MSP430F110 [TI]

MIXED SIGNAL MICROCONTROLLER; 混合信号微控制器
MSP430F110
型号: MSP430F110
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

MIXED SIGNAL MICROCONTROLLER
混合信号微控制器

微控制器
文件: 总29页 (文件大小:469K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇꢇꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS256D − NOVEMBER 1999 − REVISED SEPTEMBER 2004  
D
D
Low Supply Voltage Range 1.8 V to 3.6 V  
D
Family Members Include:  
MSP430F110: 1KB + 128B Flash Memory  
128B RAM  
MSP430F112: 4KB + 256B Flash Memory  
256B RAM  
Available in a 20-Pin Plastic Small-Outline  
Wide Body (SOWB) Package and 20-Pin  
Plastic Thin Shrink Small-Outline Package  
(TSSOP)  
Ultralow-Power Consumption:  
− Active Mode: 200 µA at 1 MHz, 2.2 V  
− Standby Mode: 0.8 µA  
− Off Mode (RAM Retention): 0.1 µA  
Wake-Up From Standby Mode in less  
than 6 µs  
16-Bit RISC Architecture, 125 ns  
Instruction Cycle Time  
D
D
D
D
D
For Complete Module Descriptions, Refer  
to the MSP430x1xx Family User’s Guide,  
Literature Number SLAU049  
Basic Clock Module Configurations:  
− Various Internal Resistors  
− Single External Resistor  
− 32 kHz Crystal  
− High Frequency Crystal  
− Resonator  
DW OR PW PACKAGE  
(TOP VIEW)  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
TEST  
P1.7/TA2/TDO/TDI  
P1.6/TA1/TDI  
P1.5/TA0/TMS  
P1.4/SMCLK/TCK  
P1.3/TA2  
P1.2/TA1  
P1.1/TA0  
P1.0/TACLK  
P2.4/TA2  
P2.3/TA1  
V
− External Clock Source  
CC  
P2.5/R  
osc  
D
D
16-Bit Timer_A With Three  
Capture/Compare Registers  
V
SS  
XOUT/TCLK  
XIN  
Serial Onboard Programming,  
No External Programming Voltage  
Needed  
RST/NMI  
P2.0/ACLK  
P2.1/INCLK  
P2.2/TA0  
description  
The Texas Instruments MSP430 family of ultralow power microcontrollers consist of several devices featuring  
different sets of peripherals targeted for various applications. The architecture, combined with five low power  
modes is optimized to achieve extended battery life in portable measurement applications. The device features  
a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that attribute to maximum code efficiency.  
The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 6µs.  
The MSP430F11x series is an ultralow-power mixed signal microcontroller with a built in 16-bit timer and  
fourteen I/O pins.  
Typical applications include sensor systems that capture analog signals, convert them to digital values, and then  
process the data and display them or transmit them to a host system. Stand alone RF sensor front-end is another  
area of application.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
ꢔꢡ  
Copyright 1999 − 2004, Texas Instruments Incorporated  
ꢝ ꢡ ꢞ ꢝꢖ ꢗꢪ ꢙꢘ ꢜ ꢤꢤ ꢢꢜ ꢚ ꢜ ꢛ ꢡ ꢝ ꢡ ꢚ ꢞ ꢦ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇꢇ ꢈ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS256D − NOVEMBER 1999 − REVISED SEPTEMBER 2004  
AVAILABLE OPTIONS  
PACKAGED DEVICES  
PLASTIC  
20-PIN SOWB  
(DW)  
PLASTIC  
20-PIN TSSOP  
(PW)  
T
A
MSP430F110IDW  
MSP430F112IDW  
MSP430F110IPW  
MSP430F112IPW  
40°C to 85°C  
functional block diagram  
P1  
XIN XOUT  
V
RST/NMI  
P2  
V
CC  
SS  
JTAG  
8
6
R
OSC  
Oscillator  
ACLK  
4KB Flash  
1KB Flash  
256B RAM  
128B RAM  
I/O Port 1  
8 I/Os, with 6 I/Os, with  
Interrupt  
Capability  
I/O Port 2  
System  
Clock  
SMCLK  
Interrupt  
Capability  
MCLK  
MAB,  
4 Bit  
Test  
MAB,16-Bit  
JTAG  
CPU  
MCB  
Incl. 16 Reg.  
Bus  
Conv  
MDB, 16-Bit  
MDB, 8 Bit  
TEST  
Watchdog  
Timer  
Timer_A3  
3 CC Reg  
POR  
15/16-Bit  
A pulldown resistor of 30 kis needed on F11x devices.  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇꢇꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS256D − NOVEMBER 1999 − REVISED SEPTEMBER 2004  
Terminal Functions  
TERMINAL  
NAME  
P1.0/TACLK  
I/O  
DESCRIPTION  
NO.  
13  
14  
15  
16  
17  
I/O General-purpose digital I/O pin/Timer_A, clock signal TACLK input  
P1.1/TA0  
I/O General-purpose digital I/O pin/Timer_A, capture: CCI0A input, compare: Out0 output/BSL transmit  
I/O General-purpose digital I/O pin/Timer_A, capture: CCI1A input, compare: Out1 output  
I/O General-purpose digital I/O pin/Timer_A, capture: CCI2A input, compare: Out2 output  
P1.2/TA1  
P1.3/TA2  
P1.4/SMCLK/TCK  
I/O General-purpose digital I/O pin/SMCLK signal output/test clock, input terminal for device programming  
and test  
P1.5/TA0/TMS  
18  
I/O General-purpose digital I/O pin/Timer_A, compare: Out0 output/test mode select, input terminal for  
device programming and test  
P1.6/TA1/TDI  
19  
20  
I/O General-purpose digital I/O pin/Timer_A, compare: Out1 output/test data input terminal  
P1.7/TA2/TDO/TDI  
I/O General-purpose digital I/O pin/Timer_A, compare: Out2 output/test data output terminal or data input  
during programming  
P2.0/ACLK  
P2.1/INCLK  
P2.2/TA0  
8
9
I/O General-purpose digital I/O pin/ACLK output  
I/O General-purpose digital I/O pin/Timer_A, clock signal at INCLK  
10  
11  
12  
3
I/O General-purpose digital I/O pin/Timer_A, capture: CCI0B input, compare: Out0 output/BSL receive  
I/O General-purpose digital I/O pin/Timer_A, capture: CCI1B input, compare: Out1 output  
I/O General-purpose digital I/O pin/Timer_A, compare: Out2 output  
P2.3/TA1  
P2.4/TA2  
P2.5/R  
OSC  
I/O General-purpose digital I/O pin/Input for external resistor that defines the DCO nominal frequency  
RST/NMI  
TEST  
7
I
I
Reset or nonmaskable interrupt input  
Selects test mode for JTAG pins on Port1. Must be tied low with less than 30 k.  
Supply voltage  
1
V
V
2
CC  
4
Ground reference  
SS  
XIN  
6
I
Input terminal of crystal oscillator  
XOUT/TCLK  
5
I/O Output terminal of crystal oscillator or test clock input  
TDO or TDI is selected via JTAG instruction.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇꢇ ꢈ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS256D − NOVEMBER 1999 − REVISED SEPTEMBER 2004  
short-form description  
CPU  
Program Counter  
Stack Pointer  
PC/R0  
The MSP430 CPU has a 16-bit RISC architecture  
that is highly transparent to the application. All  
operations, other than program-flow instructions,  
are performed as register operations in  
conjunction with seven addressing modes for  
source operand and four addressing modes for  
destination operand.  
SP/R1  
Status Register  
SR/CG1/R2  
Constant Generator  
CG2/R3  
R4  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
The CPU is integrated with 16 registers that  
provide reduced instruction execution time. The  
register-to-register operation execution time is  
one cycle of the CPU clock.  
R5  
R6  
R7  
Four of the registers, R0 to R3, are dedicated as  
program counter, stack pointer, status register,  
and constant generator respectively. The  
remaining registers are general-purpose  
registers.  
R8  
R9  
Peripherals are connected to the CPU using data,  
address, and control buses, and can be handled  
with all instructions.  
R10  
R11  
instruction set  
R12  
R13  
The instruction set consists of 51 instructions with  
three formats and seven address modes. Each  
instruction can operate on word and byte data.  
Table 1 shows examples of the three types of  
instruction formats; the address modes are listed  
in Table 2.  
R14  
R15  
Table 1. Instruction Word Formats  
Dual operands, source-destination  
Single operands, destination only  
Relative jump, un/conditional  
e.g. ADD R4,R5  
R4 + R5 −−−> R5  
e.g. CALL  
e.g. JNE  
R8  
PC −−>(TOS), R8−−> PC  
Jump-on-equal bit = 0  
Table 2. Address Mode Descriptions  
ADDRESS MODE  
Register  
S
D
SYNTAX  
MOV Rs,Rd  
EXAMPLE  
MOV R10,R11  
MOV 2(R5),6(R6)  
OPERATION  
D D  
R10 −−> R11  
Indexed  
D D  
MOV X(Rn),Y(Rm)  
MOV EDE,TONI  
M(2+R5)−−> M(6+R6)  
M(EDE) −−> M(TONI)  
M(MEM) −−> M(TCDAT)  
M(R10) −−> M(Tab+R6)  
Symbolic (PC relative) D D  
Absolute  
Indirect  
D D MOV &MEM,&TCDAT  
D
D
D
MOV @Rn,Y(Rm)  
MOV @Rn+,Rm  
MOV #X,TONI  
MOV @R10,Tab(R6)  
MOV @R10+,R11  
MOV #45,TONI  
Indirect  
autoincrement  
M(R10) −−> R11  
R10 + 2−−> R10  
Immediate  
#45 −−> M(TONI)  
NOTE: S = source  
D = destination  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇꢇꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS256D − NOVEMBER 1999 − REVISED SEPTEMBER 2004  
operating modes  
The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt  
event can wake up the device from any of the five low-power modes, service the request and restore back to  
the low-power mode on return from the interrupt program.  
The following six operating modes can be configured by software:  
D
D
Active mode AM;  
All clocks are active  
Low-power mode 0 (LPM0);  
CPU is disabled  
ACLK and SMCLK remain active. MCLK is disabled  
D
D
Low-power mode 1 (LPM1);  
CPU is disabled  
ACLK and SMCLK remain active. MCLK is disabled  
DCO’s dc-generator is disabled if DCO not used in active mode  
Low-power mode 2 (LPM2);  
CPU is disabled  
MCLK and SMCLK are disabled  
DCO’s dc-generator remains enabled  
ACLK remains active  
D
D
Low-power mode 3 (LPM3);  
CPU is disabled  
MCLK and SMCLK are disabled  
DCO’s dc-generator is disabled  
ACLK remains active  
Low-power mode 4 (LPM4);  
CPU is disabled  
ACLK is disabled  
MCLK and SMCLK are disabled  
DCO’s dc-generator is disabled  
Crystal oscillator is stopped  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇꢇ ꢈ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS256D − NOVEMBER 1999 − REVISED SEPTEMBER 2004  
interrupt vector addresses  
The interrupt vectors and the power-up starting address are located in the memory with an address range of  
0FFFFh-0FFE0h. The vector contains the 16-bit address of the appropriate interrupt handler instruction  
sequence.  
INTERRUPT SOURCE  
INTERRUPT FLAG  
SYSTEM INTERRUPT  
WORD ADDRESS  
PRIORITY  
Power-up  
External reset  
Watchdog  
WDTIFG (Note1)  
KEYV (Note 1)  
Reset  
0FFFEh  
15, highest  
NMI  
Oscillator fault  
Flash memory access violation  
(non)-maskable,  
(non)-maskable,  
(non)-maskable  
NMIIFG (Notes 1 and 5)  
OFIFG (Notes 1 and 5)  
ACCVIFG (Notes 1 and 5)  
0FFFCh  
14  
0FFFAh  
0FFF8h  
0FFF6h  
0FFF4h  
13  
12  
11  
10  
Watchdog timer  
Timer_A3  
WDTIFG  
maskable  
maskable  
TACCR0 CCIFG  
(Note 2)  
0FFF2h  
9
TACCR1 and TACCR2  
CCIFGs, TAIFG  
Timer_A3  
maskable  
0FFF0h  
8
(Notes 1 and 2)  
0FFEEh  
0FFECh  
0FFEAh  
0FFE8h  
7
6
5
4
I/O Port P2  
(eight flags − see Note 3)  
P2IFG.0 to P2IFG.7  
(Notes 1 and 2)  
maskable  
maskable  
0FFE6h  
0FFE4h  
3
2
I/O Port P1  
(eight flags)  
P1IFG.0 to P1IFG.7  
(Notes 1 and 2)  
0FFE2h  
0FFE0h  
1
0, lowest  
NOTES: 1. Multiple source flags  
2. Interrupt flags are located in the module  
3. There are eight Port P2 interrupt flags, but only six Port P2 I/O pins (P2.0−5) are implemented on the ’11x devices.  
4. Nonmaskable: neither the individual nor the general interrupt enable bit will disable an interrupt event.  
5. (non)-maskable: the individual interrupt enable bit can disable an interrupt event, but the general interrupt enable cannot.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇꢇꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS256D − NOVEMBER 1999 − REVISED SEPTEMBER 2004  
special function registers  
Most interrupt and module enable bits are collected into the lowest address space. Special function register bits  
that are not allocated to a functional purpose are not physically present in the device. Simple software access  
is provided with this arrangement.  
interrupt enable 1 and 2  
7
6
5
4
3
2
1
0
Address  
0h  
OFIE  
WDTIE  
ACCVIE  
NMIIE  
rw-0  
rw-0  
rw-0  
rw-0  
WDTIE:  
Watchdog Timer interrupt enable. Inactive if watchdog mode is selected. Active if Watchdog Timer  
is configured in interval timer mode.  
OFIE:  
Oscillator fault enable  
NMIIE:  
ACCVIE:  
Nonmaskable interrupt enable  
Flash access violation interrupt enable  
7
6
5
4
3
3
2
2
1
0
Address  
01h  
interrupt flag register 1 and 2  
7
6
5
4
1
0
Address  
02h  
NMIIFG  
OFIFG  
WDTIFG  
rw-0  
rw-1  
rw-(0)  
WDTIFG:  
Set on Watchdog Timer overflow (in watchdog mode) or security key violation.  
Reset on V power-up or a reset condition at RST/NMI pin in reset mode.  
Flag set on oscillator fault  
Set via RST/NMI-pin  
CC  
OFIFG:  
NMIIFG:  
7
6
5
4
3
2
1
0
Address  
03h  
Legend rw:  
Bit can be read and written.  
rw-0,1:  
Bit can be read and written. It is Reset or Set by PUC.  
Bit can be read and written. It is Reset or Set by POR.  
SFR bit is not present in device.  
rw-(0,1):  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇꢇ ꢈ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS256D − NOVEMBER 1999 − REVISED SEPTEMBER 2004  
memory organization  
MSP430F110  
MSP430F112  
Int. Vector  
FFFFh  
FFE0h  
FFFFh  
Int. Vector  
FFE0h  
FFDFh  
1 KB Flash  
Segment0,1  
FFDFh  
4 KB  
Flash  
Segment0−7  
Main  
FC00h  
Memory  
F000h  
10FFh  
10FFh  
1080h  
128B Flash  
SegmentA  
2 × 128B  
Flash  
SegmentA,B  
Information  
Memory  
1000h  
0FFFh  
0FFFh  
0C00h  
1 KB  
1 KB  
Boot ROM  
Boot ROM  
0C00h  
02FFh  
256B RAM  
027Fh  
128B RAM  
16b Per.  
8b Per.  
SFR  
0200h  
01FFh  
0200h  
01FFh  
0100h  
00FFh  
0010h  
000Fh  
0000h  
16b Per.  
8b Per.  
SFR  
0100h  
00FFh  
0010h  
000Fh  
0000h  
bootstrap loader (BSL)  
The MSP430 bootstrap loader (BSL) enables users to program the flash memory or RAM using a UART serial  
interface. Access to the MSP430 memory via the BSL is protected by user-defined password. For complete  
description of the features of the BSL and its implementation, see the Application report Features of the MSP430  
Bootstrap Loader, Literature Number SLAA089.  
BSL Function  
Data Transmit  
Data Receive  
DW & PW Package Pins  
14 - P1.1  
10 - P2.2  
flash memory  
The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The  
CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include:  
D
Flash memory has n segments of main memory and two segments of information memory (A and B) of 128  
bytes each. Each segment in main memory is 512 bytes in size.  
D
D
Segments 0 to n may be erased in one step, or each segment may be individually erased.  
Segments A and B can be erased individually, or as a group with segments 0−n.  
Segments A and B are also called information memory.  
D
New devices may have some bytes programmed in the information memory (needed for test during  
manufacturing). The user should perform an erase of the information memory prior to the first use.  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇꢇꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS256D − NOVEMBER 1999 − REVISED SEPTEMBER 2004  
flash memory (continued)  
0FFFFh  
0FE00h  
Segment0 w/  
Interrupt Vectors  
0FDFFh  
0FC00h  
Segment1  
Segment2  
Segment3  
Segment4  
Segment5  
Segment6  
Segment7  
SegmentA  
SegmentB  
0FBFFh  
0FA00h  
0F9FFh  
0F800h  
0F7FFh  
0F600h  
0F5FFh  
0F400h  
0F3FFh  
0F200h  
0F1FFh  
0F000h  
010FFh  
01080h  
0107Fh  
01000h  
NOTE: All segments not implemented on all devices.  
peripherals  
Peripherals are connected to the CPU through data, address, and control busses and can be handled using  
all instructions. For complete module descriptions, refer to the MSP430x1xx Family User’s Guide, literature  
number SLAU049.  
oscillator and system clock  
The clock system is supported by the basic clock module that includes support for a 32768-Hz watch crystal  
oscillator, an internal digitally-controlled oscillator (DCO) and a high frequency crystal oscillator. The basic clock  
module is designed to meet the requirements of both low system cost and low-power consumption. The internal  
DCO provides a fast turn-on clock source and stabilizes in less than 6 µs. The basic clock module provides the  
following clock signals:  
D
D
D
Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal or a high frequency crystal.  
Main clock (MCLK), the system clock used by the CPU.  
Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules.  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇꢇ ꢈ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS256D − NOVEMBER 1999 − REVISED SEPTEMBER 2004  
digital I/O  
There are two 8-bit I/O ports implemented—ports P1 and P2 (only six P2 I/O signals are available on external  
pins):  
D
D
D
D
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt conditions is possible.  
Edge-selectable interrupt input capability for all the eight bits of port P1 and six bits of port P2.  
Read/write access to port-control registers is supported by all instructions.  
NOTE:  
Six bits of port P2, P2.0 to P2.5, are available on external pins − but all control and data bits for port  
P2 are implemented.  
watchdog timer  
The primary function of the watchdog timer (WDT) module is to perform a controlled system restart after a  
software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog  
function is not needed in an application, the module can be configured as an interval timer and can generate  
interrupts at selected time intervals.  
timer_A3  
Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple  
capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare  
registers.  
Timer_A3 Signal Connections  
Input Pin Number Device Input Signal Module Input Name  
Module Block  
Module Output Signal  
Output Pin Number  
13 - P1.0  
TACLK  
ACLK  
SMCLK  
INCLK  
TA0  
TACLK  
ACLK  
Timer  
NA  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
9 - P2.1  
14 - P1.1  
10 - P2.2  
14 - P1.1  
18 - P1.5  
10 - P2.2  
TA0  
CCR0  
CCR1  
CCR2  
TA0  
TA1  
TA2  
DV  
SS  
CC  
DV  
V
CC  
15 - P1.2  
11 - P2.3  
TA1  
TA1  
CCI1A  
CCI1B  
GND  
15 - P1.2  
19 - P1.6  
11 - P2.3  
DV  
SS  
DV  
V
CC  
CC  
16 - P1.3  
TA2  
ACLK (internal)  
CCI2A  
CCI2B  
GND  
16 - P1.3  
20 - P1.7  
12 - P2.4  
DV  
DV  
SS  
V
CC  
CC  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇꢇꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS256D − NOVEMBER 1999 − REVISED SEPTEMBER 2004  
peripheral file map  
PERIPHERALS WITH WORD ACCESS  
Timer_A  
Reserved  
Reserved  
Reserved  
Reserved  
Capture/compare register  
Capture/compare register  
Capture/compare register  
Timer_A register  
Reserved  
Reserved  
Reserved  
Reserved  
Capture/compare control  
Capture/compare control  
Capture/compare control  
Timer_A control  
Timer_A interrupt vector  
017Eh  
017Ch  
017Ah  
0178h  
0176h  
0174h  
0172h  
0170h  
016Eh  
016Ch  
016Ah  
0168h  
0166h  
0164h  
0162h  
0160h  
012Eh  
TACCR2  
TACCR1  
TACCR0  
TAR  
TACCTL2  
TACCTL1  
TACCTL0  
TACTL  
TAIV  
Flash Memory  
Flash control 3  
Flash control 2  
Flash control 1  
FCTL3  
FCTL2  
FCTL1  
012Ch  
012Ah  
0128h  
Watchdog  
Watchdog/timer control  
WDTCTL  
0120h  
PERIPHERALS WITH BYTE ACCESS  
Basic Clock  
Basic clock sys. control2  
Basic clock sys. control1  
DCO clock freq. control  
BCSCTL2 058h  
BCSCTL1 057h  
DCOCTL  
056h  
Port P2  
Port P2 selection  
P2SEL  
P2IE  
02Eh  
02Dh  
02Ch  
02Bh  
02Ah  
029h  
028h  
Port P2 interrupt enable  
Port P2 interrupt edge select  
Port P2 interrupt flag  
Port P2 direction  
Port P2 output  
Port P2 input  
P2IES  
P2IFG  
P2DIR  
P2OUT  
P2IN  
Port P1  
Port P1 selection  
P1SEL  
P1IE  
026h  
025h  
024h  
023h  
022h  
021h  
020h  
Port P1 interrupt enable  
Port P1 interrupt edge select  
Port P1 interrupt flag  
Port P1 direction  
Port P1 output  
Port P1 input  
P1IES  
P1IFG  
P1DIR  
P1OUT  
P1IN  
Special Function  
SFR interrupt flag2  
SFR interrupt flag1  
SFR interrupt enable2  
SFR interrupt enable1  
IFG2  
IFG1  
IE2  
003h  
002h  
001h  
000h  
IE1  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇꢇ ꢈ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS256D − NOVEMBER 1999 − REVISED SEPTEMBER 2004  
absolute maximum ratings  
Voltage applied at V  
to V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 4.1 V  
CC  
SS  
Voltage applied to any pin (referenced to V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to V +0.3 V  
Diode current at any device terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 mA  
SS  
CC  
Storage temperature, T (unprogrammed device) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 150°C  
stg  
Storage temperature, T (programmed device) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE: All voltages referenced to V  
.
SS  
recommended operating conditions  
MIN  
1.8  
NOM  
MAX UNITS  
Supply voltage during program execution, V  
CC  
(see Note 1)  
3.6  
3.6  
V
V
Supply voltage during program/erase flash memory, V  
CC  
2.7  
Supply voltage, V  
SS  
0
V
Operating free-air temperature range, T  
−40  
85  
°C  
Hz  
A
LF mode selected, XTS=0  
Watch crystal  
Ceramic resonator  
Crystal  
32768  
LFXT1 crystal frequency,  
(see Note 2)  
450  
1000  
dc  
8000  
f
(LFXT1)  
XT1 mode selected, XTS=1  
kHz  
8000  
V
CC  
V
CC  
V
CC  
= 1.8 V  
= 2.2 V  
= 3.6 V  
2
5
8
MHz  
MHz  
MHz  
Processor frequency f  
(system)  
(MCLK signal)  
dc  
dc  
NOTES: 1. The LFXT1 oscillator in LF-mode requires a resistor of 5.1 Mfrom XOUT to V  
SS  
when V <2.5 V.  
CC  
The LFXT1 oscillator in XT1-mode accepts a ceramic resonator or a crystal frequency of 4 MHz at V  
The LFXT1 oscillator in XT1-mode accepts a ceramic resonator or a crystal frequency of 8 MHz at V  
2.2 V.  
2.8 V.  
CC  
CC  
2. The LFXT1 oscillator in LF-mode requires a watch crystal. The LFXT1 oscillator in XT1-mode accepts a ceramic resonator or crystal.  
MSP430F11x Devices  
9
8
7
6
5
4
3
2
8 MHz at  
3.6 V  
5 MHz at  
2.2 V  
2 MHz at  
1.8 V  
1
0
0
1
2
3
4
V
CC  
− Supply Voltage − V  
NOTE: Minimum processor frequency is defined by system clock. Flash  
program or erase operations require a minimum V of 2.7 V.  
CC  
Figure 1. Frequency vs Supply Voltage  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇꢇꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS256D − NOVEMBER 1999 − REVISED SEPTEMBER 2004  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted)  
supply current (into V ) excluding external current  
CC  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
T
= −40°C +85°C,  
V
V
= 2.2 V  
= 3 V  
200  
300  
250  
350  
A
CC  
µA  
f
= f  
= 1 MHz,  
(MCLK) (SMCLK)  
CC  
= 32,768 Hz  
f(ACLK)  
I
Active mode  
(AM)  
V
V
= 2.2 V  
= 3 V  
1.6  
3
3
T
= −40°C +85°C,  
CC  
A
µA  
µA  
f
= f  
= f  
= 4096 Hz  
4.3  
(MCLK) (SMCLK) (ACLK)  
CC  
T
= −40°C +85°C,  
V
CC  
V
CC  
V
CC  
V
CC  
= 2.2 V  
= 3 V  
32  
55  
11  
17  
45  
70  
14  
22  
A
I
I
Low-power mode, (LPM0)  
Low-power mode, (LPM2)  
f
= 0, f  
= 32,768 Hz  
= 1 MHz,  
(CPUOff)  
(MCLK)  
(SMCLK)  
f(ACLK)  
T
= −40°C +85°C,  
= 2.2 V  
= 3 V  
A
µA  
µA  
f
= f  
= 0 MHz,  
(LPM2)  
(MCLK) (SMCLK)  
= 32,768 Hz, SCG0 = 0  
f(ACLK)  
T
A
= −40°C  
0.8  
0.7  
1.6  
1.8  
1.6  
2.3  
0.1  
0.1  
0.8  
1.2  
1
T
A
= 25°C  
= 85°C  
= −40°C  
= 25°C  
= 85°C  
= −40°C  
= 25°C  
= 85°C  
V
V
= 2.2 V  
= 3 V  
CC  
T
A
2.3  
2.2  
1.9  
3.4  
0.5  
0.5  
1.9  
I
Low-power mode, (LPM3)  
(LPM3)  
(LPM4)  
T
A
T
A
µA  
µA  
CC  
T
A
T
A
f
f
= 0 MHz  
= 0 MHz,  
(MCLK)  
(SMCLK)  
I
Low-power mode, (LPM4)  
T
A
V
= 2.2 V/3 V  
CC  
= 0 Hz, SCG0 = 1  
f(ACLK)  
T
A
NOTE: All inputs are tied to 0 V or V . Outputs do not source or sink any current.  
CC  
current consumption of active mode versus system frequency, F version  
= I × f [MHz]  
I
AM  
AM[1 MHz]  
system  
current consumption of active mode versus supply voltage, F version  
= I + 120 µA/V × (V −3 V)  
I
AM  
AM[3 V]  
CC  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇꢇ ꢈ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS256D − NOVEMBER 1999 − REVISED SEPTEMBER 2004  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted)  
Schmitt-trigger inputs Port 1 to Port P2; P1.0 to P1.7, P2.0 to P2.5  
PARAMETER  
TEST CONDITIONS  
MIN  
1.1  
1.5  
0.4  
.90  
0.3  
0.5  
TYP  
MAX  
1.3  
1.8  
0.9  
1.2  
1
UNIT  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 2.2 V  
= 3 V  
V
IT+  
V
IT−  
V
hys  
Positive-going input threshold voltage  
V
= 2.2 V  
= 3 V  
Negative-going input threshold voltage  
V
V
= 2.2 V  
= 3 V  
Input voltage hysteresis, (V  
IT+  
− V )  
IT−  
1.4  
standard inputs − RST/NMI; TCK, TMS, TDI  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
V
Low-level input voltage  
High-level input voltage  
V
SS  
V
+0.6  
SS  
IL  
V
CC  
= 2.2 V / 3 V  
0.8×V  
V
CC  
V
IH  
CC  
inputs Px.x, TAx  
PARAMETER  
TEST CONDITIONS  
V
CC  
MIN  
TYP  
MAX  
UNIT  
2.2 V/3 V  
2.2 V  
3 V  
1.5  
62  
50  
1.5  
62  
50  
cycle  
Port P1, P2: P1.x to P2.x, External trigger signal  
for the interrupt flag, (see Note 1)  
t
External interrupt timing  
Timer_A, capture timing  
(int)  
ns  
cycle  
ns  
2.2 V/3 V  
2.2 V  
3 V  
t
TA0, TA1, TA2 (see Note 2)  
(cap)  
2.2 V  
3 V  
8
10  
8
Timer_A clock frequency  
externally applied to pin  
f
f
TACLK, INCLK t  
= t  
MHz  
MHz  
(TAext)  
(H) (L)  
2.2 V  
3 V  
Timer_A clock frequency  
SMCLK or ACLK signal selected  
(TAint)  
10  
NOTES: 1. The external signal sets the interrupt flag every time the minimum t  
cycle and time parameters are met. It may be set even with  
(int)  
. Both the cycle and timing specifications must be met to ensure the flag is set. t  
trigger signals shorter than t  
MCLK cycles.  
is measured in  
(int)  
(int)  
2. The external capture signal triggers the capture event every time the mimimum t  
cycle and time parameters are met. A capture  
(cap)  
may be triggered with capture signals even shorter than t . Both the cycle and timing specifications must be met to ensure a  
(cap)  
correct capture of the 16-bit timer value and to ensure the flag is set.  
leakage current  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Port P1: P1.x, 0 ≤ × ≤ 7  
(see Notes 1 and 2)  
V
CC  
= 2.2 V/3 V,  
50  
I
High-impedance leakage current  
nA  
lkg(Px.x)  
Port P2: P2.x, 0 ≤ × ≤ 5  
(see Notes 1 and 2)  
V
CC  
= 2.2 V/3 V,  
50  
NOTES: 1. The leakage current is measured with V  
SS  
or V applied to the corresponding pin(s), unless otherwise noted.  
CC  
2. The leakage of the digital port pins is measured individually. The port pin must be selected for input and there must be no optional  
pullup or pulldown resistor.  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇꢇꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS256D − NOVEMBER 1999 − REVISED SEPTEMBER 2004  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted)  
outputs Port 1 to Port 2; P1.0 to P1.7, P2.0 to P2.5  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
I
I
I
I
I
I
I
I
I
I
I
I
= −1.5 mA  
= −6 mA  
= −1.5 mA  
= −6 mA  
= −1 mA  
= −3.4 mA  
= −1 mA  
= −3.4 mA  
= 1.5 mA  
= 6 mA  
See Note 1  
See Note 2  
See Note 1  
See Note 2  
See Note 3  
See Note 3  
See Note 3  
See Note 3  
See Note 1  
See Note 2  
See Note 1  
See Note 2  
V
−0.25  
V
V
V
V
V
V
V
V
(OHmax)  
(OHmax)  
(OHmax)  
(OHmax)  
(OHmax)  
(OHmax)  
(OHmax)  
(OHmax)  
(OLmax)  
(OLmax)  
(OLmax)  
(OLmax)  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 2.2 V  
= 3 V  
V
−0.6  
CC  
−0.25  
High-level output voltage  
Port 1  
V
OH  
V
OH  
V
OL  
V
V
CC  
V
−0.6  
CC  
−0.25  
V
CC  
= 2.2 V  
= 3 V  
V
−0.6  
CC  
−0.25  
High-level output voltage  
Port 2  
V
V
V
CC  
V
−0.6  
CC  
V
V
+0.25  
SS  
SS  
SS  
SS  
SS  
= 2.2 V  
= 3 V  
V
V
V
V
+0.6  
SS  
Low-level output voltage  
Port 1 and Port 2  
= 1.5 mA  
= 6 mA  
V
SS  
+0.25  
V
+0.6  
SS  
NOTES: 1. The maximum total current, I  
drop specified.  
and I  
, for all outputs combined, should not exceed 12 mA to hold the maximum voltage  
OHmax  
OLmax  
OLmax  
2. The maximum total current, I  
drop specified.  
and I  
, for all outputs combined, should not exceed 48 mA to hold the maximum voltage  
OHmax  
3. One output loaded at a time.  
outputs P1.x, P2.x, TAx  
PARAMETER  
TEST CONDITIONS  
P2.0/ACLK, C = 20 pF  
V
MIN  
TYP  
MAX  
UNIT  
CC  
f
f
2.2 V/3 V  
f
f
(P20)  
L
System  
TA0, TA1, TA2, C = 20 pF  
L
Internal clock source, SMCLK signal applied  
(See Note 1)  
Output frequency  
MHz  
2.2 V/3 V  
dc  
(TAx)  
System  
f
= f  
= f  
40%  
35%  
60%  
65%  
SMCLK LFXT1 XT1  
f
= f  
= f  
= f  
SMCLK  
SMCLK  
LFXT1 LF  
2.2 V/3 V  
2.2 V/3 V  
P1.4/SMCLK, C = 20 pF  
L
50%−  
15 ns  
50%+  
15 ns  
f
f
50%  
50%  
LFXT1/n  
DCOCLK  
50%−  
15 ns  
50%+  
15 ns  
t
t
Duty cycle of O/P  
frequency  
(Xdc)  
= f  
SMCLK  
f
f
f
= f  
= f  
40%  
30%  
60%  
70%  
P20 LFXT1 XT1  
= f  
= f  
= f  
P2.0/ACLK, C = 20 pF  
L
2.2 V/3 V  
2.2 V/3 V  
P20  
P20  
LFXT1 LF  
50%  
0
LFXT1/n  
TA0, TA1, TA2, C = 20 pF, Duty cycle = 50%  
50  
ns  
(TAdc)  
L
NOTE 1: The limits of the system clock MCLK have to be met. MCLK and SMCLK can have different frequencies.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇꢇ ꢈ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS256D − NOVEMBER 1999 − REVISED SEPTEMBER 2004  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
PUC/POR  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
250  
1.8  
UNIT  
µs  
V
t
150  
(POR_Delay)  
T
= −40°C  
= 25°C  
= 85°C  
1.4  
1.1  
0.8  
0
A
V
POR  
POR  
T
A
1.5  
V
V
CC  
= 2.2 V/3 V  
T
A
1.2  
V
V
(min)  
0.4  
V
t
PUC/POR  
Reset is accepted internally  
2
µs  
(reset)  
V
VCC  
V
POR  
No POR  
POR  
POR  
V
(min)  
t
Figure 2. Power-On Reset (POR) vs Supply Voltage  
2.0  
1.8  
1.8  
1.6  
1.5  
Max  
1.4  
1.4  
1.2  
1.2  
Min  
1.0  
0.8  
0.6  
0.4  
0.2  
1.1  
0.8  
25°C  
0
−40  
−20  
0
20  
40  
60  
80  
Temperature [°C]  
Figure 3. V  
vs Temperature  
POR  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇꢇꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS256D − NOVEMBER 1999 − REVISED SEPTEMBER 2004  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
wake-up from lower power modes (LPMx)  
PARAMETER  
TEST CONDITIONS  
= 2.2 V/3 V  
MIN  
TYP  
100  
100  
MAX  
UNIT  
t
t
V
V
(LPM0)  
CC  
ns  
= 2.2 V/3 V  
(LPM2)  
CC  
f
f
f
= 1 MHz,  
= 2 MHz,  
= 3 MHz,  
V
V
V
= 2.2 V/3 V  
= 2.2 V/3 V  
= 2.2 V/3 V  
6
6
6
(MCLK)  
(MCLK)  
(MCLK)  
CC  
CC  
CC  
t
t
µs  
µs  
(LPM3)  
Delay time (see Note 1)  
f
f
f
= 1 MHz,  
= 2 MHz,  
= 3 MHz,  
V
CC  
V
CC  
V
CC  
= 2.2 V/3 V  
= 2.2 V/3 V  
= 2.2 V/3 V  
6
6
6
(MCLK)  
(MCLK)  
(MCLK)  
(LPM4)  
NOTE 1: Parameter applicable only if DCOCLK is used for MCLK.  
RAM  
PARAMETER  
MIN  
1.6  
TYP  
MAX  
UNIT  
V
CPU halted (see Note 1)  
V
(RAMh)  
NOTE 1: This parameter defines the minimum supply voltage V  
when the data in the program memory RAM remains unchanged. No program  
CC  
execution should happen during this supply voltage condition.  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇꢇ ꢈ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS256D − NOVEMBER 1999 − REVISED SEPTEMBER 2004  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
DCO  
PARAMETER  
TEST CONDITIONS  
MIN  
0.08  
0.08  
0.14  
0.14  
0.22  
0.22  
0.37  
0.37  
0.61  
0.61  
TYP  
0.12  
0.13  
0.19  
0.18  
0.30  
0.28  
0.49  
0.47  
0.77  
0.75  
MAX  
0.15  
0.16  
0.23  
0.22  
0.36  
0.34  
0.59  
0.56  
0.93  
0.9  
UNIT  
V
V
V
V
V
V
V
V
V
V
= 2.2 V  
= 3 V  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
f
f
f
R
R
R
= 0, DCO = 3, MOD = 0, DCOR = 0,  
= 1, DCO = 3, MOD = 0, DCOR = 0,  
= 2, DCO = 3, MOD = 0, DCOR = 0,  
T
A
= 25°C  
= 25°C  
= 25°C  
MHz  
(DCO03)  
(DCO13)  
(DCO23)  
sel  
sel  
sel  
= 2.2 V  
= 3 V  
T
A
MHz  
MHz  
= 2.2 V  
= 3 V  
T
A
= 2.2 V  
= 3 V  
f
f
f
f
f
R
R
R
R
R
= 3, DCO = 3, MOD = 0, DCOR = 0,  
= 4, DCO = 3, MOD = 0, DCOR = 0,  
= 5, DCO = 3, MOD = 0, DCOR = 0,  
= 6, DCO = 3, MOD = 0, DCOR = 0,  
= 7, DCO = 3, MOD = 0, DCOR = 0,  
T
A
= 25°C  
= 25°C  
= 25°C  
= 25°C  
= 25°C  
MHz  
MHz  
MHz  
MHz  
MHz  
(DCO33)  
(DCO43)  
(DCO53)  
(DCO63)  
(DCO73)  
sel  
sel  
sel  
sel  
sel  
= 2.2 V  
= 3 V  
T
A
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 2.2 V  
= 3 V  
1
1
1.2  
1.3  
1.9  
2.0  
2.9  
3.2  
4.5  
4.9  
1.5  
1.5  
T
A
= 2.2 V  
= 3 V  
1.6  
1.69  
2.4  
2.7  
4
2.2  
T
A
2.29  
3.4  
= 2.2 V  
= 3 V  
T
A
3.65  
4.9  
= 2.2 V  
= 3 V  
f
R
R
= 7, DCO = 7, MOD = 0, DCOR = 0,  
= 4, DCO = 7, MOD = 0, DCOR = 0,  
T
A
= 25°C  
= 25°C  
MHz  
MHz  
ratio  
(DCO77)  
(DCO47)  
sel  
sel  
4.4  
5.4  
F
F
F
DCO40  
x1.7  
DCO40  
x2.1  
DCO40  
x2.5  
f
T
A
V
CC  
= 2.2 V/3 V  
S
S
S
= f  
/f  
DCO DCO+1 DCO  
V
CC  
V
CC  
V
CC  
V
CC  
= 2.2 V/3 V  
= 2.2 V/3 V  
= 2.2 V  
1.35  
1.07  
1.65  
1.12  
2
1.16  
(Rsel)  
R
Rsel+1 Rsel  
S
= f /f  
(DCO)  
−0.31  
−0.33  
−0.36  
−0.38  
−0.40  
−0.43  
Temperature drift, R  
(see Note 1)  
= 4, DCO = 3, MOD = 0  
sel  
D
D
%/°C  
t
= 3 V  
Drift with V  
CC  
(see Note 1)  
variation, R = 4, DCO = 3, MOD = 0  
sel  
V
CC  
= 2.2 V/3 V  
0
5
10  
%/V  
V
NOTE 1: These parameters are not production tested.  
Max  
f
f
(DCOx7)  
(DCOx0)  
Min  
Max  
Min  
0
1
2
3
4
5
6
7
2.2 V  
3 V  
V
CC  
DCO Steps  
Figure 4. DCO Characteristics  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇꢇꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS256D − NOVEMBER 1999 − REVISED SEPTEMBER 2004  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
main DCO characteristics  
D
Individual devices have a minimum and maximum operation frequency. The specified parameters for  
to f are valid for all devices.  
f
DCOx0)  
DCOx7)  
(
(
D
D
D
All ranges selected by Rsel(n) overlap with Rsel(n+1): Rsel0 overlaps Rsel1, ... Rsel6 overlaps Rsel7.  
DCO control bits DCO0, DCO1, and DCO2 have a step size as defined by parameter S  
.
DCO  
Modulation control bits MOD0 to MOD4 select how often f  
is used within the period of 32 DCOCLK  
DCO+1)  
(
cycles. The frequency f  
is used for the remaining cycles. The frequency is an average equal to:  
(DCO)  
32   f(DCO)   f(DCO)1)  
faverage  
+
MOD   f(DCO))(32*MOD)   f(DCO)1)  
crystal oscillator, LFXT1  
PARAMETER  
TEST CONDITIONS  
XTS=0; LF mode selected.  
= 2.2 V / 3 V  
MIN  
TYP  
MAX  
UNIT  
12  
V
CC  
XTS=1; XT1 mode selected.  
= 2.2 V / 3 V (Note 1)  
C
C
Input capacitance  
pF  
XIN  
2
12  
2
V
CC  
XTS=0; LF mode selected.  
= 2.2 V / 3 V  
V
CC  
Output capacitance  
Input levels at XIN  
pF  
V
XOUT  
XTS=1; XT1 mode selected.  
V
V
= 2.2 V / 3 V (Note 1)  
CC  
V
V
V
SS  
0.2×V  
IL  
CC  
= 2.2 V/3 V (see Note 2)  
CC  
0.8×V  
V
CC  
IH  
CC  
NOTES: 1. The oscillator needs capacitors at both terminals, with values specified by the crystal manufacturer.  
2. Applies only when using an external logic-level clock source. Not applicable when using a crystal or resonator.  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇꢇ ꢈ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS256D − NOVEMBER 1999 − REVISED SEPTEMBER 2004  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
Flash Memory  
TEST  
CONDITIONS  
PARAMETER  
V
CC  
MIN NOM  
MAX  
UNIT  
V
CC(PGM/  
ERASE)  
Program and Erase supply voltage  
Flash Timing Generator frequency  
2.7  
3.6  
V
f
I
I
t
t
257  
476  
5
kHz  
mA  
FTG  
Supply current from DV  
Supply current from DV  
during program  
during erase  
2.7 V/ 3.6 V  
2.7 V/ 3.6 V  
2.7 V/ 3.6 V  
2.7 V/ 3.6 V  
3
PGM  
CC  
3
5
mA  
ERASE  
CPT  
CC  
Cumulative program time  
see Note 1  
see Note 2  
4
ms  
Cumulative mass erase time  
Program/Erase endurance  
Data retention duration  
200  
ms  
CMErase  
4
5
10  
10  
100  
cycles  
years  
t
T = 25°C  
J
Retention  
t
t
t
t
t
t
Word or byte program time  
35  
30  
Word  
st  
Block program time for 1 byte or word  
Block, 0  
Block program time for each additional byte or word  
Block program end-sequence wait time  
Mass erase time  
21  
Block, 1-63  
Block, End  
Mass Erase  
Seg Erase  
see Note 3  
t
FTG  
6
5297  
4819  
Segment erase time  
NOTES: 1. The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming  
methods: individual word/byte write and block write modes.  
2. The mass erase duration generated by the flash timing generator is at least 11.1ms ( = 5297x1/f  
,max = 5297x1/476kHz). To  
FTG  
achieve the required cumulative mass erase time the Flash Controller’s mass erase operation can be repeated until this time is met.  
(A worst case minimum of 19 cycles are required).  
3. These values are hardwired into the Flash Controller’s state machine (t  
FTG  
= 1/f  
FTG  
).  
JTAG Interface  
TEST  
CONDITIONS  
PARAMETER  
V
CC  
MIN NOM  
MAX  
UNIT  
2.2 V  
3 V  
0
0
5
10  
90  
MHz  
MHz  
kΩ  
f
TCK input frequency  
see Note 1  
TCK  
R
Internal pull-up resistance on TMS, TCK, TDI/TCLK see Note 2  
may be restricted to meet the timing requirements of the module selected.  
2.2 V/ 3 V  
25  
60  
Internal  
NOTES: 1. f  
TCK  
2. TMS, TDI/TCLK, and TCK pull-up resistors are implemented in all versions.  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇꢇꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS256D − NOVEMBER 1999 − REVISED SEPTEMBER 2004  
APPLICATION INFORMATION  
input/output schematic  
Port P1, P1.0 to P1.3, input/output with Schmitt-trigger  
P1SEL.x  
0
P1DIR.x  
1
0
Direction Control  
From Module  
Pad Logic  
P1.0 − P1.3  
P1OUT.x  
1
Module X OUT  
P1IN.x  
EN  
D
Module X IN  
P1IRQ.x  
P1IE.x  
Interrupt  
Edge  
Select  
EN  
Q
P1IFG.x  
Set  
Interrupt  
Flag  
P1IES.x  
P1SEL.x  
NOTE: x = Bit/identifier, 0 to 3 for port P1  
Direction  
PnSel.x  
PnDIR.x  
control from  
module  
PnOUT.x  
Module X OUT  
PnIN.x  
Module X IN  
PnIE.x  
PnIFG.x  
PnIES.x  
P1Sel.0  
P1Sel.1  
P1Sel.2  
P1Sel.3  
P1DIR.0  
P1DIR.1  
P1DIR.2  
P1DIR.3  
P1DIR.0  
P1DIR.1  
P1DIR.2  
P1DIR.3  
P1OUT.0  
P1OUT.1  
P1OUT.2  
P1OUT.3  
V
P1IN.0  
P1IN.1  
P1IN.2  
P1IN.3  
TACLK  
P1IE.0  
P1IE.1  
P1IE.2  
P1IE.3  
P1IFG.0  
P1IFG.1  
P1IFG.2  
P1IFG.3  
P1IES.0  
P1IES.1  
P1IES.2  
P1IES.3  
SS  
Out0 signal  
Out1 signal  
Out2 signal  
CCI0A  
CCI1A  
CCI2A  
Signal from or to Timer_A  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇꢇ ꢈ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS256D − NOVEMBER 1999 − REVISED SEPTEMBER 2004  
APPLICATION INFORMATION  
input/output schematic (continued)  
Port P1, P1.4 to P1.7, input/output with Schmitt-trigger and in-system access features  
P1SEL.x  
0
P1DIR.x  
1
Direction Control  
From Module  
0
Pad Logic  
P1OUT.x  
P1.4−P1.7  
1
Module X OUT  
TST  
Bus Keeper  
P1IN.x  
EN  
D
Module X IN  
TEST  
TST  
Fuse  
P1IRQ.x  
P1IE.x  
P1IFG.x  
Interrupt  
Edge  
Select  
60 k  
Typical  
EN  
Set  
Q
GND  
Fuse  
Blow  
Interrupt  
Flag  
Control By JTAG  
P1IES.x  
NOTE: Fuse not implemented  
in F11x  
Control  
P1SEL.x  
P1.x  
TDO  
Controlled By JTAG  
P1.7/TDI/TDO  
P1.x  
Controlled by JTAG  
TDI  
TST  
TST  
P1.6/TDI/TCLK  
P1.x  
NOTE: The test pin should be protected from potential EMI  
and ESD voltage spikes. This may require a smaller  
external pulldown resistor in some applications.  
TMS  
TCK  
P1.5/TMS  
P1.x  
x = Bit identifier, 4 to 7 for port P1  
TST  
During programming activity and during blowing  
the fuse, the pin TDO/TDI is used to apply the test  
input for JTAG circuitry.  
P1.4/TCK  
Direction  
PnSel.x  
PnDIR.x  
control from  
module  
PnOUT.x  
Module X OUT  
SMCLK  
PnIN.x  
Module X IN  
PnIE.x  
PnIFG.x  
PnIES.x  
P1Sel.4  
P1Sel.5  
P1Sel.6  
P1Sel.7  
P1DIR.4  
P1DIR.5  
P1DIR.6  
P1DIR.7  
P1DIR.4  
P1DIR.5  
P1DIR.6  
P1DIR.7  
P1OUT.4  
P1OUT.5  
P1OUT.6  
P1OUT.7  
P1IN.4  
P1IN.5  
P1IN.6  
P1IN.7  
unused  
unused  
unused  
unused  
P1IE.4  
P1IE.5  
P1IE.6  
P1IE.7  
P1IFG.4  
P1IFG.5  
P1IFG.6  
P1IFG.7  
P1IES.4  
P1IES.5  
P1IES.6  
P1IES.7  
Out0 signal  
Out1 signal  
Out2 signal  
Signal from or to Timer_A  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇꢇꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS256D − NOVEMBER 1999 − REVISED SEPTEMBER 2004  
APPLICATION INFORMATION  
input/output schematic (continued)  
Port P2, P2.0 to P2.4, input/output with Schmitt-trigger  
P2SEL.x  
0
P2DIR.x  
0: Input  
1: Output  
1
Direction Control  
From Module  
Pad Logic  
0
1
P2.0 − P2.4  
P2OUT.x  
Module X OUT  
P2IN.x  
EN  
D
Module X IN  
P2IRQ.x  
P2IE.x  
Interrupt  
Edge  
Select  
EN  
Q
P2IFG.x  
Set  
Interrupt  
Flag  
P2IES.x  
P2SEL.x  
NOTE: x = Bit Identifier, 0 to 4 For Port P2  
PnSel.x  
PnDIR.x  
Direction  
control from  
module  
PnOUT.x  
Module X  
OUT  
PnIN.x  
Module X  
PnIE.x  
PnIFG.x  
PnIES.x  
IN  
P2Sel.0  
P2Sel.1  
P2Sel.2  
P2Sel.3  
P2Sel.4  
P2DIR.0  
P2DIR.1  
P2DIR.2  
P2DIR.3  
P2DIR.4  
P2DIR.0  
P2DIR.1  
P2DIR.2  
P2DIR.3  
P2DIR.4  
P2OUT.0  
P2OUT.1  
P2OUT.2  
P2OUT.3  
P2OUT.4  
ACLK  
P2IN.0  
P2IN.1  
P2IN.2  
P2IN.3  
P2IN.4  
unused  
P2IE.0  
P2IE.1  
P2IE.2  
P2IE.3  
P2IE.4  
P2IFG.0  
P2IFG.1  
P2IFG.2  
P2IFG.3  
P2IFG.4  
P1IES.0  
P1IES.1  
P1IES.2  
P1IES.3  
P1IES.4  
V
SS  
INCLK  
CCI0B  
CCI1B  
Out0 signal  
Out1 signal  
Out2 signal  
unused  
Signal from or to Timer_A  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇꢇ ꢈ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS256D − NOVEMBER 1999 − REVISED SEPTEMBER 2004  
APPLICATION INFORMATION  
input/output schematic (continued)  
Port P2, P2.5, input/output with Schmitt-trigger and R  
function for the Basic Clock module  
OSC  
P2SEL.5  
0: Input  
Pad Logic  
0
1: Output  
P2DIR.5  
1
Direction Control  
From Module  
0
1
P2.5  
P2OUT.5  
Module X OUT  
Bus Keeper  
P2IN.5  
EN  
D
Module X IN  
P2IRQ.5  
Internal to  
Basic Clock  
Module  
P2IE.5  
Interrupt  
Edge  
Select  
1
0
V
CC  
EN  
Q
P2IFG.5  
Set  
Interrupt  
Flag  
P2IES.5  
DC  
Generator  
DCOR  
P2SEL.5  
CAPD.5  
NOTE: DCOR: Control bit from basic clock module if it is set, P2.5 Is disconnected from P2.5 pad  
Direction  
PnSel.x  
PnDIR.x  
control from  
module  
PnOUT.x  
Module X OUT  
PnIN.x  
Module X IN  
PnIE.x  
P2IE.5  
PnIFG.x  
P2IFG.5  
PnIES.x  
P2IES.5  
P2Sel.5  
P2DIR.5  
P2DIR.5  
P2OUT.5  
V
SS  
P2IN.5  
unused  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇꢇꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS256D − NOVEMBER 1999 − REVISED SEPTEMBER 2004  
APPLICATION INFORMATION  
input/output schematic (continued)  
Port P2, unbonded bits P2.6 and P2.7  
P2SEL.x  
P2DIR.x  
0: Input  
1: Output  
0
1
Direction Control  
From Module  
0
1
P2OUT.x  
Module X OUT  
P2IN.x  
Node Is Reset With PUC  
Bus Keeper  
EN  
Module X IN  
D
P2IRQ.x  
P2IE.x  
PUC  
Interrupt  
Edge  
Select  
EN  
Set  
Q
P2IFG.x  
Interrupt  
Flag  
P2IES.x  
P2SEL.x  
NOTE: x = Bit/identifier, 6 to 7 for port P2 without external pins  
Direction  
P2Sel.x  
P2DIR.x  
control from  
module  
P2OUT.x  
Module X OUT  
P2IN.x  
Module X IN  
P2IE.x  
P2IFG.x  
P2IES.x  
P2Sel.6  
P2Sel.7  
P2DIR.6  
P2DIR.7  
P2DIR.6  
P2DIR.7  
P2OUT.6  
P2OUT.7  
V
V
P2IN.6  
P2IN.7  
unused  
unused  
P2IE.6  
P2IE.7  
P2IFG.6  
P2IFG.7  
P2IES.6  
P2IES.7  
SS  
SS  
NOTE: A good use of the unbonded bits 6 and 7 of port P2 is to use the interrupt flags. The interrupt flags can not be influenced from any signal  
other than from software. They work then as a soft interrupt.  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇꢇ ꢈ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS256D − NOVEMBER 1999 − REVISED SEPTEMBER 2004  
APPLICATION INFORMATION  
JTAG fuse check mode  
The JTAG protection fuse is not implemented in the MSP430F11x devices.  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2004, Texas Instruments Incorporated  

相关型号:

MSP430F1101A

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F1101AIDGV

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F1101AIDGVR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F1101AIDW

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F1101AIDWR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F1101AIPW

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F1101AIPWR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F1101AIRGE

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F1101AIRGER

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F1101AIRGET

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F1101IDW

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F1101IDWR

MIXED SIGNAL MICROCONTROLLER
TI