MSC1213Y5 [TI]

Precision Analog-to-Digital Converter (ADC) and Digital-to-Analog Converters (DACs) with 8051 Microcontroller and Flash Memory; 高精度模拟数字转换器( ADC )和数字 - 模拟转换器(DAC )与8051微控制器和闪存
MSC1213Y5
型号: MSC1213Y5
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Precision Analog-to-Digital Converter (ADC) and Digital-to-Analog Converters (DACs) with 8051 Microcontroller and Flash Memory
高精度模拟数字转换器( ADC )和数字 - 模拟转换器(DAC )与8051微控制器和闪存

转换器 闪存 微控制器
文件: 总105页 (文件大小:912K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
ꢒ ꢏꢛ ꢗ ꢌꢔ ꢌꢖ ꢒ ꢓꢕ ꢖ ꢎꢕ ꢑ ꢏꢒꢓ ꢎꢔ ꢂ ꢎꢏꢘꢊ ꢉ ꢖ ꢊꢉ ꢍ ꢙ ꢗꢑ ꢂꢍ ꢚ  
Peripheral Features  
34 I/O Pins  
FEATURES  
ANALOG FEATURES  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
Additional 32-Bit Accumulator  
Three 16-Bit Timer/Counters  
System Timers  
D
24 Bits No Missing Codes  
22 Bits Effective Resolution at 10Hz  
− Low Noise: 75nV  
D
Programmable Watchdog Timer  
Full-Duplex Dual USARTs  
Master/Slave SPIwith DMA  
D
D
PGA From 1 to 128  
Precision On-Chip Voltage Reference  
− Accuracy: 0.2%  
2
Multi-master I C(MSC1211 and MSC1213)  
− Drift: 5ppm/°C  
16-Bit PWM  
Power Management Control  
Internal Clock Divider  
Idle Mode Current < 200µA  
Stop Mode Current < 100nA  
Programmable Brownout Reset  
Programmable Low-Voltage Detect  
21 Interrupt Sources  
D
D
D
D
D
D
D
D
8 Differential/Single-Ended Channels  
On-Chip Offset/Gain Calibration  
Offset Drift: 0.02ppm/°C  
Gain Drift: 0.5ppm/°C  
On-Chip Temperature Sensor  
Selectable Buffer Input  
Burnout Detect  
16-Bit Monotonic Voltage DACS:  
− Quad Voltage DACs (MSC1211, MSC1212)  
− Dual Voltage DACs (MSC1213, MSC1214)  
Two Hardware Breakpoints  
GENERAL FEATURES  
D
D
D
D
Pin-Compatible with MSC1210  
Package: TQFP-64  
DIGITAL FEATURES  
Microcontroller Core  
Low Power: 4mW  
Industrial Temperature Range:  
−40°C to +125°C  
Power Supply: 2.7V to 5.25V  
D
8051-Compatible  
High-Speed Core  
− 4 Clocks per Instruction Cycle  
DC to 40MHz at +85C  
Single Instruction 100ns  
Dual Data Pointer  
D
D
D
D
D
AD PPLICATIONS  
Memory  
Industrial Process Control  
D
D
D
Up To 32kB Flash Memory  
D
D
D
D
D
D
D
D
D
D
Instrumentation  
Liquid/Gas Chromatography  
Blood Analysis  
Smart Transmitters  
Portable Instruments  
Weigh Scales  
Pressure Transducers  
Intelligent Sensors  
Portable Applications  
DAS Systems  
Flash Memory Partitioning  
Endurance 1M Erase/Write Cycles,  
100-Year Data Retention  
D
D
D
D
D
D
In-System Serially Programmable  
External Program/Data Memory (64kB)  
1,280 Bytes Data SRAM  
Flash Memory Security  
2kB Boot ROM  
Programmable Wait State Control  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments  
semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
I C is a trademark of Philips corporation. SPI is a trademark of Motorola Inc. All other trademarks are the property of their respective owners.  
ꢈꢤ ꢥ ꢗꢦ ꢂ ꢧꢨ ꢥꢩ ꢗ ꢑꢧꢑ ꢌꢏ ꢪꢎ ꢉ ꢢꢒ ꢖꢌꢎꢏ ꢌꢍ ꢋꢫ ꢉ ꢉ ꢊꢏꢖ ꢒꢍ ꢎꢪ ꢬꢫꢭ ꢓꢌꢋ ꢒꢖꢌ ꢎꢏ ꢛꢒ ꢖꢊꢮ ꢈꢉ ꢎꢛꢫ ꢋꢖꢍ  
ꢋ ꢎꢏ ꢪꢎꢉ ꢢ ꢖꢎ ꢍ ꢬꢊ ꢋ ꢌ ꢪꢌ ꢋ ꢒ ꢖꢌ ꢎꢏꢍ ꢬ ꢊꢉ ꢖꢝꢊ ꢖꢊ ꢉ ꢢꢍ ꢎꢪ ꢧꢊꢯ ꢒꢍ ꢨꢏꢍ ꢖꢉ ꢫꢢ ꢊꢏꢖ ꢍ ꢍꢖ ꢒꢏꢛ ꢒꢉ ꢛ ꢜ ꢒꢉ ꢉ ꢒ ꢏꢖꢣꢮ  
ꢈꢉ ꢎ ꢛꢫꢋ ꢖ ꢌꢎ ꢏ ꢬꢉ ꢎ ꢋ ꢊ ꢍ ꢍ ꢌꢏ ꢔ ꢛꢎ ꢊ ꢍ ꢏꢎꢖ ꢏꢊ ꢋꢊ ꢍꢍ ꢒꢉ ꢌꢓ ꢣ ꢌꢏꢋ ꢓꢫꢛ ꢊ ꢖꢊ ꢍꢖꢌ ꢏꢔ ꢎꢪ ꢒꢓ ꢓ ꢬꢒ ꢉ ꢒꢢ ꢊꢖꢊ ꢉ ꢍꢮ  
Copyright 2004−2005, Texas Instruments Incorporated  
www.ti.com  
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
(1)  
PACKAGE/ORDERING INFORMATION  
SPECIFIED  
TEMPERATURE  
RANGE  
FLASH  
MEMORY  
16-BIT  
DACS  
PACKAGE  
DESIGNATOR  
PACKAGE  
MARKING  
2
PRODUCT  
MSC1211Y2  
MSC1211Y3  
MSC1211Y4  
MSC1211Y5  
MSC1212Y2  
MSC1212Y3  
MSC1212Y4  
MSC1212Y5  
MSC1213Y2  
MSC1213Y3  
MSC1213Y4  
MSC1213Y5  
MSC1214Y2  
MSC1214Y3  
MSC1214Y4  
MSC1214Y5  
I C  
PACKAGE-LEAD  
4k  
8k  
4
4
4
4
4
4
4
4
2
2
2
2
2
2
2
2
Y
Y
Y
Y
N
N
N
N
Y
Y
Y
Y
N
N
N
N
TQFP-64  
TQFP-64  
TQFP-64  
TQFP-64  
TQFP-64  
TQFP-64  
TQFP-64  
TQFP-64  
TQFP-64  
TQFP-64  
TQFP-64  
TQFP-64  
TQFP-64  
TQFP-64  
TQFP-64  
TQFP-64  
PAG  
PAG  
PAG  
PAG  
PAG  
PAG  
PAG  
PAG  
PAG  
PAG  
PAG  
PAG  
PAG  
PAG  
PAG  
PAG  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
MSC1211Y2  
MSC1211Y3  
MSC1211Y4  
MSC1211Y5  
MSC1212Y2  
MSC1212Y3  
MSC1212Y4  
MSC1212Y4  
MSC1213Y2  
MSC1213Y3  
MSC1213Y4  
MSC1213Y5  
MSC1214Y2  
MSC1214Y3  
MSC1214Y4  
MSC1214Y5  
16k  
32k  
4k  
8k  
16k  
32k  
4k  
8k  
16k  
32k  
4k  
8k  
16k  
32k  
(1)  
For the most current package and ordering information, see the Package Option Addendum located at the end of this datasheet, or refer to our  
web site at www.ti.com.  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate  
precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to  
damage because very small parametric changes could cause the device not to meet its published specifications.  
(1)  
ABSOLUTE MAXIMUM RATINGS  
MSC1211/12/13/14  
UNITS  
Analog Inputs  
Momentary  
Continuous  
100  
10  
mA  
mA  
V
Input current  
Input voltage  
AGND − 0.3 to AV + 0.3  
DD  
Power Supply  
DV  
to DGND  
to AGND  
−0.3 to +6  
−0.3 to +6  
−0.3 to +0.3  
V
V
DD  
AV  
DD  
AGND to DGND  
to AGND  
V
V
−0.3 to AV  
DD  
+ 0.3  
+ 0.3  
V
REF  
Digital input voltage to DGND  
Digital output voltage to DGND  
−0.3 to DV  
V
DD  
−0.3 to DV  
+ 0.3  
V
DD  
Maximum junction temperature (T Max)  
J
Operating temperature range  
+150  
°C  
°C  
°C  
°C  
°C/W  
°C/W  
°C/W  
W
−40 to +125  
−65 to +150  
+235  
Storage temperature range  
Lead temperature (soldering, 10s)  
High K (2s 2p)  
Low K (1s)  
48.9  
Junction to ambient (q  
)
JA  
72.9  
Thermal resistance  
Junction to case (q  
)
12.2  
JC  
Package power dissipation  
Output current, all pins  
Output pin short-circuit  
Digital Outputs  
(T Max − T  
)/q  
J
AMBIENT JA  
200  
10  
mA  
s
Output current  
Continuous  
100  
100  
300  
mA  
mA  
mA  
I/O source/sink current  
Power pin maximum  
(1)  
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum conditions for  
extended periods may affect device reliability.  
2
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
MSC121xYX FAMILY FEATURES  
(1)  
(2)  
(2)  
(2)  
(2)  
MSC121xY5  
FEATURES  
MSC121xY2  
MSC121xY3  
MSC121xY4  
Up to 16k  
Up to 16k  
256  
Flash Program Memory (Bytes)  
Flash Data Memory (Bytes)  
Internal Scratchpad SRAM (Bytes)  
Internal MOVX RAM (Bytes)  
Externally Accessible Memory (Bytes)  
Up to 4k  
Up to 4k  
256  
Up to 8k  
Up to 8k  
Up to 32k  
Up to 32k  
256  
256  
1024  
1024  
1024  
1024  
64k Program, 64k Data  
64k Program, 64k Data  
64k Program, 64k Data  
64k Program, 64k Data  
(1)  
(2)  
All peripheral features are the same on all devices; the flash memory size is the only difference.  
The last digit of the part number (N) represents the onboard flash size = (2N)kBytes.  
ELECTRICAL CHARACTERISTICS: AVDD = 5V  
3
All specifications from T  
to T  
, DV  
= +2.7V to 5.25V, AV  
= +5V, f  
= 15.625kHz, PGA = 1, filter = Sinc , Buffer ON, f  
= 10Hz, Bipolar, f  
= 8MHz,  
= 200pF, unless otherwise noted.  
MIN  
MAX  
DD  
DD  
MOD  
, V  
DAC REF  
DATA  
CLK  
and V  
REF  
(REF IN+) − (REF IN−) = +2.5V, unless otherwise noted. For V  
= AV , R  
DD LOAD  
= 10k, and C  
LOAD  
MSC1211/12/13/14  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNITS  
Analog Inputs (AIN0−AIN7, AINCOM)  
Buffer OFF  
Buffer ON  
AGND − 0.1  
AV  
AV  
+ 0.1  
V
V
DD  
DD  
Analog Input Range  
AGND + 50mV  
− 1.5  
/PGA  
Full-Scale Input Voltage Range  
Differential Input Impedance  
Input Current  
(AIN+) − (AIN−)  
Buffer OFF  
Buffer ON  
V
V
REF  
(1)  
7/PGA  
MΩ  
nA  
0.5  
Fast Settling Filter  
2
−3dB  
0.469 fDATA  
0.318 fDATA  
0.262 fDATA  
Sinc Filter  
−3dB  
Bandwidth  
3
Sinc Filter  
−3dB  
Programmable Gain Amplifier  
Input Capacitance  
User-Selectable Gain Range  
Buffer ON  
1
128  
9
0.5  
2
pF  
pA  
µA  
Input Leakage Current  
Burnout Current Sources  
Multiplexer Channel ON, T = +25°C  
Buffer ON  
ADC Offset DAC  
Offset DAC Range  
Bipolar Mode  
V /(2 PGA)  
REF  
V
Offset DAC Monotonicity  
Offset DAC Gain Error  
Offset DAC Gain Error Drift  
8
Bits  
1.5  
1
% of Range  
ppm/°C  
System Performance  
Resolution  
24  
Bits  
Bits  
ENOB  
See Typical Characteristics  
22  
Output Noise  
See Typical Characteristics  
No Missing Codes  
Integral Nonlinearity  
Offset Error  
Sinc3 Filter, Decimation >360  
End Point Fit, Bipolar Mode  
After Calibration  
24  
Bits  
%FSR  
ppm of FS  
ppm of FS/°C  
%
3
0.0015  
3.5  
(2)  
Offset Drift  
Before Calibration  
0.001  
−0.002  
0.5  
(3)  
Gain Error  
After Calibration  
(2)  
Gain Error Drift  
Before Calibration  
ppm/°C  
% of FS  
% of FS  
dB  
System Gain Calibration Range  
System Offset Calibration Range  
80  
120  
50  
−50  
At DC  
115  
130  
120  
120  
100  
100  
92  
f
f
f
f
f
= 60Hz, f  
= 50HZ, f  
= 60Hz, f  
= 10Hz  
= 50Hz  
= 60Hz  
= 50Hz  
= 60Hz  
dB  
CM  
CM  
CM  
SIG  
SIG  
DATA  
DATA  
DATA  
Common-Mode Rejection  
Normal-Mode Rejection  
dB  
dB  
= 50Hz, f  
= 60Hz, f  
dB  
DATA  
dB  
DATA  
(4)  
Power-Supply Rejection  
(1)  
At DC, dB = −20log(VOUT/V  
)
dB  
DD  
The input impedance for PGA = 128 is the same as that for PGA = 64 (that is, 7M/64).  
(2)  
(3)  
(4)  
(5)  
(6)  
(7)  
(8)  
Calibration can minimize these errors.  
The self gain calibration cannot have a REF IN+ of more than AVDD −1.5V with Buffer ON. To calibrate gain, turn Buffer OFF.  
V is change in digital result.  
OUT  
9pF switched capacitor at fSAMP clock frequency (see Figure 14).  
Linearity calculated using a reduced code range of 512 to 65024; output unloaded.  
Ensured by design and characterization; not production tested.  
Analog Brownout Detect OFF (HCR1.3 = 1), Analog LVD OFF (LVDCON.7 = 1).  
3
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
ELECTRICAL CHARACTERISTICS: AVDD = 5V (continued)  
3
All specifications from T  
to T  
, DV  
= +2.7V to 5.25V, AV  
= +5V, f  
= 15.625kHz, PGA = 1, filter = Sinc , Buffer ON, f  
= 10Hz, Bipolar, f  
= 8MHz,  
= 200pF, unless otherwise noted.  
MIN  
MAX  
DD  
DD  
MOD  
, V  
DAC REF  
DATA  
CLK  
and V  
REF  
(REF IN+) − (REF IN−) = +2.5V, unless otherwise noted. For V  
= AV , R  
DD LOAD  
= 10k, and C  
LOAD  
MSC1211/12/13/14  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNITS  
Voltage Reference Inputs  
(3)  
DD  
Reference Input Range  
REF IN+, REF IN−  
AGND  
0.1  
AV  
V
V
V
(REF IN+) − (REF IN−)  
2.5  
110  
1
AV  
V
REF  
REF  
At DC  
DD  
V
Common-Mode Rejection  
(5)  
dB  
µA  
kΩ  
REF  
Input Current  
V
= 2.5V, ADC Only  
REF  
DAC Reference Input Resistance  
For Each DAC, PGA = 1  
20  
On-Chip Voltage Reference  
VREFH = 1 at +25°C, REFCLK = 250kHz  
VREFH = 0 at +25°C, REFCLK = 250kHz  
2.495  
2.5  
1.25  
65  
2.505  
V
V
Output Voltage  
Power-Supply Rejection Ratio  
Short-Circuit Current Source  
Short-Circuit Current Sink  
Short-Circuit Duration  
dB  
mA  
µA  
2.6  
50  
Sink or Source  
Indefinite  
5
Drift  
ppm/°C  
Output Impedance  
Sourcing 100µA  
3
Startup Time from Power ON  
Temperature Sensor Voltage  
Temperature Sensor Coefficient  
C
= 0.1µF  
8
ms  
REFOUT  
Buffer ON, T = +25°C  
Buffer ON  
115  
375  
mV  
µV/°C  
(6)  
Voltage DAC Static Performance  
Resolution  
16  
Bits  
%
Relative Accuracy  
Differential Nonlinearity  
Zero Code Error  
0.05  
0.146  
1
Ensured Monotonic by Design  
All 0s Loaded to DAC Register  
All 1s Loaded to DAC Register  
LSB  
+13  
0
+35  
mV  
Full-Scale Error  
−1.25  
−1.25  
% of FSR  
% of FSR  
µV/°C  
Gain Error  
0
+1.25  
Zero Code Error Drift  
Gain Temperature Coefficient  
20  
5
ppm of FSR/°C  
(7)  
Voltage DAC Output Characteristics  
Output Voltage Range  
Output Voltage Settling Time  
Slew Rate  
REF IN+ = AV  
DD  
To 0.003% FSR, 0200h to FD00h  
AGND  
AV  
DD  
V
µs  
V/µs  
8
1
DC Output Impedance  
Short-Circuit Current  
7
All 1s Loaded to DAC Register  
20  
mA  
IDAC Output Characteristics  
Full-Scale Output Current  
Maximum V  
REF  
= 2.5V  
25  
mA  
Maximum Short-Circuit Current Duration  
Compliance Voltage  
Relative Accuracy  
Indefinite  
AV  
DD  
− 1.5  
V
0.185  
% of FSR  
µA  
% of FSR  
% of FSR  
Zero Code Error  
All 0s Loaded to DAC Register  
All 1s Loaded to DAC Register  
0.5  
Full-Scale Error  
−0.4  
−0.6  
Gain Error  
(1)  
The input impedance for PGA = 128 is the same as that for PGA = 64 (that is, 7M/64).  
(2)  
(3)  
(4)  
(5)  
(6)  
(7)  
(8)  
Calibration can minimize these errors.  
The self gain calibration cannot have a REF IN+ of more than AVDD −1.5V with Buffer ON. To calibrate gain, turn Buffer OFF.  
V is change in digital result.  
OUT  
9pF switched capacitor at fSAMP clock frequency (see Figure 14).  
Linearity calculated using a reduced code range of 512 to 65024; output unloaded.  
Ensured by design and characterization; not production tested.  
Analog Brownout Detect OFF (HCR1.3 = 1), Analog LVD OFF (LVDCON.7 = 1).  
4
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
ELECTRICAL CHARACTERISTICS: AVDD = 5V (continued)  
3
All specifications from T  
to T  
, DV  
= +2.7V to 5.25V, AV  
= +5V, f  
= 15.625kHz, PGA = 1, filter = Sinc , Buffer ON, f  
= 10Hz, Bipolar, f  
= 8MHz,  
= 200pF, unless otherwise noted.  
MIN  
MAX  
DD  
DD  
MOD  
, V  
DAC REF  
DATA  
CLK  
and V  
REF  
(REF IN+) − (REF IN−) = +2.5V, unless otherwise noted. For V  
= AV , R  
DD LOAD  
= 10k, and C  
LOAD  
MSC1211/12/13/14  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNITS  
Analog Power-Supply Requirements  
Analog Power-Supply Voltage  
Analog Off Current  
AV  
DD  
4.75  
5
5.25  
V
(8)  
Analog OFF, PDCON = 48h  
PGA = 1, Buffer OFF  
PGA = 128, Buffer OFF  
PGA = 1, Buffer ON  
< 1  
200  
500  
240  
850  
250  
nA  
µA  
µA  
µA  
µA  
µA  
ADC Current (I  
)
ADC  
Analog  
Power-Supply  
Current  
PGA = 128, Buffer ON  
VDAC Current (I  
)
Excluding Load Current, External Reference  
VDAC  
V
Supply Current  
)
REF  
ADC ON, V  
DAC  
OFF  
250  
µA  
(I  
VREF  
(1)  
The input impedance for PGA = 128 is the same as that for PGA = 64 (that is, 7M/64).  
(2)  
(3)  
(4)  
(5)  
(6)  
(7)  
(8)  
Calibration can minimize these errors.  
The self gain calibration cannot have a REF IN+ of more than AVDD −1.5V with Buffer ON. To calibrate gain, turn Buffer OFF.  
V is change in digital result.  
OUT  
9pF switched capacitor at fSAMP clock frequency (see Figure 14).  
Linearity calculated using a reduced code range of 512 to 65024; output unloaded.  
Ensured by design and characterization; not production tested.  
Analog Brownout Detect OFF (HCR1.3 = 1), Analog LVD OFF (LVDCON.7 = 1).  
ELECTRICAL CHARACTERISTICS: AVDD = 3V  
3
All specifications from T  
to T  
, DV  
= +2.7V to 5.25V, AV  
= +3V, f  
= 15.625kHz, PGA = 1, filter = Sinc , Buffer ON, f  
= 10Hz, Bipolar, f  
= 8MHz,  
MIN  
MAX  
DD  
DD  
MOD  
DATA  
CLK  
and V  
REF  
(REF IN+) − (REF IN−) = +1.25V, unless otherwise noted. For V  
, V  
= AV , R  
DD LOAD  
= 10k, and C = 200pF, unless otherwise noted.  
LOAD  
DAC REF  
MSC1211/12/13/14  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNITS  
Analog Inputs (AIN0−AIN7, AINCOM)  
Buffer OFF  
Buffer ON  
AGND − 0.1  
AV  
AV  
+ 0.1  
V
V
DD  
DD  
Analog Input Range  
AGND + 50mV  
− 1.5  
/PGA  
Full-Scale Input Voltage Range  
Differential Input Impedance  
Input Current  
(AIN+) − (AIN−)  
Buffer OFF  
Buffer ON  
−3dB  
V
V
REF  
(1)  
7/PGA  
MΩ  
nA  
0.5  
Fast Settling Filter  
2
0.469 f  
0.318 f  
0.262 f  
DATA  
DATA  
DATA  
Sinc Filter  
−3dB  
Bandwidth  
3
Sinc Filter  
−3dB  
Programmable Gain Amplifier  
Input Capacitance  
User-Selectable Gain Range  
Buffer ON  
1
128  
9
0.5  
2
pF  
pA  
µA  
Input Leakage Current  
Burnout Current Sources  
Modulator OFF, T = +25°C  
Sensor Input Open Circuit  
(1)  
The input impedance for PGA = 128 is the same as that for PGA = 64 (that is, 7M/64).  
(2)  
(3)  
(4)  
(5)  
(6)  
(7)  
(8)  
Calibration can minimize these errors.  
The gain calibration cannot have a REF IN+ of more than AV  
−1.5V with Buffer ON. To calibrate gain, turn Buffer OFF.  
DD  
V  
OUT  
is change in digital result.  
9pF switched capacitor at f  
clock frequency (see Figure 14).  
SAMP  
Linearity calculated using a reduced code range of 512 to 65024; output unloaded.  
Ensured by design and characterization; not production tested.  
Analog Brownout Detect OFF (HCR1.3 = 1), Analog LVD OFF (LVDCON.7 = 1).  
5
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
ELECTRICAL CHARACTERISTICS: AVDD = 3V (continued)  
3
All specifications from T  
to T  
, DV  
= +2.7V to 5.25V, AV  
= +3V, f  
= 15.625kHz, PGA = 1, filter = Sinc , Buffer ON, f  
= 10Hz, Bipolar, f  
= 8MHz,  
= 200pF, unless otherwise noted.  
MIN  
MAX  
DD  
DD  
MOD  
DATA  
CLK  
and V  
REF  
(REF IN+) − (REF IN−) = +1.25V, unless otherwise noted. For V  
, V  
= AV , R  
DD LOAD  
= 10k, and C  
LOAD  
DAC REF  
MSC1211/12/13/14  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNITS  
ADC Offset DAC  
Offset DAC Range  
Bipolar Mode  
V
/(2PGA)  
V
REF  
Offset DAC Monotonicity  
Offset DAC Gain Error  
Offset DAC Gain Error Drift  
8
Bits  
1.5  
1
% of Range  
ppm/°C  
System Performance  
Resolution  
24  
24  
Bits  
Bits  
ENOB  
22  
Output Noise  
See Typical Characteristics  
3
No Missing Codes  
Integral Nonlinearity  
Offset Error  
Sinc Filter  
Bits  
%FSR  
ppm of FS  
ppm of FS/°C  
%
End Point Fit, Bipolar Mode  
After Calibration  
3
0.0015  
3.5  
(2)  
Offset Drift  
Before Calibration  
After Calibration  
0.001  
−0.002  
1.0  
(3)  
Gain Error  
(2)  
Gain Error Drift  
Before Calibration  
ppm/°C  
% of FS  
% of FS  
dB  
System Gain Calibration Range  
System Offset Calibration Range  
80  
120  
50  
−50  
At DC  
115  
130  
120  
120  
100  
100  
92  
f
f
f
f
f
= 60Hz, f  
= 50Hz, f  
= 60Hz, f  
= 10Hz  
= 50Hz  
= 60Hz  
= 50Hz  
= 60Hz  
dB  
CM  
CM  
CM  
SIG  
SIG  
DATA  
DATA  
DATA  
Common-Mode Rejection  
dB  
dB  
= 50Hz, f  
= 60Hz, f  
dB  
DATA  
Normal Mode Rejection  
dB  
DATA  
(4)  
Power-Supply Rejection  
Voltage Reference Inputs  
Reference Input Range  
At DC, dB = −20log(VOUT/V  
)
dB  
DD  
(3)  
DD  
REF IN+, REF IN−  
AGND  
0.1  
AV  
V
V
V
V
(REF IN+) − (REF IN−)  
1.25  
110  
3
AV  
DD  
V
REF  
REF  
At DC  
Common-Mode Rejection  
(5)  
dB  
µA  
kΩ  
REF  
Input Current  
V
= 1.25V, ADC Only  
REF  
DAC Reference Input Resistance  
For Each DAC, PGA = 1  
20  
On-Chip Voltage Reference  
Output Voltage  
VREFH = 0 at +25°C, REFCLK = 250kHz  
1.245  
1.25  
1.255  
V
Power-Supply Rejection Ratio  
Short-Circuit Current Source  
Short-Circuit Current Sink  
Short-Circuit Duration  
Drift  
65  
dB  
mA  
µA  
2.6  
50  
Sink or Source  
Indefinite  
5
3
ppm/°C  
Output Impedance  
Sourcing 100µA  
CREFOUT = 0.1µF  
Buffer ON, T = +25°C  
Buffer ON  
Startup Time from Power ON  
Temperature Sensor Voltage  
Temperature Sensor Coefficient  
8
ms  
115  
375  
mV  
µV/°C  
(1)  
The input impedance for PGA = 128 is the same as that for PGA = 64 (that is, 7M/64).  
(2)  
(3)  
(4)  
(5)  
(6)  
(7)  
(8)  
Calibration can minimize these errors.  
The gain calibration cannot have a REF IN+ of more than AV  
−1.5V with Buffer ON. To calibrate gain, turn Buffer OFF.  
DD  
V  
OUT  
is change in digital result.  
9pF switched capacitor at f  
clock frequency (see Figure 14).  
SAMP  
Linearity calculated using a reduced code range of 512 to 65024; output unloaded.  
Ensured by design and characterization; not production tested.  
Analog Brownout Detect OFF (HCR1.3 = 1), Analog LVD OFF (LVDCON.7 = 1).  
6
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
ELECTRICAL CHARACTERISTICS: AVDD = 3V (continued)  
3
All specifications from T  
to T  
, DV  
= +2.7V to 5.25V, AV  
= +3V, f  
= 15.625kHz, PGA = 1, filter = Sinc , Buffer ON, f  
= 10Hz, Bipolar, f  
= 8MHz,  
= 200pF, unless otherwise noted.  
MIN  
MAX  
DD  
DD  
MOD  
DATA  
CLK  
and V  
REF  
(REF IN+) − (REF IN−) = +1.25V, unless otherwise noted. For V  
, V  
= AV , R  
DD LOAD  
= 10k, and C  
LOAD  
DAC REF  
MSC1211/12/13/14  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNITS  
(6)  
Voltage DAC Static Performance  
Resolution  
16  
Bits  
% of FSR  
LSB  
Relative Accuracy  
Differential Nonlinearity  
Zero Code Error  
0.05  
0.146  
1
Ensured Monotonic by Design  
All 0s Loaded to DAC Register  
All 1s Loaded to DAC Register  
+13  
0
+35  
mV  
Full-Scale Error  
−1.25  
−1.25  
% of FSR  
% of FSR  
µV/°C  
Gain Error  
0
1.25  
AVDD  
Zero Code Error Drift  
Gain Temperature Coefficient  
20  
5
ppm of FSR/°C  
(7)  
Voltage DAC Output Characteristics  
Output Voltage Range  
Output Voltage Settling Time  
Slew Rate  
AGND  
V
µs  
V/µs  
To 0.003% FSR, 0200h to FD00h  
8
1
DC Output Impedance  
Short-Circuit Current  
7
All 1s Loaded to DAC Register  
Maximum VREF = 1.25V  
16  
mA  
IDAC Output Characteristics  
Full-Scale Output Current  
25  
mA  
Maximum Short-Circuit Current Duration  
Compliance Voltage  
Relative Accuracy  
Indefinite  
AV  
DD  
− 1.5  
V
Over Full Range  
0.185  
0.5  
% of FSR  
% of FSR  
% of FSR  
% of FSR  
Zero Code Error  
Full-Scale Error  
−0.4  
−0.6  
Gain Error  
Analog Power-Supply Requirements  
Analog Power-Supply Voltage  
Analog Off Current  
AV  
DD  
2.7  
3.0  
< 1  
3.6  
V
(8)  
Analog OFF, PDCON = 47h  
PGA = 1, Buffer OFF  
PGA = 128, Buffer ON  
PGA = 1, Buffer OFF  
PGA = 128, Buffer ON  
nA  
µA  
µA  
µA  
µA  
200  
500  
240  
850  
ADC Current (I  
)
ADC  
Analog  
Power-Supply  
Current  
Excluding Load Current, External  
Reference  
VDAC Current (I  
)
250  
250  
µA  
µA  
VDAC  
V
Supply Current  
)
REF  
(I  
VDAC  
(1)  
The input impedance for PGA = 128 is the same as that for PGA = 64 (that is, 7M/64).  
(2)  
(3)  
(4)  
(5)  
(6)  
(7)  
(8)  
Calibration can minimize these errors.  
The gain calibration cannot have a REF IN+ of more than AV  
−1.5V with Buffer ON. To calibrate gain, turn Buffer OFF.  
DD  
V  
OUT  
is change in digital result.  
9pF switched capacitor at f  
clock frequency (see Figure 14).  
SAMP  
Linearity calculated using a reduced code range of 512 to 65024; output unloaded.  
Ensured by design and characterization; not production tested.  
Analog Brownout Detect OFF (HCR1.3 = 1), Analog LVD OFF (LVDCON.7 = 1).  
7
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
DIGITAL CHARACTERISTICS: DVDD = 2.7V to 5.25V  
All specifications from T  
to T  
, FMCON = 10h, all digital outputs high, PDCON = 00h (all peripherals ON) or PDCON = FFh (all peripherals OFF), PSEN and  
MIN  
MAX  
ALE enabled (all peripherals ON) or PSEN and ALE disabled (all peripherals OFF), unless otherwise specified.  
MSC1211/12/13/14  
TYP  
MIN  
MAX  
PARAMETER  
CONDITIONS  
UNITS  
Digital Power-Supply Requirements  
DV  
DD  
2.7  
3
3.6  
V
Normal Mode, f  
OSC  
= 1MHz, peripherals OFF  
0.9  
1.1  
5.7  
7.5  
100  
5
mA  
mA  
mA  
mA  
nA  
Normal Mode, f  
Normal Mode, f  
= 1MHz, peripherals ON  
= 8MHz, peripherals OFF  
= 8MHz, peripherals ON  
OSC  
OSC  
Digital Power-Supply Current  
Normal Mode, f  
OSC  
(1)  
Crystal Operation Stop Mode  
DV  
DD  
4.75  
5.25  
V
Normal Mode, f  
OSC  
= 1MHz, peripherals OFF  
= 1MHz, peripherals ON  
= 8MHz, peripherals OFF  
= 8MHz, peripherals ON  
1.7  
2.4  
11  
mA  
mA  
mA  
mA  
nA  
Normal Mode, f  
Normal Mode, f  
OSC  
OSC  
Digital Power-Supply Current  
Normal Mode, f  
14.8  
100  
OSC  
(1)  
Crystal Operation Stop Mode  
DIGITAL INPUT/OUTPUT (CMOS)  
V
(except XIN pin)  
(except XIN pin)  
0.6 DV  
DV  
DD  
V
V
IH  
IL  
DD  
Logic Level  
V
DGND  
0.2 DV  
DD  
I/O Pin Hysteresis  
700  
< 1  
< 1  
mV  
pA  
pA  
V
Ports 0−3, Input Leakage Current, Input Mode  
Pins EA, RST Input Leakage Current  
V
= DV  
DD  
or V = 0V  
IH  
IH  
I
= −1mA  
DGND  
0.4  
OL  
= −30mA (5V), −20mA (3V)  
V
, ALE, PSEN, Ports 0−3, All Output Modes  
OL  
I
1.5  
V
OL  
I
= 1mA  
DV  
− 0.4  
DV  
DV  
− 0.1  
− 1.5  
DV  
V
OH  
= 30mA (5V), 20mA (5V)  
DD  
DD  
DD  
V
, ALE, PSEN, Ports 0−3, Strong Drive Output  
OH  
I
V
OH  
DD  
9
Ports 0−3, Pull-Up Resistors  
kΩ  
kΩ  
Pins ALE, PSEN, Pull-Up Resistors During Reset  
OSCILLATOR/CLOCK INPUT/OUTPUT  
Flash Programming Mode Only  
9
V
(except XIN pin)  
(except XIN pin)  
XOUT must be unconnected  
XOUT must be unconnected  
0.6 DV  
DV  
V
V
IH  
IL  
DD  
DD  
External Oscillator/Clock  
(1)  
V
DGND  
0.2 DV  
DD  
Digital Brownout Detect disabled (HCR1.2 = 1), Low Voltage Detect disabled (LVDCON.3 = 1). Ports configured for input or CMOS output.  
FLASH MEMORY CHARACTERISTICS: DVDD = 2.7V to 5.25V  
MSC1211/12/13/14  
TYP  
MIN  
100,000  
100  
MAX  
PARAMETER  
CONDITIONS  
UNITS  
Flash Memory Endurance  
1,000,000  
Cycles  
Years  
ms  
Flash Memory Data Retention  
Mass and Page Erase Time  
Flash Memory Write Time  
Set with FER in FTCON  
Set with FWR in FTCON  
10  
30  
40  
10  
25  
µs  
DV  
= 3.0V  
= 5.0V  
mA  
DD  
DD  
(1)  
Flash Programming Current  
DV  
mA  
(1)  
Peak current during Mass and Page Erase Time and Memory Write Time.  
8
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
AC ELECTRICAL CHARACTERISTICS(1)(2): DVDD = 2.7V to 5.25V  
2.7V to 3.6V  
4.75V to 5.25V  
MAX  
MIN  
MAX  
MIN  
SYMBOL  
System Clock  
(3)  
FIGURE  
PARAMETER  
UNITS  
f
4
External Crystal Frequency (f  
)
OSC  
1
0
0
1
24  
24  
22  
12  
1
0
0
1
33  
40  
36  
12  
MHz  
MHz  
MHz  
MHz  
OSC  
External Clock Frequency (f  
External Clock Frequency (f  
) at +85°C  
) at +125°C  
OSC  
(3)  
1/t  
OSC  
4
4
OSC  
(3)  
f
OSC  
External Ceramic Resonator Frequency (f  
)
OSC  
Program Memory  
t
t
t
t
t
t
t
t
t
t
t
1
1
1
1
1
1
1
1
1
1
1
ALE Pulse Width  
1.5t  
− 5  
1.5t  
− 5  
− 7  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LHLL  
AVLL  
LLAX  
LLIV  
CLK  
CLK  
Address Valid to ALE Low  
Address Hold After ALE Low  
ALE Low to Valid Instruction In  
ALE Low to PSEN Low  
0.5t  
− 10  
0.5t  
CLK  
CLK  
0.5t  
0.5t  
CLK  
CLK  
2.5t  
− 35  
2.5t  
− 25  
CLK  
CLK  
0.5t  
0.5t  
CLK  
LLPL  
PLPH  
PLIV  
PXIX  
PXIZ  
AVIV  
PLAZ  
CLK  
PSEN Pulse Width  
2t  
CLK  
− 5  
2t  
CLK  
− 5  
PSEN Low to Valid Instruction In  
Input Instruction Hold After PSEN  
Input Instruction Float After PSEN  
Address to Valid Instruction In  
PSEN Low to Address Float  
2t  
CLK  
− 40  
2t − 30  
CLK  
5
−5  
t
− 5  
t
CLK  
CLK  
3t  
CLK  
0
− 40  
3t  
CLK  
0
− 25  
Data Memory  
(4)  
RD Pulse Width (t  
RD Pulse Width (t  
= 0)  
> 0)  
2t  
− 5  
− 5  
− 5  
− 5  
2t  
− 5  
− 5  
− 5  
− 5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MCS  
CLK  
CLK  
t
MCS  
t
2
3
RLRH  
(4)  
(4)  
t
MCS  
MCS  
WR Pulse Width (t  
WR Pulse Width (t  
= 0)  
> 0)  
2t  
CLK  
2t  
CLK  
MCS  
t
WLWH  
(4)  
t
t
MCS  
MCS  
MCS  
(4)  
RD Low to Valid Data In (t  
RD Low to Valid Data In (t  
= 0)  
> 0)  
2t  
− 40  
− 40  
2t  
− 30  
− 30  
MCS  
CLK  
CLK  
t
t
t
2
2
2
RLDV  
RHDX  
RHDZ  
(4)  
t
t
MCS  
MCS  
MCS  
Data Hold After Read  
−5  
−5  
(4)  
Data Float After Read (t  
Data Float After Read (t  
= 0)  
> 0)  
t
t
CLK  
MCS  
CLK  
(4)  
(4)  
2t  
2t  
CLK  
MCS  
CLK  
ALE Low to Valid Data In (t  
ALE Low to Valid Data In (t  
= 0)  
2.5t  
− 40  
2.5t  
− 25  
MCS  
MCS  
MCS  
MCS  
CLK  
CLK  
t
t
t
t
2
LLDV  
AVDV  
LLWL  
AVWL  
(4)  
> 0)  
t
+ t  
40  
t
+ t  
25  
CLK MCS  
CLK MCS  
(4)  
Address to Valid Data In (t  
Address to Valid Data In (t  
= 0)  
> 0)  
3t  
− 40  
3t  
− 25  
CLK  
+t  
CLK  
+t  
2
(4)  
1.5t  
−4 0  
1.5t  
25  
+ 5  
CLK MCS  
CLK MCS  
(4)  
ALE Low to RD or WR Low (t  
ALE Low to RD or WR Low (t  
= 0)  
0.5t  
− 5  
0.5t  
+ 5  
0.5t  
− 5  
0.5t  
CLK  
MCS  
MCS  
MCS  
MCS  
CLK  
CLK  
CLK  
2, 3  
2, 3  
(4)  
> 0)  
t
t
− 5  
− 5  
− 5  
t
+ 5  
t
t
− 5  
t
+ 5  
CLK  
CLK  
CLK  
CLK  
CLK  
(4)  
Address to RD or WR Low (t  
Address to RD or WR Low (t  
= 0)  
> 0)  
− 5  
− 5  
CLK  
(4)  
2t  
CLK  
2t  
CLK  
t
t
t
3
3
2
Data Valid to WR Transition  
Data Hold After WR  
−8  
− 8  
−5  
− 5  
QVWX  
WHQX  
RLAZ  
t
t
CLK  
CLK  
RD Low to Address Float  
−0.5t  
− 5  
−0.5t  
− 5  
CLK  
5
CLK  
5
(4)  
(4)  
RD or WR High to ALE High (t  
RD or WR High to ALE High (t  
= 0)  
> 0)  
−5  
− 5  
−5  
− 5  
MCS  
t
2, 3  
WHLH  
t
t
+ 5  
t
t
+ 5  
MCS  
CLK  
CLK  
CLK  
CLK  
External Clock  
(5)  
t
t
t
t
4
4
4
4
High Time  
15  
15  
10  
10  
ns  
ns  
ns  
ns  
HIGH  
LOW  
R
(5)  
Low Time  
(5)  
Rise Time  
5
5
5
5
(5)  
Fall Time  
F
(1)  
(2)  
(3)  
(4)  
(5)  
Parameters are valid over operating temperature range, unless otherwise specified.  
Load capacitance for Port 0, ALE, and PSEN = 100pF; load capacitance for all other outputs = 80pF.  
tCLK = 1/f = one oscillator clock period for clock divider = 1.  
OSC  
tMCS is a time period related to the Stretch MOVX selection. The following table shows the value of t  
These values are characterized, but not 100% production tested.  
for each stretch selection:  
MCS  
MD2  
MD1  
MD0  
MOVX DURATION  
2 Machine Cycles  
3 Machine Cycles (default)  
4 Machine Cycles  
5 Machine Cycles  
6 Machine Cycles  
7 Machine Cycles  
8 Machine Cycles  
9 Machine Cycles  
t
MCS  
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
4t  
8t  
CLK  
CLK  
12t  
16t  
20t  
24t  
28t  
CLK  
CLK  
CLK  
CLK  
CLK  
9
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
EXPLANATION OF THE AC SYMBOLS  
Each Timing Symbol has five characters. The first character is always ’t’ (= time). The other characters, depending on their positions, indicate the name of a signal  
or the logical status of that signal. The designators are:  
AAddress  
RRD Signal  
tTime  
CClock  
DInput Data  
VValid  
HLogic Level High  
IInstruction (program memory contents)  
LLogic Level Low, or ALE  
PPSEN  
WWR Signal  
XNo Longer a Valid Logic Level  
ZFloat  
Examples:  
QOutput Data  
(1) t  
(2) t  
= Time for address valid to ALE Low.  
= Time for ALE Low to PSEN Low.  
AVLL  
LLPL  
tLHLL  
ALE  
tPLPH  
tAVLL  
tLLPL  
tLLIV  
tPLIV  
PSEN  
tPXIZ  
tLLAX  
tPLAZ  
tPXIX  
INSTR IN  
PORT 0  
A0A7  
A0A7  
tAVIV  
PORT 2  
A8A15  
A8A15  
Figure 1. External Program Memory Read Cycle  
ALE  
tWHLH  
PSEN  
tLLDV  
tLLWL  
tRLRH  
RD  
tAVLL  
tRHDZ  
tLLAX  
tRLDV  
tRLAZ  
tRHDX  
A0A7  
from RI or DPL  
PORT 0  
PORT 2  
DATA IN  
A0A7 from PCL  
INSTR IN  
tAVWL  
tAVDV  
P2.0P2.7 or A8A15 from DPH  
A8A15 from PCH  
Figure 2. External Data Memory Read Cycle  
10  
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
ALE  
tWHLH  
PSEN  
tLLWL  
tWLWH  
WR  
tQVWX  
tAVLL  
tLLAX  
tWHQX  
tDW  
DATA OUT  
A0A7  
from RI or DPL  
PORT 0  
A0A7 from PCL  
INSTR IN  
tAVWL  
PORT 2  
P2.0P2.7 or A8A15 from DPH  
A8A15 from PCH  
Figure 3. External Data Memory Write Cycle  
tHIGH  
tr  
tf  
VIH1  
0.8V  
VIH1  
0.8V  
VIH1  
0.8V  
VIH1  
0.8V  
tLOW  
tOSC  
Figure 4. External Clock Drive CLK  
11  
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
RESET AND POWER-ON TIMING  
tRW  
RST  
tRFD  
tRRD  
PSEN  
tRFD  
tRRD  
ALE  
tRS  
tRH  
EA  
NOTE: PSEN and ALE are internally pulled up with ~9kduring RST high.  
Figure 5. Reset Timing, User Application Mode  
tRW  
RST  
PSEN  
ALE  
tRFD  
tRRD  
tRS  
tRH  
tRRD  
NOTE: PSEN and ALE are internally pulled up with ~9k during RST high.  
Figure 6. Parallel Flash Programming Power-On Timing (EA is ignored)  
tRW  
RST  
PSEN  
ALE  
tRS  
tRH  
tRRD  
tRFD  
tRRD  
NOTE: PSEN and ALE are internally pulled up with ~9k during RST high.  
Figure 7. Serial Flash Programming Power-On Timing (EA is ignored)  
Table 1. Serial/Parallel Flash Programming Timing  
SYMBOL  
PARAMETER  
MIN  
MAX  
UNIT  
t
RST width  
2t  
RW  
OSC  
t
RST rise to PSEN ALE internal pull high  
RST falling to PSEN and ALE start  
Input signal to RST falling setup time  
RST falling to input signal hold time  
5
µs  
RRD  
17  
t
(2 + 512)t  
RFD  
OSC  
t
t
RS  
RH  
OSC  
17  
(2 + 512)t  
OSC  
t
12  
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
1
2
48  
47  
XOUT  
XIN  
EA  
P0.6/AD6  
P3.0/RxD0  
P3.1/TxD0  
P3.2/INT0  
3
46 P0.7/AD7  
45  
4
ALE  
5
44 PSEN/OSCCLK/MODCLK  
43 P2.7/A15  
P3.3/INT1/TONE/PWM  
P3.4/T0  
6
7
42 DVDD  
MSC1211  
MSC1212  
MSC1213  
MSC1214  
P3.5/T1  
8
41 DGND  
9
40  
39  
38  
P3.6/WR  
P2.6/A14  
P2.5/A13  
P2.4/A12  
10  
11  
P3.7/RD  
DVDD  
DGND 12  
37 P2.3/A11  
13  
14  
15  
16  
36  
35  
34  
33  
RST  
DVDD  
P2.2/A10  
P2.1/A09  
P2.0/A08  
NC(3)  
DVDD  
RDAC0  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
NOTES: (1) SCL and SDA are only available on the MSC1211 and MSC1213.  
(2) VDAC2 and VDAC3 are only available on the MSC1211 and MSC1212.  
(3) NC pin should be left unconnected.  
13  
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
PIN DESCRIPTIONS  
PIN #  
NAME  
DESCRIPTION  
1
XOUT  
The crystal oscillator pin XOUT supports parallel resonant AT-cut fundamental frequency crystals and ceramic  
resonators. XOUT serves as the output of the crystal amplifier.  
2
XIN  
The crystal oscillator pin XIN supports parallel resonant AT-cut fundamental frequency crystals and ceramic  
resonators. XIN can also be an input if there is an external clock source instead of a crystal.  
3-10  
P3.0-P3.7  
Port 3 is a bidirectional I/O port. The alternate functions for Port 3 are listed below. Refer to P3DDR, SFR B3h−B4h.  
Port  
Alternate Name(s)  
Alternate Use  
P3.0  
RxD0  
Serial port 0 input  
P3.1  
TxD0  
Serial port 1 input  
P3.2  
INT0  
External interrupt 0  
P3.3  
INT1/TONE/PWM  
External interrupt 1/TONE/PWM output  
Timer 0 external input  
P3.4  
T0  
P3.5  
T1  
Timer 1 external input  
P3.6  
WR  
RD  
External memory data write strobe  
External memory data read strobe  
P3.7  
11, 14, 15, 42, 58  
DV  
DD  
Digital Power Supply  
Digital Ground  
12, 41, 57  
DGND  
RST  
13  
16  
Holding the reset input high for two tOSC periods will reset the device.  
IDAC0 Reference Resistor Pin  
RDAC0  
17  
VDAC0  
VDAC0 Output  
27  
AGND  
Analog Ground  
18  
AIN0/IDAC0  
AIN1/IDAC1  
AIN2/VDAC2  
AIN3V/DAC3  
AIN4  
Analog Input Channel 0 / IDAC0 Output  
Analog Input Channel 1 / IDAC1 Output  
19  
20  
Analog Input Channel 2 / VDAC2 Output (MSC1211 and MSC1212 only)  
Analog Input Channel 3 / VDAC3 Output (MSC1211 and MSC1212 only)  
Analog Input Channel 4  
21  
22  
23  
AIN5  
Analog Input Channel 5  
24  
AIN6/EXTD  
AIN7/EXTA  
AINCOM  
Analog Input Channel 6 / LVD Comparator Input, Generates DLVD Interrupt  
Analog Input Channel 7 / LVD Comparator Input, Generates ALVD Interrupt  
Analog Common; can be used like any analog input except during Offset − Inputs shorted to this pin.  
Analog Power Supply  
25  
26  
28  
AV  
DD  
29  
REF IN−  
Voltage Reference Negative Input (must be tied to AGND for internal V use)  
REF  
30  
REFOUT/REF IN+ Internal Voltage Reference Output / Voltage Reference Positive Input  
31  
VDAC1  
RDAC1  
NC  
VDAC1 Output  
32  
IDAC1 Reference Resistor Pin  
No Connection; leave unconnected.  
33  
34-40, 43  
P2.0-P2.7  
Port 2 is a bidirectional I/O port. The alternate functions for Port 2 are listed below. Refer to P2DDR, SFR B1h−B2h.  
Port  
P2.0  
P2.1  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
P2.7  
Alternate Name  
Alternate Use  
Address bit 8  
Address bit 9  
Address bit 10  
Address bit 11  
Address bit 12  
Address bit 13  
Address bit 14  
Address bit 15  
A8  
A9  
A10  
A11  
A12  
A13  
A14  
A15  
14  
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
PIN DESCRIPTIONS (continued)  
PIN #  
NAME  
DESCRIPTION  
44  
PSEN  
OSCCLK  
MODCLK  
Program Store Enable: Connected to optional external memory as a chip enable. PSEN will provide an active low pulse.  
In programming mode, PSEN is used as an input along with ALE to define serial or parallel programming mode.  
PSEN is held high for parallel programming and held low for serial programming. This pin can also be selected (when not  
using external memory) to output the Oscillator clock, Modulator clock, high, or low. Care should be taken so that loading  
on this pin should not inadvertently cause the device to enter programming mode.  
ALE  
NC  
0
PSEN  
NC  
NC  
0
Program Mode Selection During Reset  
Normal operation (User Application mode)  
Parallel programming  
NC  
0
Serial programming  
0
Reserved  
45  
ALE  
Address Latch Enable: Used for latching the low byte of the address during an access to external memory. ALE is emitted at  
a constant rate of 1/4 the oscillator frequency, and can be used for external timing or clocking. One ALE pulse is skipped  
during each access to external data memory. In programming mode, ALE is used as an input along with PSEN to define  
serial or parallel programming mode. ALE is held high for serial programming and held low for parallel programming. This pin  
can also be selected (when not using external memory) to output high or low. Care should be taken so that loading on this  
pin should not inadvertently cause the device to enter programming mode.  
48  
EA  
External Access Enable: EA must be externally held low to enable the device to fetch code from external program  
memory locations starting with 0000h. No internal pull-up on this pin.  
46, 47, 49-54  
P0.0-P0.7  
Port 0 is a bidirectional I/O port. The alternate functions for Port 0 are listed below.  
Port  
P0.0  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
Alternate Name  
Alternate Use  
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
Address/Data bit 0  
Address/Data bit 1  
Address/Data bit 2  
Address/Data bit 3  
Address/Data bit 4  
Address/Data bit 5  
Address/Data bit 6  
Address/Data bit 7  
55, 56, 59-64  
P1.0-P1.7  
Port 1 is a bidirectional I/O port. The alternate functions for Port 1 are listed below. Refer to P1DDR, SFR AEh−AFh.  
Port  
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
Alternate Name(s)  
T2  
Alternate Use  
T2 input  
T2EX  
T2 external input  
RxD1  
Serial port input  
TxD1  
Serial port output  
INT2/SS  
INT3/MOSI  
External Interrupt / Slave Select  
External Interrupt / Master Out-Slave In  
External Interrupt / Master In-Slave Out / SDA  
External Interrupt / Serial Clock  
(1)  
INT4/MISO/SDA  
(1)  
INT5/SCK/SCL  
(1)  
SDA and SCL are only available on the MSC1213.  
15  
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
TYPICAL CHARACTERISTICS  
3
AV = +5V, DV = +5V, f  
= 8MHz, PGA = 1, f  
= 15.625kHz, Bipolar, filter = Sinc , Buffer ON, and V (REF IN+) − (REF IN−) = +2.5V, unless otherwise  
REF  
DD  
DD  
OSC  
MOD  
specified.  
EFFECTIVE NUMBER OF BITS  
vs DECIMATION RATIO  
EFFECTIVE NUMBER OF BITS vs DATA RATE  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
PGA8  
PGA4  
PGA2  
PGA1  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
PGA1  
PGA8  
PGA32  
PGA64  
PGA128  
PGA32  
PGA64  
PGA128  
PGA16  
Sinc3 Filter, Buffer OFF  
Sinc3 Filter, Buffer OFF  
1
10  
100  
Data Rate (SPS)  
1000  
0
0
0
500  
1000  
Decimation Ratio =  
1500  
fMOD  
2000  
fDATA  
EFFECTIVE NUMBER OF BITS  
vs DECIMATION RATIO  
EFFECTIVE NUMBER OF BITS  
vs DECIMATION RATIO  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
PGA8  
PGA4  
PGA8  
PGA2  
PGA4  
PGA2  
PGA1  
PGA1  
PGA32  
PGA128  
PGA16  
PGA64  
PGA128  
PGA64  
PGA32  
PGA16  
Sinc3 Filter, Buffer ON  
AVDD = 3V, Sinc3 Filter,  
VREF = 1.25V, Buffer OFF  
500  
1000  
Decimation Ratio =  
1500  
2000  
0
500  
1000  
Decimation Ratio =  
1500  
fMOD  
2000  
fMOD  
fDATA  
fDATA  
EFFECTIVE NUMBER OF BITS  
vs DECIMATION RATIO  
EFFECTIVE NUMBER OF BITS  
vs DECIMATION RATIO  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
PGA2  
PGA4  
PGA4  
PGA8  
PGA2  
PGA8  
PGA1  
PGA1  
PGA16 PGA64  
PGA32  
PGA128  
PGA32  
PGA128  
PGA64  
PGA16  
Sinc2 Filter  
AVDD = 3V, Sinc3 Filter,  
VREF = 1.25V, Buffer ON  
0
500  
1000  
Decimation Ratio =  
1500  
2000  
500  
1000  
1500  
2000  
fMOD  
fMOD  
Decimation Ratio =  
fDATA  
fDATA  
16  
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
TYPICAL CHARACTERISTICS (Continued)  
3
AV = +5V, DV = +5V, f  
= 8MHz, PGA = 1, f  
= 15.625kHz, Bipolar, filter = Sinc , Buffer ON, and V  
(REF IN+) − (REF IN−) = +2.5V, unless otherwise  
DD  
DD  
OSC  
MOD  
REF  
specified.  
EFFECTIVE NUMBER OF BITS vs fMOD  
(set with ACLK)  
FAST SETTLING FILTER  
EFFECTIVE NUMBER OF BITS vs DECIMATION RATIO  
25  
20  
15  
10  
5
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
fMOD = 203kHz  
Gain 1  
fMOD = 15.6kHz  
fMOD = 31.25kHz  
fMOD = 110kHz  
Gain 16  
Gain 128  
fMOD = 62.5kHz  
0
1
10  
100  
1k  
10k  
100k  
0
500  
1000  
1500  
2000  
Data Rate (SPS)  
Decimation Value  
EFFECTIVE NUMBER OF BITS vs INPUT SIGNAL  
EFFECTIVE NUMBER OF BITS vs f  
MOD  
(set with ACLK)  
WITH FIXED DECIMATION, PGA = 1  
(Internal and External VREF  
)
25  
20  
15  
10  
5
22.0  
21.5  
21.0  
20.5  
20.0  
19.5  
19.0  
18.5  
18.0  
DEC = 2020  
External  
DEC = 500  
DEC = 50  
Internal  
DEC = 255  
DEC = 20  
DEC = 10  
10k  
0
0.5  
2.5  
1.5  
0.5  
1.5  
2.5  
10  
100  
1k  
100k  
Data Rate (SPS)  
V
IN (V)  
NOISE vs INPUT SIGNAL  
INL ERROR vs PGA  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
2.5  
1.5  
0.5  
1.5  
2.5  
1
2
4
8
16  
32  
64  
128  
VIN (V)  
PGA Setting  
17  
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
TYPICAL CHARACTERISTICS (Continued)  
3
AV = +5V, DV = +5V, f  
= 8MHz, PGA = 1, f  
= 15.625kHz, Bipolar, filter = Sinc , Buffer ON, and V (REF IN+) − (REF IN−) = +2.5V, unless otherwise  
REF  
DD  
DD  
OSC  
MOD  
specified.  
ADC INTEGRAL NONLINEARITY  
vs INPUT SIGNAL  
ADC INTEGRAL NONLINEARITY  
vs INPUT SIGNAL  
15  
10  
5
15  
10  
5
AVDD = 5V  
VREF = 2.5V  
Buffer ON  
AVDD = 5V  
VREF = 2.5V  
Buffer OFF  
_
+25 C  
_
+85 C  
0
0
_
+125 C  
_
+85 C  
_
+125 C  
_
+25 C  
5
5
_
55 C  
_
40 C  
10  
10  
_
40 C  
15  
15  
0.5  
2.5  
2
1.5  
1
0
0.5  
1
1.5  
2
2.5  
2.5 2.0 1.5 1.0 0.5  
0
0.5 1.0 1.5 2.0 2.5  
VIN (V)  
VIN (V)  
ADC INTEGRAL NONLINEARITY  
vs INPUT SIGNAL  
ADC INTEGRAL NONLINEARITY  
vs VREF  
35  
30  
25  
20  
15  
10  
5
30  
20  
10  
0
VREF = AVDD  
Buffer OFF  
VIN = VREF  
Buffer OFF  
AVDD = 3V  
AVDD = 5V  
10  
20  
30  
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
VREF (V)  
VIN  
=
VREF  
0
VIN = +VREF  
V
IN (V)  
ANALOG SUPPLY CURRENT  
vs ANALOG SUPPLY VOLTAGE  
ADC CURRENT vs PGA  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
_
+125 C  
PGA = 128, ADC ON,  
Brownout Detect ON,  
All VDACs ON = FFFFh,  
VDACs REF = AVDD  
AVDD = 5V, Buffer = ON  
Buffer = OFF  
_
+85 C  
_
+25 C  
AVDD = 3V, Buffer = ON  
Buffer = OFF  
_
40 C  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
0
1
2
4
8
16  
32  
64  
128  
Analog Supply Voltage (V)  
PGA Setting  
18  
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
TYPICAL CHARACTERISTICS (Continued)  
3
AV = +5V, DV = +5V, f  
= 8MHz, PGA = 1, f  
= 15.625kHz, Bipolar, filter = Sinc , Buffer ON, and V  
(REF IN+) − (REF IN−) = +2.5V, unless otherwise  
DD  
DD  
OSC  
MOD  
REF  
specified.  
PGA SUPPLY CURRENT  
NORMALIZED GAIN vs PGA  
101  
100  
300  
250  
200  
150  
100  
50  
AVDD = DVDD  
fCLK = 8MHz  
VIN = 0V  
Buffer OFF  
AVDD = 5.0V  
99  
98  
97  
96  
Buffer ON  
AVDD = 3.0V  
0
32  
1
2
4
8
16  
64  
128  
1
2
4
8
16  
32  
64  
128  
PGA Setting  
PGA Gain  
HISTOGRAM OF  
ADC OFFSET vs TEMPERATURE  
_
TEMPERATURE SENSOR VALUES  
(Offset Calibration at +25 C Only)  
200  
150  
100  
50  
10  
8
6
4
2
0
2
4
6
8
0
10  
25  
50  
0
25  
50  
75  
100  
125  
150  
_
Temperature ( C)  
Temperature Sensor Value (mV)  
OFFSET DAC: OFFSET vs TEMPERATURE  
OFFSET DAC: GAIN vs TEMPERATURE  
20  
15  
10  
5
1.00008  
1.00006  
1.00004  
1.00002  
1
0
5
0.99998  
0.99996  
0.99994  
0.99992  
10  
15  
20  
40  
+25  
+125  
40  
+25  
+125  
_
_
Temperature ( C)  
Temperature ( C)  
19  
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
TYPICAL CHARACTERISTICS (Continued)  
3
AV = +5V, DV = +5V, f  
= 8MHz, PGA = 1, f  
= 15.625kHz, Bipolar, filter = Sinc , Buffer ON, and V (REF IN+) − (REF IN−) = +2.5V, unless otherwise  
REF  
DD  
DD  
OSC  
MOD  
specified.  
HISTOGRAM OF OUTPUT DATA  
VREFOUT vs LOAD CURRENT  
4500  
2.510  
2.508  
2.506  
2.504  
2.502  
2.500  
2.498  
2.496  
2.494  
2.492  
2.490  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
0
2
1.5  
1
0.5  
0
0.5  
1
1.5  
2
0
1
0
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
ppm of FS  
VREFOUT Current Load (mA)  
DIGITAL SUPPLY CURRENT vs FREQUENCY  
DIGITAL SUPPLY CURRENT vs CLOCK DIVIDER  
Divider Values  
100  
10  
1
100  
10  
1
OFF  
2
I
, DV = 5V  
DD  
MIN  
4
8
I
, DV = 5V  
DD  
MAX  
I
I
, DV = 3V  
DD  
MAX  
16  
32  
1024  
2048  
4096  
, DV = 3V  
MIN  
DD  
I
IDLE, DV = 5V  
DD  
MAX  
I
IDLE, DV = 3V  
MIN  
DD  
IMIN: PDCON = FFh, PSEN and ALE disabled, LVDCON = FFh  
IMAX: PDCON = 00h, PSEN and ALE enabled, LVDCON = 00h  
0.1  
10  
100  
1
10  
100  
Clock Frequency (MHz)  
Clock Frequency (MHz)  
DIGITAL SUPPLY CURRENT vs SUPPLY VOLTAGE  
CMOS DIGITAL OUTPUT  
15  
10  
5
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5V  
Low  
Output  
_
+125 C  
3V  
Low  
_
+25 C  
_
40 C  
Output  
5V  
3V  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
10  
20  
30  
40  
50  
60  
70  
Supply Voltage (V)  
Output Current (mA)  
20  
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
TYPICAL CHARACTERISTICS: VDACs  
3
AV = +5V, DV  
= +5V, f  
= 8MHz, PGA = 1, f  
= 15.625kHz, Bipolar, filter = Sinc , Buffer ON, and V  
(REF IN+) − (REF IN−) = +2.5V, unless  
DD  
DD  
OSC  
MOD  
REF  
otherwise specified. For V : V  
DAC REF  
= AV  
R
= 10k, and C  
= 200pF unless otherwise noted.  
DD LOAD  
LOAD  
,
VDAC DIFFERENTIAL NONLINEARITY vs CODE  
VDAC INTEGRAL NONLINEARITY vs CODE  
40  
20  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
_
+125 C  
_
+85 C  
0.2  
0.4  
0.6  
0.8  
1.0  
_
+25 C  
20  
_
40 C  
40  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
DAC Code  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
DAC Code  
VDAC SOURCE CURRENT CAPABILITY  
VDAC SINK CURRENT CAPABILITY  
5.0  
0.6  
DAC = All 0s  
DAC = All 1s  
0.5  
0.4  
0.3  
0.2  
0.1  
0
4.9  
4.8  
4.7  
4.6  
4.5  
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
ISOURCE (mA)  
ISINK (mA)  
VDAC FULL−SCALE ERROR vs LOAD RESISTOR  
1
0
1
2
3
4
5
0.5  
1
10  
100  
Load Resistor (k )  
1k  
10k  
21  
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
TYPICAL CHARACTERISTICS: VDACs (Continued)  
3
AV = +5V, DV  
= +5V, f  
= 8MHz, PGA = 1, f  
= 15.625kHz, Bipolar, filter = Sinc , Buffer ON, and V (REF IN+) − (REF IN−) = +2.5V, unless  
DD  
DD  
OSC  
MOD  
REF  
otherwise specified. For V : V  
DAC REF  
= AV  
R
= 10k, and C  
= 200pF unless otherwise noted.  
DD LOAD  
LOAD  
,
VDAC FULL−SCALE SETTLING TIME  
VDAC FULL−SCALE SETTLING TIME  
Scope Trigger (5.0V/div)  
Scope Trigger (5.0V/div)  
Full−Scale Code Change  
0200H to FFFFH  
Output Loaded with  
10k and 200pF to GND  
LargeSignal Output (1.0V/div)  
Full−Scale Code Change  
FFFFH to 0200H  
Output Loaded with  
LargeSignal Output (1.0V/div)  
10k and 200pF to GND  
Time (1µs/div)  
Time (1µs/div)  
VDAC HALF−SCALE SETTLING TIME  
VDAC HALF−SCALE SETTLING TIME  
Scope Trigger (5.0V/div)  
Half−Scale Code Change  
Scope Trigger (5.0V/div)  
4000H to C000H  
Output Loaded with  
Half−Scale Code Change  
10k and 200pF to GND  
C000H to 4000H  
Output Loaded with  
10k and 200pF to GND  
LargeSignal Output (1.0V/div)  
Large−Signal Output (1.0V/div)  
Time (1µs/div)  
Time (1µs/div)  
22  
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
DESCRIPTION  
The MSC1211/12/13/14 are completely integrated  
The microcontroller core is 8051 instruction set  
compatible. The microcontroller core is an optimized 8051  
core that executes up to three times faster than the  
standard 8051 core, given the same clock source. This  
design makes it possible to run the devices at a lower  
external clock frequency and achieve the same  
performance at lower power than the standard 8051 core.  
families of mixed-signal devices incorporating  
a
high-resolution delta-sigma (∆Σ) ADC, 16-bit DACs,  
8-channel multiplexer, burnout detect current sources,  
selectable buffered input, offset DAC, Programmable Gain  
Amplifier (PGA), temperature sensor, voltage reference,  
8-bit microcontroller, Flash Program Memory, Flash Data  
Memory, and Data SRAM, as shown in Figure 8.  
The MSC1211/12/13/14 allow users to uniquely configure the  
Flash and SRAM memory maps to meet the needs of their  
applications. The Flash is programmable down to 2.7V using  
both serial and parallel programming methods. The Flash  
endurance is 100k Erase/Write cycles. In addition, 1280  
bytes of RAM are incorporated on-chip.  
On-chip peripherals include an additional 32-bit  
accumulator, an SPI-compatible serial port with FIFO, dual  
USARTs, multiple digital input/output ports, a watchdog  
timer, low-voltage detect, on-chip power-on reset, 16-bit  
PWM, breakpoints, brownout reset, three timer/counters,  
and a system clock divider. The MSC1211 and MSC1213  
also contain a hardware I2C peripheral.  
The parts have separate analog and digital supplies, which  
can be independently powered from 2.7V to +5.5V. At +3V  
operation, the power dissipation for each part is typically  
less than 4mW. The MSC1211/12/13/14 are all available  
in a TQFP-64 package.  
The devices accept low-level differential or single-ended  
signals directly from a transducer. The ADC provides 24  
bits of resolution and 24 bits of no-missing-code  
performance using a Sinc3 filter with a programmable  
sample rate. The ADC also has a selectable filter that  
allows for high-resolution, single-cycle conversion.  
The MSC1211/12/13/14 are designed for high-resolution  
measurement applications in smart transmitters, industrial  
process control, weigh scales, chromatography, and  
portable instrumentation.  
(1)  
AV  
AGND  
REFOUT/REF IN+ REF IN−  
DV  
DGND  
DD  
DD  
AVDD  
V
Burnout  
Detect  
REF  
Timers/  
Counters  
LVD  
EA  
ALE  
PSEN  
BOR  
8Bit  
Offset DAC  
WDT  
Temperature  
Sensor  
AIN0/IDAC0  
AIN1/IDAC1  
Alternate  
Functions  
(3)  
AIN2/VDAC2  
ADDR  
DATA  
(3)  
AIN3/VDAC3  
PORT0  
PORT1  
PORT2  
PORT3  
8
8
8
8
Digital  
Filter  
BUFFER  
AIN4  
AIN5  
Modulator  
MUX  
PGA  
T2  
2
(2)  
SPI/EXT/I C  
USART1  
Up to 32K  
FLASH  
AIN6/EXTD  
AIN7/EXTA  
AINCOM  
32Bit  
Accumulator  
V/I  
Converter  
VDAC0  
VDAC1  
ADDR  
1.2K  
SRAM  
USART0  
EXT  
T0  
T1  
PWM  
RW  
V/I  
Converter  
8051  
IDAC0/  
AIN1  
SFR  
(3)  
AIN2  
AIN3  
VDAC2  
SPI  
FIFO  
IDAC1/  
AIN1  
Burnout  
Detect  
(3)  
VDAC3  
SYS Clock  
Divider  
Clock  
Generator  
RST  
POR  
AGND  
VDAC0 VDAC1  
RDAC0  
RDAC1  
XIN XOUT  
NOTES:  
(1) REF IN must be tied to AGND when using internal VREF  
.
(2) I2C only available on the MSC1213.  
(3) VDAC2 and VDAC3 only available on MSC1211 and MSC1212.  
Figure 8. Block Diagram  
23  
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
ENHANCED 8051 CORE  
Single-Byte, Single-Cycle  
Instruction  
All instructions in the MSC1211/12/13/14 families perform  
exactly the same functions as they would in a standard  
8051. The effects on bits, flags, and registers is the same;  
however, the timing is different. The MSC1211/12/13/14  
families utilize an efficient 8051 core which results in an  
improved instruction execution speed of between 1.5 and  
3 times faster than the original core for the same external  
clock speed (4 clock cycles per instruction versus 12 clock  
cycles per instruction, as shown in Figure 9). This  
efficiency translates into an effective throughput  
improvement of more than 2.5 times, using the same code  
and same external clock speed. Therefore, a device  
frequency of 40MHz for the MSC1211/12/13/14 actually  
performs at an equivalent execution speed of 100MHz  
compared to the standard 8051 core. This increased  
performance allows the the device to be run at slower  
external clock speeds, which reduces system noise and  
power consumption, but provides greater throughput. This  
performance difference can be seen in Figure 10. The  
timing of software loops will be faster with the  
MSC1211/12/13/14. However, the timer/counter operation  
of the MSC1211/12/13/14 may be maintained at 12 clocks  
per increment, or optionally run at 4 clocks per increment.  
ALE  
PSEN  
AD0AD7  
PORT 2  
4 Cycles  
CLK  
12 Cycles  
ALE  
PSEN  
AD0AD7  
PORT 2  
Single-Byte, Single-Cycle  
Instruction  
Figure 10. Comparison of MSC1211/12/13/14  
Timing to Standard 8051 Timing  
The MSC1211/12/13/14 also provide dual data pointers  
(DPTRs) to speed block Data Memory moves.  
Additionally, both devices can stretch the number of  
memory cycles to access external Data Memory from  
between two and nine instruction cycles in order to  
accommodate different speeds of memory or devices, as  
shown in Table 2. The MSC1211/12/13/14 provide an  
external memory interface with a 16-bit address bus (P0  
and P2). The 16-bit address bus makes it necessary to  
multiplex the low address byte through the P0 port. To  
enhance P0 and P2 for high-speed memory access,  
hardware configuration control is provided to configure the  
ports for external memory/peripheral interface or  
general-purpose I/O.  
RD or WR  
STROBE  
WIDTH  
RD or WR  
STROBE  
WIDTH  
CKCON  
(8Eh)  
MD2:MD0  
INSTRUCTION  
CYCLES  
(for MOVX)  
(SYS CLKs)  
(µs) AT 12MHz  
000  
001  
010  
011  
100  
101  
110  
111  
2
2
4
8
12  
16  
20  
24  
28  
0.167  
0.333  
0.667  
1.000  
1.333  
1.667  
2.000  
2.333  
3 (default)  
4
5
6
7
8
9
Table 2. Memory Cycle Stretching (stretching of  
MOVX timing as defined by MD2, MD1, and MD0  
bits in CKCON register at address 8Eh).  
CLK  
instr_cycle  
cpu_cycle  
n + 1  
n + 2  
C1  
C2  
C3  
C4  
C1  
C2  
C3  
C4  
C1  
Figure 9. Instruction Timing Cycle  
24  
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
Furthermore, improvements were made to peripheral  
features that off-load processing from the core, and the  
user, to further improve efficiency. For instance, the SPI  
interface uses a FIFO, which allows the SPI interface to  
transmit and receive data with minimum overhead needed  
from the core. Also, a 32-bit accumulator was added to  
significantly reduce the processing overhead for multiple  
byte data from the ADC or other sources. This allows for  
32-bit addition, subtraction and shifting to be  
accomplished in a few instruction cycles, compared to  
hundreds of instruction cycles executed through software  
implementation.  
This gives the user the ability to add or subtract software  
functions and to freely migrate between family members.  
Thus, the MSC1211/12/13/14 can become a standard  
device used across several application platforms.  
Family Development Tools  
The MSC1211/12/13/14 are fully compatible with the  
standard 8051 instruction set. This compatibility means  
that  
users  
can  
develop  
software  
for  
the  
MSC1211/12/13/14 with their existing 8051 development  
tools. Additionally, a complete, integrated development  
environment is provided with each demo board, and  
third-party developers also provide support.  
Family Device Compatibility  
Power-Down Modes  
The hardware functionality and pin configuration across  
the MSC1211/12/13/14 families are fully compatible. To  
the user, the only differences between family members are  
the memory configuration, the number of DACs, and the  
availability of I2C for the MSC1211 and MSC1213. This  
design makes migration between family members simple.  
The MSC1211/12/13/14 can each power several of the  
on-chip peripherals and put the CPU into Idle mode. This  
is accomplished by shutting off the clocks to those  
sections, as shown in Figure 11.  
fOSC  
fSYS  
SYSCLK  
STOP  
C7  
fCLK  
SPICON/  
SCL/SCK  
I2CCON(1)  
9A  
fCLK  
PDCON.0  
PWM Clock  
PWMHI  
PWMLOW  
A2  
A3  
PDCON.4  
µ
s
Flash Write  
Timing  
FTCON  
[3:0]  
USEC  
µ
µ
(30 s to 40 s)  
FB  
EF  
ms  
Flash Erase  
Timing  
FTCON  
[7:4]  
MSECH  
MSECL  
(5ms to 11ms)  
FD  
FC  
EF  
milliseconds  
interrupt  
MSINT  
REFCLK  
divide  
by 4  
FA  
REF  
CLOCK  
seconds  
interrupt  
SEL  
DC  
PDCON.1  
SECINT  
F9  
watchdog  
interrupt  
100ms  
HMSEC  
FE  
WDTCON  
FF  
fACLK  
PDCON.2  
divide  
by 64  
ADC Output Rate  
(see Figure 14)  
ACLK  
ADCON3  
DF  
Decimation Ratio  
ADCON2  
fDATA  
F6  
DE  
Analog Power Down  
PDCON.3  
ADCON0  
DC  
fSAMP  
fMOD  
Timers 0/1/2  
USART 0/1  
IDLE  
CPUClock  
NOTE: (1) I2CCON only available on the MSC1211 and MSC1213.  
Figure 11. MSC1211/12/13/14 Timing Chain and Clock Control  
25  
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
TEMPERATURE SENSOR  
OVERVIEW  
On-chip diodes provide temperature sensing capability.  
When the configuration register for the input MUX is set to  
all 1s, the diodes are connected to the inputs of the ADC.  
All other channels are open.  
The MSC1211/12/13/14 ADC structure is shown in  
Figure 12. The figure lists the components that make up  
the ADC, along with the corresponding special function  
register (SFR) associated with each component.  
BURNOUT DETECT  
ADC INPUT MULTIPLEXER  
When the Burnout Detect (BOD) bit is set in the ADC  
control configuration register (ADCON0 DCh), two current  
sources are enabled. The current source on the positive  
input channel sources approximately 2µA of current. The  
current source on the negative input channel sinks  
approximately 2µA. The current sources allow for the  
detection of an open circuit (full-scale reading) or short  
circuit (small differential reading) on the selected input  
differential pair. The buffer should be on for sensor burnout  
detection.  
The input multiplexer provides for any combination of  
differential inputs to be selected as the input channel, as  
shown in Figure 13. For example, if AIN0 is selected as the  
positive differential input channel, then any other channel  
can be selected as the negative differential input channel.  
With this method, it is possible to have up to eight fully  
differential input channels with common connections  
between them. It is also possible to switch the polarity of  
the differential input pair to negate any offset voltages. In  
addition, current sources are supplied that will source or  
sink current to detect open or short circuits on the pins.  
AVDD  
REFOUT/  
REFIN+  
Detect  
Burnout  
AIN0  
AIN1  
AIN2  
fSAMP  
AIN3  
AIN4  
Input  
Multiplexer  
AIN5  
In+  
AIN6  
AIN7  
Sample  
and Hold  
Buffer  
PGA  
Σ
In  
AINCOM  
Temperature  
Sensor  
Burnout  
Detect  
Offset  
DAC  
REFIN  
D7h ADMUX  
REFOUT/  
DCh ADC0N0  
F6h ACLK  
E6h ODAC  
AGND  
A4h AIPOL.5  
A4h AIPOL.6  
A6h AIE.6  
fDATA  
fMOD  
REFIN+  
A6h AIE.5  
A7h AISTAT.5  
A7h AISTAT.6  
FAST  
VIN  
ADC  
Result Register  
SINC2  
SINC3  
AUTO  
∆Σ  
Modulator  
ADC  
Σ
X
Summation  
Block  
Offset  
Gain  
Calibration  
Register  
Calibration  
Register  
Σ
REFIN  
DDh ADCON1  
DEh ADCON2  
DFh ADCON3  
OCR  
GCR  
ADRES  
D3h D2h D1h  
D6h D5h D4h  
DBh DAh D9h  
SUMR  
E5h E4h E3h E2h  
E1h  
SSCON  
Figure 12. MSC1211/12/13/14 ADC Structure  
26  
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
ADC ANALOG INPUT  
When the buffer is not selected, the input impedance of the  
analog input changes with ACLK clock frequency (ACLK  
F6h) and gain (PGA). The relationship is:  
AIN0  
AIN1  
1
Impedance (W) +  
fSAMP @ CS  
AV  
DD  
1   106  
ACLK Frequency  
7MW  
PGA  
Burnout Detect (2µA)  
AIN2  
@ ǒ Ǔ  
Impedance (W) + ǒ  
Ǔ
AIN  
fCLK  
ACLK ) 1  
AIN3  
where ACLK frequency (fACLK) +  
In+  
fACLK  
64  
Buffer  
AIN4  
and modclk + fMOD  
+
.
In−  
NOTE:The input impedance for PGA = 128 is the same as  
7MW  
64  
AIN5  
that for PGA = 64 (that is,  
).  
Burnout Detect (2µA)  
Figure 14 shows the basic input structure of the  
MSC1211/12/13/14. The sampling frequency varies  
according to the PGA settings, as shown in the table in  
Figure 14.  
Temperature Sensor  
AIN6  
AV  
DD  
AV  
DD  
AGND  
80 I  
I
AIN7  
AINCOM  
RSWITCH  
(3k typical)  
High  
Impedance  
AIN  
> 1G  
CS  
(9pF typical)  
Figure 13. Input Multiplexer Configuration  
ADC INPUT BUFFER  
Sampling  
Frequency = fSAMP  
AGND  
PGA  
1
2
CS  
9pF  
18pF  
4 to 128 36pF  
The analog input impedance is always high, regardless of  
PGA setting (when the buffer is enabled). With the buffer  
enabled, the input voltage range is reduced and the analog  
power-supply current is higher. If the limitation of input  
voltage range is acceptable, then the buffer is always  
preferred. The input impedance of the MSC1211/12/13/14  
without the buffer is 7M/PGA. The buffer is controlled by  
the state of the BUF bit in the ADC control register (ADCON0  
DCh).  
BIPOLAR MODE  
UNIPOLAR MODE  
PGA FULL-SCALE RANGE FULL-SCALE RANGE  
f
SAMP  
1
2
4
V
+V  
REF  
f
f
f
REF  
MOD  
MOD  
MOD  
V
V
V
/2  
/4  
/8  
/16  
/32  
/64  
+V  
+V  
+V  
+V  
/2  
/4  
/8  
/16  
/32  
/64  
REF  
REF  
REF  
REF  
REF  
REF  
8
f
f
f
f
f
S 2  
MOD  
MOD  
MOD  
MOD  
MOD  
16  
32  
64  
128  
V
V
V
S 4  
REF  
REF  
REF  
REF  
+V  
+V  
+V  
S 8  
REF  
REF  
S 16  
S 16  
V
/128  
/128  
REF  
REF  
:
NOTE  
f
MOD  
= ACLK frequency/64  
Figure 14. Analog Input Structure  
27  
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
For system calibration, the appropriate signal must be  
applied to the inputs. The system offset calibration  
requires a zero input signal. It then computes an offset that  
will nullify offset in the system. The system gain calibration  
requires a positive full-scale input signal. It then computes  
a value to nullify gain errors in the system. Each of these  
calibrations will take seven tDATA periods to complete.  
ADC PGA  
The PGA can be set to gains of 1, 2, 4, 8, 16, 32, 64, or 128.  
Using the PGA can actually improve the effective  
resolution of the ADC. For instance, with a PGA of 1 on a  
2.5V full-scale range (FSR), the ADC can resolve to  
1.5µV. With a PGA of 128 on a 19mV FSR, the ADC can  
resolve to 75nV, as shown in Table 3.  
Calibration should be performed after power on. It should  
also be done after a change in temperature, decimation  
ratio, buffer, Power Supply, voltage reference, or PGA.  
The Offset DAC wil affect offset calibration; therefore, the  
value of the Offset DAC should be zero until prior to  
performing a calibration.  
Table 3. Sampling Frequency versus PGA Setting  
BIPOLAR MODE  
FULL-SCALE  
RANGE (V)  
RMS  
INPUT-REFERRED  
(1)  
ENOB  
AT 10HZ  
PGA  
SETTING  
NOISE (nV)  
1
2
4
2.5V  
1.25  
21.7  
21.5  
21.4  
21.2  
20.8  
20.4  
20  
1468  
843  
452  
259  
171  
113  
At the completion of calibration, the ADC Interrupt bit goes  
high, which indicates the calibration is finished and valid  
data is available.  
0.625  
0.313  
0.156  
0.0781  
0.039  
0.019  
8
16  
32  
64  
128  
ADC DIGITAL FILTER  
74.5  
74.5  
The Digital Filter can use either the Fast Settling, Sinc2, or  
Sinc3 filter, as shown in Figure 15. In addition, the Auto  
mode changes the Sinc filter after the input channel or  
PGA is changed. When switching to a new channel, it will  
use the Fast Settling filter for the next two conversions, the  
first of which should be discarded.  
19  
(1)  
24  
ENOB = Log (FSR/RMS Noise) = Log (2 ) − Log (σ )  
CODES  
2
2
2
= 24 − Log (σ  
)
2
CODES  
ADC OFFSET DAC  
The analog input to the PGA can be offset (in bipolar mode)  
by up to half the full-scale input range of the PGA by using  
the ODAC register (SFR E6h). The ODAC (Offset DAC)  
register is an 8-bit value; the MSB is the sign and the seven  
LSBs provide the magnitude of the offset. Since the ODAC  
introduces an analog (instead of digital) offset to the PGA,  
using the ODAC does not reduce the range of the ADC.  
Adjustable Digital Filter  
Sinc3  
Sinc2  
Modulator  
Data Out  
ADC MODULATOR  
The modulator is a single-loop, 2nd-order system. The  
modulator runs at a clock speed (fMOD) that is derived from  
the CLK using the value in the Analog Clock (ACLK)  
register (SFR F6h). The data output rate is:  
Fast Settling  
FILTER SETTLING TIME  
SETTLING TIME  
fMOD  
(1)  
FILTER  
Sinc  
(Conversion Cycles)  
Data Rate + fDATA  
+
3
3
2
1
Decimation Ratio  
2
Sinc  
Fast  
fCLK  
fACLK  
64  
where fMOD  
+
+
NOTE: (1) MUX change may add one cycle.  
(ACLK ) 1) @ 64  
AUTO MODE FILTER SELECTION  
CONVERSION CYCLE  
and Decimation Ratio is set in [ADCON3:ADCON2].  
1
2
3
4
ADC CALIBRATION  
2
3
Fast  
Fast  
Sinc  
Sinc  
The offset and gain errors in the MSC1211/12/13/14, or the  
complete system, can be reduced with calibration.  
Calibration is controlled through the ADCON1 register  
(SFR DDh), bits CAL2:CAL0. Each calibration process  
takes seven tDATA periods (data conversion time) to  
complete. Therefore, it takes 14 tDATA periods to complete  
both an offset and gain calibration.  
Figure 15. Filter Step Responses  
28  
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
It will then use the Sinc2 followed by the Sinc3 filter to  
improve noise performance. This combines the low-noise  
advantage of the Sinc3 filter with the quick response of the  
Fast Settling Time filter. The frequency response of each  
filter is shown in Figure 16.  
reference. The valid ranges are: VREF = 2.5 internal  
(AVDD = 3.3V to 5.25V) and VREF = 1.25 internal  
(AVDD = 2.7V to 5.25V). If the internal VREF is selected,  
then AGND must be connected to REF IN−. The  
REFOUT/REF IN+pin should also have a 0.1µF capacitor  
connected to AGND as close as possible to the pin. If the  
internal VREF is not used, then VREF should be disabled in  
ADCON0.  
VOLTAGE REFERENCE  
The MSC1211/12/13/14 can use either an internal or  
external voltage reference. The voltage reference  
selection is controlled via ADC Control Register 0  
If the external voltage reference is selected, it can be used  
as either a single-ended input or differential input, for  
ratiometric measures. When using an external reference,  
it is important to note that the input current will increase for  
(ADCON0, SFR DCh).  
The default power-up  
configuration for the voltage reference is 2.5V internal.  
V
REF with higher PGA settings and with a higher modulator  
The internal voltage reference can be selected as either  
1.25V or 2.5V. The analog power supply (AVDD) must be  
within the specified range for the selected internal voltage  
frequency. The external voltage reference can be used  
over the input range specified in the Electrical  
Characteristics section.  
SINC3 FILTER RESPONSE  
SINC2 FILTER RESPONSE  
( 3dB = 0.262 fDATA  
)
( 3dB = 0.318 fDATA  
)
0
20  
40  
60  
80  
0
20  
40  
60  
80  
100  
120  
100  
120  
0
1
2
3
4
5
0
1
2
3
4
5
fDATA  
fDATA  
FAST SETTLING FILTER RESPONSE  
( 3dB = 0.469 fDATA  
)
0
20  
40  
60  
80  
100  
120  
0
1
2
3
4
5
fDATA  
NOTE: fDATA = Normalized Data Output Rate = 1/tDATA  
Figure 16. Filter Frequency Responses  
29  
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
VDAC  
DAC OUTPUT AMPLIFIER  
The architecture of the MSC1211/12/13/14 consists of a  
string DAC followed by an output buffer amplifier.  
Figure 17 shows a block diagram of the DAC architecture.  
The output buffer amplifier is capable of generating  
rail-to-rail voltages on its output, which provides an output  
range of AGND to AVDD. It is capable of driving a load of  
2kin parallel with 1000pF to GND. The source and sink  
capabilities of the output amplifier can be seen in the  
typical curves. The slew rate is 1V/µs with a full-scale  
settling time of 8µs.  
The input coding to the DAC is straight binary, so the ideal  
output voltage is given by:  
D
65536  
@ ǒ Ǔ  
VDAC + VREF  
DAC REFERENCE  
where D = decimal equivalent of the binary code that is  
loaded to the DAC register; it can range from 0 to 65535.  
Each DAC can be selected to use the REFOUT/REF IN+  
pin voltage or the supply voltage AVDD as the reference for  
the DAC.  
DAC RESISTOR STRING  
DAC LOADING  
The DAC selects the voltage from a string of resistors from  
the reference to AGND. It is essentially a string of resistors,  
each of value R. The code loaded into the DAC register  
determines at which node on the string the voltage is  
tapped off to be fed into the output amplifier by closing one  
of the switches connecting the string to the amplifier. It is  
ensured monotonic because of the design architecture.  
The DAC can be selected to be turned off with a 1k,  
100k, or open circuit on the DAC outputs.  
DAC3  
DAC2  
DAC1  
21 AIN3/VDAC3  
20 AIN2/VDAC2  
31 VDAC1  
Sink  
19 AIN1/IDAC1  
AVDD  
28  
30  
Source  
Current  
Mirror  
RDAC1  
32  
REFOUT/  
REF IN+  
DAC0  
17 VDAC0  
Sink  
DAC  
AIN0/IDAC0  
µ
0.1 F  
Sink  
18  
16  
Connection  
Source  
REF  
2.5V/1.25V  
Current  
Mirror  
RDAC0  
Figure 17. DAC Architecture  
30  
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
BIPOLAR OPERATION USING THE DAC  
ANALOG/DIGITAL LOW-VOLTAGE DETECT  
The DAC can be used for a bipolar output range, as shown  
in Figure 18; the circuit illustrates an output voltage range  
of VREF. Rail-to-rail operation at the amplifier output is  
achievable using an OPA703 as the output amplifier.  
The MSC1211/12/13/14 contain an analog or digital  
low-voltage detect. When the analog or digital supply  
drops below the value programmed in LVDCON (SFR  
E7h), an interrupt is generated (one for each supply).  
RESET  
R2  
100kΩ  
DThe device can be reset from the following sources:  
Power-on reset  
+6V  
R1  
100kΩ  
DAC  
REF  
D
D
D
D
External reset  
OPA703  
(DAC  
)
REF  
VREF  
VDAC  
Software reset  
−6V  
Watchdog timer reset  
Brownout reset  
Figure 18. Bipolar Operation with the DAC  
An external reset is accomplished by taking the RST pin  
The output voltage for any input code can be calculated as  
follows:  
high for two t  
periods, followed by taking the RST pin  
OSC  
low. A software reset is accomplished through the System  
Reset register (SRTST, 0F7h). A watchdog timer reset is  
enabled and controlled through Hardware Configuration  
Register 0 (HCR0) and the Watchdog Timer register  
(WDTCON, 0FFh). A brownout reset is enabled through  
Hardware Configuration Register 1 (HCR1). External  
reset, software reset, and watchdog timer reset complete  
R )R  
R
1
D
65536  
1
2
@ ǒ Ǔ@  
ǒ Ǔ* DAC ǒ Ǔ  
+ ƪDAC  
ƫ
V
@
REF  
REF  
O
R
R
2
1
where D represents the input code in decimal (0 to 65535).  
With DACREF = 5V, R1 = R2:  
17  
15  
after 2 clock cycles. A brownout reset completes after 2  
10 @ D  
65536  
+ ǒ Ǔ* 5V  
VO  
clock cycles.  
All sources of reset cause the digital pins to be pulled high  
from the initiation of the reset. For an external reset, taking  
the RST pin high stops device operation (crystal  
oscillation, internal oscillator, or PLL circuit operation) and  
causes all digital pins to be pulled high from that point.  
Taking the RST pin low initiates the reset procedure.  
This is an output voltage range of 5V with 0000h  
corresponding to a –5V output and FFFFh corresponding  
to a +5V output. Similarly, using DACREF = 2.5V, a 2.5V  
output voltage can be achieved.  
IDAC  
A recommended external reset circuit is shown in  
Figure 19. The serial 10kresistor is recommended for  
any external reset circuit configuration.  
The IDAC can source current and sink current (through an  
external transistor). The compliance specification of the  
IDAC output defines the maximum output voltage to  
achieve the expected current.  
DVDD  
ȡ4 @ V  
DAC  
MSC1211/12/13/14  
for Source mode  
RDAC  
ȧ
µ
0.1 F  
10k  
IDACOUT  
+
ȥ
13 RST  
ȧRV  
DAC  
for Sink mode  
DAC  
Ȣ
1M  
with VDAC < (AVDD − 2V) for maximum code.  
Refer to Figure 17 for the IDAC structure.  
Figure 19. Typical Reset Circuit  
31  
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
POWER ON RESET  
STOP MODE  
The on-chip Power On Reset (POR) circuitry releases the  
device from reset when DVDD 2.0V. The power supply  
ramp rate does not affect the POR. If the power supply falls  
below 1.0V for more than 200ms, then the POR will  
execute. If the power supply falls below 1.0V for less than  
200ms, unexpected operation may occur. If these  
conditions are not met, the POR will not execute. For  
example, a negative spike on the DVDD supply that does  
not remain below 1.0V for at least 200ms, will not initiate  
a POR.  
Stop mode is entered by setting the STOP bit in the Power  
Control register (PCON, 087h). In STOP mode, all internal  
clocks are halted. This mode has the lowest power  
consumption. The device can be returned to active mode  
only via an external or power-on reset (not brownout  
reset).  
By configuring the device prior to entering Stop mode,  
further power reductions can be achieved (while in Stop  
mode). These power reductions include halting the  
external clock into the device, configuring all digital I/O  
pins as open drain with low output drive, disabling the ADC  
buffer, disabling the internal VREF, disabling the DACs, and  
setting PDCON to 0FFh to power down all peripherals.  
If the Analog/Digital Brownout Reset circuit is on, the POR  
has no effect.  
In Stop mode, all digital pins retain their values.  
BROWNOUT RESET  
The Brownout Reset (BOR) is enabled through HCR1. If  
the conditions for proper POR are not met, or the device  
encounters a brownout condition that does not generate a  
POR, the BOR can be used to ensure proper device  
operation. The BOR will hold the state of the device when  
the power supply drops below the threshold level  
programmed in HCR1, and then generate a reset when the  
supply rises above the threshold level. Note that, as the  
device is released from reset and program execution  
begins, the device current consumption may increase,  
which can result in a power supply voltage drop, which  
may initiate another brownout condition.  
POWER CONSUMPTION CONSIDERATIONS  
The following suggestions will reduce current  
consumption in the MSC1211/12/13/14 devices:  
1. Use the lowest supply voltage that will work in the  
application for both AV  
and DV  
.
DD  
DD  
2. Use the lowest clock frequency that will work in the  
application.  
3. Use Idle mode and the system clock divider  
whenever possible. Note that the system clock  
divider also affects the ADC clock.  
The BOR level should be chosen to match closely with the  
application. That is, with a high external clock frequency,  
the BOR level should match the minimum operating  
voltage range for the device or improper operation may still  
occur.  
4. Avoid using 8051-compatible I/O mode on the I/O  
ports. The internal pull-up resistors will draw current  
when the outputs are low.  
5. Use the delay line for Flash Memory control by  
setting the FRCM bit in the FMCON register (SFR  
EEh)  
IDLE MODE  
6. Power down peripherals when they are not needed.  
Refer to SFR PDCON, LVDCON, ADCON0, and  
DACCONx.  
Idle mode is entered by setting the IDLE bit in the Power  
Control register (PCON, 087h). In Idle mode, the CPU,  
Timer0, Timer1, and USARTs are stopped, but all other  
peripherals and digital pins remain active. The device can  
be returned to active mode via an active internal or external  
interrupt. This mode is typically used for reducing power  
consumption between ADC samples.  
MEMORY MAP  
The MSC1211/12/13/14 contain on-chip SFR, Flash  
Memory, Scratchpad SRAM Memory, Boot ROM, and  
SRAM. The SFR registers are primarily used for control  
and status. The standard 8051 features and additional  
peripheral features of the MSC1211/12/13/14 are  
controlled through the SFR. Reading from an undefined  
SFR will return zero; writing to an undefined SFR is not  
recommended, and will have indeterminate effects.  
By configuring the device prior to entering Idle mode,  
further power reductions can be achieved (while in Idle  
mode). These reductions include powering down  
peripherals not in use in the PDCON register (0F1h) and  
reducing the system clock frequency by using the System  
Clock Divider register (SYSCLK, 0C7h).  
32  
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
Flash Memory is used for both Program Memory and Data  
Memory. The user has the ability to select the partition size  
of Program and Data Memory. The partition size is set  
through hardware configuration bits, which are  
programmed through either the parallel or serial  
programming methods. Both Program and Data Flash  
Memory are erasable and writable (programmable) in User  
Application mode (UAM). However, program execution  
can only occur from Program Memory. As an added  
precaution, a lock feature can be activated through the  
hardware configuration bits, which disables erase and  
writes to 4kB of Program Flash Memory or the entire  
Program Flash Memory in UAM.  
FFFFh, as shown in Figure 20. The program and data  
segments can overlap since they are accessed in different  
ways. Program Memory is fetched by the microcontroller  
automatically. There is one instruction (MOVC) that is  
used to explicitly read the program area. This instruction  
is commonly used to read lookup tables. The Data Memory  
area is accessed explicitly using the MOVX instruction.  
This instruction provides multiple ways of specifying the  
target address. It is also used to access the 64kB of Data  
Memory. The address and data range of devices with  
on-chip Program and Data Memory overlap the 64kB  
memory space. When on-chip memory is enabled,  
accessing memory in the on-chip range will cause the  
device to access internal memory. Memory accesses  
beyond the internal range will be addressed externally via  
Ports 0 and 2.  
The MSC1211/12/13/14 include 1kB of SRAM on-chip.  
SRAM starts at address 0 and is accessed through the  
MOVX instruction. This SRAM can also be located to start  
at 8400hand can be accessed as both Program and Data  
Memory.  
The MSC1211/12/13/14 have two hardware configuration  
registers (HCR0 and HCR1) that are programmable only  
during Flash Memory Programming mode.  
FLASH MEMORY  
The MSC1211/12/13/14 allow the user to partition the  
Flash Memory between Program Memory and Data  
Memory. For instance, the MSC1213Y5 contains 32kB of  
Flash Memory on-chip. Through the hardware  
configuration registers, the user can define the partition  
between Program Memory (PM) and Data Memory (DM),  
as shown in Table 4 and Table 5. The MSC1211/12/13/14  
families offer four memory configurations.  
The page size for Flash memory is 128 bytes. The  
respective page must be erased before it can be written to,  
regardless of whether it is mapped to Program or Data  
Memory space. The MSC1211/12/13/14 use a memory  
addressing scheme that separates Program Memory  
(FLASH/ROM) from Data Memory (FLASH/RAM). Each  
area is 64kB beginning at address 0000h and ending at  
Program  
Memory  
Data  
Memory  
FFFFh  
F800h  
FFFFh  
2k Internal Boot ROM  
User  
Programming Application  
Flash  
Mapped to Both  
Memory Spaces  
(von Neumann)  
External  
Program  
Memory  
External  
Data  
Memory  
Configuration  
Memory  
Mode  
Address(1)  
Mode  
Address  
8800h  
8400h  
7FFFh, 32k (Y5)  
8800h  
83FFh, 33k (Y5)  
807Fh  
8079h  
7Fh  
79h  
1k RAM or External  
External Memory  
1k RAM or External  
UAM: Read Only  
FPM: Read/Write  
43FFh, 17k (Y4)  
23FFh, 9k (Y3)  
UAM: Read Only  
FPM: Read Only  
On−Chip  
Flash  
3FFFh, 16k (Y4)  
1FFFh, 8k (Y3)  
On−Chip  
Flash  
8070h  
8000h  
70h  
00h  
UAM: Read Only  
FPM: Read/Write  
13FFh, 5k (Y2)  
03FFh, 1k  
0FFFh, 4k (Y2)  
0000h, 0k  
NOTE: (1) Can be accessed using CADDR  
or the faddr_data_read Boot ROM routine.  
1k RAM or External  
Figure 20. Memory Map  
33  
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
Program Memory size (no Flash Data Memory) and Flash  
Program Memory can be used as Flash Data Memory.  
However, this configuration may lead to undesirable  
behavior if the PC points to an area of Flash Program  
Memory that is being used for data storage. Therefore, it  
is recommended to use Flash partitioning when Flash  
Memory is used for data storage. Flash partitioning  
prohibits execution of code from Data Flash Memory.  
Additionally, the Program Memory erase/write can be  
disabled through hardware configuration bits (HCR0),  
while still providing access (read/write/erase) to Data  
Flash Memory.  
Table 4. MSC1211/12/13/14 Flash Partitioning  
HCR0  
MSC121xY2 MSC121xY3 MSC121xY4 MSC121xY5  
DFSEL  
000  
PM  
0kB  
0kB  
0kB  
0kB  
0kB  
2kB  
3kB  
4kB  
DM  
4kB  
4kB  
4kB  
4kB  
4kB  
2kB  
1kB  
0kB  
PM  
0kB  
0kB  
0kB  
0kB  
4kB  
6kB  
7kB  
8kB  
DM  
8kB  
8kB  
8kB  
8kB  
4kB  
2kB  
1kB  
0kB  
PM  
DM  
PM  
DM  
0kB 16kB 0kB  
0kB 16kB 0kB  
32kB  
32kB  
001  
010  
0kB 16kB 16kB 16kB  
011  
8kB  
8kB  
24kB 8kB  
28kB 4kB  
30kB 2kB  
31kB 1kB  
32kB 0kB  
100  
12kB 4kB  
14kB 2kB  
15kB 1kB  
16kB 0kB  
101  
110  
111 (default)  
NOTE: When a 0kB Program Memory configuration is selected, program  
execution is external.  
The effect of memory mapping on Program and Data  
Memory is straightforward. The Program Memory is  
decreased in size from the top of internal Program  
Memory. Therefore, for example, if the MSC1213Y5 is  
partitioned with 31kB of Flash Program Memory and 1kB  
of Flash Data Memory, external Program Memory  
execution will begin at 7C00h (versus 8000h for 32kB).  
The Flash Data Memory is added on top of the SRAM  
memory. Thus, access to Data Memory (through MOVX)  
will access SRAM for addresses 0000h−03FFh and  
access Flash Memory for addresses 0400h−07FFh.  
Table 5. MSC1211/12/13/14 Flash Memory  
Partitioning  
HCR0  
DFSEL  
000  
MSC121xY2 MSC121xY3 MSC121xY4 MSC121xY5  
PM  
DM  
PM  
DM  
PM  
DM  
PM  
DM  
0000  
0400-  
13FF  
0000  
0400-  
23FF  
0000  
0400-  
43FF  
0000  
0400-  
83FF  
001  
010  
011  
100  
101  
110  
0000  
0000  
0000  
0000  
0400-  
13FF  
0000  
0000  
0000  
0400-  
23FF  
0000  
0000  
0400-  
43FF  
0000  
0400-  
83FF  
0400-  
13FF  
0400-  
23FF  
0400- 0000- 0400-  
43FF 3FFF 43FF  
Data Memory  
0400-  
13FF  
0400- 0000- 0400- 0000- 0400-  
23FF 1FFF 23FF 5FFF 23FF  
The MSC1211/12/13/14 can address 64kB of Data  
Memory. Scratchpad Memory provides 256 bytes in  
addition to the 64kB of Data Memory. The MOVX  
instruction is used to access the Data SRAM Memory. This  
includes 1024 bytes of on-chip Data SRAM Memory. The  
data bus values do not appear on Port 0 (during data bus  
timing) for internal memory access.  
0400- 0000- 0400- 0000- 0400- 0000- 0400-  
13FF 0FFF 13FF 2FFF 13FF 6FFF 13FF  
0000- 0400- 0000- 0400- 0000- 0400- 0000- 0400-  
07FF 0BFF 17FF 0BFF 37FF 0BFF 77FF 0BFF  
0000- 0400- 0000- 0400- 0000- 0400- 0000- 0400-  
0BFF  
07FF  
1BFF  
07FF  
3BFF  
07FF  
7BFF  
07FF  
111  
(default)  
0000-  
0FFF  
− −  
0000-  
1FFF  
− −  
0000-  
3FFF  
− −  
0000-  
7FFF  
− −  
The MSC1211/12/13/14 also have on-chip Flash Data  
Memory which is readable and writable (depending on  
Memory Write Select register) during normal operation (full  
NOTE: Program Memory accesses above the highest listed address will  
access external Program Memory.  
V
DD range). This memory is mapped into the external Data  
Memory space directly above the SRAM.  
It is important to note that the Flash Memory is readable  
and writable by the user through the MOVX instruction  
when configured as either Program or Data Memory (via  
the MXWS bit in the MWS SFR 8Fh). This flexibility means  
that the device can be partitioned for maximum Flash  
The MOVX instruction is used to write to Flash Memory.  
Flash Memory must be erased before it can be written.  
Flash Memory is erased in 128 byte pages.  
34  
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
CONFIGURATION MEMORY  
The MSC121x Configuration Memory consists of 128 bytes.  
In UAM, all Configuration Memory is readable using the  
faddr_data_read Boot ROM routine, and the CADDR and  
CDATA registers. In UAM, however, none of the  
Configuration Memory is writable.  
255  
255  
128  
FFh  
80h  
FFh  
Direct  
Special Function  
Registers  
Indirect  
RAM  
128  
127  
80h  
7Fh  
SFR Registers  
Direct  
RAM  
In serial or parallel programming mode, all Configuration  
Memory is readable. Most locations are also writable, except  
for addresses 8070h through 8079h, which are read-only.  
0
00h  
Scratchpad  
RAM  
The two hardware configuration registers reside in  
configuration memory at 807Eh (HCR1) and 807Fh (HCR0).  
Figure 21 shows the configuration register mapping for  
programming mode and UAM. Note that reading/writing  
configuration memory in Flash Programming mode (FPM)  
Figure 22. Register Map  
requires  
16-bit  
addressing;  
whereas,  
reading  
configuration memory in User Application mode (UAM)  
requires only 8-bit addressing.  
SFRs are accessed directly between 80h and FFh (128 to  
255). The RAM locations between 128 and 255 can be  
reached through an indirect reference to those locations.  
Scratchpad RAM is available for general-purpose data  
storage. It is commonly used in place of off-chip RAM  
when the total data contents are small. When off-chip RAM  
is needed, the Scratchpad area will still provide the fastest  
general-purpose access. Within the 256 bytes of RAM,  
there are several special-purpose areas.  
User  
Flash  
Programming  
Mode  
Application  
Mode  
(Read−Only)  
HCR0  
HCR1  
0807Fh  
0807Eh  
08079h  
7Fh  
7Fh  
79h  
Bit Addressable Locations  
Read−Only in Both  
FPM and UAM  
In addition to direct register access, some individual bits  
are also accessible. These are individually addressable  
bits in both the RAM and SFR area. In the Scratchpad  
RAM area, registers 20h to 2Fh are bit addressable. This  
provides 128 (16 8) individual bits available to software.  
A bit access is distinguished from a full-register access by  
the type of instruction. In the SFR area, any register  
location ending in a 0 or 8 is bit addressable. Figure 23  
shows details of the on-chip RAM addressing including the  
locations of individual RAM bits.  
08070h  
08000h  
70h  
00h UAM Address  
NOTE: All Configuration Memory is R/W in programming mode, except  
addresses 8070h−8079h, which are read−only. All Configuration  
Memory is read−only in UAM.  
Figure 21. Configuration Memory Mapping for  
Programming Mode and UAM  
Working Registers  
As part of the lower 128 bytes of RAM, there are four banks  
of Working Registers, as shown in Figure 23. The Working  
Registers are general-purpose RAM locations that can be  
addressed in a special way. They are designated R0  
through R7. Since there are four banks, the currently  
selected bank will be used by any instruction using  
R0—R7. This design allows software to change context by  
simply switching banks. Bank access is controlled via the  
Program Status Word register (PSW; 0D0h) in the SFR  
area described below. Registers R0 and R1 also allow  
their contents to be used for indirect addressing of the  
upper 128 bytes of RAM.  
REGISTER MAP  
Figure 22 illustrates the Register Map. It is entirely  
separate from the Program and Data Memory areas  
discussed previously. A separate class of instructions is  
used to access the registers. There are 256 potential  
register locations. In practice, the MSC1211/12/13/14  
have 256 bytes of Scratchpad RAM and up to 128 SFRs.  
This is possible, since the upper 128 Scratchpad RAM  
locations can only be accessed indirectly. Thus, a direct  
reference to one of the upper 128 locations must be an  
SFR access. Direct RAM is reached at locations 0 to 7Fh  
(0 to 127).  
35  
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
Thus, an instruction can designate the value stored in R0  
(for example) to address the upper RAM. The 16 bytes  
immediately above the these registers are bit addressable.  
So any of the 128 bits in this area can be directly accessed  
using bit addressable instructions.  
FFh  
Indirect  
RAM  
7Fh  
Stack  
Direct  
RAM  
Another use of the Scratchpad area is for the  
programmer’s stack. This area is selected using the Stack  
Pointer (SP; 81h) SFR. Whenever a call or interrupt is  
invoked, the return address is placed on the Stack. It also  
is available to the programmer for variables, etc., since the  
Stack can be moved and there is no fixed location within  
the RAM designated as Stack. The Stack Pointer will  
default to 07h on reset. The user can then move it as  
needed. A convenient location would be the upper RAM  
area (> 7Fh) since this is only available indirectly. The SP  
will point to the last used value. Therefore, the next value  
placed on the Stack is put at SP + 1. Each PUSH or CALL  
will increment the SP by the appropriate value. Each POP  
or RET will decrement as well.  
2Fh  
2Eh  
2Dh  
2Ch  
2Bh  
2Ah  
29h  
28h  
27h  
7F 7E 7D 7C 7B 7A 79 78  
77 76 75 74 73 72 71 70  
6F 6E 6D 6C 6B 6A 69 68  
67 66 65 64 63 62 61 60  
5F 5E 5D 5C 5B 5A 59 58  
57 56 55 54 53 52 51 50  
4F 4E 4D 4C 4B 4A 49 48  
47 46 45 44 43 42 41 40  
3F 3E 3D 3C 3B 3A 39 38  
37 36 35 34 33 32 31 30  
2F 2E 2D 2C 2B 2A 29 28  
27 26 25 24 23 22 21 20  
1F 1E 1D 1C 1B 1A 19 18  
26h  
25h  
24h  
Program Memory  
After reset, the CPU begins execution from Program  
Memory location 0000h. The selection of where Program  
Memory execution begins is made by tying the EA pin to  
DVDD for internal access, or DGND for external access.  
When EA is tied to DVDD, any PC fetches outside the  
internal Program Memory address occur from external  
memory. If EA is tied to DGND, then all PC fetches  
address external memory. Table 6 shows the standard  
internal Program Memory size for MSC1211/12/13/14  
family members. If enabled the Boot ROM will appear from  
address F800h to FFFFh.  
23h  
22h  
21h  
17 16 15 14 13 12  
11  
10  
0F 0E 0D 0C 0B 0A 09 08  
07 06 05 04 03 02 01 00  
20h  
1Fh  
Bank 3  
18h  
17h  
Bank 2  
Bank 1  
Bank 0  
10h  
0Fh  
Table 6. MSC1211/12/13/14 Maximum Internal  
Program Memory Sizes  
08h  
07h  
STANDARD INTERNAL  
PROGRAM MEMORY SIZE (BYTES)  
MODEL NUMBER  
MSC121xY5  
MSC121xY4  
MSC121xY3  
MSC121xY2  
0000h  
32k  
16k  
8k  
MSB  
LSB  
4k  
Figure 23. Scratchpad Register Addressing  
36  
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
The functions of Port 0 and Port 2 are selected in HCR1.  
(Hardware configuration registers can only be changed  
during Flash Programming mode.) The default state is for  
Port 0 and Port 2 to be used as general-purpose I/O. If an  
external memory access is attempted when they are  
configured as general-purpose I/O, the values of Port 0  
and Port 2 will not be affected.  
ACCESSING EXTERNAL MEMORY  
If external memory is used, P0 and P2 must be configured  
as address and data lines. If external memory is not used, P0  
and P2 can be configured as general-purpose I/O lines  
through the hardware configuration register (HCR0, HCR1).  
To enable access to external memory, bits 0 and 1 of the  
HCR1 register must be set to ‘0’. When these bits are  
enabled all memory accesses for both internal and  
external memory will appear on Ports 0 and 2. During the  
data portion of the cycle for internal memory, Port 0 will be  
zero for security purposes.  
External Program Memory is accessed under two conditions:  
1. Whenever signal EA is low during reset, then all future  
code and data accesses are external; or  
2. Whenever the Program Counter (PC) contains a  
number that is outside of the internal Program Memory  
address range, if the ports are enabled.  
Accesses to external memory are of two types: to external  
Program Memory and to external Data Memory. Accesses  
to external Program Memory use signal PSEN (program  
store enable) as the read strobe. Accesses to external  
Data Memory use RD or WR (alternate functions of P3.7  
and P3.6) to strobe the memory.  
If Port 0 and Port 2 are selected for external memory, all 8  
bits of Port 0 and Port 2, as well as P3.6 and P3.7, are  
dedicated to an output function and may not be used for  
general-purpose I/O. During external program fetches,  
Port 2 outputs the high byte of the PC.  
If desired, External Program Memory and external Data  
Memory may be combined by applying the RD and PSEN  
signals to the inputs of an AND gate and using the output  
of the gate as the read strobe to the external Program/Data  
Memory.  
Programming Flash Memory  
There are four sections of Flash Memory for programming:  
1. 128 configuration bytes.  
2. Reset sector (4kB) (not to be confused with the 2kB  
Boot ROM).  
A program fetch from external Program Memory uses a  
16-bit address. Accesses to external Data Memory can  
use either a 16-bit address (MOVX @DPTR) or an 8-bit  
address (MOVX @RI).  
3. Program Memory.  
4. Data Memory.  
If Port 2 is selected for external memory use (HCR1, bit 0),  
it cannot be used as general-purpose I/O. This bit (or Bit  
1 of HCR1) also forces bits P3.6 and P3.7 to be used for  
WR and RD instead of I/O. Port 2, P3.6, and P3.7 should  
all be written to ‘1.’  
Boot ROM  
There is a 2kB Boot ROM that controls operation during  
serial or parallel programming. Additionally, the Boot ROM  
routines can be accessed during the user mode if it is  
enabled. When enabled, the Boot ROM routines will be  
located at memory addresses F800h−FFFFh during user  
mode. In program mode the Boot ROM is located in the first  
2kB of Program Memory. For additional information, refer  
to Application Note SBAA085, available for download from  
the TI web site (www.ti.com).  
If an 8-bit address is being used (MOVX @RI), the contents  
of the MPAGE (92h) SFR remain at the Port 2 pins  
throughout the external memory cycle, which facilitates  
paging.  
In any case, the low byte of the address is time-multiplexed  
with the data byte on Port 0. The ADDR/DATA signals use  
CMOS drivers in the Port 0, Port 2, WR, and RD output  
buffers. Thus, in this application, the Port 0 pins are not  
open-drain outputs, and do not require external pull-ups for  
high-speed access. Signal ALE (Address Latch Enable)  
should be used to capture the address byte into an external  
latch. The address byte is valid at the negative transition  
of ALE. Then, in a write cycle, the data byte to be written  
appears on Port 0 just before WR is activated, and remains  
there until after WR is deactivated. In a read cycle, the  
incoming byte is accepted at Port 0 just before the read  
strobe is deactivated.  
The MSC1211/12/13/14 are shipped with Flash Memory  
erased (all 1s). Parallel programming methods typically  
involve a third-party programmer. Serial programming  
methods typically involve in-system programming. UAM  
allows Code Program and Data Memory programming.  
The actual code for Flash programming cannot execute  
from Flash. That code must execute from the Boot ROM  
or internal (von Neumann) RAM.  
37  
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
Flash Programming Mode  
MSC1211/12/13/14  
HOST  
There are two programming modes: parallel and serial.  
The programming mode is selected by the state of the ALE  
and PSEN signals during reset (BOR, WDT, software, or  
POR). Serial programming mode is selected with PSEN =  
0 and ALE = 1. Parallel programming mode is selected  
with PSEN = 1 and ALE = 0, as shown in Figure 24. If they  
are both high, the MSC1211/12/13/14 will operate in User  
Application mode. For both signals, low is a reserved  
mode and is not defined. Programming mode is exited with  
a reset and the normal mode selected.  
PSEL  
AddrHi[6:0]  
AddrLo[7:0]  
Data[7:0]  
Cmd[2:0]  
Req  
P2[7]  
Flash  
Programmer  
P2[6:0]  
PSEN  
NC  
P1[7:0]  
P0[7:0]  
ALE  
P3[7:5]  
P3[4]  
P3[3]  
P3[2]  
RST  
Ack  
Figure 25 shows the serial programming conection.  
Pass  
Serial programming mode works through USART0, and  
has special protocols. Table 7 describes these protocols,  
which are discussed at length in Application Note  
SBAA076 (available for download at www.ti.com). The  
serial programming mode works at a maximum baud rate  
RST  
CLK  
XIN  
determined by fOSC  
.
Figure 24. Parallel Programming Configuration  
MSC121x  
Reset Circuit (or VDD  
)
RST  
DVDD  
P3.1 TXD  
P3.0 RXD  
PSEN  
Host PC  
or  
Serial Terminal  
Serial  
Port 0  
RS232  
Transceiver  
Not Connected  
Clock Source  
ALE  
XIN  
NOTE: Serial programming is selected with PSEN = 0 and ALE = 1 or open.  
Figure 25. Serial Programming Connection  
38  
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
Table 7. MSC121x Boot ROM Routines  
ADDRESS  
ROUTINE  
put_string  
C DECLARATIONS  
void put_string (char code *string);  
char page_erase (int faddr, char fdata, char fdm);  
Assembly only; DPTR = address, R5 = data  
char write_flash_chk (int faddr, char fdata, char fdm);  
char write_flash_byte (int faddr, char fdata, char fdm);  
char faddr_data_read (char faddr);  
char data_x_c_read (int faddr, char fdm);  
void tx_byte (char);  
DESCRIPTION  
Output string  
FFD5  
FFD7  
FFD9  
FFDB  
FFDD  
FFDF  
FFE1  
FFE3  
FFE5  
FFE7  
FFE9  
FFEB  
FFED  
FFEF  
FFF1  
FFF3  
FFF5  
FFF7  
FFF9  
FFFB  
FFFB  
page_erase  
write_flash  
write_flash_chk  
write_flash_byte  
faddr_data_read  
data_x_c_read  
tx_byte  
Erase flash page  
Fast flash write  
Write flash byte, verify  
Write flash byte  
Read HW config byte from addr  
Read xdata or code byte  
Send byte to USART0  
tx_hex  
void tx_hex (char);  
Send hex value to USART0  
Send “OK” to USART0  
putok  
void putok (void);  
rx_byte  
char rx_byte (void);  
Read byte from USART0  
Read and echo byte on USART0  
Read and echo hex on USART0  
Read int as hex and echo: USART0  
Read int reversed as hex and echo: USART0  
Set baud with received CR  
Output 4 spaces to USART0  
Output 3 spaces to USART0  
Output 2 spaces to USART0  
Output 1 space to USART0  
Output CR, LF to USART0  
See SBAA076  
rx_byte_echo  
rx_hex_echo  
rx_hex_int_echo  
rx_hex_rev_echo  
autobaud  
char rx_byte_echo (void);  
int rx_hex_echo (void);  
int rx_hex_int_echo (void);  
int rx_hex_rev_echo (void);  
void autobaud (void);  
putspace4  
void putspace4 (void);  
putspace3  
void putspace3 (void);  
putspace2  
void putspace2 (void);  
putspace1  
void putspace1 (void);  
putcr  
void putcr (void);  
(1)  
F97D  
FD3B  
cmd_parse  
monitor_isr  
void cmd_parser (void);  
(1)  
void monitor_isr ( ) interrupt 6  
Push registers and call cmd_parser  
(1)  
These addresses only relate to version 1.0 of the MSC1211/12/13/14 Boot ROM.  
39  
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
(except that nine interrupts share the Auxiliary Interrupt  
(AI) at the highest priority). In addition, interrupts can be  
globally enabled or disabled. The interrupt structure is  
compatible with the original 8051 family. All of the standard  
interrupts are available.  
INTERRUPTS  
The MSC1211/12/13/14 use a three-priority interrupt  
system. As shown in Table 8, each interrupt source has an  
independent priority bit, flag, interrupt vector, and enable  
Table 8. Interrupt Summary  
INTERRUPT  
PRIORITY  
ADDR  
NUM  
CONTROL  
INTERRUPT/EVENT  
DV Low Voltage/HW Break-  
PRIORITY  
FLAG  
ENABLE  
33h  
6
High  
EDLVB (AIE.0 or AIPOL.0)(1)(2)  
EBP (BPCON.7)(1)  
EDLVB (AIE.0)(1)  
EBP (BPCON.0)(1)  
N/A  
DD  
point  
AV  
Low Voltage  
33h  
33h  
33h  
33h  
33h  
33h  
33h  
03h  
0Bh  
13h  
0Bh  
23h  
6
6
6
6
6
6
6
0
1
2
3
4
0
0
0
0
0
0
0
1
2
3
4
5
EALV (AIE.1 or AIPOL.1)(1)(2)  
EALV (AIE.1)(1)  
N/A  
N/A  
DD  
SPI Receive / I C(3)  
ESPIR/EI2C (AIE.2 or AIPOL.2)(1)(2) ESPIR/EI2C (AIE.2)(1)  
2
SPI Transmit  
ESPIT (AIE.3 or AIPOL.3)(1)(2)  
EMSEC (AIE.4 or AIPOL.4)(1)(2)  
EADC (AIE.5 or AIPOL.5)(1)(2)  
ESUM (AIE.6 or AIPOL.6)(1)(2)  
ESEC (AIE.7 or AIPOL.7)(1)(2)  
IE0 (TCON.1)(4)  
ESPIT (AIE.3)(1)  
EMSEC (AIE.4)(1)  
EADC (AIE.5)(1)  
ESUM (AIE.6)(1)  
ESEC (AIE.7)(1)  
EX0 (IE.0)(6)  
N/A  
Milliseconds Timer  
ADC  
N/A  
N/A  
Summation Register  
Seconds Timer  
External Interrupt 0  
Timer 0 Overflow  
External Interrupt 1  
Timer 1 Overflow  
Serial Port 0  
N/A  
N/A  
PX0 (IP.0)  
PT0 (IP.1)  
PX1 (IP.2)  
PT1 (IP.3)  
PS0 (IP.4)  
TF0 (TCON.5)(5)  
ET1 (IE.1)(6)  
IE1 (TCON.3)(4)  
EX1 (IE.2)(6)  
TF1 (TCON.7)(5)  
ET1 (IE.3)(6)  
RI_0 (SCON0.0)  
TI_0 (SCON0.1)  
ES0 (IE.4)(6)  
Timer 2 Overflow  
Serial Port 1  
2Bh  
3Bh  
5
7
6
7
TF2 (T2CON.7)  
ET2 (IE.5)(6)  
ES1 (IE.6)(6)  
PT2 (IP.5)  
PS1 (IP.6)  
RI_1 (SCON1.0)  
TI_1 (SCON1.1)  
External Interrupt 2  
External Interrupt 3  
External Interrupt 4  
External Interrupt 5  
Watchdog  
43h  
4Bh  
53h  
5Bh  
63h  
8
8
9
IE2 (EXIF.4)(4)  
IE3 (EXIF.5)(4)  
IE4 (EXIF.6)(4)  
IE5 (EXIF.7)(4)  
WDTI (EICON.3)  
EX2 (EIE.0)(6)  
EX3 (EIE.1)(6)  
EX4 (EIE.2)(6)  
EX5 (EIE.3)(6)  
EWDI (EIE.4)(6)  
PX2 (EIP.0)  
PX3 (EIP.1)  
PX4 (EIP.2)  
PX5 (EIP.3)  
PWDI (EIP.4)  
9
10  
11  
12  
10  
11  
12  
Low  
(1)  
(2)  
These interrupts set the AI flag (EICON.4) and are enabled by EAI (EICON.5).  
For AIPOL.RDSEL = 1, reading AIPOL register gives current value of Auxiliary interrupts before masking. Reading AIE register gives value of  
AIE register contents.  
For AIPOL.RDSEL = 0, Reading AIPOL register gives value of AIE register contents. Reading AIE register gives current value of Auxiliary  
interrupts before masking.  
(3) 2  
I C is only available on the MSC1211 and MSC1213.  
(4)  
If edge-triggered, cleared automatically by hardware on interrupt service routine vector. For EX0 or EX1, if level-triggered, the flag follows the  
state of the pin.  
(5)  
(6)  
Cleared automatically by hardware when interrupt vector occurs.  
Globally enabled by EA (IE.7).  
40  
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
Hardware Configuration Register 0 (HCR0)—Accessed Using SFR Registers CADDR and CDATA.  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
CADDR 7Fh  
EPMA  
PML  
RSL  
EBR  
EWDR  
DFSEL2  
DFSEL1  
DFSEL0  
NOTE: HCR0 is programmable only in Flash Programming mode, but can be read in User Application mode using the  
CADDR and CDATA SFRs or the faddr_data_read Boot ROM routine.  
EPMA  
Enable Programming Memory Access (Security Bit).  
bit 7  
0: After reset in programming modes, Flash Memory can only be accessed in UAM until a mass erase is done.  
1: Fully Accessible (default)  
PML  
Program Memory Lock (PML has priority over RSL).  
0: Enable writing to Program Memory in UAM.  
bit 6  
1: Disable writing to Program Memory in UAM (default).  
RSL  
bit 5  
Reset Sector Lock. The reset sector can be used to provide another method of Flash Memory programming, which  
allows Program Memory updates without changing the jumpers for in-circuit code updates or program development.  
The code in this boot sector would then provide the monitor and programming routines with the ability to jump into  
the main Flash code when programming is finished.  
0: Enable Reset Sector Writing  
1: Enable Read-Only Mode for Reset Sector (4kB) (default)  
EBR  
Enable Boot ROM. Boot ROM is 2kB of code located in ROM, not to be confused with the 4kB Boot Sector located  
bit 4  
in Flash Memory.  
0: Disable Internal Boot ROM  
1: Enable Internal Boot ROM (default)  
EWDR  
Enable Watchdog Reset.  
bit 3  
0: Disable Watchdog Reset  
1: Enable Watchdog Reset (default)  
DFSEL1−0 Data Flash Memory Size (see Table 3).  
bits 2−0  
000: Reserved  
001: 32kB, 16kB, 8kB, or 4kB Data Flash Memory  
010: 16kB, 8kB, or 4kB Data Flash Memory  
011: 8kB or 4kB Data Flash Memory  
100: 4kB Data Flash Memory  
101: 2kB Data Flash Memory  
110: 1kB Data Flash Memory  
111: No Data Flash Memory (default)  
41  
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
Hardware Configuration Register 1 (HCR1)  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
CADDR 7Eh  
DBLSEL1  
DBLSEL0  
ABLSEL1  
ABLSEL0  
DAB  
DDB  
EGP0  
EGP23  
NOTE: HCR1 is programmable only in Flash Programming mode, but can be read in User Application mode using the  
CADDR and CDATA SFRs or the faddr_data_read Boot ROM routine.  
DBLSEL  
Digital Supply Brownout Level Select  
bits 7−6  
00: 4.5V  
01: 4.2V  
10: 2.7V  
11: 2.5V (default)  
ABLSEL  
Analog Supply Brownout Level Select  
bits 5−4  
00: 4.5V  
01: 4.2V  
10: 2.7V  
11: 2.5V (default)  
DAB  
Disable Analog Power-Supply Brownout Reset  
0: Enable Analog Brownout Reset  
bit 3  
1: Disable Analog Brownout Reset (default)  
DDB  
Disable Digital Power-Supply Brownout Reset  
0: Enable Digital Brownout Reset  
bit 2  
1: Disable Digital Brownout Reset (default)  
EGP0  
Enable General-Purpose I/O for Port 0  
bit 1  
0: Port 0 is Used for External Memory, P3.6 and P3.7 Used for WR and RD.  
1: Port 0 is Used as General-Purpose I/O (default)  
EGP23  
Enable General-Purpose I/O for Ports 2 and 3  
bit 0  
0: Port 2 is Used for External Memory, P3.6 and P3.7. Used for WR and RD.  
1: Port 2 and Port3 are Used as General-Purpose I/O (default)  
Configuration Memory Programming  
Hardware Configuration Memory can be changed only in Serial Flash Programming mode or Parallel Programming mode.  
42  
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
Table 9. Special Function Registers  
NOTE (Boldface are in addition to standard 8051 registers, and unique to the MSC1211/12/13/14).  
:
ADDRESS  
REGISTER  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
RESET VALUE  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
P0  
P0.7  
P0.6  
P0.5  
P0.4  
P0.3  
P0.2  
P0.1  
P0.0  
FFh  
07h  
00h  
00h  
00h  
00h  
00h  
30h  
00h  
00h  
SP  
DPL0  
DPH0  
DPL1  
DPH1  
DPS  
0
0
0
0
0
0
0
SEL  
IDLE  
IT0  
PCON  
TCON  
TMOD  
SMOD  
TF1  
0
1
1
GF1  
IE1  
GF0  
IT1  
STOP  
IE0  
TR1  
TF0  
TR0  
−−−−−−−−−−−−−−−Timer 1−−−−−−−−−−−−−−−  
−−−−−−−−−−−−−−−Timer 0−−−−−−−−−−−−−−−  
GATE  
C/T  
M1  
M0  
GATE  
C/T  
M1  
M0  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
TL0  
00h  
00h  
00h  
00h  
01h  
00h  
FFh  
TL1  
TH0  
TH1  
CKCON  
MWS  
P1  
0
0
T2M  
0
T1M  
0
T0M  
0
MD2  
0
MD1  
0
MD0  
0
0
MXWS  
P1.7  
P1.6  
P1.5  
P1.4  
INT2/SS  
P1.3  
TXD1  
P1.2  
RXD1  
P1.1  
T2EX  
P1.0  
T2  
INT5/SCK/SCL INT4/MISO/SDA INT3/MOSI  
91h  
EXIF  
IE5  
IE4  
IE3  
IE2  
1
0
0
0
08h  
08h  
00h  
00h  
00h  
00h  
92h  
MPAGE  
CADDR  
CDATA  
MCON  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
v
BPSEL  
0
0
RAMMAP  
SCON0  
SBUF0  
SPICON  
SM0_0  
SM1_0  
SM2_0  
REN_0  
TB8_0  
RB8_0  
TI_0  
RI_0  
00h  
00h  
00h  
9Ah  
9Bh  
9Ch  
SCK2  
START  
SCK1  
STOP  
SCK0  
ACK  
FIFO  
0
ORDER  
FAST  
MSTR  
MSTR  
CPHA  
SCLA  
CPOL  
FILEN  
(1)  
I2CCON  
SPIDATA  
I2CDATA  
00h  
00h  
(1)  
SPIRCON  
(1)  
RXCNT7  
RXFLUSH  
GCMEN  
RXCNT6  
RXCNT5  
RXCNT4  
RXCNT3  
RXCNT2  
RXIRQ2  
RXCNT1  
RXIRQ1  
RXCNT0  
RXIRQ0  
I2CGM  
9Dh  
SPITCON  
I2CSTAT  
TXCNT7  
TXFLUSH  
STAT7  
TXCNT6  
STAT5  
TXCNT5  
CLK_EN  
STAT5  
TXCNT4  
DRV_DLY  
STAT4  
TXCNT3  
DRV_EN  
STAT3  
TXCNT2  
TXIRQ2  
0
TXCNT1  
TXIRQ1  
0
TXCNT0  
TXIRQ0  
0
00h  
(1)  
SCKD7/SAE SCKD6/SA6 SCKD5/SA5 SCKD4/SA4 SCKD3/SA3 SCKD2/SA2 SCKD1/SA1 SCKD0/SA0  
9Eh  
SPISTART  
1
80h  
(1)  
I2CSTART  
SPIEND  
P2  
9Fh  
A0h  
A1h  
A2h  
1
80h  
FFh  
00h  
00h  
P2.7  
P2.6  
P2.5  
P2.4  
P2.3  
P2.2  
P2.1  
P2.0  
PWMCON  
PPOL  
PWMSEL  
SPDSEL  
TPCNTL2  
TPCNTL1  
TPCNTL0  
PWMLOW  
TONELOW  
PWM7  
TDIV7  
PWM6  
TDIV6  
PWM5  
TDIV5  
PWM4  
TDIV4  
PWM3  
TDIV3  
PWM2  
TDIV2  
PWM1  
TDIV1  
PWM0  
TDIV0  
A3h  
A4h  
PWMHI  
TONEHI  
PWM15  
TDIV15  
PWM14  
TDIV14  
PWM13  
TDIV13  
PWM12  
TDIV12  
PWM11  
TDIV11  
PWM10  
TDIV10  
PWM9  
TDIV9  
PWM8  
TDIV8  
00h  
00h  
AIPOL  
ESEC  
ESUM  
EADC  
EMSEC  
ESPIT  
ESPIR/EI2C EALV  
EDLVB  
RDSEL  
(1) 2  
I C is only available on the MSC1211 and MSC1213.  
(2)  
(3)  
Applies to MSC1211 and MSC1213 only. See HWPC0 for MSC1212 and MSC1214.  
Applies to the MSC1211 and MSC1212. See HWPC1 for MSC1213 and MSC1214.  
43  
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
Table 9. Special Function Registers (continued)  
NOTE (Boldface are in addition to standard 8051 registers, and unique to the MSC1211/12/13/14).  
:
ADDRESS  
A5h  
REGISTER BIT 7  
BIT 6  
0
BIT 5  
0
BIT 4  
0
BIT 3  
PAI3  
ESPIT  
SPIT  
ET1  
BIT 2  
PAI2  
BIT 1  
PAI1  
BIT 0  
PAI0  
RESET VALUE  
PAI  
0
00h  
00h  
00h  
00h  
00h  
A6h  
AIE  
ESEC  
SEC  
EA  
ESUM  
SUM  
ES1  
0
EADC  
ADC  
ET2  
0
EMSEC  
MSEC  
ES0  
0
ESPIR/EI2C EALV  
SPIR/I2CSI ALVD  
EDLVB  
DLVD  
EX0  
A7h  
AISTAT  
IE  
A8h  
EX1  
ET0  
A9h  
BPCON  
BPL  
BP  
0
0
PMSEL  
EBP  
AAh  
ABh  
ACh  
ADh  
AEh  
AFh  
BPH  
P0DDRL  
P0DDRH  
P1DDRL  
P1DDRH  
P3  
P03H  
P07H  
P13H  
P17H  
P03L  
P07L  
P13L  
P17L  
P02H  
P06H  
P12H  
P16H  
P02L  
P06L  
P12L  
P16L  
P01H  
P05H  
P11H  
P15H  
P01L  
P05L  
P11L  
P15L  
P00H  
P04H  
P10H  
P14H  
P00L  
P04L  
P10L  
P14L  
00h  
00h  
00h  
00h  
FFh  
B0h  
P3.7  
RD  
P3.6  
WR  
P3.5  
T1  
P3.4  
T0  
P3.3  
INT1  
P3.2  
INT0  
P3.1  
TXD0  
P3.0  
RXD0  
B1h  
B2h  
B3h  
B4h  
B5h  
B6h  
B7h  
B8h  
B9h  
BAh  
BBh  
BCh  
BDh  
BEh  
BFh  
C0h  
C1h  
C2h  
C3h  
C4h  
C5h  
C6h  
C7h  
C8h  
C9h  
CAh  
CBh  
CCh  
CDh  
CEh  
CFh  
D0h  
D1h  
P2DDRL  
P2DDRH  
P3DDRL  
P3DDRH  
DACL  
P23H  
P27H  
P33H  
P37H  
P23L  
P27L  
P33L  
P33L  
P22H  
P26H  
P32H  
P32H  
P22L  
P26L  
P32L  
P32L  
P21H  
P25H  
P31H  
P31H  
P21L  
P25L  
P31L  
P31L  
P20H  
P24H  
P30H  
P30H  
P20L  
P24L  
P30L  
P30L  
00h  
00h  
00h  
00h  
DACH  
DACSEL  
IP  
DSEL7  
DSEL6  
DSEL5  
DSEL4  
DSEL3  
DSEL2  
DSEL1  
DSEL0  
00h  
1
PS1  
PT2  
PS0  
PT1  
PX1  
PT0  
PX0  
80h  
SCON1  
SBUF1  
SM0_1  
SM1_1  
SM2_1  
REN_1  
TB8_1  
RB8_1  
TI_1  
RI_1  
00h  
00h  
EWU  
EWUWDT  
DIV2  
EWUEX1  
DIV1  
EWUEX0  
DIV0  
00h  
00h  
00h  
SYSCLK  
T2CON  
0
0
DIVMOD1  
DIVMOD0  
0
TF2  
EXF2  
RCLK  
TCLK  
EXEN2  
TR2  
C/T2  
CP/RL2  
RCAP2L  
RCAP2H  
TL2  
00h  
00h  
00h  
00h  
TH2  
PSW  
CY  
AC  
F0  
RS1  
RS0  
OV  
F1  
P
00h  
OCL  
LSB  
00h  
(1) 2  
I C is only available on the MSC1211 and MSC1213.  
(2)  
(3)  
Applies to MSC1211 and MSC1213 only. See HWPC0 for MSC1212 and MSC1214.  
Applies to the MSC1211 and MSC1212. See HWPC1 for MSC1213 and MSC1214.  
44  
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
Table 9. Special Function Registers (continued)  
NOTE (Boldface are in addition to standard 8051 registers, and unique to the MSC1211/12/13/14).  
:
ADDRESS  
REGISTER BIT 7  
OCM  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
RESET VALUE  
00h  
D2h  
D3h  
D4h  
D5h  
D6h  
D7h  
D8h  
D9h  
DAh  
DBh  
DCh  
DDh  
DEh  
DFh  
E0h  
E1h  
E2h  
E3h  
E4h  
E5h  
E6h  
E7h  
E8h  
E9h  
EAh  
EBh  
ECh  
EDh  
EEh  
EFh  
F0h  
F1h  
F2h  
F3h  
F4h  
F5h  
F6h  
F7h  
F8h  
F9h  
FAh  
FBh  
FCh  
FDh  
FEh  
FFh  
OCH  
MSB  
00h  
GCL  
LSB  
54h  
GCM  
ECh  
5Fh  
GCH  
MSB  
ADMUX  
EICON  
ADRESL  
ADRESM  
ADRESH  
ADCON0  
ADCON1  
ADCON2  
ADCON3  
ACC  
INP3  
INP2  
INP1  
INP0  
INN3  
INN2  
INN1  
INN0  
0
01h  
SMOD1  
1
EAI  
AI  
WDTI  
0
0
40h  
LSB  
00h  
00h  
MSB  
REFCLK  
OF_UF  
DR7  
00h  
BOD  
POL  
DR6  
0
EVREF  
SM1  
DR5  
0
VREFH  
SM0  
DR4  
0
EBUF  
PGA2  
CAL2  
DR2  
PGA1  
CAL1  
DR1  
PGA0  
CAL0  
DR0  
30h  
0000_0000b  
1Bh  
DR3  
0
0
DR10  
DR9  
DR8  
06h  
00h  
SSCON  
SUMR0  
SUMR1  
SUMR2  
SUMR3  
ODAC  
SSCON1  
SSCON0  
SCNT2  
SCNT1  
SCNT0  
SHF2  
SHF1  
SHF0  
00h  
00h  
00h  
00h  
00h  
00h  
LVDCON  
EIE  
ALVDIS  
ALVD2  
ALVD1  
ALVD0  
DLVDIS  
DLVD2  
DLVD1  
DLVD0  
00h  
1
0
0
1
0
0
1
0
0
EWDI  
EX5  
0
EX4  
1
EX3  
EX2  
E0h  
(2)  
0000_01xxb  
HWPC0  
HWPC1  
HWVER  
Reserved  
Reserved  
FMCON  
FTCON  
B
0
0
MEMORY SIZE  
0
(3)  
08h  
1
0
0
00h  
00h  
02h  
A5h  
00h  
7Fh  
00h  
0
PGERA  
FER2  
B.6  
0
FRCM  
FER0  
B.4  
0
BUSY  
FWR2  
B.2  
SPM  
FPM  
FER3  
B.7  
0
FER1  
B.5  
FWR3  
B.3  
FWR1  
B.1  
FWR0  
B.0  
PDCON  
PASEL  
PDDAC  
0
PDI2C  
PSEN2  
PDPWM  
PSEN1  
PDADC  
PSEN0  
PDWDT  
0
PDST  
ALE1  
PDSPI  
ALE0  
0
ACLK  
0
FREQ6  
FREQ5  
0
FREQ4  
0
FREQ3  
0
FREQ2  
0
FREQ1  
0
FREQ0  
RSTREQ  
PX2  
03h  
00h  
E0h  
7Fh  
7Fh  
03h  
9Fh  
0Fh  
63h  
00h  
SRST  
0
0
EIP  
1
1
1
PWDI  
PX5  
PX4  
PX3  
SECINT  
MSINT  
USEC  
WRT  
WRT  
0
SECINT6  
MSINT6  
0
SECINT5  
MSINT5  
FREQ5  
SECINT4  
MSINT4  
FREQ4  
SECINT3  
MSINT3  
FREQ3  
SECINT2  
MSINT2  
FREQ2  
SECINT1  
MSINT1  
FREQ1  
SECINT0  
MSINT0  
FREQ0  
MSECL  
MSECH  
HMSEC  
WDTCON  
EWDT  
DWDT  
RWDT  
WDCNT4  
WDCNT3  
WDCNT2  
WDCNT1  
WDCNT0  
(1) 2  
I C is only available on the MSC1211 and MSC1213.  
(2)  
(3)  
Applies to MSC1211 and MSC1213 only. See HWPC0 for MSC1212 and MSC1214.  
Applies to the MSC1211 and MSC1212. See HWPC1 for MSC1213 and MSC1214.  
45  
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
Table 10. Special Function Register Cross Reference  
POWER  
AND  
CLOCKS  
SERIAL  
COMM.  
TIMER  
COUNTERS  
FLASH  
MEMORY  
SFR  
FUNCTIONS  
ADDRESS  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
98h  
99h  
CPU  
INTERRUPTS PORTS  
PWM  
ADC DAC  
P0  
Port 0  
X
SP  
Stack Pointer  
X
X
X
X
X
X
DPL0  
Data Pointer Low 0  
Data Pointer High 0  
Data Pointer Low 1  
Data Pointer High 1  
Data Pointer Select  
Power Control  
DPH0  
DPL1  
DPH1  
DPS  
PCON  
TCON  
TMOD  
TL0  
X
Timer/Counter Control  
Timer Mode Control  
Timer0 LSB  
X
X
X
X
X
X
X
X
X
TL1  
Timer1 LSB  
TH0  
Timer0 MSB  
TH1  
Timer1 MSB  
CKCON  
MWS  
Clock Control  
X
X
Memory Write Select  
Port 1  
X
P1  
X
EXIF  
External Interrupt Flag  
Memory Page  
X
MPAGE  
CADDR  
CDATA  
MCON  
SCON0  
SBUF0  
SPICON  
I2CCON  
SPIDATA  
I2CDATA  
SPIRCON  
I2CGM  
SPITCON  
I2CSTAT  
SPISTART  
I2CSTART  
SPIEND  
P2  
X
X
Configuration Address  
Configuration Data  
Memory Control  
Serial Port 0 Control  
Serial Data Buffer 0  
SPI Control  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
2
I C Control  
SPI Data  
2
I C Data  
SPI Receive Control  
2
I C Gen Call/Mult Master Enable  
SPI Transmit Control  
2
I C Status  
SPI Buffer Start Address  
2
I C Start  
9Fh  
A0h  
A1h  
SPI Buffer End Address  
Port 2  
X
PWMCON  
PWMLOW  
TONELOW  
PWMHI  
TONEHI  
AIPOL  
PAI  
PWM Control  
X
X
X
X
X
X
PWM Low Byte  
A2h  
A3h  
Tone Low Byte  
PWM HIgh Byte  
Tone Low Byte  
A4h  
A5h  
A6h  
A7h  
A8h  
Auxiliary Interrupt Poll  
Pending Auxiliary Interrupt  
Auxiliary Interrupt Enable  
Auxiliary Interrupt Status  
Interrupt Enable  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
AIE  
AISTAT  
IE  
46  
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
Table 10. Special Function Register Cross Reference (continued)  
POWER  
AND  
CLOCKS  
SERIAL  
COMM.  
TIMER  
COUNTERS  
FLASH  
MEMORY  
SFR  
FUNCTIONS  
ADDRESS  
A9h  
AAh  
ABh  
ACh  
ADh  
AEh  
AFh  
B0h  
B1h  
B2h  
B3h  
B4h  
B5h  
B6h  
B7h  
B7h  
B8h  
C0h  
C1h  
C6h  
C7h  
C8h  
CAh  
CBh  
CCh  
CDh  
D0h  
D1h  
D2h  
D3h  
D4h  
D5h  
D6h  
D7h  
D8h  
D9h  
DAh  
DBh  
DCh  
DDh  
DEh  
DFh  
E0h  
E1h  
E2h  
E3h  
E4h  
E5h  
CPU INTERRUPTS  
PORTS  
PWM  
X
ADC  
DAC  
BPCON  
BPL  
Breakpoint Control  
Breakpoint Low Address  
Breakpoint High Address  
Port 0 Data Direction Low  
Port 0 Data Direction High  
Port 1 Data Direction Low  
Port 1 Data Direction High  
Port 3  
X
X
X
X
BPH  
X
P0DDRL  
P0DDRH  
P1DDRL  
P1DDRH  
P3  
X
X
X
X
X
X
X
X
X
P2DDRL  
P2DDRH  
P3DDRL  
P3DDRH  
DACL  
Port 2 Data Direction Low  
Port 2 Data Direction High  
Port 3 Data Direction Low  
Port 3 Data Direction High  
DAC Low Byte  
X
X
X
X
DACH  
DAC High Byte  
DACSEL  
DACCON  
IP  
DAC Select  
DAC Control  
Interrupt Priority  
X
X
SCON1  
SBUF1  
EWU  
Serial Port 1 Control  
Serial Data Buffer 1  
Enable Wake Up  
X
X
X
X
X
SYSCLK  
T2CON  
RCAP2L  
RCAP2H  
TL2  
System Clock Divider  
Timer 2 Control  
X
X
X
X
X
X
X
X
X
X
X
X
X
Timer 2 Capture LSB  
Timer 2 Capture MSB  
Timer 2 LSB  
TH2  
Timer 2 MSB  
PSW  
Program Status Word  
ADC Offset Calibration Low Byte  
ADC Offset Calibration Mid Byte  
ADC Offset Calibration High Byte  
ADC Gain Calibration Low Byte  
ADC Gain Calibration Mid Byte  
ADC Gain Calibration High Byte  
ADC Input Multiplexer  
Enable Interrupt Control  
ADC Results Low Byte  
ADC Results Middle Byte  
ADC Results High Byte  
ADC Control 0  
X
OCL  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
OCM  
OCH  
GCL  
GCM  
GCH  
ADMUX  
EICON  
ADRESL  
ADRESM  
ADRESH  
ADCON0  
ADCON1  
ADCON2  
ADCON3  
ACC  
X
X
X
ADC Control 1  
ADC Control 2  
ADC Control 3  
Accumulator  
X
X
X
X
X
X
SSCON  
SUMR0  
SUMR1  
SUMR2  
SUMR3  
Summation/Shifter Control  
Summation 0  
X
X
X
X
X
Summation 1  
Summation 2  
Summation 3  
47  
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
Table 10. Special Function Register Cross Reference (continued)  
POWER  
AND  
CLOCKS  
SERIAL  
COMM.  
TIMER  
COUNTERS  
FLASH  
MEMORY  
SFR  
FUNCTIONS  
ADDRESS  
E6h  
E7h  
E8h  
E9h  
EAh  
EBh  
EEh  
EFh  
F0h  
CPU INTERRUPTS  
PORTS  
PWM  
ADC  
DAC  
ODAC  
LVDCON  
EIE  
Offset DAC  
X
Low Voltage Detect Control  
Extended Interrupt Enable  
Hardware Product Code 0  
Hardware Product Code 1  
Hardware Version  
X
X
HWPC0  
HWPC1  
HWVER  
FMCON  
FTCON  
B
X
X
X
Flash Memory Control  
Flash Memory Timing Control  
Second Accumulator  
Power Down Control  
X
X
X
PDCON  
PASEL  
ACLK  
F1h  
X
X
X
X
X
X
X
X
X
F2h  
PSEN/ALE Select  
X
F6h  
Analog Clock  
SRST  
F7h  
System Reset  
X
X
X
X
EIP  
F8h  
Extended Interrupt Priority  
Seconds Timer Interrupt  
Milliseconds Timer Interrupt  
One Microsecond TImer  
One Millisecond TImer Low Byte  
One Millisecond Timer High Byte  
One Hundred Millisecond TImer  
Watchdog Timer  
SECINT  
MSINT  
USEC  
F9h  
X
X
X
X
X
X
X
FAh  
FBh  
FCh  
FDh  
FEh  
FFh  
X
X
X
X
MSECL  
MSECH  
HMSEC  
WDTCON  
X
HCR0  
HCR1  
3Fh  
3Eh  
Hardware Configuration Reg. 0  
Hardware Configuration Reg. 1  
X
X
48  
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
Port 0 (P0)  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Reset Value  
SFR 80h  
P0.7  
P0.6  
P0.5  
P0.4  
P0.3  
P0.2  
P0.1  
P0.0  
FFh  
P0.7−0  
bits 7−0  
Port 0. This port functions as a multiplexed address/data bus during external memory access, and as a general-  
purpose I/O port when external memory access is not needed. During external memory cycles, this port will contain  
the LSB of the address when ALE is high, and Data when ALE is low. When used as a general-purpose I/O, this port  
drive is selected by P0DDRL and P0DDRH (ACh, ADh). Whether Port 0 is used as general-purpose I/O or for external  
memory access is determined by the Flash Configuration Register (HCR1.1) (See SFR CADDR 93h).  
Stack Pointer (SP)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 81h  
SP.7  
SP.6  
SP.5  
SP.4  
SP.3  
SP.2  
SP.1  
SP.0  
07h  
SP.7−0  
bits 7−0  
Stack Pointer. The stack pointer identifies the location where the stack will begin. The stack pointer is incremented  
before every PUSH or CALL operation and decremented after each POP or RET/RETI. This register defaults to 07h  
after reset.  
Data Pointer Low 0 (DPL0)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 82h  
DPL0.7  
DPL0.6  
DPL0.5  
DPL0.4  
DPL0.3  
DPL0.2  
DPL0.1  
DPL0.0  
00h  
DPL0.7−0 Data Pointer Low 0. This register is the low byte of the standard 8051 16-bit data pointer. DPL0 and DPH0 are used  
bits 7−0 to point to non-scratchpad data RAM. The current data pointer is selected by DPS (SFR 86h).  
Data Pointer High 0 (DPH0)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 83h  
DPH0.7  
DPH0.6  
DPH0.5  
DPH0.4  
DPH0.3  
DPH0.2  
DPH0.1  
DPH0.0  
00h  
DPH0.7−0 Data Pointer High 0. This register is the high byte of the standard 8051 16-bit data pointer. DPL0 and DPH0 are used  
bits 7−0 to point to non-scratchpad data RAM. The current data pointer is selected by DPS (SFR 86h).  
Data Pointer Low 1 (DPL1)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 84h  
DPL1.7  
DPL1.6  
DPL1.5  
DPL1.4  
DPL1.3  
DPL1.2  
DPL1.1  
DPL1.0  
00h  
DPL1.7−0 Data Pointer Low 1. This register is the low byte of the auxiliary 16-bit data pointer. When the SEL bit (DPS.0) (SFR  
bits 7−0 86h) is set, DPL1 and DPH1 are used in place of DPL0 and DPH0 during DPTR operations.  
Data Pointer High 1 (DPH1)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 85h  
DPH1.7  
DPH1.6  
DPH1.5  
DPH1.4  
DPH1.3  
DPH1.2  
DPH1.1  
DPH1.0  
00h  
DPH1.7−0 Data Pointer High. This register is the high byte of the auxiliary 16-bit data pointer. When the SEL bit (DPS.0) (SFR  
bits 7−0 86h) is set, DPL1 and DPH1 are used in place of DPL0 and DPH0 during DPTR operations.  
49  
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
Data Pointer Select (DPS)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 86h  
0
0
0
0
0
0
0
SEL  
00h  
SEL  
bit 0  
Data Pointer Select. This bit selects the active data pointer.  
0: Instructions that use the DPTR will use DPL0 and DPH0.  
1: Instructions that use the DPTR will use DPL1 and DPH1.  
Power Control (PCON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 87h  
SMOD  
0
1
1
GF1  
GF0  
STOP  
IDLE  
30h  
SMOD  
Serial Port 0 Baud Rate Doubler Enable. The serial baud rate doubling function for Serial Port 0.  
0: Serial Port 0 baud rate will be a standard baud rate.  
bit 7  
1: Serial Port 0 baud rate will be double that defined by baud rate generation equation.  
GF1  
General-Purpose User Flag 1. This is a general-purpose flag for software control.  
General-Purpose User Flag 0. This is a general-purpose flag for software control.  
bit 3  
GF0  
bit 2  
STOP  
Stop Mode Select. Setting this bit halts the oscillator and blocks external clocks. This bit always reads as a 0.  
bit 1  
All digital pins and DACs keep their respective output values. Internal REF dies. Exit with RESET.  
IDLE  
bit 0  
Idle Mode Select. Setting this bit freezes the CPU, Timer 0, 1, and 2, and the USARTs; other peripherals remain  
active. This bit will always be read as a 0. All digital pins and DACs keep their respective output values. Internal REF  
remains unchanged. Exit with AI (A6h) and EWU (C6h) interrupts.  
50  
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
Timer/Counter Control (TCON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 88h  
TF1  
TR1  
TF0  
TR0  
IE1  
IT1  
IE0  
IT0  
00h  
TF1  
Timer 1 Overflow Flag. This bit indicates when Timer 1 overflows its maximum count as defined by the current mode.  
bit 7  
This bit can be cleared by software and is automatically cleared when the CPU vectors to the Timer 1 interrupt service  
routine.  
0: No Timer 1 overflow has been detected.  
1: Timer 1 has overflowed its maximum count.  
TR1  
Timer 1 Run Control. This bit enables/disables the operation of Timer 1. Halting this timer preserves the current  
bit 6  
count in TH1, TL1.  
0: Timer is halted.  
1: Timer is enabled.  
TF0  
bit 5  
Timer 0 Overflow Flag. This bit indicates when Timer 0 overflows its maximum count as defined by the current mode.  
This bit can be cleared by software and is automatically cleared when the CPU vectors to the Timer 0 interrupt service  
routine.  
0: No Timer 0 overflow has been detected.  
1: Timer 0 has overflowed its maximum count.  
TR0  
Timer 0 Run Control. This bit enables/disables the operation of Timer 0. Halting this timer preserves the current  
bit 4  
count in TH0, TL0.  
0: Timer is halted.  
1: Timer is enabled.  
IE1  
bit 3  
Interrupt 1 Edge Detect. This bit is set when an edge/level of the type defined by IT1 is detected. If IT1 = 1, this bit  
will remain set until cleared in software or the start of the External Interrupt 1 service routine. If IT1 = 0, this bit will  
inversely reflect the state of the INT1 pin.  
IT1  
Interrupt 1 Type Select. This bit selects whether the INT1 pin will detect edge or level triggered interrupts.  
bit 2  
0: INT1 is level-triggered.  
1: INT1 is edge-triggered.  
IE0  
bit 1  
Interrupt 0 Edge Detect. This bit is set when an edge/level of the type defined by IT0 is detected. If IT0 = 1, this bit  
will remain set until cleared in software or the start of the External Interrupt 0 service routine. If IT0 = 0, this bit will  
inversely reflect the state of the INT0 pin.  
IT0  
Interrupt 0 Type Select. This bit selects whether the INT0 pin will detect edge or level triggered interrupts.  
bit 0  
0: INT0 is level-triggered.  
1: INT0 is edge-triggered.  
51  
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
Timer Mode Control (TMOD)  
7
6
5
4
3
2
1
0
Reset Value  
TIMER 1  
TIMER 0  
SFR 89h  
00h  
GATE  
C/T  
M1  
M0  
GATE  
C/T  
M1  
M0  
GATE  
Timer 1 Gate Control. This bit enables/disables the ability of Timer 1 to increment.  
0: Timer 1 will clock when TR1 = 1, regardless of the state of pin INT1.  
1: Timer 1 will clock only when TR1 = 1 and pin INT1 = 1.  
bit 7  
C/T  
Timer 1 Counter/Timer Select.  
bit 6  
0: Timer is incremented by internal clocks.  
1: Timer is incremented by pulses on T1 pin when TR1 (TCON.6, SFR 88h) is 1.  
M1, M0  
Timer 1 Mode Select. These bits select the operating mode of Timer 1.  
bits 5−4  
M1  
0
M0  
0
MODE  
Mode 0: 8-bit counter with 5-bit prescale.  
Mode 1: 16 bits.  
0
1
1
0
Mode 2: 8-bit counter with auto reload.  
Mode 3: Timer 1 is halted, but holds its count.  
1
1
GATE  
Timer 0 Gate Control. This bit enables/disables the ability of Timer 0 to increment.  
0: Timer 0 will clock when TR0 = 1, regardless of the state of pin INT0 (software control).  
1: Timer 0 will clock only when TR0 = 1 and pin INT0 = 1 (hardware control).  
bit 3  
C/T  
Timer 0 Counter/Timer Select.  
bit 2  
0: Timer is incremented by internal clocks.  
1: Timer is incremented by pulses on pin T0 when TR0 (TCON.4, SFR 88h) is 1.  
M1, M0  
Timer 0 Mode Select. These bits select the operating mode of Timer 0.  
bits 1−0  
M1  
0
M0  
0
MODE  
Mode 0: 8-bit counter with 5-bit prescale.  
Mode 1: 16 bits.  
0
1
1
0
Mode 2: 8-bit counter with auto reload.  
Mode 3: Two 8-bit counters.  
1
1
Timer 0 LSB (TL0)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 8Ah  
TL0.7  
TL0.6  
TL0.5  
TL0.4  
TL0.3  
TL0.2  
TL0.1  
TL0.0  
00h  
TL0.7−0  
bits 7−0  
Timer 0 LSB. This register contains the least significant byte of Timer 0.  
Timer 1 LSB (TL1)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 8Bh  
TL1.7  
TL1.6  
TL1.5  
TL1.4  
TL1.3  
TL1.2  
TL1.1  
TL1.0  
00h  
TL1.7−0  
Timer 1 LSB. This register contains the least significant byte of Timer 1.  
bits 7−0  
52  
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
Timer 0 MSB (TH0)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 8Ch  
TH0.7  
TH0.6  
TH0.5  
TH0.4  
TH0.3  
TH0.2  
TH0.1  
TH0.0  
00h  
TH0.7−0  
Timer 0 MSB. This register contains the most significant byte of Timer 0.  
bits 7−0  
Timer 1 MSB (TH1)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 8Dh  
TH1.7  
TH1.6  
TH1.5  
TH1.4  
TH1.3  
TH1.2  
TH1.1  
TH1.0  
00h  
TH1.7−0  
Timer 1 MSB. This register contains the most significant byte of Timer 1.  
bits 7−0  
Clock Control (CKCON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 8Eh  
0
0
T2M  
T1M  
T0M  
MD2  
MD1  
MD0  
01h  
T2M  
bit 5  
Timer 2 Clock Select. This bit controls the division of the system clock that drives Timer 2. This bit has no effect when  
the timer is in baud rate generator or clock output modes. Clearing this bit to 0 maintains 8051 compatibility. This bit  
has no effect on instruction cycle timing.  
0: Timer 2 uses a divide by 12 of the crystal frequency.  
1: Timer 2 uses a divide by 4 of the crystal frequency.  
T1M  
Timer 1 Clock Select. This bit controls the division of the system clock that drives Timer 1. Clearing this bit to 0  
bit 4  
maintains 8051 compatibility. This bit has no effect on instruction cycle timing.  
0: Timer 1 uses a divide by 12 of the crystal frequency.  
1: Timer 1 uses a divide by 4 of the crystal frequency.  
T0M  
Timer 0 Clock Select. This bit controls the division of the system clock that drives Timer 0. Clearing this bit to 0  
bit 3  
maintains 8051 compatibility. This bit has no effect on instruction cycle timing.  
0: Timer 0 uses a divide by 12 of the crystal frequency.  
1: Timer 0 uses a divide by 4 of the crystal frequency.  
MD2, MD1, MD0 Stretch MOVX Select 2−0. These bits select the time by which external MOVX cycles are to be stretched. This  
bits 2−0  
allows slower memory or peripherals to be accessed without using ports or manual software intervention. The  
width of the RD or WR strobe will be stretched by the specified interval, which will be transparent to the software  
except for the increased time to execute the MOVX instruction. All internal MOVX instructions on devices  
containing MOVX SRAM are performed at the 2 instruction cycle rate.  
STRETCH  
VALUE  
RD or WR STROBE  
WIDTH (SYS CLKs)  
RD or WR STROBE  
WIDTH (ms) at 12MHz  
MD2 MD1 MD0  
MOVX DURATION  
2 Instruction Cycles  
3 Instruction Cycles (default)  
4 Instruction Cycles  
5 Instruction Cycles  
6 Instruction Cycles  
7 Instruction Cycles  
8 Instruction Cycles  
9 Instruction Cycles  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
6
7
2
0.167  
0.333  
0.667  
1.000  
1.333  
1.667  
2.000  
2.333  
4
8
12  
16  
20  
24  
28  
53  
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
Memory Write Select (MWS)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 8Fh  
0
0
0
0
0
0
0
MXWS  
00h  
MXWS  
MOVX Write Select. This allows writing to the internal Flash Program Memory.  
bit 0  
0: MOVX operations will access Data Memory (default).  
1: MOVX operations will access Program Memory. Write operations can be inhibited by the PML or RSL bits in HCR0.  
Port 1 (P1)  
7
6
5
4
3
2
1
0
Reset Value  
P1.7  
INT5/SCK/SCL  
P1.6  
INT4/MISO/SDA  
P1.5  
INT3/MOSI  
P1.4  
INT2/SS  
P1.3  
TXD1  
P1.2  
RXD1  
P1.1  
T2EX  
P1.0  
T2  
SFR 90h  
FFh  
P1.7−0  
bits 7−0  
General-Purpose I/O Port 1. This register functions as a general-purpose I/O port. In addition, all the pins have an  
alternative function listed below. Each of the functions is controlled by several other SFRs. The associated Port 1  
latch bit must contain a logic ‘1’ before the pin can be used in its alternate function capacity. To use the alternate  
function, set the appropriate mode in P1DDRL (SFR AEh), P1DDRH (SFR AFh).  
INT5/SCK/SCL  
bit 7  
External Interrupt 5. A falling edge on this pin will cause an external interrupt 5 if enabled.  
SPI Clock. The master clock for SPI data transfers.  
Serial Clock. The serial clock for I C data transfers (MSC1211 and MSC1213 only).  
2
INT4/MISO/SDA External Interrupt 4. A rising edge on this pin will cause an external interrupt 4 if enabled.  
bit 6  
Master In Slave Out. For SPI data transfers, this pin receives data for the master and transmits data from the slave.  
SDA. For I C data transfers, this pin is the data line (MSC1211 and MSC1213 only).  
2
NT3/MOSI External Interrupt 3. A falling edge on this pin will cause an external interrupt 3 if enabled.  
bit 5  
Master Out Slave In. For SPI data transfers, this pin transmits master data and receives slave data.  
INT2/SS  
bit 4  
External Interrupt 2. A rising edge on this pin will cause an external interrupt 2 if enabled.  
Slave Select. During SPI operation, this pin provides the select signal for the slave device.  
TXD1  
Serial Port 1 Transmit. This pin transmits the serial Port 1 data in serial port modes 1, 2, 3, and emits the  
bit 3  
synchronizing clock in serial port mode 0.  
RXD1  
Serial Port 1 Receive. This pin receives the serial Port 1 data in serial port modes 1, 2, 3, and is a bidirectional data  
bit 2  
transfer pin in serial port mode 0.  
T2EX  
bit 1  
Timer 2 Capture/Reload Trigger. A 1 to 0 transition on this pin will cause the value in the T2 registers to be  
transferred into the capture registers if enabled by EXEN2 (T2CON.3, SFR C8h). When in auto-reload mode, a 1 to  
0 transition on this pin will reload the Timer 2 registers with the value in RCAP2L and RCAP2H if enabled by EXEN2  
(T2CON.3, SFR C8h).  
T2  
Timer 2 External Input. A 1 to 0 transition on this pin will cause Timer 2 to increment or decrement depending on  
bit 0  
the timer configuration.  
54  
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
External Interrupt Flag (EXIF)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 91h  
IE5  
IE4  
IE3  
IE2  
1
0
0
0
08h  
IE5  
External Interrupt 5 Flag. This bit will be set when a falling edge is detected on INT5. This bit must be cleared  
bit 7  
manually by software. Setting this bit in software will cause an interrupt if enabled.  
IE4  
External Interrupt 4 Flag. This bit will be set when a rising edge is detected on INT4. This bit must be cleared  
bit 6  
manually by software. Setting this bit in software will cause an interrupt if enabled.  
IE3  
External Interrupt 3 Flag. This bit will be set when a falling edge is detected on INT3. This bit must be cleared  
bit 5  
manually by software. Setting this bit in software will cause an interrupt if enabled.  
IE2  
External Interrupt 2 Flag. This bit will be set when a rising edge is detected on INT2. This bit must be cleared  
bit 4  
manually by software. Setting this bit in software will cause an interrupt if enabled.  
Memory Page (MPAGE)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 92h  
00h  
MPAGE  
bits 7−0  
The 8051 uses Port 2 for the upper 8 bits of the external Data Memory access by MOVX A@Riand MOVX @Ri, A  
instructions. The MSC1211/12/13/14 uses register MPAGE instead of Port 2. To access external Data Memory using  
the MOVX A@Riand MOVX @Ri, Ainstructions, the user should preload the upper byte of the address into MPAGE  
(versus preloading into P2 for the standard 8051).  
Configuration Address (CADDR) (write-only)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 93h  
00h  
CADDR  
bits 7−0  
Configuration Address. This register supplies the address for reading bytes in the 128 bytes of Flash  
Configuration Memory. It is recommended that faddr_data_read be used when accessing Configuration Memory.  
CAUTION:If this register is written to while executing from Flash Memory, the CDATA register will be incorrect.  
Configuration Data (CDATA)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 94h  
00h  
CDATA  
bits 7−0  
Configuration Data. This register will contain the data in the 128 bytes of Flash Configuration Memory that  
is located at the last written address in the CADDR register. This is a read-only register.  
Memory Control (MCON)  
7
6
0
5
0
4
3
2
1
0
Reset Value  
SFR 95h  
BPSEL  
RAMMAP  
00h  
BPSEL  
bit 7  
Breakpoint Address Selection  
Write: Select one of two Breakpoint registers: 0 or 1.  
0: Select breakpoint register 0.  
1: Select breakpoint register 1.  
Read: Provides the Breakpoint register that created the last interrupt: 0 or 1.  
RAMMAP Memory Map 1kB extended SRAM.  
bit 0 0: Address is: 0000h—03FFh (default) (Data Memory)  
1: Address is 8400h—87FFh (Data and Program Memory)  
55  
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
Serial Port 0 Control (SCON0)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 98h  
SM0_0  
SM1_0  
SM2_0  
REN_0  
TB8_0  
RB8_0  
TI_0  
RI_0  
00h  
SM0−2  
Serial Port 0 Mode. These bits control the mode of serial Port 0. Modes 1, 2, and 3 have 1 start and 1 stop bit in  
bits 7−5  
addition to the 8 or 9 data bits.  
MODE  
SM0  
SM1  
SM2 FUNCTION  
LENGTH  
8 bits  
PERIOD  
(1)  
0
0
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
Synchronous  
12 p  
CLK  
(1)  
4 p  
CLK  
Synchronous  
8 bits  
(2)  
1
Asynchronous  
Valid Stop Required  
Asynchronous  
10 bits  
10 bits  
11 bits  
Timer 1 or 2 Baud Rate Equation  
(2)  
1
(3)  
Timer 1 Baud Rate Equation  
(1)  
2
64 p  
32 p  
(SMOD = 0)  
(SMOD = 1)  
CLK  
CLK  
(1)  
(4)  
(4)  
(1)  
(1)  
2
1
0
1
Asynchronous with Multiprocessor Communication  
11 bits  
64 p  
32 p  
(SMOD = 0)  
(SMOD = 1)  
CLK  
CLK  
(2)  
3
1
1
1
1
0
1
Asynchronous  
11 bits  
11 bits  
Timer 1 or 2 Baud Rate Equation  
Timer 1 or 2 Baud Rate Equation  
(2)  
3
Asynchronous with Multiprocessor Communication  
(1)  
(2)  
(3)  
(4)  
pCLK will be equal to tCLK, except that pCLK will stop for Idle mode.  
For modes 1 and 3, the selection of Timer 1 or 2 for baud rate is specified via the T2CON (C8h) register.  
RI_0 will only be activated when a valid STOP is received.  
RI_0 will not be activated if bit 9 = 0.  
REN_0  
Receive Enable. This bit enables/disables the serial Port 0 received shift register.  
0: Serial Port 0 reception disabled.  
bit 4  
1: Serial Port 0 received enabled (modes 1, 2, and 3). Initiate synchronous reception (mode 0).  
TB8_0  
9th Transmission Bit State. This bit defines the state of the 9th transmission bit in serial Port 0 modes 2 and 3.  
bit 3  
RB8_0  
9th Received Bit State. This bit identifies the state of the 9th reception bit of received data in serial Port 0 modes  
bit 2  
2 and 3. In serial port mode 1, when SM2_0 = 0, RB8_0 is the state of the stop bit. RB8_0 is not used in mode 0.  
TI_0  
bit 1  
Transmitter Interrupt Flag. This bit indicates that data in the serial Port 0 buffer has been completely shifted out. In serial  
port mode 0, TI_0 is set at the end of the 8th data bit. In all other modes, this bit is set at the end of the last data bit.  
This bit must be manually cleared by software.  
RI_0  
bit 0  
Receiver Interrupt Flag. This bit indicates that a byte of data has been received in the serial Port 0 buffer. In serial  
port mode 0, RI_0 is set at the end of the 8th bit. In serial port mode 1, RI_0 is set after the last sample of the incoming  
stop bit subject to the state of SM2_0. In modes 2 and 3, RI_0 is set after the last sample of RB8_0. This bit must  
be manually cleared by software.  
Serial Data Buffer 0 (SBUF0)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 99h  
00h  
SBUF0  
Serial Data Buffer 0. Data for Serial Port 0 is read from or written to this location. The serial transmit and receive  
bits 7−0  
buffers are separate registers, but both are addressed at this location.  
56  
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
SPI Control (SPICON). Any change resets the SPI interface, counters, and pointers.  
7
6
5
4
3
2
1
0
Reset Value  
SFR 9Ah  
SCK2  
SCK1  
SCK0  
FIFO  
ORDER  
MSTR  
CPHA  
CPOL  
00h  
SCK  
SCK Selection. Selection of tCLK divider for generation of SCK in Master mode.  
bits 7−5  
SCK2  
SCK1  
SCK0  
SCK PERIOD  
tCLK/2  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
tCLK/4  
tCLK/8  
tCLK/16  
tCLK/32  
tCLK/64  
tCLK/128  
tCLK/256  
FIFO  
Enable FIFO in On-Chip Indirect Memory.  
0: Both transmit and receive are double buffers  
1: Circular FIFO used for transmit and receive bytes  
bit 4  
ORDER  
Set Bit Order for Transmit and Receive.  
0: Most Significant Bits First  
bit 3  
1: Least Significant Bits First  
MSTR  
SPI Master Mode.  
0: Slave Mode  
bit 2  
1: Master Mode  
CPHA  
Serial Clock Phase Control.  
bit 1  
0: Valid data starting from half SCK period before the first edge of SCK  
1: Valid data starting from the first edge of SCK  
CPOL  
Serial Clock Polarity.  
0: SCK idle at logic low  
1: SCK idle at logic high  
bit 0  
57  
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
2
I C Control (I2CCON) (Available only on the MSC1211 and MSC1213)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 9Ah  
START  
STOP  
ACK  
0
FAST  
MSTR  
SCLS  
FILEN  
00h  
START  
Start Condition (Master mode).  
Read: Current status of start condition or repeated start condition.  
bit 7  
Write: When operating as a master, a start condition is transmitted when the START bit is set to 1. During a data  
transfer, if the START bit is set, a repeated start is transmitted after the current data transfer is complete. If no transfer  
is in progress when the START and STOP bits are set simultaneously, a START will be followed by a STOP.  
STOP  
Stop Condition (Master mode).  
bit 6  
Read: Current status of stop condition.  
Write: Setting STOP to logic 1 causes a stop condition to be transmitted. When a stop condition is received, hardware  
clears STOP to logic 0. If both START and STOP are set during a transfer, a stop condition is transmitted followed  
by a start condition.  
ACK  
Acknowledge. Defines the ACK/NACK generation from the master/slave receiver during the acknowledge cycle.  
0: A NACK (high level on SDA) is returned during the acknowledge cycle.  
bit 5  
1: An ACK (low level on SDA) is returned during the acknowledge cycle.  
In slave transmit mode, 0 = Current byte is last byte, 1 = More to follow.  
0
Always set this value to zero.  
bit 4  
FAST  
Fast Mode Enable.  
bit 3  
0: Standard Mode (100kHz)  
1: Fast Mode (400kHz)  
MSTR  
SPI Master Mode.  
0: Slave Mode  
bit 2  
1: Master Mode  
SCLS  
Clock Stretch.  
bit 1  
0: No effect  
1: Release the clock line. For the slave mode, the clock is stretched for each data transfer. This bit releases the clock.  
FILEN  
Filter Enable. 50ns glitch filter.  
0: Filter disabled  
bit 0  
1: Filter enabled  
2
SPI Data (SPIDATA) / I C Data (I2CDATA)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 9Bh  
00h  
SPIDATA  
SPI Data. Data for SPI is read from or written to this location. The SPI transmit and receive buffers are  
bits 7−0  
separate registers, but both are addressed at this location. Read to clear the receive interrupt and write to clear the  
transmit interrupt.  
2
2
I2CDATA  
I2C Data . (MSC1211 and MSC1213 only.) Data for I C is read from or written to this location. The I C transmit and  
receive buffers are separate registers, but both are addressed at this location. Writing to this register  
starts transmission. In Master mode, reading this register starts a Master read cycle.  
bits 7−0  
58  
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
SPI Receive Control (SPIRCON)  
7
6
5
4
3
2
1
0
Reset Value  
RXCNT7  
RXFLUSH  
RXCNT2  
RXIRQ2  
RXCNT1  
RXIRQ1  
RXCNT0  
RXIRQ0  
SFR 9Ch  
RXCNT6  
RXCNT5  
RXCNT4  
RXCNT3  
00h  
RXCNT  
bits 7−0  
Receive Counter. Read-only bits which read the number of bytes in the receive buffer (0 to 128).  
RXFLUSH Flush Receive FIFO. Write-only.  
bit 7  
0: No Action  
1: SPI Receive Buffer Set to Empty  
RXIRQ  
Read IRQ Level. Write-only.  
bits 2−0  
000  
001  
010  
011  
100  
101  
110  
111  
Generate IRQ when Receive Count = 1 or more.  
Generate IRQ when Receive Count = 2 or more.  
Generate IRQ when Receive Count = 4 or more.  
Generate IRQ when Receive Count = 8 or more.  
Generate IRQ when Receive Count = 16 or more.  
Generate IRQ when Receive Count = 32 or more.  
Generate IRQ when Receive Count = 64 or more.  
Generate IRQ when Receive Count = 128 or more.  
2
I C GM (I2CGM) (Available only on the MSC1211 and MSC1213)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 9Ch  
GCMEN  
00h  
GCMEN  
bit 7  
General Call/Multiple Master Enable. Write-only.  
Slave mode: 0 = General call ignored, 1 = General call will be detected  
Master mode: 0 = Single master, 1 = Multiple master mode  
59  
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
SPI Transmit Control (SPITCON)  
7
6
5
4
3
2
1
0
Reset Value  
TXCNT7  
TXFLUSH  
TXCNT5  
CLK_EN  
TXCNT4  
DRV_DLY  
TXCNT3  
DRV_EN  
TXCNT2  
TXIRQ2  
TXCNT1  
TXIRQ1  
TXCNT0  
TXIRQ0  
SFR 9Dh  
TXCNT6  
00h  
TXCNT  
bits 7−0  
Transmit Counter. Read-only bits which read the number of bytes in the transmit buffer (0 to 128).  
TXFLUSH Flush Transmit FIFO. This bit is write-only. When set, the SPI transmit pointer is set equal to the FIFO Output pointer.  
bit 7  
This bit is 0 for a read operation.  
CLK_EN  
SCLK Driver Enable.  
bit 5  
0: Disable SCLK Driver (Master Mode)  
1: Enable SCLK Driver (Master Mode)  
DRV_DLY Drive Delay (refer to DRV_EN bit).  
bit 4  
0: Drive Output Immediately  
1: Drive Output After Current Byte Transfer  
DRV_EN  
Drive Enable.  
bit 3  
DRV_DLY DRV_EN MOSI or MISO OUTPUT CONTROL  
0
0
1
1
0
1
0
1
Tristate immediately.  
Drive immediately.  
Tristate after the current byte transfer.  
Drive after the current byte transfer.  
TXIRQ  
Transmit IRQ Level. Write-only bits.  
bits 2−0  
000  
001  
010  
011  
100  
101  
110  
111  
Generate IRQ when Transmit Count = 1 or less.  
Generate IRQ when Transmit Count = 2 or less.  
Generate IRQ when Transmit Count = 4 or less.  
Generate IRQ when Transmit Count = 8 or less.  
Generate IRQ when Transmit Count = 16 or less.  
Generate IRQ when Transmit Count = 32 or less.  
Generate IRQ when Transmit Count = 64 or less.  
Generate IRQ when Transmit Count = 128 or less.  
60  
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
2
I C Status (I2CSTAT) (Available only on the MSC1211 and MSC1213)  
7
6
5
4
3
2
1
0
Reset Value  
STAT7  
SCKD7/SAE  
STAT6  
SCKD6/SA6  
STAT5  
STAT4  
STAT3  
0
0
0
SFR 9Dh  
00h  
SCKD5/SA5 SCKD4/SA4 SCKD3/SA3 SCKD2/SA2 SCKD1/SA1 SCKD0/SA0  
STAT7−3  
Status Code. Read-only. Reading this register clears the status interrupt.  
bit 7−3  
STATUS CODE  
STATUS OF THE HARDWARE  
MODE  
0x08  
0x10  
0x18  
0x20  
0x28  
0x30  
0x38  
0x40  
0x48  
0x50  
0x58  
0x60  
0x70  
0x80  
0x88  
0x90  
0x98  
0xA0  
0xA8  
0xB8  
0xC0  
0xC8  
START condition transmitted.  
Master  
Master  
Master  
Master  
Master  
Master  
Master  
Master  
Master  
Master  
Master  
Slave  
Repeated START condition transmitted.  
Slave address + W transmitted and ACK received.  
Slave address + W transmitted and NACK received.  
Data byte transmitted and ACK received.  
Data byte transmitted and NACK received.  
Arbitration lost.  
Slave address + R transmitted and ACK received.  
Slave address + R transmitted and NACK received.  
Data byte received and ACK transmitted.  
Data byte received and NACK transmitted.  
I2Cs slave address + W received and ACK transmitted.  
General call received and ACK transmitted.  
Slave  
Previously addressed as slave, data byte received and ACK transmitted.  
Previously addressed as slave, data byte received and NACK transmitted.  
Previously addressed with GC, data byte received and ACK transmitted.  
Previously addressed with GC, data byte received and NACK transmitted.  
A STOP or repeated START received when addressed as slave or GC.  
I2Cs slave address + R received and ACK transmitted.  
Previously addressed as slave, data byte transmitted and ACK received.  
Previously addressed as slave, data byte transmitted and NACK received.  
Previously addressed as slave, last data byte transmitted.  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
SCKD7−0 Serial Clock Divisor. Write-only, master mode.  
bit 7−0  
The frequency of the SCL line is set equal to Sysclk/[2 (SCKD + 1)]. The minimum value for SCKD is 3.  
SAE  
Slave Address Enable. Write-only, slave mode.  
bit 7  
In slave mode, if this is set, address recognition is enabled.  
SA6−0  
Slave Address. Write-only, slave mode.  
bit 6−0  
The address of this device is used in slave mode for address recognition.  
61  
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
2
I C Start (I2CSTART) (Available only on the MSC1211 and MSC1213)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 9Eh  
80h  
2
2
I2CSTART I C Start. Write-only. When any value is written to this register, the I C system is reset; that is, the counters  
bits 7−0 and state machines will go back to the initial state. So, in multi-master mode when arbitration is lost, then the I C  
should be reset so that the counters and finite state machines (FSMs) are brought back to the idle state.  
2
SPI Buffer Start Address (SPISTART)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 9Eh  
1
80h  
SPISTART SPI FIFO Start Address. Write-only. This specifies the start address of the SPI data buffer. This is a circular FIFO  
bits 6−0  
that is located in the 128 bytes of indirect RAM. The FIFO starts at this address and ends at the address specified  
in SPIEND. Must be less than SPIEND. Writing clears SPI transmit and receive counters.  
SPITP  
bits 6−0  
SPI Transmit Pointer. Read-only. This is the FIFO address for SPI transmissions. This is where the next byte will  
be written into the byte will be written into the SPI FIFO buffer. This pointer increments after each write to the SPI Data  
register unless that would make it equal to the SPI Receive pointer.  
SPI Buffer End Address (SPIEND)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 9Fh  
1
80h  
SPIEND  
SPI FIFO End Address. Write-only. This specifies the end address of the SPI data FIFO. This is a circular buffer that  
bits 6−0  
is located in the 128 bytes of indirect RAM. The buffer starts at SPISTART and ends at this address.  
SPIRP  
SPI Receive Pointer. Read-only. This is the FIFO address for SPI received bytes. This is the location of the nextbyte  
bits 6−0  
to be read from the SPI FIFO. This increments with each read from the SPI Data register until the RxCNT is zero.  
Port 2 (P2)  
7
6
5
4
3
2
1
0
Reset Value  
SFR A0h  
FFh  
P2  
Port 2. This port functions as an address bus during external memory access, and as a general-purpose I/O port.  
bits 7−0  
During external memory cycles, this port will contain the MSB of the address. Whether Port 2 is used as  
general-purpose I/O or for external memory access is determined by the Flash Configuration Register (HCR1.0).  
62  
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
PWM Control (PWMCON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR A1h  
PPOL  
PWMSEL  
SPDSEL  
TPCNTL2  
TPCNTL1  
TPCNTL0  
00h  
PPOL  
Period Polarity. Specifies the starting level of the PWM pulse.  
0: ON Period. PWM Duty register programs the ON period.  
1: OFF Period. PWM Duty register programs the OFF period.  
bit 5  
PWMSEL  
PWM Register Select. Select which 16-bit register is accessed by PWMLOW/PWMHI.  
bit 4  
0: Period (must be 0 for TONE mode)  
1: Duty  
SPDSEL  
Speed Select.  
bit 3  
0: 1MHz (the USEC Clock)  
1: SYSCLK  
TPCNTL  
Tone Generator/Pulse Width Modulation Control.  
bits 2−0  
TPCNTL2 TPCNTL1 TPCNTL0 MODE  
0
0
0
1
0
0
1
1
0
1
1
1
Disable (default)  
PWM  
TONE—Square  
TONE—Staircase  
Tone Low (TONELOW) /PWM Low (PWMLOW)  
7
6
5
4
3
2
1
0
Reset Value  
PWM7  
TDIV7  
PWM6  
TDIV6  
PWM5  
TDIV5  
PWM4  
TDIV4  
PWM3  
TDIV3  
PWM2  
TDIV2  
PWM1  
TDIV1  
PWM0  
TDIV0  
SFR A2h  
00h  
PWMLOW Pulse Width Modulator Low Bits. These 8 bits are the least significant 8 bits of the PWM register.  
bits 7−0  
TDIV7−0  
Tone Divisor. The low order bits that define the half-time period. For staircase mode the output is high impedance  
bits 7−0  
for the last 1/4 of this period.  
Tone High (TONEHI)/PWM High (PWMHI)  
7
6
5
4
3
2
1
0
Reset Value  
PWM15  
TDIV15  
PWM14  
TDIV14  
PWM13  
TDIV13  
PWM12  
TDIV12  
PWM11  
TDIV11  
PWM10  
TDIV10  
PWM9  
TDIV9  
PWM8  
TDIV8  
SFR A3h  
00h  
PWMHI  
Pulse Width Modulator High Bits. These 8 bits are the high order bits of the PWM register.  
bits 7−0  
TDIV15−8 Tone Divisor. The high order bits that define the half time period. For staircase mode the output is high impedance  
bits 7−0 for the last 1/4 of this period.  
63  
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
Auxiliary Interrupt Poll (AIPOL)  
7
6
5
4
3
2
1
0
Reset Value  
00h  
RD  
SFR A4h  
ESEC  
ESUM  
EADC  
EMSEC  
ESPIT  
ESPIR/EI2C  
EALV  
EDLVB  
RDSEL  
WR  
00h  
Auxiliary interrupts are enabled by EICON.4 (SFR D8h); other interrupts are enabled by the IE and EIE registers.  
ESEC  
Enable Seconds Timer Interrupt (lowest priority auxiliary interrupt). Read-only.  
AIPOL.RDSEL = 1: Read: Current value of Seconds Timer Interrupt before masking.  
AIPOL.RDSEL = 0: Read: Value of ESEC bit.  
bit 7  
ESUM  
Enable Summation Interrupt. Read-only.  
bit 6  
AIPOL.RDSEL = 1: Read: Current value of Summation Interrupt before masking.  
AIPOL.RDSEL = 0: Read: Value of ESUM bit.  
EADC  
Enable ADC Interrupt. Read-only.  
bit 5  
AIPOL.RDSEL = 1: Read: Current value of ADC Interrupt before masking.  
AIPOL.RDSEL = 0: Read: Value of EADC bit.  
EMSEC  
Enable Millisecond System Timer Interrupt. Read-only.  
bit 4  
AIPOL.RDSEL = 1: Read: Current value of Millisecond System Timer Interrupt before masking.  
AIPOL.RDSEL = 0: Read: Value of EMSEC bit.  
ESPIT  
Enable SPI Transmit Interrupt. Read-only.  
bit 3  
AIPOL.RDSEL = 1: Read: Current value of Enable SPI Transmit Interrupt before masking.  
AIPOL.RDSEL = 0: Read: Value of ESPIT bit.  
2
ESPIR/EI2C Enable SPI Receive Interrupt. Enable I2C Status Interrupt (I C available only on the MSC1213). Read-only.  
bit 2  
AIPOL.RDSEL = 1: Read: Current value of Enable SPI Receive Interrupt or I2C Status Interrupt before masking.  
AIPOL.RDSEL = 0: Read: Value of ESPIR/EI2C bit.  
EALV  
Enable Analog Low Voltage Interrupt. Read-only.  
bit 1  
AIPOL.RDSEL = 1: Read: Current value of Enable Analog Low Voltage Interrupt before masking.  
AIPOL.RDSEL = 0: Read: Value of EALV bit.  
EDLVB  
Enable Digital Low Voltage or Breakpoint Interrupt (highest priority auxiliary interrupt). Read-only.  
AIPOL.RDSEL = 1: Read: Current value of Enable Digital Low Voltage or Breakpoint Interrupt before masking.  
AIPOL.RDSEL = 0: Read: Value of EDLVB bit.  
bit 0  
RDSEL  
Read Select. Write-only.  
bit 0  
AIPOL.RDSEL = 1: Read state for AIE and AIPOL registers. Reading AIPOL register gives current value of  
Auxiliary interrupts before masking. Reading AIE register gives value of AIE register contents.  
AIPOL.RDSEL = 0: Read state for AIE and AIPOL registers. Reading AIPOL register gives value of AIE register  
contents. Reading AIE register gives current value of Auxiliary interrupts before masking.  
64  
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
Pending Auxiliary Interrupt (PAI)  
7
6
5
4
3
2
1
0
Reset Value  
SFR A5h  
0
0
0
0
PAI3  
PAI2  
PAI1  
PAI0  
00h  
PAI3−0  
bits 3−0  
Pending Auxiliary Interrupt. The results of this register can be used as an index to vector to the  
appropriate interrupt routine. All of these interrupts vector through address 0033h.  
PAI3  
PAI2  
PAI1  
PAI0  
AUXILIARY INTERRUPT STATUS  
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
No Pending Auxiliary IRQ  
Digital Low Voltage IRQ Pending  
Analog Low Voltage IRQ Pending  
2
SPI Receive IRQ Pending. I C Status Pending.  
SPI Transmit IRQ Pending.  
One Millisecond System Timer IRQ Pending.  
Analog-to-Digital Conversion IRQ Pending.  
Accumulator IRQ Pending.  
One Second System Timer IRQ Pending.  
65  
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
Auxiliary Interrupt Enable (AIE)  
7
6
5
4
3
2
1
0
Reset Value  
SFR A6h  
ESEC  
ESUM  
EADC  
EMSEC  
ESPIT  
ESPIR/EI2C  
EALV  
EDLVB  
00h  
Auxiliary interrupts are enabled by EICON.4 (SFR D8h); other interrupts are enabled by the IE and EIE registers.  
ESEC  
Enable Seconds Timer Interrupt (lowest priority auxiliary interrupt).  
Write: Set mask bit for this interrupt; 0 = masked, 1 = enabled.  
Read: When AIPOL.RDSEL = 0: Current value of Seconds Timer Interrupt before masking.  
When AIPOL.RDSEL = 1: Value of ESEC bit.  
bit 7  
ESUM  
Enable Summation Interrupt.  
bit 6  
Write: Set mask bit for this interrupt; 0 = masked, 1 = enabled.  
Read: When AIPOL.RDSEL = 0: Current value of Summation Interrupt before masking.  
When AIPOL.RDSEL = 1: Value of ESUM bit.  
EADC  
Enable ADC Interrupt.  
bit 5  
Write: Set mask bit for this interrupt; 0 = masked, 1 = enabled.  
Read: When AIPOL.RDSEL = 0: Current value of ADC Interrupt before masking.  
When AIPOL.RDSEL = 1: Value of EADC bit.  
EMSEC  
Enable Millisecond System Timer Interrupt.  
bit 4  
Write: Set mask bit for this interrupt; 0 = masked, 1 = enabled.  
Read: When AIPOL.RDSEL = 0: Current value of Millisecond System Timer Interrupt before masking.  
When AIPOL.RDSEL = 1: Value of EMSEC bit.  
ESPIT  
Enable SPI Transmit Interrupt.  
bit 3  
Write: Set mask bit for this interrupt; 0 = masked, 1 = enabled.  
Read: When AIPOL.RDSEL = 0: Current value of SPI Transmit Interrupt before masking.  
When AIPOL.RDSEL = 1: Value of ESPIT bit.  
2
2
ESPIR/EI2C Enable SPI Receive Interrupt. Enable I C Status Interrupt. (I C available only on the MSC1213.)  
bit 2  
Write: Set mask bit for this interrupt; 0 = masked, 1 = enabled.  
2
Read: When AIPOL.RDSEL = 0: Current value of SPI Receive Interrupt or I C Status Interrupt before masking.  
When AIPOL.RDSEL = 1: Value of ESPIR/EI2C bit.  
EALV  
Enable Analog Low Voltage Interrupt.  
bit 1  
Write: Set mask bit for this interrupt; 0 = masked, 1 = enabled.  
Read: When AIPOL.RDSEL = 0: Current value of Analog Low Voltage Interrupt before masking.  
When AIPOL.RDSEL = 1: Value of EALV bit.  
EDLVB  
Enable Digital Low Voltage or Breakpoint Interrupt (highest priority auxiliary interrupt).  
Write: Set mask bit for this interrupt; 0 = masked, 1 = enabled.  
bit 0  
Read: When AIPOL.RDSEL = 0: Current value of Digital Low Voltage or Breakpoint Interrupt before masking.  
When AIPOL.RDSEL = 1: Value of EDLVB bit.  
66  
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
Auxiliary Interrupt Status (AISTAT)  
7
6
5
4
3
2
1
0
Reset Value  
SFR A7h  
SEC  
SUM  
ADC  
MSEC  
SPIT  
SPIR/I2CSI  
ALVD  
DLVD  
00h  
SEC  
Second System Timer Interrupt Status Flag (lowest priority AI).  
0: SEC interrupt inactive or masked.  
bit 7  
1: SEC Interrupt active.  
SUM  
Summation Register Interrupt Status Flag.  
bit 6  
0: SUM interrupt inactive or masked (if active, it is set inactive by reading the lowest byte of the Summation register).  
1: SUM interrupt active.  
ADC  
ADC Interrupt Status Flag.  
bit 5  
0: ADC interrupt inactive or masked (If active, it is set inactive by reading the lowest byte of the Data Output Register).  
1: ADC interrupt active (If active no new data will be written to the Data Output Register).  
MSEC  
Millisecond System Timer Interrupt Status Flag.  
0: MSEC interrupt inactive or masked.  
1: MSEC interrupt active.  
bit 4  
SPIT  
SPI Transmit Interrupt Status Flag.  
0: SPI transmit interrupt inactive or masked.  
1: SPI transmit interrupt active.  
bit 3  
2
2
SPIR/I2CSI SPI Receive Interrupt Status Flag. I C Status Interrupt. (I C available only on the MSC1213.)  
bit 2  
0: SPI receive or I2CSI interrupt inactive or masked.  
1: SPI receive or I2CSI interrupt active.  
ALVD  
Analog Low Voltage Detect Interrupt Status Flag.  
0: ALVD interrupt inactive or masked.  
1: ALVD interrupt active.  
bit 1  
DLVD  
Digital Low Voltage Detect or Breakpoint Interrupt Status Flag (highest priority AI).  
0: DLVD interrupt inactive or masked.  
bit 0  
1: DLVD interrupt active.  
67  
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
Interrupt Enable (IE)  
7
6
5
4
3
2
1
0
Reset Value  
SFR A8h  
EA  
ES1  
ET2  
ES0  
ET1  
EX1  
ET0  
EX0  
00h  
EA  
Global Interrupt Enable. This bit controls the global masking of all interrupts except those in AIE (SFR A6h).  
0: Disable interrupt sources. This bit overrides individual interrupt mask settings for this register.  
1: Enable all individual interrupt masks. Individual interrupts in this register will occur if enabled.  
bit 7  
ES1  
Enable Serial Port 1 Interrupt. This bit controls the masking of the serial Port 1 interrupt.  
0: Disable all serial Port 1 interrupts.  
bit 6  
1: Enable interrupt requests generated by the RI_1 (SCON1.0, SFR C0h) or TI_1 (SCON1.1, SFR C0h) flags.  
ET2  
Enable Timer 2 Interrupt. This bit controls the masking of the Timer 2 interrupt.  
0: Disable all Timer 2 interrupts.  
bit 5  
1: Enable interrupt requests generated by the TF2 flag (T2CON.7, SFR C8h).  
ES0  
Enable Serial port 0 interrupt. This bit controls the masking of the serial Port 0 interrupt.  
0: Disable all serial Port 0 interrupts.  
bit 4  
1: Enable interrupt requests generated by the RI_0 (SCON0.0, SFR 98h) or TI_0 (SCON0.1, SFR 98h) flags.  
ET1  
Enable Timer 1 Interrupt. This bit controls the masking of the Timer 1 interrupt.  
0: Disable Timer 1 interrupt.  
bit 3  
1: Enable interrupt requests generated by the TF1 flag (TCON.7, SFR 88h).  
EX1  
Enable External Interrupt 1. This bit controls the masking of external interrupt 1.  
0: Disable external interrupt 1.  
bit 2  
1: Enable interrupt requests generated by the INT1 pin.  
ET0  
Enable Timer 0 Interrupt. This bit controls the masking of the Timer 0 interrupt.  
0: Disable all Timer 0 interrupts.  
bit 1  
1: Enable interrupt requests generated by the TF0 flag (TCON.5, SFR 88h).  
EX0  
Enable External Interrupt 0. This bit controls the masking of external interrupt 0.  
0: Disable external interrupt 0.  
bit 0  
1: Enable interrupt requests generated by the INT0 pin.  
68  
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
Breakpoint Control (BPCON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR A9h  
BP  
0
0
0
0
0
PMSEL  
EBP  
00h  
Writing to this register sets the breakpoint condition specified by MCON, BPL, and BPH.  
BP  
Breakpoint Interrupt. This bit indicates that a break condition has been recognized by a hardware breakpoint register(s).  
Read: Status of Breakpoint Interrupt. Will indicate a breakpoint match for any of the breakpoint registers.  
Write: 0: No effect.  
bit 7  
1: Clear Breakpoint 1 for breakpoint register selected by MCON (SFR 95h).  
PMSEL  
Program Memory Select. Write this bit to select memory for address breakpoints of register selected in  
MCON (SFR 95h).  
bit 1  
0: Break on address in Data Memory.  
1: Break on address in Program Memory.  
EBP  
Enable Breakpoint. This bit enables this breakpoint register. Address of breakpoint register selected by  
bit 0  
MCON (SFR 95h).  
0: Breakpoint disabled.  
1: Breakpoint enabled.  
Breakpoint Low (BPL) Address for BP Register Selected in MCON (95h)  
7
6
5
4
3
2
1
0
Reset Value  
SFR AAh  
BPL.7  
BPL.6  
BPL.5  
BPL.4  
BPL.3  
BPL.2  
BPL.1  
BPL.0  
00h  
BPL.7−0  
Breakpoint Low Address. The low 8 bits of the 16-bit breakpoint address.  
bits 7−0  
Breakpoint High Address (BPH) Address for BP Register Selected in MCON (95h)  
7
6
5
4
3
2
1
0
Reset Value  
SFR ABh  
BPH.7  
BPH.6  
BPH.5  
BPH.4  
BPH.3  
BPH.2  
BPH.1  
BPH.0  
00h  
BPH.7−0  
Breakpoint High Address. The high 8 bits of the 16-bit breakpoint address.  
bits 7−0  
69  
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
Port 0 Data Direction Low (P0DDRL)  
7
6
5
4
3
2
1
0
Reset Value  
SFR ACh  
P03H  
P03L  
P02H  
P02L  
P01H  
P01L  
P00H  
P00L  
00h  
P0.3  
Port 0 Bit 3 Control.  
bits 7−6  
P03H  
P03L  
0
0
1
1
0
1
0
1
Standard 8051 (Pull-Up)  
CMOS Output  
Open Drain Output  
Input  
P0.2  
Port 0 Bit 2 Control.  
bits 5−4  
P02H  
P02L  
0
0
1
1
0
1
0
1
Standard 8051 (Pull-Up)  
CMOS Output  
Open Drain Output  
Input  
P0.1  
Port 0 Bit 1 Control.  
bits 3−2  
P01H  
P01L  
0
0
1
1
0
1
0
1
Standard 8051 (Pull-Up)  
CMOS Output  
Open Drain Output  
Input  
P0.0  
Port 0 Bit 0 Control.  
bits 1−0  
P00H  
P00L  
0
0
1
1
0
1
0
1
Standard 8051 (Pull-Up)  
CMOS Output  
Open Drain Output  
Input  
NOTE: Port 0 also controlled by EA and Memory Access Control HCR1.EGP0.  
70  
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
Port 0 Data Direction High (P0DDRH)  
7
6
5
4
3
2
1
0
Reset Value  
SFR ADh  
P07H  
P07L  
P06H  
P06L  
P05H  
P05L  
P04H  
P04L  
00h  
P0.7  
Port 0 Bit 7 Control.  
bits 7−6  
P07H  
P07L  
0
0
1
1
0
1
0
1
Standard 8051 (Pull-Up)  
CMOS Output  
Open Drain Output  
Input  
P0.6  
Port 0 Bit 6 Control.  
bits 5−4  
P06H  
P06L  
0
0
1
1
0
1
0
1
Standard 8051 (Pull-Up)  
CMOS Output  
Open Drain Output  
Input  
P0.5  
Port 0 Bit 5 Control.  
bits 3−2  
P05H  
P05L  
0
0
1
1
0
1
0
1
Standard 8051 (Pull-Up)  
CMOS Output  
Open Drain Output  
Input  
P0.4  
Port 0 Bit 4 Control.  
bits 1−0  
P04H  
P04L  
0
0
1
1
0
1
0
1
Standard 8051 (Pull-Up)  
CMOS Output  
Open Drain Output  
Input  
NOTE: Port 0 also controlled by EA and Memory Access Control HCR1.EGP0.  
71  
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
Port 1 Data Direction Low (P1DDRL)  
7
6
5
4
3
2
1
0
Reset Value  
SFR AEh  
P13H  
P13L  
P12H  
P12L  
P11H  
P11L  
P10H  
P10L  
00h  
P1.3  
Port 1 Bit 3 Control.  
bits 7−6  
P13H  
P13L  
0
0
1
1
0
1
0
1
Standard 8051 (Pull-Up)  
CMOS Output  
Open Drain Output  
Input  
P1.2  
Port 1 Bit 2 Control.  
bits 5−4  
P12H  
P12L  
0
0
1
1
0
1
0
1
Standard 8051 (Pull-Up)  
CMOS Output  
Open Drain Output  
Input  
P1.1  
Port 1 Bit 1 Control.  
bits 3−2  
P11H  
P11L  
0
0
1
1
0
1
0
1
Standard 8051 (Pull-Up)  
CMOS Output  
Open Drain Output  
Input  
P1.0  
Port 1 Bit 0 Control.  
bits 1−0  
P10H  
P10L  
0
0
1
1
0
1
0
1
Standard 8051 (Pull-Up)  
CMOS Output  
Open Drain Output  
Input  
72  
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
Port 1 Data Direction High (P1DDRH)  
7
6
5
4
3
2
1
0
Reset Value  
SFR AFh  
P17H  
P17L  
P16H  
P16L  
P15H  
P15L  
P14H  
P14L  
00h  
P1.7  
Port 1 Bit 7 Control.  
bits 7−6  
P17H  
P17L  
0
0
1
1
0
1
0
1
Standard 8051 (Pull-Up)  
CMOS Output  
Open Drain Output  
Input  
P1.6  
Port 1 Bit 6 Control.  
bits 5−4  
P16H  
P16L  
0
0
1
1
0
1
0
1
Standard 8051 (Pull-Up)  
CMOS Output  
Open Drain Output  
Input  
P1.5  
Port 1 Bit 5 Control.  
bits 3−2  
P15H  
P15L  
0
0
1
1
0
1
0
1
Standard 8051 (Pull-Up)  
CMOS Output  
Open Drain Output  
Input  
P1.4  
Port 1 Bit 4 Control.  
bits 1−0  
P14H  
P14L  
0
0
1
1
0
1
0
1
Standard 8051 (Pull-Up)  
CMOS Output  
Open Drain Output  
Input  
73  
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
Port 3 (P3)  
7
6
5
4
3
2
1
0
Reset Value  
P3.7  
RD  
P3.6  
WR  
P3.5  
T1  
P3.4  
T0  
P3.3  
INT1  
P3.2  
INT0  
P3.1  
TXD0  
P3.0  
RXD0  
SFR B0h  
FFh  
P3.7−0  
bits 7−0  
General-Purpose I/O Port 3. This register functions as a general-purpose I/O port. In addition, all the pins have an  
alternative function listed below. Each of the functions is controlled by several other SFRs. The associated Port 3  
latch bit must contain a logic ‘1’ before the pin can be used in its alternate function capacity.  
RD  
External Data Memory Read Strobe. This pin provides an active low read strobe to an external memory device.  
bit 7  
If Port 0 or Port 2 is selected for external memory in the HCR1 register, this function will be enabled even if a ‘1’ is  
not written to this latch bit. When external memory is selected, the settings of P3DRRH are ignored.  
WR  
External Data Memory Write Strobe. This pin provides an active low write strobe to an external memory device.  
bit 6  
If Port 0 or Port 2 is selected for external memory in the HCR1 register, this function will be enabled even if a ‘1’ is  
not written to this latch bit. When external memory is selected, the settings of P3DRRH are ignored.  
T1  
Timer/Counter 1 External Input. A 1 to 0 transition on this pin will increment Timer 1.  
Timer/Counter 0 External Input. A 1 to 0 transition on this pin will increment Timer 0.  
External Interrupt 1. A falling edge/low level on this pin will cause an external interrupt 1 if enabled.  
External Interrupt 0. A falling edge/low level on this pin will cause an external interrupt 0 if enabled.  
bit 5  
T0  
bit 4  
INT1  
bit 3  
INT0  
bit 2  
TXD0  
Serial Port 0 Transmit. This pin transmits the serial Port 0 data in serial port modes 1, 2, 3, and emits the  
bit 1  
synchronizing clock in serial port mode 0.  
RXD0  
Serial Port 0 Receive. This pin receives the serial Port 0 data in serial port modes 1, 2, 3, and is a bidirectional data  
bit 0  
transfer pin in serial port mode 0.  
74  
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
Port 2 Data Direction Low (P2DDRL)  
7
6
5
4
3
2
1
0
Reset Value  
SFR B1h  
P23H  
P23L  
P22H  
P22L  
P21H  
P21L  
P20H  
P20L  
00h  
P2.3  
Port 2 Bit 3 Control.  
bits 7−6  
P23H  
P23L  
0
0
1
1
0
1
0
1
Standard 8051 (Pull-Up)  
CMOS Output  
Open Drain Output  
Input  
P2.2  
Port 2 Bit 2 Control.  
bits 5−4  
P22H  
P22L  
0
0
1
1
0
1
0
1
Standard 8051 (Pull-Up)  
CMOS Output  
Open Drain Output  
Input  
P2.1  
Port 2 Bit 1 Control.  
bits 3−2  
P21H  
P21L  
0
0
1
1
0
1
0
1
Standard 8051 (Pull-Up)  
CMOS Output  
Open Drain Output  
Input  
P2.0  
Port 2 Bit 0 Control.  
bits 1−0  
P20H  
P20L  
0
0
1
1
0
1
0
1
Standard 8051 (Pull-Up)  
CMOS Output  
Open Drain Output  
Input  
NOTE: Port 2 also controlled by EA and Memory Access Control HCR1.EGP23.  
75  
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
Port 2 Data Direction High (P2DDRH)  
7
6
5
4
3
2
1
0
Reset Value  
SFR B2h  
P27H  
P27L  
P26H  
P26L  
P25H  
P25L  
P24H  
P24L  
00h  
P2.7  
Port 2 Bit 7 Control.  
bits 7−6  
P27H  
P27L  
0
0
1
1
0
1
0
1
Standard 8051 (Pull-Up)  
CMOS Output  
Open Drain Output  
Input  
P2.6  
Port 2 Bit 6 Control.  
bits 5−4  
P26H  
P26L  
0
0
1
1
0
1
0
1
Standard 8051 (Pull-Up)  
CMOS Output  
Open Drain Output  
Input  
P2.5  
Port 2 Bit 5 Control.  
bits 3−2  
P25H  
P25L  
0
0
1
1
0
1
0
1
Standard 8051 (Pull-Up)  
CMOS Output  
Open Drain Output  
Input  
P2.4  
Port 2 Bit 4 Control.  
bits 1−0  
P24H  
P24L  
0
0
1
1
0
1
0
1
Standard 8051 (Pull-Up)  
CMOS Output  
Open Drain Output  
Input  
NOTE: Port 2 also controlled by EA and Memory Access Control HCR1.EGP23.  
76  
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
Port 3 Data Direction Low (P3DDRL)  
7
6
5
4
3
2
1
0
Reset Value  
SFR B3h  
P33H  
P33L  
P32H  
P32L  
P31H  
P31L  
P30H  
P30L  
00h  
P3.3  
Port 3 Bit 3 Control.  
bits 7−6  
P33H  
P33L  
0
0
1
1
0
1
0
1
Standard 8051 (Pull-Up)  
CMOS Output  
Open Drain Output  
Input  
P3.2  
Port 3 Bit 2 Control.  
bits 5−4  
P32H  
P32L  
0
0
1
1
0
1
0
1
Standard 8051 (Pull-Up)  
CMOS Output  
Open Drain Output  
Input  
P3.1  
Port 3 Bit 1 Control.  
bits 3−2  
P31H  
P31L  
0
0
1
1
0
1
0
1
Standard 8051 (Pull-Up)  
CMOS Output  
Open Drain Output  
Input  
P3.0  
Port 3 Bit 0 Control.  
bits 1−0  
P30H  
P30L  
0
0
1
1
0
1
0
1
Standard 8051 (Pull-Up)  
CMOS Output  
Open Drain Output  
Input  
77  
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
Port 3 Data Direction High (P3DDRH)  
7
6
5
4
3
2
1
0
Reset Value  
SFR B4h  
P37H  
P37L  
P36H  
P36L  
P35H  
P35L  
P34H  
P34L  
00h  
P3.7  
bits 7−6  
Port 3 Bit 7 Control.  
P37H  
P37L  
0
0
1
1
0
1
0
1
Standard 8051 (Pull-Up)  
CMOS Output  
Open Drain Output  
Input  
NOTE: Port 3.7 also controlled by EA and Memory Access Control HCR1.1.  
P3.6  
Port 3 Bit 6 Control.  
bits 5−4  
P36H  
P36L  
0
0
1
1
0
1
0
1
Standard 8051 (Pull-Up)  
CMOS Output  
Open Drain Output  
Input  
NOTE: Port 3.6 also controlled by EA and Memory Access Control HCR1.1.  
P3.5  
Port 3 Bit 5 Control.  
bits 3−2  
P35H  
P35L  
0
0
1
1
0
1
0
1
Standard 8051 (Pull-Up)  
CMOS Output  
Open Drain Output  
Input  
P3.4  
Port 3 Bit 4 Control.  
bits 1−0  
P34H  
P34L  
0
0
1
1
0
1
0
1
Standard 8051 (Pull-Up)  
CMOS Output  
Open Drain Output  
Input  
78  
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
DAC Low Byte (DACL)  
7
6
5
4
3
2
1
0
Reset Value  
SFR B5h  
00h  
DACL7−0 Least Significant Byte Register for DAC0−3, DAC Control (0 and 2), and DAC Load Control .  
bits 7−0  
NOTE: DAC2 and DAC3 available only on the MSC1211 and MSC1212.  
DAC High Byte (DACH)  
7
6
5
4
3
2
1
0
Reset Value  
SFR B6h  
00h  
DACH7−0 Most Significant Byte Register for DAC0−3 and DAC Control (1 and 3).  
bits 7−0  
NOTE: DAC2 and DAC3 available only on the MSC1211 and MSC1212.  
DAC Select (DACSEL)  
7
6
5
4
3
2
1
0
Reset Value  
SFR B7h  
DSEL7  
DSEL6  
DSEL5  
DSEL4  
DSEL3  
DSEL2  
DSEL1  
DSEL0  
00h  
DSEL7−0  
DAC Select and DAC Control Select. The DACSEL register selects which DAC output register or which DAC  
bits 7−0  
control register is accessed by the DACL and DACH registers.  
DACSEL (B7h)  
DACL (B5h)  
RESET VALUE  
DACH (B6h)  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
DAC0 (high)  
DAC1 (high)  
DAC0 (low)  
DAC1 (low)  
0000h  
0000h  
0000h  
0000h  
6363h  
0303h  
−−00h  
(1)  
(1)  
DAC2 (high)  
DAC2 (low)  
(1)  
(1)  
DAC3 (high)  
DAC3 (low)  
DACCON1  
DACCON0  
(1)  
(1)  
DACCON3  
DACCON2  
LOADCON  
(1)  
DAC2 and DAC3 available only on the MSC1211 and MSC1212.  
79  
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
DAC0 Control (DACCON0)  
DACSEL = 04h  
7
6
5
4
3
2
1
0
Reset Value  
SFR B5h  
COR0  
EOD0  
IDAC0DIS  
IDAC0SINK  
0
SELREF0  
DOM0_1  
DOM0_0  
63h  
COR0  
Current Over Range on DAC0  
bit 7  
Write: 0 = Clear to release from high-impedance state back to normal mode unless an over-range condition exists.  
1 = NOP  
Read: 0 = No current over range for DAC0.  
0 = NOP  
1 = IDAC overcurrent for three consecutive ticks on ms clock USEC (EOD0 = 1) or Current Over Range raw  
signal (EOD0 = 0).  
EOD0  
Enable Over-Current Detection  
bit 6  
0 = Disable over-current detection.  
1 = Enable over-current detection (default). After three consecutive ticks on MSEC clock of overcurrent, the DAC is  
disabled; however, the register values are preserved. Writing to COR0 releases the high-impedance state.  
IDAC0DIS IDAC0 Disable (for DOM0 = 00)  
bit 5  
0 = IDAC on mode for DAC0.  
1 = IDAC off mode for DAC0 (default).  
IDAC0SINK ENABLE CURRENT SINK  
bit 4  
0 = DAC0 is sourcing current.  
1 = DAC0 is sinking current using external device.  
Not Used  
bit 3  
SELREF0 Select the Reference Voltage for DAC0 Voltage Reference.  
bit 2  
0 = DAC0 V  
1 = DAC0 V  
= AV  
(default).  
REF  
REF  
DD  
= voltage on REF IN+/REFOUT pin.  
DOM0_1−0 DAC Output Mode DAC0.  
bits 1−0  
DOM0  
OUTPUT MODE for DAC0  
00  
01  
10  
11  
Normal VDAC output; IDAC controlled by IDAC0DIS bit.  
Power-Down mode—VDAC output off 1kto AGND, IDAC off.  
Power-Down mode—VDAC output off 100kto AGND, IDAC off.  
Power-Down mode—VDAC output off high impedance, IDAC off (default).  
80  
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
DAC1 Control (DACCON1)  
DACSEL = 04h  
7
6
5
4
3
2
1
0
Reset Value  
SFR B6h  
COR1  
EOD1  
IDAC1DIS  
IDAC1SINK  
0
SELREF1  
DOM1_1  
DOM1_0  
63h  
COR1  
Current Over Range on DAC1  
bit 7  
Write: 0 = Clear to release from high-impedance state back to normal mode unless an over-range condition exists.  
1 = No effect.  
Read: 0 = No current over range for DAC1.  
0 = No effect.  
1 = IDAC overcurrent for three consecutive ticks on ms clock USEC (EOD1 = 1) or Current Over Range raw  
signal (EOD0 = 0).  
EOD1  
Enable Over-Current Detection  
bit 6  
0 = Disable over-current detection.  
1 = Enable over-current detection (default). After three consecutive ticks on MSEC clock of overcurrent, the DAC is  
disabled; however, the register values are preserved. Writing to COR1 releases the high-impedance state.  
IDAC1DIS IDAC1 Disable (for DOM1 = 00)  
bit 5  
0 = IDAC on mode for DAC1.  
1 = IDAC off mode for DAC1 (default).  
IDAC1SINK ENABLE CURRENT SINK  
bit 4  
0 = DAC1 is sourcing current.  
1 = DAC1 is sinking current using external device.  
Not Used  
bit 3  
SELREF1 Select the Reference Voltage for DAC1 Voltage Reference.  
bit 2  
0 = DAC1 V  
1 = DAC1 V  
= AV  
(default).  
REF  
REF  
DD  
= voltage on V  
IN pins.  
REF  
DOM1_1−0 DAC Output Mode DAC1.  
bits 1−0  
DOM1  
OUTPUT MODE for DAC1  
00  
01  
10  
11  
Normal VDAC output; IDAC controlled by IDAC1DIS bit.  
Power-Down mode—VDAC output off 1kto AGND, IDAC off.  
Power-Down mode—VDAC output off 100kto AGND, IDAC off.  
Power-Down mode—VDAC output off high impedance, IDAC off (default).  
81  
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
DAC2 Control (DACCON2) (Available only on the MSC1211 and MSC1212)  
DACSEL = 05h  
7
6
5
4
3
2
1
0
Reset Value  
SFR B5h  
0
0
0
0
0
SELREF2  
DOM2_1  
DOM2_0  
03h  
SELREF2 Select the Reference Voltage for DAC2 Voltage Reference.  
bit 2  
0 = DAC2 V  
1 = DAC2 V  
= AV  
(default).  
REF  
REF  
DD  
= internal V  
.
REF  
DOM2_1−0 DAC Output Mode DAC2.  
bits 1−0  
DOM2  
OUTPUT MODE for DAC2  
00  
01  
10  
11  
Normal VDAC output.  
Power-Down mode—VDAC output off 1kto AGND, IDAC off.  
Power-Down mode—VDAC output off 100kto AGND, IDAC off.  
Power-Down mode—VDAC output off high impedance, IDAC off (default).  
DAC3 Control (DACCON3) (Available only on the MSC1211 and MSC1212)  
DACSEL = 05h  
7
6
5
4
3
2
1
0
Reset Value  
SFR B6h  
0
0
0
0
0
SELREF3  
DOM3_1  
DOM3_0  
03h  
SELREF3 Select the Reference Voltage for DAC3 Voltage Reference.  
bit 2  
0 = DAC3 V  
1 = DAC3 V  
= AV  
(default).  
REF  
REF  
DD  
= internal V  
.
REF  
DOM3_1−0 DAC Output Mode DAC3.  
bits 1−0  
DOM2  
OUTPUT MODE for DAC3  
00  
01  
10  
11  
Normal VDAC output.  
Power-Down mode—VDAC output off 1kto AGND, IDAC off.  
Power-Down mode—VDAC output off 100kto AGND, IDAC off.  
Power-Down mode—VDAC output off high impedance, IDAC off (default).  
82  
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
DAC Load Control (LOADCON)  
DACSEL = 06h  
7
6
5
4
3
2
1
0
Reset Value  
SFR B5h  
D3LOAD1  
D3LOAD0  
D2LOAD1  
D2LOAD0  
D1LOAD1  
D1LOAD0  
D0LOAD1  
D0LOAD0  
00h  
D3LOAD1−0 (Available only on MSC1211 and MSC1212)  
bit 7−6 The DAC load options are listed below:  
DxLOAD  
OUTPUT MODE for  
00  
01  
10  
11  
Direct load: write to DACxL directly loads the DAC buffer and the DAC output (write to DACxH does not load DAC output).  
Delay load: the values last written to DACxL/DACxH will be transferred to the DAC output on the next MSEC timer tick.  
Delay load: the values last written to DACxL/DACxH will be transferred to the DAC output on the next HMSEC timer tick.  
Sync load: the values contained in the DACxL/DACxH registers will be transferred to the DAC output immediately after  
11b is written to this register.  
D2LOAD1−0 (Available only on MSC1211 and MSC1212)  
bit 5−4  
D1LOAD1−0  
bit 3−2  
D0LOAD1−0  
bit 1−0  
Interrupt Priority (IP)  
7
6
5
4
3
2
1
0
Reset Value  
SFR B8h  
1
PS1  
PT2  
PS0  
PT1  
PX1  
PT0  
PX0  
80h  
PS1  
Serial Port 1 Interrupt. This bit controls the priority of the serial Port 1 interrupt.  
0 = Serial Port 1 priority is determined by the natural priority order.  
1 = Serial Port 1 is a high-priority interrupt.  
bit 6  
PT2  
Timer 2 Interrupt. This bit controls the priority of the Timer 2 interrupt.  
0 = Timer 2 priority is determined by the natural priority order.  
1 = Timer 2 priority is a high-priority interrupt.  
bit 5  
PS0  
Serial Port 0 Interrupt. This bit controls the priority of the serial Port 0 interrupt.  
0 = Serial Port 0 priority is determined by the natural priority order.  
1 = Serial Port 0 is a high-priority interrupt.  
bit 4  
PT1  
Timer 1 Interrupt. This bit controls the priority of the Timer 1 interrupt.  
0 = Timer 1 priority is determined by the natural priority order.  
1 = Timer 1 priority is a high-priority interrupt.  
bit 3  
PX1  
External Interrupt 1. This bit controls the priority of external interrupt 1.  
0 = External interrupt 1 priority is determined by the natural priority order.  
1 = External interrupt 1 is a high-priority interrupt.  
bit 2  
PT0  
Timer 0 Interrupt. This bit controls the priority of the Timer 0 interrupt.  
0 = Timer 0 priority is determined by the natural priority order.  
1 = Timer 0 priority is a high-priority interrupt.  
bit 1  
PX0  
External Interrupt 0. This bit controls the priority of external interrupt 0.  
0 = External interrupt 0 priority is determined by the natural priority order.  
1 = External interrupt 0 is a high-priority interrupt.  
bit 0  
83  
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
Serial Port 1 Control (SCON1)  
7
6
5
4
3
2
1
0
Reset Value  
SFR C0h  
SM0_1  
SM1_1  
SM2_1  
REN_1  
TB8_1  
RB8_1  
TI_1  
RI_1  
00h  
SM0−2  
Serial Port 1 Mode. These bits control the mode of serial Port 1. Modes 1, 2, and 3 have 1 start and 1 stop bit in  
bits 7−5  
addition to the 8 or 9 data bits.  
MODE  
SM0 SM1 SM2 FUNCTION  
LENGTH  
PERIOD  
(1)  
0
0
0
0
0
0
0
1
Synchronous  
Synchronous  
8 bits  
8 bits  
12 p  
4 p  
CLK  
(1)  
CLK  
(2)  
(2)  
1
1
0
0
1
1
0
1
Asynchronous  
10 bits  
10 bits  
Timer 1 Baud Rate Equation  
Timer 1 Baud Rate Equation  
(3)  
Valid Stop Required  
(1)  
(1)  
2
2
1
0
0
Asynchronous  
11 bits  
64 p  
32 p  
(SMOD = 0)  
(SMOD = 1)  
CLK  
CLK  
(4)  
(4)  
(1)  
(1)  
1
0
1
Asynchronous with Multiprocessor Communication  
11 bits  
64 p  
32 p  
(SMOD = 0)  
(SMOD = 1)  
CLK  
CLK  
(2)  
(2)  
3
3
1
1
1
1
0
1
Asynchronous  
11 bits  
11 bits  
Timer 1 Baud Rate Equation  
Timer 1 Baud Rate Equation  
Asynchronous with Multiprocessor Communication  
(1) pCLK will be equal to tCLK, except that pCLK will stop for Idle mode.  
(2) For modes 1 and 3, the selection of Timer 1 for baud rate is specified via the T2CON (C8h) register.  
(3) RI_0 will only be activated when a valid STOP is received.  
(4) RI_0 will not be activated if bit 9 = 0.  
REN_1  
Receive Enable. This bit enables/disables the serial Port 1 received shift register.  
bit 4  
0 = Serial Port 1 reception disabled.  
1 = Serial Port 1 received enabled (modes 1, 2, and 3). Initiate synchronous reception (mode 0).  
TB8_1  
9th Transmission Bit State. This bit defines the state of the 9th transmission bit in serial Port 1 modes 2 and 3.  
bit 3  
RB8_1  
9th Received Bit State. This bit identifies the state of the 9th reception bit of received data in serial Port 1 modes  
bit 2  
2 and 3. In serial port mode 1, when SM2_1 = 0, RB8_1 is the state of the stop bit. RB8_1 is not used in mode 0.  
TI_1  
bit 1  
Transmitter Interrupt Flag. This bit indicates that data in the serial Port 1 buffer has been completely shifted out.  
In serial port mode 0, TI_1 is set at the end of the 8th data bit. In all other modes, this bit is set at the end of the last  
data bit. This bit must be cleared by software to transmit the next byte.  
RI_1  
bit 0  
Receiver Interrupt Flag. This bit indicates that a byte of data has been received in the serial Port 1 buffer. In serial  
port mode 0, RI_1 is set at the end of the 8th bit. In serial port mode 1, RI_1 is set after the last sample of the incoming  
stop bit subject to the state of SM2_1. In modes 2 and 3, RI_1 is set after the last sample of RB8_1. This bit must  
be cleared by software to receive the next byte.  
Serial Data Buffer 1 (SBUF1)  
7
6
5
4
3
2
1
0
Reset Value  
SFR C1h  
00h  
SBUF1.7−0 Serial Data Buffer 1. Data for serial Port 1 is read from or written to this location. The serial transmit and receive  
bits 7−0  
buffers are separate registers, but both are addressed at this location.  
84  
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
Enable Wake Up (EWU) Waking Up from Idle Mode  
7
6
5
4
3
2
1
0
Reset Value  
SFR C6h  
EWUWDT  
EWUEX1  
EWUEX0  
00h  
Auxiliary interrupts will wake up from Idle mode. They are enabled with EAI (EICON.5).  
EWUWDT Enable Wake Up Watchdog Timer. Wake using watchdog timer interrupt.  
bit 2  
0 = Don’t wake up on watchdog timer interrupt.  
1 = Wake up on watchdog timer interrupt.  
EWUEX1  
Enable Wake Up External 1. Wake using external interrupt source 1.  
0 = Don’t wake up on external interrupt source 1.  
bit 1  
1 = Wake up on external interrupt source 1.  
EWUEX0  
Enable Wake Up External 0. Wake using external interrupt source 0.  
0 = Don’t wake up on external interrupt source 0.  
bit 0  
1 = Wake up on external interrupt source 0.  
System Clock Divider (SYSCLK)  
7
6
5
4
3
2
1
0
Reset Value  
SFR C7h  
0
0
DIVMOD1  
DIVMOD0  
0
DIV2  
DIV1  
DIV0  
00h  
NOTE: Changing SYSCLK registers affects all internal clocks, including the ADC clock.  
DIVMOD1−0 Clock Divide Mode  
bits 5−4  
Write:  
DIVMOD  
DIVIDE MODE  
00  
01  
10  
Normal mode (default, no divide).  
Immediate mode: start divide immediately; return to Normal mode on Idle mode wakeup condition or by direct write to SFR.  
Delay mode: same as Immediate mode, except that the mode changes with the millisecond interrupt (MSINT). If MSINT is  
enabled, the divide will start on the next MSINT and return to normal mode on the following MSINT. If MSINT is not  
enabled, the divide will start on the next MSINT condition (even if masked) but will not leave the divide mode until the  
MSINT counter overflows, which follows a wakeup condition. Can exit by directly writing to SFR.  
11  
Manual mode: start divide immediately; exit mode only by directly writing to SFR. Same as immediate mode, but cannot  
return to Normal mode on Idle mode wakeup condition; only by directly writing to SFR.  
Read:  
DIVMOD  
DIVISION MODE STATUS  
00  
01  
10  
11  
No divide  
Divider is in Immediate mode  
Divider is in Delay mode  
Medium mode  
DIV2−0  
Divide Mode  
bit 2−0  
DIV  
DIVISOR  
f
FREQUENCY  
CLK  
000  
001  
010  
011  
100  
101  
110  
111  
Divide by 2 (default)  
Divide by 4  
f
f
f
f
f
f
f
f
= f  
SYS  
= f  
SYS  
= f  
SYS  
= f  
SYS  
= f  
SYS  
= f  
SYS  
= f  
SYS  
= f  
SYS  
/2  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
/4  
Divide by 8  
/8  
Divide by 16  
/16  
Divide by 32  
/32  
Divide by 1024  
Divide by 2048  
Divide by 4096  
/1024  
/2048  
/4096  
85  
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
Timer 2 Control (T2CON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR C8h  
TF2  
EXF2  
RCLK  
TCLK  
EXEN2  
TR2  
C/T2  
CP/RL2  
00h  
TF2  
Timer 2 Overflow Flag. This flag will be set when Timer 2 overflows from FFFFh. It must be cleared by software.  
bit 7  
TF2 will only be set if RCLK and TCLK are both cleared to ‘0’. Writing a ‘1’ to TF2 forces a Timer 2 interrupt if enabled.  
EXF2  
bit 6  
Timer 2 External Flag. A negative transition on the T2EX pin (P1.1) will cause this flag to be set based on the EXEN2  
(T2CON.3) bit. If set by a negative transition, this flag must be cleared to ‘0’ by software. Setting this bit in software  
will force a timer interrupt if enabled.  
RCLK  
Receive Clock Flag. This bit determines the serial Port 0 timebase when receiving data in serial modes 1 or 3.  
0 = Timer 1 overflow is used to determine receiver baud rate for USART0.  
bit 5  
1 = Timer 2 overflow is used to determine receiver baud rate for USART0.  
Setting this bit will force Timer 2 into baud rate generation mode. The timer will operate from a divide by 2 of the  
external clock.  
TCLK  
Transmit Clock Flag. This bit determines the serial Port 0 timebase when transmitting data in serial modes 1 or 3.  
0 = Timer 1 overflow is used to determine transmitter baud rate for USART0.  
bit 4  
1 = Timer 2 overflow is used to determine transmitter baud rate for USART0.  
Setting this bit will force Timer 2 into baud rate generation mode. The timer will operate from a divide by 2 of the  
external clock.  
EXEN2  
Timer 2 External Enable. This bit enables the capture/reload function on the T2EX pin if Timer 2 is not generating  
bit 3  
baud rates for the serial port.  
0 = Timer 2 will ignore all external events at T2EX.  
1 = Timer 2 will capture or reload a value if a negative transition is detected on the T2EX pin.  
TR2  
Timer 2 Run Control. This bit enables/disables the operation of Timer 2. Halting this timer will preserve the current  
bit 2  
count in TH2, TL2.  
0 = Timer 2 is halted.  
1 = Timer 2 is enabled.  
C/T2  
Counter/Timer Select. This bit determines whether Timer 2 will function as a timer or counter. Independent of this  
bit 1  
bit, Timer 2 runs at 2 clocks per tick when used in baud rate generator mode.  
0 = Timer 2 functions as a timer. The speed of Timer 2 is determined by the T2M bit (CKCON.5).  
1 = Timer 2 will count negative transitions on the T2 pin (P1.0).  
CP/RL2  
bit 0  
Capture/Reload Select. This bit determines whether the capture or reload function will be used for Timer 2. If either  
RCLK or TCLK is set, this bit will not function and the timer will function in an auto-reload mode following each  
overflow.  
0 = Auto-reloads will occur when Timer 2 overflows or a falling edge is detected on T2EX if EXEN2 = 1.  
1 = Timer 2 captures will occur when a falling edge is detected on T2EX if EXEN2 = 1.  
Timer 2 Capture LSB (RCAP2L)  
7
6
5
4
3
2
1
0
Reset Value  
SFR CAh  
00h  
RCAP2L  
Timer 2 Capture LSB. This register is used to capture the TL2 value when Timer 2 is configured in capture mode.  
bits 7−0  
RCAP2L is also used as the LSB of a 16-bit reload value when Timer 2 is configured in auto-reload mode.  
86  
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
Timer 2 Capture MSB (RCAP2H)  
7
6
5
4
3
2
1
0
Reset Value  
SFR CBh  
00h  
RCAP2H  
bits 7−0  
Timer 2 Capture MSB. This register is used to capture the TH2 value when Timer 2 is configured in capture mode.  
RCAP2H is also used as the MSB of a 16-bit reload value when Timer 2 is configured in auto-reload mode.  
Timer 2 LSB (TL2)  
7
6
5
4
3
2
1
0
Reset Value  
SFR CCh  
00h  
TL2  
bits 7−0  
Timer 2 LSB. This register contains the least significant byte of Timer 2.  
Timer 2 MSB (TH2)  
7
6
5
4
3
2
1
0
Reset Value  
SFR CDh  
00h  
TH2  
Timer 2 MSB. This register contains the most significant byte of Timer 2.  
bits 7−0  
Program Status Word (PSW)  
7
6
5
4
3
2
1
0
Reset Value  
SFR D0h  
CY  
AC  
F0  
RS1  
RS0  
OV  
F1  
P
00h  
CY  
Carry Flag. This bit is set when the last arithmetic operation resulted in a carry (during addition) or a borrow (during  
bit 7  
subtraction). Otherwise, it is cleared to ‘0’ by all arithmetic operations.  
AC  
Auxiliary Carry Flag. This bit is set to ‘1’ if the last arithmetic operation resulted in a carry into (during addition), or  
bit 6  
a borrow (during subtraction) from the high order nibble. Otherwise, it is cleared to ‘0’ by all arithmetic operations.  
F0  
User Flag 0. This is a bit-addressable, general-purpose flag for software control.  
bit 5  
RS1, RS0  
Register Bank Select 1−0. These bits select which register bank is addressed during register accesses.  
bits 4−3  
RS1  
RS0  
REGISTER BANK  
ADDRESS  
0
0
1
1
0
1
0
1
0
1
2
3
00h − 07h  
08h − 0Fh  
10h − 17h  
18h − 1Fh  
OV  
Overflow Flag. This bit is set to ‘1’ if the last arithmetic operation resulted in a carry (addition), borrow (subtraction),  
bit 2  
or overflow (multiply or divide). Otherwise, it is cleared to ‘0’ by all arithmetic operations.  
F1  
User Flag 1. This is a bit-addressable, general-purpose flag for software control.  
bit 1  
P
Parity Flag. This bit is set to ‘1’ if the modulo-2 sum of the 8 bits of the accumulator is 1 (odd parity), and cleared to  
bit 0  
‘0’ on even parity.  
87  
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
ADC Offset Calibration Low Byte (OCL)  
7
6
5
4
3
2
1
0
Reset Value  
SFR D1h  
00h  
OCL  
bits 7−0  
ADC Offset Calibration Low Byte. This is the low byte of the 24-bit word that contains the ADC offset  
calibration. A value that is written to this location will set the ADC offset calibration value.  
ADC Offset Calibration Middle Byte (OCM)  
7
6
5
4
3
2
1
0
Reset Value  
SFR D2h  
00h  
OCM  
bits 7−0  
ADC Offset Calibration Middle Byte. This is the middle byte of the 24-bit word that contains the ADC offset  
calibration. A value that is written to this location will set the ADC offset calibration value.  
ADC Offset Calibration High Byte (OCH)  
7
6
5
4
3
2
1
0
Reset Value  
SFR D3h  
00h  
OCH  
bits 7−0  
ADC Offset Calibration High Byte. This is the high byte of the 24-bit word that contains the ADC offset  
calibration. A value that is written to this location will set the ADC offset calibration value.  
ADC Gain Calibration Low Byte (GCL)  
7
6
5
4
3
2
1
0
Reset Value  
SFR D4h  
5Ah  
GCL  
bits 7−0  
ADC Gain Calibration Low Byte. This is the low byte of the 24-bit word that contains the ADC gain  
calibration. A value that is written to this location will set the ADC gain calibration value.  
ADC Gain Calibration Middle Byte (GCM)  
7
6
5
4
3
2
1
0
Reset Value  
SFR D5h  
ECh  
GCM  
bits 7−0  
ADC Gain Calibration Middle Byte. This is the middle byte of the 24-bit word that contains the ADC gain  
calibration. A value that is written to this location will set the ADC gain calibration value.  
ADC Gain Calibration High Byte (GCH)  
7
6
5
4
3
2
1
0
Reset Value  
SFR D6h  
5Fh  
GCH  
ADC Gain Calibration High Byte. This is the high byte of the 24-bit word that contains the ADC gain  
bits 7−0  
calibration. A value that is written to this location will set the ADC gain calibration value.  
88  
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
ADC Input Multiplexer (ADMUX)  
7
6
5
4
3
2
1
0
Reset Value  
SFR D7h  
INP3  
INP2  
INP1  
INP0  
INN3  
INN2  
INN1  
INN0  
01h  
INP3−0  
Input Multiplexer Positive Input. This selects the positive signal input.  
bits 7−4  
INP3 INP2 INP1 INP0 POSITIVE INPUT  
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
1
1
0
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
AIN0 (default)  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
AINCOM  
Temperature Sensor (requires ADMUX = FFh)  
INN3−0  
Input Multiplexer Negative Input. This selects the negative signal input.  
bits 3−0  
INN3 INN2 INN1 INN0 NEGATIVE INPUT  
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
1
1
0
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
AIN0  
AIN1 (default)  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
AINCOM  
Temperature Sensor (requires ADMUX = FFh)  
89  
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
Enable Interrupt Control (EICON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR D8h  
SMOD1  
1
EAI  
AI  
WDTI  
0
0
0
40h  
SMOD1  
Serial Port 1 Mode. When this bit is set the serial baud rate for Port 1 will be doubled.  
0 = Standard baud rate for Port 1 (default).  
bit 7  
1 = Double baud rate for Port 1.  
EAI  
Enable Auxiliary Interrupt. The Auxiliary Interrupt accesses nine different interrupts which are masked and  
bit 5  
identified by SFR registers PAI (SFR A5h), AIE (SFR A6h), and AISTAT (SFR A7h).  
0 = Auxiliary Interrupt disabled (default).  
1 = Auxiliary Interrupt enabled.  
AI  
bit 4  
Auxiliary Interrupt Flag. AI must be cleared by software before exiting the interrupt service routine, after the source  
of the interrupt is cleared. Otherwise, the interrupt occurs again. Setting AI in software generates an Auxiliary  
Interrupt, if enabled.  
0 = No Auxiliary Interrupt detected (default).  
1 = Auxiliary Interrupt detected.  
WDTI  
Watchdog Timer Interrupt Flag. WDTI must be cleared by software before exiting the interrupt service routine.  
bit 3  
Otherwise, the interrupt occurs again. Setting WDTI in software generates a watchdog time interrupt, if enabled. The  
Watchdog timer can generate an interrupt or reset. The interrupt is available only if the reset action is disabled in  
HCR0.  
0 = No Watchdog Timer Interrupt Detected (default).  
1 = Watchdog Timer Interrupt Detected.  
ADC Results Low Byte (ADRESL)  
7
6
5
4
3
2
1
0
Reset Value  
SFR D9h  
00h  
ADRESL  
bits 7−0  
The ADC Results Low Byte. This is the low byte of the 24-bit word that contains the ADC results.  
Reading from this register clears the ADC interrupt; however, AI in EICON (SFR D8) must also be cleared.  
ADC Results Middle Byte (ADRESM)  
7
6
5
4
3
2
1
0
Reset Value  
SFR DAh  
00h  
ADRESM  
The ADC Results Middle Byte. This is the middle byte of the 24-bit word that contains the A/D conversion results.  
bits 7−0  
ADC Results High Byte (ADRESH)  
7
6
5
4
3
2
1
0
Reset Value  
SFR DBh  
00h  
ADRESH  
The ADC Results High Byte. This is the high byte of the 24-bit word that contains the A/D conversion results.  
bits 7−0  
90  
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
ADC Control 0 (ADCON0)  
7
6
5
4
3
2
1
0
Reset Value  
SFR DCh  
REFCLK  
BOD  
EVREF  
VREFH  
EBUF  
PGA2  
PGA1  
PGA0  
30h  
REFCLK  
Reference Clock. The reference is specified with a 250kHz clock. The REFCLK should be selected by choosing  
bit 7  
the appropriate source so that it does not exceed 250kHz.  
tCLK  
0 +  
(ACLK ) 1) * 4  
USEC  
1 +  
4
BOD  
bit 6  
Burnout Detect. When enabled this connects a positive current source to the positive channel and a negative  
current source to the negative channel. If the channel is open circuit then the ADC results will be full-scale. Used with  
Buffer ON.  
0 = Burnout Current Sources Off (default).  
1 = Burnout Current Sources On.  
EVREF  
Enable Internal Voltage Reference. If the internal voltage reference is not used, it should be turned off to savepower  
bit 5  
and reduce noise.  
0 = Internal Voltage Reference Off.  
1 = Internal Voltage Reference On (default). REF IN− should be connected to AGND in this mode. REF IN+ should  
have a 0.1µF capacitor.  
VREFH  
Voltage Reference High Select. The internal voltage reference can be selected to be 2.5V or 1.25V.  
0 = REFOUT/REF IN+ is 1.25V.  
bit 4  
1 = REFOUT/REF IN+ is 2.5V (default).  
EBUF  
Enable Buffer. Enable the input buffer to provide higher input impedance but limits the input voltage range and  
bit 3  
dissipates more power.  
0 = Buffer disabled (default).  
1 = Buffer enabled.  
PGA2−0  
Programmable Gain Amplifier. Sets the gain for the PGA from 1 to 128.  
bits 2−0  
PGA2  
PGA1  
PGA0  
GAIN  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1 (default)  
2
4
8
16  
32  
64  
128  
91  
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
ADC Control 1 (ADCON1)  
7
6
5
4
3
2
1
0
Reset Value  
SFR DDh  
OF_UF  
POL  
SM1  
SM0  
CAL2  
CAL1  
CAL0  
0000 0000b  
OF_UF  
Overflow/Underflow. If this bit is set, the data in the summation register is invalid. Either an overflow or underflow  
bit 7  
occurred. The bit is cleared by writing a ‘0’ to it.  
POL  
Polarity. Polarity of the ADC result and Summation register.  
0 = Bipolar.  
bit 6  
1 = Unipolar. The LSB size is 1/2 the size of bipolar (twice the resolution).  
POL  
0
ANALOG INPUT  
DIGITAL OUTPUT  
+FSR  
ZERO  
−FSR  
7FFFFFh  
000000h  
800000h  
+FSR  
ZERO  
−FSR  
FFFFFFh  
000000h  
000000h  
1
SM1−0  
Settling Mode. Selects the type of filter or auto-select which defines the digital filter settling characteristics.  
bits 5−4  
SM1  
SM0  
SETTLING MODE  
0
0
1
1
0
1
0
1
Auto  
Fast Settling Filter  
2
Sinc Filter  
3
Sinc Filter  
CAL2−0  
Calibration Mode Control Bits.  
bits 2−0  
Writing to these bits initiates the ADC calibration.  
CAL2  
CAL1  
CAL0 CALIBRATION MODE  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
No Calibration (default)  
Self-Calibration, Offset and Gain  
Self-Calibration, Offset only  
Self-Calibration, Gain only  
System Calibration, Offset only  
System Calibration, Gain only  
Reserved  
Reserved  
:
NOTE Read Value—000b.  
ADC Control 2 (ADCON2)  
7
6
5
4
3
2
1
0
Reset Value  
SFR DEh  
DR7  
DR6  
DR5  
DR4  
DR3  
DR2  
DR1  
DR0  
1Bh  
DR7−0  
bits 7−0  
Decimation Ratio LSB.  
ADC Control 3 (ADCON3)  
7
6
5
4
3
2
1
0
Reset Value  
SFR DFh  
DR10  
DR9  
DR8  
06h  
DR10−8  
Decimation Ratio Most Significant 3 Bits. The ADC output data rate = (ACLK + 1)/64/Decimation Ratio.  
bits 2−0  
92  
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
Accumulator (A or ACC)  
7
6
5
4
3
2
1
0
Reset Value  
SFR E0h  
ACC.7  
ACC.6  
ACC.5  
ACC.4  
ACC.3  
ACC.2  
ACC.1  
ACC.0  
00h  
ACC.7−0  
bits 7−0  
Accumulator. This register serves as the accumulator for arithmetic and logic operations.  
Summation/Shifter Control (SSCON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR E1h  
SSCON1  
SSCON0  
SCNT2  
SCNT1  
SCNT0  
SHF2  
SHF1  
SHF0  
00h  
The Summation register is powered down when the ADC is powered down. If all zeroes are written to this register, the 32-bit  
SUMR3−0 registers will be cleared. The Summation registers will do sign-extend if Bipolar mode is selected in ADCON1.  
SSCON1−0 Summation/Shift Count.  
bits 7−6  
SSCON1 SSCON0  
SCNT2  
SCNT1  
SCNT0  
SHF2  
SHF1  
SHF0  
DESCRIPTION  
0
0
0
1
0
1
0
0
0
0
1
1
0
0
0
0
0
0
Clear Summation Register  
0
1
0
0
0
0
CPU Summation on Write to SUMR0 (sum count/shift ignored)  
CPU Subtraction on Write to SUMR0 (sum count/shift ignored)  
CPU Shift only  
1
0
0
0
0
0
x
x
x
Note (1)  
x
Note (1)  
x
Note (1)  
x
Note (1)  
Note (1)  
Note (1)  
Note (1)  
Note (1)  
Note (1)  
ADC Summation only  
Note (1)  
Note (1)  
Note (1)  
ADC Summation completes, then shift completes  
(1)  
Refer to register bit definition.  
SCNT2−0  
Summation Count. When the summation is complete an interrupt will be generated unless masked. Reading the  
bits 5−3  
SUMR0 register clears the interrupt.  
SCNT2  
SCNT1  
SCNT0 SUMMATION COUNT  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
2
4
8
16  
32  
64  
128  
256  
SHF2−0  
Shift Count.  
bits 2−0  
SHF2  
SHF1  
SHF0  
SHIFT  
DIVIDE  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
2
3
4
5
6
7
8
2
4
8
16  
32  
64  
128  
256  
93  
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
Summation 0 (SUMR0)  
7
6
5
4
3
2
1
0
Reset Value  
SFR E2h  
00h  
SUMR0  
bits 7−0  
Summation 0. This is the least significant byte of the 32-bit summation register, or bits 0 to 7.  
Write: values in SUMR3−0 are added to the summation register.  
Read: clears the Summation Count Interrupt; however, AI in EICON (SFR D8) must also be cleared.  
Summation 1 (SUMR1)  
7
6
5
4
3
2
1
0
Reset Value  
SFR E3h  
00h  
SUMR1  
Summation 1. This is the most significant byte of the lowest 16 bits of the summation register, or bits 8−15.  
bits 7−0  
Summation 2 (SUMR2)  
7
6
5
4
3
2
1
0
Reset Value  
SFR E4h  
00h  
SUMR2  
Summation 2. This is the most significant byte of the lowest 24 bits of the summation register, or bits 16−23.  
bits 7−0  
Summation 3 (SUMR3)  
7
6
5
4
3
2
1
0
Reset Value  
SFR E5h  
00h  
SUMR3  
Summation 3. This is the most significant byte of the 32-bit summation register, or bits 24−31.  
bits 7−0  
Offset DAC (ODAC)  
7
6
5
4
3
2
1
0
Reset Value  
SFR E6h  
00h  
ODAC  
bits 7−0  
Offset DAC. This register will shift the input by up to half of the ADC full-scale input range. The Offset DAC  
value is summed into the ADC prior to conversion. Writing 00h or 80h to ODAC turns off the Offset DAC.. The offset  
DAC should be cleared prior to calibration, since the offset DAC analog output is applied directly to the ADC input.  
bit 7  
Offset DAC Sign bit.  
0 = Positive  
1 = Negative  
ƪ
ƫ
ODAC 6 : 0  
*VREF  
2 @ PGA  
bit7  
(
)
@ ǒ Ǔ@ * 1  
bit 6−0  
Offset +  
127  
NOTE: ODAC cannot be used to offset the analog inputs so that the buffer can be used for signals within 50mV of AGND.  
94  
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
Low Voltage Detect Control (LVDCON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR E7h  
ALVDIS  
ALVD2  
ALVD1  
ALVD0  
DLVDIS  
DLVD2  
DLVD1  
DLVD0  
00h  
ALVDIS  
Analog Low Voltage Detect Disable.  
bit 7  
0 = Enable Detection of Low Analog Supply Voltage.  
1 = Disable Detection of Low Analog Supply Voltage.  
ALVD2−0  
Analog Voltage Detection Level.  
bits 6−4  
ALVD2  
ALVD1  
ALVD0  
VOLTAGE LEVEL  
AV 2.7V (default)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
DD  
AV  
3.0V  
3.3V  
4.0V  
4.2V  
4.5V  
4.7V  
DD  
DD  
DD  
DD  
DD  
DD  
AV  
AV  
AV  
AV  
AV  
External Voltage AIN7 compared to 1.2V  
DLVDIS  
Digital Low Voltage Detect Disable.  
bit 3  
0 = Enable Detection of Low Digital Supply Voltage.  
1 = Disable Detection of Low Digital Supply Voltage.  
DLVD2−0  
Digital Voltage Detection Level.  
bits 2−0  
DLVD2  
DLVD1  
DLVD0  
VOLTAGE LEVEL  
DV 2.7V (default)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
DD  
DV  
3.0V  
3.3V  
4.0V  
4.2V  
4.5V  
4.7V  
DD  
DD  
DD  
DD  
DD  
DD  
DV  
DV  
DV  
DV  
DV  
External Voltage AIN6 compared to 1.2V  
95  
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
Extended Interrupt Enable (EIE)  
7
6
5
4
3
2
1
0
Reset Value  
SFR E8h  
1
1
1
EWDI  
EX5  
EX4  
EX3  
EX2  
E0h  
EWDI  
Enable Watchdog Interrupt. This bit enables/disables the watchdog interrupt. The Watchdog timer is enabled by  
bit 4  
(SFR FFh) and PDCON (SFR F1h) registers.  
0 = Disable the Watchdog Interrupt  
1 = Enable Interrupt Request Generated by the Watchdog Timer  
EX5  
External Interrupt 5 Enable. This bit enables/disables external interrupt 5.  
0 = Disable External Interrupt 5  
bit 3  
1 = Enable External Interrupt 5  
EX4  
External Interrupt 4 Enable. This bit enables/disables external interrupt 4.  
0 = Disable External Interrupt 4  
bit 2  
1 = Enable External Interrupt 4  
EX3  
External Interrupt 3 Enable. This bit enables/disables external interrupt 3.  
0 = Disable External Interrupt 3  
bit 1  
1 = Enable External Interrupt 3  
EX2  
External Interrupt 2 Enable. This bit enables/disables external interrupt 2.  
0 = Disable External Interrupt 2  
bit 0  
1 = Enable External Interrupt 2  
Hardware Product Code 0 (HWPC0)  
7
6
5
4
3
2
1
0
Reset Value  
(1)  
SFR E9h  
0
0
0
0
0
1
MEMORY SIZE  
0000_01xxb  
(1)  
Applies to MSC1211 and MSC1213 only. Reset value for MSC1212 and MSC1214 is 0000_00xxb.  
HWPC0.7−0 Hardware Product Code LSB. Read-only.  
bits 7−0  
MEMORY SIZE  
MODEL  
FLASH MEMORY  
0
0
1
1
0
0
0
1
MSC121xY2  
MSC121xY3  
MSC121xY4  
MSC121xY5  
4kB  
8kB  
16kB  
32kB  
Hardware Product Code 1 (HWPC1)  
7
6
5
4
3
2
1
0
Reset Value  
(1)  
08h  
SFR EAh  
0
0
0
0
1
0
0
0
(1)  
Applies to MSC1211 and MSC1212 only. Reset value for MSC1213 and MSC1214 is 18h.  
HWPC1.7−0 Hardware Product Code MSB. Read-only.  
bits 7−0  
96  
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
Hardware Version (HDWVER)  
7
6
5
4
3
2
1
0
Reset Value  
SFR EBh  
Flash Memory Control (FMCON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR EEh  
0
PGERA  
0
FRCM  
0
BUSY  
SPM  
FPM  
02h  
PGERA  
Page Erase. Available in both user and program modes.  
bit 6  
0 = Disable Page Erase Mode  
1 = Enable Page Erase Mode (automatically set by page_erase Boot ROM routine).  
FRCM  
Frequency Control Mode.  
bit 4  
0 = Bypass (default)  
1 = Use Delay Line. Recommended for saving power.  
BUSY  
Write/Erase BUSY Signal.  
0 = Idle or Available  
1 = Busy  
bit 2  
SPM  
Serial/Parallel Programming Mode. Read-only.  
bit 1  
0 = Indicates the device is in parallel programming mode.  
1 = Indicates the device is in serial programming mode (if FPM also = 1).  
FPM  
Flash Programming Mode. Read-only.  
bit 0  
0 = Indicates the device is operating in UAM.  
1 = Indicates the device is operating in programming mode.  
Flash Memory Timing Control (FTCON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR EFh  
FER3  
FER2  
FER1  
FER0  
FWR3  
FWR2  
FWR1  
FWR0  
A5h  
Refer to Flash Memory Characteristics  
FER3−0  
bits 7−4  
Set Erase. Flash Erase Time = (1 + FER) (MSEC + 1) t  
. This can be broken into multiple shorter erase times.  
For more Information, see Application Report SBAA137, Incremental Flash Memory Page Erase, available for  
CLK  
download from www.ti.com.  
Industrial temperature range: 10ms  
Commercial temperature range: 4ms  
FWR3−0  
bits 3−0  
Set Write. Set Flash Write Time = (1 + FWR) (USEC + 1) 5 tCLK. Total writing time will be longer. For more  
Information, see Application Report SBAA087, In-Application Flash Programming, available for download from  
www.ti.com.  
Range: 30µs to 40µs.  
B Register (B)  
7
6
5
4
3
2
1
0
Reset Value  
SFR F0h  
B.7  
B.6  
B.5  
B.4  
B.3  
B.2  
B.1  
B.0  
00h  
B.7−0  
B Register. This register serves as a second accumulator for certain arithmetic operations.  
bits 7−0  
97  
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
Power-Down Control (PDCON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR F1h  
0
PDDAC  
PDI2C  
PDPWM  
PDADC  
PDWDT  
PDST  
PDSPI  
7Fh  
Turning peripheral modules off puts the MSC1211/12/13/14 in the lowest power mode.  
PDDAC  
DAC Module Control.  
0 = DACs On  
bit 6  
1 = DACs Power Down  
PDI2C  
I2C Control (MSC1211 and MSC1213 only).  
2
bit 5  
0 = I C On (the state is undefined if PDSPI is also = 0)  
2
1 = I C Power Down  
PDPWM  
Pulse Width Module Control.  
0 = PWM On  
bit 4  
1 = PWM Power Down  
PDADC  
ADC Control.  
bit 3  
0 = ADC On  
1 = ADC, VREF, and Summation registers are powered down.  
PDWDT  
Watchdog Timer Control.  
0 = Watchdog Timer On  
bit 2  
1 = Watchdog Timer Power Down  
PDST  
System Timer Control.  
0 = System Timer On  
bit 1  
1 = System Timer Power Down  
PDSPI  
SPI System Control.  
bit 0  
0 = SPI System On (the state is undefined if PDI2C is also = 0)  
1 = SPI System Power Down  
PSEN/ALE Select (PASEL)  
7
6
5
4
3
2
1
0
Reset Value  
SFR F2h  
0
0
PSEN2  
PSEN1  
PSEN0  
0
ALE1  
ALE0  
00h  
PSEN2−0  
PSEN Mode Select.  
bits 5−3  
PSEN2  
PSEN1  
PSEN0  
0
0
1
1
1
0
1
0
1
1
X
X
X
0
PSEN  
CLK  
ADC MODCLK  
Low  
1
High  
ALE1−0  
ALE Mode Select.  
bits 1−0  
ALE1  
ALE0  
0
1
1
X
0
1
ALE  
Low  
High  
:
NOTE X = don’t care.  
98  
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
Analog Clock (ACLK)  
7
6
5
4
3
2
1
0
Reset Value  
SFR F6h  
0
FREQ6  
FREQ5  
FREQ4  
FREQ3  
FREQ2  
FREQ1  
FREQ0  
03h  
FREQ6−0 Clock Frequency Selection. This value + 1 divides the system clock to create the ACLK frequency.  
fCLK  
FREQ ) 1  
bit 6−0  
ACLK frequency +  
fCLK  
fMOD  
+
(
)
ACLK ) 1 * 64  
fMOD  
Decimation  
Data Rate +  
System Reset (SRST)  
7
6
5
4
3
2
1
0
Reset Value  
SFR F7h  
0
0
0
0
0
0
0
RSTREQ  
00h  
RSTREQ  
bit 0  
Reset Request. Setting this bit to ‘1’ and then clearing to ‘0’ will generate a system reset.  
Extended Interrupt Priority (EIP)  
7
6
5
4
3
2
1
0
Reset Value  
SFR F8h  
1
1
1
PWDI  
PX5  
PX4  
PX3  
PX2  
E0h  
PWDI  
Watchdog Interrupt Priority. This bit controls the priority of the watchdog interrupt.  
0 = The watchdog interrupt is low priority.  
bit 4  
1 = The watchdog interrupt is high priority.  
PX5  
External Interrupt 5 Priority. This bit controls the priority of external interrupt 5.  
0 = External interrupt 5 is low priority.  
bit 3  
1 = External interrupt 5 is high priority.  
PX4  
External Interrupt 4 Priority. This bit controls the priority of external interrupt 4.  
0 = External interrupt 4 is low priority.  
bit 2  
1 = External interrupt 4 is high priority.  
PX3  
External Interrupt 3 Priority. This bit controls the priority of external interrupt 3.  
0 = External interrupt 3 is low priority.  
bit 1  
1 = External interrupt 3 is high priority.  
PX2  
External Interrupt 2 Priority. This bit controls the priority of external interrupt 2.  
0 = External interrupt 2 is low priority.  
bit 0  
1 = External interrupt 2 is high priority.  
99  
ꢀ ꢁ ꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢄ  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢆꢅ ꢀ ꢁꢂ ꢃꢄ ꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
Seconds Timer Interrupt (SECINT)  
7
6
5
4
3
2
1
0
Reset Value  
SFR F9h  
WRT  
SECINT6  
SECINT5  
SECINT4  
SECINT3  
SECINT2  
SECINT1  
SECINT0  
7Fh  
This system clock is divided by the value of the 16-bit register MSECH:MSECL. Then, that 1ms timer tick is divided by the  
register HMSEC which provides the 100ms signal used by this seconds timer. Therefore, this seconds timer can generate  
an interrupt which occurs from 100ms to 12.8 seconds. Reading this register will clear the Seconds Interrupt; however, AI  
in EICON (SFR D8h) must also be cleared. This Interrupt can be monitored in the AIE or AIPOL registers.  
WRT  
Write Control. Determines whether to write the value immediately or wait until the current count is finished.  
Read = 0.  
bit 7  
0 = Delay Write Operation. The SEC value is loaded when the current count expires.  
1 = Write Immediately. The counter is loaded once the CPU completes the write operation.  
SECINT6−0 Seconds Count. Normal operation would use 100ms as the clock interval.  
bits 6−0 Seconds Interrupt = (1 + SEC) (HMSEC + 1) (MSEC + 1) t  
.
CLK  
Milliseconds Timer Interrupt (MSINT)  
7
6
5
4
3
2
1
0
Reset Value  
SFR FAh  
WRT  
MSINT6  
MSINT5  
MSINT4  
MSINT3  
MSINT2  
MSINT1  
MSINT0  
7Fh  
The clock used for this timer is the 1ms clock, which results from dividing the system clock by the values in registers  
MSECH:MSECL. Reading this register is necessary for clearing the interrupt; however, AI in EICON (SFR D8h) must also  
be cleared.  
WRT  
Write Control. Determines whether to write the value immediately or wait until the current count is finished. Read = 0.  
0 = Delay Write Operation. The MSINT value is loaded when the current count expires.  
bit 7  
1 = Write Immediately. The MSINT counter is loaded once the CPU completes the write operation.  
MSINT6−0 Milliseconds Count. Normal operation would use 1ms as the clock interval.  
bits 6−0 MS Interrupt Interval = (1 + MSINT) (MSEC + 1) t  
CLK  
One Microsecond Timer (USEC)  
7
6
5
4
3
2
1
0
Reset Value  
SFR FBh  
0
0
FREQ5  
FREQ4  
FREQ3  
FREQ2  
FREQ1  
FREQ0  
03h  
FREQ5−0 Clock Frequency − 1. This value + 1 divides the system clock to create a 1µs Clock.  
bits 5−0 USEC = CLK/(FREQ + 1). This clock is used to set Flash write time. See FTCON (SFR EFh).  
One Millisecond Timer Low Byte (MSECL)  
7
6
5
4
3
2
1
0
Reset Value  
SFR FCh  
MSECL7  
MSECL6  
MSECL5  
MSECL4  
MSECL3  
MSECL2  
MSECL1  
MSECL0  
9Fh  
MSECL7−0 One Millisecond Timer Low Byte. This value in combination with the next register is used to create a 1ms clock.  
bits 7−0  
1ms = (MSECH 256 + MSECL + 1) t  
. This clock is used to set Flash erase time. See FTCON (SFR EFh).  
CLK  
100  
ꢀ ꢁꢂꢃ ꢄ ꢃꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢄ  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢇ  
www.ti.com  
SBAS323D − JUNE 2004 − REVISED SEPTEMBER 2005  
One Millisecond Timer High Byte (MSECH)  
7
6
5
4
3
2
1
0
Reset Value  
SFR FDh  
MSECH7  
MSECH6  
MSECH5  
MSECH4  
MSECH3  
MSECH2  
MSECH1  
MSECH0  
0Fh  
MSECH7−0 One Millisecond Timer High Byte. This value in combination with the previous register is used to create a 1ms clock.  
bits 7−0 1ms = (MSECH 256 + MSECL + 1) t  
.
CLK  
One Hundred Millisecond Timer (HMSEC)  
7
6
5
4
3
2
1
0
Reset Value  
SFR FEh  
WRT  
HMSEC6  
HMSEC5  
HMSEC4  
HMSEC3  
HMSEC2  
HMSEC1  
HMSEC0  
63h  
WRT  
bit 7  
Write Control. Determines whether to write the value immediately or wait until the current count is finished. Read = 0.  
0 = Delay Write Operation. The MSINT value is loaded when the current count expires.  
1 = Write Immediately. The MSINT counter is loaded once the CPU completes the write operation.  
HMSEC6−0 One Hundred Millisecond. This clock divides the 1ms clock to create a 100ms clock.  
bits 6−0 100ms = (MSECH 256 + MSECL + 1) (HMSEC + 1) t  
.
CLK  
Watchdog Timer (WDTCON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR FFh  
EWDT  
DWDT  
RWDT  
WDCNT4  
WDCNT3  
WDCNT2  
WDCNT1  
WDCNT0  
00h  
EWDT  
Enable Watchdog (R/W).  
bit 7  
Write 1/Write 0 sequence sets the Watchdog Enable Counting bit.  
DWDT  
Disable Watchdog (R/W).  
bit 6  
Write 1/Write 0 sequence clears the Watchdog Enable Counting bit.  
RWDT  
Reset Watchdog (R/W).  
bit 5  
Write 1/Write 0 sequence restarts the Watchdog Counter.  
WDCNT4−0 Watchdog Count (R/W).  
bits 4−0  
Watchdog expires in (WDCNT + 1) HMSEC to (WDCNT + 2) HMSEC, if the sequence is not asserted. There is  
an uncertainty of 1 count.  
101  
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Jul-2005  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
Drawing  
PAG  
PAG  
PAG  
PAG  
PAG  
PAG  
PAG  
PAG  
PAG  
PAG  
PAG  
PAG  
PAG  
PAG  
PAG  
PAG  
PAG  
PAG  
PAG  
PAG  
PAG  
PAG  
PAG  
PAG  
PAG  
PAG  
PAG  
PAG  
PAG  
PAG  
PAG  
PAG  
MSC1211Y2PAGR  
MSC1211Y2PAGT  
MSC1211Y3PAGR  
MSC1211Y3PAGT  
MSC1211Y4PAGR  
MSC1211Y4PAGT  
MSC1211Y5PAGR  
MSC1211Y5PAGT  
MSC1212Y2PAGR  
MSC1212Y2PAGT  
MSC1212Y3PAGR  
MSC1212Y3PAGT  
MSC1212Y4PAGR  
MSC1212Y4PAGT  
MSC1212Y5PAGR  
MSC1212Y5PAGT  
MSC1213Y2PAGR  
MSC1213Y2PAGT  
MSC1213Y3PAGR  
MSC1213Y3PAGT  
MSC1213Y4PAGR  
MSC1213Y4PAGT  
MSC1213Y5PAGR  
MSC1213Y5PAGT  
MSC1214Y2PAGR  
MSC1214Y2PAGT  
MSC1214Y3PAGR  
MSC1214Y3PAGT  
MSC1214Y4PAGR  
MSC1214Y4PAGT  
MSC1214Y5PAGR  
MSC1214Y5PAGT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
1500  
250  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
CU NIPDAU Level-3-235C-168 HR  
CU NIPDAU Level-3-235C-168 HR  
CU NIPDAU Level-3-235C-168 HR  
CU NIPDAU Level-3-235C-168 HR  
CU NIPDAU Level-3-235C-168 HR  
CU NIPDAU Level-3-235C-168 HR  
CU NIPDAU Level-3-235C-168 HR  
CU NIPDAU Level-3-235C-168 HR  
CU NIPDAU Level-3-235C-168 HR  
CU NIPDAU Level-3-235C-168 HR  
CU NIPDAU Level-3-235C-168 HR  
CU NIPDAU Level-3-235C-168 HR  
CU NIPDAU Level-3-235C-168 HR  
CU NIPDAU Level-3-235C-168 HR  
CU NIPDAU Level-3-235C-168 HR  
CU NIPDAU Level-3-235C-168 HR  
CU NIPDAU Level-3-235C-168 HR  
CU NIPDAU Level-3-235C-168 HR  
CU NIPDAU Level-3-235C-168 HR  
CU NIPDAU Level-3-235C-168 HR  
CU NIPDAU Level-3-235C-168 HR  
CU NIPDAU Level-3-235C-168 HR  
CU NIPDAU Level-3-235C-168 HR  
CU NIPDAU Level-3-235C-168 HR  
CU NIPDAU Level-3-235C-168 HR  
CU NIPDAU Level-3-235C-168 HR  
CU NIPDAU Level-3-235C-168 HR  
CU NIPDAU Level-3-235C-168 HR  
CU NIPDAU Level-3-235C-168 HR  
CU NIPDAU Level-3-235C-168 HR  
CU NIPDAU Level-3-235C-168 HR  
CU NIPDAU Level-3-235C-168 HR  
1500  
250  
1500  
250  
1500  
250  
1500  
250  
1500  
250  
1500  
250  
2000  
250  
1500  
250  
1500  
250  
1500  
250  
1500  
250  
1500  
250  
1500  
250  
1500  
250  
2000  
250  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan  
-
The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS  
&
no Sb/Br)  
-
please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Jul-2005  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 2  
MECHANICAL DATA  
MTQF006A – JANUARY 1995 – REVISED DECEMBER 1996  
PAG (S-PQFP-G64)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
48  
M
0,08  
33  
49  
32  
64  
17  
0,13 NOM  
1
16  
7,50 TYP  
Gage Plane  
10,20  
SQ  
9,80  
0,25  
12,20  
SQ  
0,05 MIN  
11,80  
0°7°  
1,05  
0,95  
0,75  
0,45  
Seating Plane  
0,08  
1,20 MAX  
4040282/C 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

MSC1213Y5PAGR

Precision Analog-to-Digital Converter (ADC) and Digital-to-Analog Converters (DACs) with 8051 Microcontroller and Flash Memory
TI

MSC1213Y5PAGT

Precision Analog-to-Digital Converter (ADC) and Digital-to-Analog Converters (DACs) with 8051 Microcontroller and Flash Memory
TI

MSC1214

Precision Analog-to-Digital Converter (ADC) and Digital-to-Analog Converters (DACs)
TI

MSC1214Y2

Precision Analog-to-Digital Converter (ADC) and Digital-to-Analog Converters (DACs) with 8051 Microcontroller and Flash Memory
TI

MSC1214Y2PAGR

Precision Analog-to-Digital Converter (ADC) and Digital-to-Analog Converters (DACs) with 8051 Microcontroller and Flash Memory
TI

MSC1214Y2PAGT

Precision Analog-to-Digital Converter (ADC) and Digital-to-Analog Converters (DACs) with 8051 Microcontroller and Flash Memory
TI

MSC1214Y2PAGTG4

8-BIT, FLASH, 40MHz, MICROCONTROLLER, PQFP64, GREEN, PLASTIC, TQFP-64
TI

MSC1214Y3

Precision Analog-to-Digital Converter (ADC) and Digital-to-Analog Converters (DACs) with 8051 Microcontroller and Flash Memory
TI

MSC1214Y3PAGR

Precision Analog-to-Digital Converter (ADC) and Digital-to-Analog Converters (DACs) with 8051 Microcontroller and Flash Memory
TI

MSC1214Y3PAGRG4

8-BIT, FLASH, 40MHz, MICROCONTROLLER, PQFP64, GREEN, PLASTIC, TQFP-64
TI

MSC1214Y3PAGT

Precision Analog-to-Digital Converter (ADC) and Digital-to-Analog Converters (DACs) with 8051 Microcontroller and Flash Memory
TI

MSC1214Y4

Precision Analog-to-Digital Converter (ADC) and Digital-to-Analog Converters (DACs) with 8051 Microcontroller and Flash Memory
TI