = CALDCO_8MHZ  
Gating time: 5ms  
f
25°C  
25°C  
25°C  
CAL(8MHz)  
BCSCTL1= CALBC1_12MHZ  
12MHz calibration value DCOCTL = CALDCO_12MHZ  
Gating time: 5ms  
f
12 12.12 MHz  
16 16.16 MHz  
CAL(12MHz)  
BCSCTL1= CALBC1_16MHZ  
16MHz calibration value DCOCTL = CALDCO_16MHZ  
Gating time: 2ms  
f
CAL(16MHz)  
calibrated DCO frequencies − tolerance over temperature 0°C to +85°C  
PARAMETER  
TEST CONDITIONS  
T
VCC  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
2.2 V  
3.0 V  
3.6 V  
2.2 V  
3.0 V  
3.6 V  
2.2 V  
3.0 V  
3.6 V  
MIN  
TYP  
MAX UNIT  
A
1 MHz tolerance over temperature  
8 MHz tolerance over temperature  
12 MHz tolerance over temperature  
16 MHz tolerance over temperature  
0−85°C  
0−85°C  
0−85°C  
0−85°C  
−2.5  
0.5  
1.0  
1.0  
2.0  
1
+2.5  
+2.5  
+2.5  
+3.0  
%
%
%
%
−2.5  
−2.5  
−3.0  
0.970  
0.975  
0.970  
7.760  
7.800  
7.600  
11.70  
11.70  
11.70  
1.030 MHz  
1.025 MHz  
1.030 MHz  
8.400 MHz  
8.200 MHz  
8.240 MHz  
BCSCTL1= CALBC1_1MHZ  
DCOCTL = CALDCO_1MHZ  
Gating time: 5ms  
1
f
1MHz calibration value  
8MHz calibration value  
0−85°C  
0−85°C  
CAL(1MHz)  
1
8
BCSCTL1= CALBC1_8MHZ  
DCOCTL = CALDCO_8MHZ  
Gating time: 5ms  
8
f
CAL(8MHz)  
8
12 12.30 MHz  
12 12.30 MHz  
12 12.30 MHz  
BCSCTL1= CALBC1_12MHZ  
DCOCTL = CALDCO_12MHZ  
Gating time: 5ms  
f
12MHz calibration value  
16MHz calibration value  
0−85°C  
0−85°C  
CAL(12MHz)  
BCSCTL1= CALBC1_16MHZ  
DCOCTL = CALDCO_16MHZ  
Gating time: 2ms  
3.0 V  
3.6 V  
15.52  
15.00  
16 16.48 MHz  
16 16.48 MHz  
f
CAL(16MHz)  
33  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢇꢆꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢇꢇ ꢆ ꢃ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
calibrated DCO frequencies − tolerance over supply voltage V  
CC  
PARAMETER  
TEST CONDITIONS  
T
VCC  
MIN  
−3  
TYP  
MAX UNIT  
A
1 MHz tolerance over V  
8 MHz tolerance over V  
25°C  
1.8 V − 3.6 V  
1.8 V − 3.6 V  
2.2 V − 3.6 V  
3.0 V − 3.6 V  
2
+3  
+3  
+3  
+3  
%
%
%
%
CC  
25°C  
25°C  
25°C  
−3  
−3  
−6  
2
2
2
CC  
12 MHz tolerance over V  
CC  
CC  
16 MHz tolerance over V  
BCSCTL1= CALBC1_1MHZ  
DCOCTL = CALDCO_1MHZ  
Gating time: 5ms  
f
1MHz calibration value  
8MHz calibration value  
12MHz calibration value  
16MHz calibration value  
25°C  
25°C  
25°C  
25°C  
1.8 V − 3.6 V  
1.8 V − 3.6 V  
2.2 V − 3.6 V  
3.0 V − 3.6 V  
0.970  
7.760  
11.64  
15.00  
1
8
1.030 MHz  
8.240 MHz  
CAL(1MHz)  
BCSCTL1= CALBC1_8MHZ  
DCOCTL = CALDCO_8MHZ  
Gating time: 5ms  
f
CAL(8MHz)  
BCSCTL1= CALBC1_12MHZ  
DCOCTL = CALDCO_12MHZ  
Gating time: 5ms  
f
12 12.36 MHz  
16 16.48 MHz  
CAL(12MHz)  
BCSCTL1= CALBC1_16MHZ  
DCOCTL = CALDCO_16MHZ  
Gating time: 2ms  
f
CAL(16MHz)  
calibrated DCO frequencies − overall tolerance  
PARAMETER  
TEST CONDITIONS  
T
A
VCC  
MIN  
TYP  
MAX UNIT  
I: -40−85°C  
T: -40−105°C  
1 MHz tolerance overall  
1.8 V − 3.6 V  
−5  
2
2
2
3
+5  
+5  
+5  
+6  
%
%
%
%
I: -40−85°C  
T: -40−105°C  
8 MHz tolerance overall  
12 MHz tolerance overall  
16 MHz tolerance overall  
1.8 V − 3.6 V  
2.2 V − 3.6 V  
3.0 V − 3.6 V  
−5  
−5  
−6  
I: -40−85°C  
T: -40−105°C  
I: -40−85°C  
T: -40−105°C  
BCSCTL1= CALBC1_1MHZ  
DCOCTL = CALDCO_1MHZ  
Gating time: 5ms  
I: -40−85°C  
T: -40−105°C  
f
1MHz calibration value  
8MHz calibration value  
12MHz calibration value  
16MHz calibration value  
1.8 V − 3.6 V  
1.8 V − 3.6 V  
2.2 V − 3.6 V  
3.0 V − 3.6 V  
0.950  
7.600  
11.40  
15.00  
1
8
1.050 MHz  
8.400 MHz  
CAL(1MHz)  
BCSCTL1= CALBC1_8MHZ  
DCOCTL = CALDCO_8MHZ  
Gating time: 5ms  
I: -40−85°C  
T: -40−105°C  
f
CAL(8MHz)  
BCSCTL1= CALBC1_12MHZ  
DCOCTL = CALDCO_12MHZ  
Gating time: 5ms  
I: -40−85°C  
T: -40−105°C  
f
12 12.60 MHz  
16 17.00 MHz  
CAL(12MHz)  
BCSCTL1= CALBC1_16MHZ  
DCOCTL = CALDCO_16MHZ  
Gating time: 2ms  
I: -40−85°C  
T: -40−105°C  
f
CAL(16MHz)  
34  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢇ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢇꢆ ꢃ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
typical characteristics − calibrated 1MHz DCO frequency  
1.03  
1.02  
V
V
= 1.8 V  
= 2.2 V  
CC  
1.01  
1.00  
0.99  
0.98  
0.97  
CC  
V
CC  
= 3.0 V  
V
CC  
= 3.6 V  
−50.0 −25.0  
0.0  
25.0  
50.0  
75.0 100.0  
T
A
− Temperature − °C  
Figure 11. Calibrated 1 MHz Frequency vs. Temperature  
1.03  
1.02  
T
= 105 °C  
1.01  
1.00  
0.99  
0.98  
0.97  
A
T
= 85 °C  
= 25 °C  
A
T
A
T
A
= −40 °C  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
V
CC  
− Supply Voltage − V  
Figure 12. Calibrated 1 MHz Frequency vs. V  
CC  
35  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢇꢆꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢇꢇ ꢆ ꢃ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
wake-up from lower power modes (LPM3/4)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
BCSCTL1= CALBC1_1MHZ  
DCOCTL = CALDCO_1MHZ  
2.2 V/3 V  
2
BCSCTL1= CALBC1_8MHZ  
DCOCTL = CALDCO_8MHZ  
2.2 V/3 V  
2.2 V/3 V  
3 V  
1.5  
DCO clock wake-up time from  
LPM3/4  
(see Note 1)  
t
t
µs  
DCO,LPM3/4  
BCSCTL1= CALBC1_12MHZ  
DCOCTL = CALDCO_12MHZ  
1
BCSCTL1= CALBC1_16MHZ  
DCOCTL = CALDCO_16MHZ  
1
CPU wake-up time from LPM3/4  
(see Note 2)  
1/f  
+
MCLK  
CPU,LPM3/4  
t
Clock,LPM3/4  
NOTES: 1. The DCO clock wake-up time is measured from the edge of an external wake-up signal (e.g., port interrupt) to the first clock edge  
observable externally on a clock pin (MCLK or SMCLK).  
2. Parameter applicable only if DCOCLK is used for MCLK.  
typical characteristics − DCO clock wake-up time from LPM3/4  
10.00  
RSELx = 0...11  
1.00  
0.10  
RSELx = 12...15  
0.10  
1.00  
DCO Frequency − MHz  
10.00  
Figure 13. Clock wake-up time from LPM3 vs DCO frequency  
36  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢇ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢇꢆ ꢃ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
DCO with external resistor R  
(see Note 1)  
OSC  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
DCOR = 1,  
RSELx = 4, DCOx = 3, MODx = 0,  
2.2 V  
1.8  
DCO output frequency  
with R  
OSC  
f
MHz  
DCO,ROSC  
3 V  
1.95  
0.1  
T
A
= 25°C  
DCOR = 1,  
RSELx = 4, DCOx = 3, MODx = 0  
D
D
Temperature drift  
2.2 V/3 V  
%/°C  
t
DCOR = 1,  
RSELx = 4, DCOx = 3, MODx = 0  
Drift with V  
CC  
2.2 V/3 V  
10  
%/V  
V
NOTES: 1. R  
= 100k. Metal film resistor, type 0257. 0.6 watt with 1% tolerance and T = 50ppm/°C.  
K
OSC  
typical characteristics − DCO with external resistor R  
OSC  
10.00  
10.00  
1.00  
0.10  
0.01  
1.00  
0.10  
RSELx = 4  
RSELx = 4  
0.01  
10.00  
100.00  
1000.00  
10000.00  
10.00  
100.00  
1000.00  
10000.00  
R
− External Resistor − kOhm  
R
OSC  
− External Resistor − kOhm  
OSC  
Figure 14. DCO Frequency vs R  
,
Figure 15. DCO Frequency vs R  
,
OSC  
OSC  
VCC = 2.2 V, T = 255C  
VCC = 3.0 V, T = 255C  
A
A
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
R
= 100k  
OSC  
R
= 100k  
OSC  
R
R
= 270k  
= 1M  
R
R
= 270k  
= 1M  
OSC  
OSC  
OSC  
OSC  
−50.0 −25.0  
0.0  
T
25.0  
50.0  
75.0 100.0  
2.0  
2.5  
3.0  
3.5  
4.0  
− Temperature − 5C  
V
CC  
− Supply Voltage − V  
A
Figure 16. DCO Frequency vs Temperature,  
VCC = 3.0 V  
Figure 17. DCO Frequency vs VCC,  
T = 255C  
A
37  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢇꢆꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢇꢇ ꢆ ꢃ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
crystal oscillator, LFXT1, low frequency modes (see Note 4)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
LFXT1 oscillator crystal  
frequency, LF mode 0, 1  
f
XTS = 0, LFXT1Sx = 0 or 1  
1.8 V − 3.6 V  
32,768  
Hz  
LFXT1,LF  
LFXT1 oscillator logic level  
square wave input frequency,  
LF mode  
f
XTS = 0, LFXT1Sx = 3  
XTS = 0, LFXT1Sx = 0;  
1.8 V − 3.6 V  
10,000 32,768 50,000  
Hz  
kW  
kW  
LFXT1,LF,logic  
f
C
= 32,768 kHz,  
500  
200  
LFXT1,LF  
= 6 pF  
L,eff  
XTS = 0, LFXT1Sx = 0;  
= 32,768 kHz,  
Oscillation Allowance for LF  
crystals  
OA  
LF  
f
LFXT1,LF  
= 12 pF  
C
L,eff  
XTS = 0, XCAPx = 0  
XTS = 0, XCAPx = 1  
XTS = 0, XCAPx = 2  
XTS = 0, XCAPx = 3  
XTS = 0, Measured at  
1
5.5  
8.5  
11  
pF  
pF  
pF  
pF  
Integrated effective Load  
Capacitance, LF mode  
(see Note 1)  
C
L,eff  
Duty Cycle  
LF mode  
P1.4/ACLK, f  
Hz  
= 32,768  
2.2 V/3 V  
2.2 V/3 V  
30  
10  
50  
70  
%
LFXT1,LF  
Oscillator fault frequency, LF  
mode (see Note 3)  
XTS = 0, LFXT1Sx = 3  
(see Notes 2)  
f
10,000  
Hz  
Fault,LF  
NOTES: 1. Includes parasitic bond and package capacitance (approximately 2pF per pin).  
Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a  
correct setup the effective load capacitance should always match the specification of the used crystal.  
2. Measured with logic level input frequency but also applies to operation with crystals.  
3. Frequencies below the MIN specification will set the fault flag, frequencies above the MAX specification will not set the fault flag.  
Frequencies in between might set the flag.  
4. To improve EMI on the LFXT1 oscillator the following guidelines should be observed.  
Keep as short a trace as possible between the device and the crystal.  
Design a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.  
Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.  
If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.  
Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other  
documentation. This signal is no longer required for the serial programming adapter.  
internal very low power, low frequency oscillator (VLO)  
PARAMETER  
TEST CONDITIONS  
T
A
VCC  
MIN  
TYP  
MAX UNIT  
-40−85°C  
105°C  
2.2 V/3 V  
2.2 V/3 V  
4
12  
20  
f
VLO frequency  
kHz  
VLO  
22  
VLO frequency  
temperature drift  
I: -40−85°C  
T: -40−105°C  
df  
/dT  
(see Note 1)  
(see Note 2)  
2.2 V/3 V  
0.5  
4
%/°C  
VLO  
VLO frequency supply  
voltage drift  
df /dV  
VLO CC  
25°C  
1.8V − 3.6V  
%/V  
NOTES: 1. Calculated using the box method:  
I Version: (MAX(−40...85_C) − MIN(−40...85_C))/MIN(−40...85_C)/(85_C − (−40_C))  
T Version: (MAX(−40...105_C) − MIN(−40...105_C))/MIN(−40...105_C)/(105_C − (−40_C))  
2. Calculated using the box method: (MAX(1.8...3.6V) − MIN(1.8...3.6V))/MIN(1.8...3.6V)/(3.6V − 1.8V)  
38  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢇ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢇꢆ ꢃ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
crystal oscillator, LFXT1, high frequency modes (see Note 5)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
LFXT1 oscillator crystal frequency,  
HF mode 0  
f
f
XTS = 1, LFXT1Sx = 0  
1.8 V − 3.6 V  
0.4  
1
4
MHz  
MHz  
LFXT1,HF0  
LFXT1 oscillator crystal frequency,  
HF mode 1  
XTS = 1, LFXT1Sx = 1  
XTS = 1, LFXT1Sx = 2  
1.8 V − 3.6 V  
1
LFXT1,HF1  
1.8 V − 3.6 V  
2.2 V − 3.6 V  
3.0 V − 3.6 V  
1.8 V − 3.6 V  
2.2 V − 3.6 V  
3.0 V − 3.6 V  
2
2
10 MHz  
12 MHz  
16 MHz  
10 MHz  
12 MHz  
16 MHz  
LFXT1 oscillator crystal frequency,  
HF mode 2  
f
LFXT1,HF2  
2
0.4  
0.4  
0.4  
LFXT1 oscillator logic level square  
wave input frequency,  
HF mode  
f
XTS = 1, LFXT1Sx = 3  
XTS = 0, LFXT1Sx = 0,  
LFXT1,HF,logic  
f
C
= 1 MHz,  
2700  
800  
300  
1
W
W
LFXT1,HF  
= 15 pF  
L,eff  
XTS = 0, LFXT1Sx = 1  
= 4 MHz,  
Oscillation Allowance for HF  
crystals  
(refer to Figure 18 and Figure 19)  
f
C
OA  
HF  
LFXT1,HF  
= 15 pF  
L,eff  
XTS = 0, LFXT1Sx = 2  
= 16 MHz,  
f
C
W
LFXT1,HF  
= 15 pF  
L,eff  
Integrated effective Load  
Capacitance, HF mode  
(see Note 1)  
C
XTS = 1 (see Note 2)  
pF  
L,eff  
XTS = 1, Measured at P1.4/ACLK,  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
40  
40  
30  
50  
50  
60  
60  
%
%
f
= 10 MHz  
LFXT1,HF  
XTS = 1, Measured at P1.4/ACLK,  
= 16 MHz  
Duty Cycle  
HF mode  
f
LFXT1,HF  
Oscillator fault frequency, HF mode XTS = 1, LFXT1Sx = 3  
(see Note 4) (see Notes 3)  
NOTES: 1. Includes parasitic bond and package capacitance (approximately 2pF per pin).  
f
300 kHz  
Fault,HF  
Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a  
correct setup the effective load capacitance should always match the specification of the used crystal.  
2. Requires external capacitors at both terminals. Values are specified by crystal manufacturers.  
3. Measured with logic level input frequency but also applies to operation with crystals.  
4. Frequencies below the MIN specification will set the fault flag, frequencies above the MAX specification will not set the fault flag.  
Frequencies in between might set the flag.  
5. To improve EMI on the LFXT1 oscillator the following guidelines should be observed.  
Keep as short a trace as possible between the device and the crystal.  
Design a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.  
Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.  
If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.  
Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other  
documentation. This signal is no longer required for the serial programming adapter.  
39  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢇꢆꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢇꢇ ꢆ ꢃ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
typical characteristics − LFXT1 oscillator in HF mode (XTS = 1)  
100000.00  
10000.00  
1000.00  
LFXT1Sx = 3  
100.00  
LFXT1Sx = 2  
10.00  
LFXT1Sx = 1  
1.00  
10.00  
0.10  
100.00  
Crystal Frequency − MHz  
Figure 18. Oscillation Allowance vs Crystal Frequency, C  
= 15 pF, T = 25°C  
A
L,eff  
800.0  
LFXT1Sx = 3  
700.0  
600.0  
500.0  
400.0  
300.0  
200.0  
100.0  
0.0  
LFXT1Sx = 2  
LFXT1Sx = 1  
0.0  
4.0  
8.0  
12.0  
16.0  
20.0  
Crystal Frequency − MHz  
Figure 19. XT Oscillator Supply Current vs Crystal Frequency, C  
= 15 pF, T = 25°C  
A
L,eff  
40  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢇ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢇꢆ ꢃ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
Timer_A  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, ACLK;  
External: TACLK, INCLK;  
Duty Cycle = 50% 10%  
2.2 V  
10  
f
t
Timer_A clock frequency  
Timer_A, capture timing  
MHz  
16  
TA  
3 V  
TA0, TA1, TA2  
2.2 V/3 V  
20  
ns  
TA,cap  
Timer_B  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, ACLK;  
External: TBCLK;  
Duty Cycle = 50% 10%  
2.2 V  
10  
f
Timer_B clock frequency  
Timer_B, capture timing  
MHz  
16  
TB  
3 V  
t
TB0, TB1, TB2  
2.2 V/3 V  
20  
ns  
TB,cap  
41  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢇꢆꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢇꢇ ꢆ ꢃ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
USCI (UART Mode)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, ACLK  
External: UCLK  
Duty Cycle = 50% 10%  
f
USCI input clock frequency  
f
MHz  
USCI  
SYSTEM  
1
BITCLK clock frequency  
(equals Baudrate in MBaud)  
f
t
2.2V /3 V  
MHz  
BITCLK  
2.2 V  
3 V  
50  
50  
150  
100  
600  
600  
ns  
ns  
UART receive deglitch time  
(see Note 1)  
τ
NOTES: 1. Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are  
correctly recognized their width should exceed the maximum specification of the deglitch time.  
USCI (SPI Master Mode, see Figure 20 and Figure 21)  
PARAMETER  
TEST CONDITIONS  
SMCLK, ACLK  
Duty Cycle = 50% 10%  
VCC  
MIN  
TYP  
MAX UNIT  
f
t
t
t
USCI input clock frequency  
f
MHz  
USCI  
SYSTEM  
2.2 V  
3 V  
110  
75  
0
ns  
ns  
ns  
ns  
ns  
ns  
SOMI input data setup time  
SOMI input data hold time  
SIMO output data valid time  
SU,MI  
2.2 V  
3 V  
HD,MI  
0
2.2 V  
3 V  
30  
20  
UCLK edge to SIMO valid;  
= 20 pF  
VALID,MO  
C
L
USCI (SPI Slave Mode, see Figure 22 and Figure 23)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
STE lead time  
STE low to clock  
t
t
t
t
2.2 V/3 V  
50  
ns  
STE,LEAD  
STE,LAG  
STE,ACC  
STE,DIS  
STE lag time  
Last clock to STE high  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
10  
ns  
ns  
ns  
STE access time  
STE low to SOMI data out  
50  
50  
STE disable time  
STE high to SOMI high impedance  
2.2 V  
3 V  
20  
15  
10  
10  
ns  
ns  
ns  
ns  
t
t
t
SIMO input data setup time  
SIMO input data hold time  
SOMI output data valid time  
SU,SI  
2.2 V  
3 V  
HD,SI  
2.2 V  
3 V  
75  
50  
110  
75  
ns  
ns  
UCLK edge to SOMI valid;  
= 20 pF  
VALID,SO  
C
L
42  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢇ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢇꢆ ꢃ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tLOW/HIGH tLOW/HIGH  
tSU,MI  
tHD,MI  
SOMI  
SIMO  
tVALID,MO  
Figure 20. SPI Master Mode, CKPH = 0  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tLOW/HIGH tLOW/HIGH  
tHD,MI  
tSU,MI  
SOMI  
SIMO  
tVALID,MO  
Figure 21. SPI Master Mode, CKPH = 1  
43  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢇꢆꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢇꢇ ꢆ ꢃ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tLOW/HIGH tLOW/HIGH  
tSU,SIMO  
tHD,SIMO  
SIMO  
SOMI  
tACC  
tVALID,SOMI  
tDIS  
Figure 22. SPI Slave Mode, CKPH = 0  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL=0  
CKPL=1  
UCLK  
tLOW/HIGH tLOW/HIGH  
tHD,SI  
tSU,SI  
SIMO  
SOMI  
tACC  
tVALID,SO  
tDIS  
Figure 23. SPI Slave Mode, CKPH = 1  
44  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢇ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢇꢆ ꢃ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
USCI (I2C Mode, see Figure 24)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
MHz  
SYSTEM  
Internal: SMCLK, ACLK  
External: UCLK  
Duty Cycle = 50% 10%  
f
USCI input clock frequency  
f
USCI  
f
t
SCL clock frequency  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V  
0
4.0  
0.6  
4.7  
0.6  
0
400 kHz  
SCL  
f
f
f
f
100kHz  
> 100kHz  
100kHz  
> 100kHz  
us  
us  
us  
us  
ns  
ns  
us  
SCL  
SCL  
SCL  
SCL  
Hold time (repeated) START  
HD,STA  
t
Set-up time for a repeated START  
SU,STA  
t
t
t
Data hold time  
HD,DAT  
SU,DAT  
SU,STO  
Data set-up time  
Set-up time for STOP  
250  
4.0  
50  
150  
100  
600  
600  
ns  
ns  
Pulse width of spikes suppressed by  
input filter  
t
SP  
3 V  
50  
tHD  
tSU  
tHD  
tBUF  
,STA  
,STA  
,STA  
SDA  
tLOW  
tHIGH  
tSP  
SCL  
tSU ,DAT  
tSU  
,STO  
tHD  
,DAT  
Figure 24. I2C Mode Timing  
45  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢇꢆꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢇꢇ ꢆ ꢃ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
10-bit ADC, power supply and input range conditions (see Note 1)  
PARAMETER  
TEST CONDITIONS  
T
A
VCC  
MIN  
2.2  
TYP  
MAX UNIT  
Analog supply voltage  
range  
V
CC  
V
SS  
= 0 V  
3.6  
V
All Ax terminals.  
Analog inputs selected in  
ADC10AE register.  
Analog input voltage range  
(see Note 2)  
V
Ax  
0
V
CC  
V
f
= 5.0 MHz  
ADC10CLK  
2.2 V  
3 V  
0.52  
0.6  
1.05  
1.2  
ADC10ON = 1, REFON = 0  
ADC10SHT0 = 1,  
ADC10SHT1 = 0, ADC10DIV  
= 0  
ADC10 supply current  
(see Note 3)  
I: -40−85°C  
T: -40−105°C  
I
mA  
ADC10  
f
= 5.0 MHz  
ADC10CLK  
I: -40−85°C  
T: -40−105°C  
ADC10ON = 0, REF2_5V = 0,  
REFON = 1, REFOUT = 0  
2.2 V/3 V  
3 V  
mA  
mA  
Reference supply current,  
reference buffer disabled  
(see Note 4)  
I
0.25  
1.1  
0.4  
REF+  
f
= 5.0 MHz  
ADC10CLK  
I: -40−85°C  
T: -40−105°C  
ADC10ON = 0, REF2_5V = 1,  
REFON = 1, REFOUT = 0  
f
= 5.0 MHz  
ADC10CLK  
-40−85°C  
105°C  
2.2 V/3 V  
2.2 V/3 V  
1.4  
1.8  
mA  
mA  
Reference buffer supply  
current with ADC10SR=0  
(see Note 4)  
ADC10ON = 0,  
REFON = 1, REF2_5V = 0,  
REFOUT = 1,  
ADC10SR=0  
I
REFB,0  
REFB,1  
f
= 5.0 MHz  
ADC10CLK  
-40−85°C  
105°C  
2.2 V/3 V  
2.2 V/3 V  
0.5  
0.7  
0.8  
mA  
mA  
ADC10ON = 0,  
REFON = 1,  
Reference buffer supply  
current with ADC10SR=1  
(see Note 4)  
I
REF2_5V = 0,  
REFOUT = 1,  
ADC10SR=1  
Only one terminal Ax selected I: -40−85°C  
C
R
Input capacitance  
27  
pF  
I
I
at a time  
T: -40−105°C  
I: -40−85°C  
T: -40−105°C  
Input MUX ON resistance  
0V V V  
Ax CC  
2.2 V/3 V  
2000  
NOTES: 1. The leakage current is defined in the leakage current table with Px.x/Ax parameter.  
2. The analog input voltage range must be within the selected reference voltage range V  
to V  
for valid conversion results.  
R+  
R−  
3. The internal reference supply current is not included in current consumption parameter I  
.
ADC10  
4. The internal reference current is supplied via terminal V . Consumption is independent of the ADC10ON control bit, unless a  
CC  
conversion is active. The REFON bit enables the built-in reference to settle before starting an A/D conversion.  
46  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢇ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢇꢆ ꢃ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
10-bit ADC, built-in voltage reference  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN TYP  
MAX UNIT  
I
I
I
I
I
1mA, REF2_5V=0  
0.5mA, REF2_5V=1  
1mA, REF2_5V=1  
2.2  
2.8  
2.9  
VREF+  
VREF+  
VREF+  
Positive built-in reference analog  
supply voltage range  
V
V
V
CC,REF+  
I  
max, REF2_5V=0 2.2 V/3 V  
1.41  
2.35  
1.5  
2.5  
1.59  
2.65  
0.5  
1
V
V
VREF+ VREF+  
Positive built-in reference voltage  
REF+  
I max, REF2_5V=1  
VREF+ VREF+  
3 V  
2.2 V  
3 V  
I
Maximum V  
REF+  
load current  
mA  
LD,VREF+  
I
= 500 µA 100 µA  
VREF+  
Analog input voltage V 0.75 V;  
REF2_5V=0  
2.2 V/3 V  
3 V  
2
LSB  
Ax  
V
load regulation  
REF+  
REF+  
I
= 500 µA 100 µA  
VREF+  
Analog input voltage V 1.25 V;  
REF2_5V=1  
2
LSB  
Ax  
I
=
VREF+  
100µA900µA,  
0.5 x V  
ADC10SR=0  
ADC10SR=1  
3 V  
3V  
400  
V
V
load regulation response time  
ns  
Ax  
REF+  
Error of conversion  
result 1 LSB  
2000  
100  
Max. capacitance at pin V  
(see Note 1)  
I
1mA,  
REF+  
VREF+  
C
2.2 V/3 V  
2.2 V/3 V  
pF  
VREF+  
REFON=1, REFOUT=1  
I
= const. with  
VREF+  
0 mA I  
TC  
Temperature coefficient  
100 ppm/°C  
REF+  
1 mA  
VREF+  
Settling time of internal reference  
voltage (see Note 2)  
I
= 0.5 mA, REF2_5V=0  
VREF+  
3.6 V  
2.2 V  
2.2 V  
3 V  
30  
1
µs  
µs  
t
REFON  
REFON = 0 1  
I
= 0.5 mA,  
VREF+  
ADC10SR=0  
ADC10SR=1  
ADC10SR=0  
ADC10SR=1  
REF2_5V=0,  
REFON = 1,  
2.5  
2
REFBURST = 1  
Settling time of reference buffer  
(see Note 2)  
t
REFBURST  
I
= 0.5 mA,  
VREF+  
REF2_5V=1,  
REFON = 1,  
µs  
3 V  
4.5  
REFBURST = 1  
NOTES: 1. The capacitance applied to the internal buffer operational amplifier, if switched to terminal P2.4/TA2/A4/V  
/V (REFOUT=1),  
REF+ eREF+  
must be limited; the reference buffer may become unstable otherwise.  
2. The condition is that the error in a conversion started after t  
REFON  
or t is less than 0.5 LSB.  
RefBuf  
47  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢇꢆꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢇꢇ ꢆ ꢃ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
10-bit ADC, external reference (see Note 1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
1.4  
TYP  
MAX UNIT  
V
> V  
eREF+  
eREF−  
V
V
V
V
CC  
3.0  
SREF1 = 1, SREF0 = 0  
Positive external reference input  
voltage range (see Note 2)  
V
eREF+  
V
V  
V  
− 0.15V  
eREF−  
eREF+ CC  
1.4  
0
SREF1 = 1, SREF0 = 1 (see Note 3)  
Negative external reference input  
voltage range (see Note 4)  
V
V
> V  
1.2  
eREF−  
eREF+  
eREF−  
Differential external reference input  
voltage range  
V  
eREF  
V
> V  
(see Note 5)  
1.4  
V
V
eREF+  
eREF−  
CC  
1
V  
eREF  
= V  
− V  
eREF+  
eREF−  
0V V  
SREF1 = 1, SREF0 = 0  
V ,  
CC  
eREF+  
2.2 V/3 V  
µA  
I
I
Static input current into V  
Static input current into V  
VeREF+  
eREF+  
0V V  
eREF+  
V − 0.15V 3V  
CC  
2.2 V/3 V  
2.2 V/3 V  
0
1
µA  
µA  
SREF1 = 1, SREF0 = 1 (see Note 3)  
0V V V  
VeREF−  
eREF−  
eREF− CC  
NOTES: 1. The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, C , is also  
I
the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the  
recommendations on analog-source impedance to allow the charge to settle for 10-bit accuracy.  
2. The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced  
accuracy requirements.  
3. Under this condition the external reference is internally buffered. The reference buffer is active and requires the reference buffer  
supply current I  
REFB  
. The current consumption can be limited to the sample and conversion period with REBURST = 1.  
4. The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced  
accuracy requirements.  
5. The accuracy limits the minimum external differential reference voltage. Lower differential reference voltage levels may be applied  
with reduced accuracy requirements.  
48  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢇ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢇꢆ ꢃ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
10-bit ADC, timing parameters  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
For specified  
performance of  
ADC10 linearity  
parameters  
ADC10SR=0 2.2 V/3 V  
ADC10SR=1 2.2 V/3 V  
0.45  
6.3  
f
f
ADC10 input clock frequency  
MHz  
1.5  
ADC10CLK  
0.45  
3.7  
ADC10DIVx=0, ADC10SSELx = 0  
= f  
ADC10 built-in oscillator frequency  
2.2 V/3 V  
2.2 V/3 V  
6.3 MHz  
ADC10OSC  
f
ADC10CLK ADC10OSC  
ADC10 built-in oscillator,  
ADC10SSELx = 0  
2.06  
3.51  
100  
µs  
f
= f  
ADC10CLK ADC10OSC  
t
t
Conversion time  
CONVERT  
13×  
f
from ACLK, MCLK or  
ADC10CLK  
ADC10DIV×  
1/f  
µs  
SMCLK: ADC10SSELx 0  
ADC10CLK  
Turn on settling time of the ADC  
(see Note 1)  
ns  
ADC10ON  
NOTES: 1. The condition is that the error in a conversion started after t  
settled.  
is less than 0.5 LSB. The reference and input signal are already  
ADC10ON  
10-bit ADC, linearity parameters  
PARAMETER  
Integral linearity error  
Differential linearity error  
Offset error  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
E
E
E
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
1
1
1
LSB  
LSB  
LSB  
I
D
O
Source impedance R < 100 ,  
S
SREFx = 010; un-buffered external  
2.2 V  
3 V  
1.1  
2
2
LSB  
LSB  
reference; V  
eREF+  
= 1.5V  
SREFx = 010; un-buffered external  
reference; V = 2.5V  
1.1  
1.1  
eREF+  
SREFx = 011; buffered external  
reference (see Note 1);  
Gain error  
E
G
2.2 V  
3 V  
4
3
LSB  
LSB  
V
= 1.5V  
eREF+  
SREFx = 011; buffered external  
reference (see Note 1);  
1.1  
V
= 2.5V  
eREF+  
SREFx = 010; un-buffered external  
reference; V = 1.5V  
2.2 V  
3 V  
2
2
5
5
LSB  
LSB  
eREF+  
SREFx = 010; un-buffered external  
reference; V = 2.5V  
eREF+  
SREFx = 011; buffered external  
reference (see Note 1);  
Total unadjusted error  
E
T
2.2 V  
3 V  
2
2
7
6
LSB  
LSB  
V
= 1.5V  
eREF+  
SREFx = 011; buffered external  
reference (see Note 1);  
V
= 2.5V  
eREF+  
NOTES: 1. The reference buffer’s offset adds to the gain and total unadjusted error.  
49  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢇꢆꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢇꢇ ꢆ ꢃ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
10-bit ADC, temperature sensor and built-in V  
MID  
PARAMETER  
TEST CONDITIONS  
VCC  
2.2 V  
3 V  
MIN  
TYP  
40  
MAX  
120  
160  
UNIT  
Temperature sensor supply  
current (see Note 1)  
REFON = 0, INCHx = 0Ah,  
I
µA  
SENSOR  
T
A
= 25_C  
ADC10ON = 1, INCHx = 0Ah  
(see Note 2)  
60  
2.2 V/3 V  
3.44  
3.55  
3.66 mV/°C  
TC  
SENSOR  
ADC10ON = 1, INCHx = 0Ah  
(see Note 2)  
V
Sensor offset voltage  
−100  
1265  
1195  
985  
100  
1465  
1395  
1185  
1095  
mV  
mV  
mV  
Offset,Sensor  
Temperature sensor voltage  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
1365  
1295  
1085  
995  
at T = 105°C (T Version only)  
A
Temperature sensor voltage  
at T = 85°C  
A
Sensor output voltage  
(see Note 3)  
V
Sensor  
Temperature sensor voltage  
at T = 25°C  
A
mV  
Temperature sensor voltage  
895  
at T = 0°C  
A
Sample time required if  
channel 10 is selected (see  
Note 4)  
ADC10ON = 1, INCHx = 0Ah,  
Error of conversion result 1 LSB  
2.2 V/3 V  
30  
µs  
t
Sensor(sample)  
2.2 V  
3 V  
NA  
NA  
Current into divider at channel  
11 (see Note 5)  
I
ADC10ON = 1, INCHx = 0Bh,  
ADC10ON = 1, INCHx = 0Bh,  
µA  
VMID  
2.2 V  
3 V  
1.06  
1.46  
1.1  
1.5  
1.14  
1.54  
V
V
CC  
divider at channel 11  
V
MID  
V
MID  
is 0.5 x V  
CC  
Sample time required if  
channel 11 is selected (see  
Note 6)  
2.2 V  
3 V  
1400  
1220  
ADC10ON = 1, INCHx = 0Bh,  
Error of conversion result 1 LSB  
t
ns  
VMID(sample)  
NOTES: 1. The sensor current I  
is consumed if (ADC10ON = 1 and REFON = 1), or (ADC10ON=1 and INCH=0Ah and sample signal  
is included in I . When REFON = 0, I applies during conversion of the temperature  
SENSOR  
is high). When REFON = 1, I  
SENSOR  
REF+ SENSOR  
sensor input (INCH = 0Ah).  
2. The following formula can be used to calculate the temperature sensor output voltage:  
V
V
= TC  
= TC  
( 273 + T [°C] ) + V [mV] or  
Sensor,typ  
Sensor,typ  
Sensor  
Sensor  
Offset,sensor  
T [°C] + V  
Sensor  
(T = 0°C) [mV]  
A
3. Results based on characterization and/or production test, not TC  
4. The typical equivalent impedance of the sensor is 51 k. The sample time required includes the sensor-on time t  
or V .  
Offset,sensor  
Sensor  
.
SENSOR(on)  
5. No additional current is needed. The V  
is used during sampling.  
MID  
6. The on-time t  
VMID(on)  
is included in the sampling time t ; no additional on time is needed.  
VMID(sample)  
50  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢇ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢇꢆ ꢃ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
operational amplifier OA, supply specifications (MSP430x22x4 only)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
2.2  
TYP  
MAX  
3.6  
UNIT  
V
CC  
Supply voltage range  
V
Fast Mode  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
180  
290  
190  
80  
Medium Mode  
Slow Mode  
110  
50  
I
Supply current (see Note 1)  
Power supply rejection ratio  
µA  
CC  
PSRR  
Non-inverting  
70  
dB  
NOTES: 1. Corresponding pins configured as OA inputs and outputs respectively.  
operational amplifier OA, input/output specifications (MSP430x22x4 only)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
−0.1  
TYP  
MAX  
UNIT  
V
V
I/P  
Input voltage range  
V
−1.2  
5
CC  
T
= −40 to +55_C  
= +55 to +85_C  
= +85 to +105_C  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
−5  
−20  
−50  
0.5  
5
nA  
nA  
nA  
A
Input leakage current  
(see Notes 1 and 2)  
T
A
20  
50  
I
Ikg  
T
A
Fast Mode  
50  
80  
Medium Mode  
Slow Mode  
Fast Mode  
f
= 1 kHz  
V(I/P)  
140  
30  
V
n
Voltage noise density, I/P  
nV/Hz  
Medium Mode  
Slow Mode  
50  
f
= 10 kHz  
V(I/P)  
65  
V
IO  
Offset voltage, I/P  
2.2 V/3 V  
2.2 V/3 V  
10  
mV  
Offset temperature drift, I/P  
see Note 3  
10  
µV/°C  
Offset voltage drift  
with supply, I/P  
0.3V V V −1.0V  
IN CC  
2.2 V/3 V  
1.5  
mV/V  
V  
10%, T = 25°C  
CC  
A
Fast Mode, I  
Slow Mode,I  
Fast Mode, I  
Slow Mode,I  
−500µA  
−150µA  
+500µA  
+150µA  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
V
V
−0.2  
−0.1  
V
V
SOURCE  
SOURCE  
SOURCE  
SOURCE  
CC  
CC  
V
V
High-level output voltage, O/P  
Low-level output voltage, O/P  
V
V
OH  
CC  
V
CC  
0.2  
SS  
SS  
OL  
V
0.1  
R
= 3 k, C  
Load Load  
= 50pF,  
2.2 V/3 V  
2.2 V/3 V  
150  
150  
250  
250  
4
V
< 0.2 V  
O/P(OAx)  
Output Resistance  
R
= 3 k, C  
= 50pF,  
Load  
Load  
R
(see Figure 25 and Note 4)  
O/P(OAx)  
V
> V  
− 1.2 V  
O/P(OAx)  
CC  
R
= 3 k, C  
Load  
= 50pF,  
− 0.2 V  
Load  
2.2 V/3 V  
2.2 V/3 V  
0.1  
70  
0.2 V V  
V  
CC  
O/P(OAx)  
CMRR  
Common-mode rejection ratio  
Non-inverting  
dB  
NOTES: 1. ESD damage can degrade input current leakage.  
2. The input bias current is overridden by the input leakage current.  
3. Calculated using the box method.  
4. Specification valid for voltage-follower OAx configuration.  
51  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢇꢆꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢇꢇ ꢆ ꢃ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
R
O/P(OAx)  
Max  
R
Load  
I
Load  
AV  
CC  
OAx  
2
C
O/P(OAx)  
Min  
Load  
0.2V  
AV  
−0.2V  
CC  
V
AV  
OUT  
CC  
Figure 25. OAx Output Resistance Tests  
operational amplifier OA, dynamic specifications (MSP430x22x4 only)  
PARAMETER  
TEST CONDITIONS  
Fast Mode  
VCC  
MIN  
TYP  
1.2  
MAX  
UNIT  
Medium Mode  
Slow Mode  
0.8  
0.3  
100  
60  
SR  
Slew rate  
V/µs  
Open-loop voltage gain  
Phase margin  
dB  
deg  
dB  
φ
m
C
C
= 50 pF  
= 50 pF  
L
L
Gain margin  
20  
Non-inverting, Fast Mode,  
= 47k, C = 50pF  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2  
1.4  
R
L
L
Gain-Bandwidth Product  
(see Figure 26  
and Figure 27)  
Non-inverting, Medium Mode,  
=300k, C = 50pF  
GBW  
MHz  
R
L
L
Non-inverting, Slow Mode,  
0.5  
10  
R
=300k, C = 50pF  
L
L
t
t
Enable time on  
Enable time off  
t , non-inverting, Gain = 1  
on  
2.2 V/3 V  
2.2 V/3 V  
20  
µs  
µs  
en(on)  
1
en(off)  
TYPICAL PHASE vs FREQUENCY  
TYPICAL OPEN-LOOP GAIN vs FREQUENCY  
0
−50  
140  
120  
100  
80  
Fast Mode  
Fast Mode  
60  
−100  
−150  
−200  
−250  
40  
Medium Mode  
20  
Medium Mode  
Slow Mode  
0
Slow Mode  
−20  
−40  
−60  
−80  
1
10  
100  
1000  
10000  
100000  
1
10  
100  
1000  
10000  
100000  
Input Frequency − kHz  
Input Frequency − kHz  
Figure 26  
Figure 27  
52  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢇ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢇꢆ ꢃ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
operational amplifier OA feedback network, resistor network (see Note 1. MSP430x22x4 only)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
76  
TYP  
96  
MAX  
128  
UNIT  
R
R
Total resistance of resistor string  
kΩ  
total  
unit  
Unit resistor of resistor string  
(see Note 2)  
4.8  
6
8
kΩ  
NOTES: 1. A single resistor string is composed of 4 R  
unit  
+ 4 R  
unit  
+ 2 R  
unit  
+ 2 R  
unit  
+ 1 R  
unit  
+ 1 R  
unit  
+ 1 R  
unit  
+ 1 R  
= 16 R  
unit  
= R .  
total  
unit  
2. For the matching (i.e. the relative accuracy) of the unit resistors on a device refer to the gain and level specifications of the respective  
configurations.  
operational amplifier OA feedback network,  
comparator mode (OAFCx = 3. MSP430x22x4 only)  
PARAMETER  
TEST CONDITIONS  
OAFBRx = 1, OARRIP = 0  
OAFBRx = 2, OARRIP = 0  
OAFBRx = 3, OARRIP = 0  
OAFBRx = 4, OARRIP = 0  
OAFBRx = 5, OARRIP = 0  
OAFBRx = 6, OARRIP = 0  
OAFBRx = 7, OARRIP = 0  
OAFBRx = 1, OARRIP = 1  
OAFBRx = 2, OARRIP = 1  
OAFBRx = 3, OARRIP = 1  
OAFBRx = 4, OARRIP = 1  
OAFBRx = 5, OARRIP = 1  
OAFBRx = 6, OARRIP = 1  
OAFBRx = 7, OARRIP = 1  
Fast Mode, Overdrive 10mV  
Fast Mode, Overdrive 100mV  
Fast Mode, Overdrive 500mV  
Medium Mode, Overdrive 10mV  
Medium Mode, Overdrive 100mV  
Medium Mode, Overdrive 500mV  
Slow Mode, Overdrive 10mV  
Slow Mode, Overdrive 100mV  
Slow Mode, Overdrive 500mV  
VCC  
MIN  
TYP  
1/4  
MAX  
0.255  
0.505  
0.631  
UNIT  
2.2 V/ 3V  
2.2 V/ 3V  
2.2 V/ 3V  
2.2 V/ 3V  
2.2 V/ 3V  
2.2 V/ 3V  
2.2 V/ 3V  
2.2 V/ 3V  
2.2 V/ 3V  
2.2 V/ 3V  
2.2 V/ 3V  
2.2 V/ 3V  
2.2 V/ 3V  
2.2 V/ 3V  
2.2 V/ 3V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
0.245  
0.495  
0.619  
1/2  
5/8  
N/A (see Note 1)  
N/A (see Note 1)  
N/A (see Note 1)  
N/A (see Note 1)  
V
Level  
Comparator level  
V
CC  
0.061  
1/16  
1/8  
0.065  
0.128  
0.192  
0.255  
0.383  
0.505  
0.122  
0.184  
0.245  
0.367  
0.495  
3/16  
1/4  
3/8  
1/2  
N/A (see Note 1)  
40  
4
3
60  
6
Propagation delay  
(low−high and high−low)  
t
, t  
µs  
PLH PHL  
5
160  
20  
15  
NOTES: 1. The level is not available due to the analog input voltage range of the operational amplifier.  
53  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢇꢆꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢇꢇ ꢆ ꢃ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
operational amplifier OA feedback network,  
non-inverting amplifier mode (OAFCx = 4. MSP430x22x4 only)  
PARAMETER  
TEST CONDITIONS  
OAFBRx = 0  
VCC  
MIN  
TYP  
1.00  
MAX  
1.002  
1.340  
2.017  
2.696  
4.06  
UNIT  
2.2 V/ 3V  
2.2 V/ 3V  
2.2 V/ 3V  
2.2 V/ 3V  
2.2 V/ 3V  
2.2 V/ 3V  
2.2 V/ 3V  
2.2 V/ 3V  
2.2 V  
0.998  
1.328  
1.985  
2.638  
3.94  
OAFBRx = 1  
OAFBRx = 2  
OAFBRx = 3  
OAFBRx = 4  
OAFBRx = 5  
OAFBRx = 6  
OAFBRx = 7  
1.334  
2.001  
2.667  
4.00  
5.33  
7.97  
15.8  
−60  
G
Gain  
5.22  
5.44  
7.76  
8.18  
15.0  
16.6  
Total Harmonic Distortion/  
Nonlinearity  
THD  
all gains  
dB  
3 V  
−70  
t
Settling time (see Note 1)  
all power modes  
2.2 V/3 V  
7
12  
µs  
Settle  
NOTES: 1. The settling time specifies the time until an ADC result is stable. This includes the minimum required sampling time of the ADC. The  
settling time of the amplifier itself might be faster.  
operational amplifier OA feedback network,  
inverting amplifier mode (OAFCx = 6, see Note 1, MSP430x22x4 only)  
PARAMETER  
TEST CONDITIONS  
OAFBRx = 1  
VCC  
MIN  
TYP  
MAX  
UNIT  
2.2 V/ 3V  
2.2 V/ 3V  
2.2 V/ 3V  
2.2 V/ 3V  
2.2 V/ 3V  
2.2 V/ 3V  
2.2 V/ 3V  
2.2 V  
−0.345 −0.335 −0.325  
−1.023 −1.002 −0.979  
−1.712 −1.668 −1.624  
OAFBRx = 2  
OAFBRx = 3  
OAFBRx = 4  
OAFBRx = 5  
OAFBRx = 6  
OAFBRx = 7  
−3.10  
−4.51  
−7.37  
−16.3  
−3.00  
−4.33  
−6.97  
−14.8  
−60  
−2.90  
−4.15  
−6.57  
−13.1  
G
Gain  
Total Harmonic Distortion/  
Nonlinearity  
THD  
all gains  
dB  
3 V  
−70  
t
Settling time (see Note 2)  
all power modes  
2.2 V/3 V  
7
12  
µs  
Settle  
NOTES: 1. This includes the 2 OA configuration “inverting amplifier with input buffer”. Both OA needs to be set to the same power mode OAPMx.  
2. The settling time specifies the time until an ADC result is stable. This includes the minimum required sampling time of the ADC. The  
settling time of the amplifier itself might be faster.  
54  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢇ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢇꢆ ꢃ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
Flash Memory  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
2.2  
TYP  
MAX UNIT  
V
CC(PGM/  
ERASE)  
Program and Erase supply voltage  
Flash Timing Generator frequency  
3.6  
V
f
I
I
t
t
257  
476  
5
kHz  
mA  
FTG  
Supply current from V  
Supply current from V  
during program  
during erase  
2.2 V/3.6 V  
2.2 V/3.6 V  
2.2 V/3.6 V  
2.2 V/3.6 V  
1
1
PGM  
CC  
7
mA  
ERASE  
CPT  
CC  
Cumulative program time (see Note 1)  
Cumulative mass erase time  
Program/Erase endurance  
Data retention duration  
10  
ms  
20  
ms  
CMErase  
4
10  
5
10  
cycles  
years  
t
T = 25°C  
J
100  
Retention  
t
t
t
t
t
t
Word or byte program time  
30  
25  
Word  
st  
Block program time for 1 byte or word  
Block, 0  
Block program time for each additional byte or word  
Block program end-sequence wait time  
Mass erase time  
18  
Block, 1-63  
Block, End  
Mass Erase  
Seg Erase  
see Note 2  
t
FTG  
6
10593  
4819  
Segment erase time  
NOTES: 1. The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming  
methods: individual word/byte write and block write modes.  
2. These values are hardwired into the Flash Controller’s state machine (t  
FTG  
= 1/f ).  
FTG  
RAM  
PARAMETER  
TEST CONDITIONS  
CPU halted  
MIN  
TYP  
MAX UNIT  
V
RAM retention supply voltage (see Note 1)  
1.6  
V
(RAMh)  
NOTE 1: This parameter defines the minimum supply voltage V  
happen during this supply voltage condition.  
when the data in RAM remains unchanged. No program execution should  
CC  
55  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢇꢆꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢇꢇ ꢆ ꢃ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
JTAG and Spy-Bi-Wire Interface  
TEST  
CONDITIONS  
PARAMETER  
VCC  
MIN  
TYP  
MAX  
UNIT  
f
t
Spy-Bi-Wire input frequency  
2.2 V / 3 V  
2.2 V / 3 V  
0
20  
15  
MHz  
us  
SBW  
Spy-Bi-Wire low clock pulse length  
0.025  
SBW,Low  
Spy-Bi-Wire enable time  
t
(TEST high to acceptance of first clock edge, see  
Note 1)  
2.2 V/ 3 V  
1
us  
SBW,En  
t
f
Spy-Bi-Wire return to normal operation time  
2.2 V/ 3 V  
2.2 V  
15  
0
100  
5
us  
SBW,Ret  
MHz  
MHz  
kΩ  
TCK input frequency (see Note 2)  
TCK  
3 V  
0
10  
90  
R
Internal pull-down resistance on TEST  
2.2 V/ 3 V  
25  
60  
Internal  
NOTES: 1. Tools accessing the Spy-Bi-Wire interface need to wait for the maximum t  
before applying the first SBWCLK clock edge.  
time after pulling the TEST/SBWCLK pin high  
SBW,En  
2.  
f
may be restricted to meet the timing requirements of the module selected.  
TCK  
JTAG Fuse (see Note 1)  
TEST  
CONDITIONS  
PARAMETER  
VCC  
MIN  
TYP  
MAX  
UNIT  
V
V
Supply voltage during fuse-blow condition  
Voltage level on TEST for fuse-blow  
Supply current into TEST during fuse blow  
Time to blow fuse  
T
A
= 25°C  
2.5  
6
V
V
CC(FB)  
7
100  
1
FB  
I
t
mA  
ms  
FB  
FB  
NOTES: 1. Once the fuse is blown, no further access to the JTAG/Test and emulation feature is possible and is switched to bypass mode.  
56  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢇ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢇꢆ ꢃ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
APPLICATION INFORMATION  
Port P1 pin schematic: P1.0 to P1.3, input/output with Schmitt-trigger  
Pad Logic  
P1REN.x  
DVSS  
DVCC  
0
1
1
P1DIR.x  
0
1
Direction  
0: Input  
1: Output  
0
1
P1OUT.x  
Module X OUT  
P1.0/TACLK/ADC10CLK  
P1.1/TA0  
P1SEL.x  
P1IN.x  
P1.2/TA1  
P1.3/TA2  
EN  
D
Module X IN  
P1IRQ.x  
P1IE.x  
EN  
Q
Set  
P1IFG.x  
Interrupt  
Edge  
Select  
P1SEL.x  
P1IES.x  
Port P1 (P1.0 to P1.3) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P1.X)  
X
FUNCTION  
P1DIR.x  
P1SEL.x  
P1.0/  
0
P1.0† (I/O)  
I: 0; O: 1  
0
1
1
0
1
1
0
1
1
0
1
1
TACLK/ADC10CLk  
P1.1/TA0  
Timer_A3.TACLK  
ADC10CLK  
0
1
1
2
3
P1.1† (I/O)  
I: 0; O: 1  
Timer_A3.CCI0A  
Timer_A3.TA0  
P1.2† (I/O)  
0
1
P1.2/TA1  
P1.3/TA2  
I: 0; O: 1  
Timer_A3.CCI0A  
Timer_A3.TA0  
P1.3† (I/O)  
0
1
I: 0; O: 1  
Timer_A3.CCI0A  
Timer_A3.TA0  
0
1
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
57  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢇꢆꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢇꢇ ꢆ ꢃ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
Port P1 pin schematic: P1.4 to P1.6, input/output with Schmitt-trigger and in-system access features  
Pad Logic  
P1REN.x  
DVSS  
DVCC  
0
1
1
P1DIR.x  
0
1
Direction  
0: Input  
1: Output  
P1OUT.x  
0
1
Module X OUT  
P1.4/SMCLK/TCK  
P1.5/TA0/TMS  
P1.6/TA1/TDI  
Bus  
Keeper  
P1SEL.x  
P1IN.x  
EN  
EN  
D
Module X IN  
P1IRQ.x  
P1IE.x  
EN  
Q
Set  
P1IFG.x  
Interrupt  
Edge  
Select  
P1SEL.x  
P1IES.x  
To JTAG  
From JTAG  
Port P1 (P1.4 to P1.6) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P1.X)  
X
FUNCTION  
P1DIR.x  
P1SEL.x  
4-Wire JTAG  
P1.4/SMCLK/TCK  
4
P1.4† (I/O)  
SMCLK  
I: 0; O: 1  
0
1
X
0
1
X
0
1
X
0
0
1
0
0
1
0
0
1
1
TCK  
X
P1.5/TA0/TMS  
5
6
P1.5† (I/O)  
Timer_A3.TA0  
TMS  
I: 0; O: 1  
1
X
P1.6/TA1/TDI/TCLK  
P1.6† (I/O)  
Timer_A3.TA1  
I: 0; O: 1  
1
TDI/TCLK (see Note 3)  
Default after reset (PUC/POR)  
X
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
3. Function controlled by JTAG.  
58  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢇ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢇꢆ ꢃ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
Port P1 pin schematic: P1.7, input/output with Schmitt-trigger and in-system access features  
Pad Logic  
P1REN.7  
DVSS  
DVCC  
0
1
1
P1DIR.7  
0
1
Direction  
0: Input  
1: Output  
0
1
P1OUT.7  
Module X OUT  
P1.7/TA2/TDO/TDI  
Bus  
Keeper  
P1SEL.7  
P1IN.7  
EN  
EN  
D
Module X IN  
P1IRQ.7  
P1IE.7  
EN  
Q
Set  
P1IFG.7  
Interrupt  
Edge  
Select  
P1SEL.7  
P1IES.7  
To JTAG  
From JTAG  
From JTAG  
From JTAG (TDO)  
Port P1 (P1.7) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P1.X)  
X
FUNCTION  
P1DIR.x  
P1SEL.x  
4-Wire JTAG  
P1.7/TA2/TDO/TDI  
7
P1.7† (I/O)  
I: 0; O: 1  
0
1
0
0
1
Timer_A3.TA2  
1
TDO/TDI (see Note 3)  
Default after reset (PUC/POR)  
X
X
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
3. Function controlled by JTAG.  
59  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢇꢆꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢇꢇ ꢆ ꢃ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
Port P2 pin schematic: P2.0, P2.2, input/output with Schmitt-trigger  
Pad Logic  
To ADC10  
INCHx = y  
ADC10AE0.y  
P2REN.x  
DVSS  
DVCC  
0
1
1
P2DIR.x  
0
1
Direction  
0: Input  
1: Output  
0
1
P2OUT.x  
Module X OUT  
P2.0/ACLK/A0/OA0I0  
P2.2/TA0/A2/OA0I1  
Bus  
Keeper  
P2SEL.x  
P2IN.x  
EN  
EN  
D
Module X IN  
P2IRQ.x  
P2IE.x  
EN  
Q
Set  
P2IFG.x  
Interrupt  
Edge  
Select  
P2SEL.x  
P2IES.x  
+
OA0  
Port P2 (P2.0, P2.2) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P2.X)  
X
Y
FUNCTION  
P2DIR.x  
P2SEL.x  
ADC10AE0.y  
P2.0/ACLK/A0/OA0I0  
0
0
P2.0† (I/O)  
ACLK  
I: 0; O: 1  
0
1
X
0
1
1
X
0
0
1
0
0
0
1
1
A0/OA0I0 (see Note 3)  
P2.2† (I/O)  
X
P2.2/TA0/A2/OA0I1  
2
2
I: 0; O: 1  
Timer_A3.CCI0B  
Timer_A3.TA0  
0
1
A2/OA0I1 (see Note 3)  
X
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
3. Setting the ADC10AE0.y bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
60  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢇ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢇꢆ ꢃ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
Port P2 pin schematic: P2.1, input/output with Schmitt-trigger  
Pad Logic  
To ADC10  
INCHx = 1  
ADC10AE0.1  
P2REN.1  
DVSS  
DVCC  
0
1
1
P2DIR.1  
0
1
Direction  
0: Input  
1: Output  
0
1
P2OUT.1  
Module X OUT  
P2.1/TAINCLK/SMCLK/  
A1/OA0O  
Bus  
Keeper  
P2SEL.1  
P2IN.1  
EN  
EN  
D
Module X IN  
P2IRQ.1  
P2IE.1  
EN  
Q
Set  
P2IFG.1  
+
1
OA0  
Interrupt  
Edge  
Select  
P2SEL.1  
P2IES.1  
OAADCx  
OAFCx  
OAPMx  
(OAADCx = 10 or OAFCx = 000) and OAPMx > 00  
To OA0 Feedback Network  
1
61  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢇꢆꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢇꢇ ꢆ ꢃ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
Port P2 pin schematic: P2.3, input/output with Schmitt-trigger  
SREF2  
VSS  
Pad Logic  
0
1
To ADC10 V  
R−  
To ADC10  
INCHx = 3  
ADC10AE0.3  
P2REN.3  
P2DIR.3  
DVSS  
DVCC  
0
1
1
0
1
Direction  
0: Input  
1: Output  
P2OUT.3  
0
1
Module X OUT  
P2.3/TA1/  
A3/VREF/VeREF/  
OA1I1/OA1O  
Bus  
Keeper  
P2SEL.3  
P2IN.3  
EN  
EN  
D
Module X IN  
P2IRQ.3  
P2IE.3  
EN  
Q
Set  
P2IFG.3  
Interrupt  
Edge  
Select  
P2SEL.3  
P2IES.3  
+
1
OA1  
OAADCx  
OAFCx  
OAPMx  
(OAADCx = 10 or OAFCx = 000) and OAPMx > 00  
To OA1 Feedback Network  
1
62  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢇ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢇꢆ ꢃ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
Port P2 (P2.1) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P2.X)  
X
Y
FUNCTION  
P2DIR.x  
P2SEL.x  
ADC10AE0.y  
P2.1/TAINCLK/SMCLK  
/A1/OA0O  
1
1
P2.1† (I/O)  
Timer_A3.INCLK  
SMCLK  
I: 0; O: 1  
0
1
1
X
0
0
0
1
0
1
A1/OA0O (see Note 3)  
X
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
3. Setting the ADC10AE0.y bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
Port P2 (P2.3) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P2.X)  
X
Y
FUNCTION  
P2DIR.x  
P2SEL.x  
ADC10AE0.y  
P2.3/TA1/  
3
3
P2.3† (I/O)  
I: 0; O: 1  
0
1
1
X
0
0
0
1
A3/V /  
/V  
OA1I1/OA1O  
REF− eREF−  
Timer_A3.CCI1B  
Timer_A3.TA1  
0
1
A3/V  
/V  
/OA1I1/OA1O (see Note 3)  
X
REF− eREF−  
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
3. Setting the ADC10AE0.y bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
63  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢇꢆꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢇꢇ ꢆ ꢃ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
Port P2 pin schematic: P2.4, input/output with Schmitt-trigger  
Pad Logic  
To/from ADC10  
positive reference  
To ADC10  
INCHx = 4  
ADC10AE0.4  
P2REN.4  
DVSS  
0
1
1
DVCC  
P2DIR.4  
0
1
Direction  
0: Input  
1: Output  
0
1
P2OUT.4  
Module X OUT  
P2.4/TA2/  
A4/VREF+/VeREF+/  
OA1I0  
Bus  
Keeper  
P2SEL.4  
P2IN.4  
EN  
EN  
D
Module X IN  
P2IRQ.4  
P2IE.4  
EN  
Q
Set  
P2IFG.4  
Interrupt  
Edge  
Select  
P2SEL.4  
P2IES.4  
+
OA1  
Port P2 (P2.4) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P2.X)  
X
Y
FUNCTION  
P2DIR.x  
P2SEL.x  
ADC10AE0.y  
P2.4/TA2/  
4
4
P2.4† (I/O)  
Timer_A3.TA2  
A4/V /V  
I: 0; O: 1  
0
1
0
0
1
A4/V /  
/V  
REF+ eREF+  
1
OA1I0  
/OA1I0 (see Note 3)  
X
X
REF+ eREF+  
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
3. Setting the ADC10AE0.y bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
64  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢇ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢇꢆ ꢃ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
Port P2 pin schematic: P2.5, input/output with Schmitt-trigger and external R  
for DCO  
OSC  
Pad Logic  
To DCO  
DCOR  
P1REN.x  
DVSS  
DVCC  
0
1
1
P1DIR.x  
0
1
Direction  
0: Input  
1: Output  
0
1
P1OUT.x  
Module X OUT  
P2.5/ROSC  
Bus  
Keeper  
P1SEL.x  
P1IN.x  
EN  
EN  
D
Module X IN  
P1IRQ.x  
P1IE.x  
EN  
Q
Set  
P1IFG.x  
Interrupt  
Edge  
Select  
P1SEL.x  
P1IES.x  
Port P2 (P2.5) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P2.X)  
X
FUNCTION  
P2DIR.x  
I: 0; O: 1  
P2SEL.x  
DCOR  
P2.5/R  
OSC  
5
P2.5† (I/O)  
N/A  
0
1
1
X
0
0
0
1
0
1
DV  
SS  
R
X
OSC  
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
3. Setting the ADC10AE0.y bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
65  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢇꢆꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢇꢇ ꢆ ꢃ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
Port P2 pin schematic: P2.6, input/output with Schmitt-trigger and crystal oscillator input  
BCSCTL3.LFXT1Sx = 11  
LFXT1 Oscillator  
P2.7/XOUT  
LFXT1 off  
0
1
LFXT1CLK  
Pad Logic  
P2SEL.7  
P2REN.6  
DVSS  
0
1
1
DVCC  
P2DIR.6  
0
1
Direction  
0: Input  
1: Output  
0
1
P2OUT.6  
Module X OUT  
P2.6/XIN  
Bus  
Keeper  
P2SEL.6  
P2IN.6  
EN  
EN  
D
Module X IN  
P2IRQ.6  
P2IE.6  
EN  
Set  
Q
P2IFG.6  
Interrupt  
Edge  
Select  
P2SEL.6  
P2IES.6  
Port P2 (P2.6) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P2.X)  
X
FUNCTION  
P2DIR.x  
I: 0; O: 1  
X
P2SEL.x  
P2.6/XIN  
6
P2.6 (I/O)  
XIN†  
0
1
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
66  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢇ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢇꢆ ꢃ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
Port P2 pin schematic: P2.7, input/output with Schmitt-trigger and crystal oscillator output  
BCSCTL3.LFXT1Sx = 11  
LFXT1 Oscillator  
LFXT1 off  
0
1
LFXT1CLK  
From P2.6/XIN  
P2.6/XIN  
Pad Logic  
P2SEL.6  
P2REN.7  
DVSS  
0
1
1
DVCC  
P2DIR.7  
0
1
Direction  
0: Input  
1: Output  
0
1
P2OUT.7  
Module X OUT  
P2.7/XOUT  
Bus  
Keeper  
P2SEL.7  
P2IN.7  
EN  
EN  
D
Module X IN  
P2IRQ.7  
P2IE.7  
EN  
Set  
Q
P2IFG.7  
Interrupt  
Edge  
Select  
P2SEL.7  
P2IES.7  
Port P2 (P2.7) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P2.X)  
X
FUNCTION  
P2DIR.x  
I: 0; O: 1  
X
P2SEL.x  
XOUT/P2.7  
6
P2.7 (I/O)  
XOUT† (see Note 3)  
0
1
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
3. If the pin XOUT/P2.7 is used as an input a current can flow until P2SEL.7 is cleared due to the oscillator output driver connection  
to this pin after reset.  
67  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢇꢆꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢇꢇ ꢆ ꢃ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
Port P3 pin schematic: P3.0, input/output with Schmitt-trigger  
Pad Logic  
To ADC10  
INCHx = 5  
ADC10AE0.5  
P3REN.0  
DVSS  
DVCC  
0
1
1
P3DIR.0  
0
1
Direction  
0: Input  
1: Output  
USCI Direction  
Control  
0
1
P3OUT.0  
Module X OUT  
P3.0/UC1STE/UC0CLK/A5  
Bus  
Keeper  
P3SEL.0  
P3IN.0  
EN  
EN  
D
Module X IN  
Port P3 (P3.0) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P3.X)  
X
Y
FUNCTION  
P3DIR.x  
P3SEL.x  
ADC10AE0.y  
P3.0/  
UC1STE/UC0CLK/A5  
0
5
P3.0† (I/O)  
I: 0; O: 1  
0
1
0
0
1
UC1STE/UC0CLK (see Notes 3, 4)  
A5 (see Note 5)  
X
X
X
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
3. The pin direction is controlled by the USCI module.  
4. UC0CLK function takes precedence over UC1STE function. If the pin is required as UC0CLK input or output USCI1 will be forced  
to 3-wire SPI mode if 4-wire SPI mode is selected.  
5. Setting the ADC10AE0.y bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
68  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢇ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢇꢆ ꢃ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
Port P3 pin schematic: P3.1 to P3.5, input/output with Schmitt-trigger  
Pad Logic  
DVSS  
P3REN.x  
DVSS  
DVCC  
0
1
1
P3DIR.x  
0
1
Direction  
0: Input  
1: Output  
USCI Direction  
Control  
0
1
P3OUT.x  
Module X OUT  
P3.1/UC1SIMO/UC1SCL  
P3.2/UC1SOMI/UC1SDA  
P3.3/UC1CLK/UC0STE  
P3.4/UC0TXD/UC0SIMO  
P3.5/UC0RXD/UC0SOMI  
Bus  
Keeper  
P3SEL.x  
P3IN.x  
EN  
EN  
D
Module X IN  
Port P3 (P3.1 to P3.5) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P3.X)  
X
FUNCTION  
P3DIR.x  
P3SEL.x  
P3.1/  
UC1SIMO/UC1SDA  
1
P3.1† (I/O)  
I: 0; O: 1  
0
1
0
1
0
1
0
1
0
1
UC1SIMO/UC1SDA (see Note 3)  
P3.2† (I/O)  
X
P3.2/  
UC1SOMI/UC1SCL  
1
1
1
1
I: 0; O: 1  
UC1SOMI/UC1SCL (see Note 3)  
P3.3† (I/O)  
X
P3.3/  
UC1CLK/UC0STE  
I: 0; O: 1  
UC1CLK/UC0STE (see Notes 3, 4)  
P3.4† (I/O)  
X
I: 0; O: 1  
X
P3.4/  
UC0TXD/UC0SIMO  
UC0TXD/UC0SIMO (see Note 3)  
P3.5† (I/O)  
P3.5/  
UC0RXD/UC0SOMI  
I: 0; O: 1  
X
UC0RXD/UC0SOMI (see Note 3)  
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
3. The pin direction is controlled by the USCI module.  
4. UC1CLK function takes precedence over UC0STE function. If the pin is required as UC1CLK input or output USCI0 will be forced  
to 3-wire SPI mode even if 4-wire SPI mode is selected.  
69  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢇꢆꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢇꢇ ꢆ ꢃ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
Port P3 pin schematic: P3.6 to P3.7, input/output with Schmitt-trigger  
Pad Logic  
To ADC10  
INCHx = y  
ADC10AE0.y  
P3REN.x  
DVSS  
DVCC  
0
1
1
P3DIR.x  
0
1
Direction  
0: Input  
1: Output  
0
1
P3OUT.x  
Module X OUT  
P3.6/A6/OA0I2  
P3.7/A7/OA1I2  
Bus  
Keeper  
P3SEL.x  
P3IN.x  
EN  
EN  
D
Module X IN  
+
OA0/1  
Port P3 (P3.6, P3.7) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P3.X)  
X
Y
FUNCTION  
P3DIR.x  
P3SEL.x  
ADC10AE0.y  
P3.6/A6/OA0I2  
6
6
P3.6† (I/O)  
I: 0; O: 1  
0
X
0
0
1
0
1
A6/OA0I2 (see Note 5)  
P3.7† (I/O)  
X
I: 0; O: 1  
X
P3.7/A7/OA1I2  
7
7
A7/OA1I2 (see Note 5)  
X
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
3. The pin direction is controlled by the USCI module.  
4. UC1CLK function takes precedence over UC0STE function. If the pin is required as UC1CLK input or output USCI0 will be forced  
to 3-wire SPI mode if 4-wire SPI mode is selected.  
5. Setting the ADC10AE0.y bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
70  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢇ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢇꢆ ꢃ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
Port P4 pin schematic: P4.0 to P4.2, input/output with Schmitt-trigger  
Timer_B Output Tristate Logic  
P4.6/TBOUTH/A15/OA1I3  
Pad Logic  
P4SEL.6  
P4DIR.6  
ADC10AE1.7  
P4REN.x  
DVSS  
DVCC  
0
1
1
P4DIR.x  
0
1
Direction  
0: Input  
1: Output  
0
1
P4OUT.x  
Module X OUT  
P4.0/TB0  
P4.1/TB1  
P4.2/TB2  
Bus  
Keeper  
P4SEL.x  
P4IN.x  
EN  
EN  
D
Module X IN  
Port P4 (P4.0 to P4.2) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P4.X)  
X
FUNCTION  
P4DIR.x  
P4SEL.x  
P4.0/TB0  
0
P4.0† (I/O)  
I: 0; O: 1  
0
1
1
0
1
1
0
1
1
Timer_B3.CCI0A  
Timer_B3.TB0  
P4.1† (I/O)  
0
1
P4.1/TB1  
P4.2/TB2  
1
2
I: 0; O: 1  
Timer_B3.CCI1A  
Timer_B3.TB1  
P4.2† (I/O)  
0
1
I: 0; O: 1  
Timer_B3.CCI2A  
Timer_B3.TB2  
0
1
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
71  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢇꢆꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢇꢇ ꢆ ꢃ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
Port P4 pin schematic: P4.3 to P4.4, input/output with Schmitt-trigger  
Timer_B Output Tristate Logic  
P4.6/TBOUTH/A15/OA1I3  
P4SEL.6  
P4DIR.6  
ADC10AE1.7  
Pad Logic  
To ADC10  
INCHx = 8+y  
ADC10AE1.y  
P4REN.x  
DVSS  
DVCC  
0
1
1
P4DIR.x  
0
1
Direction  
0: Input  
1: Output  
0
1
P4OUT.x  
Module X OUT  
P4.3/TB0/A12/OA0O  
P4.4/TB1/A13/OA1O  
Bus  
Keeper  
P4SEL.x  
P4IN.x  
EN  
EN  
D
Module X IN  
+
1
OA0/1  
OAADCx  
OAPMx  
OAADCx = 01 and OAPMx > 00  
To OA0/1 Feedback Network  
1
If OAADCx = 11 and not OAFCx = 000 the ADC input A12 or A13 is internally connected to the OA0 or OA1 output respectively and the connections  
from the ADC and the operational amplifiers to the pad are disabled.  
72  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢇ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢇꢆ ꢃ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
Port P4 (P4.3 to P4.4) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P4.X)  
X
Y
FUNCTION  
P4DIR.x  
P4SEL.x  
ADC10AE1.y  
P4.3/TB0/A12/OA0O  
3
4
P4.3† (I/O)  
I: 0; O: 1  
0
1
1
X
0
1
1
X
0
0
0
1
0
0
0
1
Timer_B3.CCI0B  
Timer_B3.TB0  
0
1
A12/OA0O (see Note 3)  
P4.4† (I/O)  
X
P4.4/TB1/A13/OA1O  
4
5
I: 0; O: 1  
Timer_B3.CCI1B  
Timer_B3.TB1  
0
1
A13/OA1O (see Note 3)  
X
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
3. Setting the ADC10AE1.y bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
73  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢇꢆꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢇꢇ ꢆ ꢃ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
Port P4 pin schematic: P4.5, input/output with Schmitt-trigger  
Timer_B Output Tristate Logic  
P4.6/TBOUTH/A15/OA1I3  
P4SEL.6  
P4DIR.6  
ADC10AE1.7  
Pad Logic  
To ADC10  
INCHx = 14  
ADC10AE1.6  
P4REN.5  
DVSS  
DVCC  
0
1
1
P4DIR.5  
0
1
Direction  
0: Input  
1: Output  
0
1
P4OUT.5  
Module X OUT  
P4.5/TB3/A14/OA0I3  
Bus  
Keeper  
P4SEL.5  
P4IN.5  
EN  
EN  
D
Module X IN  
+
OA0  
74  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢇ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢇꢆ ꢃ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
Port P4 (P4.5) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P4.X)  
X
Y
FUNCTION  
P4DIR.x  
P4SEL.x  
ADC10AE1.y  
P4.5/TB3/A14/OA0I3  
5
6
P4.5† (I/O)  
I: 0; O: 1  
0
1
0
0
1
Timer_B3.TB2  
1
A14/OA0I3 (see Note 3)  
X
X
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
3. Setting the ADC10AE1.y bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
75  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢇꢆꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢇꢇ ꢆ ꢃ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
Port P4 pin schematic: P4.6, input/output with Schmitt-trigger  
Pad Logic  
To ADC10  
INCHx = 15  
ADC10AE1.7  
P4REN.6  
DVSS  
0
1
1
DVCC  
P4DIR.6  
0
1
Direction  
0: Input  
1: Output  
0
1
P4OUT.6  
Module X OUT  
P4.6/TBOUTH/  
A15/OA1I3  
Bus  
Keeper  
P4SEL.6  
P4IN.6  
EN  
EN  
D
Module X IN  
+
OA1  
Port P4 (P4.6) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P4.X)  
X
Y
FUNCTION  
P4DIR.x  
P4SEL.x  
ADC10AE1.y  
P4.6/TBOUTH/  
A15/OA1I3  
6
7
P4.6† (I/O)  
TBOUTH  
I: 0; O: 1  
0
1
1
X
0
0
0
1
0
1
DV  
SS  
A15/OA1I3 (see Note 3)  
X
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
3. Setting the ADC10AE1.y bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
76  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢇ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢇꢆ ꢃ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
Port P4 pin schematic: P4.7, input/output with Schmitt-trigger  
Pad Logic  
DVSS  
P4REN.x  
DVSS  
DVCC  
0
1
1
P4DIR.x  
0
1
Direction  
0: Input  
1: Output  
0
1
P4OUT.x  
Module X OUT  
P4.7/TBCLK  
Bus  
Keeper  
P4SEL.x  
P4IN.x  
EN  
EN  
D
Module X IN  
Port P4 (P4.7) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P4.X)  
X
FUNCTION  
P4DIR.x  
P4SEL.x  
P4.7/TBCLK  
7
P4.7† (I/O)  
Timer_B3.TBCLK  
DV  
I: 0; O: 1  
0
1
1
0
1
SS  
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
77  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢇꢆꢇ ꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢇꢇ ꢆ ꢃ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
JTAG fuse check mode  
MSP430 devices that have the fuse on the TEST terminal have a fuse check mode that tests the continuity of  
the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check  
current, I , of 1 mA at 3 V, 2.5 mA at 5 V can flow from the TEST pin to ground if the fuse is not burned. Care  
TF  
must be taken to avoid accidentally activating the fuse check mode and increasing overall system power  
consumption.  
When the TEST pin is again taken low after a test or programming session, the fuse check mode and sense  
currents are terminated.  
Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if TMS  
is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check mode.  
After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the fuse  
check mode has the potential to be activated.  
The fuse check current will only flow when the fuse check mode is active and the TMS pin is in a low state (see  
Figure 28). Therefore, the additional current flow can be prevented by holding the TMS pin high (default  
condition).  
Time TMS Goes Low After POR  
TMS  
I
TF  
I
TEST  
Figure 28. Fuse Check Mode Current, MSP430F22xx  
NOTE:  
The CODE and RAM data protection is ensured if the JTAG fuse is blown and the 256-bit bootloader  
access key is used. Also, see the bootstrap loader section for more information.  
78  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢇ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢇꢆ ꢃ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS504A − JULY 2006 − REVISED DECEMBER 2006  
Data Sheet Revision History  
Literature  
Number  
Summary  
SLAS504  
Preliminary data sheet release.  
Production data sheet release.  
SLAS504A  
Updated specification and added characterization graphs.  
Updated/corrected port pin schematics.  
NOTE: The referring page and figure numbers are referred to the respective document revision.  
79  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Mar-2007  
PACKAGING INFORMATION  
Orderable Device  
MSP430F2232IDA  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
TSSOP  
DA  
38  
38  
40  
40  
38  
38  
40  
40  
38  
38  
40  
40  
38  
38  
40  
40  
38  
38  
40  
40  
38  
38  
40  
40  
38  
40 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
MSP430F2232IDAR  
MSP430F2232IRHAR  
MSP430F2232IRHAT  
MSP430F2232TDA  
MSP430F2232TDAR  
MSP430F2232TRHAR  
MSP430F2232TRHAT  
MSP430F2234IDA  
TSSOP  
QFN  
DA  
RHA  
RHA  
DA  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
QFN  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
TSSOP  
TSSOP  
QFN  
40 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
DA  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
RHA  
RHA  
DA  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
QFN  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
TSSOP  
TSSOP  
QFN  
40 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
MSP430F2234IDAR  
MSP430F2234IRHAR  
MSP430F2234IRHAT  
MSP430F2234TDA  
MSP430F2234TDAR  
MSP430F2234TRHAR  
MSP430F2234TRHAT  
MSP430F2252IDA  
DA  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
RHA  
RHA  
DA  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
QFN  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
TSSOP  
TSSOP  
QFN  
40 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
DA  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
RHA  
RHA  
DA  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
QFN  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
TSSOP  
TSSOP  
QFN  
40 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
MSP430F2252IDAR  
MSP430F2252IRHAR  
MSP430F2252IRHAT  
MSP430F2252TDA  
MSP430F2252TDAR  
MSP430F2252TRHAR  
MSP430F2252TRHAT  
MSP430F2254IDA  
DA  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
RHA  
RHA  
DA  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
QFN  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
TSSOP  
TSSOP  
QFN  
40 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
DA  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
RHA  
RHA  
DA  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
QFN  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
TSSOP  
40 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Mar-2007  
Orderable Device  
MSP430F2254IDAR  
MSP430F2254IRHAR  
MSP430F2254IRHAT  
MSP430F2254TDA  
MSP430F2254TDAR  
MSP430F2254TRHAR  
MSP430F2254TRHAT  
MSP430F2272IDA  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
TSSOP  
DA  
38  
40  
40  
38  
38  
40  
40  
38  
38  
40  
40  
38  
38  
40  
40  
38  
38  
40  
40  
38  
38  
40  
40  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
QFN  
QFN  
RHA  
RHA  
DA  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
TSSOP  
TSSOP  
QFN  
40 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
DA  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
RHA  
RHA  
DA  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
QFN  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
TSSOP  
TSSOP  
QFN  
40 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
MSP430F2272IDAR  
MSP430F2272IRHAR  
MSP430F2272IRHAT  
MSP430F2272TDA  
MSP430F2272TDAR  
MSP430F2272TRHAR  
MSP430F2272TRHAT  
MSP430F2274IDA  
DA  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
RHA  
RHA  
DA  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
QFN  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
TSSOP  
TSSOP  
QFN  
40 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
DA  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
RHA  
RHA  
DA  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
QFN  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
TSSOP  
TSSOP  
QFN  
40 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
MSP430F2274IDAR  
MSP430F2274IRHAR  
MSP430F2274IRHAT  
MSP430F2274TDA  
MSP430F2274TDAR  
MSP430F2274TRHAR  
MSP430F2274TRHAT  
DA  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
RHA  
RHA  
DA  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
QFN  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
TSSOP  
TSSOP  
QFN  
40 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
DA  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
RHA  
RHA  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
QFN  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Mar-2007  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 3  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,  
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.  
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s  
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this  
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily  
performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should  
provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask  
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services  
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such  
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under  
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is  
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an  
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties  
may be subject to additional restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service  
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business  
practice. TI is not responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would  
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement  
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications  
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related  
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any  
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its  
representatives against any damages arising out of the use of TI products in such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is  
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in  
connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products  
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any  
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Amplifiers  
Data Converters  
DSP  
Applications  
Audio  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/audio  
Automotive  
Broadband  
Digital Control  
Military  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
interface.ti.com  
logic.ti.com  
Logic  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/lpw  
Telephony  
Low Power  
Wireless  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2007, Texas Instruments Incorporated  

相关型号:

MSP430F2234TRHAR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2234TRHAT

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2234TRHATQ1

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2252

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2252-Q1

ULTRA-LOW-POWER MICROCONTROLLERS
TI

MSP430F2252IDA

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2252IDAR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2252IRHA

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2252IRHAR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2252IRHAT

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2252IYFFR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2252IYFFT

MIXED SIGNAL MICROCONTROLLER
TI